(word完整版)全国高考数列大题专题.doc

合集下载

高考数学(文科)习题 第六章 数列 6-3-2 word版含答案

高考数学(文科)习题 第六章 数列 6-3-2 word版含答案

1.等比数列{a n }中,a 4=2,a 5=5,则数列{lg a n }的前8项和等于( )点击观看解答视频A .6B .5C .4D .3答案 C解析 ∵a 4=2,a 5=5,∴a 4a 5=a 1a 8=a 2a 7=a 3a 6=10,∴lg a 1+lg a 2+…+lg a 8=lg (a 1a 2…a 8)=lg (a 1a 8)4=lg (a 4a 5)4=4lg (a 4a 5)=4lg 10=4,选C.2.设等比数列{a n }的前n 项和为S n ,若S 6S 3=3,则S 9S 6=( )A .2B.73C.83D .3 答案 B解析 由等比数列的性质得:S 3,S 6-S 3,S 9-S 6仍成等比数列,于是,由已知得S 6=3S 3,∴S 6-S 3S 3=S 9-S 6S 6-S 3,即S 9-S 6=4S 3,∴S 9=7S 3,∴S 9S 6=73,故选B. 3.已知等比数列{a n }的前n 项积记为Ⅱn ,若a 3a 4a 8=8,则Ⅱ9=( )点击观看解答视频A .512B .256C .81D .16答案 A解析 由题意可知,a 3a 4a 7q =a 3a 7a 4q =a 3a 7a 5=a 35=8,Ⅱ9=a 1a 2a 3…a 9=(a 1a 9)(a 2a 8)(a 3a 7)(a 4a 6)a 5=a 95,所以Ⅱ9=83=512.故选A.4.已知数列{a n }是递增的等比数列,a 1+a 4=9,a 2a 3=8,则数列{a n }的前n 项和等于________.答案 2n -1解析 ∵⎩⎪⎨⎪⎧ a 1+a 4=9a 2a 3=8,∴⎩⎪⎨⎪⎧ a 1+a 4=9a 1a 4=8,则a 1,a 4可以看作一元二次方程x 2-9x +8=0的两根,故⎩⎪⎨⎪⎧ a 1=1a 4=8或⎩⎪⎨⎪⎧ a 1=8a 4=1, ∵数列{a n }是递增的等比数列,∴⎩⎪⎨⎪⎧ a 1=1a 4=8,可得公比q =2,∴前n 项和S n =2n-1. 5.设{a n }是首项为a 1,公差为-1的等差数列,S n 为其前n 项和.若S 1,S 2,S 4成等比数列,则a 1的值为________.答案 -12解析 S 1=a 1,S 2=2a 1-1,S 4=4a 1-6.故(2a 1-1)2=a 1×(4a 1-6)6.成等差数列的三个正数的和等于15,并且这三个数分别加上列{b n }中的b 3,b 4,b 5.(1)求数列{b n }的通项公式;(2)求数列{b n }的前n 项和S n .解 (1)设成等差数列的三个正数分别为a -d ,a ,a +d ,则(a -d )+a +(a +d )=15,解得a =5,∴b 3=7-d ,b 4=10,b 5=18+d .∵b 3,b 4,b 5成等比数列,∴b 3b 5=b 24,即(7-d )(18+d )=102,化简,得d 2+11d -26=0,解得d =2或d =-13(舍去),∴b 3=5,b 4=10,b 5=20,∴数列{b n }的公比q =105=2, 数列{b n }的通项公式为b n =b 3q n -3=5×2n -3.(2)由b 3=5,q =2,得b 1=b 3q 2=54, ∴数列{b n }是首项为b 1=54,公比为q =2的等比数列,b11-q n1-q =5×2n-2-54.∴数列{b n}的前n项和S n=。

高考数学《数列》大题训练50题含答案解析

高考数学《数列》大题训练50题含答案解析

一.解答题(共30小题)1.(2012•上海)已知数列{a n}、{b n}、{c n}满足.(1)设c n=3n+6,{a n}是公差为3的等差数列.当b1=1时,求b2、b3的值;(2)设,.求正整数k,使得对一切n∈N*,均有b n≥b k;(3)设,.当b1=1时,求数列{b n}的通项公式.2.(2011•重庆)设{a n}是公比为正数的等比数列a1=2,a3=a2+4.(Ⅰ)求{a n}的通项公式;((Ⅱ)设{b n}是首项为1,公差为2的等差数列,求数列{a n+b n}的前n项和S n.3.(2011•重庆)设实数数列{a n}的前n项和S n满足S n+1=a n+1S n(n∈N*).(Ⅰ)若a1,S2,﹣2a2成等比数列,求S2和a3.(Ⅱ)求证:对k≥3有0≤a k≤.4.(2011•浙江)已知公差不为0的等差数列{a n}的首项a1为a(a∈R)设数列的前n 项和为S n,且,,成等比数列.(Ⅰ)求数列{a n}的通项公式及S n;`(Ⅱ)记A n=+++…+,B n=++…+,当a≥2时,试比较A n与B n的大小.5.(2011•上海)已知数列{a n}和{b n}的通项公式分别为a n=3n+6,b n=2n+7(n∈N*).将集合{x|x=a n,n∈N*}∪{x|x=b n,n∈N*}中的元素从小到大依次排列,构成数列c1,c2,c3,…,c n,…(1)写出c1,c2,c3,c4;(2)求证:在数列{c n}中,但不在数列{b n}中的项恰为a2,a4,…,a2n,…;(3)求数列{c n}的通项公式.6.(2011•辽宁)已知等差数列{a n}满足a2=0,a6+a8=﹣10*(I)求数列{a n}的通项公式;(II)求数列{}的前n项和.7.(2011•江西)(1)已知两个等比数列{a n},{b n},满足a1=a(a>0),b1﹣a1=1,b2﹣a2=2,b3﹣a3=3,若数列{a n}唯一,求a的值;(2)是否存在两个等比数列{a n},{b n},使得b1﹣a1,b2﹣a2,b3﹣a3.b4﹣a4成公差不为0的等差数列若存在,求{a n},{b n}的通项公式;若不存在,说明理由.8.(2011•湖北)成等差数列的三个正数的和等于15,并且这三个数分别加上2、5、13后成为等比数列{b n}中的b3、b4、b5.(I)求数列{b n}的通项公式;](II)数列{b n}的前n项和为S n,求证:数列{S n+}是等比数列.9.(2011•广东)设b>0,数列{a n}满足a1=b,a n=(n≥2)(1)求数列{a n}的通项公式;(4)证明:对于一切正整数n,2a n≤b n+1+1.10.(2011•安徽)在数1 和100之间插入n个实数,使得这n+2个数构成递增的等比数列,将这n+2个数的乘积计作T n,再令a n=lgT n,n≥1.(I)求数列{a n}的通项公式;—(Ⅱ)设b n=tana n•tana n+1,求数列{b n}的前n项和S n.11.(2010•浙江)设a1,d为实数,首项为a1,公差为d的等差数列{a n}的前n项和为S n,满足S5S6+15=0.(Ⅰ)若S5=5,求S6及a1;(Ⅱ)求d的取值范围.12.(2010•四川)已知等差数列{a n}的前3项和为6,前8项和为﹣4.(Ⅰ)求数列{a n}的通项公式;,(Ⅱ)设b n=(4﹣a n)q n﹣1(q≠0,n∈N*),求数列{b n}的前n项和S n.13.(2010•四川)已知数列{a n}满足a1=0,a2=2,且对任意m、n∈N*都有a2m﹣1+a2n﹣1=2a m+n+2(m﹣n)2﹣1(1)求a3,a5;(2)设b n=a2n+1﹣a2n﹣1(n∈N*),证明:{b n}是等差数列;(3)设c n=(a n+1﹣a n)q n﹣1(q≠0,n∈N*),求数列{c n}的前n项和S n.14.(2010•陕西)已知{a n}是公差不为零的等差数列,a1=1,且a1,a3,a9成等比数列.:(Ⅰ)求数列{a n}的通项;(Ⅱ)求数列{2an}的前n项和S n.15.(2010•宁夏)设数列满足a1=2,a n+1﹣a n=3•22n﹣1(1)求数列{a n}的通项公式;(2)令b n=na n,求数列的前n项和S n.16.(2010•江西)正实数数列{a n}中,a1=1,a2=5,且{a n2}成等差数列.…(1)证明数列{a n}中有无穷多项为无理数;(2)当n为何值时,a n为整数,并求出使a n<200的所有整数项的和.17.(2009•陕西)已知数列{a n}满足,,n∈N×.(1)令b n=a n+1﹣a n,证明:{b n}是等比数列;(2)求{a n}的通项公式.18.(2009•山东)等比数列{a n}的前n项和为S n,已知对任意的n∈N*,点(n,S n),均在函数y=b x+r(b>0)且b≠1,b,r均为常数)的图象上.\(1)求r的值;(2)当b=2时,记b n=n∈N*求数列{b n}的前n项和T n.19.(2009•江西)数列{a n}的通项,其前n项和为S n,(1)求S n;(2),求数列{b n}的前n项和T n.20.(2009•辽宁)等比数列{a n}的前n项和为s n,已知S1,S3,S2成等差数列,-(1)求{a n}的公比q;(2)求a1﹣a3=3,求s n.21.(2009•湖北)已知数列{a n}是一个公差大于0的等差数列,且满足a2a6=55,a2+a7=16(1)求数列{a n}的通项公式;(2)数列{a n}和数列{b n}满足等式a n=(n∈N*),求数列{b n}的前n项和S n.22.(2009•福建)等比数列{a n}中,已知a1=2,a4=16((I)求数列{a n}的通项公式;(Ⅱ)若a3,a5分别为等差数列{b n}的第3项和第5项,试求数列{b n}的通项公式及前n 项和S n.23.(2009•安徽)已知数列{a n}的前n项和S n=2n2+2n,数列{b n}的前n项和Tn=2﹣b n (Ⅰ)求数列{a n}与{b n}的通项公式;(Ⅱ)设c n=a n2•b n,证明:当且仅当n≥3时,c n+1<c n.24.(2009•北京)设数列{a n}的通项公式为a n=pn+q(n∈N*,P>0).数列{b n}定义如下:对于正整数m,b m是使得不等式a n≥m成立的所有n中的最小值.…(Ⅰ)若,求b3;(Ⅱ)若p=2,q=﹣1,求数列{b m}的前2m项和公式;(Ⅲ)是否存在p和q,使得b m=3m+2(m∈N*)如果存在,求p和q的取值范围;如果不存在,请说明理由.25.(2008•浙江)已知数列{x n}的首项x1=3,通项x n=2n p+np(n∈N*,p,q为常数),且成等差数列.求:(Ⅰ)p,q的值;(Ⅱ)数列{x n}前n项和S n的公式.|26.(2008•四川)设数列{a n}的前n项和为S n=2a n﹣2n,(Ⅰ)求a1,a4(Ⅱ)证明:{a n+1﹣2a n}是等比数列;(Ⅲ)求{a n}的通项公式.27.(2008•四川)在数列{a n}中,a1=1,.(Ⅰ)求{a n}的通项公式;(Ⅱ)令,求数列{b n}的前n项和S n;《(Ⅲ)求数列{a n}的前n项和T n.28.(2008•陕西)已知数列{a n}的首项,,n=1,2,3,….(Ⅰ)证明:数列是等比数列;(Ⅱ)求数列的前n项和S n.29.(2008•辽宁)在数列{a n},{b n}是各项均为正数的等比数列,设.(Ⅰ)数列{c n}是否为等比数列证明你的结论;,(Ⅱ)设数列{lna n},{lnb n}的前n项和分别为S n,T n.若a1=2,,求数列{c n}的前n项和.30.(2008•辽宁)在数列{a n},{b n}中,a1=2,b1=4,且a n,b n,a n+1成等差数列,b n,a n+1,b n+1成等比数列.(1)求a2,a3,a4及b2,b3,b4,由此猜测{a n},{b n}的通项公式,并证明你的结论;(2)证明:.答案与评分标准,一.解答题(共30小题)1.(2012•上海)已知数列{a n}、{b n}、{c n}满足.(1)设c n=3n+6,{a n}是公差为3的等差数列.当b1=1时,求b2、b3的值;(2)设,.求正整数k,使得对一切n∈N*,均有b n≥b k;(3)设,.当b1=1时,求数列{b n}的通项公式.考点:数列递推式;数列的函数特性。

高考文科数学数列经典大题训练(附答案)

高考文科数学数列经典大题训练(附答案)

1.〔此题总分值14 分〕设数列a的前n项和为S n,且S n4a n3(n1,2,),n〔1〕证明: 数列a n是等比数列;〔2〕假设数列b满足b n1a n b n(n1,2,),b12,求数列b n的通项公n式.2.〔本小题总分值12分〕等比数列a的各项均为正数,且n2 2a3a1,a9aa.123261.求数列a n的通项公式.2.设blogaloga......loga,求数列n31323n 1bn的前项和.3.设数列a满足n2n1 a12,a1a32nn〔1〕求数列a的通项公式;n〔2〕令b n na n,求数列的前n项和S n3.等差数列{a n}的前3项和为6,前8项和为﹣4.〕,求数列{b n}的前n项和S n.〔Ⅰ〕求数列{a n}的通项公式;n﹣1*〔Ⅱ〕设b n=〔4﹣a n〕q〔q≠0,n∈N× 5.数列{a n}满足,,n∈N.〔1〕令b n=a n+1﹣a n,证明:{b n}是等比数列;〔2〕求{a n}的通项公式....4.解:〔1〕证:因为S n4a n3(n1,2,),那么S n14a n13(n2,3,),所以当n2时,a SS14a4a1,nnnnn4整理得aa1.5分nn3由S43,令n1,得a14a13,解得a11.n an所以分a是首项为1,公比为n43的等比数列.7〔2〕解:因为4n1 a(),n3由b1ab(n1,2,),得nnn4n1 bb().9分n1n3由累加得()()()b n bbbbbbb12`132nn14n11()43n1=23()1,〔n2〕,43134n1 当n=1时也满足,所以)1b3(.n35.解:〔Ⅰ〕设数列{a n}的公比为q,由 2a39a2a6得32a39a4所以21q。

有条件9可知a>0,故1q。

311a。

故数列{a n}的通项式为a n=33由2a13a21得2a13a2q1,所以1n。

〔Ⅱ〕b logaloga...logan111111(12...n)n(n1)2故12112() bn(n1)nn1n111111112n ...2((1)()...()) bbb223nn1n1 12n...所以数列1{}bn2n 的前n 项和为n16.解:〔Ⅰ〕由,当n≥1 时,a1[(a1a)(a a1)(a2a1)]a1nnnnn2n12n33(222)222(n1)1。

最新高考新课标数学数列大题精选50题(含答案、知识卡片)

最新高考新课标数学数列大题精选50题(含答案、知识卡片)

高考新课标数学数列大题精选50题(含答案、知识卡片)一.解答题(共50题)1.(2019•全国)数列{a n}中,a1=,2a n+1a n+a n+1﹣a n=0.(1)求{a n}的通项公式;(2)求满足a1a2+a2a3+…+a n﹣1a n<的n的最大值.2.(2019•新课标Ⅰ)记S n为等差数列{a n}的前n项和.已知S9=﹣a5.(1)若a3=4,求{a n}的通项公式;(2)若a1>0,求使得S n≥a n的n的取值范围.3.(2019•新课标Ⅱ)已知数列{a n}和{b n}满足a1=1,b1=0,4a n+1=3a n﹣b n+4,4b n+1=3b n﹣a n﹣4.(1)证明:{a n+b n}是等比数列,{a n﹣b n}是等差数列;(2)求{a n}和{b n}的通项公式.4.(2019•新课标Ⅱ)已知{a n}是各项均为正数的等比数列,a1=2,a3=2a2+16.(1)求{a n}的通项公式;(2)设b n=log2a n,求数列{b n}的前n项和.5.(2018•新课标Ⅱ)记S n为等差数列{a n}的前n项和,已知a1=﹣7,S3=﹣15.(1)求{a n}的通项公式;(2)求S n,并求S n的最小值.6.(2018•新课标Ⅰ)已知数列{a n}满足a1=1,na n+1=2(n+1)a n,设b n=.(1)求b1,b2,b3;(2)判断数列{b n}是否为等比数列,并说明理由;(3)求{a n}的通项公式.7.(2018•新课标Ⅲ)等比数列{a n}中,a1=1,a5=4a3.(1)求{a n}的通项公式;(2)记S n为{a n}的前n项和.若S m=63,求m.8.(2017•全国)设数列{b n}的各项都为正数,且.(1)证明数列为等差数列;(2)设b1=1,求数列{b n b n+1}的前n项和S n.9.(2017•新课标Ⅱ)已知等差数列{a n}的前n项和为S n,等比数列{b n}的前n项和为T n,a1=﹣1,b1=1,a2+b2=2.(1)若a3+b3=5,求{b n}的通项公式;(2)若T3=21,求S3.10.(2017•新课标Ⅰ)记S n为等比数列{a n}的前n项和.已知S2=2,S3=﹣6.(1)求{a n}的通项公式;(2)求S n,并判断S n+1,S n,S n+2是否成等差数列.11.(2017•新课标Ⅲ)设数列{a n}满足a1+3a2+…+(2n﹣1)a n=2n.(1)求{a n}的通项公式;(2)求数列{}的前n项和.12.(2016•全国)已知数列{a n}的前n项和S n=n2.(Ⅰ)求{a n}的通项公式;(Ⅱ)记b n=,求数列{b n}的前n项和.13.(2016•新课标Ⅲ)已知数列{a n}的前n项和S n=1+λa n,其中λ≠0.(1)证明{a n}是等比数列,并求其通项公式;(2)若S5=,求λ.14.(2016•新课标Ⅰ)已知{a n}是公差为3的等差数列,数列{b n}满足b1=1,b2=,a n b n+1+b n+1=nb n.(Ⅰ)求{a n}的通项公式;(Ⅱ)求{b n}的前n项和.15.(2016•新课标Ⅲ)已知各项都为正数的数列{a n}满足a1=1,a n2﹣(2a n+1﹣1)a n﹣2a n+1=0.(1)求a2,a3;(2)求{a n}的通项公式.16.(2016•新课标Ⅱ)等差数列{a n}中,a3+a4=4,a5+a7=6.(Ⅰ)求{a n}的通项公式;(Ⅱ)设b n=[a n],求数列{b n}的前10项和,其中[x]表示不超过x的最大整数,如[0.9]=0,[2.6]=2.17.(2016•新课标Ⅱ)S n为等差数列{a n}的前n项和,且a1=1,S7=28,记b n=[lga n],其中[x]表示不超过x的最大整数,如[0.9]=0,[lg99]=1.(Ⅰ)求b1,b11,b101;(Ⅱ)求数列{b n}的前1000项和.18.(2015•全国)已知数列{a n}的前n项和S n=4﹣a n﹣.(Ⅰ)证明:数列{2n a n}是等差数列;(Ⅱ)求{a n}的通项公式.19.(2015•新课标Ⅰ)S n为数列{a n}的前n项和,已知a n>0,a n2+2a n=4S n+3(I)求{a n}的通项公式:(Ⅱ)设b n=,求数列{b n}的前n项和.数列全国高考数学试题参考答案与试题解析一.解答题(共50小题)1.(2019•全国)数列{a n}中,a1=,2a n+1a n+a n+1﹣a n=0.(1)求{a n}的通项公式;(2)求满足a1a2+a2a3+…+a n﹣1a n<的n的最大值.【分析】(1)由2a n+1a n+a n+1﹣a n=0可得,可知数列{}是等差数列,求出的通项公式可得a n;(2)由(1)知=,然后利用裂项相消法求出a1a2+a2a3+…+a n﹣1a n,再解不等式可得n的范围,进而得到n的最大值.【解答】解:(1)∵2a n+1a n+a n+1﹣a n=0.∴,又,∴数列{}是以3为首项,2为公差的等差数列,∴,∴;(2)由(1)知,=,∴a1a2+a2a3+…+a n﹣1a n==,∵a1a2+a2a3+…+a n﹣1a n<,∴<,∴4n+2<42,∴n<10,∵n∈N*,∴n的最大值为9.【点评】本题考查了等差数列的定义,通项公式和裂项相消法求出数列的前n项和,考查了转化思想,关键是了解数列的递推公式,明确递推公式与通项公式的异同,会根据数列的递推公式构造新数列,属中档题.2.(2019•新课标Ⅰ)记S n为等差数列{a n}的前n项和.已知S9=﹣a5.(1)若a3=4,求{a n}的通项公式;(2)若a1>0,求使得S n≥a n的n的取值范围.【分析】(1)根据题意,等差数列{a n}中,设其公差为d,由S9=﹣a5,即可得S9==9a5=﹣a5,变形可得a5=0,结合a3=4,计算可得d的值,结合等差数列的通项公式计算可得答案;(2)若S n≥a n,则na1+d≥a1+(n﹣1)d,分n=1与n≥2两种情况讨论,求出n的取值范围,综合即可得答案.【解答】解:(1)根据题意,等差数列{a n}中,设其公差为d,若S9=﹣a5,则S9==9a5=﹣a5,变形可得a5=0,即a1+4d=0,若a3=4,则d==﹣2,则a n=a3+(n﹣3)d=﹣2n+10,(2)若S n≥a n,则na1+d≥a1+(n﹣1)d,当n=1时,不等式成立,当n≥2时,有≥d﹣a1,变形可得(n﹣2)d≥﹣2a1,又由S9=﹣a5,即S9==9a5=﹣a5,则有a5=0,即a1+4d=0,则有(n﹣2)≥﹣2a1,又由a1>0,则有n≤10,则有2≤n≤10,综合可得:n的取值范围是{n|1≤n≤10,n∈N}.【点评】本题考查等差数列的性质以及等差数列的前n项和公式,涉及数列与不等式的综合应用,属于基础题.3.(2019•新课标Ⅱ)已知数列{a n}和{b n}满足a1=1,b1=0,4a n+1=3a n﹣b n+4,4b n+1=3b n﹣a n﹣4.(1)证明:{a n+b n}是等比数列,{a n﹣b n}是等差数列;(2)求{a n}和{b n}的通项公式.【分析】(1)定义法证明即可;(2)由(1)结合等差、等比的通项公式可得【解答】解:(1)证明:∵4a n+1=3a n﹣b n+4,4b n+1=3b n﹣a n﹣4;∴4(a n+1+b n+1)=2(a n+b n),4(a n+1﹣b n+1)=4(a n﹣b n)+8;即a n+1+b n+1=(a n+b n),a n+1﹣b n+1=a n﹣b n+2;又a1+b1=1,a1﹣b1=1,∴{a n+b n}是首项为1,公比为的等比数列,{a n﹣b n}是首项为1,公差为2的等差数列;(2)由(1)可得:a n+b n=()n﹣1,a n﹣b n=1+2(n﹣1)=2n﹣1;∴a n=()n+n﹣,b n=()n﹣n+.【点评】本题考查了等差、等比数列的定义和通项公式,是基础题4.(2019•新课标Ⅱ)已知{a n}是各项均为正数的等比数列,a1=2,a3=2a2+16.(1)求{a n}的通项公式;(2)设b n=log2a n,求数列{b n}的前n项和.【分析】(1)设等比数列的公比,由已知列式求得公比,则通项公式可求;(2)把(1)中求得的{a n}的通项公式代入b n=log2a n,得到b n,说明数列{b n}是等差数列,再由等差数列的前n项和公式求解.【解答】解:(1)设等比数列的公比为q,由a1=2,a3=2a2+16,得2q2=4q+16,即q2﹣2q﹣8=0,解得q=﹣2(舍)或q=4.∴;(2)b n=log2a n=,∵b1=1,b n+1﹣b n=2(n+1)﹣1﹣2n+1=2,∴数列{b n}是以1为首项,以2为公差的等差数列,则数列{b n}的前n项和.【点评】本题考查等差数列与等比数列的通项公式及前n项和,考查对数的运算性质,是基础题.5.(2018•全国)已知数列{a n}的前n项和为S n,a1=,a n>0,a n+1•(S n+1+S n)=2.(1)求S n;(2)求++…+.【分析】(1)由数列递推式可得(S n+1﹣S n)(S n+1+S n)=2,可得S n+12﹣S n2=2,运用等差数列的定义和通项公式可得所求S n;(2)化简==()=(﹣),再由数列的求和方法:裂项相消求和,化简整理可得所求和.【解答】解:(1)a1=,a n>0,a n+1•(S n+1+S n)=2,可得(S n+1﹣S n)(S n+1+S n)=2,可得S n+12﹣S n2=2,即数列{S n2}为首项为2,公差为2的等差数列,可得S n2=2+2(n﹣1)=2n,由a n>0,可得S n=;(2)==()=(﹣),即++…+=(﹣1+﹣+2﹣+…+﹣)=(﹣1).【点评】本题考查等差数列的定义和通项公式的运用,考查数列的递推式和数列的求和方法:裂项相消求和,考查运算能力,属于中档题.6.(2018•新课标Ⅱ)记S n为等差数列{a n}的前n项和,已知a1=﹣7,S3=﹣15.(1)求{a n}的通项公式;(2)求S n,并求S n的最小值.【分析】(1)根据a1=﹣7,S3=﹣15,可得a1=﹣7,3a1+3d=﹣15,求出等差数列{a n}的公差,然后求出a n即可;(2)由a1=﹣7,d=2,a n=2n﹣9,得S n===n2﹣8n=(n﹣4)2﹣16,由此可求出S n以及S n的最小值.【解答】解:(1)∵等差数列{a n}中,a1=﹣7,S3=﹣15,∴a1=﹣7,3a1+3d=﹣15,解得a1=﹣7,d=2,∴a n=﹣7+2(n﹣1)=2n﹣9;(2)∵a1=﹣7,d=2,a n=2n﹣9,∴S n===n2﹣8n=(n﹣4)2﹣16,∴当n=4时,前n项的和S n取得最小值为﹣16.【点评】本题主要考查了等差数列的通项公式,考查了等差数列的前n项的和公式,属于中档题.7.(2018•新课标Ⅰ)已知数列{a n}满足a1=1,na n+1=2(n+1)a n,设b n=.(1)求b1,b2,b3;(2)判断数列{b n}是否为等比数列,并说明理由;(3)求{a n}的通项公式.【分析】(1)直接利用已知条件求出数列的各项.(2)利用定义说明数列为等比数列.(3)利用(1)(2)的结论,直接求出数列的通项公式.【解答】解:(1)数列{a n}满足a1=1,na n+1=2(n+1)a n,则:(常数),由于,故:,数列{b n}是以b1为首项,2为公比的等比数列.整理得:,所以:b1=1,b2=2,b3=4.(2)由于(常数),数列{b n}是为等比数列;(3)由(1)得:,根据,所以:.【点评】本题考查的知识要点:数列的通项公式的求法及应用.8.(2018•新课标Ⅲ)等比数列{a n}中,a1=1,a5=4a3.(1)求{a n}的通项公式;(2)记S n为{a n}的前n项和.若S m=63,求m.【分析】(1)利用等比数列通项公式列出方程,求出公比q=±2,由此能求出{a n}的通项公式.(2)当a1=1,q=﹣2时,S n=,由S m=63,得S m==63,m∈N,无解;当a1=1,q=2时,S n=2n﹣1,由此能求出m.【解答】解:(1)∵等比数列{a n}中,a1=1,a5=4a3.∴1×q4=4×(1×q2),解得q=±2,当q=2时,a n=2n﹣1,当q=﹣2时,a n=(﹣2)n﹣1,∴{a n}的通项公式为,a n=2n﹣1,或a n=(﹣2)n﹣1.(2)记S n为{a n}的前n项和.当a1=1,q=﹣2时,S n===,由S m=63,得S m==63,m∈N,无解;当a1=1,q=2时,S n===2n﹣1,由S m=63,得S m=2m﹣1=63,m∈N,解得m=6.【点评】本题考查等比数列的通项公式的求法,考查等比数列的性质等基础知识,考查运算求解能力,考查函数与方程思想,是基础题.9.(2017•全国)设数列{b n}的各项都为正数,且.(1)证明数列为等差数列;(2)设b1=1,求数列{b n b n+1}的前n项和S n.【分析】(1)对已知等式两边取倒数,结合等差数列的定义,即可得证;(2)由等差数列的通项公式可得,所以,再由数列的求和方法:裂项相消求和,化简即可得到所求和.【解答】解:(1)证明:数列{b n}的各项都为正数,且,两边取倒数得,故数列为等差数列,其公差为1,首项为;(2)由(1)得,,,故,所以,因此.【点评】本题考查等差数列的定义和通项公式,考查构造数列法,以及数列的求和方法:裂项相消求和,考查化简运算能力,属于中档题.10.(2017•新课标Ⅱ)已知等差数列{a n}的前n项和为S n,等比数列{b n}的前n项和为T n,a1=﹣1,b1=1,a2+b2=2.(1)若a3+b3=5,求{b n}的通项公式;(2)若T3=21,求S3.【分析】(1)设等差数列{a n}的公差为d,等比数列{b n}的公比为q,运用等差数列和等比数列的通项公式,列方程解方程可得d,q,即可得到所求通项公式;(2)运用等比数列的求和公式,解方程可得公比,再由等差数列的通项公式和求和,计算即可得到所求和.【解答】解:(1)设等差数列{a n}的公差为d,等比数列{b n}的公比为q,a1=﹣1,b1=1,a2+b2=2,a3+b3=5,可得﹣1+d+q=2,﹣1+2d+q2=5,解得d=1,q=2或d=3,q=0(舍去),则{b n}的通项公式为b n=2n﹣1,n∈N*;(2)b1=1,T3=21,可得1+q+q2=21,解得q=4或﹣5,当q=4时,b2=4,a2=2﹣4=﹣2,d=﹣2﹣(﹣1)=﹣1,S3=﹣1﹣2﹣3=﹣6;当q=﹣5时,b2=﹣5,a2=2﹣(﹣5)=7,d=7﹣(﹣1)=8,S3=﹣1+7+15=21.【点评】本题考查等差数列和等比数列的通项公式和求和公式的运用,求出公差和公比是解题的关键,考查方程思想和化简整理的运算能力,属于基础题.11.(2017•新课标Ⅰ)记S n为等比数列{a n}的前n项和.已知S2=2,S3=﹣6.(1)求{a n}的通项公式;(2)求S n,并判断S n+1,S n,S n+2是否成等差数列.【分析】(1)由题意可知a3=S3﹣S2=﹣6﹣2=﹣8,a1==,a2==,由a1+a2=2,列方程即可求得q及a1,根据等比数列通项公式,即可求得{a n}的通项公式;(2)由(1)可知.利用等比数列前n项和公式,即可求得S n,分别求得S n+1,S n+2,显然S n+1+S n+2=2S n,则S n+1,S n,S n+2成等差数列.【解答】解:(1)设等比数列{a n}首项为a1,公比为q,则a3=S3﹣S2=﹣6﹣2=﹣8,则a1==,a2==,由a1+a2=2,+=2,整理得:q2+4q+4=0,解得:q=﹣2,则a1=﹣2,a n=(﹣2)(﹣2)n﹣1=(﹣2)n,∴{a n}的通项公式a n=(﹣2)n;(2)由(1)可知:S n===﹣[2+(﹣2)n+1],则S n+1=﹣[2+(﹣2)n+2],S n+2=﹣[2+(﹣2)n+3],由S n+1+S n+2=﹣[2+(﹣2)n+2]﹣[2+(﹣2)n+3],=﹣[4+(﹣2)×(﹣2)n+1+(﹣2)2×(﹣2)n+1],=﹣[4+2(﹣2)n+1]=2×[﹣(2+(﹣2)n+1)]=2S n,即S n+1+S n+2=2S n,∴S n+1,S n,S n+2成等差数列.【点评】本题考查等比数列通项公式,等比数列前n项和,等差数列的性质,考查计算能力,属于中档题.12.(2017•新课标Ⅲ)设数列{a n}满足a1+3a2+…+(2n﹣1)a n=2n.(1)求{a n}的通项公式;(2)求数列{}的前n项和.【分析】(1)利用数列递推关系即可得出.(2)==﹣.利用裂项求和方法即可得出.【解答】解:(1)数列{a n}满足a1+3a2+…+(2n﹣1)a n=2n.n≥2时,a1+3a2+…+(2n﹣3)a n﹣1=2(n﹣1).∴(2n﹣1)a n=2.∴a n=.当n=1时,a1=2,上式也成立.∴a n=.(2)==﹣.∴数列{}的前n项和=++…+=1﹣=.【点评】本题考查了数列递推关系、裂项求和方法,考查了推理能力与计算能力,属于中档题.13.(2016•全国)已知数列{a n}的前n项和S n=n2.(Ⅰ)求{a n}的通项公式;(Ⅱ)记b n=,求数列{b n}的前n项和.【分析】(Ⅰ)运用数列的递推式:a1=S1;n≥2时,a n=S n﹣S n﹣1,计算可得所求通项;(Ⅱ)化简b n===(﹣),再由数列的求和方法:裂项相消求和,计算可得所求和.【解答】解:(Ⅰ)数列{a n}的前n项和S n=n2,可得a1=S1=1;n≥2时,a n=S n﹣S n﹣1=n2﹣(n﹣1)2=2n﹣1,上式对n=1也成立,则a n=2n﹣1,n∈N*;(Ⅱ)b n===(﹣),则数列{b n}的前n项和为(﹣1+﹣+﹣+…+﹣)=((﹣1).【点评】本题考查数列的通项公式的求法,注意运用数列的递推式,考查数列的求和方法:裂项相消求和,考查化简整理的运算能力,属于中档题.14.(2016•新课标Ⅲ)已知数列{a n}的前n项和S n=1+λa n,其中λ≠0.(1)证明{a n}是等比数列,并求其通项公式;(2)若S5=,求λ.【分析】(1)根据数列通项公式与前n项和公式之间的关系进行递推,结合等比数列的定义进行证明求解即可.(2)根据条件建立方程关系进行求解就可.【解答】解:(1)∵S n=1+λa n,λ≠0.∴a n≠0.当n≥2时,a n=S n﹣S n﹣1=1+λa n﹣1﹣λa n﹣1=λa n﹣λa n﹣1,即(λ﹣1)a n=λa n﹣1,∵λ≠0,a n≠0.∴λ﹣1≠0.即λ≠1,即=,(n≥2),∴{a n}是等比数列,公比q=,当n=1时,S1=1+λa1=a1,即a1=,∴a n=•()n﹣1.(2)若S5=,则若S5=1+λ[•()4]=,即()5=﹣1=﹣,则=﹣,得λ=﹣1.【点评】本题主要考查数列递推关系的应用,根据n≥2时,a n=S n﹣S n﹣1的关系进行递推是解决本题的关键.考查学生的运算和推理能力.15.(2016•新课标Ⅰ)已知{a n}是公差为3的等差数列,数列{b n}满足b1=1,b2=,a n b n+1+b n+1=nb n.(Ⅰ)求{a n}的通项公式;(Ⅱ)求{b n}的前n项和.【分析】(Ⅰ)令n=1,可得a1=2,结合{a n}是公差为3的等差数列,可得{a n}的通项公式;(Ⅱ)由(1)可得:数列{b n}是以1为首项,以为公比的等比数列,进而可得:{b n}的前n项和.【解答】解:(Ⅰ)∵a n b n+1+b n+1=nb n.当n=1时,a1b2+b2=b1.∵b1=1,b2=,∴a1=2,又∵{a n}是公差为3的等差数列,∴a n=3n﹣1,(Ⅱ)由(I)知:(3n﹣1)b n+1+b n+1=nb n.即3b n+1=b n.即数列{b n}是以1为首项,以为公比的等比数列,∴{b n}的前n项和S n==(1﹣3﹣n)=﹣.【点评】本题考查的知识点是数列的递推式,数列的通项公式,数列的前n项和公式,难度中档.16.(2016•新课标Ⅲ)已知各项都为正数的数列{a n}满足a1=1,a n2﹣(2a n+1﹣1)a n﹣2a n+1=0.(1)求a2,a3;(2)求{a n}的通项公式.【分析】(1)根据题意,由数列的递推公式,令n=1可得a12﹣(2a2﹣1)a1﹣2a2=0,将a1=1代入可得a2的值,进而令n=2可得a22﹣(2a3﹣1)a2﹣2a3=0,将a2=代入计算可得a3的值,即可得答案;(2)根据题意,将a n2﹣(2a n+1﹣1)a n﹣2a n+1=0变形可得(a n﹣2a n+1)(a n+a n+1)=0,进而分析可得a n=2a n+1或a n=﹣a n+1,结合数列各项为正可得a n=2a n+1,结合等比数列的性质可得{a n}是首项为a1=1,公比为的等比数列,由等比数列的通项公式计算可得答案.【解答】解:(1)根据题意,a n2﹣(2a n+1﹣1)a n﹣2a n+1=0,当n=1时,有a12﹣(2a2﹣1)a1﹣2a2=0,而a1=1,则有1﹣(2a2﹣1)﹣2a2=0,解可得a2=,当n=2时,有a22﹣(2a3﹣1)a2﹣2a3=0,又由a2=,解可得a3=,故a2=,a3=;(2)根据题意,a n2﹣(2a n+1﹣1)a n﹣2a n+1=0,变形可得(a n﹣2a n+1)(a n+1)=0,即有a n=2a n+1或a n=﹣1,又由数列{a n}各项都为正数,则有a n=2a n+1,故数列{a n}是首项为a1=1,公比为的等比数列,则a n=1×()n﹣1=()n﹣1,故a n=()n﹣1.【点评】本题考查数列的递推公式,关键是转化思路,分析得到a n与a n+1的关系.17.(2016•新课标Ⅱ)等差数列{a n}中,a3+a4=4,a5+a7=6.(Ⅰ)求{a n}的通项公式;(Ⅱ)设b n=[a n],求数列{b n}的前10项和,其中[x]表示不超过x的最大整数,如[0.9]=0,[2.6]=2.【分析】(Ⅰ)设等差数列{a n}的公差为d,根据已知构造关于首项和公差方程组,解得答案;(Ⅱ)根据b n=[a n],列出数列{b n}的前10项,相加可得答案.【解答】解:(Ⅰ)设等差数列{a n}的公差为d,∵a3+a4=4,a5+a7=6.∴,解得:,∴a n=;(Ⅱ)∵b n=[a n],∴b1=b2=b3=1,b4=b5=2,b6=b7=b8=3,b9=b10=4.故数列{b n}的前10项和S10=3×1+2×2+3×3+2×4=24.【点评】本题考查的知识点是等差数列的通项公式,等差数列的性质,难度中档.18.(2016•新课标Ⅱ)S n为等差数列{a n}的前n项和,且a1=1,S7=28,记b n=[lga n],其中[x]表示不超过x的最大整数,如[0.9]=0,[lg99]=1.(Ⅰ)求b1,b11,b101;(Ⅱ)求数列{b n}的前1000项和.【分析】(Ⅰ)利用已知条件求出等差数列的公差,求出通项公式,然后求解b1,b11,b101;(Ⅱ)找出数列的规律,然后求数列{b n}的前1000项和.【解答】解:(Ⅰ)S n为等差数列{a n}的前n项和,且a1=1,S7=28,7a4=28.可得a4=4,则公差d=1.a n=n,b n=[lgn],则b1=[lg1]=0,b11=[lg11]=1,b101=[lg101]=2.(Ⅱ)由(Ⅰ)可知:b1=b2=b3=…=b9=0,b10=b11=b12=…=b99=1.b100=b101=b102=b103=…=b999=2,b10,00=3.数列{b n}的前1000项和为:9×0+90×1+900×2+3=1893.【点评】本题考查数列的性质,数列求和,考查分析问题解决问题的能力,以及计算能力.19.(2015•全国)已知数列{a n}的前n项和S n=4﹣a n﹣.(Ⅰ)证明:数列{2n a n}是等差数列;(Ⅱ)求{a n}的通项公式.【分析】(Ⅰ)当n=1时,,解得a1=1,当n≥2时,S n=4﹣a n﹣,S n﹣1=4﹣a n﹣.两式相减,得2a n=,由此能证明数列{2n a n}是首项为2,公差为﹣2的等差数列.﹣1(Ⅱ)求出2n a n=2+(n﹣1)×(﹣2)=4﹣2n,由此能求出{a n}的通项公式.【解答】证明:(Ⅰ)∵数列{a n}的前n项和S n=4﹣a n﹣.∴当n=1时,,解得a1=1,当n≥2时,S n=4﹣a n﹣,S n﹣1=4﹣a n﹣1﹣.两式相减,得2a n=,∴2×2n a n=2×2n a n=2×2n﹣1a n﹣1﹣4,∴=﹣2n﹣1a n﹣1==﹣2,又2a1=2,∴数列{2n a n}是首项为2,公差为﹣2的等差数列.(Ⅱ)∵数列{2n a n}是首项为2,公差为﹣2的等差数列,∴2n a n=2+(n﹣1)×(﹣2)=4﹣2n,∴a n=.∴{a n}的通项公式为a n=.【点评】本题考查等差数列的证明,考查等差数列的通项公式的求法,考查等差数列的性质、构造法等基础知识,考查运算求解能力,考查函数与方程思想,是中档题.19.(2015•新课标Ⅰ)S n为数列{a n}的前n项和,已知a n>0,a n2+2a n=4S n+3(I)求{a n}的通项公式:(Ⅱ)设b n=,求数列{b n}的前n项和.【分析】(I)根据数列的递推关系,利用作差法即可求{a n}的通项公式:(Ⅱ)求出b n=,利用裂项法即可求数列{b n}的前n项和.【解答】解:(I)由a n2+2a n=4S n+3,可知a n+12+2a n+1=4S n+1+3两式相减得a n+12﹣a n2+2(a n+1﹣a n)=4a n+1,即2(a n+1+a n)=a n+12﹣a n2=(a n+1+a n)(a n+1﹣a n),∵a n>0,∴a n+1﹣a n=2,∵当n=1时,a12+2a1=4a1+3,∴a1=﹣1(舍)或a1=3,则{a n}是首项为3,公差d=2的等差数列,∴{a n}的通项公式a n=3+2(n﹣1)=2n+1:(Ⅱ)∵a n=2n+1,∴b n===(﹣),∴数列{b n}的前n项和T n=(﹣+…+﹣)=(﹣)=.【点评】本题主要考查数列的通项公式以及数列求和的计算,利用裂项法是解决本题的关键.考点卡片1.等差数列的性质【等差数列】等差数列的通项公式为:a n=a1+(n﹣1)d;前n项和公式为:S n=na1+n(n﹣1)或S n=(n∈N+),另一重要特征是若p+q=2m,则有2a m=a p+a q(p,q,m都为自然数)例:已知等差数列{a n}中,a1<a2<a3<…<a n且a3,a6为方程x2﹣10x+16=0的两个实根.(1)求此数列{an}的通项公式;(2)268是不是此数列中的项?若是,是第多少项?若不是,说明理由.解:(1)由已知条件得a3=2,a6=8.又∵{an}为等差数列,设首项为a1,公差为d,∴a1+2d=2,a1+5d=8,解得a1=﹣2,d=2.∴an=﹣2+(n﹣1)×2=2n﹣4(n∈N*).∴数列{an}的通项公式为an=2n﹣4.(2)令268=2n﹣4(n∈N*),解得n=136.∴268是此数列的第136项.这是一个很典型的等差数列题,第一问告诉你第几项和第几项是多少,然后套用等差数列的通项公式an=a1+(n﹣1)d,求出首项和公差d,这样等差数列就求出来了.第二问判断某个数是不是等差数列的某一项,其实就是要你检验看符不符合通项公式,带进去检验一下就是的.【等差数列的性质】(1)若公差d>0,则为递增等差数列;若公差d<0,则为递减等差数列;若公差d=0,则为常数列;(2)有穷等差数列中,与首末两端“等距离”的两项和相等,并且等于首末两项之和;(3)m,n∈N+,则am=an+(m﹣n)d;(4)若s,t,p,q∈N*,且s+t=p+q,则as+at=ap+aq,其中as,at,ap,aq是数列中的项,特别地,当s+t=2p时,有as+at=2ap;(5)若数列{an},{bn}均是等差数列,则数列{man+kbn}仍为等差数列,其中m,k均为常数.(6)an,an﹣1,an﹣2,…,a2,a1仍为等差数列,公差为﹣d.(7)从第二项开始起,每一项是与它相邻两项的等差中项,也是与它等距离的前后两项的等差中项,即2an+1=an+an+2,2an=an﹣m+an+m,(n≥m+1,n,m∈N+)(8)am,am+k,am+2k,am+3k,…仍为等差数列,公差为kd(首项不一定选a1).2.等差数列的通项公式【知识点的认识】a n=a1+(n﹣1)d,或者a n=a m+(n﹣m)d.【例题解析】eg1:已知数列{an}的前n项和为Sn=n2+1,求数列{an}的通项公式,并判断{an}是不是等差数列解:当n=1时,a1=S1=12+1=2,当n≥2时,an=Sn﹣Sn﹣1=n2+1﹣(n﹣1)2﹣1=2n﹣1,∴an=,把n=1代入2n﹣1可得1≠2,∴{an}不是等差数列考察了对概念的理解,除掉第一项这个数列是等差数列,但如果把首项放进去的话就不是等差数列,题中an的求法是数列当中常用到的方式,大家可以熟记一下.eg2:已知等差数列{an}的前三项分别为a﹣1,2a+1,a+7则这个数列的通项公式为解:∵等差数列{an}的前三项分别为a﹣1,2a+1,a+7,∴2(2a+1)=a﹣1+a+7,解得a=2.∴a1=2﹣1=1,a2=2×2+1=5,a3=2+7=9,∴数列an是以1为首项,4为公差的等差数列,∴an=1+(n﹣1)×4=4n﹣3.故答案:4n﹣3.这个题很好的考察了的呢公差数列的一个重要性质,即等差中项的特点,通过这个性质然后解方程一样求出首项和公差即可.【考点点评】求等差数列的通项公式是一种很常见的题型,这里面往往用的最多的就是等差中项的性质,这也是学习或者复习时应重点掌握的知识点.3.等差数列的前n项和【知识点的认识】S n=na1+n(n﹣1)d或者S n=【例题解析】eg1:设等差数列的前n项和为S n,若公差d=1,S5=15,则S10=解:∵d=1,S5=15,∴5a1+d=5a1+10=15,即a1=1,则S10=10a1+d=10+45=55.故答案为:55点评:此题考查了等差数列的前n项和公式,解题的关键是根据题意求出首项a1的值,然后套用公式即可.eg2:等差数列{a n}的前n项和S n=4n2﹣25n.求数列{|a n|}的前n项的和T n.解:∵等差数列{a n}的前n项和S n=4n2﹣25n.∴a n=S n﹣S n﹣1=(4n2﹣25n)﹣[4(n﹣1)2﹣25(n﹣1)]=8n﹣29,该等差数列为﹣21,﹣13,﹣5,3,11,…前3项为负,其和为S3=﹣39.∴n≤3时,T n=﹣S n=25n﹣4n2,n≥4,T n=S n﹣2S3=4n2﹣25n+78,∴.点评:本题考查等差数列的前n项的绝对值的和的求法,是中档题,解题时要认真审题,注意分类讨论思想的合理运用.其实方法都是一样的,要么求出首项和公差,要么求出首项和第n项的值.【考点点评】等差数列比较常见,单独考察等差数列的题也比较简单,一般单独考察是以小题出现,大题一般要考察的话会结合等比数列的相关知识考察,特别是错位相减法的运用.4.等比数列的性质例:2,x,y,z,18成等比数列,则y=.解:由2,x,y,z,18成等比数列,设其公比为q,则18=2q4,解得q2=3,∴y=2q2=2×3=6.故答案为:6.本题的解法主要是运用了等比数列第n项的通项公式,这也是一个常用的方法,即知道某两项的值然后求出公比,继而可以以已知项为首项,求出其余的项.关键是对公式的掌握,方法就是待定系数法.【等比数列的性质】(1)通项公式的推广:a n=a m•q n﹣m,(n,m∈N*).(2)若{a n}为等比数列,且k+l=m+n,(k,l,m,n∈N*),则a k•a l=a m•a n(3)若{a n},{b n}(项数相同)是等比数列,则{λa n}(λ≠0),{a},{a n•b n},仍是等比数列.(4)单调性:或⇔{a n}是递增数列;或⇔{a n}是递减数列;q=1⇔{a n}是常数列;q<0⇔{a n}是摆动数列.5.等比数列的通项公式【知识点的认识】1.等比数列的定义2.等比数列的通项公式a n=a1•q n﹣13.等比中项:如果在a与b中间插入一个数G,使a,G,b成等比数列,那么G叫做a与b的等比中项.G2=a•b(ab≠0)4.等比数列的常用性质(1)通项公式的推广:a n=a m•q n﹣m,(n,m∈N*).(2)若{a n}为等比数列,且k+l=m+n,(k,l,m,n∈N*),则a k•a l=a m•a n(3)若{a n},{b n}(项数相同)是等比数列,则{λa n}(λ≠0),{a},{a n•b n},仍是等比数列.(4)单调性:或⇔{a n}是递增数列;或⇔{a n}是递减数列;q=1⇔{a n}是常数列;q<0⇔{a n}是摆动数列.6.等比数列的前n项和【知识点的知识】1.等比数列的前n项和公式等比数列{a n}的公比为q(q≠0),其前n项和为S n,当q=1时,S n=na1;当q≠1时,S n==.2.等比数列前n项和的性质公比不为﹣1的等比数列{a n}的前n项和为S n,则S n,S2n﹣S n,S3n﹣S2n仍成等比数列,其公比为q n.7.数列的求和【知识点的知识】就是求出这个数列所有项的和,一般来说要求的数列为等差数列、等比数列、等差等比数列等等,常用的方法包括:(1)公式法:①等差数列前n项和公式:S n=na1+n(n﹣1)d或S n=②等比数列前n项和公式:③几个常用数列的求和公式:(2)错位相减法:适用于求数列{a n×b n}的前n项和,其中{a n}{b n}分别是等差数列和等比数列.(3)裂项相消法:适用于求数列{}的前n项和,其中{a n}为各项不为0的等差数列,即=().(4)倒序相加法:推导等差数列的前n项和公式时所用的方法,就是将一个数列倒过来排列(反序),再把它与原数列相加,就可以得到n个(a1+a n).(5)分组求和法:有一类数列,既不是等差数列,也不是等比数列,若将这类数列适当拆开,可分为几个等差、等比或常见的数列,然后分别求和,再将其合并即可.【典型例题分析】典例1:已知等差数列{a n}满足:a3=7,a5+a7=26,{a n}的前n项和为S n.(Ⅰ)求a n及S n;(Ⅱ)令b n=(n∈N*),求数列{b n}的前n项和T n.分析:形如的求和,可使用裂项相消法如:.解:(Ⅰ)设等差数列{a n}的公差为d,∵a3=7,a5+a7=26,∴,解得a1=3,d=2,∴a n=3+2(n﹣1)=2n+1;S n==n2+2n.(Ⅱ)由(Ⅰ)知a n=2n+1,∴b n====,∴T n===,即数列{b n}的前n项和T n=.点评:该题的第二问用的关键方法就是裂项求和法,这也是数列求和当中常用的方法,就像友情提示那样,两个等差数列相乘并作为分母的一般就可以用裂项求和.【解题方法点拨】数列求和基本上是必考点,大家要学会上面所列的几种最基本的方法,即便是放缩也要往这里面考.8.数列递推式【知识点的知识】1、递推公式定义:如果已知数列{a n}的第1项(或前几项),且任一项a n与它的前一项a n﹣1(或前几项)间的关系可以用一个公式来表示,那么这个公式就叫做这个数列的递推公式.2、数列前n项和S n与通项a n的关系式:a n=.在数列{a n}中,前n项和S n与通项公式a n的关系,是本讲内容一个重点,要认真掌握.注意:(1)用a n=S n﹣S n﹣1求数列的通项公式时,你注意到此等式成立的条件了吗?(n≥2,当n=1时,a1=S1);若a1适合由a n的表达式,则a n不必表达成分段形式,可化统一为一个式子.(2)一般地当已知条件中含有a n与S n的混合关系时,常需运用关系式a n=S n﹣S n﹣1,先将已知条件转化为只含a n或S n的关系式,然后再求解.3、数列的通项的求法:(1)公式法:①等差数列通项公式;②等比数列通项公式.(2)已知S n(即a1+a2+…+a n=f(n))求a n,用作差法:a n=.一般地当已知条件中含有a n与S n的混合关系时,常需运用关系式,先将已知条件转化为只含或的关系式,然后再求解.(3)已知a1•a2…a n=f(n)求a n,用作商法:a n,=.(4)若a n+1﹣a n=f(n)求a n,用累加法:a n=(a n﹣a n﹣1)+(a n﹣1﹣a n﹣2)+…+(a2﹣a1)+a1(n≥2).(5)已知=f(n)求a n,用累乘法:a n=(n≥2).(6)已知递推关系求a n,有时也可以用构造法(构造等差、等比数列).特别地有,①形如a n=ka n﹣1+b、a n=ka n﹣1+b n(k,b为常数)的递推数列都可以用待定系数法转化为公比为k的等比数列后,再求a n.②形如a n=的递推数列都可以用倒数法求通项.(7)求通项公式,也可以由数列的前几项进行归纳猜想,再利用数学归纳法进行证明.9.数列与函数的综合【知识点的知识】一、数列的函数特性:等差数列和等比数列的通项公式及前n项和公式中共涉及五个量a1,a n,q,n,S n,知三求二,体现了方程的思想的应用.解答数列与函数的综合问题要善于综合运用函数方程思想、化归转化思想等数学思想以及特例分析法,一般递推法,数列求和及求通项等方法来分析、解决问题.二、解题步骤:1.在解决有关数列的具体应用问题时:(1)要读懂题意,理解实际背景,领悟其数学实质,舍弃与解题无关的非本质性东西;(2)准确地归纳其中的数量关系,建立数学模型;(3)根据所建立的数学模型的知识系统,解出数学模型的结果;(4)最后再回到实际问题中去,从而得到答案.2.在求数列的相关和时,要注意以下几个方面的问题:(1)直接用公式求和时,注意公式的应用范围和公式的推导过程.(2)注意观察数列的特点和规律,在分析数列通项的基础上,或分解为基本数列求和,或转化为基本数列求和.(3)求一般数列的前n项和时,无一般方法可循,要注意掌握某些特殊数列的前n项和的求法,触类旁通.3.在用观察法归纳数列的通项公式(尤其是在处理客观题目时)时,要注意适当地根据具体问题多计算相应的数列的前几项,否则会因为所计算的数列的项数过少,而归纳出错误的通项公式,从而得到错误的结论.【典型例题分析】典例:已知f(x)=log a x(a>0,a≠1),设数列f(a1),f(a2),f(a3),…,f(a n)…是首项为4,公差为2的等差数列.(I)设a为常数,求证:{a n}成等比数列;(II)设b n=a n f(a n),数列{b n}前n项和是S n,当时,求S n.分析:(I)先利用条件求出f(a n)的表达式,进而求出{a n}的通项公式,再用定义来证{a n}是等比数列即可;(II)先求出数列{b n}的通项公式,再对数列{b n}利用错位相减法求和即可.解答:证明:(I)f(a n)=4+(n﹣1)×2=2n+2,即log a a n=2n+2,可得a n=a2n+2.∴==为定值.∴{a n}为等比数列.(II)解:b n=a n f(a n)=a2n+2log a a2n+2=(2n+2)a2n+2.(7分)当时,.(8分)S n=2×23+3×24+4×25++(n+1)•2n+2 ①2S n=2×24+3×25+4×26++n•2n+2+(n+1)•2n+3 ②①﹣②得﹣S n=2×23+24+25++2n+2﹣(n+1)•2n+3(12分)=﹣(n+1)•2n+3=16+2n+3﹣24﹣n•2n+3﹣2n+3.∴S n=n•2n+3.(14分)点评:本题的第二问考查了数列求和的错位相减法.错位相减法适用于通项为一等差数列乘一等比数列组成的新数列.10.数列与不等式的综合【知识点的知识】证明与数列求和有关的不等式基本方法:(1)直接将数列求和后放缩;(2)先将通项放缩后求和;(3)先将通项放缩后求和再放缩;(4)尝试用数学归纳法证明.常用的放缩方法有:,,,=[]﹣=<<=﹣(n≥2),<=()(n≥2),,2()=<=<=2().…+≥…+==<.【解题方法点拨】证明数列型不等式,因其思维跨度大、构造性强,需要有较高的放缩技巧而充满思考性和挑战性,能全面而综合地考查学生的潜能与后继学习能力,因而成为高考压轴题及各级各类竞赛试题命题的极好素材.这类问题的求解策略往往是:通过多角度观察所给数列通项的结构,深入剖析其特征,抓住其规律进行恰当地放缩;其放缩技巧主要有以下几种:(1)添加或舍去一些项,如:>|a|;>n;(2)将分子或分母放大(或缩小);(3)利用基本不等式;<;(4)二项式放缩;(5)利用常用结论;(6)利用函数单调性.(7)常见模型:①等差模型;②等比模型;③错位相减模型;④裂项相消模型;⑤二项式定理模型;⑥基本不等式模型.【典型例题分析】题型一:等比模型典例1:对于任意的n∈N*,数列{a n}满足=n+1.(Ⅰ)求数列{a n}的通项公式;(Ⅱ)求证:对于n≥2,.解答:(Ⅰ)由①,。

高考数学《数列》大题训练50题含答案解析整理版

高考数学《数列》大题训练50题含答案解析整理版

高考数学《数列》大题训练50题1 .数列{}的前n 项和为,且满足,.n a n S 11a =2(1)n n S n a =+(1)求{}的通项公式; (2)求和T n =.n a 1211123(1)na a n a ++++L 2 .已知数列,a 1=1,点在直线上.}{n a *))(2,(1N n a a P n n ∈+0121=+-y x (1)求数列的通项公式;}{n a (2)函数,求函数最小值.)2*,(1111)(321≥∈++++++++=n N n a n a n a n a n n f n且 )(n f 3 .已知函数(a ,b 为常数)的图象经过点P (1,)和Q (4,8)x ab x f =)(81(1) 求函数的解析式;)(x f (2) 记a n =log 2,n 是正整数,是数列{a n }的前n 项和,求的最小值。

)(n f n S n S 4 .已知y =f (x )为一次函数,且f (2)、f (5)、f (4)成等比数列,f (8)=15.求=f (1)+f (2)+…+f (n )的表达式.n S 5 .设数列的前项和为,且,其中是不等于和0的实常数.{}n a n n S 1n n S c ca =+-c 1-(1)求证: 为等比数列;{}n a (2)设数列的公比,数列满足,试写出 的{}n a ()q f c ={}n b ()()111,,23n n b b f b n N n -==∈≥1n b ⎧⎫⎨⎬⎩⎭通项公式,并求的结果.12231n n b b b b b b -+++L 6 .在平面直角坐标系中,已知A n (n,a n )、B n (n,b n )、C n (n -1,0)(n ∈N *),满足向量与向量共线,且1+n n A A n n C B 点B n (n,b n ) (n ∈N *)都在斜率为6的同一条直线上.(1)试用a 1,b 1与n 来表示a n ;(2)设a 1=a ,b 1=-a ,且12<a ≤15,求数列{a n }中的最小项.7 .已知数列的前三项与数列的前三项对应相同,且…对任意的{}n a {}n b 212322a a a +++12n n a -+8n =∈n N*都成立,数列是等差数列.1{}n n b b +-(1)求数列与的通项公式;{}n a {}n b (2)问是否存在N *,使得?请说明理由.k ∈(0,1)k k b a -∈8 .已知数列),3,2(1335,}{11 =-+==-n a a a a nn n n 且中(I )试求a 2,a 3的值;(II )若存在实数为等差数列,试求λ的值.}3{,nn a λλ+使得9 .已知数列的前项和为,若,{}n a n n S ()1,211++=⋅=+n n S a n a n n(1)求数列的通项公式;{}n a (2)令,①当为何正整数值时,:②若对一切正整数,总有,求的n nn S T 2=n 1+>n n T T n m T n ≤m 取值范围。

(完整版)历年高考数学真题(全国卷整理版)

(完整版)历年高考数学真题(全国卷整理版)

2013年普通高等学校夏季招生全国统一考试数学理工农医类(大纲全国卷)一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的. 1.(2013大纲全国,理1)设集合A ={1,2,3},B ={4,5},M ={x |x =a +b ,a ∈A ,b ∈B },则M 中元素的个数为( ).A .3B .4C .5D .62.(2013大纲全国,理2)3=( ).A .-8B .8C .-8iD .8i3.(2013大纲全国,理3)已知向量m =(λ+1,1),n =(λ+2,2),若(m +n )⊥(m -n ),则λ=( ).A .-4B .-3C .-2D .-14.(2013大纲全国,理4)已知函数f (x )的定义域为(-1,0),则函数f (2x +1)的定义域为( ).A .(-1,1)B .11,2⎛⎫-- ⎪⎝⎭ C .(-1,0) D .1,12⎛⎫ ⎪⎝⎭ 5.(2013大纲全国,理5)函数f (x )=21log 1x ⎛⎫+⎪⎝⎭(x >0)的反函数f -1(x )=( ). A .121x -(x >0) B .121x-(x≠0) C .2x -1(x ∈R) D .2x -1(x >0)6.(2013大纲全国,理6)已知数列{a n }满足3a n +1+a n =0,a 2=43-,则{a n }的前10项和等于( ). A .-6(1-3-10) B .19(1-310) C .3(1-3-10) D .3(1+3-10)7.(2013大纲全国,理7)(1+x )8(1+y )4的展开式中x 2y 2的系数是( ).A .56B .84C .112D .1688.(2013大纲全国,理8)椭圆C :22=143x y +的左、右顶点分别为A 1,A 2,点P 在C 上且直线PA 2斜率的取值范围是[-2,-1],那么直线PA 1斜率的取值范围是( ).A .13,24⎡⎤⎢⎥⎣⎦ B .33,84⎡⎤⎢⎥⎣⎦ C .1,12⎡⎤⎢⎥⎣⎦ D .3,14⎡⎤⎢⎥⎣⎦ 9.(2013大纲全国,理9)若函数f (x )=x 2+ax +1x 在1,2⎛⎫+∞ ⎪⎝⎭是增函数,则a 的取值范围是( ). A .[-1,0] B .[-1,+∞) C .[0,3] D .[3,+∞)10.(2013大纲全国,理10)已知正四棱柱ABCD -A 1B 1C 1D 1中,AA 1=2AB ,则CD 与平面BDC 1所成角的正弦值等于( ).A .23 B.3 C.3 D .1311.(2013大纲全国,理11)已知抛物线C :y 2=8x 与点M (-2,2),过C 的焦点且斜率为k 的直线与C 交于A ,B 两点.若0MA MB ⋅=,则k =( ).A .12 B.2 CD .212.(2013大纲全国,理12)已知函数f (x )=cos x sin 2x ,下列结论中错误的是( ).A .y =f(x)的图像关于点(π,0)中心对称B .y =f(x)的图像关于直线π=2x 对称C .f(x)的最大值为2 D .f(x)既是奇函数,又是周期函数二、填空题:本大题共4小题,每小题5分.13.(2013大纲全国,理13)已知α是第三象限角,sin α=13-,则cot α=__________. 14.(2013大纲全国,理14)6个人排成一行,其中甲、乙两人不相邻的不同排法共有__________种.(用数字作答)15.(2013大纲全国,理15)记不等式组0,34,34x x y x y ≥⎧⎪+≥⎨⎪+≤⎩所表示的平面区域为D .若直线y =a (x +1)与D 有公共点,则a 的取值范围是__________.16.(2013大纲全国,理16)已知圆O 和圆K 是球O 的大圆和小圆,其公共弦长等于球O 的半径,OK =32,且圆O 与圆K 所在的平面所成的一个二面角为60°,则球O 的表面积等于__________.三、解答题:解答应写出文字说明,证明过程或演算步骤.17.(2013大纲全国,理17)(本小题满分10分)等差数列{a n }的前n 项和为S n .已知S 3=22a ,且S 1,S 2,S 4成等比数列,求{a n }的通项公式.18.(2013大纲全国,理18)(本小题满分12分)设△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,(a +b +c )(a -b +c )=ac . (1)求B ; (2)若sin A sin C=14,求C .19.(2013大纲全国,理19)(本小题满分12分)如图,四棱锥P-ABCD中,∠ABC=∠BAD=90°,BC=2AD,△PAB和△PAD都是等边三角形.(1)证明:PB⊥CD;(2)求二面角A-PD-C的大小.20.(2013大纲全国,理20)(本小题满分12分)甲、乙、丙三人进行羽毛球练习赛,其中两人比赛,另一人当裁判,每局比赛结束时,负的一方在下一局当裁判.设各局中双方获胜的概率均为12,各局比赛的结果相互独立,第1局甲当裁判.(1)求第4局甲当裁判的概率;(2)X表示前4局中乙当裁判的次数,求X的数学期望.21.(2013大纲全国,理21)(本小题满分12分)已知双曲线C:2222=1x ya b(a>0,b>0)的左、右焦点分别为F1,F2,离心率为3,直线y=2与C.(1)求a,b;(2)设过F2的直线l与C的左、右两支分别交于A,B两点,且|AF1|=|BF1|,证明:|AF2|,|AB|,|BF2|成等比数列.22.(2013大纲全国,理22)(本小题满分12分)已知函数f(x)=1ln(1+)1x xxxλ(+)-+.(1)若x≥0时,f(x)≤0,求λ的最小值;(2)设数列{a n}的通项111=1+23nan+++,证明:a2n-a n+14n>ln 2.2013年普通高等学校夏季招生全国统一考试数学理工农医类(大纲全国卷)一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的. 1. 答案:B解析:由题意知x =a +b ,a ∈A ,b ∈B ,则x 的可能取值为5,6,7,8.因此集合M 共有4个元素.故选B. 2. 答案:A解析:323=13=8-.故选A.3. 答案:B解析:由(m +n )⊥(m -n )⇒|m |2-|n |2=0⇒(λ+1)2+1-[(λ+2)2+4]=0⇒λ=-3.故选B. 4. 答案:B解析:由题意知-1<2x +1<0,则-1<x <12-.故选B. 5. 答案:A解析:由题意知11+x=2y⇒x =121y -(y >0),因此f -1(x )=121x -(x >0).故选A. 6. 答案:C解析:∵3a n +1+a n =0,∴a n +1=13n a -.∴数列{a n }是以13-为公比的等比数列.∵a 2=43-,∴a 1=4. ∴S 10=101413113⎡⎤⎛⎫--⎢⎥⎪⎝⎭⎢⎥⎣⎦+=3(1-3-10).故选C.7.答案:D解析:因为(1+x )8的展开式中x 2的系数为28C ,(1+y )4的展开式中y 2的系数为24C ,所以x 2y 2的系数为2284C C 168=.故选D. 8. 答案:B解析:设P 点坐标为(x 0,y 0),则2200=143x y +, 2002PA y k x =-,1002PA y k x =+,于是12220222003334244PA PA x y k k x x -⋅===---.故12314PA PA k k =-. ∵2PA k ∈[-2,-1], ∴133,84PA k ⎡⎤∈⎢⎥⎣⎦.故选B.9. 答案:D解析:由条件知f ′(x )=2x +a -21x ≥0在1,2⎛⎫+∞ ⎪⎝⎭上恒成立,即212a x x ≥-在1,2⎛⎫+∞ ⎪⎝⎭上恒成立.∵函数212y x x =-在1,2⎛⎫+∞ ⎪⎝⎭上为减函数,∴max 211<23212y -⨯=⎛⎫⎪⎝⎭.∴a ≥3.故选D. 10. 答案:A解析:如下图,连结AC 交BD 于点O ,连结C 1O ,过C 作CH ⊥C 1O 于点H .∵11BD ACBD AA AC AA A ⊥⎫⎪⊥⎬⎪=⎭1111BD ACC A CH ACC A ⊥⎫⎬⊂⎭平面平面11=CH BDCH C O BD C O O ⊥⎫⎪⊥⎬⎪⎭CH ⊥平面C 1BD ,∴∠HDC 为CD 与平面BDC 1所成的角.设AA 1=2AB =2,则=2AC OC,1C O =由等面积法,得C 1O ·CH =OC ·CC 12CH , ∴2=3CH . ∴sin ∠HDC =223==13HC DC .故选A.11. 答案:D解析:由题意知抛物线C 的焦点坐标为(2,0),则直线AB 的方程为y =k (x -2),将其代入y 2=8x ,得k 2x 2-4(k2+2)x +4k 2=0.设A (x 1,y 1),B (x 2,y 2),则x 1+x 2=2242k k (+),x 1x 2=4.①由112222y k x y k x =(-)⎧⎨=(-)⎩∵0MA MB ⋅=,∴(x 1+2,y 1-2)·(x 2+2,y 2-2)=0. ∴(x 1+2)(x 2+2)+(y 1-2)(y 2-2)=0, 即x 1x 2+2(x 1+x 2)+4+y 1y 2-2(y 1+y 2)+4=0.④ 由①②③④解得k =2.故选D. 12. 答案:C解析:由题意知f (x )=2cos 2x ·sin x =2(1-sin 2x )sin x . 令t =sin x ,t ∈[-1,1], 则g (t )=2(1-t 2)t =2t -2t 3. 令g ′(t )=2-6t 2=0,得=t ±. 当t =±1时,函数值为0;当t =;当t =.∴g (t )max ,即f (x )的最大值为9.故选C. 二、填空题:本大题共4小题,每小题5分.13.答案:解析:由题意知cos α=3==-.故cot α=cos sin αα14.答案:480解析:先排除甲、乙外的4人,方法有44A 种,再将甲、乙插入这4人形成的5个间隔中,有25A 种排法,因此甲、乙不相邻的不同排法有4245A A 480⋅=(种).15.答案:1,42⎡⎤⎢⎥⎣⎦解析:作出题中不等式组表示的可行域如图中阴影部分所示. ∵直线y =a (x +1)过定点C (-1,0),由图并结合题意可知12BC k =,k AC =4,∴要使直线y =a (x +1)与平面区域D 有公共点, 则12≤a ≤4. 16.答案:16π解析:如下图,设MN 为两圆的公共弦,E 为MN 的中点, 则OE ⊥MN ,KE ⊥MN ,结合题意可知∠OEK =60°.又MN =R ,∴△OMN 为正三角形.∴OE =2R .又OK ⊥EK ,∴32=OE ·sin 60°=22R ⋅∴R =2.∴S =4πR 2=16π.三、解答题:解答应写出文字说明,证明过程或演算步骤.17.解:设{a n }的公差为d .由S 3=22a 得3a 2=22a ,故a 2=0或a 2=3. 由S 1,S 2,S 4成等比数列得22S =S 1S 4. 又S 1=a 2-d ,S 2=2a 2-d ,S 4=4a 2+2d , 故(2a 2-d )2=(a 2-d )(4a 2+2d ).若a 2=0,则d 2=-2d 2,所以d =0,此时S n =0,不合题意; 若a 2=3,则(6-d )2=(3-d )(12+2d ),解得d =0或d =2. 因此{a n }的通项公式为a n =3或a n =2n -1. 18.解:(1)因为(a +b +c )(a -b +c )=ac ,所以a 2+c 2-b 2=-ac .由余弦定理得cos B =222122a cb ac +-=-, 因此B =120°.(2)由(1)知A +C =60°,所以cos(A -C )=cos A cos C +sin A sin C =cos A cos C -sin A sin C +2sin A sin C =cos(A +C )+2sin A sin C=11+2242⨯=, 故A -C =30°或A -C =-30°, 因此C =15°或C =45°. 19.(1)证明:取BC 的中点E ,连结DE ,则ABED 为正方形. 过P 作PO ⊥平面ABCD ,垂足为O .连结OA ,OB ,OD ,OE .由△PAB 和△PAD 都是等边三角形知PA =PB =PD , 所以OA =OB =OD ,即点O 为正方形ABED 对角线的交点, 故OE ⊥BD ,从而PB ⊥OE .因为O 是BD 的中点,E 是BC 的中点,所以OE ∥CD .因此PB ⊥CD .(2)解法一:由(1)知CD ⊥PB ,CD ⊥PO ,PB ∩PO =P ,故CD ⊥平面PBD .又PD ⊂平面PBD ,所以CD ⊥PD .取PD 的中点F ,PC 的中点G ,连结FG ,则FG ∥CD ,FG ⊥PD .连结AF ,由△APD 为等边三角形可得AF ⊥PD .所以∠AFG 为二面角A -PD -C 的平面角.连结AG ,EG ,则EG ∥PB .又PB ⊥AE ,所以EG ⊥AE .设AB =2,则AE =,EG =12PB =1,故AG 3.在△AFG 中,FG =12CD =,AF =AG =3,所以cos ∠AFG =22223FG AF AG FG AF +-=-⨯⨯因此二面角A -PD -C 的大小为π-解法二:由(1)知,OE ,OB ,OP 两两垂直.以O 为坐标原点,OE 的方向为x 轴的正方向建立如图所示的空间直角坐标系O -xyz .设|AB |=2,则A (,0,0),D (0,,0),C (,0),P (0,0).PC =(,),PD =(0,,).AP =,0),AD =,,0).设平面PCD 的法向量为n 1=(x ,y ,z ),则n 1·PC =(x ,y ,z )·(,)=0,n 1·PD =(x ,y ,z )·(0,,)=0,可得2x -y -z =0,y +z =0.取y =-1,得x =0,z =1,故n 1=(0,-1,1).设平面PAD 的法向量为n 2=(m ,p ,q ),则n 2·AP =(m ,p ,q ,0)=0,n 2·AD =(m ,p ,q ,,0)=0,可得m+q=0,m-p=0.取m=1,得p=1,q=-1,故n2=(1,1,-1).于是cos〈n1,n2〉=1212||||3=-·n nn n.由于〈n1,n2〉等于二面角A-PD-C的平面角,所以二面角A-PD-C的大小为π-20.解:(1)记A1表示事件“第2局结果为甲胜”,A2表示事件“第3局甲参加比赛时,结果为甲负”,A表示事件“第4局甲当裁判”.则A=A1·A2.P(A)=P(A1·A2)=P(A1)P(A2)=14.(2)X的可能取值为0,1,2.记A3表示事件“第3局乙和丙比赛时,结果为乙胜丙”,B1表示事件“第1局结果为乙胜丙”,B2表示事件“第2局乙和甲比赛时,结果为乙胜甲”,B3表示事件“第3局乙参加比赛时,结果为乙负”.则P(X=0)=P(B1·B2·A3)=P(B1)P(B2)·P(A3)=18,P(X=2)=P(1B·B3)=P(1B)P(B3)=14,P(X=1)=1-P(X=0)-P(X=2)=1151848--=,EX=0·P(X=0)+1·P(X=1)+2·P(X=2)=98.21.(1)解:由题设知ca=3,即222a ba+=9,故b2=8a2.所以C的方程为8x2-y2=8a2.将y=2代入上式,求得x=由题设知,=a2=1.所以a=1,b=(2)证明:由(1)知,F1(-3,0),F2(3,0),C的方程为8x2-y2=8.①由题意可设l的方程为y=k(x-3),k(k2-8)x2-6k2x+9k2+8=0.设A(x1,y1),B(x2,y2),则x1≤-1,x2≥1,x1+x2=2268kk-,x1·x2=22988kk+-.于是|AF1|=-(3x1+1),|BF1|3x2+1.由|AF1|=|BF1|得-(3x1+1)=3x2+1,即x1+x2=23 -.故226283kk=--,解得k2=45,从而x1·x2=199-.由于|AF2|=1-3x1,|BF2|3x2-1,故|AB|=|AF2|-|BF2|=2-3(x1+x2)=4,|AF2|·|BF2|=3(x1+x2)-9x1x2-1=16. 因而|AF2|·|BF2|=|AB|2,所以|AF2|,|AB|,|BF2|成等比数列.22.(1)解:由已知f(0)=0,f′(x)=22121x xxλλ(-)-(+),f′(0)=0.若12λ<,则当0<x<2(1-2λ)时,f′(x)>0,所以f(x)>0.若12λ≥,则当x>0时,f′(x)<0,所以当x>0时,f(x)<0.综上,λ的最小值是12.(2)证明:令12λ=.由(1)知,当x>0时,f(x)<0,即2ln(1) 22x xxx(+)>++.取1xk=,则211>ln21k kk k k++(+).于是212111 422(1)n n n k n a a n k k -=⎡⎤-+=+⎢⎥+⎣⎦∑ =2121211ln 21n n k n k n k k k k k --==++>(+)∑∑ =ln 2n -ln n =ln 2.所以21ln 24n n a a n-+>. 2013年普通高等学校夏季招生全国统一考试数学理工农医类(全国新课标卷I)第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.(2013课标全国Ⅰ,理1)已知集合A ={x |x 2-2x >0},B ={x |-5<x <5},则( ).A .A ∩B = B .A ∪B =RC .B ⊆AD .A ⊆B2.(2013课标全国Ⅰ,理2)若复数z 满足(3-4i)z =|4+3i|,则z 的虚部为( ).A .-4B .45-C .4 D .45 3.(2013课标全国Ⅰ,理3)为了解某地区的中小学生的视力情况,拟从该地区的中小学生中抽取部分学生进行调查,事先已了解到该地区小学、初中、高中三个学段学生的视力情况有较大差异,而男女生视力情况差异不大.在下面的抽样方法中,最合理的抽样方法是( ).A .简单随机抽样B .按性别分层抽样C .按学段分层抽样D .系统抽样4.(2013课标全国Ⅰ,理4)已知双曲线C :2222=1x y a b-(a >0,b >0)的离心率为52,则C 的渐近线方程为( ).A .y =14x ±B .y =13x ±C .y =12x± D .y =±x 5.(2013课标全国Ⅰ,理5)执行下面的程序框图,如果输入的t ∈[-1,3],则输出的s 属于( ).A .[-3,4]B .[-5,2]C .[-4,3]D .[-2,5]6.(2013课标全国Ⅰ,理6)如图,有一个水平放置的透明无盖的正方体容器,容器高8 cm ,将一个球放在容器口,再向容器内注水,当球面恰好接触水面时测得水深为6 cm ,如果不计容器的厚度,则球的体积为( ).A .500π3cm3B .866π3cm3C .1372π3cm3D .2048π3cm37.(2013课标全国Ⅰ,理7)设等差数列{a n }的前n 项和为S n ,若S m -1=-2,S m =0,S m +1=3,则m =( ).A .3B .4C .5D .68.(2013课标全国Ⅰ,理8)某几何体的三视图如图所示,则该几何体的体积为( ).A .16+8πB .8+8πC .16+16πD .8+16π9.(2013课标全国Ⅰ,理9)设m 为正整数,(x +y )2m 展开式的二项式系数的最大值为a ,(x +y )2m +1展开式的二项式系数的最大值为b .若13a =7b ,则m =( ).A .5B .6C .7D .8 10.(2013课标全国Ⅰ,理10)已知椭圆E :2222=1x y a b+(a >b >0)的右焦点为F (3,0),过点F 的直线交E 于A ,B 两点.若AB 的中点坐标为(1,-1),则E 的方程为( ).A .22=14536x y +B .22=13627x y +C .22=12718x y +D .22=1189x y +11.(2013课标全国Ⅰ,理11)已知函数f (x )=220ln(1)0.x x x x x ⎧-+≤⎨+>⎩,,,若|f (x )|≥ax ,则a 的取值范围是( ).A .(-∞,0]B .(-∞,1]C .[-2,1]D .[-2,0]12.(2013课标全国Ⅰ,理12)设△A n B n C n 的三边长分别为a n ,b n ,c n ,△A n B n C n 的面积为S n ,n =1,2,3,….若b 1>c 1,b 1+c 1=2a 1,a n +1=a n ,b n +1=2n n c a +,c n +1=2n n b a +,则( ). A .{Sn}为递减数列 B .{Sn}为递增数列C .{S2n -1}为递增数列,{S2n}为递减数列D .{S2n -1}为递减数列,{S2n}为递增数列第Ⅱ卷本卷包括必考题和选考题两部分.第(13)题~第(21)题为必考题,每个试题考生都必须做答.第(22)题~第(24)题为选考题,考生根据要求做答.二、填空题:本大题共4小题,每小题5分.13.(2013课标全国Ⅰ,理13)已知两个单位向量a,b的夹角为60°,c=ta+(1-t)b.若b·c=0,则t =__________.14.(2013课标全国Ⅰ,理14)若数列{an}的前n项和2133n nS a=+,则{an}的通项公式是an=_______.15.(2013课标全国Ⅰ,理15)设当x=θ时,函数f(x)=sin x-2cos x取得最大值,则cos θ=__________.16.(2013课标全国Ⅰ,理16)若函数f(x)=(1-x2)(x2+ax+b)的图像关于直线x=-2对称,则f(x)的最大值为__________.三、解答题:解答应写出文字说明,证明过程或演算步骤.17.(2013课标全国Ⅰ,理17)(本小题满分12分)如图,在△ABC中,∠ABC=90°,AB,BC=1,P为△ABC内一点,∠BPC=90°.(1)若PB=12,求PA;(2)若∠APB=150°,求tan∠PBA.18.(2013课标全国Ⅰ,理18)(本小题满分12分)如图,三棱柱ABC-A1B1C1中,CA=CB,AB=AA1,∠BAA1=60°.(1)证明:AB⊥A1C;(2)若平面ABC⊥平面AA1B1B,AB=CB,求直线A1C与平面BB1C1C所成角的正弦值.19.(2013课标全国Ⅰ,理19)(本小题满分12分)一批产品需要进行质量检验,检验方案是:先从这批产品中任取4件作检验,这4件产品中优质品的件数记为n.如果n=3,再从这批产品中任取4件作检验,若都为优质品,则这批产品通过检验;如果n=4,再从这批产品中任取1件作检验,若为优质品,则这批产品通过检验;其他情况下,这批产品都不能通过检验.假设这批产品的优质品率为50%,即取出的每件产品是优质品的概率都为12,且各件产品是否为优质品相互独立.(1)求这批产品通过检验的概率;(2)已知每件产品的检验费用为100元,且抽取的每件产品都需要检验,对这批产品作质量检验所需的费用记为X(单位:元),求X的分布列及数学期望.20.(2013课标全国Ⅰ,理20)(本小题满分12分)已知圆M:(x+1)2+y2=1,圆N:(x-1)2+y2=9,动圆P与圆M外切并且与圆N内切,圆心P的轨迹为曲线C.(1)求C的方程;(2)l是与圆P,圆M都相切的一条直线,l与曲线C交于A,B两点,当圆P的半径最长时,求|AB|.21.(2013课标全国Ⅰ,理21)(本小题满分12分)设函数f(x)=x2+ax+b,g(x)=e x(cx+d).若曲线y=f(x)和曲线y=g(x)都过点P(0,2),且在点P处有相同的切线y=4x+2.(1)求a,b,c,d的值;(2)若x≥-2时,f(x)≤kg(x),求k的取值范围.请考生在第(22)、(23)、(24)三题中任选一题做答.注意:只能做所选定的题目.如果多做,则按所做的第一个题目计分,做答时请用2B铅笔在答题卡上将所选题号后的方框涂黑.22.(2013课标全国Ⅰ,理22)(本小题满分10分)选修4—1:几何证明选讲如图,直线AB为圆的切线,切点为B,点C在圆上,∠ABC的角平分线BE交圆于点E,DB垂直BE交圆于点D.(1)证明:DB=DC;(2)设圆的半径为1,BC CE交AB于点F,求△BCF外接圆的半径.23.(2013课标全国Ⅰ,理23)(本小题满分10分)选修4—4:坐标系与参数方程已知曲线C1的参数方程为45cos,55sinx ty t=+⎧⎨=+⎩(t为参数),以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,曲线C2的极坐标方程为ρ=2sin θ.(1)把C1的参数方程化为极坐标方程;(2)求C1与C2交点的极坐标(ρ≥0,0≤θ<2π).24.(2013课标全国Ⅰ,理24)(本小题满分10分)选修4—5:不等式选讲:已知函数f(x)=|2x-1|+|2x+a|,g(x)=x+3.(1)当a=-2时,求不等式f(x)<g(x)的解集;(2)设a>-1,且当x∈1,22a⎡⎫-⎪⎢⎣⎭时,f(x)≤g(x),求a的取值范围.2013年普通高等学校夏季招生全国统一考试数学理工农医类(全国卷I 新课标)第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的. 1.答案:B解析:∵x (x -2)>0,∴x <0或x >2.∴集合A 与B 可用图象表示为:由图象可以看出A ∪B =R ,故选B.2.答案:D解析:∵(3-4i)z =|4+3i|, ∴55(34i)34i 34i (34i)(34i)55z +===+--+. 故z 的虚部为45,选D. 3.答案:C 解析:因为学段层次差异较大,所以在不同学段中抽取宜用分层抽样.4.答案:C解析:∵c e a ==,∴22222254c a b e a a +===. ∴a 2=4b 2,1=2b a ±. ∴渐近线方程为12b y x x a =±±. 5.答案:A解析:若t ∈[-1,1),则执行s =3t ,故s ∈[-3,3).若t ∈[1,3],则执行s =4t -t 2,其对称轴为t =2.故当t =2时,s 取得最大值4.当t =1或3时,s 取得最小值3,则s ∈[3,4].综上可知,输出的s ∈[-3,4].故选A.6.答案:A解析:设球半径为R ,由题可知R ,R -2,正方体棱长一半可构成直角三角形,即△OBA 为直角三角形,如图.BC =2,BA =4,OB =R -2,OA =R ,由R 2=(R -2)2+42,得R =5, 所以球的体积为34500π5π33=(cm 3),故选A. 7.答案:C解析:∵S m -1=-2,S m =0,S m +1=3,∴a m =S m -S m -1=0-(-2)=2,a m +1=S m +1-S m =3-0=3.∴d =a m +1-a m =3-2=1.∵S m =ma 1+12m m (-)×1=0,∴112m a -=-. 又∵a m +1=a 1+m ×1=3,∴132m m --+=. ∴m =5.故选C.8.答案:A 解析:由三视图可知该几何体为半圆柱上放一个长方体,由图中数据可知圆柱底面半径r =2,长为4,在长方体中,长为4,宽为2,高为2,所以几何体的体积为πr 2×4×12+4×2×2=8π+16.故选A. 9.答案:B解析:由题意可知,a =2C m m ,b =21C m m +,又∵13a =7b ,∴2!21!13=7!!!1!m m m m m m ()(+)⋅⋅(+),即132171m m +=+.解得m =6.故选B. 10.答案:D解析:设A (x 1,y 1),B (x 2,y 2),∵A ,B 在椭圆上, ∴2211222222221,1,x y a b x y a b ⎧+=⎪⎪⎨⎪+=⎪⎩①② ①-②,得1212121222=0x x x x y y y y a b(+)(-)(+)(-)+, 即2121221212=y y y y b a x x x x (+)(-)-(+)(-), ∵AB 的中点为(1,-1),∴y 1+y 2=-2,x 1+x 2=2, 而1212y y x x --=k AB =011=312-(-)-,∴221=2b a . 又∵a 2-b 2=9,∴a 2=18,b 2=9. ∴椭圆E 的方程为22=1189x y +.故选D. 11.答案:D解析:由y =|f (x )|的图象知:①当x >0时,y =ax 只有a ≤0时,才能满足|f (x )|≥ax ,可排除B ,C.②当x ≤0时,y =|f (x )|=|-x 2+2x |=x 2-2x .故由|f (x )|≥ax 得x 2-2x ≥ax .当x =0时,不等式为0≥0成立.当x <0时,不等式等价于x -2≤a .∵x -2<-2,∴a ≥-2.综上可知:a ∈[-2,0].12.答案:B第Ⅱ卷本卷包括必考题和选考题两部分.第(13)题~第(21)题为必考题,每个试题考生都必须做答.第(22)题~第(24)题为选考题,考生根据要求做答.二、填空题:本大题共4小题,每小题5分.13.答案:2解析:∵c =t a +(1-t )b ,∴b ·c =t a ·b +(1-t )|b |2.又∵|a |=|b |=1,且a 与b 夹角为60°,b ⊥c ,∴0=t |a ||b |cos 60°+(1-t ),0=12t +1-t . ∴t =2.14.答案:(-2)n -1 解析:∵2133n n S a =+,① ∴当n ≥2时,112133n n S a --=+.② ①-②,得12233n n n a a a -=-, 即1n n a a -=-2. ∵a 1=S 1=12133a +, ∴a 1=1. ∴{a n }是以1为首项,-2为公比的等比数列,a n =(-2)n -1. 15.答案:5- 解析:f (x )=sin x -2cos xx x ⎫⎪⎭, 令cos αsin α=则f (x )α+x ),当x =2k π+π2-α(k ∈Z )时,sin(α+x )有最大值1,f (x ) 即θ=2k π+π2-α(k ∈Z ),所以cos θ=πcos 2π+2k α⎛⎫- ⎪⎝⎭=πcos 2α⎛⎫- ⎪⎝⎭=sin α=5=-. 16.答案:16解析:∵函数f (x )的图像关于直线x =-2对称,∴f (x )满足f (0)=f (-4),f (-1)=f (-3),即15164,0893,b a b a b =-(-+)⎧⎨=-(-+)⎩解得8,15.a b =⎧⎨=⎩∴f (x )=-x 4-8x 3-14x 2+8x +15.由f ′(x )=-4x 3-24x 2-28x +8=0,得x 1=-2x 2=-2,x 3=-2易知,f (x )在(-∞,-2上为增函数,在(-2,-2)上为减函数,在(-2,-2)上为增函数,在(-2∴f (-2=[1-(-22][(-2)2+8(-2+15]=(-8--=80-64=16.f (-2)=[1-(-2)2][(-2)2+8×(-2)+15]=-3(4-16+15)=-9.f (-2=[1-(-22][(-22+8(-2)+15]=(-8++=80-64=16.故f (x )的最大值为16.三、解答题:解答应写出文字说明,证明过程或演算步骤.17.解:(1)由已知得∠PBC =60°,所以∠PBA =30°.在△PBA 中,由余弦定理得PA 2=11732cos 30424+-︒=. 故PA=2. (2)设∠PBA =α,由已知得PB =sin α.在△PBA中,由正弦定理得sin sin150sin(30)αα=︒︒-,cos α=4sin α.所以tan α=4,即tan ∠PBA=4. 18. (1)证明:取AB 的中点O ,连结OC ,OA 1,A 1B .因为CA =CB ,所以OC ⊥AB .由于AB =AA 1,∠BAA 1=60°,故△AA 1B 为等边三角形,所以OA 1⊥AB .因为OC ∩OA 1=O ,所以AB ⊥平面OA 1C .又A 1C ⊂平面OA 1C ,故AB ⊥A 1C .(2)解:由(1)知OC ⊥AB ,OA 1⊥AB .又平面ABC ⊥平面AA 1B 1B ,交线为AB ,所以OC ⊥平面AA 1B 1B ,故OA ,OA 1,OC 两两相互垂直.以O 为坐标原点,OA 的方向为x 轴的正方向,|OA |为单位长,建立如图所示的空间直角坐标系O -xyz . 由题设知A (1,0,0),A 1(0,0),C (0,0,B (-1,0,0).则BC =(1,0,1BB =1AA =(-10),1AC =(0,. 设n =(x ,y ,z )是平面BB 1C 1C 的法向量,则10,0,BC BB ⎧⋅=⎪⎨⋅=⎪⎩n n即0,0.x x ⎧+=⎪⎨-+=⎪⎩可取n =,1,-1).故cos 〈n ,1AC 〉=11A CA C⋅n n =. 所以A 1C 与平面BB 1C 1C 19.解:(1)设第一次取出的4件产品中恰有3件优质品为事件A 1,第一次取出的4件产品全是优质品为事件A 2,第二次取出的4件产品都是优质品为事件B 1,第二次取出的1件产品是优质品为事件B 2,这批产品通过检验为事件A ,依题意有A =(A 1B 1)∪(A 2B 2),且A 1B 1与A 2B 2互斥,所以P (A )=P (A 1B 1)+P (A 2B 2)=P (A 1)P (B 1|A 1)+P (A 2)P (B 2|A 2)=41113161616264⨯+⨯=. (2)X 可能的取值为400,500,800,并且 P (X =400)=41111161616--=,P (X =500)=116,P (X =800)=14. 所以X 的分布列为EX =1111400+500+80016164⨯⨯⨯=506.25. 20. 解:由已知得圆M 的圆心为M (-1,0),半径r 1=1;圆N 的圆心为N (1,0),半径r 2=3.设圆P 的圆心为P (x ,y ),半径为R .(1)因为圆P 与圆M 外切并且与圆N 内切,所以|PM |+|PN |=(R +r 1)+(r 2-R )=r 1+r 2=4.由椭圆的定义可知,曲线C 是以M ,N 为左、右焦点,长半轴长为2的椭圆(左顶点除外),其方程为22=143x y +(x ≠-2). (2)对于曲线C 上任意一点P (x ,y ),由于|PM |-|PN |=2R -2≤2,所以R ≤2,当且仅当圆P 的圆心为(2,0)时,R =2.所以当圆P 的半径最长时,其方程为(x -2)2+y 2=4.若l 的倾斜角为90°,则l 与y 轴重合,可得|AB |=若l 的倾斜角不为90°,由r 1≠R 知l 不平行于x 轴,设l 与x 轴的交点为Q ,则1||||QP R QM r =,可求得Q (-4,0),所以可设l :y =k (x +4).由l 与圆M,解得k=4±. 当k=4时,将4y x =代入22=143x y +, 并整理得7x 2+8x -8=0,解得x 1,2=47-±. 所以|AB |2118|7x x -=.当k =时,由图形的对称性可知|AB |=187. 综上,|AB |=|AB |=187. 21. 解:(1)由已知得f (0)=2,g (0)=2,f ′(0)=4,g ′(0)=4.而f ′(x )=2x +a ,g ′(x )=e x (cx +d +c ),故b =2,d =2,a =4,d +c =4.从而a =4,b =2,c =2,d =2.(2)由(1)知,f (x )=x 2+4x +2,g (x )=2e x (x +1).设函数F (x )=kg (x )-f (x )=2k e x (x +1)-x 2-4x -2,则F ′(x )=2k e x (x +2)-2x -4=2(x +2)(k e x-1).由题设可得F (0)≥0,即k ≥1.令F ′(x )=0得x 1=-ln k ,x 2=-2.①若1≤k <e 2,则-2<x 1≤0.从而当x ∈(-2,x 1)时,F ′(x )<0;当x ∈(x 1,+∞)时,F ′(x )>0.即F (x )在(-2,x 1)单调递减,在(x 1,+∞)单调递增.故F (x )在[-2,+∞)的最小值为F (x 1).而F (x 1)=2x 1+2-21x -4x 1-2=-x 1(x 1+2)≥0.故当x≥-2时,F(x)≥0,即f(x)≤kg(x)恒成立.②若k=e2,则F′(x)=2e2(x+2)(e x-e-2).从而当x>-2时,F′(x)>0,即F(x)在(-2,+∞)单调递增.而F(-2)=0,故当x≥-2时,F(x)≥0,即f(x)≤kg(x)恒成立.③若k>e2,则F(-2)=-2k e-2+2=-2e-2(k-e2)<0.从而当x≥-2时,f(x)≤kg(x)不可能恒成立.综上,k的取值范围是[1,e2].请考生在第(22)、(23)、(24)三题中任选一题做答.注意:只能做所选定的题目.如果多做,则按所做的第一个题目计分,做答时请用2B铅笔在答题卡上将所选题号后的方框涂黑.22.(1)证明:连结DE,交BC于点G.由弦切角定理得,∠ABE=∠BCE.而∠ABE=∠CBE,故∠CBE=∠BCE,BE=CE.又因为DB⊥BE,所以DE为直径,∠DCE=90°,由勾股定理可得DB=DC.(2)解:由(1)知,∠CDE=∠BDE,DB=DC,故DG是BC的中垂线,所以BG=2.设DE的中点为O,连结BO,则∠BOG=60°.从而∠ABE=∠BCE=∠CBE=30°,所以CF⊥BF,故Rt△BCF外接圆的半径等于2.23.解:(1)将45cos,55sinx ty t=+⎧⎨=+⎩消去参数t,化为普通方程(x-4)2+(y-5)2=25,即C1:x2+y2-8x-10y+16=0.将cos,sinxyρθρθ=⎧⎨=⎩代入x2+y2-8x-10y+16=0得ρ2-8ρcos θ-10ρsin θ+16=0. 所以C1的极坐标方程为ρ2-8ρcos θ-10ρsin θ+16=0.(2)C 2的普通方程为x 2+y 2-2y =0. 由2222810160,20x y x y x y y ⎧+--+=⎨+-=⎩ 解得1,1x y =⎧⎨=⎩或0,2.x y =⎧⎨=⎩所以C 1与C 2交点的极坐标分别为π4⎫⎪⎭,π2,2⎛⎫ ⎪⎝⎭. 24.解:(1)当a =-2时,不等式f (x )<g (x )化为|2x -1|+|2x -2|-x -3<0. 设函数y =|2x -1|+|2x -2|-x -3,则y =15,,212,1,236, 1.x x x x x x ⎧-<⎪⎪⎪--≤≤⎨⎪->⎪⎪⎩其图像如图所示.从图像可知,当且仅当x ∈(0,2)时,y <0.所以原不等式的解集是{x |0<x <2}.(2)当x ∈1,22a ⎡⎫-⎪⎢⎣⎭时,f (x )=1+a . 不等式f (x )≤g (x )化为1+a ≤x +3.所以x ≥a -2对x ∈1,22a ⎡⎫-⎪⎢⎣⎭都成立. 故2a -≥a -2,即43a ≤. 从而a 的取值范围是41,3⎛⎤- ⎥⎝⎦. 2013年普通高等学校夏季招生全国统一考试数学理工农医类(全国新课标卷II)第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.(2013课标全国Ⅱ,理1)已知集合M ={x |(x -1)2<4,x ∈R },N ={-1,0,1,2,3},则M ∩N =( ).A .{0,1,2}B .{-1,0,1,2}C .{-1,0,2,3}D .{0,1,2,3} 2.(2013课标全国Ⅱ,理2)设复数z 满足(1-i)z =2i ,则z =( ).A .-1+iB .-1-IC .1+iD .1-i3.(2013课标全国Ⅱ,理3)等比数列{a n }的前n 项和为S n .已知S 3=a 2+10a 1,a 5=9,则a 1=( ).A .13B .13-C .19D .19-4.(2013课标全国Ⅱ,理4)已知m ,n 为异面直线,m ⊥平面α,n ⊥平面β.直线l 满足l ⊥m ,l ⊥n ,lα,l β,则( ).A .α∥β且l ∥αB .α⊥β且l ⊥βC .α与β相交,且交线垂直于lD .α与β相交,且交线平行于l5.(2013课标全国Ⅱ,理5)已知(1+ax )(1+x )5的展开式中x 2的系数为5,则a =( ).A .-4B .-3C .-2D .-16.(2013课标全国Ⅱ,理6)执行下面的程序框图,如果输入的N =10,那么输出的S =( ).A .1111+2310+++B .1111+2!3!10!+++C .1111+2311+++D .1111+2!3!11!+++7.(2013课标全国Ⅱ,理7)一个四面体的顶点在空间直角坐标系O -xyz 中的坐标分别是(1,0,1),(1,1,0),(0,1,1),(0,0,0),画该四面体三视图中的正视图时,以zOx 平面为投影面,则得到的正视图可以为( ). 8.(2013课标全国Ⅱ,理8)设a =log 36,b =log 510,c =log 714,则( ).A .c >b >aB .b >c >aC .a >c >bD .a >b >c9.(2013课标全国Ⅱ,理9)已知a >0,x ,y 满足约束条件1,3,3.x x y y a x ≥⎧⎪+≤⎨⎪≥(-)⎩若z =2x +y 的最小值为1,则a =( ).A.14 B.12 C.1 D.210.(2013课标全国Ⅱ,理10)已知函数f(x)=x3+ax2+bx+c,下列结论中错误的是( ).A.∃x0∈R,f(x0)=0B.函数y=f(x)的图像是中心对称图形C.若x0是f(x)的极小值点,则f(x)在区间(-∞,x0)单调递减D.若x0是f(x)的极值点,则f′(x0)=011.(2013课标全国Ⅱ,理11)设抛物线C:y2=2px(p>0)的焦点为F,点M在C上,|MF|=5,若以MF为直径的圆过点(0,2),则C的方程为( ).A.y2=4x或y2=8x B.y2=2x或y2=8xC.y2=4x或y2=16x D.y2=2x或y2=16x12.(2013课标全国Ⅱ,理12)已知点A(-1,0),B(1,0),C(0,1),直线y=ax+b(a>0)将△ABC分割为面积相等的两部分,则b的取值范围是( ).A.(0,1) B.1122⎛⎫-⎪⎪⎝⎭ C.1123⎛⎤-⎥⎝⎦ D.11,32⎡⎫⎪⎢⎣⎭第Ⅱ卷本卷包括必考题和选考题两部分,第13题~第21题为必考题,每个试题考生都必须做答。

历年高考数学真题(全国卷整理版)完整版完整版.doc

历年高考数学真题(全国卷整理版)完整版完整版.doc

参考公式:如果事件A 、B 互斥,那么球的表面积公式()()()P AB P A P B 24S R如果事件A 、B 相互独立,那么其中R 表示球的半径()()()P A B P A P B 球的体积公式如果事件A 在一次试验中发生的概率是p ,那么334VRn 次独立重复试验中事件A 恰好发生k 次的概率其中R 表示球的半径()(1)(0,1,2,)kkn kn n P k C p p k n …普通高等学校招生全国统一考试一、选择题1、复数131i i=A 2+IB 2-IC 1+2iD 1- 2i2、已知集合A ={1.3. m },B ={1,m} ,AB =A, 则m=A0或3B 0或3C 1或3D 1或33 椭圆的中心在原点,焦距为4 一条准线为x=-4 ,则该椭圆的方程为A216x+212y=1 B212x+28y=1C28x+24y=1 D212x+24y=14 已知正四棱柱ABCD- A 1B 1C 1D 1中,AB=2,CC 1=22E 为CC 1的中点,则直线AC 1与平面BED 的距离为A 2B3C2D 1(5)已知等差数列{a n }的前n 项和为S n ,a 5=5,S 5=15,则数列的前100项和为(A)100101(B)99101(C)99100(D)101100(6)△ABC 中,AB 边的高为CD ,若a ·b=0,|a|=1,|b|=2,则(A)(B )(C)(D)(7)已知α为第二象限角,sinα+sinβ=33,则cos2α=(A)5-3(B)5-9(C)59(D)53(8)已知F1、F2为双曲线C:x2-y2=2的左、右焦点,点P在C上,|PF1|=|2PF2|,则cos ∠F1PF2=(A)14(B)35(C)34(D)45(9)已知x=lnπ,y=log52,12z=e,则(A)x<y<z (B)z<x<y (C)z<y<x (D)y<z<x(10) 已知函数y=x2-3x+c的图像与x恰有两个公共点,则c=(A)-2或2 (B)-9或3 (C)-1或1 (D)-3或1(11)将字母a,a,b,b,c,c,排成三行两列,要求每行的字母互不相同,梅列的字母也互不相同,则不同的排列方法共有(A)12种(B)18种(C)24种(D)36种(12)正方形ABCD的边长为1,点E在边AB上,点F在边BC上,AE=BF=73。

数列大题基础练-高考数学重点专题冲刺演练(原卷版)

数列大题基础练-高考数学重点专题冲刺演练(原卷版)

【一专三练】专题01数列大题基础练-新高考数学复习分层训练(新高考通用)1.(2022·浙江·模拟预测)已知数列{}n a 满足,12(1)nn n a a +=+⋅-.(1)若11a =,数列{}2n a 的通项公式;(2)若数列{}n a 为等比数列,求1a .2.(2022·海南省直辖县级单位·校联考一模)等差数列{}n a 的首项11a =,且满足2512a a +=,数列{}n b 满足2n a n b =.(1)求数列{}n a 的通项公式;(2)设数列{}n b 的前n 项和是n T ,求n T .3.(2023·黑龙江大庆·统考一模)设{}n a 是公差不为0的等差数列,12a =,3a 是1a ,11a 的等比中项.(1)求{}n a 的通项公式;(2)设13n n n b a a +=,求数列{}n b 的前n 项和n S .4.(2023·广东惠州·统考模拟预测)数列{}n a 中,12a =,121n n a a +=-.(1)求证:数列{}1n a -是等比数列;(2)若n n b a n =+,求数列{}n b 的前n 项和n T .5.(2023·广东江门·统考一模)已知数列{}n a (N n +∈)满足11a =,133n n n a a n ++=,且n n a b n =.(1)求数列{}n b 是通项公式;(2)求数列{}n a 的前n 项和n S .6.(2023·江苏·统考一模)已知等比数列{}n a 的各项均为正数,且23439a a a ++=,54323a a a =+.(1)求{}n a 的通项公式;(2)数列{}n b 满足n n n b a =,求{}n b 的前n 项和n T .7.(2023·重庆·统考二模)已知数列{}n a 的前n 项和为n S ,且满足()115n n na n a +-+=,且15a ≠-.(1)求证:数列5n a n +⎧⎫⎨⎬⎩⎭为常数列,并求{}n a 的通项公式;(2)若使不等式20n S >成立的最小整数为7,且1Z a ∈,求1a 和n S 的最小值.8.(2023·海南海口·校考模拟预测)已知数列{}n a 的前n 项和为n S ,14a =,12n n a n S n +=.(1)求数列{}n a 的通项公式;(2)记12n n na c =-,数列{}n c 的前n 项和为n T ,求12111n T T T ++⋅⋅⋅+的值.9.(2023·山东青岛·统考一模)已知等差数列{}n a 的前n 项和为n S ,公差0d ≠,2S ,4S ,54S +成等差数列,2a ,4a ,8a 成等比数列.(1)求n S ;(2)记数列{}n b 的前n 项和为n T ,22n n n n b T S +-=,证明数列1n n b S ⎧⎫-⎨⎬⎩⎭为等比数列,并求{}n b 的通项公式.10.(2023·山东济南·一模)已知数列{}n a 满足111,(1)1n n a na n a +=-+=.(1)若数列{}n b 满足1n n a b n+=,证明:{}n b 是常数数列;(2)若数列{}n c 满足πsin 22n a n n c a ⎛⎫=+ ⎪⎝⎭,求{}n c 的前2n 项和2n S .11.(2022·辽宁鞍山·统考一模)已知等差数列{}n a 满足首项为3331log 15log 10log 42-+的值,且3718a a +=.(1)求数列{}n a 的通项公式;(2)设11n n n b a a +=,求数列{}n b 的前n 项和n T .12.(2023·广东·统考一模)已知各项都是正数的数列{}n a ,前n 项和n S 满足()2*2n n n a S a n =-∈N .(1)求数列{}n a 的通项公式.(2)记n P 是数列1n S ⎧⎫⎨⎬⎩⎭的前n 项和,n Q 是数列121n a -⎧⎫⎪⎪⎨⎬⎪⎪⎩⎭的前n 项和.当2n ≥时,试比较n P 与n Q 的大小.13.(2022·吉林长春·东北师大附中校考模拟预测)从①12n a S n n ⎛⎫=+ ⎪⎝⎭;②23S a =,412a a a =;③12a =,4a 是2a ,8a 的等比中项这三个条件中任选一个,补充到下面横线上,并解答.已知等差数列{}n a 的前n 项和为n S ,公差d 不等于零,______.(1)求数列{}n a 的通项公式;(2)若122n n n b S S +=-,数列{}n b 的前n 项和为n W ,求n W .14.(2022·广东珠海·珠海市第三中学统考二模)已知数列{}n a ,{}n b 的前n 项和分别为n S ,n T ,1221n n n a b n -+=+-,221n n n T S n -=--.(1)求11,a b 及数列{}n a ,{}n b 的通项公式;(2)设()*21N 2n n n a n k c k b n k =-⎧=∈⎨=⎩,,,求数列{}n c 的前2n 项和2n P .15.(2022·云南大理·统考模拟预测)已知数列{}n a 的前n 项和为n S ,且满足1121,1n n S a a n+==-.(1)求数列{}n a 的通项公式;(2)若数列2,,23,,n n n C n n ⎧=⎨+⎩为奇数为偶数,求数列{}n C 的前2n 项和2n T .16.(2022·湖南永州·统考一模)已知数列{}{},n n a b 满足:111a b ==,且210n n n n a b a b ++-=.(1)若数列{}n a 为等比数列,公比为121,2q a a -=,求{}n b 的通项公式;(2)若数列{}n a 为等差数列,11n n a +-=,求{}n b 的前n 项和n T .17.(2022·广东韶关·统考一模)已知数列{}n a 的首项145a =,且满足143n n n a a a +=+,设11n nb a =-.(1)求证:数列{}n b 为等比数列;(2)若1231111140na a a a ++++> ,求满足条件的最小正整数n .18.(2022·河北·模拟预测)已知数列{}n a 的前n 项和为n S ,13a =,且1123n n n S S a +++=-.(1)求数列{}n a 的通项公式;(2)①3log n n n b a a =;②3321log log n n n b a a +=⋅;③3log n n n b a a =-.从上面三个条件中任选一个,求数列{}n b 的前n 项和n T .注:如果选择多个条件分别解答,按第一个解答计分.19.(2022·广东广州·统考一模)已知公差不为0的等差数列{}n a 中,11a =,4a 是2a 和8a 的等比中项.(1)求数列{}n a 的通项公式:(2)保持数列{}n a 中各项先后顺序不变,在k a 与1(1,2,)k a k += 之间插入2k ,使它们和原数列的项构成一个新的数列{}n b ,记{}n b 的前n 项和为n T ,求20T 的值.20.(2023·湖北·荆州中学校联考二模)已知数列{}n a ,若_________________.(1)求数列{}n a 的通项公式;(2)求数列11n n a a +⎧⎫⎨⎬⎩⎭的前n 项和n T .从下列三个条件中任选一个补充在上面的横线上,然后对题目进行求解.①2123n a a a a n ++++= ;②11a =,47a =,()*112,2n n n a a a n n -+=+∈N ≥;③11a =,点(),n A n a ,()11,n B n a ++在斜率是2的直线上.21.(2023·江苏南通·二模)已知正项数列{}n a 的前n 项和为,且11a =,2218n n S S n +-=,*N n ∈.(1)求n S ;(2)在数列{}n a 的每相邻两项1k k a a +,之间依次插入12k a a a ⋯,,,,得到数列{}1121231234n b a a a a a a a a a a ⋯⋯:,,,,,,,,,,,求{}n b 的前100项和.22.(2023·江苏南通·海安高级中学校考一模)已知数列{}n a 满足()1122n n n a a a n -+=+≥,且12342,18a a a a =++=(1)求{}n a 的通项公式;(2)设1000n a n b =-,求数列{}n b 的前15项和15T (用具体数值作答).23.(2023·安徽·模拟预测)已知{}n a 为等差数列,{}n b 是公比为2的等比数列,且223344a b a b b a -=-=-.(1)证明:11a b =;(2)求集合{}1,1500k m k b a a m =+≤≤中元素个数.24.(2023·河北衡水·河北衡水中学校考三模)已知{}n a 为等差数列,1154,115n n a n a a n+-==+.(1)求{}n a 的通项公式;(2)若()()1,414n n n n b T a a =++为{}n b 的前n 项和,求n T .25.(2023·广东广州·统考二模)设数列{}n a 的前n 项和为n S ,且()22*n n S a n =-∈N .(1)求{}n a 的通项公式;(2)设2211log log n n n b a a +=⋅,记{}n b 的前n 项和为n T ,证明:1n T <.26.(2023·江苏泰州·统考一模)在①124,,S S S 成等比数列,②4222a a =+,③8472S S S =+-这三个条件中任选两个,补充在下面问题中,并完成解答.已知数列{}n a 是公差不为0的等差数列,其前n 项和为n S ,且满足__________,__________.(1)求{}n a 的通项公式;(2)求12233411111n n a a a a a a a a +++++ .注:如果选择多个方案分别解答,按第一个方案计分.27.(2023·黑龙江·黑龙江实验中学校考一模)已知数列{}n a ,前n 项和为n S ,且满足112n n n a a a +-=-,2n ≥,*N n ∈,1514a a +=,770S =,等比数列{}n b 中,1212b b +=,且12,6b b +,3b 成等差数列.(1)求数列{}n a 和{}n b 的通项公式;(2)记n c 为区间(]()*,N n n a b n ∈中的整数个数,求数列{}n c 的前n 项和n P .28.(2023·吉林·统考二模)已知数列{}n a 的前n 项和为n S ,13a =,数列n S n ⎧⎫⎨⎬⎩⎭是以2为公差的等差数列.(1)求{}n a 的通项公式;(2)设()()112n n n n n a b a a +-+=,求数列{}n b 的前2n 项和2n T .29.(2023·山西·校联考模拟预测)已知数列{}n a 满足0n a >,22112n n n n a a a a ++=+,且13a ,23a +,3a 成等差数列.(1)求{}n a 的通项公式;(2)若12,log ,n n n a n b a n ⎧⎪=⎨⎪⎩为奇数为偶数,求数列{}n b 的前2n 项和2n T .30.(2023·黑龙江哈尔滨·哈尔滨三中校考二模)已知数列{}n a 满足:15a =,134n n a a +=-,设2n n b a =-,*N n ∈.(1)求数列{}n b 的通项公式;(2)设3132312log log log n n nb b b T b b b =++⋅⋅⋅+,()*N n ∈,求证:34n T <.。

(完整word)2019年高考试题汇编理科数学--数列,推荐文档

(完整word)2019年高考试题汇编理科数学--数列,推荐文档

解答: 13,设等比数列公比为q3、25•- (ag )ag••• q 3• S 121 …S 53(1)证明:a nb n 是等比数列,a n b n 是等差数列;(2 )求a n 和b n 的通项公式. 答案: (1) 见解析 1 x n 11 x n 1(2)a n () n,b n () n2222解析:(1)将 4a n 1 3a n b n 4 , 4b n 1 3b n a n 4 相加可得 4a n1 4b n 1 3a n 3b n a n b n ,11 整理可得a n 1 b n 1丄(a n b n ),又玄1 Q 1,故a . b n 是首项为1,公比为1的等比数列22将 4a n 1 3a n b n 4, 4b n 13b n a n 4 作差可得 4a n14b n13a n 3b n a . b n 8,整理可得a n 1 b n 1a nb n 2,又a 1 Q 1,故a .b n 是首项为1,公差为2的等差数列1 1A. a n 2n 5B.3n 3n 10 CS2n 28nD.S n■In 2 2n 2答案:A解析:S 4 4冃 6d 0a 1 3 5, S n2依题意有 可得 a nn 4n .3S 31 4d 5 d 2 n(2019全国1理)9•记S n 为等差数列 a n 的前n 项和•已知S 40 , a 5 5,则(2(2019全国1理)14.记S n 为等比数列 a n 的前 n 项和,a 436,则 S5答案: S 51213 2019全国2理)19.已知数列a n 和b n满足a 10 , 4a n 1 3a n b n 4, 4b n 1 3b n a n 4.-31 2 3436(2)由a n b n是首项为1 ,公比为?的等比数列可得a n b n ()"①;由a n bn 是首项为1公差为2的等差数列可得a n b n 2n 1②;【解析】 【分析】首先确定公差,然后由通项公式可得 a 5的值,进一步研究数列中正项 ?负项的变化规律,得到和的最小值.【详解】等差数列 a n 中,8s 5a 3 10,得a 3 2& 3,公差da 3 a ?1, a§% 2d 0,由等差数列a n 的性质得n 5时,a n 0, n 6时,a n 大于0,所以S n 的最小值为S 4或S 5,即为10.①②相加化简得a n(!)n n 1,①②相减化简得b n 2 2(2019全国3理)5.已知各项均为正数的等比数列的前4项和为15,且a s 3a 3 4印,则a ?()A. 16B. 8 答案: C解答:C. 4D.设该等比数列的首项 a i ,公比由已知得,4a©3dq 24a i , 因为a 0且q 0, 则可解得2,又因为 a i (1q 3) 15,即可解得c 1,则4.(2019全国3理)14.记S n 为等差数列 a n 的前n 项和,若q0, a 2 3a ,则 3°S 5答案:4解析:设该等差数列的公差为d 2a 1 a 1 0,d 0 ,10 a 1 a 10S 0____________2S 55 a 1 a 522 2a 1 9d3 4.2a 1 4d 5d(2019北京理)10.设等差数列 的前n 项和为S n,若a 2=-3 ,S s =-10,则a s = ,S n 的最小值为【答案】 (1). 0. (2). -10.【点睛】本题考查等差数列的通项公式?求和公式?等差数列的性质,难度不大,注重重要知识?基础知识?基本运算能力的考查a i (2019北京理)20.已知数列{a n},从中选取第i1项、第i2项、…、第i m项(i l<i2<・・Vm),若a h a2则称新数列a h, a i2, , a m为{a n}的长度为m的递增子列•规定:数列{a n}的任意一项都是{a n}的长度为1的递增子列.(I)写出数列1 , 8, 3, 7, 5, 6, 9的一个长度为4的递增子列;(H)已知数列{a n}的长度为p的递增子列的末项的最小值为a m o,长度为q的递增子列的末项的最小值为a n0.若p<q,求证:a m°<a n°;(川)设无穷数列{a n}的各项均为正整数,且任意两项均不相等若{ a n}的长度为s的递增子列末项的最小值为2s -, 且长度为S末项为2s-1的递增子列恰有2s-1个(s=1 , 2,…),求数列{a n}的通项公式.【答案】(I )1,3,5,6.(n )见解析; (川)见解析.【解析】【分析】(I )由题意结合新定义的知识给出一个满足题意的递增子列即可;(n )利用数列的性质和递增子列的定义证明题中的结论即可;(川)观察所要求解数列的特征给出一个满足题意的通项公式,然后证明通项公式满足题中所有的条件即可•【详解】(I )满足题意的一个长度为4的递增子列为:1,3,5,6.(n)对于每一个长度为q的递增子列a n a2丄a q,都能从其中找到若干个长度为p的递增子列色总丄a p,此时a p a q ,设所有长度为q的子列的末项分别为:a q, ,a q2,a q3 ,L ,所有长度为p的子列的末项分别为:a p1,a p2,a p3,L ,则a n0 min a q1,a q2,a q3,L ,注意到长度为P的子列可能无法进一步找到长度为q的子列,故a m0 min a p1,a p2,a p3,L ,据此可得:a m0a n0n 1, n为偶数(川)满足题意的一个数列的通项公式可以是a n 斗才来朴2,1,4,3,6,5,8,7,L ,n 1,n为奇数面说明此数列满足题意很明显数列为无穷数列,且各项均为正整数,任意两项均不相等.长度为s 的递增子列末项的最小值为2s-1,下面用数学归纳法证明长度为s 末项为2s-1 的递增子列恰有2s 1个s 1,2,L :当n 1 时命题显然成立,假设当n k时命题成立,即长度为k末项为2k-1的递增子列恰有21个,则当n k 1时,对于n k 时得到的每一个子列a s1,a s2,L ,a s k 1,2k 1,可构造:aq,a s2丄,a s「2k 1,2 k 1 1和a5^,a S2,L ,a^l,2k,2 k 1 1两个满足题意的递增子列,则长度为k+1 末项为2k+1 的递增子列恰有 2 2k 12k2k 1 1个,n 1, n为偶数综上可得,数列a n、,卄沁.2,1,4,3,6,5,8,7,L是一个满足题意的数列的通项公式•n 1, n为奇数注:当s 3时,所有满足题意的数列为:2,3,5 , 1,3,5 , 2,4,5 , 1,4,5 ,当s 4 时,数列2,3,5 对应的两个递增子列为:2,3,5,7 和2,3,6,7 .【点睛】“新定义”主要是指即时定义新概念、新公式、新定理、新法则、新运算五种,然后根据此新定义去解决问题,有时还需要用类比的方法去理解新的定义,这样有助于对新定义的透彻理解.但是,透过现象看本质,它们考查的还是基础数学知识,所以说“新题”不一定是“难题”,掌握好三基,以不变应万变才是制胜法宝.2019天津理) 19.设a n 是等差数列,b n 是等比数列.已知a1 4,b1 6,b2 2a2 2,b3 2a3 4.(I)求a n和b n的通项公式;(n)设数列q满足G 1,c n X 2 J 2「其中k Nn 1 n b k,n 2k ,i )求数列a2n c2n1 的通项公式;2nii )求a i c i n Ni1答案】(I )a n 3n 1 ; b n 3 2n(n )(i )a2n c2n 1 9 4n1 (ii )* 2n 1n 1 *aqnN 27 25 2 n 12 nNi 1【解析】 【分析】(I )由题意首先求得公比和公差,然后确定数列的通项公式即可; (n )结合(I )中的结论可得数列a 2n c 2n 1的通项公式,结合所得的通项公式对所求的数列通项公式进行等2n价变形,结合等比数列前n 项和公式可得aG 的值.i 12 4 d 26 2d,解得2 4 2d 4 12 4d故a n 4 (n 1) 33n1 ,b n6 2n13 2n.所以,a n的通项公式为 a n 3n 1 , b n的通项公式为b n3 2n (n )( i ) a 2n C 2n 1 a ?n b n 1 3 2n 1 3 2n 19 4n 1所以,数列 a ?n c?n1 的通 项公式 :为a2nc 2n 19 4n 12n 2n2n2n(ii )a &a i a C i 1a ia c 2i1i 1i 1i 1i 12n 2n 1n2 n4-39 412i 14 1 4n3 ?2 n5 2n 19n1 427 _2n•1J 112N*25 2n n【点睛】本题主要考查等差数列 ?等比数列的通项公式及其前 n 项和公式等基础知识.考查化归与转化思想和数列 求和的基本方法以及运算求解能力.【详解】(I )设等差数列a n 的公db n 的公比为q .依题意得6q6q 2(2019上海)18•已知数列{a n } , a 1 3,前n 项和为S n •(1)若{an }为等差数列,且 a 4 15, 求S n ;(2)若{a n }为等比数列,且 lim n S n 12,求公比 q 的取值范围 【解答】解:(1) Q a 4 a 3d 3 3d 15 ,d 4 ,n(n 1),S n 3n4 2n 2 n;2lim S n 存在,nlim 3(^ 2 ,n1 q 1 q3 4公比q 的取值范围为(1 , 0) (0 , 3).42综上,d -或者d3Hm S n存在, lim S n n (2019上海)21.已知等差数列{务}的公差d (0, ],数列{b n }满足 b n sin (a n ),集合 S x|xb n ,n2 、(1 )若a 1 0,d 一,求集合 30,d —,3{乜,0, △.2 2根据三角函数线,①等差数列 {a n }的终边落在y 轴的正负半轴上时,集合S 恰好有两个元素,此时此时d —,3(2)若a 1,求d 使得集合 2 S 恰好有两个(3)若集合S 恰好有三个元素: b n T b n , T 是不超过7的正整数,求 T 的所有可能的值.【解答】解:(1) Q 等差数列{a n }的公差d (0,],数列{b n }满足 b n sin (a n ),集合 S x|xb n ,n当a 1集合S (2) Q,数列{b n }满足 b n sin (a .),2集合S x|x N *恰好有两个元素,如图:②a 1终边落在OA 上,要使得集合 S 恰好有两个元素,可以使 a 2, a 3的终边关于y 轴对称,如图OB , OC ,(3)①当T 3 时,b n 3 b n,集合S {bl,b2, b3},符合题意.②当T 4 时,b n 4 b n ,sin(a n 4d) sina. a n 4d a n 2k ,或者a n 4d 2k a n ,4d a n 2k,又k 1,2当k1时满足条件,此时S {,1, 1}.③当T 5时,b n 5b n,si n(a n5d)sina n,故k1,2.当k1时,S{sin—,1,sin}满足题意1010④当T 6时,b n 6b n,sin (an6d)sina n,a na n等差数列{a n}的公差d (0,],故a n5d a n 2k ,或者a n 5d 2k a n,因为 d (0 ,所以6d a n 2k 或者a n 6d 2k a n,d (0,1 , 2, 3.1时,S {-^O, —3},满足题意.2 2⑤当T 7 时,b n 7 b n,si n(a n 7d) si na n si na n,所以a n 7d a n 2k ,或者a n 7d 2k a n,d (0,故k 1 , 2, 31时,因为b i ~b7对应着3个正弦值,故必有一个正弦值对应着3个点,必然有a m a n 2 ,d m 7,不符合条件.k 2时,因为b i~b7对应着3个正弦值,故必有一个正弦值对应着3个点,必然有a m a n 2 ,d n不是整数,不符合条件.k 3时,因为bi ~ b7对应着3 个正弦值,故必有一个正弦值对应着3个点,必然有a m a n—,或者d7—,此时,m n均不是整数,不符合题意.7综上,T3,4,5,6.(2019江苏)8.已知数列{a n}( n N*)是等差数列,S n是其前n项和若a2^ 兎0,S9 27 ,则Q的值是 _____________________ 【答案】16【解析】【分析】由题意首先求得首项和公差,然后求解前8项和即可.a 2a 5CBa 1 d a-i 4d7d 0【详解】由题意可得:9 8S99a 1 9 8d227解得: a 1 51 ,则 S 8 8a 1 8 7d40 28 216.d 22【点睛】等差数列、等比数列的基本计算问题,是高考必考内容,解题过程中要注意应用函数方程思想,灵活应 用通项公式、求和公式等,构建方程(组),如本题,从已知出发,构建a 1, d 的方程组.(2019江苏)20.定义首项为1且公比为正数的等比数列为“M—数列”.(1)已知等比数列{a n }满足:a ?a 4 a 5,a 3 4a ? 4印 0 ,求证:数列{a n }为“M—数列”;u . 1 2 2(2)已知数列{b n }满足:b 1 1,S b b ,其中S 为数列{b n }的前n 项和.S n b n b n 1① 求数列{b n }的通项公式;② 设m 为正整数,若存在 “M—数列” {} (n € N *),对任意正整数k ,当k 呦 时,都有C k b k q 1成立,求m 的 最大值.【答案】(1)见解析; (2[① b n = n n N * :② 5. 【解析】 【分析】(1 )由题意分别求得数列的首项和公比即可证得题中的结论; (2)①由题意利用递推关系式讨论可得数列{b n }是等差数列,据此即可确定其通项公式;②由①确定b k 的值,将原问题进行等价转化,构造函数,结合导函数研究函数的性质即可求得【详解】(1)设等比数列{a n }的公比为q ,所以a 1^0, q 丰0.因此数列{a n }为M —数列”1 22 (2) ①因S n—,所以b nb nbn11 2 2由b| 1,S 1th 得1 1 ,则 b 22.1由2 2 得 S nb n b n 1m 的最大值.a 2&4 a s由a 3 4a : 4ci|。

数列常见大题(含答案)

数列常见大题(含答案)

Tn 3 2 2 (22 23 2n ) (2n 1)2n1
2 22 23 2n1 (2n 1)2n1
2(2n1 1) (2n 1)2n1 (2n 1)2n1 2
Tn (2n 1)2n1 2
(12 分)
4.
已知数列{an } 满足:
1 a1
2 a2
n 3 (32n 1), n N *. an 8
8da1 4d
12d 2
16
,解得
ad1
8, 2,

ad1
8 2
因此 Sn 8n nn 1 nn 9,或Sn 8n nn 1 nn 9
9.设等差数列an 满足 a3 5 , a10 9 。
(Ⅰ)求an 的通项公式; (Ⅱ)求an 的前 n 项和 Sn 及使得 Sn 最大的序号 n 的值。
①当1 n 11时,
an 0| a1 | | a2 | | a3 |
| an | a1 a2 a3
an
n(10
11 2
n)
n(21 2
n)
②当12 n 时,
an 0| a1 | | a2 | | a3 | | an | a1 a2 a3 a11 (a12 a13 an )
所以Tn 3 7 2 11 22 ... 4n 1 2n1 ,
2Tn 32 722 1123 ... 4n 1 2n ,
2Tn Tn 4n 1 2n [3 4(2 22 ... 2n1)]
(4n 5)2n 5
Tn (4n 5)2n 5,n∈N﹡.
13.【2012 高考重庆文 16】(本小题满分 13 分,(Ⅰ)小问 6 分,(Ⅱ)小问 7 分))
解得 k 6 或 k 1(舍去),因此 k 6 。

(word完整版)历年高考数学真题(全国卷整理版)43964.doc

(word完整版)历年高考数学真题(全国卷整理版)43964.doc

实用文档参考公式:如果事件 A、B互斥,那么P( A B) P( A)P( B)如果事件 A、B相互独立,那么P(AgB)P( A)gP( B)如果事件 A 在一次试验中发生的概率是p ,那么n 次独立重复试验中事件 A 恰好发生 k 次的概率P n (k ) C n k p k (1 p)n k (k 0,1,2,⋯n) 球的表面积公式S 4R2其中 R 表示球的半径球的体积公式V 3 R34其中 R表示球的半径普通高等学校招生全国统一考试一、选择题1、复数 1 3i =1 iA 2+IB 2-IC 1+2iD 1- 2i2、已知集合 A= {1.3. m },B={1,m} ,A U B=A, 则 m=A 0 或3B 0 或 3C 1或3D 1 或 33 椭圆的中心在原点,焦距为4 一条准线为 x=-4 ,则该椭圆的方程为A x2 + y2 =1B x2 + y2 =116 12 12 8C x2 + y2 =1D x2 + y2 =18 4 12 44 已知正四棱柱ABCD- A1B1C1D1中, AB=2, CC= 2 2 E 为 CC的中点,则直线AC与平面1 1 1 BED的距离为A 2B 3C 2D 1(5)已知等差数列{a n} 的前 n 项和为 S n,a5=5, S5=15,则数列的前100项和为(A) 100(B)99(C)99(D)101 101101100100(6)△ ABC中, AB边的高为 CD,若a· b=0, |a|=1 , |b|=2 ,则(A)( B)(C)(D)3(7)已知α为第二象限角, sin α+ sin β =3,则 cos2α =555 5--9(D) 3(A) 3 (B ) 9 (C)(8)已知 F1、 F2 为双曲线 C : x2 -y 2 =2 的左、右焦点,点 P 在 C 上, |PF1|=|2PF2| ,则 cos ∠ F1PF2=1 334(A) 4( B ) 5(C)4(D)51( 9)已知 x=ln π, y=log52 , z=e 2,则 (A)x < y < z ( B ) z < x <y (C)z < y < x (D)y< z < x(10) 已知函数 y = x2 -3x+c 的图像与 x 恰有两个公共点,则 c =(A ) -2 或 2 ( B ) -9 或 3 (C ) -1 或 1 ( D )-3 或 1( 11)将字母 a,a,b,b,c,c, 排成三行两列,要求每行的字母互不相同,梅列的字母也互不相同,则不同的排列方法共有( A ) 12 种( B ) 18 种( C ) 24 种( D ) 36 种7(12)正方形 ABCD 的边长为 1,点 E 在边 AB 上,点 F 在边 BC 上, AE = BF = 3。

专题训练:数列综合运用大题(解析版)

专题训练:数列综合运用大题(解析版)

专题训练:数列综合运用大题1.(2022·江苏·盐城市第一中学高二阶段练习)有下列3个条件:①382a a +=-;②728S =-;③2a ,4a ,5a 成等比数列.从中任选1个,补充到下面的问题中并解答问题:设数列{}n a 的前n 项和为n S ,已知()*12N n n n S S a n +=++∈,.(1)求数列{}n a 的通项公式;(2)n S 的最小值并指明相应的n 的值.【答案】(1)212n a n =-;(2)n =5或者6时,n S 取到最小值30-.【解析】(1)因为12n n n S S a +=++,所以12n n a a +-=,即{}n a 是公差为2的等差数列,选择条件①:因为382a a +=-,所以1292a d +=-,则12922a +⨯=-,解得110a =-,所以212n a n =-;选择条件②:因为728S =-,所以1767282a d ⨯+=-,解得110a =-,所以212n a n =-;选择条件③:因为2a ,4a ,5a 成等比数列,所以()2425a a a =,即2111(3)()(4)a d a d a d +=++,解得110a =-,所以212n a n =-;(2)由(1)可知110a =-,2d =,所以22(1)1112110211224n n n S n n n n -⎛⎫=-+⨯=-=-- ⎪⎝⎭,因为*N n ∈,所以当5n =或者6时,n S 取到最小值,即min )0(3n S =-2.(2022·江苏·星海实验中学高二阶段练习)已知数列{}n a 的前n 项和为n S ,___________,*n ∈N .在下面三个条件中任选一个,补充在上面问题中并作答.①22n n S a =-;②122222n n a a a n ++⋯⋯+=;③221232n n n a a a a +⋯⋯=注:如果选择多个条件分别解答,按第一个解答计分.(1)求数列{}n a 的通项公式;(2)记1(1)(1)n n n n a b a a +=--,n T 是数列{}n b 的前n 项和,若对任意的*n ∈N ,1n kT n>-,求实数k 的取值范围.【答案】(1)2n n a =;(2)1,3⎛⎫+∞ ⎪⎝⎭【解析】(1)选择①,由22n n S a =-①知,当2n ≥时,1122n n S a --=-②,由①-②,得122n n n a a a -=-,即()122n n a a n -=≥,当1n =时,11122a S a ==-,解得12a =,所以数列{}n a 是首项为2,公比为2的等比数列,故1222n n n a -=⨯=.选择②,由122222n na a a n ++⋯⋯+=①知,当2n ≥时,112211222n n a a an --++⋯⋯+=-②由①-②,得()()1122n nan n n =--=≥,在122222n na a a n ++⋯⋯+=中,令1n =,则112a=,满足上式,所以12n n a=,即2n n a =.选择③,由221232n nna a a a +⋯⋯=①知,当2n ≥时,()()22113122122n nn n n a a a a -+---⋯⋯==2②由①②,得()2222222n n n n n n a n +--==≥,在221232n n n a a a a +⋯⋯=中,令1n =,则12a =,满足上式,所以2n n a =.(2)由(1)知,2n n a =,所以()()111211(1)(1)22111122n n n n n n n n n a b a a +++===-------,所以数列{}n b 的前n 项和为111111113371711151122112n n n n T ++⎛⎫⎛⎫⎛⎫=-+-⎛⎫-=- ⎪⎝+-++ ⎪ ⎪ ⎪---⎝⎭⎝⎭⎝⎭⎭,对于任意的*n ∈N ,1n k T n>-,所以111121n k n+->--,即121n n k +>-.设1(),21n nf n +=-所以()()()()22111111211(1)0222121n n n n n n n nf n f n +++++-⋅-++-=----=<-恒成立,即()(1)f n f n +<,所以()f n 单调递减,所以()()11max 111213f n f +===-,于是有13k >,故实数k 的取值范围为1,3⎛⎫+∞ ⎪⎝⎭.3.(2022·福建·莆田第二十五中学高二阶段练习)从条件①()21n n S n a =+,②22,0n n n n a a S a +=>()2n a n =≥,中任选一个,补充到下面问题中,并给出解答.已知数列{}n a 的前n 项和为1,1n S a =,___________.(1)求{}n a 的通项公式;(2)设1112n n n a b +++=,记数列{}n b 的前n 项和为n T ,是否存在正整数n 使得83nT >.【答案】(1)答案见解析;(2)答案见解析【解析】(1)若选择①,因为()*21,N n n S n a n =+∈,所以112,2n n S na n --=≥,两式相减得()121n n n a n a na -=+-,整理得()11,2n n n a na n --=≥,即1,21n n a a n n n -=≥-,所以n a n ⎧⎫⎨⎬⎩⎭为常数列,而111n a a n ==,所以n a n =;若选择②,因为()2*2N n n n a a S n +=∈,所以()211122n n n a a S n ---+=≥,两式相减()221112222n n n n n n n a a a a S S a n ----+-=-=≥,得()()()1112n n n n n n a a a a a a n ----+=+≥,因为()1100,1,2n n n n n a a a a a n -->∴>∴+-=≥,所以{}n a 是等差数列,所以()111n a n n =+-⨯=;()2n a n =≥1n n S S --,=,由题意知0n S >1=,所以为等差数列,11a ==()21,,212n n n n n S n a S S n n -==∴=-=-≥,又1n =时,11a =也满足上式,所以21n a n =-;(2)若选择①或②,1111222n n n n n b +++++==,所以()234111113452,2222n n T n +⎛⎫⎛⎫⎛⎫⎛⎫=⨯+⨯+⨯+++⨯ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭所以()345211111345222222n n T n +⎛⎫⎛⎫⎛⎫⎛⎫=⨯+⨯+⨯+++⨯ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭,两式相减得()2341211111132222222n n n T n ++⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=⨯++++-+⨯ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭()2121113148221142212n n n n n +-+⎛⎫- ⎪+⎛⎫⎝⎭=+-+⨯=- ⎪⎝⎭-,则1422n n n T ++=-,故要使得83n T >,即148223n n ++->,整理得,14223n n ++<-,当N*n ∈时,1402n n ++>,所以不存在*N n ∈,使得83n T >.若选择③,依题意,111122n n nn a n b ++++==,所以()23111123412222nn T n ⎛⎫⎛⎫⎛⎫=⨯+⨯+⨯+++⨯ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,故()234111111234122222n n T n +⎛⎫⎛⎫⎛⎫⎛⎫=⨯+⨯+⨯+++⨯ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭,两式相减得:()()23111111111111421111122222212n n n n n T n n ++-⎛⎫- ⎪⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎝⎭=++++-+⨯=+-+⨯ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭-13322n n ++=-,则332n n n T +=-,令38323n n n T +=->,则3123n n +<,即2390n n -->,令239n n c n =--,则1100c =-<,当2n ≥时,()()112319239230n n nn n c c n n ++-=-+----=->,又450,0c c <>,故234560c c c c c <<<<<,综上,使得83n T >成立的最小正整数n 的值为5.4.(2022·河北·邢台市第二中学高二阶段练习)①{}2nn a 为等差数列,且358a =;②21n a n ⎧⎫⎨⎬-⎩⎭为等比数列,且234a =.从①②两个条件中任选一个,补充在下面的问题中,并解答.在数列{}n a 中,112a =,________.(1)求{}n a 的通项公式;(2)已知{}n a 的前n 项和为n S ,试问是否存在正整数p ,q ,r ,使得n n r S p qa +=-?若存在,求p ,q ,r 的值;若不存在,说明理由.【答案】(1)212n nn a -=;(2)存在,3p =,4q =,2r =﹒【解析】(1)若选①:设等差数列{}2nn a 的公差为d ,则33122512312a a d --===-,∴()1222121nn a a n n =+-=-,即212n n n a -=.若选②:设等比数列21n a n ⎧⎫⎨⎬-⎩⎭的公比为q ,则2112212211a q a ⨯-==⨯-,∴11112121122n nn a a n -⎛⎫⎛⎫=⨯= ⎪ ⎪-⨯-⎝⎭⎝⎭,即212n n n a -=;(2)21321222n n n S -=+++,231113212222n n n S +-=+++,则两式相减得,23111111212222222n n n n S +-⎛⎫=+⨯+++- ⎪⎝⎭12n S =111121214212212n n n ++⎛⎫- ⎪-⎝⎭=+--12n S =132322n n ++=-,∴2332n n n S +=-.∵()22221233343422n n n n n n S a +++-+=-=-⨯=-,∴存在正整数p ,q ,r ,使得n n r S p qa +=-,且3p =,4q =,2r =.5.(2022·吉林·长春市第二中学高二阶段练习)已知数列{}n a ,其中前n 项和为n S ,且满足15a =,*123(N )n n a a n +=+∈.(1)证明:数列{3}n a +为等比数列;(2)求数列{}n a 的通项公式及其前n 项和n S .【答案】(1)证明见解析;(2)223n n a +=-,*n ∈N ,n S 3238n n +=--.【解析】(1)证明:由题意,123n n a a +=+两边同时加3,可得132332(3)n n n a a a ++=++=+,13538a +=+=,∴数列{3}n a +是以8为首项,2为公比的等比数列.(2)由(1)可得123822n n n a -++=⋅=,则223n n a +=-,*n ∈N ,故12n n S a a a =++⋅⋅⋅+342(23)(23)(23)n +=-+-+⋅⋅⋅+-342(222)3n n+=++⋅⋅⋅+-⋅3322312n n +-=--3238n n +=--.6.(2021·广西·钟山中学高二阶段练习)已知数列{}n a 为等比数列,22a =,516a =,2log n n b a =,n n n c a b =+.(1)求数列{}n a 、{}n b 的通项公式;(2)求数列{}n c 的前n 项和n S .【答案】(1)12n n a -=,1n b n =-;(2)121(1)2nn S n n =-+-【解析】(1)设数列{}n a 的公比为q ,则3521682a q a ===,所以2q =,所以2212222n n n n a a q ---=⋅=⋅=,所以22log log 2n n b a ==11n n -=-;(2)121n n n n c a b n -=+=+-,所以0121012120212221(2222)(0121)n n n S n n --=++++++⋯++-=+++⋯+++++⋯+-(12)(01)121(1)1222-+-=+=-+--n n n n n n .7.(2022·福建三明·高二阶段练习)已知数列{}n a 的前n 项和为n S ,满足()321n n S a =-,{}n b 是以1a 为首项且公差不为0的等差数列,237,,b b b 成等比数列.(1)求数列{}{},n n a b 的通项公式;(2)令n n n c a b =,求数列{}n c 的前n 项和n T .【答案】(1)()2nn a =-,35n b n =-;(2)()1834(2)3n n n T +---=.【解析】(1)由()321n n S a =-,取1n =可得()11321S a =-,又11S a =,所以()11321a a =-,则12a =-.当2n ≥时,由条件可得()()11321321n n n n S a S a --⎧=-⎪⎨=-⎪⎩,两式相减可得,12n n a a -=-,又12a =-,所以12nn a a -=-,所以数列{}n a 是首项为2-,公比为2-的等比数列,故()2nn a =-,因为112b a ==-,设等差数列{}n b 的公差为d ,则2372,22,26b d b d b d =-+=-+=-+,由237,,b b b 成等比数列,所以()()2(22)226d d d -+=-+-+,又0d ≠,所以解得3d =,故35n b n =-,(2)()35(2)nn n n c a b n ==--,()()1232(2)1(2)4(2)35(2)n n T n =-⨯-+⨯-+⨯-++-⨯-,()()()234122(2)1(2)4(2)38(2)35(2)n n n T n n +-=-⨯-+⨯-+⨯-++-⨯-+-⨯-相减得()2341343(2)(2)(2)(2)35(2)n n n T n +⎡⎤=+-+-+-++---⨯-⎣⎦,所以()()()114234335(2)12n n n T n ++--=+--⨯---,所以()13834(2)n n T n +=---所以()1834(2)3n n n T +---=.8.(2022·陕西·府谷县府谷中学高二阶段练习(文))已知数列{}n a 是公差不为零的等差数列,11a =且2514,,a a a 成等比数列.(1)求数列{}n a 的通项公式;(2)求数列{}21nan a ++的前n 项和n S .【答案】(1)21n a n =-;(2)222433n n S n n =⋅++-【解析】(1)设等差数列的公差为d ,因为2514,,a a a 成等比数列,所以()()()2111413a d a d a d +=++,解得2d =或0d=(舍去).故()=1+2121n a n n -=-.(2)由(1)可得212122nn n aa n -++=+,故()22214222414233n n n S n n n n +⨯-=⨯+=⋅++--9.(2022·陕西·长安一中高二阶段练习(文))已知数列{}n a 的前n 项和为n S ,10a ≠,常数0λ>,且11n n a a S S λ=+对一切正整数n 都成立.(1)求数列{}n a 的通项公式;(2)设10a >,100λ=,当n 为何值时,数列1lg n a ⎧⎫⎨⎬⎩⎭的前项n 和最大?【答案】(1)2nn a λ=;(2)6.【解析】(1)取1n =,得211122a S a λ==,()1120a a λ-=,10a ≠,则12a λ=,当2n ≥时,22n n a S λ=+,1122n n a S λ--=+,上述两个式子相减得:12n n a a -=,所以数列{}n a 是等比数列,当10a ≠,则1122n n n a a λ-=⋅=.(2)当10a >,且100λ=时,令1lgn n b a =,所以,1002lg 2lg 2n n b n =-=所以,{}n b 单调递减的等差数列(公差为lg 2-)则12366100100lglg lg10264b b b b ⋅>>>⋅⋅⋅>==>=当7n ≥时,77100100lg lglg102128n b b ≤==<=故数列1lg n a ⎧⎫⎨⎬⎩⎭的前6项的和最大.10.(2022·广东·饶平县第二中学高二阶段练习)已知n S 为等差数列{}n a 的前n 项和,若355a a +=,47S =.(1)求n a ;(2)记2221n n n b a a +=⋅,求数列{}n b 的前n 项和n T .【答案】(1)n a =12n +;(2)469nn +【解析】(1)设等差数列{}n a 的公差为d ,则1126543472a d a d +=⎧⎪⎨⨯+=⎪⎩,解得11,1,2a d =⎧⎪⎨=⎪⎩,故111(1)22n n a n +=+-=;(2)因为12n n a +=,所以22214112(21)(23)2123n n n b a a n n n n +⎛⎫===- ⎪⋅++++⎝⎭,故12111111112+++235572+12+4693323n n T b b b n n n n n ⎛⎫⎛⎫=+++=---=-= ⎪ ⎪+⎝⎭⎝⎭+.11.(2022·广东·南海中学高二阶段练习)已知数列{}n a 中,12325a =,112n n a a-=-(2n ≥,*n ∈N ),数列{}n b 满足()*11n nb n N a =∈-.(1)求数列{}n b 的通项公式;(2)求12320b b b b +++⋅⋅⋅+;(3)求数列{}n a 中的最大项和最小项,并说明理由.【答案】(1)272=-n b n ;(2)109;(3)()max 3=n a ,()min 1=-n a ,理由见解析【解析】(1)证明:111111111111121n n n n n n b b a a a a -----=-=-=-----,又1112512b a ==--,∴数列{}n b 是252-为首项,1为公差的等差数列.∴()127112n b b n n =+-⨯=-.(2)由2702n b n =-≥,得272n ≥,即13n ≤时,0n b <;14n ≥时,0n b >,∴()123201213141520b b b b b b b b b b +++⋅⋅⋅+=-++⋅⋅⋅++++⋅⋅⋅+251312277613171411092222⎡⎤⨯⨯⎛⎫⎛⎫=-⨯-+⨯+⨯-+⨯= ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦.(3)由12712n nb n a ==--,得()*21N 227n a n n =+∈-又函数()21227f x x =+-在27,2⎛⎫-∞ ⎪⎝⎭和27,2⎛⎫+∞ ⎪⎝⎭上均是单调递减.由函数()21227f x x =+-的图象,可得:()14max 3n a a ==,()13min 1n a a ==-.12.(2022·山西省浑源中学高二阶段练习)表示n S 等差数列{}n a 的前n 项的和,且49S S =,112a =-.(1)求数列{}n a 的通项n a 及n S ;(2)求和12n nT a a a =+++【答案】(1)214n a n =-,213n S n n =-;(2)2213,171384,8n n n n T n n n ⎧-≤≤=⎨-+≥⎩【解析】(1)设等差数列{}n a 的公差为d ,由49S S =可得1143984922a d a d ⨯⨯+=+,因为112a =-,解得2d =,所以,()()111221214n a a n d n n =+-=-+-=-,()()12122141322n n n a a n n S n n +-+-===-.(2)142,17214214,8n n n a n n n -≤≤⎧=-=⎨-≥⎩,当17n ≤≤且N n *∈时,()212142132n n n T n n +-==-;当8n ≥且N n *∈时,()()()()2722147426713842n n n T T n n n n +--=+=+--=-+.综上所述,2213,171384,8n n n n T n n n ⎧-≤≤=⎨-+≥⎩.13.(2021·江苏省灌南高级中学高二阶段练习)已知等差数列{}n a 的前n 项和为n S ,()*4224, 21,N n n S S a a n ==+∈.(1)求{}n a 的通项公式;(2)设数列{}n b 满足()()*123 21 N n b b n b n n +++-=∈,记数列14(1)n n n n b a +⎧⎫⋅-⎨⎬⎩⎭的前n 项和为n T ,求n T .【答案】(1)21n a n =-;(2)**2,2,N 2122,21,N 21n n n k k n T n n k k n ⎧-=∈⎪⎪+=⎨+⎪-=-∈⎪+⎩.【解析】(1)设等差数列{}n a 的公差为d ,由424S S =,可得()114642a d a d +=+,即12a d =;又因为221n n a a =+,取1n =,所以2121a a =+,即11a d +=;故可得11,2a d ==.故{}n a 的通项公式为21n a n =-.(2)由()12321n b b n b n +++-=,当2n ≥时,()1213231n b b n b n -+++-=-,上述两式作差可得()1221n b n n =≥-,又11b =满足上式,综上()*1N 21n b n n =∈-;所以14411(1)(1)(1)()(21)(21)2121n n nn n n b n a n n n n +⋅-=-=-+-+-+.当n 为偶数时11111(1)()(33557n T =-+++-++…1111((23212121n n n n -+++---+.∴1212121n nT n n =-+=-++.当n 为奇数时,1111111(1)(()()335572121n T n n =-+++-++-+-+∴12212121n n T n n +=--=-++.故**2,2,N 2122,21,N 21n n n k k n T n n k k n ⎧-=∈⎪⎪+=⎨+⎪-=-∈⎪+⎩.14.(2022·江苏省苏州实验中学高二阶段练习)已知数列{}n a 是首项为4的单调递增数列,满足()221111682n n n n n na a a a a a +++++=++(1)求证:14n n a a ++-=(2)设数列{}n b 满足πsin2n n n b a =,数列{}n b 前n 㑔和n S ,求20242024S 的值.【答案】(1)证明见解析;(2)4048-【解析】(1)证明:由题意得,()22111121684n n n n n n n n a a a a a a a a +++++++++=,即()()21118164n n n n n n a a a a a a ++++-++=,即()21144n n n n a a a a +++=-,∵数列{}n a 是首项为4的单调递增数列,4n a ≥,∴14n n a a ++-=(2)由(1)得14n n a a +-=,即24=,2-=,所以数列是首项为2,公差为22n =,则2ππsinsin 224n n n n b a n ==,()22222220244135720212023S =⨯-+-++-()()()()()()4131357572021202320212023⎡⎤=⨯-++-+++-+⎣⎦()84124044=-⨯+++()4404450682+⨯=-⨯44048506=-⨯⨯∴202444048506404820242024S =-=-⨯⨯15.(2022·陕西·白水县白水中学高二阶段练习)在数列{}n a 中,11a =,当2n ≥时,其前n 项和n S 满足212n n n S a S ⎛⎫=- ⎪⎝⎭.(1)求证:1n S ⎧⎫⎨⎬⎩⎭是等差数列;(2)设21nn S b n =+,求{}n b 的前n 项和n T .【答案】(1)证明见解析;(2)21nn +【解析】(1)证明:∵当2n ≥时,1n n n a S S -=-,212n n n S a S ⎛⎫=- ⎪⎝⎭()22111111222n n n n n n n n n S S S S S S S S S ---⎛⎫∴=--=--+ ⎪⎝⎭,即:112n n n nS S S S ---=111112112n n n n n n n n n n S S S S S S S S S S ------∴-===,又11111S a ==∴数列1n S ⎧⎫⎨⎬⎩⎭是以1为首项,2为公差的等差数列(2)由(1)知:()112121nn n S =+-=-121n S n ∴=-∴()()1111212122121n b n n n n ⎛⎫==⨯- ⎪-+-+⎝⎭11111111112335212122121n n T n n n n ⎛⎫⎛⎫∴=⨯-++⋅⋅⋅+-=⨯-= ⎪ ⎪-+++⎝⎭⎝⎭16.(2022·山东潍坊·高二阶段练习)设数列{}n a 的前n 项和为n S ,且满足323n n a S -=.(1)求n a ;(2)设32log 1,21,,2,,n n n a n k k N b a n k k N **⎧+=-∈=⎨=∈⎩求数列{}n b 的前n 项和n T .【答案】(1)3n n a =;(2)()()()()()19311,,2,2893121,21,28n n n n n n k k N T n n n k k N *-*⎧-+⎪+=∈⎪=⎨-++⎪+=-∈⎪⎩【解析】(1)当1n =时,13a =,当2n ≥时,因为323n n a S -=,所以11323n n a S ---=,得13n n a a -=,所以数列{}n a 为首项为3,公比为3的等比数列,得3n n a =;(2)21,21,3,2,n n n n k k N b n k k N**⎧+=-∈=⎨=∈⎩,当n 为偶数时,2463373113(21)3nn T n =+++++++-+()246[3711(21)]3333n n =++++-+++++()2919(321)9312(1)21928nn n n n n ⎛⎫- ⎪+--⎝⎭=+=++-,当n 为奇数时,24613373113(21)3(21)n n T n n -=+++++++-+++()2461[3711(21)]3333n n -=++++++++++()1211919(321)931(2)(1)221928n n n n n n --⎛⎫+- ⎪++-++⎝⎭=+=+-,所以()()()()()19311,,2,2893121,21,28n n n n n n k k N T n n n k k N *-*⎧-+⎪+=∈⎪=⎨-++⎪+=-∈⎪⎩17.(2022·湖北·石首市第一中学高二阶段练习)已知数列{}n a 满足312123211111n n n a a a a a a a a a +++⋅⋅⋅+=-----.(1)证明:数列1n n a a ⎧-⎫⎨⎬⎩⎭为等比数列.(2)已知()11n n n b a a +=-,求数列{}n b 的前n 项和n S .【答案】(1)证明见解析;(2)11121n n S +=--【解析】(1)证明:当1n =时,111211a a a =--,则12a =.因为312123211111n n n a a a a a a a a a +++⋅⋅⋅+=-----,①所以311212311211111n n n a a a a a a a a a ++++++⋅⋅⋅+-----,②由②-①得11122111n n n n a a a a +++=----,化简可得112n n n n a a a a ++-=,()()11111111121122n n n n n n n n n n n n n n n na a a a a a a aa a a a a a a a ++++++++----===----,所以数列1n n a a ⎧-⎫⎨⎬⎩⎭是一个公比为12的等比数列.(2)由(1)可知11111222n n n na a --=-⨯=-,化简可得221n n n a =-.()()()111211121212121n n n n n n n n b a a +++=-==-----.所以22334111111111111212121212121212121n n n n S ++⎛⎫⎛⎫⎛⎫⎛⎫=-+-+-+⋅⋅⋅+-=- ⎪ ⎪ ⎪ ⎪---------⎝⎭⎝⎭⎝⎭⎝⎭.18.(2022·湖北省罗田县第一中学高二阶段练习)设等差数列{}n a 的前n 项和为n S ,且634S S =,221n n a a =+,(1)求数列{}n a 的通项公式:(2)若数列{}n b 满足121221n nnb b ba aa +++=-,N n +∈,求数列{}n b 的前n 项和为n T .【答案】(1)21n a n =-;(2)()3232nn T n =+-⨯【解析】(1)设等差数列{}n a 的首项为1a ,公差为d ,由634S S =,221n n a a =+,则()()()111161543321211a d a d a n d a n d ⎧+=+⎪⎨⎡⎤+-=+-+⎪⎣⎦⎩,解得112a d =⎧⎨=⎩,所以21n a n =-;(2)因为121221n nnb b b a a a +++=-,当1n =时111211ba =-=,即11b =,当2n ≥时111212121n n n b b ba a a ---+++=-,所以()1121212n n n n nb a --=---=,即()1212n n b n -=-⋅,当1n =时()1212n n b n -=-⋅也成立,所以()1212n n b n -=-⋅,所以()0121123252212n n T n -=⨯+⨯+⨯++-⨯,()1232135222122n n T n =⨯+⨯+⨯++-⨯,所以()121022*********n nn T n --=⨯+⨯+⨯++⨯--⨯()()()1121121332222122n n n n T n n -⨯--=+--⨯=-+-⨯-,所以()3232nn T n =+-⨯.19.(2021·河北·邢台一中高二阶段练习)等差数列{}()*n a n N ∈中,123a a a ,,分别是如表所示第一、二、三行中的某一个数,且其中的任意两个数不在表格的同一列.第一列第二列第三列第一行582第二行4312第三行1669(1)请选择一个可能的123{}a a a ,,组合,并求数列{}n a 的通项公式.(2)记(1)中您选择的{}n a 的前n 项和为Sn ,判断是否存在正整数k ,使得12k k a a S +,,成等比数列?若存在,请求出k 的值;若不存在,请说明理由.【答案】(1)答案见解析;(2)答案见解析.【解析】(1)由题意可知,有两种组合满足条件.①12381216a a a ===,,,此时等差数列{}n a 中,18a =,公差d =4,所以数列{}n a 的通项公式为44n a n =+②123246a a a ===,,,此时等差数列{}n a 中,12a =,公差d =2,所以数列{}n a 的通项公式为2n a n =.(2)若选择①,226n S n n =+,则()()222226221420k S k k k k +=+++=++.若12k k a a S +,,成等比数列,则212·k k a a S +=,即()()2244821420k k k +=++,整理得2221710k k k k ++=++,即59.k =-此方程无正整数解,故不存在正整数k ,使12k k a a S +,,成等比数列.若选择②,2n S n n =+,则()2222256k S k k k k +=+++=++.若12k k a a S +,,成等比数列,则212·k k a a S +=,即()()222256k k k =++,整理得2560k k --=,因为k 为正整数,所以6k =.故存在正整数6k k =(),使得12k k a a S +,,成等比数列.20.(2022·广东·佛山一中高二阶段练习)已知数列{}n a 是公差d 不为0的等差数列,且数列{}nk a 是等比数列,其中13k =,25k =,39k =.(1)求12n k k k +++;(2)记1n n b k n =-+,求数列1122n n n b b ++⎧⎫-⎨⎬⎩⎭的前n 项和n T .【答案】(1)11222n n n k k k +++=-++;(2)122321n n T n +=--+【解析】(1)由已知可得2539a a a =,则()()()2111428a d a d a d +=++,0d ≠,所以,10a =,则()()111n a a n d n d =+-=-,所以,32a d =,54a d =,则数列{}n k a 的公比为532a a =,所以,()13221nn nk n a a d k d -=⋅==-,所以,21n n k =+,所以,()()21122122222212n nn n k k k n n n +-+++=++++=+=+--.(2)122n n n b k n n =-+=-+,则()()()()()()11111122122222222122221222n n n n n n n nn n n n b b n n n n ++++++⎡⎤-++--+--⎣⎦==⎡⎤⎡⎤-++⋅-+-++⋅-+⎣⎦⎣⎦()12222212n n n n +=--+-++,因此,()1223122222221222222223222212n n n T n n +⎛⎫⎛⎫⎛⎫=-+-++- ⎪ ⎪ ⎪ ⎪-+-+-+-+-+-++⎝⎭⎝⎭⎝⎭122321n n +=--+.21.(2022·湖北·十堰东风高级中学高二阶段练习)数列{}n a 满足:31232n a n a a a +++=+12(1)2n n ++-⋅,*n ∈N .(1)求数列{}n a 的通项公式;(2)设()()111nn n n a b a a +=--,n T 为数列{}n b 的前n 项和,若23n T m <-恒成立,求实数m 的取值范围.【答案】(1)2n n a =,*n ∈N ;(2)2m ≤-或2m ≥【解析】(1)当2n ≥,12323n a a a na ++++L 12(1)2n n +=+-⋅,①1212(1)n a a n a -+++-2(2)2n n =+-⋅,2n ≥,②①-②得22(2)n n n n na n a n =⋅⇒=≥(*)在①中令1n =,得12a =,也满足(*),所以2n n a =,*n ∈N ,(2)由(1)知,()()1121121212121n n n n n n b ++==-----,故12112121n T ⎛⎫=- ⎪--⎝⎭23112121⎛⎫+-+ ⎪--⎝⎭1112121n n +⎛⎫+- ⎪--⎝⎭11121n +=--,于是,23n T m <-⇔2111321n m +-<--因为11121n +--随n 的增大而增大,所以231m -≥,解得2m ≤-或2m ≥所以实数m 的取值范围是2m ≤-或2m ≥.22.(2021·河北保定·高二阶段练习)已知数列{}n a 的前n 项和为n S ,且231n n S a =-.(1)求{}n a 的通项公式.(2)令34log 1n n b a =+,()111n n n n t b b ++=-,n T 为数列{}n t 的前n 项和,求2n T .(3)记()()14130n n n n c a l l +=+-⋅≠.是否存在实数λ,使得对任意的*n ∈N ,恒有1n n c c +>若存在,求出λ的取值范围;若不存在,说明理由.【答案】(1)13n n a -=;(2)22328n T n n =--;(3)存在,()4,00,13l ⎛⎫∈-⋃ ⎪⎝⎭.【解析】(1)当1n =时,有11231a a =-,解得11a =当2n ≥时,由231n n S a =-,得11231n n S a --=-,两式相减得1233n n n a a a -=-,整理得13n n a a -=,所以{}n a 是首项为1,公比为3的等比数列,故13n n a -=;(2)因为13n n a -=,所以43n b n =-,()()()114341n n t n n +=--+,所以()()()()21559913131787838381n T n n n n =⨯-⨯+⨯-⨯++----+()()()()58138883n =⨯-+⨯-++-⨯-()258383282n n n n +-=-⨯=--;(3)因为()1413n n n n c l +=+-⋅⋅,所以()1111413n n n n c l ++++=--⋅⋅,由10n n c c +->,得()1341430n n n l +⨯--⋅⋅>,即()1114130n n n l +----⋅⋅>,进一步化简得()11413n n l -+⎛⎫-⋅< ⎪⎝⎭.当n 为奇数时,143n λ-⎛⎫< ⎪⎝⎭恒成立,因为()143n f n -⎛⎫= ⎪⎝⎭是增函数,所以0413l ⎛⎫<= ⎪⎝⎭;当n 为偶数时,143n l -⎛⎫-< ⎪⎝⎭恒成立,同理214433l -⎛⎫-<=⎪⎝⎭,所以43λ>-故413λ-<<且0λ≠,即存在实数()4,00,13l ⎛⎫∈-⋃ ⎪⎝⎭,使得对任意的*n ∈N ,恒有1n n c c +>.23.(2021·湖南·周南中学高二阶段练习)已知数列{}n a 中,11a =,121n n a S +=+(n *∈N ),n S 为数列{}n a 的前n 项和.(1)求{}n a 的通项公式;(2)设3log n n b a =,求数列{}n n a b 的前n 项和n T ;(3)在n a ,1n a +之间插入n 个数,使这2n +个数组成一个公差为n d 的等差数列,在数列{}n d 中是否存在3项m d ,k d ,p d ,(其中m ,k ,p 成等差数列)成等比数列?若存在,求出这3项;若不存在,请说明理由.【答案】(1)13n n a -=;(2)333244n n nT ⎛⎫=-⨯+ ⎪⎝⎭;(3)不存在,理由见解析.【解析】(1)当2n ≥时,()()1122222n n n n n a a S S a +--=+-+=,所以13n n a a +=2112133a S a =+==;又2112133a S a =+==,所以对*N n ∈,有13n n a a +=,故数列{}n a 是1为首项3为公比的等比数列,通项公式为13n n a -=.(2)由(1)知1n b n =-,112233n n n T a b a b a b a b =++++()012103132313n n -=⨯+⨯+⨯++-⨯…①()23303132313n n T n =⨯+⨯+⨯++-⨯…②①−②得:()212033313n nn T n --=++++--⨯()331313nn n -=--⨯-33322n n ⎛⎫=-+⨯- ⎪⎝⎭,∴333244nn n T ⎛⎫=-⨯+ ⎪⎝⎭.(3)在数列{}n d 不存在3项,m d ,k d ,p d (其中m ,k ,p 成等差数列)成等比数列.理由如下:由已知得1113323111n n n n n n a a d n n n --+--⨯===+++假设在数列{}n d 中存在m d ,k d ,p d (其中m ,k ,p 成等差数列)成等比数列,则2km p d d d =,即2111232323111k m p k m p ---⎛⎫⨯⨯⨯=⨯ ⎪+++⎝⎭,化简得()()()22224343111k m p m p k -+-⨯⨯=+++,又因为m ,k ,p 成等差数列,所以2m p k +=,故上式可以化简为()()()2111k m p +=++,则k m p ==,与已知矛盾.故在数列{}n d 中不存在3项,m d ,k d ,p d (其中m ,k ,p 成等差数列)成等比数列.24.(2022·广东·饶平县第二中学高二阶段练习)已知数列{}n a 的前n 项和为n S ,且3122n n S a =-,*N n ∈(1)求数列{}n a 的通项公式;(2)若不等式12(2703+⋅⋅-+≥n n k a n 对任意*N n ∈恒成立,求实数k 的取值范围.【答案】(1)13n n a -=;(2)3[,)32+∞【解析】(1)数列{}n a 的前n 项和为n S ,*N n ∀∈,3122n n S a =-,当2n ≥时,113322n n n n n a S S a a --=-=-,则13n n a a -=,而当1n =时,1113122a S a ==-,即得11a =,因此,数列{}n a 是以1为首项,3为公比的等比数列,则13n n a -=,所以数列{}n a 的通项公式是:13n n a -=(2)由(1)知,1227(270227032+-⋅⋅-+≥⇔⋅-+≥⇔≥n n n nn k a n k n k ,对任意*N n ∈恒成立设272n n n c -=,则()1112172792222n nn n n n n n c c ++++----=-=,当5n ≥,1n n c c +≤,{}n c 单调递减,当15n ≤<,1n n c c +>,{}n c 单调递增,显然有45131632c c =<=,则当5n =时,n c 取得最大值332,即272nn -最大值是332,因此,332k ≥,所以实数k 的取值范围是3[,)32+∞25.(2022·山东·兰陵四中高二阶段练习)已知数列{}n a 满足1=2a ,123n n a a n +=++.(1)证明:数列{}2n a n -为等差数列.(2)设数列(){}22nn a n -⨯的前n 项和为n S ,求n S ,并求满足610023n S n -≤-的n 的最大值.【答案】(1)证明见解析;(2)5【解析】(1)证明:因为数列{}n a 满足1=2a ,123n n a a n +=++,所以()()22221112123212n n n n a n a n a n n a n n n ++⎡⎤-+--=----+=+--=⎣⎦,因为1=2a ,所以2111a -=所以,数列{}2n a n -为等差数列,公差为2,首项为1.(2)由(1)知221n a n n -=-,所以()()22212n nn a n n -⨯=-⋅,所以,()()231123252232212n n n S n n -=⨯+⨯+⨯++-⨯+-⨯,()()23411232522232212n n n S n n +=⨯+⨯+⨯++-⨯+-⨯,所以,()23112222222212n n n S n +-=⨯+⨯+⨯++⨯--⨯L ()()()211121222212632212n n n n n -++-=+⨯-⨯=-+-⨯-,所以,()12326n n S n +=-⨯+,所以16210023n n S n +-=≤-,解得5n ≤,*N n ∈.所以,满足610023nS n -≤-的n 的最大值为526.(2022·湖南·安仁县第一中学高二阶段练习)已知数列{}n a 中,121,2a a ==,当2n ≥时,()112n n n a a a n +-+=+,记1n n n b a a +=-.(1)求数列{}n b 的通项公式;(2)设数列1n b ⎧⎫⎨⎬⎩⎭的前n 项和为n S ,证明:2918n S <.【答案】(1)21n b n n =+-;(2)证明见解析【解析】(1)由题意得112n n n n a a a a n +--=-+,所以12n n b b n -=+,即12n n b b n --=.当2n ≥时,()()()11221122(1)221n n n n n b b b b b b b b n n ---=-+-++-+=+-++⨯+=2(24)(1)112n n n n +-+=+-.当1n =时,1211b a a =-=也符合.综上,21n b n n =+-.(2)证明:由(1)得2111nb n n =+-,当1n =时11129118S b ==<;当2n ≥时,2111112312n b n n n n ⎛⎫<=- ⎪+--+⎝⎭,故当2n ≥时,121111111111111113425364712n n S b b b n n ⎛⎫=+++<+-+-+-+-++-= ⎪-+⎝⎭291111291831218n n n ⎛⎫-++< ⎪++⎝⎭.综上,2918n S <.27.(2022·广东·佛山市第四中学高二阶段练习)已知等比数列{}n a 的各项均为正数,24a =,3424a a +=.(1)求数列{}n a 的通项公式;(2)在n a 与1n a +之间插入n 个数,使这2n +个数组成一个公差为n d 的等差数列,求证:12311113nd d d d ++++<L .【答案】(1)2,n n a n N *=∈;(2)证明见解析【解析】(1)设等比数列{}n a 的公比为(0)q q >,因为24a =,3424a a +=,可得2344424a a q q +=+=,即260q q +-=,解得2q =或3q =-(舍去),所以数列{}n a 的通项公式为222422n n n n a a q --==⋅=.(2)由2n n a =,可得112n n a ++=因为n a 与1n a +之间插入n 个数,使这2n +个数组成一个公差为n d 的等差数列,可得1(1)n n n a a n d +=++,所以1211nn n n a a d n n +-==++,所以111(1)()22nn nn n d +==+⋅,设数列{}n d 的前n 项和为n S ,可得2311111123()4(((1)()22222n n n S n n -=⋅+⋅+⋅++⋅++⋅,则23411111112()3()4()()(1)()222222n n n S n n +=⋅+⋅+⋅++⋅++⋅,两式相减231111111(()()(1)(22222n nn S n -=++++-+⋅211111()[1()]131221(1)()(3)()122212n n n n n -++-=++⋅=-+⋅-,所以13(3)(2n n S n =-+⋅,因为n N *∈,所以1(3)(02n n +⋅>,所以13(3)()32nn S n =-+⋅<,即12311113nd d d d ++++<L .28.(2022·广东·普宁市华侨中学高二阶段练习)在等差数列{}n a 中,13a =,其前n 项和为n S ,等比数列{}n b 的各项均为正数,11b =,公比为q ,且222212,+==S b S q b .(1)求n a 与n b ;(2)证明:121111233n S S S +++< .【答案】(1)3n a n =,13n n b -=;(2)证明见解析【解析】(1)设数列{}n a 的公差为d ,因为222212b S S q b +=⎧⎪⎨=⎪⎩,所以6126q d d q q ++=⎧⎪+⎨=⎪⎩,解得33q d =⎧⎨=⎩或410q d =-⎧⎨=⎩(舍),故()3313n a n n =+-=,13n n b -=.(2)因为()332n n n S +=,所以()122113331nS n n n n ⎛⎫==- ⎪++⎝⎭.故1211121111121113223131n S S S n n n ⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫+++=-+-++-=- ⎪ ⎪ ⎪⎢⎥++⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦,因为1n ,所以11012n <+ ,所以111121n -<+ ,所以121213313n ⎛⎫-< ⎪+⎝⎭ ,即121111233n S S S +++< .29.(2022·福建省宁德第一中学高二阶段练习)设等比数列{}n a 的公比为q ,前n 项和为n S ,24a =,314S =.(1)求n a ;(2)若1q >,证明:12122nna a a ++⋅⋅⋅+<.【答案】(1)2n n a =或42n n a -=;(2)证明见解析.【解析】(1)据题意知:144410a q q q =⎧⎪⎨+=⎪⎩,解得122a q =⎧⎨=⎩或1812a q =⎧⎪⎨=⎪⎩,所以2n n a =或42n n a -=.(2)由(1)有:因为1q>,所以2n n a =,记1212n n n T a a a =++⋅⋅⋅+,则2311111232222n nT n =⨯+⨯+⨯+⋅⋅⋅+⋅①()2311111112122222n n n T n n +=⨯+⨯+⋅⋅⋅+-⋅+⋅②所以-①②得231111*********n n n T n +⎛⎫=+++⋅⋅⋅+-⋅ ⎪⎝⎭11111111221122212n n n n n n ++⎛⎫- ⎪⎝⎭=-⋅=--⋅-,∴2222222n n n n n n T +=--=-,因为n *∈N ,所以202n n +>,所以12122nn a a a ++⋅⋅⋅+<.30.(2022·福建省福安市第一中学高二阶段练习)已知数列{}n a 满足a 1=3,a 2=5,且2123n n n a a a ++=-,n ∈N *.(1)设bn =an +1-an ,求证:数列{}n b 是等比数列;(2)若数列{an }满足n a m ≤(n ∈N *),求实数m 的取值范围.【答案】(1)证明见解析;(2)7m ≥【解析】(1)因为2123n n n a a a ++=-,所以()2112n n n n a a a a +++-=-.即12n n b b +=,又因为12120b a a =-=≠,所以0n b ≠,则112n n b b +=,所以,数列{}n b 是等比数列(2)由(1)数列{}n b 是首项为2公比为12的等比数列,则22n n b -=.所以121321n n n a a a a a a a a --=-+-++-L 11211122(2)112n n b b b n --⎛⎫- ⎪⎝⎭=+++=⨯≥-L ,则131123272(2)112n n n a n --⎛⎫- ⎪⎝⎭=+⨯=-≥-.经检验1n =时也符合,则372n n a -=-.又因为3727n n a -=-<,所以7m ≥.。

十年高考真题分类汇编(2010-2019) 数学 专题08 数列 Word版原卷版

十年高考真题分类汇编(2010-2019)  数学 专题08 数列  Word版原卷版

十年高考真题分类汇编(2010—2019)数学专题08 数列一、选择题1.(2019·全国1·理T9)记S n 为等差数列{a n }的前n 项和.已知S 4=0,a 5=5,则( ) A.a n =2n-5 B.a n =3n-10C.S n =2n 2-8nD.S n =12n 2-2n2.(2019·浙江·T 10)设a,b ∈R,数列{a n }满足a 1=a,a n+1=a n 2+b,n ∈N *,则( )A.当b=12时,a 10>10 B.当b=14时,a 10>10 C.当b=-2时,a 10>10D.当b=-4时,a 10>103.(2018·全国1·理T4)记S n 为等差数列{a n }的前n 项和,若3S 3=S 2+S 4,a 1=2,则a 5=( ) A.-12 B.-10 C.10D.124.(2018·浙江·T10)已知a 1,a 2,a 3,a 4成等比数列,且a 1+a 2+a 3+a 4=ln(a 1+a 2+a 3).若a 1>1,则( ) A.a 1<a 3,a 2<a 4 B.a 1>a 3,a 2<a 4 C.a 1<a 3,a 2>a 4 D.a 1>a 3,a 2>a 45.(2018·北京·理T4文T 5)“十二平均律”是通用的音律体系,明代朱载堉最早用数学方法计算出半音比例,为这个理论的发展做出了重要贡献.十二平均律将一个纯八度音程分成十二份,依次得到十三个单音,从第二个单音起,每一个单音的频率与它的前一个单音的频率的比都等于√212.若第一个单音的频率为f,则第八个单音的频率为( ) A.√23fB.√223fC.√2512fD.√2712f6.(2017·全国1·理T12)几位大学生响应国家的创业号召,开发了一款应用软件.为激发大家学习数学的兴趣,他们推出了“解数学题获取软件激活码”的活动.这款软件的激活码为下面数学问题的答案:已知数列1,1,2,1,2,4,1,2,4,8,1,2,4,8,16,…,其中第一项是20,接下来的两项是20,21,再接下来的三项是20,21,22,依此类推.求满足如下条件的最小整数N:N>100且该数列的前N 项和为2的整数幂.那么该款软件的激活码是( )A.440B.330C.220D.1107.(2017·全国3·理T9)等差数列{a n }的首项为1,公差不为0.若a 2,a 3,a 6成等比数列,则{a n }前6项的和为( ) A.-24 B.-3C.3D.88.(2016·全国1·理T3)已知等差数列{a n }前9项的和为27,a 10=8,则a 100=( )A.100B.99C.98D.979.(2015·浙江·理T13)已知{a n}是等差数列,公差d不为零,前n项和是S n,若a3,a4,a8成等比数列,则( )A.a1d>0,dS4>0B.a1d<0,dS4<0C.a1d>0,dS4<0D.a1d<0,dS4>010.(2015·全国2·文T5)设S n是等差数列{a n}的前n项和,若a1+a3+a5=3,则S5=( )A.5B.7C.9D.1111.(2015·全国1·文T7)已知{a n}是公差为1的等差数列,S n为{a n}的前n项和.若S8=4S4,则a10= ( )A.172B.192C.10D.1212.(2015·全国2·理T4)已知等比数列{a n}满足a1=3,a1+a3+a5=21,则a3+a5+a7=( )A.21B.42C.63D.8413.(2015·全国2·文T9)已知等比数列{a n}满足a1=14,a3a5=4(a4-1),则a2=()A.2B.1C.1D.114.(2014·大纲全国·文T8)设等比数列{a n}的前n项和为S n.若S2=3,S4=15,则S6=( )A.31B.32C.63D.6415.(2014·全国2·文T5)等差数列{a n}的公差为2,若a2,a4,a8成等比数列,则{a n}的前n项和S n=( )A.n(n+1)B.n(n-1)C.n(n+1)2D.n(n-1)216.(2013·全国2·理T3)等比数列{a n}的前n项和为S n.已知S3=a2+10a1,a5=9,则a1=( )A.13B.-13C.19D.-1917.(2013·全国1·文T6)设首项为1,公比为23的等比数列{a n}的前n项和为S n,则( )A.S n=2a n-1B.S n=3a n-2C.S n=4-3a nD.S n=3-2a n18.(2013·全国1·理T12)设△A n B n C n的三边长分别为a n,b n,c n,△A n B n C n的面积为S n,n=1,2,3,….若b1>c1,b1+c1=2a1,a n+1=a n,b n+1=c n+a n2,c n+1=b n+a n2,则()A.{S n}为递减数列B.{S n}为递增数列C.{S2n-1}为递增数列,{S2n}为递减数列D.{S 2n-1}为递减数列,{S 2n }为递增数列19.(2013·全国1·理T7)设等差数列{a n }的前n 项和为S n ,若S m-1=-2,S m =0,S m+1=3,则m= ( ) A.3 B.4 C.5 D.620.(2012·全国·理T5)已知{a n }为等比数列,a 4+a 7=2,a 5a 6=-8,则a 1+a 10=( ) A.7 B.5 C.-5D.-721.(2012·全国·文T12)数列{a n }满足a n+1+(-1)na n =2n-1,则{a n }的前60项和为( ) A.3 690 B.3 660 C.1 845 D.1 830二、填空题1.(2019·全国3·文T14)记S n 为等差数列{a n }的前n 项和.若a 3=5,a 7=13,则S 10= .2.(2019·全国3·理T14)记S n 为等差数列{a n }的前n 项和.若a 1≠0,a 2=3a 1,则S10S 5= .3.(2019·江苏·T 8)已知数列{a n }(n ∈N *)是等差数列,S n 是其前n 项和.若a 2a 5+a 8=0,S 9=27,则S 8的值是 .4.(2019·北京·理T10)设等差数列{a n }的前n 项和为S n .若a 2=-3,S 5=-10,则a 5= ,S n 的最小值为 .5.(2019·全国1·文T14)记S n 为等比数列{a n }的前n 项和.若a 1=1,S 3=34,则S 4= .6.(2019·全国1·理T14)记S n 为等比数列{a n }的前n 项和.若a 1=13,a 42=a 6,则S 5=________.7.(2018·全国1·理T14)记S n 为数列{a n }的前n 项和.若S n =2a n +1,则S 6= . 8.(2018·北京·理T9)设{a n }是等差数列,且a 1=3,a 2+a 5=36,则{a n }的通项公式为 .9.(2018·上海·T 10)设等比数列{a n }的通项公式为a n =q n-1(n ∈N *),前n 项和为S n ,若lim n →∞S n a n+1=12,则q=.10.(2018·江苏·T 14)已知集合A={x|x=2n-1,n ∈N *},B={x|x=2n ,n ∈N *}.将A ∪B 的所有元素从小到大依次排列构成一个数列{a n }.记S n 为数列{a n }的前n 项和,则使得S n >12a n+1成立的n 的最小值为 . 11.(2017·全国2·理T15)等差数列{a n }的前n 项和为S n ,a 3=3,S 4=10,则∑k=1n1S k=____________.12.(2017·全国3·理T14)设等比数列{a n }满足a 1+a 2=-1,a 1-a 3=-3,则a 4= .13.(2017·江苏·理T9文T9)等比数列{a n }的各项均为实数,其前n 项和为S n .已知S 3=74,S 6=634,则a 8=. 14.(2016·浙江·理T13文T13)设数列{a n }的前n 项和为S n ,若S 2=4,a n+1=2S n +1,n ∈N *,则a 1= ,S 5= . 15.(2016·北京·理T12)已知{a n }为等差数列,S n 为其前n 项和.若a 1=6,a 3+a 5=0,则S 6= . 16.(2016·全国1·理T15)设等比数列{a n }满足a 1+a 3=10,a 2+a 4=5,则a 1a 2…a n 的最大值为 . 17.(2015·全国1·文T13)在数列{a n }中,a 1=2,a n+1=2a n ,S n 为{a n }的前n 项和.若S n =126,则n= . 18.(2015·湖南·理T14)设S n 为等比数列{a n }的前n 项和,若a 1=1,且3S 1,2S 2,S 3成等差数列,则a n = .19.(2015·福建·文T16)若a,b 是函数f(x)=x 2-px+q(p>0,q>0)的两个不同的零点,且a,b,-2这三个数可适当排序后成等差数列,也可适当排序后成等比数列,则p+q 的值等于 . 20.(2015·江苏·理T11)设数列{a n }满足a 1=1,且a n+1- a n =n+1(n ∈N *).则数列{1a n}前10项的和为____________.21.(2015·全国2·理T16)设S n 是数列{a n }的前n 项和,且a 1=-1,a n+1=S n S n+1,则S n = . 22.(2015·广东·理T10)在等差数列{a n }中,若a 3+a 4+a 5+a 6+a 7=25,则a 2+a 8= .23.(2015·陕西·文T13)中位数为 1 010的一组数构成等差数列,其末项为 2 015,则该数列的首项为 .24.(2014·江苏·理T7)在各项均为正数的等比数列{a n }中,若a 2=1,a 8=a 6+2a 4,则a 6的值是 . 25.(2014·广东·文T13)等比数列{a n }的各项均为正数,且a 1a 5=4,则log 2a 1+log 2a 2+log 2a 3+log 2a 4+log 2a 5= .26.(2014·安徽·理T12)数列{a n }是等差数列,若a 1+1,a 3+3,a 5+5构成公比为q 的等比数列,则q= . 27.(2014·全国2·文T16)数列{a n }满足a n+1=11-a n,a 8=2,则a 1=____________.28.(2014·北京·理T12)若等差数列{a n }满足a 7+a 8+a 9>0,a 7+a 10<0,则当n= 时,{a n }的前n 项和最大. 29.(2014·天津·理T11)设{a n }是首项为a 1,公差为-1的等差数列,S n 为其前n 项和.若S 1,S 2,S 4成等比数列,则a 1的值为 .30.(2013·全国2·理T16)等差数列{a n }的前n 项和为S n ,已知S 10=0,S 15=25,则nS n 的最小值为 . 31.(2013·辽宁·理T14)已知等比数列{a n }是递增数列,S n 是{a n }的前n 项和.若a 1,a 3是方程x 2-5x+4=0的两个根,则S 6= .32.(2013·全国1·理T14)若数列{a n }的前n 项和S n =23a n +13,则{a n }的通项公式是a n = . 33.(2012·全国·文T14)等比数列{a n }的前n 项和为S n ,若S 3+3S 2=0,则公比q= . 三、计算题1.(2019·全国2·文T18)已知{a n }是各项均为正数的等比数列,a 1=2,a 3=2a 2+16. (1)求{a n }的通项公式;(2)设b n =log 2a n .求数列{b n }的前n 项和.2.(2019·全国2·理T19)已知数列{a n }和{b n }满足a 1=1,b 1=0,4a n+1=3a n -b n +4,4b n+1=3b n -a n -4. (1)证明:{a n +b n }是等比数列,{a n -b n }是等差数列; (2)求{a n }和{b n }的通项公式.3.(2019·天津·文T18)设{a n }是等差数列,{b n }是等比数列,公比大于0.已知a 1=b 1=3,b 2=a 3,b 3=4a 2+3.(1)求{a n }和{b n }的通项公式; (2)设数列{c n }满足c n ={1,n 为奇数,b n 2,n 为偶数,求a 1c 1+a 2c 2+…+a 2n c 2n (n ∈N *).4.(2019·天津·理T19)设{a n }是等差数列,{b n }是等比数列.已知a 1=4,b 1=6,b 2=2a 2-2,b 3=2a 3+4. (1)求{a n }和{b n }的通项公式;(2)设数列{c n }满足c 1=1,c n ={1,2k <n <2k+1,b k ,n =2k,其中k ∈N *. ①求数列{a 2n (c 2n -1)}的通项公式; ②求∑i=12na i c i (n ∈N *).5.(2019·浙江·T 20)设等差数列{a n }的前n 项和为S n ,a 3=4,a 4=S 3.数列{b n }满足:对每个n ∈N *,S n +b n ,S n+1+b n ,S n+2+b n 成等比数列. (1)求数列{a n },{b n }的通项公式; (2)记c n =√a n 2b n,n ∈N *,证明:c 1+c 2+…+c n <2√n ,n ∈N *. 6.(2019·江苏·T 20)定义首项为1且公比为正数的等比数列为“M - 数列”. (1)已知等比数列{a n }(n ∈N *)满足:a 2a 4=a 5,a 3-4a 2+4a 1=0,求证:数列{a n }为“M - 数列”; (2)已知数列{b n }(n ∈N *)满足:b 1=1,1S n=2b n−2b n+1,其中S n 为数列{b n }的前n 项和.①求数列{b n }的通项公式;②设m 为正整数.若存在“M - 数列”{c n }(n ∈N *),对任意正整数k,当k ≤m 时,都有c k ≤b k ≤c k+1成立,求m 的最大值.7.(2018·北京·文T15)设{a n }是等差数列,且a 1=ln 2,a 2+a 3=5ln 2. (1)求{a n }的通项公式; (2)求e a 1+e a 2+…+e a n .8.(2018·上海·T 21)给定无穷数列{a n },若无穷数列{b n }满足:对任意x ∈N *,都有|b n -a n |≤1,则称{b n }与{a n }“接近”.(1)设{a n }是首项为1,公比为12的等比数列,b n =a n+1+1,n ∈N *,判断数列{b n }是否与{a n }接近,并说明理由; (2)设数列{a n }的前四项为a 1=1,a 2=2,a 3=4,a 4=8,{b n }是一个与{a n }接近的数列,记集合M={x|x=b i ,i=1,2,3,4},求M 中元素的个数m:(3)已知{a n }是公差为d 的等差数列.若存在数列{b n }满足:{b n }与{a n }接近,且在b 2-b 1,b 3-b 2,…,b 201-b 200中至少有100个为正数,求d 的取值范围.9.(2018·江苏·T 20)设{a n }是首项为a 1,公差为d 的等差数列,{b n }是首项为b 1,公比为q 的等比数列. (1)设a 1=0,b 1=1,q=2,若|a n -b n |≤b 1对n=1,2,3,4均成立,求d 的取值范围;(2)若a 1=b 1>0,m ∈N *,q ∈(1, √2m],证明:存在d ∈R,使得|a n -b n |≤b 1对n=2,3,…,m+1均成立,并求d 的取值范围(用b 1,m,q 表示).10.(2018·天津·文T18)设{a n }是等差数列,其前n 项和为S n (n ∈N *);{b n }是等比数列,公比大于0,其前n 项和为T n (n ∈N *).已知b 1=1,b 3=b 2+2,b 4=a 3+a 5,b 5=a 4+2a 6. (1)求S n 和T n ;(2)若S n +(T 1+T 2+…+T n )=a n +4b n ,求正整数n 的值.11.(2018·天津·理T18)设{a n }是等比数列,公比大于0,其前n 项和为S n (n ∈N *),{b n }是等差数列.已知a 1=1,a 3=a 2+2,a 4=b 3+b 5,a 5=b 4+2b 6. (1)求{a n }和{b n }的通项公式;(2)设数列{S n }的前n 项和为T n (n ∈N *), ①求T n ;②证明∑k=1n(T k +b k+2)b k(k+1)(k+2)=2n+2-2(n ∈N *). 12.(2018·全国2·理T17文T17)记S n 为等差数列{a n }的前n 项和,已知a 1=-7,S 3=-15. (1)求{a n }的通项公式; (2)求S n ,并求S n 的最小值.13.(2018·全国1·文T17)已知数列{a n }满足a 1=1,na n+1=2(n+1)a n .设b n =ann .(1)求b 1,b 2,b 3;(2)判断数列{b n }是否为等比数列,并说明理由; (3)求{a n }的通项公式.14.(2018·全国3·理T17文T17)等比数列{a n }中,a 1=1,a 5=4a 3. (1)求{a n }的通项公式;(2)记S n 为{a n }的前n 项和,若S m =63,求m.15.(2017·全国1·文T17)设S n 为等比数列{a n }的前n 项和,已知S 2=2,S 3=-6. (1)求{a n }的通项公式;(2)求S n ,并判断S n+1,S n ,S n+2是否成等差数列.16.(2017·全国2·文T17)已知等差数列{a n }的前n 项和为S n ,等比数列{b n }的前n 项和为T n ,a 1=-1,b 1=1,a 2+b 2=2.(1)若a3+b3=5,求{b n}的通项公式;(2)若T3=21,求S3.17.(2017·全国3·文T17)设数列{a n}满足a1+3a2+…+(2n-1)a n=2n.(1)求{a n}的通项公式;}的前n项和.(2)求数列{a n2n+118.(2017·天津·理T18)已知{a n}为等差数列,前n项和为S n(n∈N*),{b n}是首项为2的等比数列,且公比大于0,b2+b3=12,b3=a4-2a1,S11=11b4.(1)求{a n}和{b n}的通项公式;(2)求数列{a2n b2n-1}的前n项和(n∈N*).19.(2017·山东·理T19)已知{x n}是各项均为正数的等比数列,且x1+x2=3,x3-x2=2.(1)求数列{x n}的通项公式;(2)如图,在平面直角坐标系xOy中,依次连接点P1(x1,1),P2(x2,2)…P n+1(x n+1,n+1)得到折线P1P2…P n+1,求由该折线与直线y=0,x=x1,x=x n+1所围成的区域的面积T n.20.(2017·山东·文T19)已知{a n}是各项均为正数的等比数列,且a1+a2=6,a1a2=a3.1)求数列{a n}的通项公式;}的前n项和T n.(2){b n}为各项非零的等差数列,其前n项和为S n.已知S2n+1=b n b n+1,求数列{b na n21.(2017·天津·文T18)已知{a n}为等差数列,前n项和为S n(n∈N*),{b n}是首项为2的等比数列,且公比大于0,b2+b3=12,b3=a4-2a1,S11=11b4.(1)求{a n}和{b n}的通项公式;(2)求数列{a2n b n}的前n项和(n∈N*).22.(2016·全国2·理T17)S n为等差数列{a n}的前n项和,且a1=1,S7=28.记b n=[lg a n],其中[x]表示不超过x的最大整数,如[0.9]=0,[lg 99]=1.(1)求b1,b11,b101;(2)求数列{b n}的前1 000项和.23.(2016·全国2·文T17)等差数列{a n }中,a 3+a 4=4,a 5+a 7=6. (1)求{a n }的通项公式;(2)设b n =[a n ],求数列{b n }的前10项和,其中[x]表示不超过x 的最大整数,如[0.9]=0,[2.6]=2. 24.(2016·浙江·文T17)设数列{a n }的前n 项和为S n .已知S 2=4,a n+1=2S n +1,n ∈N *. (1)求通项公式a n ;(2)求数列{|a n -n-2|}的前n 项和.25.(2016·北京·文T15)已知{a n }是等差数列,{b n }是等比数列,且b 2=3,b 3=9,a 1=b 1,a 14=b 4. (1)求{a n }的通项公式;(2)设c n =a n +b n ,求数列{c n }的前n 项和.26.(2016·山东·理T18文T19)已知数列{a n }的前n 项和S n =3n 2+8n,{b n }是等差数列,且a n =b n +b n+1. (1)求数列{b n }的通项公式; (2)令c n =(a n +1)n+1(b n +2)n,求数列{c n }的前n 项和T n .27.(2016·天津·理T18)已知{a n }是各项均为正数的等差数列,公差为d.对任意的n ∈N *,b n 是a n 和a n+1的等比中项.(1)设c n =b n+12−b n 2,n ∈N *,求证:数列{c n }是等差数列;(2)设a 1=d,T n =∑k=12n(-1)kb k 2,n ∈N *,求证:∑k=1n1T k<12d2.28.(2016·天津·文T18)已知{a n }是等比数列,前n 项和为S n (n ∈N *),且1a 1−1a 2=2a 3,S 6=63. (1)求{a n }的通项公式;(2)若对任意的n ∈N *,b n 是log 2a n 和log 2a n+1的等差中项,求数列{(-1)nb n 2}的前2n 项和.29.(2016·全国1·文T17)已知{a n }是公差为3的等差数列,数列{b n }满足b 1=1,b 2=13,a n b n+1+b n+1=nb n . (1)求{a n }的通项公式; (2)求{b n }的前n 项和.30.(2016·全国3·文T17)已知各项都为正数的数列{a n }满足a 1=1, a n 2-(2a n+1-1)a n -2a n+1=0. (1)求a 2,a 3;(2)求{a n }的通项公式.31.(2016·全国3·理T17)已知数列{a n }的前n 项和S n =1+λa n ,其中λ≠0. (1)证明{a n }是等比数列,并求其通项公式;(2)若S 5=3132,求λ.32.(2015·北京·文T16)已知等差数列{a n }满足a 1+a 2=10,a 4-a 3=2. (1)求{a n }的通项公式;(2)设等比数列{b n }满足b 2=a 3,b 3=a 7.问:b 6与数列{a n }的第几项相等? 33.(2015·重庆·文T16)已知等差数列{a n }满足a 3=2,前3项和S 3=92. (1)求{a n }的通项公式;(2)设等比数列{b n }满足b 1=a 1,b 4=a 15,求{b n }的前n 项和T n . 34.(2015·福建·文T17)等差数列{a n }中,a 2=4,a 4+a 7=15. (1)求数列{a n }的通项公式;(2)设b n =2a n -2+n,求b 1+b 2+b 3+…+b 10的值.35.(2015·全国1·理T17)S n 为数列{a n }的前n 项和.已知a n >0,a n 2+2a n =4S n +3.(1)求{a n }的通项公式;(2)设b n =1a n a n+1,求数列{b n }的前n 项和.36.(2015·安徽·文T18)已知数列{a n }是递增的等比数列,且a 1+a 4=9,a 2a 3=8. (1)求数列{a n }的通项公式; (2)设S n 为数列{a n }的前n 项和,b n =a n+1S n S n+1,求数列{b n }的前n 项和T n .37.(2015·天津·理T18)已知数列{a n }满足a n+2=qa n (q 为实数,且q ≠1),n ∈N *,a 1=1,a 2=2,且a 2+a 3,a 3+a 4,a 4+a 5成等差数列.(1)求q 的值和{a n }的通项公式;(2)设b n =log 2a2n a 2n -1,n ∈N *,求数列{b n }的前n 项和.38.(2015·山东·文T19)已知数列{a n }是首项为正数的等差数列,数列{1a n ·a n+1}的前n 项和为n2n+1.(1)求数列{a n }的通项公式;(2)设b n =(a n +1)·2a n ,求数列{b n }的前n 项和T n .39.(2015·浙江·文T17)已知数列{a n }和{b n }满足a 1=2,b 1=1,a n+1=2a n (n ∈N *),b 1+12b 2+13b 3+…+1n b n =b n+1-1(n ∈N *).(1)求a n 与b n ;(2)记数列{a n b n }的前n 项和为T n ,求T n .40.(2015·天津·文T18)已知{a n}是各项均为正数的等比数列,{b n}是等差数列,且a1=b1=1,b2+b3=2a3,a5-3b2=7.(1)求{a n}和{b n}的通项公式;(2)设c n=a n b n,n∈N*,求数列{c n}的前n项和.41.(2015·湖北·文T19)设等差数列{a n}的公差为d,前n项和为S n,等比数列{b n}的公比为q,已知b1=a1,b2=2,q=d,S10=100.(1)求数列{a n},{b n}的通项公式;(2)当d>1时,记c n=a nb n,求数列{c n}的前n项和T n.42.(2014·全国2·理T17)已知数列{a n}满足a1=1,a n+1=3a n+1.(1)证明:{a n+12}是等比数列,并求{a n}的通项公式;(2)证明:1a1+1a2+…+1a n<32.43.(2014·福建·文T17)在等比数列{a n}中,a2=3,a5=81.(1)求a n;(2)设b n=log3a n,求数列{b n}的前n项和S n.44.(2014·湖南·文T16)已知数列{a n}的前n项和S n=n 2+n2,n∈N*.(1)求数列{a n}的通项公式;(2)设b n=2a n+(-1)n a n,求数列{b n}的前2n项和.45.(2014·北京·文T14)已知{a n}是等差数列,满足a1=3,a4=12,数列{b n}满足b1=4,b4=20,且{b n-a n}为等比数列.(1)求数列{a n}和{b n}的通项公式;(2)求数列{b n}的前n项和.46.(2014·大纲全国·理T18)等差数列{a n}的前n项和为S n.已知a1=10,a2为整数,且S n≤S4.(1)求{a n}的通项公式;(2)设b n=1a n a n+1,求数列{b n}的前n项和T n.47.(2014·山东·理T19)已知等差数列{a n}的公差为2,前n项和为S n,且S1,S2,S4成等比数列.(1)求数列{a n}的通项公式;(2)令b n=(-1)n-14na n a n+1,求数列{b n}的前n项和T n.48.(2014·全国1·文T17)已知{a n }是递增的等差数列,a 2,a 4是方程x 2-5x+6=0的根.(1)求{a n }的通项公式;(2)求数列{an 2n }的前n 项和. 49.(2014·安徽·文T18)数列{a n }满足a 1=1,na n+1=(n+1)a n +n(n+1),n ∈N *.(1)证明:数列{a n n }是等差数列;(2)设b n =3n ·√a n ,求数列{b n }的前n 项和S n .50.(2014·山东·文T19)在等差数列{a n }中,已知公差d=2,a 2是a 1与a 4的等比中项.(1)求数列{a n }的通项公式;(2)设b n =a n (n+1)2,记T n =-b 1+b 2-b 3+b 4-…+(-1)nb n ,求T n . 51.(2014·大纲全国·文T17)数列{a n }满足a 1=1,a 2=2,a n+2=2a n+1-a n +2.(1)设b n =a n+1-a n ,证明{b n }是等差数列;(2)求{a n }的通项公式.52.(2014·全国1·理T17)已知数列{a n }的前n 项和为S n ,a 1=1,a n ≠0,a n a n+1=λS n -1,其中λ为常数.(1)证明:a n+2-a n =λ;(2)是否存在λ,使得{a n }为等差数列?并说明理由.53.(2013·全国2·文T17)已知等差数列{a n }的公差不为零,a 1=25,且a 1,a 11,a 13成等比数列.(1)求{a n }的通项公式;(2)求a 1+a 4+a 7+…+a 3n-2.54.(2013·全国1·文T17)已知等差数列{a n }的前n 项和S n 满足S 3=0,S 5=-5.(1)求{a n }的通项公式;(2)求数列{12n -12n+1}的前n 项和.55.(2012·湖北·理T18文T20)已知等差数列{a n }前三项的和为-3,前三项的积为8.(1)求等差数列{a n }的通项公式;(2)若a 2,a 3,a 1成等比数列,求数列{|a n |}的前n 项和.56.(2011·全国·文T17)已知等比数列{a n }中,a 1=13,公比q=13.(1)S n 为{a n }的前n 项和,证明:S n =1-an 2;(2)设b n =log 3a 1+log 3a 2+…+log 3a n ,求数列{b n }的通项公式.57.(2011·全国·理T17)等比数列{a n }的各项均为正数,且2a 1+3a 2=1,a 32=9a 2a 6.(1)求数列{a n}的通项公式;}的前n项和.(2)设b n=log3a1+log3a2+…+log3a n,求数列{1b n58.(2010·全国·理T17)设数列{a n}满足a1=2,a n+1-a n=3·22n-1.(1)求数列{a n}的通项公式;(2)令b n=na n,求数列{b n}的前n项和S n.59.(2010·全国·文T17)设等差数列{a n}满足a3=5,a10=-9,(1)求数列{a n}的通项公式;(2)求数列{a n}的前n项和S n及使得S n最大的序号n的值.。

数列(全国高考题)

数列(全国高考题)

全国高考数列题1、(本小题满分14分)已知函数f(x)=x-sinx ,数列{a n }满足:0<a 1<1,a n+1=f(a n ),n=1,2,3,….证明:(Ⅰ)0<a n+1<a n <1;(Ⅱ)a n+1<61a n 3.2、(本小题12分)已知正项数列{}n a ,其前n 项和n S 满足21056,n n n S a a =++且1215,,a a a 成等比数列,求数列{}n a 的通项.n a3、(本小题满分14分)已知公比为q(0<q <1)的无穷等比数列{a n }各项的和为9,无穷等比数列{a n 2}各项的和为581。

(Ⅰ)求数列{a n }的首项a 1和公比q :(Ⅱ)对给定的k(k=1,2,…,n),设T {k}是首项为a k ,公差为2a k -1的等差数列,求数列T {2}的前10项之和: (Ⅲ)设b i 为数列)(i T 的第i 项,s n =b 1+b 2+…+b n ,求s n ,并求正整数m(m >1),使得lim ∞→n m n n s 存在且不等于零。

(注:无穷等比数列各项的和即当n ∞→时该无穷等比数列前n 项和的极限)4、(本小题满分14分)在m(m ≥2)个不同数的排列p 1p 2…p m 中,若1≤i <j ≤m 时p i >p j (即前面某数大于后面某数),则称i p 与j p 构成一个逆序.一个排列的全部逆序的总数称为该排列的逆序数.记排列(n+1)n(n-1)…321的逆序数为n a ,如排列21的逆序数1a =1,排列321的逆序数2a =3,排列4321的逆序数3a =6.(Ⅰ)求4a 、5a ,并写出n a 的表达式;(Ⅱ)令n b =nn n n a a a a 11+++,证明 2n <1b +2b +…+n b <2n+3, n=1,2,….5、(本小题满分12分)已知正项数列}{n a ,其前n 项和S n 满足10S n =2n a +5a n +6,且a 1,a 3,a 15成等比数列,求数列}{n a 的通项a n .6、(本小题满分12分)在数列{}n a 中,11a =,2112(1)n n a a n +=+.(Ⅰ)求{}n a 的通项公式; (Ⅱ)令112n n n b a a +=-,求数列{}n b 的前n 项和n S . (Ⅲ)求数列{}n a 的前n 项和n T .7、(本小题满分14分)已知数列{a n }满足:a 1=23,且a n =12311-+--n a na n n (n ≥2,n ∈N *). (1)求数列{a n }的通项公式;(2)证明:对一切正整数n ,不等式a 1²a 2²…²a n <2²n!恒成立.8、已知有穷数列{n a }共有2k 项(整数k ≥2),首项1a =2.设该数列的前n 项和为n S ,且1+n a =n S a )1(-+2(n =1,2,┅,2k -1),其中常数a >1.(1)求证:数列{n a }是等比数列;(2)若a =2122-k ,数列{n b }满足n b =)(log 1212n a a a n⋅⋅⋅(n =1,2,┅,2k ),求数列{n b }的通项公式; (3)若(2)中的数列{n b }满足不等式|1b -23|+|2b -23|+┅+|12-k b -23|+|k b 2-23|≤4,求k 的值.9、(本小题满分14分)设数列}{n a 、}{n b 、}{n c 满足:2+-=n n n a a b ,2132++++=n n n n a a a c (n =1,2,3,…), 证明}{n a 为等差数列的充分必要条件是}{n c 为等差数列且1+≤n n b b (n =1,2,3,…)10、(本小题满分14分)已知各项均为正数的数列{a n }满足1122++--n n n n a a a a =a n a n+1,n ∈N *. (1)求数列{a n }的通项公式;(2)设S n =a 21+a 22+…+a 2n ,T n =22221111na a a ++,求S n +T n ,并确定最小正整数n ,使S n +T n 为整数.11、设数列{a n }的前n 项和为S n ,且对任意正整数n ,a n +S n =4096.(1)求数列{a n }的通项公式:(2)设数列{log 2a n }的前n 项和为T n .对数列{T n },从第几项起T n <-509?12、(本小题满分12分)在数列{}n a 中,11a =,2112(1)n n a a n +=+⋅. (Ⅰ)证明数列2{}n a n是等比数列,并求{}n a 的通项公式; (Ⅱ)令112n n n b a a +=-,求数列{}n b 的前n 项和n S ;(Ⅲ)求数列{}n a 的前n 项和n T .13、(本小题满分12分)数列}{a n 的前n 项和为S n ,已知211=a ,s n =n 2a n -n(n-1),n=1,2… (Ⅰ)写出s n 与s n 1-的递推关系式(n ≥2),并求s n 关于n 的表达式: (Ⅱ)设))((,)(1R p p n x f b x s f n n n n n ∈==+求数列{b n }的前n 项和T n 。

(word完整版)历年高考真题汇编数列,推荐文档

(word完整版)历年高考真题汇编数列,推荐文档
历年高考真题汇编数列(含)
、(年新课标卷文)
已知等比数列{an}
中,
a1
1 3
,公比
q
1 3

()
Sn
为{an}
的前项和,证明:
Sn
1 an 2
()设 bn log3 a1 log3 a2 log3 an ,求数列{bn}的通项公式.
解:(Ⅰ)因为 an
1 (1)n1 33
1 3n
.
Sn
1 (1 1 ) 3 3n
①②得
(1 22 ) Sn 2 23 25 22n1 n 22n1 。

Sn
1 [(3n 9
1)22n1
2]
、(年全国新课标卷文)
设等差数列an 满足 a3 5 , a10 9 。
(Ⅰ)求 an 的通项公式;
(Ⅱ)求an的前 n 项和 Sn 及使得 Sn 最大的序号 n 的值。
解:()由 ()及,得
1 1
1 1 3n
2
,
3
所以 Sn
1 an 2
,
(Ⅱ) bn log 3 a1 log 3 a2 log 3 an
所以{bn }的通项公式为 bn
n(n 1) . 2
(1 2 ....... n)
n(n 1) 2
、(全国新课标卷理)
等比数列an 的各项均为正数,且 2a1 3a2 1, a32 9a2a6. ()求数列 an 的通项公式.
1,
Sn a1 a2 an .
2 24
2n
所以,当 n 1时,
3 / 12
Sn 2
a1
a2
2
a1
an an1 an
2n1

专题6-2 数列大题综合18种题型(讲+练)-2023年高考数学二轮复习讲练测(全国通用)(原卷版)

专题6-2 数列大题综合18种题型(讲+练)-2023年高考数学二轮复习讲练测(全国通用)(原卷版)

专题6-2数列大题综合18种题型目录讲高考................................................................................................................................................................................1题型全归纳......................................................................................................................................................................2【题型一】恒成立求参...............................................................................................................................................2【题型二】数列“存在型”求参.............................................................................................................................2【题型三】“存在型”证明题.................................................................................................................................3【题型四】数列“存在型不定方程型...................................................................................................................3【题型五】双数列相同项“存在型”...................................................................................................................4【题型六】新数列与“子数列”型........................................................................................................................4【题型七】“下标”数列型......................................................................................................................................5【题型八】指数型常规裂项求和.............................................................................................................................5【题型九】“指数等差型”裂项求和...................................................................................................................5【题型十】“指数分子拆分型”裂项求和..........................................................................................................6【题型十一】“正负裂和”型裂项求和...............................................................................................................7【题型十二】“分离常数型”裂项求和...............................................................................................................7【题型十三】先放缩再裂项求和.............................................................................................................................7【题型十四】前n 项积型...........................................................................................................................................8【题型十五】解数列不等式......................................................................................................................................8【题型十六】证明数列不等式.................................................................................................................................9【题型十七】求和:范围最值型.............................................................................................................................9【题型十八】“隐和型”...........................................................................................................................................9专题训练. (10)讲高考1.(·湖南·高考真题)数列{}n a 22122π0,2,1cos 4sin ,1,2,3,22n nn n a a a a n π+⎛⎫===++=⋅⋅⋅ ⎪⎝⎭.(1)求34,a a ,并求数列{}n a 的通项公式;(2)设()13212422,,2kk k k k k kS S a a a T a a a W k T *-=+++=+++=∈+N ,求使1k W >的所有k 的值,并说明理由.2.(2022·天津·统考高考真题)设{}n a 是等差数列,{}n b 是等比数列,且1122331a b a b a b ==-=-=.(1)求{}n a 与{}n b 的通项公式;(2)设{}n a 的前n 项和为n S ,求证:()1111n n n n n n n S a b S b S b +++++=-;(3)求211(1)nkk k k k a a b +=⎡⎤--⎣⎦∑.3.(2022·全国·统考高考真题)已知{}n a 为等差数列,{}n b 是公比为2的等比数列,且223344a b a b b a -=-=-.(1)证明:11a b =;(2)求集合{}1,1500k m k b a a m =+≤≤中元素个数.4.(2022·全国·统考高考真题)记n S 为数列{}n a 的前n 项和.已知221nn S n a n+=+.(1)证明:{}n a 是等差数列;(2)若479,,a a a 成等比数列,求n S 的最小值.5.(2021·全国·统考高考真题)记n S 为数列{}n a 的前n 项和,n b 为数列{}n S 的前n 项积,已知212n n S b +=.(1)证明:数列{}n b 是等差数列;(2)求{}n a 的通项公式.题型全归纳【题型一】恒成立求参【讲题型】例题1.已知正项数列{}n a 的前n 项和为n S,且1n a +=.(1)求{}n a 的通项公式;(2)数列14n n n S a a +⎧⎫⎨⎬⎩⎭的前n 项和为n T ,且()112nn n n n T a S λ++≤对任意的*N n ∈恒成立,求实数λ的取值范围.(参考数据:132 1.26≈)已知数列{}n a 中,111,31n n a a a +==+.(1)求证:12n a ⎧⎫+⎨⎬⎩⎭是等比数列,并求{}n a 的通项公式;(2)数列{}n b 满足()1312nn n nn b a +=-⋅⋅,数列{}n b 的前n 项和为n T ,若不等式()(8)42252n T n n λλ+-≤-+成立的自然数n 恰有4个,求正整数λ的值.【题型二】数列“存在型”求参【讲题型】例题1.设正项数列{}n a 的前n 项和为n S ,首项为1,已知对任意整数,m n ,当n m >时,m n m n m S S q S --=⋅(q 为正常数)恒成立.(1)求证:数列{}n a 是等比数列;(2)证明:数列1{}n n SS +是递增数列;(3)是否存在正常数c ,使得{lg()}n c S -为等差数列?若存在,求出常数c 的值;若不存在,说明理由.【练题型】已知n S 是数列{}n a 的前n 项和,且11a =,数列n n S a ⎧⎫⎨⎩⎭是公差为12的等差数列.(1)求数列{}n a 的通项公式;(2)记数列{}2nn a 的前n 项和为n T ,是否存在实数t 使得数列2n n T t +⎧⎫⎨⎬⎩⎭成等差数列,若存在,求出实数t 的值;若不存在,说明理由.【题型三】“存在型”证明题【讲题型】例题1.已知正项数列{}n a ,其前n 项和n S ,满足()12N n n nS a n a *=+∈.(1)求证:数列{}2n S 是等差数列,并求出n a 的表达式;(2)数列{}n a 中是否存在连续三项12,,k k k a a a ++,使得()12111,,N k k k k a a a *++∈构成等差数列?请说明理由.在数列{}n a 中,已知10a =,26a =,且对于任意正整数n 都有2156n n n a a a ++=-.(1)令12n n n b a a +=-,求数列{}n b 的通项公式;(2)设m 是一个正数,无论m 为何值,是否都有一个正整数n 使13n na m a +-<成立.【题型四】数列“存在型不定方程型【讲题型】例题1.设公比为正数的等比数列{}n a 的前n 项和为n S ,已知38a =,248S =,数列{}n b 满足24log n n b a =.(1)求数列{}n a 和{}n b 的通项公式;(2)是否存在*N m ∈,使得12m m m b b b ++⋅是数列{}n b 中的项?若存在,求出m 的值;若不存在,请说明理由.已知数列{}n a 满足()121232n n n a a a a -⋅⋅⋅= .(1)证明:{}n a 是等比数列.(2)判断()223*8mm -∈N 是否可能是数列{}na 中的项.若是,求出m 的最大值;若不是,请说明理由.【题型五】双数列相同项“存在型”【讲题型】例题1.已知{}n a 是等差数列,{}n b 是公比不为1的等比数列,1122532,,a b a b a b ====.(1)求数列{}{},n n a b 的通项公式;(2)若集合*,,N M b b a m k ==∈∣,且1100k ≤≤,求M 中所有元素之和.已知数列{}n a 的通项公式为21n a n =+,等比数列{}n b 满足211b a =-,321b a =-.(1)求数列{}n b 的通项公式;(2)记{}n a ,{}n b 的前n 项和分别为n S ,n T ,求满足n m T S =(410n <≤)的所有数对(),n m .【题型六】新数列与“子数列”型【讲题型】例题1.已知数列{}n a ,{}n b 其前n 项和分别为n S ,n T 且分别满足23122n S n n =-,()31N 22n n T b n +=-∈.(1)求数列{}n a ,{}n b 的通项公式.(2)将数列{}n a ,{}n b 的各项按1a ,1b ,2a ,2b …n a ,n b 顺序排列组成数列{}n c ,求数列{}n c 的前n 项和n M .【练题型】已知等差数列{}n a 和等比数列{}n b 满足3121,8,log n n a b a b ===,*n ∈N .(1)求数列{}n a ,{}n b 的通项公式;(2)设数列{}n a 中不在数列{}n b 中的项按从小到大的顺序构成数列{}n c ,记数列{}n c 的前n 项和为n S ,求50S .【题型七】“下标”数列型【讲题型】例题1.已知数列{}n a ,{}n b ,n S 是数列{}n a 的前n 项和,已知对于任意*N n ∈,都有323n n a S =+,数列{}n b 是等差数列,131log b a =,且25b +,41b +,63b -成等比数列.(1)求数列{}n a 和{}n b 的通项公式.(2)记2,,n n n a n c b n ⎧⎪=⎨⎪⎩为奇数为偶数,求数列{}n c 的前n 项和n T .【练题型】定义集合{}1*2N k M k -=∈,数列{}n a 满足12,0,n n a n M a n M-+∉⎧=⎨∈⎩(1)定义数列122n n n b a -+=,证明:{}n b 为等比数列(2)记数列{}n a 的前n 项和为n S ,求满足2310n S =的正整数n【题型八】指数型常规裂项求和【讲题型】例题1.设数列{}n a 的前n 项和为()*,226n n n S S a n n =+-∈N .(1)求数列{}n a 的通项公式;(2)若数列112n n n a a ++⎧⎫⎨⎬⎩⎭的前m 项和127258m T ,求m 的值.已知数列{}n a 满足1123333n n nn a a a n -+++=⋅ .(1)求数列{}n a 的通项公式;(2)令()()111nn n n a b a a +=++,设{}n b 的前n 项和为n S ,若n m S >对*N n ∈恒成立,求实数m的取值范围.【题型九】“指数等差型”裂项求和【讲题型】例题1..等差数列{}n a 的前n 项和为n S ,数列{}n b 是等比数列,满足13a =,11b =,2210b S +=,5232a b a -=.(1)求数列{}n a 和{}n b 的通项公式;(2)令n n n c a b =⋅,设数列{}n c 的前n 项和为n T ,求n T ;(3)令()121nn n n n b d a a +-⋅=-⋅,设数列{}n d 的前n 项和为n K ,求证:13n K <.天津市宝坻区第四中学2022-2023学年高二上学期期末数学试题已知{}n a 为等差数列,{}n b 为公比大于0的等比数列,且11a =,12b =,2312b b +=,4642a a b +=.(1)求{}n a 和{}n b 的通项公式;(2)设22,381,.n nn n n n n a n b c a n a a b ++⎧⎪⎪=⎨+⎪⋅⎪⎩为偶数;为奇数求数列{}n c 的前2n 项和2n T .【题型十】“指数分子拆分型”裂项求和【讲题型】例题1.已知数列{}n a 的前n 项和为n S ,152a =,124n n S a +=-.(1)求{}n a 的通项公式;(2)若()()()121111n n n n n a b a a +--=++,求数列{}n b 的前n 项和为nT .已知数列{}n a 是公比1q >的等比数列,前三项和为13,且1a ,22a +,3a 恰好分别是等差数列{}n b 的第一项,第三项,第五项.(1)求{}n a 和{}n b 的通项公式;(2)已知*k ∈N ,数列{}n c 满足21,21,2n n n n nn k b b c a b n k +⎧=-⎪=⎨⎪=⎩,求数列{}n c 的前2n 项和2n S ;(3)设()()2(810)12121n n n n n a d a a +--=++,求数列{}n d 的前n 项和n T .【题型十一】“正负裂和”型裂项求和【讲题型】例题1.记正项数列{}n a 的前n 项积为n T ,且121n na T =-.(1)证明:数列{}n T 是等差数列;(2)记()1441n n n n n b T T ++=-⋅,求数列{}n b 的前2n 项和2n S .已知数列{}n a 的满足11a =,m n m n a a a +=+()*,m n ∈N .(1)求{}n a 的通项公式;(2)记121(1)n n n n n b a a ++=-⋅,数列{}n b 的前2n 项和为2n T ,证明:2213n T -<≤-.【题型十二】“分离常数型”裂项求和【讲题型】例题1.数列{}n a12a =且324,3,a a a 成等差数列.(1)求数列{}n a 的通项公式;(2)若2122log ,n nn n n b b b ac b b +-==+,求数列{}n c 的前n 项和n S .已知等差数列{}n a 的通项公式为()22n a n c c =-<,记数列{}n a 的前n 项和为()*N n S n ∈,且数列为等差数列.(1)求数列}n a 的通项公式;(2)设数列14n n n S a a +⎧⎫⎨⎬⎩⎭的前n 项和为()*N n T n ∈,求{}n T 的通项公式.【题型十三】先放缩再裂项求和【讲题型】例题1.已知数列{}n a 的前n 项和()2n S n n λλ=+∈R ,且36a =,正项等比数列{}n b 满足:11b a =,2324.b b a a +=+(1)求数列{}n a 和{}n b 的通项公式;(2)若2022n nc b =-,求数列{}n c 的前n 项和n T ;(3)证明:()2131nii i b b =<-∑.【练题型】已知函数()e 1xf x a x =--,a ∈R(1)讨论函数()f x 的单调性;(2)若()0f x ≥恒成立,①求a 的取值范围;②设*n ∈N ,证明:()()1121ln 1.32121ini i i +=⎡⎤+<⎢⎥++⎢⎥⎣⎦∑【题型十四】前n 项积型【讲题型】例题1.在等比数列{}n a 中,18a =,前n 项和为2,1n S S -是1S 和3S 的等差中项.(1)求{}n a 的通项公式;(2)设12n n T a a a =⋅ ,求n T 的最大值.已知数列{}n a 满足()*123N ,2n n a a n n n -+=+∈≥,且24a =.(1)求数列{}n a 的通项公式;(2)数列{}n b 满足()12,1log ,2n nn n b a n +=⎧⎪=⎨≥⎪⎩,*N n ∈,若()*1238N k b b b b k ⋅⋅=∈ ,求k 的值.【题型十五】解数列不等式【讲题型】例题1.已知数列{}n a 的首项135a =,且满足1321n n n a a a +=+.(1)已知数列11n a ⎧⎫-⎨⎬⎩⎭是等比数列,求公比q ;(2)若11100ni ia =<∑,求满足条件的最大整数n .【练题型】已知等差数列{}n a 的前n 项和为n S ,且412716,28a a S +==.(1)求{}n a 的通项公式;(2)若数列{}n b 满足43n nn a a b =,且{}n b 的前n 项和为n T ,求满足不等式31n n a T ⋅->的n 的值.【题型十六】证明数列不等式【讲题型】例题1.已知等差数列{}n a 满足312a =,5748a a +=,{}n a 的前n 项和为n S .(1)求n a 及n S 的通项公式;(2)记12111n n T S S S =++⋅⋅⋅+,求证:1142n T ≤<.【练题型】已知数列{}n a ,11a =,11nn na a a +=+.(1)求数列{}n a 通项公式;(2)若数列{}n b 满足:2111n n i i i i b a -===∑∑.(i )证明:1n b ≤;(ii )证明:11112321nn ++++≤- .【题型十七】求和:范围最值型【讲题型】例题1.已知各项均为正数的数列{}n a 的前n 项和为n S ,11a =,且11111n n n n S a S a +++-=+.(1)求数列{}n a 的通项公式;(2)设13n n n a ab -=,且数列{}n b 的前n 项和为n T ,求n T 的取值范围.【练题型】已知数列{}n a 的前n 项和为n S ,且满足 2 3n n S a n =+-,*n ∈N .(1)求数列{}n a 的通项公式;(2)21n n n b a =-,数列{}n b 是否存在最大项,若存在,求出最大项.【题型十八】“隐和型”【讲题型】例题1.已知等差数列{an }的首项a 1=1,公差d >0,且其第二项、第五项、第十四项分别是等比数列{bn }的第二、三、四项.(1)求数列{an }与{bn }的通项公式;(2)设数列{cn }对任意自然数n 均有1231123nn nc c c c a b b b b +++++= 成立,求1232023c c c c ++++ 的值.【练题型】已知等比数列{}n a 的前n 项和为3614126n S S S ==,,.(1)求数列{}n a 的通项公式;(2)当*n ∈N 时,112141nn n n a b a b a b -++⋯+=-,求数列{}n b的通项公式.1.已知n T 为数列{}n a 的前n 项积,且131n na T =-.(1)证明:数列{}n T 是等差数列;(2)记()1651nn n n n b T T ++=-⋅,求数列{}n b 的前n 项和n S .2.记n S 为数列{}n a 的前n 项和,已知()12121n n na n a a S +-++=- .(1)求n S ;(2)设()121n n n b n n S ++=+,数列{}n b 的前n 项和为n T ,证明:1n T <.3.已知数列{}n a 中,12a =,23a =,其前n 项和n S 满足1121n n n S S S +-+=+(2n ≥,*n ∈N ).(1)求数列{}n a 的通项公式;(2)设14(1)2n a n n n b λ-=+-⋅(λ为非零整数,*n ∈N ),试确定λ的值,使得对任意*n ∈N ,都有1n n b b +>成立.4.(河北省邯郸市2023届高三上学期期末数学试题)设n S 为数列{}n a 的前n 项和,已知0n a >,2364n n n a a S +=+.(1)求数列{}n a 的通项公式;(2)若11n n n c a a +=,记数列{}n c 的前n 项和为n T ,证明:112812n T ≤<.5(2022秋·贵州贵阳·高三贵阳一中校考阶段练习)已的数列{}n a 的首项123a =,112n n n n a a a a ++=-,+n ∈N .(1)求证:数列11n a ⎧⎫-⎨⎬⎩⎭等比数列;(2)记12111n n T a a a =++⋅⋅⋅+,若7n T <,求n 的最大值.。

专题01 数列大题拔高练(原卷版)

专题01 数列大题拔高练(原卷版)

【一专三练】 专题01 数列大题拔高练-新高考数学复习分层训练(新高考通用)1.(2023·湖北武汉·华中师大一附中校联考模拟预测)数列{}n a 满足11a =,1113n n a a n +=+.(1)设27n nn n b a -=,求{}n b 的最大项;(2)求数列{}n a 的前n 项和n S .2.(2023·安徽蚌埠·统考三模)已知数列{}n a 满足11a =,2121n n a a +=+,2212n n a a -=.(1)求数列{}n a 的通项公式;(2)设12111n nT a a a =+++ ,求证:23n T <.3.(2023·吉林通化·梅河口市第五中学校考模拟预测)已知数列{}n a 满足11a =,1,,,;n n na n n a a n n ++⎧=⎨-⎩为奇数为偶数数列nb 满足2n n b a =.(1)求数列{}n b 的通项公式;(2)求数列11n n b b +⎧⎫⎨⎬⎩⎭的前n 项和n S .4.(2023·广东广州·统考一模)已知数列{}n a 的前n 项和为n S ,且221n n n S a +=+(1)求1a ,并证明数列2nn a ⎧⎫⎨⎬⎩⎭是等差数列:(2)若222k k a S <,求正整数k 的所有取值.5.(2023·湖南岳阳·统考二模)已知数列{}n a 的前n 项和为111,1,22n n n n S a S S ++==+(1)证明数列2n n S ⎧⎫⎨⎬⎩⎭是等差数列,并求数列{}n a 的通项公式;(2)设3n n n b S =,若对任意正整数n ,不等式21827n m m b -+<恒成立,求实数m 的取值范围.6.(2023·广东深圳·深圳中学校联考模拟预测)在数列{}n a 中,149a =,()()()2313912n n n n a n a ++⋅+=+.(1)求{}n a 的通项公式;(2)设{}n a 的前n 项和为n S ,证明:525443n nn S +<-⋅.7.(2023·山西·校联考模拟预测)在①n b =②11n n n b a a +=;③2n n n b a =,这三个条件中任选一个补充在下面横线上,并解答问题.已知数列{}n a 的前n 项和23322n n S na n n =-+.(1)证明:数列{}n a 是等差数列;(2)若12a =,设___________,求数列{}n b 的前n 项和n T .8.(2023·吉林长春·校联考一模)已知等差数列{}n a 的首项11a =,记{}n a 的前n 项和为n S ,4232140S a a -+=.(1)求数列{}n a 的通项公式;(2)若数列{}n a 公差1d >,令212n n nn n a c a a ++=⋅⋅,求数列{}n c 的前n 项和n T .9.(2023·浙江·校联考三模)已知数列{}n a 是以d 为公差的等差数列,0,n d S ≠为{}n a 的前n 项和.(1)若6336,1S S a -==,求数列{}n a 的通项公式;(2)若{}n a 中的部分项组成的数列{}n m a 是以1a 为首项,4为公比的等比数列,且214a a =,求数列{}n m 的前n 项和n T .10.(2023·山西·统考模拟预测)已知数列{}n a 是正项等比数列,且417a a -=,238a a =.(1)求{}n a 的通项公式;(2)从下面两个条件中选择一个作为已知条件,求数列{}n b 的前n 项和n S .①()21n n b n a =-;②()22121log n n b n a =+.11.(2023·辽宁沈阳·统考一模)设*n ∈N ,向量()1,1AB n =- ,()1,41AC n n =-- ,n a AB AC =⋅ .(1)令1n n n b a a +=-,求证:数列{}n b 为等差数列;(2)求证:1211134n a a a ++⋅⋅⋅+<.12.(2023·福建厦门·厦门双十中学校考模拟预测)设数列{}n a 的前n 项和为n S .已知11a =,222n n na S n n -=-,*N n ∈.(1)求证:数列{}n a 是等差数列;(2)设数列{}n b 的前n 项和为n T ,且21nn T =-,令2n n n a c b =,求数列{}n c 的前n 项和n R .13.(2023·山东潍坊·统考一模)已知数列{}n a 为等比数列,其前n 项和为n S ,且满足()2n n S m m R =+∈.(1)求m 的值及数列{}n a 的通项公式;(2)设2log 5n n b a =-,求数列{}n b 的前n 项和n T .14.(2023·辽宁抚顺·统考模拟预测)已知n S 是等差数列{}n a 的前n 项和,n T 是等比数列{}n b 的前n 项和,且10a =,11b =,223344S T S T S T +=+=+.(1)求数列{}n a 和{}n b 的通项公式;(2)设211nn n i c a n ==⋅∑,求数列的前n 项和n P .15.(2023·湖北·校联考模拟预测)已知数列{}n a 满足()112,(1)02,N n n a n a na n n *-=-+=≥∈.(1)求数列{}n a 的通项公式;(2)设n S 为数列{}n a 的前n 项和,求2023S .16.(2023·安徽合肥·校考一模)已知数列{}n a 满足221n n n a a a ++=,13a =,23243a a =.(1)求{}n a 的通项公式;(2)若3log n n b a =,数列{}n b 的前n 项和为n S ,求12111nS S S ++⋯+.17.(2023·辽宁葫芦岛·统考一模)设等差数列{}n a 的前项和为n S ,已知1239a a a ++=,2421a a ⋅=,等比数列{}n b 满足2334b b +=,234164b b b =.(1)求n S ;(2)设n n c =,求证:1234n c c c c ++++< .18.(2023·山东枣庄·统考二模)已知数列{}n a 的首项13a =,且满足2122n n n a a +++=.(1)证明:{}2n n a -为等比数列;(2)已知2,log ,n n na nb a n ⎧=⎨⎩为奇数为偶数,n T 为{}n b 的前n 项和,求10T .19.(2023·山东聊城·统考一模)已知数列{}n a 满足1322a a a +=,13,2,n n na n a a n +⎧=⎨+⎩为奇数为偶数,数列{}n c 满足21n n c a -=.(1)求数列{}n c 和{}n a 的通项公式;(2)求数列{}n a 的前n 项和n S .20.(2023·江苏·二模)已知数列{}n a 满足112a =-,()1120n n n a na +++=.数列{}nb 满足11b =,1n n n b k b a +=⋅+ .(1)求{}n a 的通项公式;(2)证明:当1k ≤时,1132n n n b -+≤- .21.(2023·江苏·统考一模)在数列}n a 中,若()*1123N n n a a a a a d n +-⋅⋅⋅=∈,则称数列{}n a 为“泛等差数列”,常数d 称为“泛差”.已知数列{}n a 是一个“泛等差数列”,数列{}n b 满足22212123n n n a a a a a a a b =⋅++⋅⋅⋅⋅-⋅+.(1)若数列{}n a 的“泛差”1d =,且1a ,2a ,3a 成等差数列,求1a ;(2)若数列{}n a 的“泛差”1d =-,且112a =,求数列{}nb 的通项n b .22.(2023·辽宁辽阳·统考一模)某体育馆将要举办一场文艺演出,以演出舞台为中心,观众座位依次向外展开共有10排,从第2排起每排座位数比前一排多4个,且第三排共有49个座位.(1)设第n 排座位数为()1,2,,10n a n =L ,求n a 及观众座位的总个数;(2)已知距离演出舞台最远的第10排的演出门票的价格为500元/张,每往前推一排,门票单价为其后一排的1.1倍,若门票售罄,试问该场文艺演出的门票总收入为多少元?(取101.1 2.594=)23.(2023·浙江温州·统考二模)已知{}n a 是首项为1的等差数列,公差{}0,n d b >是首项为2的等比数列,4283,a b a b ==.(1)求{}{},n n a b 的通项公式;(2)若数列{}n b 的第m 项m b ,满足__________(在①②中任选一个条件),*N k ∈,则将其去掉,数列{}n b 剩余的各项按原顺序组成一个新的数列{}n c ,求{}n c 的前20项和20S .①4log m k b a =②31m k b a =+.24.(2023·山西太原·统考一模)已知等差数列{}n a 中,11a =,n S 为{}n a 的前n 项和,且也是等差数列.(1)求n a ;(2)设()*1n n n n S b n a a +=∈N ,求数列{}n b 的前n 项和n T .25.(2023·云南红河·统考二模)已知等差数列{}n a 的公差0d >,12a =,其前n 项和为n S ,且______.在①1a ,3a ,11a 成等比数列;333S =;③221133n n n n a a a a ++-=+这三个条件中任选一个,补充在横线上,并回答下列问题.(1)求数列{}n a 的通项公式;(2)若数列{}n b 满足()11nn n b a =+-,求数列{}n b 的前2n 项和2n T .注:如果选择多个条件分别解答,那么按第一个解答计分.26.(2023·辽宁大连·校联考模拟预测)已知数列{}n a 的前n 项之积为()(1)22N n n n S n -*=∈.(1)求数列{}n a 的通项公式;(2)设公差不为0的等差数列{}n b 中,11b =,___________,求数列{}2log 2n b n a +的前n 项和n T .请从①224b b =;②358b b +=这两个条件中选择一个条件,补充在上面的问题中并作答.注:如果选择多个条件分别作答,则按照第一个解答计分.27.(2023·山东·烟台二中校联考模拟预测)已知等差数列{}n a 的前n 项和为n S ,且413a =,672S =,数列{}n b 的前n 项和为n T ,且344n n T b =-.(1)求数列{}n a ,{}n b 的通项公式.(2)记()152n n n n a b c +-⋅=,若数列{}n c 的前n 项和为n Q ,数列的前n 项和为n R ,探究:n n nQ R c +是否为定值?若是,请求出该定值;若不是,请说明理由.28.(2023·湖南常德·统考一模)已知数列{}n a 满足1224444n n n a a a n +++=L (*n ∈N ).(1)求数列{}n a 的通项公式;(2)若数列{}n b 满足11n n n b a a +=,求{}n b 的前n 项和n S .29.(2023·山东济宁·统考一模)已知数列{}n a 的前n 项和为n S ,且满足:*111,2(N )n n a na S n n +==+∈. (1)求证:数列1n a n +⎧⎫⎨⎬⎩⎭为常数列;(2)设3123123333n n n a a a a a a a a T =++++ ,求n T .30.(2023·湖南长沙·湖南师大附中校考一模)如图,已知曲线12:(0)1x C y x x =>+及曲线21:(0)3C y x x=>.从1C 上的点)n P n +∈N 作直线平行于x 轴,交曲线2C 于点n Q ,再从点n Q 作直线平行于y 轴,交曲线1C 于点1n P +,点n P 的横坐标构成数列{}1102n a a ⎛⎫<< ⎪⎝⎭.(1)试求1n a +与n a 之间的关系,并证明:()21212n n a a n -+<<∈N ;(2)若113a =,求n a的通项公式.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高考中的数列—最后一讲(内部资料勿外传)1.已知数列 {a n} 、 {b n} 、 {c n} 足.( 1) c n=3n+6, {a n} 是公差 3 的等差数列.当b1 =1 ,求 b2、 b3的;( 2),.求正整数 k,使得一切*n∈N,均有 b n≥b;k( 3),.当b1=1,求数列{b n}的通公式.2. {a } 是公比正数的等比数列 a =2, a =a +4.n 13 2(Ⅰ)求 {a n} 的通公式;(Ⅱ) {b n} 是首 1,公差 2 的等差数列,求数列n n n {a +b } 的前 n 和 S .3.已知公差不0 的等差数列 {a n} 的首 a1a( a∈R)数列的前n 和 S n,且,,成等比数列.矚慫润厲钐瘗睞枥庑赖。

(Ⅰ)求数列 {a n} 的通公式及S n;(Ⅱ) A n=+++⋯+,B n=++⋯+,当a≥2,比 A n与 B n的大小.4.已知等差数列 {a } 足 a =0, a +a = 10n 2 6 8( I)求数列 {a n} 的通公式;( II )求数列 { } 的前 n 和.5.成等差数列的三个正数的和等于15,并且三个数分加上2、5、 13 后成等比数列{b n} 中的 b3、 b4、 b5.聞創沟燴鐺險爱氇谴净。

(I)求数列 {b n} 的通公式;(II )数列 {b n} 的前 n 和 S n,求:数列 {S n+ } 是等比数列.6.在数 1 和 100 之插入 n 个数,使得 n+2 个数构成增的等比数列,将n+2个数的乘作T n,再令 a n=lgT n,7.设 a 1, d 为实数,首项为 a 1,公差为 d 的等差数列 {a n } 的前 n 项和为 S n ,满足 S 5S 6+15=0 . 酽锕极額閉镇桧猪訣锥。

( Ⅰ )若 S 5=5 ,求 S 6 及 a 1;( Ⅱ )求 d 的取值范围.8.已知等差数列 {a n } 的前 3 项和为 6,前 8 项和为﹣ 4.( Ⅰ )求数列 {a n } 的通项公式;( Ⅱ )设 b n =( 4﹣ a n ) q n ﹣ 1( q ≠0,n ∈ N *),求数列 {b n } 的前 n 项和 S n .9.已知数列 {a } 满足 a =0 ,a =2,且对任意 m 、 n ∈ N* +a=2a+2( m ﹣ n ) 2彈贸摄尔霁毙攬砖卤庑。

n12 都有 a 2m ﹣ 1 2n ﹣ 1 m+n ﹣1( 1)求 a 3, a 5 ;( 2)设 b n =a 2n+1﹣ a 2n ﹣ 1( n ∈N *),证明: {b n } 是等差数列;( 3)设 c n =(a n+1﹣ a n ) q n ﹣1 (q ≠0, n ∈N *),求数列 {c n } 的前 n 项和 S n .10.已知 {a n } 是公差不为零的等差数列,a 1=1,且 a 1, a 3, a 9 成等比数列. ( Ⅰ )求数列 {a n } 的通项;( Ⅱ )求数列 {2 ann. } 的前 n 项和 S11.已知数列 {a n } 满足,×,n ∈ N .( 1)令 b n =a n+1﹣ a n ,证明: {b n } 是等比数列;( 2)求 {a n } 的通项公式.nn,已知对任意的* ,点( n , S n x12.等比数列 {a } 的前 n 项和为 Sn ∈ N),均在函数 y=b +r ( b > 0)且 b ≠1, b , r 均为常数)的图象上. 謀荞抟箧飆鐸怼类蒋薔。

( 1)求 r 的值;( 2)当 b=2 时,记 b n =n ∈ N *求数列 {b n } 的前 n 项和 T n .13.(本小题满分 12 分)已知等差数列a n 满足: a 3 7 , a 5 a 7 26 , a n 的前 n 项和为 S n .(Ⅰ)求 a n 及 S n ;14.已知数列 {a n } 是一个公差大于 0 的等差数列,且 足a 2a 6=55 , a 2 +a 7=16( 1)求数列 {a n } 的通 公式;( 2)数列 {a n } 和数列 {b n } 足等式 a n =( n ∈ N *),求数列 {b n } 的前 n 和 S n .15. 数列 {a n } 的通 公式 a n =pn+q ( n ∈ N *,P > 0).数列 {b n } 定 如下: 于正整数 m , b m 是使得不等式 a n ≥m成立的所有 n 中的最小 . 厦礴恳蹒骈時盡继價骚。

( Ⅰ )若,求 b 3;( Ⅱ )若 p=2, q=1,求数列 {b m } 的前 2m 和公式;16.已知数列 {x } 的首 x =3,通 x =2n p +np ( n ∈ N* , p , q 常数),且成等差数列.求:茕桢广鳓鯡选块网羈泪。

n1n( Ⅰ ) p , q 的 ;( Ⅱ )数列 {x n } 前 n 和 S n 的公式.n17. 数列 {a n } 的前 n 和 S n =2a n2 ,n( Ⅱ ) 明: {a n+1 2a } 是等比数列;( Ⅲ )求 {a n } 的通 公式.18.在数列 {a n } 中, a 1=1 ,.( Ⅰ )求 {a n } 的通 公式;( Ⅱ )令,求数列 {b n } 的前 n 和 S n ;( Ⅲ )求数列 {a n } 的前 n 和 T n .19.已知数列 {a n } 的首, , n=1, 2, 3,⋯.( Ⅰ ) 明:数列 是等比数列;( Ⅱ )求数列的前 n 和 S n .20.在数列a n 中, a1 0 ,且任意k N * k N ,a2k 1 ,a2k , a2k 1成等差数列,其公差 d k。

( Ⅰ ) 若d k =2k,明a2 k 1 , a2 k , a2 k 2成等比数列(k N * );( Ⅱ ) 若任意k N * ,a2 k 1, a2 k, a2 k 2成等比数列,其公比q k.q1 1.明1是等差数列;q k 121. 数列{ a n} 的前 n 和 S n , 已知 a1 1, S n 1 4a n 2 ( I )b n a n 1 2a n,明数列 { b n } 是等比数列( II )求数列{ a n}的通公式。

22. 数列a n的前n和S n,已知ba n2n b 1 S n(Ⅰ)明:当 b2 ,a n n 2n 1是等比数列;(Ⅱ)求a n的通公式23. 数列 { a } 的前n 和 S,且 a =1,1a n 1S n , n ,,,⋯⋯,求n n1 3 ( I )a,a,a的及数列 { a } 的通公式;2 3 4 n( II )a2 a4 a6 L a2n的.1.已知数列 {a n } 、 {b n } 、 {c n } 足.( 1) c n =3n+6, {a n } 是公差 3 的等差数列.当 b 1=1 ,求 b 2、 b 3 的 ;( 2), .求正整数k ,使得 一切n ∈ N *,均有 b n ≥b k ;( 3), .当 b 1=1 ,求数列 {b n } 的通 公式.: 算 ;分 。

分析:( 1)先根据条件得到数列 {b n } 的 推关系式,即可求出 ;( 2)先根据条件得到数列 {b n } 的 推关系式; 而判断出其增减性,即可求出 ; ( 3)先根据条件得到数列 {b n } 的 推关系式; 再 合叠加法以及分 分情况求出数列 {b n } 的通 公式,最后合即可. 鹅娅尽損鹌惨歷茏鴛賴。

解答: 解:( 1) ∵ a n+1 a n =3,∴ b n+1 b n =n+2, ∵ b 1=1,∴ b 2=4, b 3=8.( 2) ∵.∴ an+1a n=2n 7,∴ b n+1 b n =,由 b n+1 b n >0,解得 n ≥4,即 b 4< b 5< b 6⋯;由 b n+1 b n <0,解得 n ≤3,即 b 1> b 2> b 3>b 4.∴ k=4.( 3) ∵ a n+1 a n =( 1)n+1, ∴ b n+1b n =( 1) n+1(2n+n ).∴ b n b n ﹣1=( 1) n ( 2n ﹣1+n 1)( n ≥2).故 b 2b 1=21+1;b 3 b 2=( 1)( 22+2), ⋯n ﹣1n ﹣2=( 1)n ﹣1( 2n ﹣2bb+n 2).nn ﹣1b n b n ﹣1=( 1) ( 2 +n 1). 当 n=2k ,以上各式相加得b n b 1=( 2 22+⋯ 2n ﹣2+2n ﹣ 1) +[12+ ⋯ ( n 2) +( n 1)]=+ = + .∴ b n == + + .当 n=2k 1 ,=++ ( 2n+n )∴ b n =.点 : 本 主要考察数列 推关系式在求解数列通 中的 用.是 数列知 的 合考察,属于 度 高的 目.2.( 2011?重 ) {a n } 是公比 正数的等比数列 a 1=2, a 3=a 2+4.( Ⅰ )求 {a n } 的通 公式;( Ⅱ ) {b nn nn} 是首 1,公差 2 的等差数列,求数列 {a +b} 的前 n 和 S .分析:( Ⅰ )由 {a n } 是公比 正数的等比数列, 其公比,然后利用 a 1=2, a 3=a 2+4 可求得 q ,即可求得 {a n} 的通公式 籟丛妈羥为贍偾蛏练淨。

( Ⅱ )由 {b n } 是首 1,公差 2 的等差数列 可求得 b n =1+ (n 1) ×2=2n 1,然后利用等比数列与等差数列的前 n 和公式即可求得数列 {a n +b n } 的前 n 和 S n . 預頌圣鉉儐歲龈讶骅籴。

解答: 解:( Ⅰ ) ∵ {a n } 是公比 正数的等比数列 ∴ 其公比q , q > 0∵ a 3=a 2+4, a 1=2∴ 2×q 2=2×q+4 解得 q=2 或 q= 1∵ q > 0∴ q=2n n×2 n ﹣1 =2 n∴ {a } 的通 公式 a =2( Ⅱ ) ∵ {b n } 是首 1,公差 2 的等差数列∴ b n =1+( n 1) ×2=2n 1∴ 数列 {a n +b n } 的前 n 和 S n =+n+1 2+n 2 n+1 2=2 =2 +n 23.( 2011?浙江)已知公差不0 的等差数列 {a n } 的首 a 1 a ( a ∈ R ) 数列的前 n 和 S n ,且 , , 成等比数列. 渗釤呛俨匀谔鱉调硯錦。

( Ⅰ )求数列 {a n } 的通 公式及 S n ;( Ⅱ ) A n =+ + +⋯+, B n =++⋯+,当 a ≥2 , 比A n 与B n 的大小.分析:( Ⅰ) 出等差数列的公差, 利用等比中 的性 , 建立等式求得d , 数列的通 公式和前n 的和可得. 铙誅卧泻噦圣骋贶頂廡。

相关文档
最新文档