2019年湖北省武汉市中考数学试卷及答案解析
2019年湖北省武汉市中考数学试题(含解析)
2019年湖北省武汉市初中毕业、升学考试数 学(满分150分,考试时间120分钟)一、选择题:本大题共10小题,每小题3分,共30分.不需写出解答过程,请把最后结果填在题后括号内. 1.(2019湖北武汉,1,3分)实数2019的相反数是( )A .2019B .-2019C .20191D .20191-【答案】B【解析】∵a 的相反数是-a ,∴2019的相反数是-2019.故选B . 【知识点】相反数2.(2019湖北武汉,2,3分)式子1-x 在实数范围内有意义,则x 的取值范围是( )A .x >0B .x ≥-1C .x ≥1D .x ≤1【答案】C【解析】由1-x 在实数范围内有意义,得x -1≥0,解得x ≥1,故选B .【知识点】二次根式有意义的条件 3.(2019湖北武汉,3,3分) 不透明的袋子中只有4个黑球和2个白球,这些球除颜色外无其他差别,随机从袋子中一次摸出3个球,下列事件是不可能事件的是( ) A .3个球都是黑球 B .3个球都是白球 C .三个球中有黑球D .3个球中有白球【答案】B【解析】A 中,3个球都是黑球是随机事件;B 中3个球都是白球是不可能事件;C 中,三个球中有黑球是随机事件;D 中,3个球中有白球是随机事件.故选B .【知识点】必然事件、不可能事件、随机事件 4.(2019湖北武汉,4,3分) 现实世界中,对称现象无处不在,中国的方块字中有些也具有对称性,下列美术字是轴对称图形的是( ) A .诚B .信C .友D .善【答案】D【解析】四个方块字中可以看作轴对称图形的是“善”,故选D . 【知识点】轴对称图形 5.(2019湖北武汉,5,3分) 如图是由5个相同的小正方体组成的几何体,该几何题的左视图是( )A .B .C .D .【答案】A【解析】从左面看易得第一层有1个正方形,第二层有2个正方形,如图所示:故选A .【知识点】简单组合体的三视图 6.(2019湖北武汉,6,3分)“漏壶”是一种这个古代计时器,在它内部盛一定量的水,不考虑水量变化对压力的影响,水从壶底小孔均匀漏出,壶内壁有刻度.人们根据壶中水面的位置计算时间,用t 表示漏水时间,y 表示壶底到水面的高度,下列图象适合表示y 与x 的对应关系的是( )【答案】A【解析】由题意知:开始时,壶内盛一定量的水,所以y 的初始位置大于0,可以排除B ;由于漏壶漏水的速度不变,所以图中的函数应该是一次函数,可以排除C 、D 选项.故选A . 【知识点】函数图象 7.(2019湖北武汉,7,3分)从1、2、3、4四个数中随机选取两个不同的数,分别记为a 、c ,则关于x 的一元二次方程ax 2+4x +c =0有实数解的概率为( ) A .41B .31C .21 D .32 【答案】C【解析】列表如下: 1 2 3 41 ——(1,2) (1,3) (1,4)2 (2,1) —— (2,3) (2,4)3 (3,1) (3,2) —— (3,4)4 (4,1) (4,2) (4,3) ——所有等可能的情况有12种,其中关于x 的一元二次方程ax 2+4x +c =0有实数根的情况有6种,分别为(1,2),(1,3),(1,4),(2,1),(3,1),(4,1),则P =61122=.故选C . 【知识点】概率,一元二次方程8.(2019湖北武汉,8,3分) 已知反比例函数xky =的图象分别位于第二、第四象限,A (x 1,y 1)、B (x 2,y 2)两点在该图象上,下列命题:① 过点A 作AC ⊥x 轴,C 为垂足,连接O A .若△ACO 的面积为3,则k =-6;②若x 1<0<x 2,则y 1>y 2;③ 若x 1+x 2=0,则y 1+y 2=0其中真命题个数是( ) A .0B .1C .2D .3【答案】D【解题过程】①中,由反比例的几何意义可知,S △ACO =12|xy |=3,∴|k |=|xy |=6,∵图象位于第二、第四象限,∴k =-6.正确;∵x 1<0<x 2,∴点A 在第二象限,点B 在第四象限,故y 1>y 2,正确;③中,∵y 1=16x -,y 2=26x -,∴y 1+y 2=16x -+26x -=12126()x x x x -+,若x 1+x 2=0,∴ y 1+y 2=0.正确,其中真命题有3个.故选D . 【知识点】反比例函数的图象与性质,反比例函数的几何意义,命题9.(2019湖北武汉,9,3分) 如图,AB 是⊙O 的直径,M 、N 是弧AB (异于A 、B )上两点,C 是弧MNDCBA上动点,∠ACB的角平分线交⊙O于点D,∠BAC的平分线交CD于点E.当点C从点M运动到点N时,则C、E两点的运动路径长的比是()A.2B.2πC.23D.25【答案】A【思路分析】由条件可求∠AEB=135°,∴E在以AD为半径的⊙D上(定角定圆),分别找到C和E的路径、半径、圆心角,然后用弧长公式求路径比值【解题过程】由题得∠1=∠2=12∠C=45°,∠3=∠4,∠5=∠6设∠3=∠4=m,∠5=∠6=n,得m+n=45°,∴∠AEB=∠C+m+n=90°+45°=135°∴E在以AD为半径的⊙D上(定角定圆)如图,C的路径为¼MN,E的路径为»PQ设⊙O的半径为1,则⊙D的半径为2,∴¼»MNPQ=421360222360ttππ⨯⨯⨯⨯=24t2tt165432QPEDA OBCMN【知识点】圆轨迹(定角),角平分线的性质,圆周角定理,弧长公式10.(2019湖北武汉,10,3分)观察等式:2+22=23-2;2+22+23=24-2;2+22+23+24=25-2…已知按一定规律排列的一组数:250、251、252、…、299、2100.若250=a,用含a的式子表示这组数的和是()A.2a2-2a B.2a2-2a-2 C.2a2-a D.2a2+a【答案】C【思路分析】①设y1=2+22+…+2100,y2=2+22+…+249,②250+251+252+…+299+2100=y1-y2.【解题过程】设y1=2+22+...+2100,y2=2+22+...+249,∴250+251+252+...+299+2100=y1-y2=(2+22+ (2100)-(2+22+…+249)=(2101-2)-(250-2)=2101-2-250+2=2101-250=250(251-1)=250(2×250-1).∵250=a,∴原式=a(2a-1)=2a2-a.故选C.【知识点】规律探究型,整式的乘除,幂的运算性质二、填空题:本大题共6小题,每小题3分,共18分.不需写出解答过程,请把最后结果填在题中横线上.11.(2019湖北武汉,11,3分)计算16的结果是___________. 【答案】4【解析】16=24=4.【知识点】二次根式的性质 12.(2019湖北武汉,12,3分)武汉市某气象观测点记录了5天的平均气温(单位:℃),分别是25、20、18、23、27,这组数据的中位数是___________. 【答案】23【解析】把这一组数据从小到大的顺序排列为:18、20、23、25、27,位于中间的数为23.故这组数据的中位数为23.【知识点】中位数13.(2019湖北武汉,13,3分) 计算411622---a a a的结果是___________.【答案】14a + 【解析】原式=()()244444a a a a a a +-+-+-()()= ()2444a a a a --+-()= ()444a a a -+-()= 1a (+4).【知识点】分式的加减14.(2019湖北武汉,14,3分) 如图,在□ABCD 中,E 、F 是对角线AC 上两点,AE =EF =CD ,∠ADF =90°,∠BCD =63°,则∠ADE 的大小为___________.【答案】21°【解析】如图,∵四边形ABCD 是平行四边形,∴AD ∥BC ,∴∠1=∠5.∵∠ADF =90°,AE =EF ,∴DE =12AF =AE ,∴∠1=∠2.∴∠5=∠2.∵AE =CD ,DE =AE ,∴DE =C D .∴∠3=∠4.∵∠3=∠1+∠2=2∠2.∴∠4=2∠2. ∵ ∠BCD =63°,∴∠5+∠4=63°.即3∠2=63°,∴∠2=21°.即∠ADE =21°.【知识点】平行四边形的性质,等腰三角形的判定与性质,三角形外角的性质,直角三角形的性质 15.(2019湖北武汉,15,3分) 抛物线y =ax 2+bx +c 经过点A (-3,0)、B (4,0)两点,则 关于x 的一元二次方程a (x -1)2+c =b -bx 的解是___________. 【答案】x =-2或5【思路分析】①利用待定系数法求出抛物线的解析式,把b ,c 分别用含a 的代数式表示; ②把b ,c 的值代入一元二次方程a (x -1)2+c =b -bx 中,并整理; ③解这个一元二次方程.【解析】∵抛物线y =ax 2+bx +c 经过点A (-3,0)、B (4,0)两点,∴y =a (x +3)(x -4)=ax 2-2ax -12a .∴b =-2a ,c =-12a .∴一元二次方程为 a (x -1)2-12a =-2a +2ax ,整理,得ax 2-3ax -10a =0,∵a ≠0,∴x 2-3x -10=0,解得x 1=-2,x 2=5.【知识点】二次函数的图象与性质,待定系数法求二次函数的解析式,一元二次方程的解法 16.(2019湖北武汉,16,3分)问题背景:如图1,将△ABC 绕点A 逆时针旋转60°得到△ADE ,DE与BC交于点P,可推出结论:PA+PC=PE.问题解决:如图2,在△MNG中,MN=6,∠M=75°,MG=24.点O是△MNG内一点,则点O到△MNG三个顶点的距离和的最小值是___________.【答案】229【思路分析】由题构造等边△MFN,△MHO,图中2个彩色三角形全等,∴OM+ON+OG=HO+HF+OG,∴距离和最小值为FG=229(RT△FQG勾股定理)【解题过程】由题构造等边△MFN,△MHO,图中2个彩色三角形全等(△MFH≌△MNO(SAS))∴OM+ON+OG=HO+HF+OG,∴距离和最小值为FG=229(Rt△FQG勾股定理)44426图2QFHGNOM【知识点】最短路径问题,旋转的性质,全等三角形的判定与性质三、解答题(本大题共8小题,满分72分,解答应写出文字说明、证明过程或演算步骤)17.(2019湖北武汉,17,8分)计算:(2x2)3-x2·x4【思路分析】根据同底数幂的乘法运算法则和积的乘方运算法则进行计算即可.【解题过程】解:原式=8x6-x6=7x6【知识点】同底数幂的乘法;积的乘方18.(2019湖北武汉,18,8分)如图,点A、B、C、D在一条直线上,CE与BF交于点G,∠A=∠1,CE∥DF,求证:∠E=∠F【思路分析】由∠A=∠1可得到AE∥BF,进而得到∠2=∠E,由,CE∥DF可得到∠2=∠F,∠E=∠F即可得证.【解题过程】证明:∵∠A=∠1,∴AE∥BF,∴∠E=∠2.∵CE∥DF,∴∠F=∠2.∴∠E=∠F.【知识点】平行线的判定和性质19.(2019湖北武汉,19,8分)为弘扬中华传统文化,某校开展“双剧进课堂”的活动,该校童威随机抽取部分学生,按四个类别:A 表示“很喜欢”,B 表示“喜欢”,C 表示“一般”,D 表示“不喜欢”,调查他们对汉剧的喜爱情况,将结果绘制成如下两幅不完整的统计图,根据图中提供的信息,解决下列问题:各类学生人数条形统计图 各类学生人数扇形统计图 (1) 这次共抽取_________名学生进行统计调查,扇形统计图中,D 类所对应的扇形圆心角的大小为__________ (2) 将条形统计图补充完整(3) 该校共有1500名学生,估计该校表示“喜欢”的B 类的学生大约有多少人?【思路分析】(1)由条形统计图中可以看出C 类的人数为12,扇形统计图中可以看出C 类所占抽取学生人数的比例为24%,C 类的人数除以所占抽取学生人数的比例即可得到学生总人数;D 类人数所占抽取学生人数的比例乘以360°,即可得到D 类所对应的扇形圆心角度数;(2)用抽取学生人数减去B 、C 、D 类的人数即可得到A 类的人数,即可补充条形统计图; (3)用B 类学生所占抽取学生人数的比例乘以学校总人数即可得到该校B 类的学生人数. 【解题过程】(1)抽取学生人数为12÷24%=50;D 类所对应的扇形圆心角的大小为10100%3607250⨯⨯=o o ,故答案为50,72°(2)A 类人数为50-23-12-10=5,补充条形统计图如图人数类别2310125D C B A 510152025(3)1500×2350=690(人),∴估计该校表示“喜欢”的B 类的学生大约有690人. 【知识点】条形统计图;扇形统计图;用样本估计总体. 20.(2019湖北武汉,20,8分)如图是由边长为1的小正方形构成的网格,每个小正方形的顶点叫做格点.四边形ABCD 的顶点在格点上,点E 是边DC 与网格线的交点.请选择适当的格点,用无刻度的直尺在网格中完成下列画图,保留连线的痕迹,不要求说明理由(1) 如图1,过点A 画线段AF ,使AF ∥DC ,且AF =DC (2) 如图1,在边AB 上画一点G ,使∠AGD =∠BGC (3) 如图2,过点E 画线段EM ,使EM ∥AB ,且EM =ABECBDAECBDA图1 图2 【思路分析】(1)作平行四边形AFDC 即可;(2)作C 关于AB 的对称点C ′,连接C ′D ,交AB 于点G 即可(3)将线段CD 向下平移三个单位长度,得到C 1D 1,过E 作EM ∥CC 1,交C 1D 1于点M 即为所求. 【解题过程】(1)画图如图1;(2)画图如图1;(3)画图如图2.GF ECBDA MECBDA图1 图2 【知识点】网格作图 21.(2019湖北武汉,21,8分)已知AB 是⊙O 的直径,AM 和BN 是⊙O 的两条切线,DC 与⊙O 相切于点E ,分别交AM 、BN 于D 、C 两点(1) 如图1,求证:AB 2=4AD ·BC(2) 如图2,连接OE 并延长交AM 于点F ,连接CF .若∠ADE =2∠OFC ,AD =1,求图中阴影部分的面积ODENMC BAF EA BC MND O图1 图2 【思路分析】(1)分别连接OD 、OE 、OC ,AM 和BN 是⊙O 的两条切线,DC 与⊙O 相切于点E ,由切线的性质可得OD 平分∠ADC ,OC 平分∠BCD ,由于AD ∥BC ,不难得到∠ODE +∠OCE =90°,因为∠ODE +∠DOE =90°,从而∠DOE =∠OCE ,进而可得△ODE ∽△COE ,则OE 2=ED ·EC ,又AB =2OE ,AD =ED ,EC =BC ,带入即可得到AB 2=4AD ·BC (2)由(1)知∠ADE =∠BOE ,又∠ADE =2∠OFC ,∠BOE =2∠COF =2∠BOC ,即∠COF =∠OFC =∠BOC ,则CD 垂直平分OF ,则∠AOD =∠DOE =∠OFD =30°,∠BOE =120°,从而求得圆的半径OA =3,用2S △OBC -S 扇形OBE即可得到阴影部分的面积.【解题过程】 证明:(1)如图1,连接OD ,OC ,OE .∵AD ,BC ,CD 是⊙O 的切线,∴OA ⊥AD ,OB ⊥BC ,OE ⊥CD ,AD =ED ,BC =EC ,∠ODE =12∠ADC ,∠OCE =12∠BCD ∴AD //BC ,∴∠ODE +∠OCE =12(∠ADC +∠BCD )=90°, ∵∠ODE +∠DOE =90°,∴∠DOE =∠OCE . 又∵∠OED =∠CEO =90°, ∴△ODE ∽△COE .∴OE ECED OE =,OE 2=ED ·EC ∴4OE 2=4AD ·BC ,∴AB 2=4AD ·BC (2)解:如图2,由(1)知∠ADE =∠BOE ,∵∠ADE =2∠OFC ,∠BOE =∠2COF , ∴∠COF =∠OFC ,∴△COF 等腰三角形。
2019年湖北省武汉市中考数学试卷(含答案与解析)
(满分 120 分,考试时间 120 分钟)__ __ __ ___ __ __A.3 个球都是黑球B.3 个球都是白球 __ _ __ __ 4.现实世界中,对称现象无处不在,中国的方块字中有些也具有对称性.下列美术字是 __ __ __ __5.如图 A.2 019 B. -2 019 C. 1 2.式子 x - 1 在实数范围内有意义,则 x 的取值范围是 ( ) -------------------- 是由 5 个相同的小正方体组成的几何体,该几何体的左视图是 ( ) A. 1D. 24 B. 1x 的图像分别位于第二,四象限, A( x , y ) , B( x , y ) 两点在该A. 2B.π2 C. 3卷 1.实数 _ _ 题_ -------------绝密 ★启用前在--------------------湖北省武汉市 2019 年初中毕业生学业考试数学此--------------------第Ⅰ卷(选择题 共 30 分)__ __ 一、选择题(本大题共 10 小题,每小题 3 分,共 30 分.在每小题给出的四个选项中,只 有一项是符合题目要求的) __ -------------------- 2 019 的相反数是 ( ) _ 1号 2 019 D. - 2 019 生考 __ 上A. x ≥ 0B. x ≥ -1C. x ≥ 1D. x ≤ 1_ --------------------__ 3.在不透明袋子中只有 4 个黑球和 2 个白球,这些球除颜色外无其他差别.随机从袋子 _ _ 中一次摸出 3 个球.下列事件是不可能事件的是 ( ) ___ _ 答C.3 个球中有黑球D.3 个球中有白球 --------------------_ _名 _ 轴对称图形的是 ( )姓 ____ -------------------- __ __ _ __A B C D 校无 学业 毕效----------------AB C D数学试卷 第 1 页(共 24 页)6.“漏壶”是一种中国古代计时器,在它内部盛一定量的水,不考虑水量变化对压力的影响,水从壶底小孔均匀漏出。
2019年湖北省武汉市中考数学试卷附分析答案
D.2a2+a
二、填空题(本大题共 6 个小题,每小题 3 分,共 18 分)
11.(3 分)计算 㑋的结果是
.
12.(3 分)武汉市某气象观测点记录了 5 天的平均气温(单位:℃),分别是 25、20、18、
第 2页(共 24页)
23、27,这组数据的中位数是
.
宋
13.(3
分)计算 宋
的结果是 㑋宋
A.
B.
C.
D.
10.(3 分)观察等式:2+22=23﹣2;2+22+23=24﹣2;2+22+23+24=25﹣2…已知按一定规 律排列的一组数:250、251、252、…、299、2100.若 250=a,用含 a 的式子表示这组数的
和是( )
A.2a2﹣2a
B.2a2﹣2a﹣2
C.2a2﹣a
①如图 2,若 n=1,求证:
.
②如图 3,若 M 是 BC 的中点,直接写出 tan∠BPQ 的值.(用含 n 的式子表示)
24.(12 分)已知抛物线 C1:y=(x﹣1)2﹣4 和 C2:y=x2 (1)如何将抛物线 C1 平移得到抛物线 C2?
(2)如图 1,抛物线 C1 与 x 轴正半轴交于点 A,直线 y x+b 经过点 A,交抛物线 C1 于另一点 B.请你在线段 AB 上取点 P,过点 P 作直线 PQ∥y 轴交抛物线 C1 于点 Q,连 接 AQ. ①若 AP=AQ,求点 P 的横坐标; ②若 PA=PQ,直接写出点 P 的横坐标.
(1)这次共抽取
名学生进行统计调查,扇形统计图中,D 类所对应的扇形圆心
第 3页(共 24页)
角的大小为
2019年武汉市中考数学试卷及答案解析(Word版)
2019年湖北省武汉市中考数学试卷参考答案与试题解析一、选择题(共10小题,每小题3分,共30分)下列各题中均有四个备选答案,其中有且只有一个是正确的,请在答题卡上将正确答案的代号涂黑.1.(3分)(2019•武汉)在实数﹣3,0,5,3中,最小的实数是() A.﹣3 B.0 C. 5 D.3考点:实数大小比较.分析:正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数绝对值大的反而小,据此判断即可.解答:解:根据实数比较大小的方法,可得﹣3<0<3<5,所以在实数﹣3,0,5,3中,最小的实数是﹣3.故选:A.点评:此题主要考查了实数大小比较的方法,要熟练掌握,解答此题的关键是要明确:正实数>0>负实数,两个负实数绝对值大的反而小.2.(3分)(2019•武汉)若代数式在实数范围内有意义,则x 的取值范围是()A.x≥﹣2B.x>﹣2C.x≥2D.x≤2考点:二次根式有意义的条件.分析:根据二次根式的性质,被开方数大于等于0,就可以求解.解答:解:根据题意得:x﹣2≥0,解得x≥2.故选:C.点评:本题考查了二次根式有意义的条件,知识点为:二次根式的被开方数是非负数.3.(3分)(2019•武汉)把a2﹣2a分解因式,正确的是()A.a(a﹣2)B.a(a+2)C.a(a2﹣2)D.a(2﹣a)考点:因式分解-提公因式法.专题:计算题.分析:原式提取公因式得到结果,即可做出判断.解答:解:原式=a(a﹣2),故选A.点评:此题考查了因式分解﹣提公因式法,熟练掌握提取公因式的方法是解本题的关键.4.(3分)(2019•武汉)一组数据3,8,12,17,40的中位数为()A. 3 B.8 C.12 D.17考点:中位数.分析:首先把这组数据3,8,12,17,40从小到大排列,然后判断出中间的数是多少,即可判断出这组数据的中位数为多少.解答:解:把3,8,12,17,40从小到大排列,可得3,8,12,17,40,所以这组数据3,8,12,17,40的中位数为12.故选:C.点评:此题主要考查了中位数的含义和求法的应用,要熟练掌握,解答此题的关键是要明确:将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数.如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.5.(3分)(2019•武汉)下列计算正确的是()A.2a2﹣4a2=﹣2B.3a+a=3a2C.3a•a=3a2D.4a6÷2a3=2a2解:A、原式=﹣2a2,错误;B、原式=4a,错误;C、原式=3a2,正确;D、原式=2a3,错误.故选C.6.(3分)(2019•武汉)如图,在直角坐标系中,有两点A(6,3),B(6,0),以原点O位似中心,相似比为,在第一象限内把线段AB 缩小后得到线段CD,则点C的坐标为()A.(2,1)B.(2,0)C.(3,3)D.(3,1)解:由题意得,△ODC∽△OBA,相似比是,∴=,又OB=6,AB=3,∴OD=2,CD=1,∴点C的坐标为:(2,1),故选:A.7.(3分)(2019•武汉)如图,是由一个圆柱体和一个长方体组成的几何体.其主视图是()A.B.C.D.解:从正面看下面是一个比较长的矩形,上面是一个比较宽的矩形.故选:B.8.(3分)(2019•武汉)下面的折线图描述了某地某日的气温变化情况.根据图中信息,下列说法错误的是()A.4:00气温最低B.6:00气温为24℃C.14:00气温最高D.气温是30℃的时刻为16:00解:A、由横坐标看出4:00气温最低是24℃,故A正确;B、由纵坐标看出6:00气温为24℃,故B正确;C、由横坐标看出14:00气温最高31℃;D、由横坐标看出气温是30℃的时刻是12:00,16:00,故D错误;故选:D.9.(3分)(2019•武汉)在反比例函数y=图象上有两点A(x1,y1),B (x2,y2),x1<0<x2,y1<y2,则m的取值范围是()A.m>B.m<C.m≥D.m≤解:∵x1<0<x2时,y1<y2,∴反比例函数图象在第一,三象限,∴1﹣3m>0,解得:m<.故选B.10.(3分)(2019•武汉)如图,△ABC,△EFG均是边长为2的等边三角形,点D是边BC、EF的中点,直线AG、FC相交于点M.当△EFG 绕点D旋转时,线段BM长的最小值是()A.2﹣B.+1C.D.﹣1解:连接AD、DG、BO、OM,如图.∵△ABC,△EFG均是边长为2的等边三角形,点D是边BC、EF的中点,∴AD⊥BC,GD⊥EF,DA=DG,DC=DF,∴∠ADG=90°﹣∠CDG=∠FDC,=,∴△DAG∽△DCF,∴∠DAG=∠DCF.∴A、D、C、M四点共圆.根据两点之间线段最短可得:BO≤BM+OM,即BM≥BO﹣OM,当M在线段BO与该圆的交点处时,线段BM最小,此时,BO===,OM=AC=1,则BM=BO﹣OM=﹣1.故选D.二、填空题(共6小题,每小题3分,共18分)请将答案填在答题卡对应题号的位置上.11.(3分)(2019•武汉)计算:﹣10+(+6)= ﹣4 .考点:有理数的加法.专题:计算题.分析:原式利用异号两数相加的法则计算即可得到结果.解答:解:原式=﹣(10﹣6)=﹣4.故答案为:﹣4.点评:此题考查了有理数的加法,熟练掌握运算法则是解本题的关键.12.(3分)(2019•武汉)中国的领水面积约为370 000km2,将数370 000用科学记数法表示为×105.解:370 000=×105,故答案为:×105.13.(3分)(2019•武汉)一组数据2,3,6,8,11的平均数是 6 .解:(2+3+6+8+11)÷5=30÷5=6所以一组数据2,3,6,8,11的平均数是6.故答案为:6.14.(3分)(2019•武汉)如图所示,购买一种苹果,所付款金额y (元)与购买量x(千克)之间的函数图象由线段OA和射线AB组成,则一次购买3千克这种苹果比分三次每次购买1千克这种苹果可节省2 元.解:由线段OA的图象可知,当0<x<2时,y=10x,1千克苹果的价钱为:y=10,设射线AB的解析式为y=kx+b(x≥2),把(2,20),(4,36)代入得:,解得:,∴y=8x+4,当x=3时,y=8×3+4=28.当购买3千克这种苹果分三次分别购买1千克时,所花钱为:10×3=30(元),30﹣28=2(元).则一次购买3千克这种苹果比分三次每次购买1千克这种苹果可节省2元.15.(3分)(2019•武汉)定义运算“*”,规定x*y=ax2+by,其中a、b为常数,且1*2=5,2*1=6,则2*3= 10 .解:根据题中的新定义化简已知等式得:,解得:a=1,b=2,则2*3=4a+3b=4+6=10,故答案为:10.16.(3分)(2019•武汉)如图,∠AOB=30°,点M、N分别在边OA、OB上,且OM=1,ON=3,点P、Q分别在边OB、OA上,则MP+PQ+QN的最小值是.解:作M关于OB的对称点M′,作N关于OA的对称点N′,连接M′N′,即为MP+PQ+QN的最小值.根据轴对称的定义可知:∠N′OQ=∠M′OB=30°,∠ONN′=60°,∴△ONN′为等边三角形,△OMM′为等边三角形,∴∠N′OM′=90°,∴在Rt△M′ON′中,M′N′==.故答案为.三、解答题(共8小题,共72分)下列各题解答应写出文字说明,证明过程或演算过程.17.(8分)(2019•武汉)已知一次函数y=kx+3的图象经过点(1,4).(1)求这个一次函数的解析式;(2)求关于x的不等式kx+3≤6的解集.解:(1)∵一次函数y=kx+3的图象经过点(1,4),∴4=k+3,∴k=1,∴这个一次函数的解析式是:y=x+3.(2)∵k=1,∴x+3≤6,∴x≤3,即关于x的不等式kx+3≤6的解集是:x≤3.18.(8分)(2019•武汉)如图,点B、C、E、F在同一直线上,BC=EF,AC⊥BC于点C,DF⊥EF于点F,AC=DF.求证:(1)△ABC≌△DEF;(2)AB∥DE.证明:(1)∵AC⊥BC于点C,DF⊥EF于点F,∴∠ACB=∠DFE=90°,在△ABC和△DEF中,,∴△ABC≌△DEF(SAS);(2)∵△ABC≌△DEF,∴∠B=∠DEF,∴AB∥DE.19.(8分)(2019•武汉)一个不透明的口袋中有四个完全相同的小球,它们分别标号为1,2,3,4.(1)随机摸取一个小球,直接写出“摸出的小球标号是3”的概率;(2)随机摸取一个小球然后放回,再随机摸出一个小球,直接写出下列结果:①两次取出的小球一个标号是1,另一个标号是2的概率;②第一次取出标号是1的小球且第二次取出标号是2的小球的概率.解:(1)∵一个不透明的口袋中有四个完全相同的小球,它们分别标号为1,2,3,4,∴随机摸取一个小球,直接写出“摸出的小球标号是3”的概率为:;(2)画树状图得:则共有16种等可能的结果;①∵两次取出的小球一个标号是1,另一个标号是2的有2种情况,∴两次取出的小球一个标号是1,另一个标号是2的概率为:=;②∵第一次取出标号是1的小球且第二次取出标号是2的小球的只有1种情况,∴第一次取出标号是1的小球且第二次取出标号是2的小球的概率为:.20.(8分)(2019•武汉)如图,已知点A(﹣4,2),B(﹣1,﹣2),平行四边形ABCD的对角线交于坐标原点O.(1)请直接写出点C、D的坐标;(2)写出从线段AB到线段CD的变换过程;(3)直接写出平行四边形ABCD的面积.解:(1)∵四边形ABCD是平行四边形,∴四边形ABCD关于O中心对称,∵A(﹣4,2),B(﹣1,﹣2),∴C(4,﹣2),D(1,2);(2)线段AB到线段CD的变换过程是:线段AB向右平移5个单位得到线段CD;(3)由(1)得:A到y轴距离为:4,D到y轴距离为:1,A到x轴距离为:2,B到x轴距离为:2,∴S ABCD的可以转化为边长为;5和4的矩形面积,∴S ABCD=5×4=20.21.(8分)(2019•武汉)如图,AB是⊙O的直径,∠ABT=45°,AT=AB.(1)求证:AT是⊙O的切线;(2)连接OT交⊙O于点C,连接AC,求tan∠TAC.解:(1)∵∠ABT=45°,AT=AB.∴∠TAB=90°,∴TA⊥AB,∴AT是⊙O的切线;(2)作CD⊥AT于D,∵TA⊥AB,TA=AB=2OA,设OA=x,则AT=2x,∴OT=x,∴TC=(﹣1)x,∵CD⊥AT,TA⊥AB∴CD∥AB,∴==,即==,∴CD=(1﹣)x,TD=2(1﹣)x,∴AD=2x﹣2(1﹣)x=x,∴tan∠TAC===﹣1.22.(10分)(2019•武汉)已知锐角△ABC中,边BC长为12,高AD 长为8.(1)如图,矩形EFGH的边GH在BC边上,其余两个顶点E、F分别在AB、AC边上,EF交AD于点K.①求的值;②设EH=x,矩形EFGH的面积为S,求S与x的函数关系式,并求S 的最大值;(2)若AB=AC,正方形PQMN的两个顶点在△ABC一边上,另两个顶点分别在△ABC的另两边上,直接写出正方形PQMN的边长.解:(1)①∵EF∥BC,∴,∴=,即的值是.②∵EH=x,∴KD=EH=x,AK=8﹣x,∵=,∴EF=,∴S=EH•EF=x(8﹣x)=﹣+24,∴当x=4时,S的最大值是24.(2)设正方形的边长为a,①当正方形PQMN的两个顶点在BC边上时,,解得a=.②当正方形PQMN的两个顶点在AB或AC边上时,∵AB=AC,AD⊥BC,∴BD=CD=12÷2=6,∴AB=AC=,∴AB或AC边上的高等于:AD•BC÷AB=8×12÷10=∴,解得a=.综上,可得正方形PQMN的边长是或.23.(10分)(2019•武汉)如图,△ABC中,点E、P在边AB上,且AE=BP,过点E、P作BC的平行线,分别交AC于点F、Q,记△AEF的面积为S1,四边形EFQP的面积为S2,四边形PQCB的面积为S3.(1)求证:EF+PQ=BC;(2)若S1+S3=S2,求的值;(3)若S3+S1=S2,直接写出的值.(1)证明:∵EF∥BC,PQ∥BC,∴,,∵AE=BP,∴AP=BE,∴==1,∴=1,∴EF+PQ=BC;(2)解:过点A作AH⊥BC于H,分别交PQ于M、N,如图所示:设EF=a,PQ=b,AM=h,则BC=a+b,∵EF∥PQ,∴△AEF∽△APQ,∴=,∴AN=,MN=(﹣1)h,∴S1=ah,S2=(a+b)(﹣1)h,S3=(b+a+b)h,∵S1+S3=S2,∴ah+(a+b+b)h=(a+b)(﹣1)h,解得:b=3a,∴=3,∴=2;(3)解:∵S3﹣S1=S2,∴(a+b+b)h﹣ah=(a+b)(﹣1)h,解得:b=(1±)a(负值舍去),∴b=(1+)a,∴=1+,∴=.24.(12分)(2019•武汉)已知抛物线y=x2+c与x轴交于A(﹣1,0),B两点,交y轴于点C.(1)求抛物线的解析式;(2)点E(m,n)是第二象限内一点,过点E作EF⊥x轴交抛物线于点F,过点F作FG⊥y轴于点G,连接CE、CF,若∠CEF=∠CFG.求n的值并直接写出m的取值范围(利用图1完成你的探究).(3)如图2,点P是线段OB上一动点(不包括点O、B),PM⊥x轴交抛物线于点M,∠OBQ=∠OMP,BQ交直线PM于点Q,设点P的横坐标为t,求△PBQ的周长.解:(1)把A(﹣1,0)代入得c=﹣,∴抛物线解析式为(2)如图1,过点C作CH⊥EF于点H,∵∠CEF=∠CFG,FG⊥y轴于点G∴△EHC∽△FGC∵E(m,n)∴F(m,)又∵C(0,)∴EH=n+,CH=﹣m,FG=﹣m,CG=m2又∵,则∴n+=2∴n=(﹣2<m<0)(3)由题意可知P(t,0),M(t,)∵PM⊥x轴交抛物线于点M,∠OBQ=∠OMP,∴△OPM∽△QPB.∴.其中OP=t,PM=,PB=1﹣t,∴PQ=.BQ=∴PQ+BQ+PB=.∴△PBQ的周长为2.。
2019年湖北省武汉市中考数学试卷-答案
湖北省武汉市2019年初中毕业生学业考试数学答案解析5.【答案】A【解析】左视图是,俯视图是,主视图是,故选A.12ACDSk =②由120x x <<,设O 的半径为是O 直径,∴90ADB =︒,∵CD 分别平分E 是ABC 的内心,∴EAB EBA +∠=)135EAB EBA +∠=ACE 的外角EAC ,∵EAB ∠2DA DE OA ==DA 的长为半径作O ,则点在D 上,连接分别交D 于点H 的运动路径为HG ,O 中,MN ,D 1为一边构造等边MAG ,以MO 为一边构造等边MOB ,则MOG MBA ≅,∴BA OG =OG ON OB BA =++,O ,B ,A 四点共线时,NO ,OB ,BA 时线段之和最短AC NM ⊥,交NM 的延长线于点C 1807560GMA =︒-︒-42MA =,∴4CA CM ==,∵6MN =tACN R 中,NA =解:(1)画图如图1.(2分)【解析】(1)因为AD BC ∥,所以只需作AD CF =,可得四边形AFCD 是平行四边形,再根据平行四边形的性质可得AF DC ∥,且AF DC =;(2)延长CB 到P ,使BP BC =,连接DP 交AB 于点G ,点G 即为所求;(3)根据平行线之间的平行线段相等构造平行四边形完成作图. 【考点】以方格纸为背景的几何作图,借助尺规作图画线段和点. 21.【答案】解:(1)证明:如图1,过点D 作DH BC ⊥,H 为垂足,是O 的切线,BC ,AD =是矩形, AB HD =,AD BH =t CDH R 中,2DH 22()AB AD BC =+-24AB AD BC =.(2)如图2,连接OD ,OC ,∴COF 等腰三角形.OE CD ⊥, CD 垂直平分OF .AOD DOE ∠=∠=∴在tAOD R 中,OA =t BOC R 中,tan603BC OB =︒==2BOCBOE S S -扇形1120=2332360⨯⨯⨯-解:(1)证明:延长AM 交CN 于点H ,∴AB BC =,ABC CBN ∠=∠.∴()ABM CBN ASA ≅,BM BN =.(2)①证明:过点;C 作CD BP ∥交AB 的延长线于点D ,∴QPBQCD ,CP DB PQ BQ =CP BMPQ BQ=. 11122S AM BP AB BMABM==,1122S BH CN CH BCBCH==,2214mCNn=+.14n+)证明ABM CBN≅;(2)①过点即可证明结论;②作CH AB∥交BP延长线于点了统计表和扇形统计图的综合运用三角形全等得证明、4∴ADO APE ,ADAOAP AE =,533AP m =-,55AP m =-,211)()22S m n MNE =-3124==,∴2m n -=. (12分)【解析】(1)考查函数的平移变换,通过求出两个抛物线的顶点坐标,从(1,4)-平移到(0,0)可知平移的方向和距离;(2)①利用抛物线关系式求点A 的坐标,再求出直线AB 的关系式,可知直线AB 与y 轴的交点D 的坐标,又求点D 关于x 轴的对称点D '的坐标,然后可得直线AD '的关系式,最后直线AD '与抛物线的关系式联立方程组可解得点Q 和点P 的横坐标;②设AB 与y 轴交点D ,PQ 与x 轴交于点E ,设出P ,Q 的坐标,根据ADO APE ,表示出AP 的长度,由PA PQ =,列出方程,得到m 的值;(3)通过抛物线的表达式设点M ,N 的坐标,利用待定系数法和直线与抛物线有唯一交点,联立方程组,通过0∆=求直线ME ,NE 的关系式,再联立直线ME ,NE 得点E 的坐标,作EF y ∥轴,交MN 于点F ,则MNE的面积为EF 与点M ,N 的坐标之差的乘积的一半.【考点】二次函数图像的平移、二次函数与三角形的结合.。
湖北省武汉市2019年初中毕业生考试数学试卷(解析版)
2019年武汉市初中毕业生考试数学试卷解析为学科网调研员所做,请下载自用,但不要盗用本解析再上传到本网站或其它网站!!一、选择题(共10小题,每小题3分,共30分)1.实数2019的相反数是()A.2019 B.-2019 C.D.答案:B考点:相反数。
解析:2019的相反数为-2019,选B。
2.式子在实数范围内有意义,则x的取值范围是()A.x>0 B.x≥-1 C.x≥1D.x≤1答案:C考点:二次根式。
解析:由二次根式的定义可知,x-1≥0,所以,x≥1,选C。
3.不透明的袋子中只有4个黑球和2个白球,这些球除颜色外无其他差别,随机从袋子中一次摸出3个球,下列事件是不可能事件的是()A.3个球都是黑球B.3个球都是白球C.三个球中有黑球D.3个球中有白球答案:B考点:事件的判断。
解析:因为袋中只有2个白球,所以,从袋子中一次摸出3个都是白球是不可能的,选B。
4.现实世界中,对称现象无处不在,中国的方块字中有些也具有对称性,下列美术字是轴对称图形的是()A.诚B.信C.友D.善答案:D考点:轴对称图形。
解析:平面内,一个图形沿一条直线折叠,直线两旁的部分能够完全重合的图形就是轴对称图形,如图,只有D才是轴对称图形。
5.如图是由5个相同的小正方体组成的几何体,该几何题的左视图是()答案:A考点:三视图。
解析:左面看,左边有上下2个正方形,右边只有1个正方形,所以,A符合。
6.“漏壶”是一种这个古代计时器,在它内部盛一定量的水,不考虑水量变化对压力的影响,水从壶底小孔均匀漏出,壶内壁有刻度.人们根据壶中水面的位置计算时间,用t表示漏水时间,y表示壶底到水面的高度,下列图象适合表示y与x的对应关系的是()答案:A考点:函数图象。
解析:因为壶是一个圆柱,水从壶底小孔均匀漏出,水面的高度y是均匀的减少,所以,只有A符合。
7.从1、2、3、4四个数中随机选取两个不同的数,分别记为a、c,则关于x的一元二次方程ax2+4x+c=0有实数解的概率为()A.B.C.D.答案:C考点:概率,一元二次方程。
2019年湖北省武汉市中考数学试题(含分析解答)
的数量关系.
23.(10.00 分)在△ABC 中,∠ABC=90°. (1)如图 1,分别过 A、C 两点作经过点 B 的直线的垂线,垂足分别为 M、N,求证:△ ABM∽△BCN; (2)如图 2,P 是边 BC 上一点,∠BAP=∠C,tan∠PAC= ,求 tanC 的值;
成活的频率(精确到 0.01) 0.813 0.891 0.915 0.905 0.897 0.902
由此估计这种幼树在此条件下移植成活的概率约是
(精确到 0.1)
13.(3.00 分)计算
﹣
的结果是
.
14.(3.00 分)以正方形 ABCD 的边 AD 作等边△ADE,则∠BEC 的度数是
.
15.(3.00 分)飞机着陆后滑行的距离 y(单位:m)关于滑行时间 t(单位:s)的函数
22.(10.00 分)已知点 A(a,m)在双曲线 y= 上且 m<0,过点 A 作 x 轴的垂线,垂足 为 B. (1)如图 1,当 a=﹣2 时,P(t,0)是 x 轴上的动点,将点 B 绕点 P 顺时针旋转 90°至点 C, ①若 t=1,直接写出点 C 的坐标; ②若双曲线 y= 经过点 C,求 t 的值. (2)如图 2,将图 1 中的双曲线 y= (x>0)沿 y 轴折叠得到双曲线 y=﹣ (x<0),将线 段 OA 绕点 O 旋转,点 A 刚好落在双曲线 y=﹣ (x<0)上的点 D(d,n)处,求 m 和 n
19.(8.00 分)某校七年级共有 500 名学生,在“世界读书日”前夕,开展了“阅读助我
成长”的读书活动.为了解该年级学生在此次活动中课外阅读情况,从中随机抽
取 m 名学生,调查他们课外阅读书籍的数量,将收集的数据整理成如下统计表和扇
2019年湖北省武汉市中考数学试卷(含解析)完美打印版
2019年湖北省武汉市中考数学试卷一、选择题(共10小题,每小题3分,共30分)1.(3分)实数2019的相反数是()A.2019B.﹣2019C.D.2.(3分)式子在实数范围内有意义,则x的取值范围是()A.x>0B.x≥﹣1C.x≥1D.x≤13.(3分)不透明的袋子中只有4个黑球和2个白球,这些球除颜色外无其他差别,随机从袋子中一次摸出3个球,下列事件是不可能事件的是()A.3个球都是黑球B.3个球都是白球C.3个球中有黑球D.3个球中有白球4.(3分)现实世界中,对称现象无处不在,中国的方块字中有些也具有对称性,下列美术字是轴对称图形的是()A.B.C.D.5.(3分)如图是由5个相同的小正方体组成的几何体,该几何体的左视图是()A.B.C.D.6.(3分)“漏壶”是一种古代计时器,在它内部盛一定量的水,不考虑水量变化对压力的影响,水从壶底小孔均匀漏出,壶内壁有刻度.人们根据壶中水面的位置计算时间,用x表示漏水时间,y表示壶底到水面的高度,下列图象适合表示y与x的对应关系的是()A.B.C.D.7.(3分)从1、2、3、4四个数中随机选取两个不同的数,分别记为a、c,则关于x的一元二次方程ax2+4x+c =0有实数解的概率为()A.B.C.D.8.(3分)已知反比例函数y=的图象分别位于第二、第四象限,A(x1,y1)、B(x2,y2)两点在该图象上,下列命题:①过点A作AC⊥x轴,C为垂足,连接OA.若△ACO的面积为3,则k=﹣6;②若x1<0<x2,则y1>y2;③若x1+x2=0,则y1+y2=0,其中真命题个数是()A.0B.1C.2D.39.(3分)如图,AB是⊙O的直径,M、N是(异于A、B)上两点,C是上一动点,∠ACB的角平分线交⊙O于点D,∠BAC的平分线交CD于点E.当点C从点M运动到点N时,则C、E两点的运动路径长的比是()A.B.C.D.10.(3分)观察等式:2+22=23﹣2;2+22+23=24﹣2;2+22+23+24=25﹣2…已知按一定规律排列的一组数:250、251、252、…、299、2100.若250=a,用含a的式子表示这组数的和是()A.2a2﹣2a B.2a2﹣2a﹣2C.2a2﹣a D.2a2+a二、填空题(本大题共6个小题,每小题3分,共18分)11.(3分)计算的结果是.12.(3分)武汉市某气象观测点记录了5天的平均气温(单位:℃),分别是25、20、18、23、27,这组数据的中位数是.13.(3分)计算﹣的结果是.14.(3分)如图,在▱ABCD中,E、F是对角线AC上两点,AE=EF=CD,∠ADF=90°,∠BCD=63°,则∠ADE的大小为.15.(3分)抛物线y=ax2+bx+c经过点A(﹣3,0)、B(4,0)两点,则关于x的一元二次方程a(x﹣1)2+c=b﹣bx的解是.16.(3分)问题背景:如图1,将△ABC绕点A逆时针旋转60°得到△ADE,DE与BC交于点P,可推出结论:P A+PC=PE.问题解决:如图2,在△MNG中,MN=6,∠M=75°,MG=.点O是△MNG内一点,则点O 到△MNG三个顶点的距离和的最小值是.三、解答题(共8题,共72分)17.(8分)计算:(2x2)3﹣x2•x4.18.(8分)如图,点A、B、C、D在一条直线上,CE与BF交于点G,∠A=∠1,CE∥DF,求证:∠E =∠F.19.(8分)为弘扬中华传统文化,某校开展“双剧进课堂”的活动,该校童威随机抽取部分学生,按四个类别:A表示“很喜欢”,B表示“喜欢”,C表示“一般”,D表示“不喜欢”,调查他们对汉剧的喜爱情况,将结果绘制成如下两幅不完整的统计图,根据图中提供的信息,解决下列问题:(1)这次共抽取名学生进行统计调查,扇形统计图中,D类所对应的扇形圆心角的大小为;(2)将条形统计图补充完整;(3)该校共有1500名学生,估计该校表示“喜欢”的B类的学生大约有多少人?20.(8分)如图是由边长为1的小正方形构成的网格,每个小正方形的顶点叫做格点.四边形ABCD的顶点在格点上,点E是边DC与网格线的交点.请选择适当的格点,用无刻度的直尺在网格中完成下列画图,保留连线的痕迹,不要求说明理由.(1)如图1,过点A画线段AF,使AF∥DC,且AF=DC.(2)如图1,在边AB上画一点G,使∠AGD=∠BGC.(3)如图2,过点E画线段EM,使EM∥AB,且EM=AB.21.(8分)已知AB是⊙O的直径,AM和BN是⊙O的两条切线,DC与⊙O相切于点E,分别交AM、BN于D、C两点.(1)如图1,求证:AB2=4AD•BC;(2)如图2,连接OE并延长交AM于点F,连接CF.若∠ADE=2∠OFC,AD=1,求图中阴影部分的面积.22.(10分)某商店销售一种商品,经市场调查发现:该商品的周销售量y(件)是售价x(元/件)的一次函数,其售价、周销售量、周销售利润w(元)的三组对应值如表:注:周销售利润=周销售量×(售价﹣进价)(1)①求y关于x的函数解析式(不要求写出自变量的取值范围);②该商品进价是元/件;当售价是元/件时,周销售利润最大,最大利润是元.(2)由于某种原因,该商品进价提高了m元/件(m>0),物价部门规定该商品售价不得超过65元/件,该商店在今后的销售中,周销售量与售价仍然满足(1)中的函数关系.若周销售最大利润是1400元,求m的值.23.(10分)在△ABC中,∠ABC=90°,=n,M是BC上一点,连接AM.(1)如图1,若n=1,N是AB延长线上一点,CN与AM垂直,求证:BM=BN.(2)过点B作BP⊥AM,P为垂足,连接CP并延长交AB于点Q.①如图2,若n=1,求证:=.②如图3,若M是BC的中点,直接写出tan∠BPQ的值.(用含n的式子表示)24.(12分)已知抛物线C1:y=(x﹣1)2﹣4和C2:y=x2(1)如何将抛物线C1平移得到抛物线C2?(2)如图1,抛物线C1与x轴正半轴交于点A,直线y=﹣x+b经过点A,交抛物线C1于另一点B.请你在线段AB上取点P,过点P作直线PQ∥y轴交抛物线C1于点Q,连接AQ.①若AP=AQ,求点P的横坐标;②若P A=PQ,直接写出点P的横坐标.(3)如图2,△MNE的顶点M、N在抛物线C2上,点M在点N右边,两条直线ME、NE与抛物线C2均有唯一公共点,ME、NE均与y轴不平行.若△MNE的面积为2,设M、N两点的横坐标分别为m、n,求m与n的数量关系.2019年湖北省武汉市中考数学试卷参考答案与试题解析一、选择题(共10小题,每小题3分,共30分)1.(3分)实数2019的相反数是()A.2019B.﹣2019C.D.【分析】直接利用相反数的定义进而得出答案.【解答】解:实数2019的相反数是:﹣2009.故选:B.2.(3分)式子在实数范围内有意义,则x的取值范围是()A.x>0B.x≥﹣1C.x≥1D.x≤1【分析】根据被开方数是非负数,可得答案.【解答】解:由题意,得x﹣1≥0,解得x≥1,故选:C.3.(3分)不透明的袋子中只有4个黑球和2个白球,这些球除颜色外无其他差别,随机从袋子中一次摸出3个球,下列事件是不可能事件的是()A.3个球都是黑球B.3个球都是白球C.3个球中有黑球D.3个球中有白球【分析】根据事件发生的可能性大小判断相应事件的类型.【解答】解:A、3个球都是黑球是随机事件;B、3个球都是白球是不可能事件;C、3个球中有黑球是必然事件;D、3个球中有白球是随机事件;故选:B.4.(3分)现实世界中,对称现象无处不在,中国的方块字中有些也具有对称性,下列美术字是轴对称图形的是()A.B.C.D.【分析】利用轴对称图形定义判断即可.【解答】解:四个汉字中,可以看作轴对称图形的是,故选:D.5.(3分)如图是由5个相同的小正方体组成的几何体,该几何体的左视图是()A.B.C.D.【分析】找到从左面看所得到的图形即可,注意所有的看到的棱都应表现在主视图中.【解答】解:从左面看易得下面一层有2个正方形,上面一层左边有1个正方形,如图所示:.故选:A.6.(3分)“漏壶”是一种古代计时器,在它内部盛一定量的水,不考虑水量变化对压力的影响,水从壶底小孔均匀漏出,壶内壁有刻度.人们根据壶中水面的位置计算时间,用x表示漏水时间,y表示壶底到水面的高度,下列图象适合表示y与x的对应关系的是()A.B.C.D.【分析】根据题意,可知y随的增大而减小,符合一次函数图象,从而可以解答本题.【解答】解:∵不考虑水量变化对压力的影响,水从壶底小孔均匀漏出,x表示漏水时间,y表示壶底到水面的高度,∴y随x的增大而减小,符合一次函数图象,故选:A.7.(3分)从1、2、3、4四个数中随机选取两个不同的数,分别记为a、c,则关于x的一元二次方程ax2+4x+c =0有实数解的概率为()A.B.C.D.【分析】首先画出树状图即可求得所有等可能的结果与使ac≤4的情况,然后利用概率公式求解即可求得答案.【解答】解:画树状图得:由树形图可知:一共有12种等可能的结果,其中使ac≤4的有6种结果,∴关于x的一元二次方程ax2+4x+c=0有实数解的概率为,故选:C.8.(3分)已知反比例函数y=的图象分别位于第二、第四象限,A(x1,y1)、B(x2,y2)两点在该图象上,下列命题:①过点A作AC⊥x轴,C为垂足,连接OA.若△ACO的面积为3,则k=﹣6;②若x1<0<x2,则y1>y2;③若x1+x2=0,则y1+y2=0,其中真命题个数是()A.0B.1C.2D.3【分析】利用反比例函数的比例系数的几何意义、反比例函数的增减性、对称性分别回答即可.【解答】解:过点A作AC⊥x轴,C为垂足,连接OA.∵△ACO的面积为3,∴|k|=6,∵反比例函数y=的图象分别位于第二、第四象限,∴k<0,∴k=﹣6,正确,是真命题;②∵反比例函数y=的图象分别位于第二、第四象限,∴在所在的每一个象限y随着x的增大而增大,若x1<0<x2,则y1>0>y2,正确,是真命题;③当A、B两点关于原点对称时,x1+x2=0,则y1+y2=0,正确,是真命题,真命题有3个,故选:D.9.(3分)如图,AB是⊙O的直径,M、N是(异于A、B)上两点,C是上一动点,∠ACB的角平分线交⊙O于点D,∠BAC的平分线交CD于点E.当点C从点M运动到点N时,则C、E两点的运动路径长的比是()A.B.C.D.【分析】如图,连接EB.设OA=r.易知点E在以D为圆心DA为半径的圆上,运动轨迹是,点C 的运动轨迹是,由题意∠MON=2∠GDF,设∠GDF=α,则∠MON=2α,利用弧长公式计算即可解决问题.【解答】解:如图,连接EB.设OA=r.∵AB是直径,∴∠ACB=90°,∵E是△ACB的内心,∴∠AEB=135°,∵∠ACD=∠BCD,∴=,∴AD=DB=r,∴∠ADB=90°,易知点E在以D为圆心DA为半径的圆上,运动轨迹是,点C的运动轨迹是,∵∠MON=2∠GDF,设∠GDF=α,则∠MON=2α∴==.故选:A.10.(3分)观察等式:2+22=23﹣2;2+22+23=24﹣2;2+22+23+24=25﹣2…已知按一定规律排列的一组数:250、251、252、…、299、2100.若250=a,用含a的式子表示这组数的和是()A.2a2﹣2a B.2a2﹣2a﹣2C.2a2﹣a D.2a2+a【分析】由等式:2+22=23﹣2;2+22+23=24﹣2;2+22+23+24=25﹣2,得出规律:2+22+23+…+2n=2n+1﹣2,那么250+251+252+…+299+2100=(2+22+23+…+2100)﹣(2+22+23+…+249),将规律代入计算即可.【解答】解:∵2+22=23﹣2;2+22+23=24﹣2;2+22+23+24=25﹣2;…∴2+22+23+…+2n=2n+1﹣2,∴250+251+252+…+299+2100=(2+22+23+...+2100)﹣(2+22+23+ (249)=(2101﹣2)﹣(250﹣2)=2101﹣250,∵250=a,∴2101=(250)2•2=2a2,∴原式=2a2﹣a.故选:C.二、填空题(本大题共6个小题,每小题3分,共18分)11.(3分)计算的结果是4.【分析】根据二次根式的性质求出即可.【解答】解:=4,故答案为:4.12.(3分)武汉市某气象观测点记录了5天的平均气温(单位:℃),分别是25、20、18、23、27,这组数据的中位数是23℃.【分析】根据中位数的概念求解可得.【解答】解:将数据重新排列为18、20、23、25、27,所以这组数据的中位数为23℃,故答案为:23℃.13.(3分)计算﹣的结果是.【分析】异分母分式相加减,先通分变为同分母分式,然后再加减.【解答】解:原式====.故答案为:14.(3分)如图,在▱ABCD中,E、F是对角线AC上两点,AE=EF=CD,∠ADF=90°,∠BCD=63°,则∠ADE的大小为21°.【分析】设∠ADE=x,由等腰三角形的性质和直角三角形得出∠DAE=∠ADE=x,DE=AF=AE=EF,得出DE=CD,证出∠DCE=∠DEC=2x,由平行四边形的性质得出∠DCE=∠BCD﹣∠BCA=63°﹣x,得出方程,解方程即可.【解答】解:设∠ADE=x,∵AE=EF,∠ADF=90°,∴∠DAE=∠ADE=x,DE=AF=AE=EF,∵AE=EF=CD,∴DE=CD,∴∠DCE=∠DEC=2x,∵四边形ABCD是平行四边形,∴AD∥BC,∴∠DAE=∠BCA=x,∴∠DCE=∠BCD﹣∠BCA=63°﹣x,∴2x=63°﹣x,解得:x=21°,即∠ADE=21°;故答案为:21°.15.(3分)抛物线y=ax2+bx+c经过点A(﹣3,0)、B(4,0)两点,则关于x的一元二次方程a(x﹣1)2+c=b﹣bx的解是x1=﹣2,x2=5.【分析】由于抛物线y=ax2+bx+c沿x轴向右平移1个单位得到y=a(x﹣1)2+b(x﹣1)+c,从而得到抛物线y=a(x﹣1)2+b(x﹣1)+c与x轴的两交点坐标为(﹣2,0),(5,0),然后根据抛物线与x 轴的交点问题得到一元二方程a(x﹣1)2+b(x﹣1)+c=0的解.【解答】解:关于x的一元二次方程a(x﹣1)2+c=b﹣bx变形为a(x﹣1)2+b(x﹣1)+c=0,把抛物线y=ax2+bx+c沿x轴向右平移1个单位得到y=a(x﹣1)2+b(x﹣1)+c,因为抛物线y=ax2+bx+c经过点A(﹣3,0)、B(4,0),所以抛物线y=a(x﹣1)2+b(x﹣1)+c与x轴的两交点坐标为(﹣2,0),(5,0),所以一元二方程a(x﹣1)2+b(x﹣1)+c=0的解为x1=﹣2,x2=5.故答案为x1=﹣2,x2=5.16.(3分)问题背景:如图1,将△ABC绕点A逆时针旋转60°得到△ADE,DE与BC交于点P,可推出结论:P A+PC=PE.问题解决:如图2,在△MNG中,MN=6,∠M=75°,MG=.点O是△MNG内一点,则点O 到△MNG三个顶点的距离和的最小值是2.【分析】(1)在BC上截取BG=PD,通过三角形求得证得AG=AP,得出△AGP是等边三角形,得出∠AGC=60°=∠APG,即可求得∠APE=60°,连接EC,延长BC到F,使CF=P A,连接EF,证得△ACE是等边三角形,得出AE=EC=AC,然后通过证得△APE≌△ECF(SAS),得出PE=PF,即可证得结论;(2)以MG为边作等边三角形△MGD,以OM为边作等边△OME.连接ND,可证△GMO≌△DME,可得GO=DE,则MO+NO+GO=NO+OE+DE,即当D、E、O、N四点共线时,MO+NO+GO值最小,最小值为ND的长度,根据勾股定理先求得MF、DF,然后求ND的长度,即可求MO+NO+GO的最小值.【解答】(1)证明:如图1,在BC上截取BG=PD,在△ABG和△ADP中,∴△ABG≌△ADP(SAS),∴AG=AP,∠BAG=∠DAP,∵∠GAP=∠BAD=60°,∴△AGP是等边三角形,∴∠AGC=60°=∠APG,∴∠APE=60°,∴∠EPC=60°,连接EC,延长BC到F,使CF=P A,连接EF,∵将△ABC绕点A逆时针旋转60°得到△ADE,∴∠EAC=60°,∠EPC=60°,∵AE=AC,∴△ACE是等边三角形,∴AE=EC=AC,∵∠P AE+∠APE+∠AEP=180°,∠ECF+∠ACE+∠ACB=180°,∠ACE=∠APE=60°,∠AED=∠ACB,∴∠P AE=∠ECF,在△APE和△ECF中∴△APE≌△ECF(SAS),∴PE=PF,∴P A+PC=PE;(2)解:如图2:以MG为边作等边三角形△MGD,以OM为边作等边△OME.连接ND,作DF⊥NM,交NM的延长线于F.∵△MGD和△OME是等边三角形∴OE=OM=ME,∠DMG=∠OME=60°,MG=MD,∴∠GMO=∠DME在△GMO和△DME中∴△GMO≌△DME(SAS),∴OG=DE∴NO+GO+MO=DE+OE+NO∴当D、E、O、M四点共线时,NO+GO+MO值最小,∵∠NMG=75°,∠GMD=60°,∴∠NMD=135°,∴∠DMF=45°,∵MG=.∴MF=DF=4,∴NF=MN+MF=6+4=10,∴ND===2,∴MO+NO+GO最小值为2,故答案为2,三、解答题(共8题,共72分)17.(8分)计算:(2x2)3﹣x2•x4.【分析】先算乘方与乘法,再合并同类项即可.【解答】解:(2x2)3﹣x2•x4=8x6﹣x6=7x6.18.(8分)如图,点A、B、C、D在一条直线上,CE与BF交于点G,∠A=∠1,CE∥DF,求证:∠E =∠F.【分析】根据平行线的性质可得∠ACE=∠D,又∠A=∠1,利用三角形内角和定理及等式的性质即可得出∠E=∠F.【解答】解:∵CE∥DF,∴∠ACE=∠D,∵∠A=∠1,∴180°﹣∠ACE﹣∠A=180°﹣∠D﹣∠1,又∵∠E=180°﹣∠ACE﹣∠A,∠F=180°﹣∠D﹣∠1,∴∠E=∠F.19.(8分)为弘扬中华传统文化,某校开展“双剧进课堂”的活动,该校童威随机抽取部分学生,按四个类别:A表示“很喜欢”,B表示“喜欢”,C表示“一般”,D表示“不喜欢”,调查他们对汉剧的喜爱情况,将结果绘制成如下两幅不完整的统计图,根据图中提供的信息,解决下列问题:(1)这次共抽取50名学生进行统计调查,扇形统计图中,D类所对应的扇形圆心角的大小为72°;(2)将条形统计图补充完整;(3)该校共有1500名学生,估计该校表示“喜欢”的B类的学生大约有多少人?【分析】(1)这次共抽取:12÷24%=50(人),D类所对应的扇形圆心角的大小360°×=72°;(2)A类学生:50﹣23﹣12﹣10=5(人),据此补充条形统计图;(3)该校表示“喜欢”的B类的学生大约有1500×=690(人).【解答】解:(1)这次共抽取:12÷24%=50(人),D类所对应的扇形圆心角的大小360°×=72°,故答案为50,72°;(2)A类学生:50﹣23﹣12﹣10=5(人),条形统计图补充如下该校表示“喜欢”的B类的学生大约有1500×=690(人),答:该校表示“喜欢”的B类的学生大约有690人;20.(8分)如图是由边长为1的小正方形构成的网格,每个小正方形的顶点叫做格点.四边形ABCD的顶点在格点上,点E是边DC与网格线的交点.请选择适当的格点,用无刻度的直尺在网格中完成下列画图,保留连线的痕迹,不要求说明理由.(1)如图1,过点A画线段AF,使AF∥DC,且AF=DC.(2)如图1,在边AB上画一点G,使∠AGD=∠BGC.(3)如图2,过点E画线段EM,使EM∥AB,且EM=AB.【分析】(1)作平行四边形AFCD即可得到结论;(2)根据等腰三角形的性质和对顶角的性质即可得到结论;(3)作平行四边形AEMB即可得到结论.【解答】解:(1)如图所示,线段AF即为所求;(2)如图所示,点G即为所求;(3)如图所示,线段EM即为所求.21.(8分)已知AB是⊙O的直径,AM和BN是⊙O的两条切线,DC与⊙O相切于点E,分别交AM、BN于D、C两点.(1)如图1,求证:AB2=4AD•BC;(2)如图2,连接OE并延长交AM于点F,连接CF.若∠ADE=2∠OFC,AD=1,求图中阴影部分的面积.【分析】(1)连接OC、OD,证明△AOD∽△BCO,得出=,即可得出结论;(2)连接OD,OC,证明△COD≌△CFD得出∠CDO=∠CDF,求出∠BOE=120°,由直角三角形的性质得出BC=3,OB=,图中阴影部分的面积=2S△OBC﹣S扇形OBE,即可得出结果.【解答】(1)证明:连接OC、OD,如图1所示:∵AM和BN是它的两条切线,∴AM⊥AB,BN⊥AB,∴AM∥BN,∴∠ADE+∠BCE=180°∵DC切⊙O于E,∴∠ODE=∠ADE,∠OCE=∠BCE,∴∠ODE+∠OCE=90°,∴∠DOC=90°,∴∠AOD+∠COB=90°,∵∠AOD+∠ADO=90°,∴∠AOD=∠OCB,∵∠OAD=∠OBC=90°,∴△AOD∽△BCO,∴=,∴OA2=AD•BC,∴(AB)2=AD•BC,∴AB2=4AD•BC;(2)解:连接OD,OC,如图2所示:∵∠ADE=2∠OFC,∴∠ADO=∠OFC,∵∠ADO=∠BOC,∠BOC=∠FOC,∴∠OFC=∠FOC,∴CF=OC,∴CD垂直平分OF,∴OD=DF,在△COD和△CFD中,,∴△COD≌△CFD(SSS),∴∠CDO=∠CDF,∵∠ODA+∠CDO+∠CDF=180°,∴∠ODA=60°=∠BOC,∴∠BOE=120°,在Rt△DAO,AD=OA,Rt△BOC中,BC=OB,∴AD:BC=1:3,∵AD=1,∴BC=3,OB=,∴图中阴影部分的面积=2S△OBC﹣S扇形OBE=2×××3﹣=3﹣π.22.(10分)某商店销售一种商品,经市场调查发现:该商品的周销售量y(件)是售价x(元/件)的一次函数,其售价、周销售量、周销售利润w(元)的三组对应值如表:注:周销售利润=周销售量×(售价﹣进价)(1)①求y关于x的函数解析式(不要求写出自变量的取值范围);②该商品进价是40元/件;当售价是70元/件时,周销售利润最大,最大利润是1800元.(2)由于某种原因,该商品进价提高了m元/件(m>0),物价部门规定该商品售价不得超过65元/件,该商店在今后的销售中,周销售量与售价仍然满足(1)中的函数关系.若周销售最大利润是1400元,求m的值.【分析】(1)①依题意设y=kx+b,解方程组即可得到结论;②该商品进价是50﹣1000÷100=40,设每周获得利润w=ax2+bx+c:解方程组即可得到结论;(2)根据题意得,w=(x﹣40﹣m)(﹣2x+200)=﹣2x2+(280+2m)x﹣800﹣200m,由于对称轴是x =,根据二次函数的性质即可得到结论.【解答】解:(1)①依题意设y=kx+b,则有解得:所以y关于x的函数解析式为y=﹣2x+200;②该商品进价是50﹣1000÷100=40,设每周获得利润w=ax2+bx+c:则有,解得:,∴w=﹣2x2+280x﹣8000=﹣2(x﹣70)2+1800,∴当售价是70元/件时,周销售利润最大,最大利润是1800元;故答案为:40,70,1800;(2)根据题意得,w=(x﹣40﹣m)(﹣2x+200)=﹣2x2+(280+2m)x﹣8000﹣200m,∵对称轴x=,∴①当<65时(舍),②当≥65时,x=65时,w求最大值1400,解得:m=5.23.(10分)在△ABC中,∠ABC=90°,=n,M是BC上一点,连接AM.(1)如图1,若n=1,N是AB延长线上一点,CN与AM垂直,求证:BM=BN.(2)过点B作BP⊥AM,P为垂足,连接CP并延长交AB于点Q.①如图2,若n=1,求证:=.②如图3,若M是BC的中点,直接写出tan∠BPQ的值.(用含n的式子表示)【分析】(1)如图1中,延长AM交CN于点H.想办法证明△ABM≌△CBN(ASA)即可.(2)①如图2中,作CH∥AB交BP的延长线于H.利用全等三角形的性质证明CH=BM,再利用平行线分线段成比例定理解决问题即可.②如图3中,作CH∥AB交BP的延长线于H,作CN⊥BH于N.不妨设BC=2m,则AB=2mn.想办法求出CN,PN(用m,n表示),即可解决问题.【解答】(1)证明:如图1中,延长AM交CN于点H.∵AM⊥CN,∴∠AHC=90°,∵∠ABC=90°,∴∠BAM+∠AMB=90°,∠BCN+∠CMH=90°,∵∠AMB=∠CMH,∴∠BAM=∠BCN,∵BA=BC,∠ABM=∠CBN=90°,∴△ABM≌△CBN(ASA),∴BM=BN.(2)①证明:如图2中,作CH∥AB交BP的延长线于H.∵BP⊥AM,∴∠BPM=∠ABM=90°,∵∠BAM+∠AMB=90°,∠CBH+∠BMP=90°,∴∠BAM=∠CBH,∵CH∥AB,∴∠HCB+∠ABC=90°,∵∠ABC=90°,∴∠ABM=∠BCH=90°,∵AB=BC,∴△ABM≌△BCH(ASA),∴BM=CH,∵CH∥BQ,∴==.②解:如图3中,作CH∥AB交BP的延长线于H,作CN⊥BH于N.不妨设BC=2m,则AB=2mn.则BM=CM=m,CH=,BH=,AM=m,∵•AM•BP=•AB•BM,∴PB=,∵•BH•CN=•CH•BC,∴CN=,∵CN⊥BH,PM⊥BH,∴MP∥CN,∵CM=BM,∴PN=BP=,∵∠BPQ=∠CPN,∴tan∠BPQ=tan∠CPN===.方法二:易证:===,∵PN=PB,tan∠BPQ====.24.(12分)已知抛物线C1:y=(x﹣1)2﹣4和C2:y=x2(1)如何将抛物线C1平移得到抛物线C2?(2)如图1,抛物线C1与x轴正半轴交于点A,直线y=﹣x+b经过点A,交抛物线C1于另一点B.请你在线段AB上取点P,过点P作直线PQ∥y轴交抛物线C1于点Q,连接AQ.①若AP=AQ,求点P的横坐标;②若P A=PQ,直接写出点P的横坐标.(3)如图2,△MNE的顶点M、N在抛物线C2上,点M在点N右边,两条直线ME、NE与抛物线C2均有唯一公共点,ME、NE均与y轴不平行.若△MNE的面积为2,设M、N两点的横坐标分别为m、n,求m与n的数量关系.【分析】(1)y=(x﹣1)2﹣4向左平移1个单位长度,再向上平移4个单位长度即可得到y=x2;(2)易求点A(3,0),b=4,联立方程﹣x+4=(x﹣1)2﹣4,可得B(﹣,);设P(t,﹣t+4),Q(t,t2﹣2t﹣3),①当AP=AQ时,则有﹣4+t=t2﹣2t﹣3,求得t=;②当AP=PQ时,PQ=t2+t+7,P A=(3﹣t),则有t2+t+7=(3﹣t),求得t=﹣;(3)设经过M与E的直线解析式为y=k(x﹣m)+m2,∴,则可知△=k2﹣4km+4m2=(k﹣2m)2=0,求得k=2m,得出直线ME的解析式为y=2mx﹣m2,同理:直线NE的解析式为y=2nx﹣n2,则可求E(,mn),再由面积[(n2﹣mn)+(m2﹣mn)]×(m﹣n)﹣(n2﹣mn)×(﹣n)﹣(m2﹣mn)×(m﹣)=2,可得(m﹣n)3=8,即可求解;【解答】解:(1)y=(x﹣1)2﹣4向左平移1个单位长度,再向上平移4个单位长度即可得到y=x2;(2)y=(x﹣1)2﹣4与x轴正半轴的交点A(3,0),∵直线y=﹣x+b经过点A,∴b=4,∴y=﹣x+4,y=﹣x+4与y=(x﹣1)2﹣4的交点为﹣x+4=(x﹣1)2﹣4的解,∴x=3或x=﹣,∴B(﹣,),设P(t,﹣t+4),且﹣<t<3,∵PQ∥y轴,∴Q(t,t2﹣2t﹣3),①当AP=AQ时,|4﹣t|=|t2﹣2t﹣3|,则有﹣4+t=t2﹣2t﹣3,∴t=,∴P点横坐标为;②当AP=PQ时,PQ=﹣t2+t+7,P A=(3﹣t),∴﹣t2+t+7=(3﹣t),∴t=﹣;∴P点横坐标为﹣;(3)设经过M与E的直线解析式为y=k(x﹣m)+m2,∴,则有x2﹣kx+km﹣m2=0,△=k2﹣4km+4m2=(k﹣2m)2=0,∴k=2m,∴直线ME的解析式为y=2mx﹣m2,同理:直线NE的解析式为y=2nx﹣n2,∴E(,mn),∴[(n2﹣mn)+(m2﹣mn)]×(m﹣n)﹣(n2﹣mn)×(﹣n)﹣(m2﹣mn)×(m﹣)=2,∴(m﹣n)3﹣=4,∴(m﹣n)3=8,∴m﹣n=2;。
2019年湖北省武汉市中考真题数学试卷(解析版)
2019年武汉市初中真题毕业生考试数学试卷一、选择题(共10小题,每小题3分,共30分) 1.实数2019的相反数是( ) A .2019B .-2019C .20191D .20191-答案:B 考点:相反数。
解析:2019的相反数为-2019,选B 。
2.式子1-x 在实数范围内有意义,则x 的取值范围是( ) A .x >0B .x ≥-1C .x ≥1D .x ≤1答案:C考点:二次根式。
解析:由二次根式的定义可知,x -1≥0, 所以,x ≥1,选C 。
3.不透明的袋子中只有4个黑球和2个白球,这些球除颜色外无其他差别,随机从袋子中一次摸出3个球,下列事件是不可能事件的是( ) A .3个球都是黑球 B .3个球都是白球 C .三个球中有黑球D .3个球中有白球答案:B考点:事件的判断。
解析:因为袋中只有2个白球,所以,从袋子中一次摸出3个都是白球是不可能的,选B 。
4.现实世界中,对称现象无处不在,中国的方块字中有些也具有对称性,下列美术字是轴对称图形的是( ) A .诚B .信C .友D .善答案:D考点:轴对称图形。
解析:平面内,一个图形沿一条直线折叠,直线两旁的部分能够完全重合的图形就是轴对称图形,如图,只有D才是轴对称图形。
5.如图是由5个相同的小正方体组成的几何体,该几何题的左视图是()答案:A考点:三视图。
解析:左面看,左边有上下2个正方形,右边只有1个正方形,所以,A符合。
6.“漏壶”是一种这个古代计时器,在它内部盛一定量的水,不考虑水量变化对压力的影响,水从壶底小孔均匀漏出,壶内壁有刻度.人们根据壶中水面的位置计算时间,用t表示漏水时间,y表示壶底到水面的高度,下列图象适合表示y与x的对应关系的是()答案:A考点:函数图象。
解析:因为壶是一个圆柱,水从壶底小孔均匀漏出,水面的高度y 是均匀的减少, 所以,只有A 符合。
7.从1、2、3、4四个数中随机选取两个不同的数,分别记为a 、c ,则关于x 的一元二次方程ax 2+4x +c =0有实数解的概率为( ) A .41B .31C .21 D .32 答案:C考点:概率,一元二次方程。
2019年湖北省武汉市中考数学试卷含答案
2019年湖北省武汉市中考数学试卷含答案2019年武汉市初中毕业生数学试卷一、选择题(共10小题,每小题3分,共30分)1.实数2019的相反数是()。
A。
2019B。
-2019C。
1/2019D。
1/20192.式子x1在实数范围内有意义,则x的取值范围是()。
A。
x>1B。
x≥-1C。
x≥1D。
x≤13.不透明的袋子中只有4个黑球和2个白球,这些球除颜色外无其他差别,随机从袋子中一次摸出3个球,下列事件是不可能事件的是()。
A。
3个球都是黑球B。
3个球都是白球C。
三个球中有黑球D。
3个球中有白球4.现实世界中,对称现象无处不在,中国的方块字中有些也具有对称性,下列美术字是轴对称的是()。
A。
诚B。
信C。
友D。
善5.如图是由5个相同的小正方体组成的几何体,该几何体的左视图是()。
6.“漏壶”是一种古代计时器,在它内部盛一定量的水,不考虑水量变化对压力的影响,水从壶底小孔均匀漏出,壶内壁有刻度。
人们根据壶中水面的位置计算时间,用t表示漏水时间,y表示壶底到水面的高度,下列图象适合表示y与t的对应关系的是()。
7.从1、2、3、4四个数中随机选取两个不同的数,分别记为a、c,则关于x的一元二次方程ax2+4x+c=0有实数解的概率为()。
A。
1/4B。
1/3C。
1/2D。
2/38.已知反比例函数y=k/x的图象分别位于第二、第四象限,A(x1,y1)、B(x2,y2)两点在该图象上,下列命题:①过点A作AC⊥x轴,C为垂足,连接OA。
若△ACO的面积为3,则k=-6;②若x1<<x2,则y1>y2;③若x1+x2=0,则y1+y2=0.其中真命题个数是()。
A。
0B。
1C。
2D。
39.如图,AB是⊙O的直径,M、N是弧AB(异于A、B)上两点,C是弧MN上一动点,∠ACB的角平分线交⊙O于点D,∠BAC的平分线交CD于点E。
当点C从点M运动到点N时,则C、E两点的运动路径长的比是()。
A。
2/5B。
湖北省武汉市2019年中考数学真题试题(含扫描答案)
2019年武汉市初中毕业生考试数学试卷一、选择题(共10小题,每小题3分,共30分)1.计算36的结果为( )A .6B .-6C .18D .-182.若代数式41-a 在实数范围内有意义,则实数a 的取值范围为( ) A .a =4 B .a >4 C .a <4 D .a ≠43.下列计算的结果是x 5的为( )A .x 10÷x 2B .x 6-xC .x 2·x 3D .(x 2)34A .1.65、1.70B .1.65、1.75C .1.70、1.75D .1.70、1.705.计算(x +1)(x +2)的结果为( ) A .x 2+2 B .x 2+3x +2 C .x 2+3x +3 D .x 2+2x +26.点A (-3,2)关于y 轴对称的点的坐标为( )A .(3,-2)B .(3,2)C .(-3,-2)D .(2,-3)7.某物体的主视图如图所示,则该物体可能为( )8.按照一定规律排列的n 个数:-2、4、-8、16、-32、64、……,若最后三个数的和为768,则n 为( )A .9B .10C .11D .129.已知一个三角形的三边长分别为5、7、8,则其内切圆的半径为( )A .23B .23C .3D .3210.如图,在Rt △ABC 中,∠C =90°,以△ABC 的一边为边画等腰三角形,使得它的第三个顶点在△ABC 的其他边上,则可以画出的不同的等腰三角形的个数最多为( )A .4B .5C .6D .7二、填空题(本大题共6个小题,每小题3分,共18分)11.计算2×3+(-4)的结果为___________12.计算111+-+x x x 的结果为___________ 13.如图,在□ABCD 中,∠D =100°,∠DAB 的平分线AE 交DC 于点E ,连接BE .若AE =AB ,则∠EBC 的度数为___________14.一个不透明的袋中共有5个小球,分别为2个红球和3个黄球,它们除颜色外完全相同.随机摸出两个小球,摸出两个颜色相同的小球的概率为___________15.如图,在△ABC中,AB=AC=32,∠BAC=120°,点D、E都在边BC上,∠DAE=60°.若BD=2CE,则DE的长为___________16.已知关于x的二次函数y=ax2+(a2-1)x-a的图象与x轴的一个交点的坐标为(m,0).若2<m<3,则a的取值范围是___________三、解答题(共8题,共72分)17.(本题8分)解方程:4x-3=2(x-1)18.(本题8分)如图,点C、F、E、B在一条直线上,∠CFD=∠BEA,CE=BF,DF=AE,写出CD与AB之间的关系,并证明你的结论19.(本题8分)某公司共有A、B、C三个部门,根据每个部门的员工人数和相应每人所创的年利润绘制成如下的统计表和扇形图各部门人数及每人所创年利润统计表各部门人数分布扇形图___________②在统计表中,b=___________,c=___________(2) 求这个公司平均每人所创年利润20.(本题8分)某公司为奖励在趣味运动会上取得好成绩的员工,计划购买甲、乙两种奖品共20件.其中甲种奖品每件40元,乙种奖品每件30元(1) 如果购买甲、乙两种奖品共花费了650元,求甲、乙两种奖品各购买了多少件?(2) 如果购买乙种奖品的件数不超过甲种奖品件数的2倍,总花费不超过680元,求该公司有哪几种不同的购买方案?21.(本题8分)如图,△ABC 内接于⊙O ,AB =AC ,CO 的延长线交AB 于点D(1) 求证:AO 平分∠BAC(2) 若BC =6,sin ∠BAC =53,求AC 和CD 的长22.(本题10分)如图,直线y =2x +4与反比例函数xk y =的图象相交于A (-3,a )和B 两点(1) 求k 的值(2) 直线y =m (m >0)与直线AB 相交于点M ,与反比例函数的图象相交于点N .若MN =4,求m 的值(3) 直接写出不等式x x >-56的解集23.(本题10分)已知四边形ABCD 的一组对边AD 、BC 的延长线交于点E(1) 如图1,若∠ABC =∠ADC =90°,求证:ED ·EA =EC ·EB (2) 如图2,若∠ABC =120°,cos ∠ADC =53,CD =5,AB =12,△CDE 的面积为6,求四边形ABCD 的面积(3) 如图3,另一组对边AB 、DC 的延长线相交于点F .若cos ∠ABC =cos ∠ADC =53,CD =5,CF =ED =n ,直接写出AD 的长(用含n 的式子表示)24.(本题12分)已知点A (-1,1)、B (4,6)在抛物线y =ax 2+bx 上(1) 求抛物线的解析式(2) 如图1,点F 的坐标为(0,m )(m >2),直线AF 交抛物线于另一点G ,过点G 作x 轴的垂线,垂足为H .设抛物线与x 轴的正半轴交于点E ,连接FH 、AE ,求证:FH ∥AE(3) 如图2,直线AB 分别交x 轴、y 轴于C 、D 两点.点P 从点C 出发,沿射线CD 方向匀速运动,速度为每秒2个单位长度;同时点Q 从原点O 出发,沿x 轴正方向匀速运动,速度为每秒1个单位长度.点M 是直线PQ 与抛物线的一个交点,当运动到t 秒时,QM =2PM ,直接写出t 的值中小学最新教育资料中小学最新教育资料。
2019年湖北省武汉市初中毕业生考试数学试卷(解析版)
2019年武汉市初中毕业生考试数学试卷一、选择题(共10小题,每小题3分,共30分) 1.实数2019的相反数是( ) A .2019 B .-2019 C .20191D .20191-答案:B 考点:相反数。
解析:2019的相反数为-2019,选B 。
2.式子1-x 在实数范围内有意义,则x 的取值范围是( ) A .x >0 B .x ≥-1 C .x ≥1 D .x ≤1答案:C考点:二次根式。
解析:由二次根式的定义可知,x -1≥0, 所以,x ≥1,选C 。
3.不透明的袋子中只有4个黑球和2个白球,这些球除颜色外无其他差别,随机从袋子中一次摸出3个球,下列事件是不可能事件的是( ) A .3个球都是黑球 B .3个球都是白球 C .三个球中有黑球D .3个球中有白球答案:B考点:事件的判断。
解析:因为袋中只有2个白球,所以,从袋子中一次摸出3个都是白球是不可能的,选B 。
4.现实世界中,对称现象无处不在,中国的方块字中有些也具有对称性,下列美术字是轴对称图形的是( ) A .诚B .信C .友D .善答案:D考点:轴对称图形。
解析:平面内,一个图形沿一条直线折叠,直线两旁的部分能够完全重合的图形就是轴对称图形,如图,只有D才是轴对称图形。
5.如图是由5个相同的小正方体组成的几何体,该几何题的左视图是()答案:A考点:三视图。
解析:左面看,左边有上下2个正方形,右边只有1个正方形,所以,A符合。
6.“漏壶”是一种这个古代计时器,在它内部盛一定量的水,不考虑水量变化对压力的影响,水从壶底小孔均匀漏出,壶内壁有刻度.人们根据壶中水面的位置计算时间,用t表示漏水时间,y表示壶底到水面的高度,下列图象适合表示y与x的对应关系的是()答案:A考点:函数图象。
解析:因为壶是一个圆柱,水从壶底小孔均匀漏出,水面的高度y 是均匀的减少, 所以,只有A 符合。
7.从1、2、3、4四个数中随机选取两个不同的数,分别记为a 、c ,则关于x 的一元二次方程ax 2+4x +c =0有实数解的概率为( ) A .41B .31C .21 D .32 答案:C考点:概率,一元二次方程。
2019湖北武汉中考数学解析
2019年湖北省武汉市初中毕业、升学考试数 学(满分150分,考试时间120分钟)一、选择题:本大题共10小题,每小题3分,共30分.不需写出解答过程,请把最后结果填在题后括号内. 1.(2019湖北武汉,1,3分)实数2019的相反数是( )A .2019B .-2019C .20191D .20191-【答案】B【解析】∵a 的相反数是-a ,∴2019的相反数是-2019.故选B . 【知识点】相反数2.(2019湖北武汉,2,3分)式子1-x 在实数范围内有意义,则x 的取值范围是( )A .x >0B .x ≥-1C .x ≥1D .x ≤1【答案】C【解析】由1-x 在实数范围内有意义,得x -1≥0,解得x ≥1,故选B .【知识点】二次根式有意义的条件 3.(2019湖北武汉,3,3分) 不透明的袋子中只有4个黑球和2个白球,这些球除颜色外无其他差别,随机从袋子中一次摸出3个球,下列事件是不可能事件的是( ) A .3个球都是黑球 B .3个球都是白球 C .三个球中有黑球D .3个球中有白球【答案】B【解析】A 中,3个球都是黑球是随机事件;B 中3个球都是白球是不可能事件;C 中,三个球中有黑球是随机事件;D 中,3个球中有白球是随机事件.故选B .【知识点】必然事件、不可能事件、随机事件 4.(2019湖北武汉,4,3分) 现实世界中,对称现象无处不在,中国的方块字中有些也具有对称性,下列美术字是轴对称图形的是( ) A .诚B .信C .友D .善【答案】D【解析】四个方块字中可以看作轴对称图形的是“善”,故选D . 【知识点】轴对称图形 5.(2019湖北武汉,5,3分) 如图是由5个相同的小正方体组成的几何体,该几何题的左视图是( )A .B .C .D .【答案】A【解析】从左面看易得第一层有1个正方形,第二层有2个正方形,如图所示:故选A .【知识点】简单组合体的三视图 6.(2019湖北武汉,6,3分)“漏壶”是一种这个古代计时器,在它内部盛一定量的水,不考虑水量变化对压力的影响,水从壶底小孔均匀漏出,壶内壁有刻度.人们根据壶中水面的位置计算时间,用t 表示漏水时间,y 表示壶底到水面的高度,下列图象适合表示y 与x 的对应关系的是( )【答案】A【解析】由题意知:开始时,壶内盛一定量的水,所以y 的初始位置大于0,可以排除B ;由于漏壶漏水的速度不变,所以图中的函数应该是一次函数,可以排除C 、D 选项.故选A . 【知识点】函数图象 7.(2019湖北武汉,7,3分)从1、2、3、4四个数中随机选取两个不同的数,分别记为a 、c ,则关于x 的一元二次方程ax 2+4x +c =0有实数解的概率为( ) A .41B .31 C .21 D .32 【答案】C【解析】列表如下: 1 2 3 41 ——(1,2) (1,3) (1,4)2 (2,1) ——(2,3) (2,4)3 (3,1) (3,2) —— (3,4)4 (4,1) (4,2) (4,3) ——所有等可能的情况有12种,其中关于x 的一元二次方程ax 2+4x +c =0有实数根的情况有6种,分别为(1,2),(1,3),(1,4),(2,1),(3,1),(4,1),则P =61122=.故选C . 【知识点】概率,一元二次方程8.(2019湖北武汉,8,3分) 已知反比例函数xky =的图象分别位于第二、第四象限,A (x 1,y 1)、B (x 2,y 2)两点在该图象上,下列命题:① 过点A 作AC ⊥x 轴,C 为垂足,连接O A .若△ACO 的面积为3,则k =-6;②若x 1<0<x 2,则y 1>y 2;③ 若x 1+x 2=0,则y 1+y 2=0其中真命题个数是( ) A .0B .1C .2D .3【答案】D【解题过程】①中,由反比例的几何意义可知,S △ACO =12|xy |=3,∴|k |=|xy |=6,∵图象位于第二、第四象限,DCBA∴k =-6.正确;∵x 1<0<x 2,∴点A 在第二象限,点B 在第四象限,故y 1>y 2,正确;③中,∵y 1=16x -,y 2=26x -,∴y 1+y 2=16x -+26x -=12126()x x x x -+,若x 1+x 2=0,∴ y 1+y 2=0.正确,其中真命题有3个.故选D . 【知识点】反比例函数的图象与性质,反比例函数的几何意义,命题9.(2019湖北武汉,9,3分) 如图,AB 是⊙O 的直径,M 、N 是弧AB (异于A 、B )上两点,C 是弧MN上动点,∠ACB 的角平分线交⊙O 于点D ,∠BAC 的平分线交CD 于点E .当点C 从点M 运动到点N 时,则C 、E 两点的运动路径长的比是( ) A .2B .2πC .23 D .25【答案】A【思路分析】由条件可求∠AEB =135°,∴E 在以AD 为半径的⊙D 上(定角定圆),分别找到C 和E 的路径、半径、圆心角,然后用弧长公式求路径比值 【解题过程】由题得∠1=∠2=12∠C =45°,∠3=∠4,∠5=∠6 设∠3=∠4=m ,∠5=∠6=n ,得m +n =45°,∴∠AEB =∠C +m +n =90°+45°=135° ∴E 在以AD 为半径的⊙D 上(定角定圆)如图,C 的路径为¼MN,E 的路径为»PQ 设⊙O 的半径为1,则⊙D 2,∴¼»MNPQ=421360222360ttππ⨯⨯⨯2 4t 2t t165432QP EDAOBC M N10.(2019湖北武汉,10,3分)观察等式:2+22=23-2;2+22+23=24-2;2+22+23+24=25-2…已知按一定规律排列的一组数:250、251、252、…、299、2100.若250=a ,用含a 的式子表示这组数的和是( ) A .2a 2-2aB .2a 2-2a -2C .2a 2-aD .2a 2+a【答案】C【思路分析】①设y 1=2+22+…+2100,y 2=2+22+…+249,②250+251+252+…+299+2100=y 1-y 2. 【解题过程】设y 1=2+22+…+2100,y 2=2+22+…+249,∴250+251+252+…+299+2100=y 1-y 2=(2+22+…+2100)-(2+22+…+249)=(2101-2)-(250-2)=2101-2-250+2=2101-250=250(251-1)=250(2×250-1).∵250=a ,∴原式=a (2a -1)=2a 2-a .故选C .【知识点】规律探究型,整式的乘除,幂的运算性质二、填空题:本大题共6小题,每小题3分,共18分.不需写出解答过程,请把最后结果填在题中横线上. 11.(2019湖北武汉,11,3分)计算16的结果是___________. 【答案】4【解析】16=24=4.【知识点】二次根式的性质 12.(2019湖北武汉,12,3分)武汉市某气象观测点记录了5天的平均气温(单位:℃),分别是25、20、18、23、27,这组数据的中位数是___________. 【答案】23【解析】把这一组数据从小到大的顺序排列为:18、20、23、25、27,位于中间的数为23.故这组数据的中位数为23.【知识点】中位数13.(2019湖北武汉,13,3分) 计算411622---a a a 的结果是___________. 【答案】14a + 【解析】原式=()()244444a a a a a a +-+-+-()()= ()2444a a a a --+-()= ()444a a a -+-()= 1a (+4).【知识点】分式的加减14.(2019湖北武汉,14,3分) 如图,在□ABCD 中,E 、F 是对角线AC 上两点,AE =EF =CD ,∠ADF =90°,∠BCD =63°,则∠ADE 的大小为___________.【答案】21°【解析】如图,∵四边形ABCD 是平行四边形,∴AD ∥BC ,∴∠1=∠5.∵∠ADF =90°,AE =EF ,∴DE =12AF =AE ,∴∠1=∠2.∴∠5=∠2.∵AE =CD ,DE =AE ,∴DE =C D .∴∠3=∠4.∵∠3=∠1+∠2=2∠2.∴∠4=2∠2. ∵ ∠BCD =63°,∴∠5+∠4=63°.即3∠2=63°,∴∠2=21°.即∠ADE =21°.【知识点】平行四边形的性质,等腰三角形的判定与性质,三角形外角的性质,直角三角形的性质15.(2019湖北武汉,15,3分)抛物线y=ax2+bx+c经过点A(-3,0)、B(4,0)两点,则关于x的一元二次方程a(x-1)2+c=b-bx的解是___________.【答案】x=-2或5【思路分析】①利用待定系数法求出抛物线的解析式,把b,c分别用含a的代数式表示;②把b,c的值代入一元二次方程a(x-1)2+c=b-bx中,并整理;③解这个一元二次方程.【解析】∵抛物线y=ax2+bx+c经过点A(-3,0)、B(4,0)两点,∴y=a(x+3)(x-4)=ax2-2ax-12a.∴b=-2a,c=-12a.∴一元二次方程为a(x-1)2-12a=-2a+2ax,整理,得ax2-3ax-10a=0,∵a≠0,∴x2-3x-10=0,解得x1=-2,x2=5.【知识点】二次函数的图象与性质,待定系数法求二次函数的解析式,一元二次方程的解法16.(2019湖北武汉,16,3分)问题背景:如图1,将△ABC绕点A逆时针旋转60°得到△ADE,DE与BC交于点P,可推出结论:PA+PC=PE.问题解决:如图2,在△MNG中,MN=6,∠M=75°,MG=24.点O是△MNG内一点,则点O到△MNG三个顶点的距离和的最小值是___________.【答案】29【思路分析】由题构造等边△MFN,△MHO,图中2个彩色三角形全等,∴OM+ON+OG=HO+HF+OG,∴距离和最小值为FG=29RT△FQG勾股定理)【解题过程】由题构造等边△MFN,△MHO,图中2个彩色三角形全等(△MFH≌△MNO(SAS))∴OM+ON+OG=HO+HF+OG,∴距离和最小值为FG=29(Rt△FQG勾股定理)44426图2FHGNOM【知识点】最短路径问题,旋转的性质,全等三角形的判定与性质三、解答题(本大题共8小题,满分72分,解答应写出文字说明、证明过程或演算步骤)17.(2019湖北武汉,17,8分)计算:(2x2)3-x2·x4【思路分析】根据同底数幂的乘法运算法则和积的乘方运算法则进行计算即可.【解题过程】解:原式=8x6-x6=7x6【知识点】同底数幂的乘法;积的乘方18.(2019湖北武汉,18,8分)如图,点A、B、C、D在一条直线上,CE与BF交于点G,∠A=∠1,CE∥DF,求证:∠E=∠F【思路分析】由∠A =∠1可得到AE ∥BF ,进而得到∠2=∠E ,由,CE ∥DF 可得到∠2=∠F ,∠E =∠F 即可得证. 【解题过程】证明:∵∠A =∠1, ∴AE ∥BF , ∴∠E =∠2. ∵CE ∥DF , ∴∠F =∠2. ∴∠E =∠F .【知识点】平行线的判定和性质 19.(2019湖北武汉,19,8分)为弘扬中华传统文化,某校开展“双剧进课堂”的活动,该校童威随机抽取部分学生,按四个类别:A 表示“很喜欢”,B 表示“喜欢”,C 表示“一般”,D 表示“不喜欢”,调查他们对汉剧的喜爱情况,将结果绘制成如下两幅不完整的统计图,根据图中提供的信息,解决下列问题:各类学生人数条形统计图 各类学生人数扇形统计图 (1) 这次共抽取_________名学生进行统计调查,扇形统计图中,D 类所对应的扇形圆心角的大小为__________ (2) 将条形统计图补充完整(3) 该校共有1500名学生,估计该校表示“喜欢”的B 类的学生大约有多少人?【思路分析】(1)由条形统计图中可以看出C 类的人数为12,扇形统计图中可以看出C 类所占抽取学生人数的比例为24%,C 类的人数除以所占抽取学生人数的比例即可得到学生总人数;D 类人数所占抽取学生人数的比例乘以360°,即可得到D 类所对应的扇形圆心角度数;(2)用抽取学生人数减去B 、C 、D 类的人数即可得到A 类的人数,即可补充条形统计图; (3)用B 类学生所占抽取学生人数的比例乘以学校总人数即可得到该校B 类的学生人数. 【解题过程】(1)抽取学生人数为12÷24%=50;D 类所对应的扇形圆心角的大小为10100%3607250⨯⨯=o o ,故答案为50,72°(2)A 类人数为50-23-12-10=5,补充条形统计图如图人数2310125510152025(3)1500×2350=690(人),∴估计该校表示“喜欢”的B 类的学生大约有690人. 【知识点】条形统计图;扇形统计图;用样本估计总体. 20.(2019湖北武汉,20,8分)如图是由边长为1的小正方形构成的网格,每个小正方形的顶点叫做格点.四边形ABCD 的顶点在格点上,点E 是边DC 与网格线的交点.请选择适当的格点,用无刻度的直尺在网格中完成下列画图,保留连线的痕迹,不要求说明理由(1) 如图1,过点A 画线段AF ,使AF ∥DC ,且AF =DC (2) 如图1,在边AB 上画一点G ,使∠AGD =∠BGC (3) 如图2,过点E 画线段EM ,使EM ∥AB ,且EM =ABECBDAECBDA图1 图2 【思路分析】(1)作平行四边形AFDC 即可;(2)作C 关于AB 的对称点C ′,连接C ′D ,交AB 于点G 即可(3)将线段CD 向下平移三个单位长度,得到C 1D 1,过E 作EM ∥CC 1,交C 1D 1于点M 即为所求. 【解题过程】(1)画图如图1;(2)画图如图1;(3)画图如图2.GF ECBDA MECBDA图1 图2 【知识点】网格作图 21.(2019湖北武汉,21,8分)已知AB 是⊙O 的直径,AM 和BN 是⊙O 的两条切线,DC 与⊙O 相切于点E ,分别交AM 、BN 于D 、C 两点(1) 如图1,求证:AB 2=4AD ·BC(2) 如图2,连接OE 并延长交AM 于点F ,连接CF .若∠ADE =2∠OFC ,AD =1,求图中阴影部分的面积ODEMF EBMO图1 图2 【思路分析】(1)分别连接OD 、OE 、OC ,AM 和BN 是⊙O 的两条切线,DC 与⊙O 相切于点E ,由切线的性质可得OD 平分∠ADC ,OC 平分∠BCD ,由于AD ∥BC ,不难得到∠ODE +∠OCE =90°,因为∠ODE +∠DOE =90°,从而∠DOE =∠OCE ,进而可得△ODE ∽△COE ,则OE 2=ED ·EC ,又AB =2OE ,AD =ED ,EC =BC ,带入即可得到AB 2=4AD ·BC (2)由(1)知∠ADE =∠BOE ,又∠ADE =2∠OFC ,∠BOE =2∠COF =2∠BOC ,即∠COF =∠OFC =∠BOC ,则CD 垂直平分OF ,则∠AOD =∠DOE =∠OFD =30°,∠BOE =120°,从而求得圆的半径OA 32S △OBC -S 扇形OBE即可得到阴影部分的面积.【解题过程】 证明:(1)如图1,连接OD ,OC ,OE . ∵AD ,BC ,CD 是⊙O 的切线,∴OA ⊥AD ,OB ⊥BC ,OE ⊥CD ,AD =ED ,BC =EC ,∠ODE =12∠ADC ,∠OCE =12∠BCD ∴AD //BC ,∴∠ODE +∠OCE =12(∠ADC +∠BCD )=90°, ∵∠ODE +∠DOE =90°,∴∠DOE =∠OCE . 又∵∠OED =∠CEO =90°, ∴△ODE ∽△COE .∴OE ECED OE =,OE 2=ED ·EC ∴4OE 2=4AD ·BC ,∴AB 2=4AD ·BC (2)解:如图2,由(1)知∠ADE =∠BOE ,∵∠ADE =2∠OFC ,∠BOE =∠2COF , ∴∠COF =∠OFC ,∴△COF 等腰三角形。
湖北省武汉市中考数学试卷(解析版)
答案 : 21° 考点 :等边对等角,三角形的内角和定理,直角形斜边上的中线定理。 解析 :因为 AE = EF,∠ ADF = 90°, 所以, DE =AE = EF, 又 AE= EF= CD , 所以, DC = DE, 设∠ ADE= x,则∠ DAE = x, 则∠ DCE=∠ DEC= 2x, 又 AD ∥BC , 所以,∠ ACB =∠ DAE = x, 由∠ ACB+ ∠ ACD= 63°, 得: x+2x = 63°, 解得: x= 21°,所以,∠ ADE 的大小为 21° 15.抛物线 y= ax2+ bx+ c 经过点 A(- 3, 0)、 B(4, 0)两点,则 关于 x 的一元二次方程 a(x- 1)2+ c= b-bx 的解是 ___________ 答案 : x=- 2 或 5 考点 :抛物线,一元二次方程。
DE 与 BC 交于点 P,可推出结论: PA+ PC= PE 问题解决 :如图 2,在△ MNG 中, MN = 6,∠ M = 75°, MG = 4 2 .点 O 是△ MNG 内一点, 则点 O 到△ MNG 三个顶点的距离和的最小值是 ___________
图1
图2
答案 : 2 29
考点 :应用新知识解决问题的能力。 解析 :如下图,将△ MOG 绕点 M 逆时针旋转 60°,得到△ MPQ, 显然△ MOP 为等边三角形, 所以, OM + OG= OP+ PQ, 所以,点 O 到三顶点的距离为: ON + OM + OG =ON+ OP+ PQ= NQ, 所以,当点 N、 O、 P、 Q 在同一条直线上时,有 ON + OM + OG 最小。 此时,∠ NMQ= 75° +60°= 135°, 过 Q 作 QA ⊥ NM 交 NM 的延长线于 A ,
2019年武汉市中考数学试题、答案(解析版)
2019年武汉市中考数学试题、答案(解析版)(满分120分,考试时间120分钟)第Ⅰ卷(选择题 共30分)一、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的) 1.实数2 019的相反数是( )A.2 019B. 2 019-C.12 019D.12 019- 2.x 的取值范围是( )A.0x ≥B.1x ≥-C.1x ≥D.1x ≤3.在不透明袋子中只有4个黑球和2个白球,这些球除颜色外无其他差别.随机从袋子中一次摸出3个球.下列事件是不可能事件的是( ) A.3个球都是黑球 B.3个球都是白球 C.3个球中有黑球D.3个球中有白球4.现实世界中,对称现象无处不在,中国的方块字中有些也具有对称性.下列美术字是轴对称图形的是( )A BCD5.如图是由5个相同的小正方体组成的几何体,该几何体的左视图是 ( )ABCD6.“漏壶”是一种中国古代计时器,在它内部盛一定量的水,不考虑水量变化对压力的影响,水从壶底小孔均匀漏出。
壶内壁有刻度,人们根据壶中水面的位置计算时间,用x 表示漏水时间,y 表示壶底到水面的高度。
下列图象适合表示y 与x 的对应关系的是( )ABCD7.从1,2,3,4四个数中随机选取两个不同的数,分别记为a ,c 则关于x 的一元二次方程240ax x c ++=有实数解的概率是 ( ) A.14B.13C.12D.238.已知反比例函数ky x=的图像分别位于第二,四象限,11(,)A x y ,22(,)B x y 两点在该图象上,下列命题: ①过点A 作AC x ⊥轴,C 为垂足,连接OA .若ACO 的面积是3,则6k =-;②若120x x <<,则12y y >; ③若120x x +=,则120y y += 其中真命题个数是( )A.0B.1C.2D.39.如图,AB 是O 的直径,M ,N 是(,)AB A B 异于上两点,C 是MN 上一动点,ACB ∠的平分线交O 于点D ,BAC∠的平分线交CD 于点E ,当点C 从点M 运动到点N 时,则C ,E 两点的运动路径长的比是 ( ) A.2B.π2C.32D.5210.观察等式:232222+=-;23422222++=-;2345222222+++=-;⋅⋅⋅.已知按一定规律排列的一组数:505152991002,2,2,,2,2⋅⋅⋅.若502a =,用含a 的式子表示这组数的和是( )A.222a a -B.2222a a --C.22a a -D.22a a +第Ⅰ卷(非选择题 共90分)二、填空题(本大题共6小题,每小题3分,共18分.请把答案填在题中的横线上) 11.计算16的结果是 .12.武汉市某气象观测点记录了5天的平均气温(单位:Ⅰ),分别是25,20,18,23,27,这组数据的中位数是 . 13.计算221164a a a ---的结果是 .14.如图,在ABCD 中,E ,F 是对角线AC 上两点,AE EF CD ==,90ADF ∠=︒,63BCD ∠=︒,则ADE ∠的大小是 .15.抛物线2y ax bx c =++经过(3,0)A -,(4,0)B 两点,则关于x 的一元二次方程2(1)aa x c b bx -+=-的解是 . 16.问题背景:如图1,将ABC 绕点A 逆时针旋转60︒得到ADE ,DE 与BC 交于点P ,可推出结论:PA PC PE +=.问题解决:如图2,在MNG 中,6MN =,75M ∠=︒,42MG =.点O 是MNG 内一点,则点O 到MNG 三个顶点的距离和最小值是 .三、解答题(本大题共8小题,共72分.解答应写出必要的文字说明、证明过程或演算步骤) 17.(本小题满分8分)计算:2324(2)x x x -.18.(本小题满分8分)如图,点A ,B ,C ,D 在一条直线上,CE 与BF 交于点G ,1A ∠=∠,CE DF ∥.求证:E F ∠=∠.19.(本小题满分8分)为弘扬中华传统文化,某校开展“汉剧进课堂”的活动.该校随机抽取部分学生,按四个类别:A 表示“很喜欢”,B 表示“喜欢”,C 表示“一般”,D 表示“不喜欢”,调查他们对汉剧的喜欢情况,将结果绘制成如下两幅不完整的统计图.根据图中提供的信息,解决下列问题.(1)这次共抽取 名学生进行调查统计,扇形统计图中,D 类所对应的扇形圆心角的大小是 ; (2)将条形统计图补充完整;(3)该校共有1 500名学生,估计该校表示“喜欢”的B 类学生大约有多少人?20.(本小题满分8分)如图是由边长为1的小正方形构成的网格,每个小正方形的顶点叫做格点.四边形ABCD 的顶点在格点上,点E 是边DC 与网格线的交点.请选择适当的格点,用无刻度的直尺在网格中完成下列画图,保留连线的痕迹,不要求说明理由. (1)如图1,过点A 画线段AF ,使AF DC ∥,且AF DC =;(2)如图1,在边AB 上画一点G ,使AGD BGC ∠=∠; (3)如图2,过点E 画线段EM ,使EM AB ∥,且EM AB =.21.(本小题满分8分)已知AB 是O 的两条切线,DC 与O 相切于点E ,分别交AM ,BN 于点D ,两点. (1)如图1,求证:24AB AD BC =;(2)如图2,连接OE 并延长交AM 于点F ,连接CF .若2ADE OFC ∠=∠,1AD =,求图中阴影部分的面积.22.(本小题满分10分)某商店销售一种商品,经市场调查发现,该商品的周销售量y (件)是售价x (元/件)的一次函数.其售价、周销售量、注:周销售利润=周销售量×(售价-进价)(1)①求y 关于x 的函数解析式(不要求写出自变量的取值范围);②该商品进价是 元/件;当售价是 元/件时,周销售利润最大,最大利润是 元;(2)由于某种原因,该商品进价提高了m 元/件(0m >),物价部门规定该商品售价不得超过65元/件.该商店在今后的销售中,周销售量与售价仍然满足(1)中的函数关系.若周销售最大利润是1 400元,求m 的值.23.(本小题满分10分) 在tABC R 中,90ABC ∠=︒,ABn BC=,M 是BC 边上的一点,连接AM . (1)如图1,若1n =,N 是AB 延长线上一点,CN 与AM 垂直.求证:BM BN =; (2)过点B 作BP AM ⊥,P 作为垂足,连接CP 并延长交AB 于点Q . ①如图2,若1n =,求证:CP BMPQ BQ=; ②如图3,若M 是BC 的中点,直接写出tan BPQ ∠的值(用含n 的式子表示).24.(本小题满分12分)已知抛物线21(1)4C y x =--:和22C y x =:.(1)如何将抛物线1C 平移得到抛物线2C ?(2)如图1,抛物线1C 与x 轴正半轴交于点A ,直线43y x b =-+经过点A ,交抛物线1C 于另一点B .请你在线段AB 上取点P ,过点P 作直线PQ y ∥轴交抛物线1C 于点Q ,连接AQ . ①若AP AQ =,求点P 的横坐标; ②若PA PQ =,直接写出点P 的横坐标. (3)如图2,MNE 的顶点M ,N 在抛物线2C 上,点M 在点N 右边,两条直线ME ,NE 与抛物线2C 均有唯一公共点,ME ,NE 均与y 轴不平行.若MNE 的面积为2,设M ,N 两点的横坐标分别为m ,n ,求m 与n 的数量关系.2019年武汉市中考数学答案解析5.【答案】A 【解析】左视图是,俯视图是,主视图是,故选A .12ACDSk =在第二象限,,即1y y +【考点】反比例函数的图像与性质.A,设O 的半径为是O 直径,90︒,∵CD 平分ACB ∠分别平分CAB ∠是ABC 的内心,∴90CBA ∠=︒,∴45∠=︒,∴)135EAB EBA +∠=︒,又∵是ACE 的外角,∴EAC ∠,∵的长为半径作O,则点在D 分别交D于点H,O中,MN长πr D中,HG,则C,180为一边构造等边MAG,以MO为一边构造等边MOB,则MOG MBA≅,∴BA OG=∴ON OM OG ON OB BA ++=++,∴当点N ,O ,B ,A 四点共线时,NO ,OB ,BA 三条线段在同一直线上,此时线段之和最短.过点A 作AC NM ⊥,交NM 的延长线于点C ,180180756045MAC NMG GMA ∠=︒-∠-∠=︒-︒-︒=︒,∵42MA =,∴4CA CM ==,∵6MN =,∴4610CN CM MN =+=+=,在t ACN R 中,2222104229NA CN CA =+=+=.【考点】最短路径问题. 17.【答案】解:原式668x x =-(5分) 67x =(8分)【解析】先算积的乘方、同底数幂的乘法,再合并同类项,注意运算顺序. 【考点】积的乘方公式、同底数幂的乘法公式、合并同类项. 18.【答案】证明:∵=1A ∠∠,∴AE BF ∥, (2分) ∴2E ∠=∠.(4分) ∵CE F ∥D ,∴2F ∠=∠ (6分) ∴E F ∠=∠.(8分)【解析】先证明AE BF ∥,再利用平行线的性质进行角的等量代换. 【考点】平行线的判定与性质. 19.【答案】解:(1)已知C 类人数为12人,所占百分比为24%,可求得总人数为122450()÷=%人;D 类对应的扇形圆心角为103607250⨯︒=︒. (2分) (2)A 类学生人数为502312105()---=人.(3分)(5分) (3)231 500690()50⨯=人,(7分) ∴估计该校表示“喜欢”的B 类学生大约有690人.(8分)【解析】(1)已知C 类人数为12人,所占百分比为24%,可求得总人数为122450()÷=%人;D 类所对应的扇形圆心角为103607250⨯︒=︒;(2)A 类学生人数为502312105()---=人;(3)用全校总人数乘B 类学生所占比例即可. 【考点】统计,考查形式为条形统计图与扇形统计图相结合. 20.【答案】解:(1)画图如图1.(2分)(2)画图如图1. (5分) (3)画图如图2.(8分)【解析】(1)因为AD BC ∥,所以只需作AD CF =,可得四边形AFCD 是平行四边形,再根据平行四边形的性质可得AF DC ∥,且AF DC =;(2)延长CB 到P ,使BP BC =,连接DP 交AB 于点G ,点G 即为所求;(3)根据平行线之间的平行线段相等构造平行四边形完成作图.【考点】以方格纸为背景的几何作图,借助尺规作图画线段和点. 21.【答案】解:(1)证明:如图1,过点D 作DH BC ⊥,H 为垂足,是O 的切线,BC ,AD =是矩形, AB HD =,AD BH =.t CDH R 中,22DH CD CH =-22()(AB AD BC BC AD =+--24AB AD BC =.(2)如图2,连接OD ,OC ,1)知ADE BOE ∠=∠∴COF OFC ∠=∠,∴COF 等腰三角形.OE CD ⊥, CD 垂直平分OF .AOD DOE OFD ∠=∠=∠120=︒.∴在tAOD R 中,OA =t BOC R 中,tan603BC OB =︒==2BOCBOE S S S -阴影扇形1120=2332360⨯⨯⨯-=33π-.【解析】(1)利用切线长定理、勾股定理求解;(2)先判断C 垂直平分OF ,再得出特殊角的度数,从而通过割补法将不规则图形的面积转化为三角形面积与扇形面积的差来计算,使复杂问题简单化. 【考点】圆与相似三角形的应用. 22.【答案】解:(1)①设y 与x 的函数关系式为(0)y kx b b =+≠,依题意有50100,6080,k b k b +=⎧⎨+=⎩解得2,200,k b =-⎧⎨=⎩∴y 与x 的函数关系式是2200y x =-+; (2分) ②40,70,1 800.(5分)设该商品进价为a 元,则根据表格可列(50)100 1 000a -⨯=,解得40a =, ∵(40)(2200w x x =--+)22(70) 1 800x =--+,故当售价为70元/件时,最大利润为1 800元. (2)依题意有(2200(40)w x x m =-+--)∵0m >,解:(1)证明:延长AM 交CN 于点H ,∴AB BC =,ABC CBN ∠=∠.∴()ABM CBN ASA ≅,BM BN =.(2)①证明:过点;C 作CD BP ∥交AB 的延长线于点D ,∵CD BP ∥, ∴QPB QCD ,CP DB PQ BQ =CP BMPQ BQ=. 1n.1122S AM BP AB BM ABM ==,2mn1122S BH CN CH BC BCH ==, 2214mCN n =+.CN BH ⊥,PM BH ⊥, MP CN ∥, CM BM =,214n +)证明ABM CBN ≅;(2)①过点BP 延长线于点H ,作CN BH ⊥【考点】了统计表和扇形统计图的综合运用三角形全等得证明、三角形相似的判定和性质、锐角三角函数.先向左平移1个单位长度,再向上平移()①如图,设抛物线1C 与y 轴交于C 点,直线AB 与轴交于D 点,②设AB与轴交于D点,PQ与x轴交于点E,4∵PQ y∥轴,∴ADO APE,AD AOAP AE=,533AP m=-,553AP m=-,PA PQ=,24(4)(23)3m m m-+---=解得:13()m=舍去,223m=-∴点P的横坐标为2-.2:C y x=,211)()22S m n MNE =-3124==, ∴2m n -=.(12分)【解析】(1)考查函数的平移变换,通过求出两个抛物线的顶点坐标,从(1,4)-平移到(0,0)可知平移的方向和距离;(2)①利用抛物线关系式求点A 的坐标,再求出直线AB 的关系式,可知直线AB 与y 轴的交点D 的坐标,又求点D 关于x 轴的对称点D '的坐标,然后可得直线AD '的关系式,最后直线AD '与抛物线的关系式联立方程组可解得点Q 和点P 的横坐标;②设AB 与y 轴交点D ,PQ 与x 轴交于点E ,设出P ,Q 的坐标,根据ADOAPE ,表示出AP 的长度,由PA PQ =,列出方程,得到m 的值;(3)通过抛物线的表达式设点M ,N 的坐标,利用待定系数法和直线与抛物线有唯一交点,联立方程组,通过0∆=求直线ME ,NE 的关系式,再联立直线ME ,NE 得点E 的坐标,作EF y ∥轴,交MN 于点F ,则MNE的面积为EF 与点M ,N 的坐标之差的乘积的一半. 【考点】二次函数图像的平移、二次函数与三角形的结合.。
(高清版)2019年湖北省武汉市中考数学试卷
绝密★启用前湖北省武汉市2019年初中毕业生学业考试数学(满分120分,考试时间120分钟)第Ⅰ卷(选择题共30分)一、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.实数2 019的相反数是()A.2 019B. 2 019-C.12 019D.12 019-2.式子1x-在实数范围内有意义,则x的取值范围是()A.0x≥ B.1x≥- C.1x≥ D.1x≤3.在不透明袋子中只有4个黑球和2个白球,这些球除颜色外无其他差别.随机从袋子中一次摸出3个球.下列事件是不可能事件的是()A.3个球都是黑球B.3个球都是白球C.3个球中有黑球D.3个球中有白球4.现实世界中,对称现象无处不在,中国的方块字中有些也具有对称性.下列美术字是轴对称图形的是()A B C D5.如图是由5个相同的小正方体组成的几何体,该几何体的左视图是()A B C D6.“漏壶”是一种中国古代计时器,在它内部盛一定量的水,不考虑水量变化对压力的影响,水从壶底小孔均匀漏出。
壶内壁有刻度,人们根据壶中水面的位置计算时间,用x表示漏水时间,y表示壶底到水面的高度。
下列图象适合表示y与x的对应关系的是()A B C D7.从1,2,3,4四个数中随机选取两个不同的数,分别记为a,c则关于x的一元二次方程240ax x c++=有实数解的概率是()A.14B.13C.12D.238.已知反比例函数kyx=的图像分别位于第二,四象限,11(,)A x y,22(,)B x y两点在该图象上,下列命题:①过点A作AC x⊥轴,C为垂足,连接OA.若ACOV的面积是3,则6k=-;②若12x x<<,则12y y>;③若12x x+=,则12y y+=其中真命题个数是()A.0B.1C.2D.39.如图,AB是Oe的直径,M,N是»(,)AB A B异于上两点,C是¼MN上一动点,ACB∠的平分线交Oe于点D,BAC∠的平分线交CD于点E,当点C从点M运动到点N时,则C,E两点的运动路径长的比是()A.2B.π2C.32D.510.观察等式:232222+=-;23422222++=-;2345222222+++=-;⋅⋅⋅.已知按一定规律排列的一组数:505152991002,2,2,,2,2⋅⋅⋅.若502a=,用含a的式子表示这组数的和是()A.222a a- B.2222a a-- C.22a a- D.22a a+毕业学校_____________姓名________________考生号___________________________________________-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------第Ⅰ卷(非选择题 共90分)二、填空题(本大题共6小题,每小题3分,共18分.请把答案填在题中的横线上) 11.的结果是 .12.武汉市某气象观测点记录了5天的平均气温(单位:Ⅰ),分别是25,20,18,23,27,这组数据的中位数是 . 13.计算221164a a a ---的结果是 .14.如图,在ABCD Y 中,E ,F 是对角线AC 上两点,AE EF CD ==,90ADF ∠=︒,63BCD ∠=︒,则ADE ∠的大小是 .15.抛物线2y ax bx c =++经过(3,0)A -,(4,0)B 两点,则关于x 的一元二次方程2(1)aa x c b bx -+=-的解是 .16.问题背景:如图1,将ABC V 绕点A 逆时针旋转60︒得到ADE V ,DE 与BC 交于点P ,可推出结论:PA PC PE +=.问题解决:如图2,在MNG V 中,6MN =,75M ∠=︒,MG =点O 是MNG V 内一点,则点O 到MNG V 三个顶点的距离和最小值是 .三、解答题(本大题共8小题,共72分.解答应写出必要的文字说明、证明过程或演算步骤)17.(本小题满分8分)计算:2324(2)x x x -g .18.(本小题满分8分)如图,点A ,B ,C ,D 在一条直线上,CE 与BF 交于点G ,1A ∠=∠,CE DF ∥.求证:E F ∠=∠.19.(本小题满分8分)为弘扬中华传统文化,某校开展“汉剧进课堂”的活动.该校随机抽取部分学生,按四个类别:A 表示“很喜欢”,B 表示“喜欢”,C 表示“一般”,D 表示“不喜欢”,调查他们对汉剧的喜欢情况,将结果绘制成如下两幅不完整的统计图.根据图中提供的信息,解决下列问题.(1)这次共抽取 名学生进行调查统计,扇形统计图中,D 类所对应的扇形圆心角的大小是 ;(2)将条形统计图补充完整;(3)该校共有1 500名学生,估计该校表示“喜欢”的B 类学生大约有多少人?20.(本小题满分8分)如图是由边长为1的小正方形构成的网格,每个小正方形的顶点叫做格点.四边形ABCD 的顶点在格点上,点E 是边DC 与网格线的交点.请选择适当的格点,用无刻度的直尺在网格中完成下列画图,保留连线的痕迹,不要求说明理由. (1)如图1,过点A 画线段AF ,使AF DC ∥,且AF DC =; (2)如图1,在边AB 上画一点G ,使AGD BGC ∠=∠; (3)如图2,过点E 画线段EM ,使EM AB ∥,且EM AB =.21.(本小题满分8分)已知AB 是O e 的两条切线,DC 与O e 相切于点E ,分别交AM ,BN 于点D ,两点.(1)如图1,求证:24AB AD BC =g ;(2)如图2,连接OE 并延长交AM 于点F ,连接CF .若2ADE OFC ∠=∠,1AD =,求图中阴影部分的面积.22.(本小题满分10分) 某商店销售一种商品,经市场调查发现,该商品的周销售量y (件)是售价x (元/件)注:周销售利润=周销售量×(售价-进价)(1)①求y 关于x 的函数解析式(不要求写出自变量的取值范围);②该商品进价是 元/件;当售价是 元/件时,周销售利润最大,最大利润是 元;(2)由于某种原因,该商品进价提高了m 元/件(0m >),物价部门规定该商品售价不得超过65元/件.该商店在今后的销售中,周销售量与售价仍然满足(1)中的函数关系.若周销售最大利润是1 400元,求m 的值.-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------毕业学校_____________ 姓名________________ 考生号________________ ________________ ___________23.(本小题满分10分)在t ABC R V中,90ABC ∠=︒,ABn BC=,M 是BC 边上的一点,连接AM . (1)如图1,若1n =,N 是AB 延长线上一点,CN 与AM 垂直.求证:BM BN =; (2)过点B 作BP AM ⊥,P 作为垂足,连接CP 并延长交AB 于点Q . ①如图2,若1n =,求证:CP BMPQ BQ=; ②如图3,若M 是BC 的中点,直接写出tan BPQ ∠的值(用含n 的式子表示).24.(本小题满分12分)已知抛物线21(1)4C y x =--:和22C y x =:.(1)如何将抛物线1C 平移得到抛物线2C ?(2)如图1,抛物线1C 与x 轴正半轴交于点A ,直线43y x b =-+经过点A ,交抛物线1C 于另一点B .请你在线段AB 上取点P ,过点P 作直线PQ y ∥轴交抛物线1C 于点Q ,连接AQ .①若AP AQ =,求点P 的横坐标; ②若PA PQ =,直接写出点P 的横坐标. (3)如图2,MNE V 的顶点M ,N 在抛物线2C 上,点M 在点N 右边,两条直线ME ,NE 与抛物线2C 均有唯一公共点,ME ,NE 均与y 轴不平行.若MNE V的面积为2,设M ,N 两点的横坐标分别为m ,n ,求m 与n 的数量关系.数学答案解析5.【答案】A【解析】左视图是,俯视图是,主视图是,故选A.180104229NA CN CA =+=+=【考点】最短路径问题. 17.【答案】解:原式668x x =-(5分)67x =(8分)【解析】先算积的乘方、同底数幂的乘法,再合并同类项,注意运算顺序. 【考点】积的乘方公式、同底数幂的乘法公式、合并同类项. 18.【答案】证明:∵=1A ∠∠,ⅠAE BF ∥, (2分) Ⅰ2E ∠=∠.(4分) ∵CE F ∥D ,Ⅰ2F ∠=∠ (6分) ⅠE F ∠=∠.(8分)【解析】先证明AE BF ∥,再利用平行线的性质进行角的等量代换. 【考点】平行线的判定与性质. 19.【答案】解:(1)已知C 类人数为12人,所占百分比为24%,可求得总人数为122450()÷=%人;D 类对应的扇形圆心角为103607250⨯︒=︒.(2分)(2)A 类学生人数为502312105()---=人.(3分)(5分)(3)231 500690()50⨯=人,(7分)∴估计该校表示“喜欢”的B 类学生大约有690人.(8分)【解析】(1)已知C 类人数为12人,所占百分比为24%,可求得总人数为122450()÷=%人;D 类所对应的扇形圆心角为103607250⨯︒=︒;(2)A 类学生人数为502312105()---=人;(3)用全校总人数乘B 类学生所占比例即可.【考点】统计,考查形式为条形统计图与扇形统计图相结合. 20.【答案】解:(1)画图如图1.(2分)(2)画图如图1.(5分)(3)画图如图2.(8分)【解析】(1)因为AD BC ∥,所以只需作AD CF =,可得四边形AFCD 是平行四边形,再根据平行四边形的性质可得AF DC ∥,且AF DC =;(2)延长CB 到P ,使BP BC =,连接DP 交AB 于点G ,点G 即为所求;(3)根据平行线之间的平行线段相等构造平行四边形完成作图.【考点】以方格纸为背景的几何作图,借助尺规作图画线段和点.21.【答案】解:(1)证明:如图1,过点D 作DH BC ⊥,H 为垂足,ⅠAD ,BC ,CD 是O e 的切线,ⅠOA AD ⊥,OB BC ⊥,AD ED =,BC EC =, Ⅰ四边形ABHD 是矩形, ⅠAB HD =,AD BH =.(2分)在t CDH R V中,222DH CD CH =-, Ⅰ222()()AB AD BC BC AD =+--, Ⅰ24AB AD BC =g .(3分)(2)如图2,连接OD ,OC ,由(1)知ADE BOE ∠=∠,∵2ADE OFC ∠=∠,=2BOE COF ∠∠, ⅠCOF OFC ∠=∠, ⅠCOF V 等腰三角形.∵OE CD ⊥,【解析】(1)利用切线长定理、勾股定理求解;(2)先判断C 垂直平分OF ,再得出特殊角的度数,从而通过割补法将不规则图形的面积转化为三角形面积与扇形面积的差来计算,使复杂问题简单化. 【考点】圆与相似三角形的应用. 22.【答案】解:(1)①设y 与x 的函数关系式为(0)y kx b b =+≠,依题意有50100,6080,k b k b +=⎧⎨+=⎩解得2,200,k b =-⎧⎨=⎩∴y 与x 的函数关系式是2200y x =-+;(2分)②40,70,1 800.(5分)设该商品进价为a 元,则根据表格可列(50)100 1 000a -⨯=,解得40a =, Ⅰ(40)(2200w x x =--+)22(70) 1 800x =--+,故当售价为70元/件时,最大利润为1 800元. (2)依题意有(2200(40)w x x m =-+--)解:(1)证明:延长AM 交CN 于点H ,(2)①证明:过点;C 作CD BP ∥交AB 的延长线于点D ,22ABM V2mn()①如图,设抛物线1C与轴交于C点,直线AB与轴交于D点,②设AB与轴交于D点,PQ与x轴交于点E,4数学试卷第21页(共24页)数学试卷第22页(共24页)数学试卷 第23页(共24页) 数学试卷 第24页(共24页)2,∴2m n -=.(12分)【解析】(1)考查函数的平移变换,通过求出两个抛物线的顶点坐标,从(1,4)-平移到(0,0)可知平移的方向和距离;(2)①利用抛物线关系式求点A 的坐标,再求出直线AB的关系式,可知直线AB 与y 轴的交点D 的坐标,又求点D 关于x 轴的对称点D '的坐标,然后可得直线AD '的关系式,最后直线AD '与抛物线的关系式联立方程组可解得点Q 和点P 的横坐标;②设AB 与y 轴交点D ,PQ 与x 轴交于点E ,设出P ,Q 的坐标,根据ADO APE :V V ,表示出AP 的长度,由PA PQ =,列出方程,得到m 的值;(3)通过抛物线的表达式设点M ,N 的坐标,利用待定系数法和直线与抛物线有唯一交点,联立方程组,通过0∆=求直线ME ,NE 的关系式,再联立直线ME ,NE 得点E 的坐标,作EF y ∥轴,交MN 于点F ,则MNE V 的面积为EF 与点M ,N 的坐标之差的乘积的一半.【考点】二次函数图像的平移、二次函数与三角形的结合.。
2019年湖北省武汉市中考数学试卷含答案
绝密★启用前 6.“在此卷上答题无效影湖北省武汉市 2019 年初中毕业生学业考试用数学的(满分 120 分,考试时间 120 分钟)第Ⅰ卷(选择题共 30 分)一、选择题(本大题共 10 小题,每小题 3 分,共 30 分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.实数 2 019 的相反数是( )1 1 7.从B. 2 019C.D.A.2 0192 019 2 019(方2.式子x 1 在实数范围内有意义,则x的取值范围是A. x 0B. x 1C. x 13.在不透明袋子中只有 4 个黑球和 2 个白球,这些球除颜色外无其他差别.随机从袋子中一次摸出 3 个球.下列事件是不可能事件的是)AD. x 18.已( )象A.3 个球都是黑球C.3 个球中有黑球B.3 个球都是白球D.3 个球中有白球①②4.现实世界中,对称现象无处不在,中国的方块字中有些也具有对称性.下列美术字是③轴对称图形的是( )其A点9.如A B C D5.如图是由 5 个相同的小正方体组成的几何体,该几何体的左视图是( )A10.按组(A B C D数学试卷第1 页(共8 页)第Ⅱ卷(非选择题 共 90 分)18.(本小题满分如图,点 ACE ∥DF .二、填空题(本大题共 6 小题,每小题 3 分,共 18 分.请把答案填在题中的横线上) 11.计算 16 的结果是12.武汉市某气象观测点记录了 5 天的平均气温(单位:℃),分别是 25,20,18,23,27,这 组数据的中位数是 ..2a 113.计算的结果是.a 2 16 a 414.如图,在中,E ,F 是对角线 AC 上两点,AE EF CD ,ADF 90,BCD 63,则 ADE 的大小是.19.(本小题满分为弘扬中华传四个类别:欢”,调查他中提供的信息y ax 2bx c A ( 3, 0) B (4, 0) x两点,则关于 的一元二次方程15.抛物线 经过 , aa ( x 1) c b bx的解是2.16.问题背景:如图 1,将绕点 A 逆时针旋转 60 得到 ,DE 与 BC 交于点P ,可推出结论: PA PC PE .问题解决:如图 2,在 内一点,则点O 到中,MN 6 ,M 75 ,MG 4 2 .点O 是 三个顶点的距离和最小值是.(1)这次共圆心角的大(2)将条形三、解答题(本大题共 8 小题,共 72 分.解答应写出必要的文字说明、证明过程或演算(3)该校共步骤)17.(本小题满分 8 分)(2x 2 ) 3 x2计算: . 数学试卷 第 3 页(共 8 页)20.(本小题满分 8 分)在此卷上答题无效如图是由边长为 1 的小正方形构成的网格,每个小正方形的顶点叫做格点.四边形ABCD 的顶点在格点上,点 E 是边 DC 与网格线的交点.请选择适当的格点,用无刻度的直尺在网格中完成下列画图,保留连线的痕迹,不要求说明理由. (1)如图 1,过点 A 画线段 AF ,使 AF ∥DC ,且 AF DC ; (2)如图 1,在边 AB 上画一点 G ,使 AGD BGC ; (3)如图 2,过点 E 画线段 EM ,使 EM ∥AB ,且 EM AB .22.21.(本小题满分 8 分) 已知 AB 是 的两条切线, DC 与 相切于点 E ,分别交 AM , BN 于点 D , 两点.(1)如图 1,求证: AB 2 4AD ; (2)如 图 2,连接OE 并延长交 AM 于点 F ,连接CF .若AD E O 2F C ,AD 1,求图中阴影部分的面积.数学试卷 第 5 页(共 8 页)23.(本小题满分 10 分)在R t 中,ABC 90,24.(本小题满分ABBCn ,M BC AM.已知抛物线是边上的一点,连接(1)如何将(1)如图 1,若n1,N 是AB延长线上一点,CN 与AM 垂直.求证:BM BN ;(2)过点B 作BP AM ,P 作为垂足,连接CP 并延长交AB于点Q .CP BM(2)如图1线C 于另一1①如图 2,若n 1,求证:;PQ BQ点Q,连接②如图 3,若M 是BC 的中点,直接写出tan BPQ 的值(用含n的式子表示).AP A①若②若PA P Q(3)如图 2ME,NE 与面积为 2,设数学试卷第7 页(共8 页)湖北省武汉市2019 年初中毕业生学业考试数学答案解析1.【答案】B【解析】根据相反数的定义,只有符号不同的两个数,互为相反数.因此2 019的相反数是2 019,故选B.【考点】相反数.2.【答案】C【解析】由x1在实数范围内有意义,可得x10,即x1,故选C.【考点】二次方根式有意义的条件.3.【答案】B【解析】A.从袋子中一次摸出3个球共3种可能,即有3个黑球,2黑1白,2白1黑,都是黑球的情况可能发生,也可能不发生,属于随机事件;B.因袋中只有2个白球,故从袋子中一次摸出3个球都是白球属于不可能事件;C.因袋中只有2个白球,故从袋中一次摸出3个球有白球可能发生,也可能不发生,属于随机事件,故选B.【考点】概率.4.【答案】D【解析】如果一个平面图形沿一条直线折叠,直线两旁的部分能够完全重合,这个图形就叫做轴对称图形,这条直线是它的对称轴.很明显A,B,C 选项都不是轴对称图形,故选D.【考点】轴对称图形.5.【答案】A【解析】左视图是,俯视图是,主视图是,故选A.【考点】简单组合体三视图的判断.6.【答案】Ay x【解析】根据水从壶底小孔均匀漏出的速度一定,即是的一次函数,又由于随着时间的增加,壶底到水y x面的高度逐渐降低,故随的增大而减小,故选A.【考点】一次函数的实际意义.7.【答案】C【解析】从1,2,3,4 四个数中随机选取两个不同的数,共6 种等可能结果,分别为(1,2),(1,3),(1,4), (2,3),(2,4),(3,4);一元二次方程ax4x c 0有实数解即 16 4ac 0 ,解得ac 4 ,满足条件23 1 a c 的 , 共3 种,为(1,2),(1,3),(1,4),故P (一元二次方程有实数解) ,故选C . 6 2【考点】一元二次方程根的判别式和概率的计算. 8.【答案】D 1【解析】①SACDk 3,∴ k 6,∵反比例函数的图像位于第二、四象限,∴k 0 ,∴k 6,故 2①正确;②由x 0 x ,可知点A 在第二象限,点B 在第四象限,故y y ,故②正确;③若x x 0 ,1 2 1 2 1 2即x x ,则点A 与点B 关于原点对称,∴y y ,即y y 0,故③正确,∴真命题个数有 3 个, 1 2 1 2 1 2故选D .【考点】反比例函数的图像与性质. 9.【答案】A1【解析】连接M O ,N O ,BE ,设 O 的半径为 ,连接 r D A ,DB ,设MON a,则MDN a ,∵2AB 是O 直径,∴ACB ADB 90 ,∵C D 平分ACB ,∴ACD BCD DAB DBA 45 ,∵AE ,C D 分别平分CAB ,ACB ,∴点E 是 ABC 的内心,∴BE 平分CBA ,∵CAB CBA 90 ,∴EAB EBA 45 ,∴AEB 180 (EAB EBA ) 135,又∵DAE 45EAB ,DEA 是 ACE ∴D EA 45 EAC∵EAB EAC∴的 外 角 , , , ∴DAE DEA , DA DE 2OA 2r ,以点D 为圆心,以DA 的长为半径作O,则点 在E D 上,连接D M ,DN ,a πr 分别交D 于点 , 则点 的运动路径为 H G C,点E 的运动路径为 O长l ,中,M N,DM NH G 180 a πr1 180 a π 2r2 ,故选A . 中, 长l 2 ,则C ,E 两点的运动路径长的比为 1 H G a π 2r180 2180【考点】圆上的两个点运动路径长的比的问题.10.【答案】C【解析】由规律知,2 22232n 2n1 2 ,则222232100 21012①,2 22232492502②,①-②得故选C.2 50+25125221002101 25022502502502a a,2【考点】探索规律.11.【答案】4【解析】16 代表16的算术平方根,∵4216,∴16 4,故16 4.【考点】算术平方根.12.【答案】23【解析】将这组数据按照由小到大的顺序排列为18,20,23,25,27,∴中位数是23.【考点】中位数的判断.113.【答案】a 42a 1 2a a 4 2a a 4 a 4 1【解析】.a216a 4(a 4)(a 4)(a 4)(a 4)(a 4)(a 4)(a 4)(a 4)a 4【考点】本题考分式的化简运算.14.【答案】21【解析】∵ADF 90,AE EF,∴AE EF DE,∵AE EF CD,∴AE EF DE CD,设EAD EDA a,则DEC 2a ,DCE 2a,∵BCD 63,∴ACB 632a,∵四边形ABC D 是平行四边形,∴A D∥BC,∴DAC ACB,∴a 632a,解得a 21,即ADE 21.【考点】平行四边形与角度的计算.15.【答案】x 2,x 51 2【解析】一元二次方程为a (x 1)2 c b b x ,可以转化为a (x 1)2 b (x 1) c 0 ,此一元二次方程的根y a (x 1)2 b (x 1) c 与 轴的交点的横坐标,又二次函数y a (x 1) b (x 1) c 是由 x 2 即为二次函数 y ax 2bx c 向右平移一个单位长度得到的,且原抛物线与 轴的交点坐标为(3, 0) ,(4,0) ,x 二次函数 x (2,0) ,(5,0) ,故一元二次方程a (x 1)2 c b b x 的根为x 1 2,则平移后抛物线与 轴的交点坐标为x 2 5.【考点】一元二次方程的根与二次函数图像的关系以及二次函数图像的平移. 16.【答案】2 29【解析】以M G 为一边构造等边MAG ,以M O 为一边构造等边M O B ,则 M O G MBA ,∴BA OG , 又OB O M ,∴ONO MOG ON OB BA ,∴当点N ,O ,B ,A 四点共线时,NO ,OB ,BA三条线段在同一直线上,此时线段之和最短.过点 A 作 AC N M ,交 N M 的延长线于点C ,MAC 180 NM G GMA 180 75 60 45,∵MA 4 2 ,∴CA C M 4 ,∵MN 6 ,∴C N C M MN 4 6 10 ,在R tA CN 中, NA CN CA 10 4 2 29.2 2 2 2 【考点】最短路径问题.17.【答案】解:原式8x 6 x6 (5 分) (8 分)7x6【解析】先算积的乘方、同底数幂的乘法,再合并同类项,注意运算顺序. 【考点】积的乘方公式、同底数幂的乘法公式、合并同类项. 18.【答案】证明:∵∠A =∠1,∴AE ∥BF , ∴E 2.(2 分) (4 分) (6 分) (8 分)∵CE ∥D F ,∴F 2 ∴E F .【解析】先证明AE ∥BF ,再利用平行线的性质进行角的等量代换.【考点】平行线的判定与性质. 19.【答案】解:(1)已知C 类人数为12 人,所占百分比为24%,可求得总人数为1224 50( ) ; 类对应的扇形 % 人 D圆心角为10(2 分)360 72 . 50人(2)A 类学生人数为50 2312 10 5( ) .(3 分)(5 分)(7 分) 23(3)1 500690(人) , 50∴估计该校表示“喜欢”的B 类学生大约有690 人.(8 分)【解析】(1)已知C 类人数为12 人,所占百分比为24%,可求得总人数为1224% 50(人) ;D 类所对应 的扇形圆心角为10360 72 ;(2)A 类学生人数为50 2312 10 5( ) ;( )用全校总人数乘 类人 3 B 50学生所占比例即可.【考点】统计,考查形式为条形统计图与扇形统计图相结合. 20.【答案】解:(1)画图如图1.(2 分)(2)画图如图1. (3)画图如图2.(5 分) (8 分)【解析】(1)因为A D∥BC,所以只需作AD CF,可得四边形AFC D是平行四边形,再根据平行四边形的性质可得AF∥DC,且AF DC;(2)延长CB到P,使BP BC,连接DP交AB于点G,点G即为所求;(3)根据平行线之间的平行线段相等构造平行四边形完成作图.【考点】以方格纸为背景的几何作图,借助尺规作图画线段和点.21.【答案】解:(1)证明:如图1,过点D作D H BC,H为垂足,∵AD ,BC ,C D 是O 的切线,∴OA AD ,OB BC ,A D ED ,BC EC , ∴四边形ABH D 是矩形, ∴AB HD ,AD BH .CD CH 2, (2 分)(3 分)在R t CD H 中,D H 2 2∴AB 2 (AD BC )2 (BC AD )2 ,∴AB 4AD BC .2 (2)如图2,连接O D ,O C ,由(1)知ADE BOE , ∵ADE 2OFC ,BO E =2COF , ∴COF OFC ,∴C OF 等腰三角形.∵OE CD ,∴C D 垂直平分OF .∴AO D DOE OFD 30 ,BOE 120.(5 分) (7 分)∴在R t AOD 中,OAA D3 ,在R t B O C 中,BC OB t an60 3. t an 30∴S 阴影=2SBOCS 扇形B OE1 120=23 32 360π( 3) 2 =3 3 π .(8 分)【解析】(1)利用切线长定理、勾股定理求解;(2)先判断C 垂直平分OF ,再得出特殊角的度数,从而通 过割补法将不规则图形的面积转化为三角形面积与扇形面积的差来计算,使复杂问题简单化. 【考点】圆与相似三角形的应用. 22.【答案】50k b 100,解:(1)①设 与 的函数关系式为y kx b (b 0),依题意有k 2, 解得b 200,y x 60k b 80, ∴ 与 的函数关系式是 y 2x 200;y x (2 分) (5 分)②40,70,1 800.a (50 a )100 1000 ,解得a 40, 设该商品进价为 元,则根据表格可列 ∵w (x 40)(2x 200)2(x 70)2 1 800 ,故当售价为70 元/件时,最大利润为1 800 元. (2)依题意有w (2x 200)(x 40 m )2x 2 (2m 280)x 8 000 200m m 140 1 2(x)2 m 260m 1 800 ,(7 分)22∵m 0 , m 140∴对称轴x 70 ,2∵2 0, ∴抛物线开口向下, ∵x 65 ,w x ∴ 随 的增大而增大,w (265 200)(65 40 m ),∴当x 65时, 有最大值(9 分)∴(265 200)(65 40 m ) 1 400 ,∴m 5 .(10 分)【解析】(1)设一次函数的表达式为y k x b (b 0),利用点(50,100) ,(60,80) 求一次函数的表达式;根据概率公式直接求概率;(2)首先处理好售价与销售量的关系,再利用周销售利润=周销售量×(售价-进m 价)这个关系即可求出利润最大时 的值.【考点】待定系数法及函数的应用. 23.【答案】解:(1)证明:延长A M 交CN 于点H ,∵A M 与CN 垂直,ABC 90, ∴BA M N 90,BC N N 90 , ∴BA M BCN .(2 分)(3 分)(4 分)∵n 1,ABC 90,∴AB BC ,ABC CBN .∴AB MC B N (ASA ) ,∴B M BN .(2)①证明:过点;C 作C D ∥BP 交AB 的延长线于点D ,则A M 与C D 垂直. 由(1),得B M BD . ∵C D ∥BP , ∴QPBQC D ,CP D B C Q D Q,PQ B Q ,P Q B Q C P B M ∴. (7 分)P Q B Q1 ② . (10 分)n如图3 中,作CH ∥AB 交BP 的延长线于点H ,作CN BH 于点N ,不妨设BC 2m ,则AB 2mn .m m n B M C M m ,C H ,B H 1 4n 2,A M m 1 4n 2 ,n 1 1∵S AB M AM BP AB BM , 2 22mn ∴BP.1 4n 21 1∵S BC H BH CN CH BC , 2 2 2m ∴CN.1 4n 2∵CN BH ,P M BH ,∴MP ∥C N , ∵C M B M , 2mn∴PN BP. 1 4n 2∵BPQ CPN,2mN C P N 1 4n 2 2mn 1∴tan BP Q t an CPN .n 1 4n 22 C 【解析】(1)证明 AB MCBN ;( )①过点 作C D ∥BP,交AB 的延长线于点D ,构造三角形相似即可证明结论;②作CH ∥AB 交BP 延长线于点H ,作CN BH 于点N ,将问题转化为求解CPN 的正 切值即可.【考点】了统计表和扇形统计图的综合运用三角形全等得证明、三角形相似的判定和性质、锐角三角函数. 24.【答案】解:(1)将C 先向左平移1 个单位长度,再向上平移4 个单位长度得到C .(2 分)1 2 y y (2)①如图1,设抛物线C 与 轴交于C 点,直线AB 与 轴交于D 点,1 C : y (x 1)241∵ ∴A (3, 0) ,C (0,3) ,4∵直线y x b 经过A (3, 0) , 3∴b 4,D (0, 4) , ∵AP AQ ,P Q ∥y 轴,Q x ∴P , 两点关于 轴对称, 设D (0, 4)关于 轴的对称点为D ,则x D (0,4) , 4∴可求得直线A D 的解析式为y x 4 ,(3 分)3y x 2x 3,21 由4得x 3,x, 12y x 4 33 1 ∴x , Q 31 ∴x x , p Q 31 ∴点P 的横坐标为 . 3(5 分)②设AB 与 轴交于D 点,P Qy 与 轴交于点E ,x4 设P (m , m 4),则 Q (m ,m 22m 3) ,3∵A (3, 0) ,D (0, 4) ,∴ A D 3 4 5,2 2 ∵P Q ∥y轴,A D O APE ,∴∴ A D A O, AP AE5 3∴, AP 3 m5∴AP 5 m ,3∵PA PQ ,4 5 ∴( m 4) (m 2 2m 3) 5 m ,3 3 2 解得:m 3(舍去) ,m .1 2 3 2∴点P 的横坐标为 .(7 分)3(3)如图3,∵C 2 :y x 2 ,∴M (m ,m 2 ),N (n ,n 2 ) , 设直线ME 的解析式为y k x b,∵M (m ,m 2 ), ∴b m 2 k m ,y x , 2由 得x 2 k x km m 20, (8 分)y k x m 2k m依题意有 k 2 4(km m ) 0 ,解得k 2m , 2 ∴直线ME 的解析式为y 2mx m,2同理,直线NE 的解析式为y 2nx n ,2m ny 2mx m 2 ,x , 由 得 2 y 2nx n2 y mn ,m n∴E (,mn ),2∵M (m ,m 2 ),N (n ,n 2 )∴可求得直线M N 的解析式为y (m n )x mn ,m n m 2 n 2 作EF ∥y 轴交M N于点F 点,则F (, ) , 2 2m 2n 2 21 ∴EFmn (m n )2 ,21 1 ∴S MNE(m n ) (m n ) 2 2 2 1 (m n ) 3 2 , 4∴m n 2 .(12 分)【解析】(1)考查函数的平移变换,通过求出两个抛物线的顶点坐标,从(1,4)平移到(0,0)可知平移的方 y 向和距离;(2)①利用抛物线关系式求点A 的坐标,再求出直线AB 的关系式,可知直线AB 与 轴的交点x D 的坐标,又求点D 关于 轴的对称点D 的坐标,然后可得直线A D 的关系式,最后直线A D 与抛物线的y x Q P Q Q 关系式联立方程组可解得点 和点P 的横坐标;②设AB 与 轴交点D , 与 轴交于点E ,设出P ,的坐标,根据 AD O APE ,表示出AP 的长度,由 PA PQm ,列出方程,得到 的值;(3)通过抛物线的表达式设点M ,N 的坐标,利用待定系数法和直线与抛物线有唯一交点,联立方程组,通过 0求直线ME ,NE 的关系式,再联立直线ME ,NE 得点E 的坐标,作EF ∥y 轴,交M N 于点F ,则MNE的面积为EF 与点M ,N 的坐标之差的乘积的一半. 【考点】二次函数图像的平移、二次函数与三角形的结合.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
湖北省武汉市2019年初中毕业生学业考试数 学(满分120分,考试时间120分钟)第Ⅰ卷(选择题 共30分)一、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的) 1.实数2 019的相反数是( ) A.2 019B. 2 019-C.12 019D.12 019- 2.1x -x 的取值范围是( ) A.0x ≥B.1x ≥-C.1x ≥D.1x ≤3.在不透明袋子中只有4个黑球和2个白球,这些球除颜色外无其他差别.随机从袋子中一次摸出3个球.下列事件是不可能事件的是( )A.3个球都是黑球B.3个球都是白球C.3个球中有黑球D.3个球中有白球 4.现实世界中,对称现象无处不在,中国的方块字中有些也具有对称性.下列美术字是轴对称图形的是( )A BCD5.如图是由5个相同的小正方体组成的几何体,该几何体的左视图是( )ABCD6.“漏壶”是一种中国古代计时器,在它内部盛一定量的水,不考虑水量变化对压力的影响,水从壶底小孔均匀漏出。
壶内壁有刻度,人们根据壶中水面的位置计算时间,用x 表示漏水时间,y 表示壶底到水面的高度。
下列图象适合表示y 与x 的对应关系的是( )ABCD7.从1,2,3,4四个数中随机选取两个不同的数,分别记为a ,c 则关于x 的一元二次方程240ax x c ++=有实数解的概率是( ) A.14B.13C.12D.238.已知反比例函数ky x=的图像分别位于第二,四象限,11(,)A x y ,22(,)B x y 两点在该图象上,下列命题:①过点A 作AC x ⊥轴,C 为垂足,连接OA .若ACO V 的面积是3,则6k =-;②若120x x <<,则12y y >; ③若120x x +=,则120y y += 其中真命题个数是( ) A.0B.1C.2D.3点,9.如图,AB 是O e 的直径,M ,N 是»(,)AB A B 异于上两C 是¼MN上一动点,ACB ∠的平分线交O e 于点D,-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------毕业学校_____________ 姓名________________ 考生号________________ ________________ ___________BAC ∠的平分线交CD 于点E ,当点C 从点M 运动到点N 时,则C ,E 两点的运动路径长的比是 ( )B.π2C.3210.观察等式:232222+=-;23422222++=-;2345222222+++=-;⋅⋅⋅.已知按一定规律排列的一组数:505152991002,2,2,,2,2⋅⋅⋅.若502a =,用含a 的式子表示这组数的和是( ) A.222a a -B.2222a a --C.22a a -D.22a a +第Ⅱ卷(非选择题 共90分)二、填空题(本大题共6小题,每小题3分,共18分.请把答案填在题中的横线上) 11.的结果是 .12.武汉市某气象观测点记录了5天的平均气温(单位:℃),分别是25,20,18,23,27,这组数据的中位数是 .13.计算221164a a a ---的结果是 .14.如图,在ABCD Y 中,E ,F 是对角线AC 上两点,AE EF CD ==,90ADF ∠=︒,63BCD ∠=︒,则ADE ∠的大小是 .15.抛物线2y ax bx c =++经过(3,0)A -,(4,0)B 两点,则关于x 的一元二次方程2(1)aa x c b bx -+=-的解是 .16.问题背景:如图1,将ABC V 绕点A 逆时针旋转60︒得到ADE V ,DE 与BC 交于点P ,可推出结论:PA PC PE +=.问题解决:如图2,在MNG V 中,6MN =,75M ∠=︒,MG =点O 是MNGV 内一点,则点O 到MNG V 三个顶点的距离和最小值是 .三、解答题(本大题共8小题,共72分.解答应写出必要的文字说明、证明过程或演算步骤)17.(本小题满分8分)计算:2324(2)x x x -g .18.(本小题满分8分)如图,点A ,B ,C ,D 在一条直线上,CE 与BF 交于点G ,1A ∠=∠,CE DF ∥.求证:E F ∠=∠.19.(本小题满分8分)为弘扬中华传统文化,某校开展“汉剧进课堂”的活动.该校随机抽取部分学生,按四个类别:A 表示“很喜欢”,B 表示“喜欢”,C 表示“一般”,D 表示“不喜欢”,调查他们对汉剧的喜欢情况,将结果绘制成如下两幅不完整的统计图.根据图中提供的信息,解决下列问题.毕业学校_____________ 姓名________________ 考生号________________ ________________ ___________(1)这次共抽取 名学生进行调查统计,扇形统计图中,D 类所对应的扇形圆心角的大小是 ; (2)将条形统计图补充完整;(3)该校共有1 500名学生,估计该校表示“喜欢”的B 类学生大约有多少人?20.(本小题满分8分)如图是由边长为1的小正方形构成的网格,每个小正方形的顶点叫做格点.四边形ABCD 的顶点在格点上,点E 是边DC 与网格线的交点.请选择适当的格点,用无刻度的直尺在网格中完成下列画图,保留连线的痕迹,不要求说明理由.(1)如图1,过点A 画线段AF ,使AF DC ∥,且AF DC =; (2)如图1,在边AB 上画一点G ,使AGD BGC ∠=∠; (3)如图2,过点E 画线段EM ,使EM AB ∥,且EM AB =.21.(本小题满分8分)已知AB 是O e 的两条切线,DC 与O e 相切于点E ,分别交AM ,BN 于点D ,两点.(1)如图1,求证:24AB AD BC =g ;(2)如图2,连接OE 并延长交AM 于点F ,连接CF .若2ADE OFC ∠=∠,1AD =,求图中阴影部分的面积.22.(本小题满分10分)某商店销售一种商品,经市场调查发现,该商品的周销售量y (件)是售价x (元/注:周销售利润=周销售量×(售价-进价)-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------毕业学校_____________ 姓名________________ 考生号________________ ________________ ___________(1)①求y 关于x 的函数解析式(不要求写出自变量的取值范围);②该商品进价是 元/件;当售价是 元/件时,周销售利润最大,最大利润是 元;(2)由于某种原因,该商品进价提高了m 元/件(0m >),物价部门规定该商品售价不得超过65元/件.该商店在今后的销售中,周销售量与售价仍然满足(1)中的函数关系.若周销售最大利润是1 400元,求m 的值.23.(本小题满分10分) 在tABC R V 中,90ABC ∠=︒,ABn BC=,M 是BC 边上的一点,连接AM . (1)如图1,若1n =,N 是AB 延长线上一点,CN 与AM 垂直.求证:BM BN =; (2)过点B 作BP AM ⊥,P 作为垂足,连接CP 并延长交AB 于点Q . ①如图2,若1n =,求证:CP BM PQ BQ=; ②如图3,若M 是BC 的中点,直接写出tan BPQ ∠的值(用含n 的式子表示).24.(本小题满分12分)已知抛物线21(1)4C y x =--:和22C y x =:.(1)如何将抛物线1C 平移得到抛物线2C ?(2)如图1,抛物线1C 与x 轴正半轴交于点A ,直线43y x b =-+经过点A ,交抛物线1C 于另一点B .请你在线段AB 上取点P ,过点P 作直线PQ y ∥轴交抛物线1C 于点Q ,连接AQ .①若AP AQ =,求点P 的横坐标; ②若PA PQ =,直接写出点P 的横坐标. (3)如图2,MNE V 的顶点M ,N 在抛物线2C 上,点M 在点N 右边,两条直线ME ,NE 与抛物线2C 均有唯一公共点,ME ,NE 均与y 轴不平行.若MNE V的面积为2,设M ,N 两点的横坐标分别为m ,n ,求m 与n 的数量关系.数学答案解析5.【答案】A【解析】左视图是,俯视图是,主视图是,故选A.180104229NA CN CA =+=+=17.【答案】解:原式668x x =-(5分)67x =(8分) 【解析】先算积的乘方、同底数幂的乘法,再合并同类项,注意运算顺序. 【考点】积的乘方公式、同底数幂的乘法公式、合并同类项. 18.【答案】证明:∵=1A ∠∠,∴AE BF ∥, (2分) ∴2E ∠=∠.(4分) ∵CE F ∥D ,∴2F ∠=∠ (6分) ∴E F ∠=∠.(8分)【解析】先证明AE BF ∥,再利用平行线的性质进行角的等量代换. 【考点】平行线的判定与性质. 19.【答案】解:(1)已知C 类人数为12人,所占百分比为24%,可求得总人数为122450()÷=%人;D 类对应的扇形圆心角为103607250⨯︒=︒.(2分)(2)A 类学生人数为502312105()---=人.(3分)(5分)(3)231 500690()50⨯=人,(7分)∴估计该校表示“喜欢”的B 类学生大约有690人.(8分)【解析】(1)已知C 类人数为12人,所占百分比为24%,可求得总人数为122450()÷=%人;D 类所对应的扇形圆心角为103607250⨯︒=︒;(2)A 类学生人数为502312105()---=人;(3)用全校总人数乘B 类学生所占比例即可.【考点】统计,考查形式为条形统计图与扇形统计图相结合. 20.【答案】解:(1)画图如图1.(2分)(2)画图如图1.(5分)(3)画图如图2.(8分)【解析】(1)因为AD BC ∥,所以只需作AD CF =,可得四边形AFCD 是平行四边形,再根据平行四边形的性质可得AF DC ∥,且AF DC =;(2)延长CB 到P ,使BP BC =,连接DP 交AB 于点G ,点G 即为所求;(3)根据平行线之间的平行线段相等构造平行四边形完成作图.【考点】以方格纸为背景的几何作图,借助尺规作图画线段和点.21.【答案】解:(1)证明:如图1,过点D 作DH BC ⊥,H 为垂足,∵AD ,BC ,CD 是O e 的切线,∴OA AD ⊥,OB BC ⊥,AD ED =,BC EC =, ∴四边形ABHD 是矩形, ∴AB HD =,AD BH =.(2分)在t CDH R V中,222DH CD CH =-,∴222()()AB AD BC BC AD =+--,∴24AB AD BC =g .(3分)(2)如图2,连接OD ,OC ,由(1)知ADE BOE ∠=∠,∵2ADE OFC ∠=∠,=2BOE COF ∠∠, ∴COF OFC ∠=∠, ∴COF V 等腰三角形.∵OE CD ⊥,∴CD 垂直平分OF .【解析】(1)利用切线长定理、勾股定理求解;(2)先判断C 垂直平分OF ,再得出特殊角的度数,从而通过割补法将不规则图形的面积转化为三角形面积与扇形面积的差来计算,使复杂问题简单化. 【考点】圆与相似三角形的应用. 22.【答案】解:(1)①设y 与x 的函数关系式为(0)y kx b b =+≠,依题意有50100,6080,k b k b +=⎧⎨+=⎩解得2,200,k b =-⎧⎨=⎩∴y 与x 的函数关系式是2200y x =-+;(2分)②40,70,1 800.(5分)设该商品进价为a 元,则根据表格可列(50)100 1 000a -⨯=,解得40a =, ∵(40)(2200w x x =--+)22(70) 1 800x =--+,故当售价为70元/件时,最大利润为1 800元. (2)依题意有(2200(40)w x x m =-+--)解:(1)证明:延长AM 交CN 于点H ,(2)①证明:过点;C 作CD BP ∥交AB 的延长线于点D ,222mn(2)①如图1,设抛物线1C与轴交于C点,直线AB与轴交于D点,②设AB与轴交于D点,PQ与x轴交于点E,4∴2m n -=.(12分)【解析】(1)考查函数的平移变换,通过求出两个抛物线的顶点坐标,从(1,4)-平移到(0,0)可知平移的方向和距离;(2)①利用抛物线关系式求点A 的坐标,再求出直线AB的关系式,可知直线AB 与y 轴的交点D 的坐标,又求点D 关于x 轴的对称点D '的坐标,然后可得直线AD '的关系式,最后直线AD '与抛物线的关系式联立方程组可解得点Q 和点P 的横坐标;②设AB 与y 轴交点D ,PQ 与x 轴交于点E ,设出P ,Q 的坐标,根据ADO APE :V V ,表示出AP 的长度,由PA PQ =,列出方程,得到m 的值;(3)通过抛物线的表达式设点M ,N 的坐标,利用待定系数法和直线与抛物线有唯一交点,联立方程组,通过0∆=求直线ME ,NE 的关系式,再联立直线ME ,NE 得点E 的坐标,作EF y ∥轴,交MN 于点F ,则MNE V 的面积为EF 与点M ,N 的坐标之差的乘积的一半.【考点】二次函数图像的平移、二次函数与三角形的结合.。