上海大学专业课信号与系统1998答案
信号与系统试卷及参考答案
试卷及答案信号与系统试卷(1)(满分:100分,所有答案一律写在答题纸上)考试班级学号姓名成绩考试日期:年月日,阅卷教师:考试时间120分钟,试卷题共2页一一线性非时变离散系统,具有一初始状态x(0),当激励为时f(k),响应为y(k)=((1/2)k+1)u(k);若初始状态不变,当激励为-f(k)时,响应y(k)=((-1/2)k-1)u(k)为;试求当初始状态2x(0)为,激励为4f(k)时,系统的响应?(10分)二绘出下列函数的图形(1).已知一连续时间信号x(t)如图所示,试概略画出信号y(t)=x(2-t/3)的波形图。
(8分)t(2). 试概略画出信号y(t)=u(t 2-4) 的波形图。
(8分)三 计算下列函数(1). y(t)=⎰-44(t 2+3t+2)(δ(t)+2δ(t-2))dt (4分) (2). f(t)=e -2t u(t), h(t)= e -2t u(t), y(t)=f(t)*h (t) (8分)(3). f(k)=1, k=0,1,2,3, h(k)=1, k=0,1,2,3, y(k)=f(k)*h (k) (8分) (4) 已知f(t)=e -2t u(t), 求y(t)=[t f(2t)] 的富立叶变换 (8分) (5)y’(t)+2y(t)=δ(t)+u(t), y(0)=0, 试求y(t)=? (8分) (6). y(k)-y(k-1)-2y(k-2)=u(k)+2u(k-2), y(-1)= 2,y(-2)= -1/2, 试求零输入响应y x (k)=? 零状态响应y f (k)=? (8分)四 一线性非时变因果系统,当激励为u(t)时,响应为)]2()([cos )(cos )(ππ---+=-t u t u t t tu e t g t ,求当激励f(t)=δ(t)时的响应)(t h 。
(10分)五 某一子系统,当输入f(t)=e -t u(t)时,零状态响应y f (t) = (1/2 e -t - e -2t +1/2e -3t )u(t), 试求将两个这样的子系统串联时,总系统的冲激响应。
信号与系统习题部分参考答案
信号与系统第三章习题部分参考答案3-2 已知连续时间周期信号()⎟⎠⎞⎜⎝⎛+⎟⎠⎞⎜⎝⎛+=35sin 432cos 2t t t f ππ。
将其表示成复指数傅立叶级数形式,求n F ,并画出双边幅度谱和相位谱。
解:由于()t f 为连续的时间周期信号。
由于题易知T=61ω=3π又()⎟⎠⎞⎜⎝⎛+⎟⎠⎞⎜⎝⎛+=35sin 432cos 2t t t f ππ即有2=a 12=a 45=b 200==a F ()2121222=−=jb a F ()221555j jb a F −=−=431F F F ==故()53322212t j tj jee tf ππ−+=又nn F F −=其双边幅度谱如图 3-2-1所示易知43210ϕϕϕϕϕ====25πϕ−=25πϕ=−其相位谱如图 3-2-2所示15w −12w −012w 15w wnF 0F 2 15−F 2−F 2F 5F 图 3-2-115w −015w wnϕ2π2π−图3-2-2 相位谱3-4 如题图3-4所示信号,求指数形式和三角形式的傅里叶级数。
所示信号,求指数形式和三角形式的傅里叶级数。
()t f 1EE −T2/T 题图3-4t()t f 21T t()t f 31TT−00T−T 24T 4T −t()t f 61TT−04T 4T −2T 2T −()t f 5()t f 4A TT2T−A TT−4T 4T−00()a ()b ()c()d()e ()f ttt解:(a ) 由于)(1t f 为奇函数故有为奇函数故有 00=a })sin()sin([2202∫∫+=−TT n dt nwt dt nwt T E b=]1)[cos(2−ππn n E0 n=2k N k ∈πn E4− n=2k+1 N k ∈∴ ]))12sin((121)5sin(51)3sin(31)[sin(4)(1⋅⋅⋅++++⋅⋅⋅⋅+++−=wt k k wt wt wt E t f π=)sin(]1)[cos(121nwt n nEn −−∑∞=ππ]1)[cos()(21−−=−=ππn n E j jb a F n n njnwt jnwt n e n n E j e F t f }1)[cos(1)(1−−==∑∑+∞∞−+∞∞−ππ3-8:设()()ωF t f ↔,试用()ωF 表示下列各信号的频谱。
信号与系统考研试题答案
信号与系统考研试题答案一、选择题1. 信号的傅里叶变换具有以下哪些性质?A. 线性B. 时移C. 频移D. 以上都有答案:D解析:傅里叶变换具有线性性质,即两个信号的傅里叶变换等于它们各自傅里叶变换的和;具有时移性质,即时域中的平移对应频域中的相乘以频率因子;具有频移性质,即频域中的平移对应时域中的相乘以复指数函数。
2. 下列哪个系统是线性时不变系统?A. 弹簧质量阻尼系统B. 电子滤波器C. 人体生理系统D. 经济系统答案:B解析:线性时不变系统是指系统对任何输入信号的响应可以分解为对每个单独输入分量的响应的线性组合,并且这种关系不随时间变化。
电子滤波器满足这一定义,而其他选项中的系统通常不具备这种性质。
3. 连续时间信号的拉普拉斯变换定义中,s表示什么?A. 复频域变量B. 时域变量C. 空间变量D. 频率变量答案:A解析:拉普拉斯变换是将连续时间信号从时域转换到复频域的数学工具,其中s代表复频域变量,它包含了频率和阻尼因子。
4. 在数字信号处理中,离散傅里叶变换(DFT)的主要应用是什么?A. 信号的去噪B. 信号的压缩C. 信号的频谱分析D. 信号的滤波答案:C解析:离散傅里叶变换(DFT)主要用于分析离散信号的频率成分,即信号的频谱分析。
而去噪、压缩和滤波通常是通过其他方法或变换来实现的。
二、填空题1. 一个连续时间信号若在整个时间轴上绝对可积,则其傅里叶变换存在的条件是________。
答案:该信号的傅里叶变换收敛解析:连续时间信号的傅里叶变换存在的必要条件是信号在整个时间轴上绝对可积,即其积分绝对值有限。
2. 在信号与系统中,单位脉冲函数通常用符号________表示。
答案:δ(t)解析:单位脉冲函数是一个理想化的信号,其在t=0处的值无限大,但在整个时间轴上的积分为1,通常用δ(t)表示。
三、简答题1. 简述线性系统和非线性系统的区别。
答案:线性系统满足叠加原理,即系统对多个输入信号的响应等于对每个单独输入信号响应的和。
《信号与系统》课后习题参考答案
《信号与系统》课后习题参考答案第二章 连续信号与系统的时域分析2-9、(1)解:∵系统的微分方程为:)(2)(3)(t e t r t r '=+',∴r(t)的阶数与e(t) 的阶数相等,则h(t)应包含一个)(t δ项。
又∵系统的特征方程为:03=+α,∴特征根3-=α∴)()(2)(3t u Ae t t h t -+=δ∴)]()(3[)(2)(33t e t u e A t t h t t δδ--+-+'=')()(3)(23t A t u Ae t t δδ+-'=-将)(t h 和)(t h '代入微分方程(此时e(t)= )(t δ),得:)()(3)(23t A t u Ae t t δδ+-'-+3)(2)]()(2[3t t u Ae t t δδ'=+-∴A=-6则系统的冲激响应)(6)(2)(3t u et t h t --=δ。
∴⎰⎰∞--∞--==t td ue d h t g τττδτττ)](6)(2[)()(3⎰∞-=t d ττδ)(2⎰∞---t d u e τττ)(63 )()(6)(203t u d e u t t ⎰-∞--=τττ )()3(6)(203t u e t u t --=-τ)()1(2)(23t u e t u t -+=- )(23t u e t -=则系统的阶跃响应)(2)(3t u et g t -=。
2-11、解:①求)(t r zi : ∵系统的特征方程为:0)3)(2(652=++=++αααα,∴特征根:21-=α,32-=α ∴t t zi e C eC t r 3221)(--+= (t ≥0) ②求)(t r zs :t t e A eA t h 3221)(--+= (t ≥0),可求得:11=A ,12-=A (求解过程略) ∴)()()(32t u e e t h t t ---=∴)(*)()(*)()]()[(*)()(*)()(3232t u e t u e t u e t u e t u e e t u e t h t e t r t t t t t t t zs --------=-==)()2121()()(21)()(3232t u e e e t u e e t u e e t t t t t t t -------+-=---= ③求)(t r :)(t r =)(t r zi +)(t r zs ++=--)(3221t te C e C )2121(32t t t e e e ---+- t tt e C e C e 3221)21()1(21---++-+= (t ≥0) ∵)()(t u Ce t r t -=,21=C 21=C ∴ 011=-C , ∴ 11=C0212=+C 212-=C ∴=-)0(r 21211)0(21=-=+=+C C r zi , ='-)0(r 2123232)0(21-=+-=--='+C C r zi 2-12、解:(1)依题意,得:)(2)(*)()(t u e t h t u t r tzi -=+)()()(t t h t r zi δ=+∴)(2)]()([*)()(t u e t r t t u t r t zi zi -=-+δ)(2)()()()1(t u e t r t u t r t zi zi --=-+∴)()12()()()1(t u e t r t r t zi zi -=---,两边求导得:)()12()(2)()(t e t u e t r t r t t zi ziδ-+-=-'-- )(2)()()(t u e t t r t r t zi zi--=-'δ ∴)(11)(112)()()1(t p p t p t t r p zi δδδ+-=+-=- ∴)()(11)(t u e t p t r t zi -=+=δ (2)∵系统的起始状态保持不变,∴)()(t u e t r t zi -=∵)()()(t t h t r zi δ=+,∴)()()(t u e t t h t--=δ∴)]()([*)()()(*)()()(33t u e t t u e t u e t h t e t r t r t t t zi ----+=+=δ )()()(t u te t u e t u e tt t ----+=)()2(t u e t t --= 2-16、证:∑∑∞-∞=--∞-∞=--=-=k k t k t k t u e k t t u e t r )3()3(*)()()3(δ∑∞-∞=--=k k t k t u e e )3(3 ∵当t-3k>0即3t k <时:u(t-3k)为非零值 又∵0≤t ≤3,∴k 取负整数,则:3003311)(---∞=∞=----===∑∑e e e e e et r t k k k t k t 则t Ae t r -=)(,且311--=e A 。
信号与系统习题答案(注教材---郑君里编)
《信号与系统》课程习题与解答第三章习题(教材上册第三章p160-p172)3-1~3-3,3-5,3-9,3-12,3-13,3-15~3-17,3-19,3-22,3-24,3-25,3-29,3-32第三章习题解答3-2 周期矩形信号如题图3-2所示。
若:求直流分量大小以及基波、二次和三次谐波的有效值。
解:直流分量 ⎰⎰--=⨯==2222301105)(1ττv Edt dt t f T a TTf(t)为偶函数,∴0=nb)(2cos )(222T n Sa T E tdt n t f T a n πττωττ⎰-== )(21T n Sa T E a F n n πςτ==基波 =1a )1.0s i n (20)(2πππττ=T Sa T E有效值 39.11.0sin 22021≈=ππa二次谐波有效值 32.122≈a三次谐波有效值 21.123≈a3-3 若周期矩形信号)(1t f 和 )(2t f 波形如题图3-2所示,)(1t f 的参数为s μτ5.0=,s T μ1=,E=1V ;)(2t f 的参数为s μτ5.1=,s T μ3=,E=3V ,分别求:(1))(1t f 的谱线间隔和带宽(第一零点位置),频率单位以kHz 表示; (2))(2t f 的谱线间隔和带宽; (3) )(1t f 和 )(2t f 的基波幅度之比; (4) )(1t f 基波与)(2t f 三次谐波幅度之比。
解:(1))(1t f s μτ5.0= s T μ1= E=1V 谱线间隔:khZ T 10001==∆带宽:KHzB f 20001==τ(2) )(2t f s μτ5.1= s T μ3= E=3V间隔:khZ T 310001==∆谱线带宽:KHzB f 320001==τ(3) )(1t f 基波幅度:ππτ2)2cos(4201==⎰dt t T E T a )(2t f 基波幅度:ππτ6)2cos(4201==⎰dt t T E T a幅度比:1:3(4) )(2t f 三次谐波幅度:ππτ2)23cos(4203-=⨯=⎰dt t T E T a 幅度比:1:13-5 求题图3-5所示半波余弦信号的傅立叶级数。
信号与系统(第1章)上册课后习题答案
0, 0 等幅 0, 0 增幅振荡 0, 0 衰减
第 21 页
4.抽样信号(Sampling Signal)
O
2
2
第 37 页
c.表示符号函数 符号函数:(Signum)
1 sgn( t ) 1
1 u( t ) [sgn( t ) 1] 2
sgnt
t 0 t0
O
t
sgn( t ) u( t ) u( t ) 2u( t ) 1
第 38 页
e
j t
cost j sint
第 20 页
3.复指数信号
f ( t ) Ke st
Ke t cos t jKe t sin t
为复数,称为复频率
( t )
s j
, 均为实常数
的量纲为1 /s , 的量纲为rad/s 讨论
瞬态信号:除准周期信号外的 一切可以用时间函数描述的非 周期信号。
第 10 页
3.连续信号和离散信号
连续时间信号:信号存在的 时间范围内,任意时刻都有定 义(即都可以给出确定的函数 值,可以有有限个间断点)。 用t表示连续时间变量。 离散时间信号:在时间上是 离散的,只在某些不连续的规 定瞬时给出函数值,其他时间 没有定义。 用n表示离散时间变量。
f t f at a 0 波形的压缩与扩展,尺度变换
f (t ) f t 2
f t
2
1
t f 2
2
大学考试试卷《信号与系统》及参考答案
信号与系统一、单项选择题(本大题共46分,共 10 小题,每小题 4.599999 分)1. 若一因果系统的系统函数为则有如下结论——————————() A. 若,则系统稳定 B. 若H(s)的所有极点均在左半s平面,则系统稳定 C. 若H(s)的所有极点均在s平面的单位圆内,则系统稳定。
2. 连续信号,该信号的拉普拉斯变换收敛域为()。
A.B.C.D.3. 连续信号与的乘积,即*=( )A.B.C.D.4. 已知f(t),为求f(t0−at) 应按下列哪种运算求得正确结果?(式中t,a都为正值) A. f(-at)左移t0 B. f(-at) 右移tC. f(at) 左移D. f(at)右移5. 已知 f(t),为求f(t0-at) 应按下列哪种运算求得正确结果?(式中t,a都为正值) A.B. f(at) 右移t0 C. f(at) 左移t/a D. f(-at) 右移t/a6. 系统函数H(s)与激励信号X(s)之间——() A. 是反比关系; B. 无关系; C. 线性关系; D. 不确定。
7. 下列论断正确的为()。
A. 两个周期信号之和必为周期信号; B. 非周期信号一定是能量信号; C. 能量信号一定是非周期信号; D. 两个功率信号之和仍为功率信号。
8. 的拉氏反变换为()A.B.C.D.9. 系统结构框图如下,该系统单位冲激响应h(t)的表达式为()A.B.C.D.10. 已知,可以求得—————()A.B.C.D.二、多项选择题(本大题共18分,共 3 小题,每小题 6 分)1. 线性系统响应满足以下规律————————————() A. 若起始状态为零,则零输入响应为零。
B. 若起始状态为零,则零状态响应为零。
C. 若系统的零状态响应为零,则强迫响应也为零。
D. 若激励信号为零,零输入响应就是自由响应。
2. 1.之间满足如下关系———————()A.B.C.D.3. 一线性时不变因果系统的系统函数为H(s),系统稳定的条件是——()A. H(s)的极点在s平面的单位圆内B. H(s)的极点的模值小于1C. H (s)的极点全部在s平面的左半平面D. H(s)为有理多项式。
信号与系统课后习题参考答案
1试分别指出以下波形是属于哪种信号?题图1-11-2试写出题1-1图中信号的函数表达式。
1-3已知信号)(1t x 与)(2t x 波形如题图1-3中所示,试作出下列各信号的波形图,并加以标注。
题图1-3⑴)2(1-t x ⑵)1(1t x -⑶)22(1+t x⑷)3(2+t x ⑸)22(2-t x ⑹)21(2t x - ⑺)(1t x )(2t x -⑻)1(1t x -)1(2-t x ⑼)22(1t x -)4(2+t x 1-4已知信号)(1n x 与)(2n x 波形如题图1-4中所示,试作出下列各信号的波形图,并加以标注。
题图1-4⑴)12(1+n x ⑵)4(1n x -⑶)2(1n x ⑷)2(2n x -⑸)2(2+n x ⑹)1()2(22--++n x n x⑺)2(1+n x )21(2n x -⑻)1(1n x -)4(2+n x ⑼)1(1-n x )3(2-n x1-5已知信号)25(t x -的波形如题图1-5所示,试作出信号)(t x 的波形图,并加以标注。
题图1-51-6试画出下列信号的波形图:⑴)8sin()sin()(t t t x ΩΩ=⑵)8sin()]sin(211[)(t t t x ΩΩ+= ⑶)8sin()]sin(1[)(t t t x ΩΩ+=⑷)2sin(1)(t tt x = 1-7试画出下列信号的波形图:⑴)(1)(t u e t x t -+=⑵)]2()1([10cos )(---=-t u t u t e t x t π⑶)()2()(t u e t x t --=⑷)()()1(t u e t x t --=⑸)9()(2-=t u t x ⑹)4()(2-=t t x δ1-8试求出以下复变函数的模与幅角,并画出模与幅角的波形图。
⑴)1(1)(2Ω-Ω=Ωj e j X ⑵)(1)(Ω-Ω-Ω=Ωj j e e j X ⑶Ω-Ω---=Ωj j e e j X 11)(4⑷21)(+Ω=Ωj j X 1-9已知信号)]()([sin )(π--=t u t u t t x ,求出下列信号,并画出它们的波形图。
信号与系统习题答案(注教材---郑君里编)
《信号与系统》课程习题与解答第三章习题(教材上册第三章p160-p172)3-1~3-3,3-5,3-9,3-12,3-13,3-15~3-17,3-19,3-22,3-24,3-25,3-29,3-32第三章习题解答3-2 周期矩形信号如题图3-2所示。
若:求直流分量大小以及基波、二次和三次谐波的有效值。
解:直流分量 ⎰⎰--=⨯==2222301105)(1ττv Edt dt t f T a TTf(t)为偶函数,∴0=nb)(2cos )(222T n Sa T E tdt n t f T a n πττωττ⎰-== )(21T n Sa T E a F n n πςτ==基波 =1a )1.0s i n (20)(2πππττ=T Sa T E有效值 39.11.0sin 22021≈=ππa二次谐波有效值 32.122≈a三次谐波有效值 21.123≈a3-3 若周期矩形信号)(1t f 和 )(2t f 波形如题图3-2所示,)(1t f 的参数为s μτ5.0=,s T μ1=,E=1V ;)(2t f 的参数为s μτ5.1=,s T μ3=,E=3V ,分别求:(1))(1t f 的谱线间隔和带宽(第一零点位置),频率单位以kHz 表示; (2))(2t f 的谱线间隔和带宽; (3) )(1t f 和 )(2t f 的基波幅度之比; (4) )(1t f 基波与)(2t f 三次谐波幅度之比。
解:(1))(1t f s μτ5.0= s T μ1= E=1V 谱线间隔:khZ T 10001==∆带宽:KHzB f 20001==τ(2) )(2t f s μτ5.1= s T μ3= E=3V间隔:khZ T 310001==∆谱线带宽:KHzB f 320001==τ(3) )(1t f 基波幅度:ππτ2)2cos(4201==⎰dt t T E T a )(2t f 基波幅度:ππτ6)2cos(4201==⎰dt t T E T a幅度比:1:3(4) )(2t f 三次谐波幅度:ππτ2)23cos(4203-=⨯=⎰dt t T E T a 幅度比:1:13-5 求题图3-5所示半波余弦信号的傅立叶级数。
(完整版)信号与系统课后题答案
《信号与系统》课程习题与解答第二章习题(教材上册第二章p81-p87)2-1,2-4~2-10,2-12~2-15,2-17~2-21,2-23,2-24第二章习题解答2-1 对下图所示电路图分别列写求电压的微分方程表示。
图(a):微分方程:11222012()2()1()()()2()()()()2()()()c cc di t i t u t e t dtdi t i t u t dtdi t u t dt du t i t i t dt ⎧+*+=⎪⎪⎪+=⎪⇒⎨⎪=⎪⎪⎪=-⎩图(b ):微分方程:⎪⎪⎪⎩⎪⎪⎪⎨⎧-==+++=+++⎰⎰2021'2'21'2'11)(01)(1Ri t v Ri Mi Li dt i Ct e Ri Mi Li dt i C)()(1)(2)()2()(2)()(33020022203304422t e dtd MR t v C t v dt d C R t v dt d C L R t v dt d RL t v dt d M L =+++++-⇒ 图(c)微分方程:dt i C i L t v ⎰==211'101)(⎪⎪⎪⎩⎪⎪⎪⎨⎧===⇒⎰dt t v L i t v L i dtdt v L i dt d)(1)(1)(10110'1122011∵ )(122111213t i dt d L C i i i i +=+=)(0(1]1[][101011022110331t e dt dR t v RL v dt d RR L C v dt d R C R C v dt d CC μ=+++++⇒图(d)微分方程:⎪⎩⎪⎨⎧+-=++=⎰)()()()()(1)()(11111t e t Ri t v t v dt t i C t Ri t e μRC v dt d 1)1(1+-⇒μ)(11t e V CR = ∵)()(10t v t v μ=)()(1)1(0'0t e R v t v R Cv v =+-⇒2-4 已知系统相应的其次方程及其对应的0+状态条件,求系统的零输入响应。
信号与系统课后习题答案
信号与系统课后习题答案《低频电⼦线路》⼀、单选题(每题2分,共28分:双号做双号题,单号做单号题)1.若给PN结两端加正向电压时,空间电荷区将()A变窄B基本不变C变宽D⽆法确定2.设⼆极管的端电压为 U,则⼆极管的电流与电压之间是()A正⽐例关系B对数关系C指数关系D⽆关系3.稳压管的稳压区是其⼯作()A正向导通B反向截⽌C反向击穿D反向导通4.当晶体管⼯作在饱和区时,发射结电压和集电结电压应为 ( ) A前者反偏,后者也反偏B前者反偏,后者正偏C前者正偏,后者反偏D前者正偏,后者也正偏5.在本征半导体中加⼊何种元素可形成N型半导体。
()A五价B四价C三价D六价6.加⼊何种元素可形成P 型半导体。
()A五价B四价C三价D六价7.当温度升⾼时,⼆极管的反向饱和电流将()。
A 增⼤B 不变C 减⼩ D不受温度影响8. 稳压⼆极管两端的电压必须()它的稳压值Uz 才有导通电流,否则处于截⽌状态。
A 等于 B ⼤于 C ⼩于 D与Uz ⽆关9. ⽤直流电压表测得放⼤电路中某三极管各极电位分别是2V 、6V 、2.7V ,则三个电极分别是() A (B 、C 、E ) B (C 、B 、E ) C (E 、C 、B ) D(B 、C 、E )10. 三极管的反向电流I CBO 是由()形成的。
A 多数载流⼦的扩散运动 B 少数载流⼦的漂移运动 C 多数载流⼦的漂移运动D少数载流⼦的扩散运动11. 晶体三极管⼯作在饱和状态时,集电极电流Ci 将()。
A 随B i 增加⽽增加 B 随B i 增加⽽减少C 与Bi ⽆关,只决定于eR 和CEuD不变12. 理想⼆极管的正向电阻为( )A A.零 B.⽆穷⼤ C.约⼏千欧 D.约⼏⼗欧13. 放⼤器的输⼊电阻⾼,表明其放⼤微弱信号能⼒()。
A 强B 弱C ⼀般 D不⼀定14. 某两级放⼤电路,第⼀级电压放⼤倍数为5,第⼆级电压放⼤倍数为20,该放⼤电路的放⼤倍数为()。
信号与系统课后答案
信号与系统课后答案第1章1-1题1-1图示信号中,哪些是连续信号?哪些是离散信号?哪些是周期信号?哪些是非周期信号?哪些是有始信号?(c) (d)题1-1图解(a)、(c)、(d)为连续信号;(b)为离散信号;(d)为周期信号;其余为非周期信号;(a)、(b)、(c)为有始(因果)信号。
1-2给定题1-2图示信号f ( t ),试画出下列信号的波形。
[提示:f ( 2t )表示将f ( t )波形压缩,f (2t)表示将f ( t )波形展宽。
](a) 2f (t - 2 ) (b) f ( 2t )(c)f (2t )(d)f (-t +1 ) 题1-2图解以上各函数的波形如图p1-2所示。
图p1-21-3如图1-3图示,R 、L 、C 元件可以看成以电流为输入,电压为响应的简单线性系统S R 、S L 、S C ,试写出各系统响应电压与激励电流函数关系的表达式。
题1-3图解各系统响应与输入的关系可分别表示为)()(t i R t u R R ⋅= tt i Lt u L L d )(d )(= ⎰∞-=tC C i C t u ττd )(1)(S RS L S C1-4如题1-4图示系统由加法器、积分器和放大量为-a 的放大器三个子系统组成,系统属于何种联接形式?试写出该系统的微分方程。
题1-4图解系统为反馈联接形式。
设加法器的输出为x ( t ),由于)()()()(t y a t f t x -+=且)()(,d )()(t y t x t t x t y '==⎰故有)()()(t ay t f t y -='即)()()(t f t ay t y =+'1-5已知某系统的输入f ( t )与输出y ( t )的关系为y ( t ) = | f ( t )|,试判定该系统是否为线性时不变系统?解设T 为系统的运算子,则可以表示为)()]([)(t f t f T t y ==不失一般性,设f ( t ) = f 1( t ) +f 2( t ),则)()()]([111t y t f t f T ==)()()]([222t y t f t f T ==故有)()()()]([21t y t f t f t f T =+=显然)()()()(2121t f t f t f t f +≠+即不满足可加性,故为非线性时不变系统。
考研资料_上海大学_信号考题_真题答案98-06
真题答案一九九八年真题 一、解:()()()()()()()()()()()()()()()()()()2121211222220114022234320.53 1.5()120.5 1.51232112122t tzi t tzi t t zs zi zs zs t t r t C e C e r C C C r C C C r t e e r t r t r t e e u t E s R s s s s s R s s H s E s s s s s h t e e u t ---+------=+=⇒+==⎧⇒⎨=⇒-==-⎩=-=-=-++⇒-==+++++⇒===-++++⇒=-令二、解:()()()()()()()()()()()()()()()()()()()()()()()()()()()2212121221111124211214224222222f t t u t u t u t u t f t t f t u t u t Sa f t f t F j F j Sa Sa F j Sa Sa Sa Sa Sa Sa πδωπδωωωωωωπωωωπωωωωπδω=-+--+-+--⎡⎤⎡⎤⎣⎦⎣⎦''=-↔+=+--↔''∴⋅=*=+''∴=++-''=++令 三、解:112f(t)t()()()()()()()()()()()()()()()()()()()()()()()()()()()()()()()()()()()()()()()()()2212122112221221112211221221211111122222e t t u t u t t u t u t tu t t u t t u t r t t u t u t u t t u t u t t u t e t u t u t u t u t u t u t u t e t t t t r t dt t u t t u t t u t t u t δδδ=--+----⎡⎤⎡⎤⎣⎦⎣⎦=---+--=----+-⎡⎤⎣⎦=-------'=------⎡⎤⎡⎤⎣⎦⎣⎦=--+-''=--+-=--------+-⎰()()()()()()()()()()()()()()()()()()()()323221111111122226262212zs zs r t dt dt t u t t u t t u t t u t f t r t r t e t r t dt dt e t r t f t f t f t -⎡⎤=--------+--=⎣⎦⎡⎤''=*=*⇒=--+-⎣⎦⎰⎰⎰⎰四、解:()()()()()()()()()()()()()()()()()()()()()()()()()()()()()()()1121232132232323322333235616530050030k=03030300302330kR s R s R s s s s s s s kR s R s s s s k s kR s R s R s s s s s s k R s k s k s H s R s s s s k s s s ks s k k ss kk s k H s k H s h t s s s =+++++-⇒=+++==+++-++⇒===++-++-->>⇒<<+=⇒==⇒=⇒++-由劳斯公式:当或时临界稳定五、解:()()()()[]()()()()()()()()()()221211221221=3403114001112134343E s E s R s R s H s E s s s s s r t r t r t e t ••••λ-λλ=λ-λ⎡⎤λλ-⎡⎤⎡⎤⎡⎤⎢⎥⇒=+⎢⎥⎢⎥⎢⎥⎢⎥λ-⎣⎦⎣⎦⎣⎦λ⎣⎦λ⎡⎤=⎢⎥λ⎣⎦===++++'''⇒++=输出方程:微分方程六、解:()()()()()()()()()()()122112122221112211222211222221111221122112211111111111111(1)11111C S R U s U s R R C S C S U s R C S H s U s R C S R C S R C R C R C Ss R C R C S R C S R C S s R C R C H s R C S R C S R C S R C S ⎡⎤⎢⎥⎢⎥=⎢⎥++⎢⎥⎣⎦⇒==-=-++++++-+-⇒==++++一九九九年 真题 一、解:f[0.5(t-4)]()()()()()()()()()()()()()()()()()1243123332sin 2222sin4224212822222()21022j sf t t u t u t f t t j f t G t Sa F j F j F j F j Sa jSa jSa f t F j f t F j e ωππππδωπδωωωωωπωωωπωπωω⎛⎫∴=++--⎡⎤ ⎪⎣⎦⎝⎭⎡⎤⎛⎫=↔++ ⎪⎢⎥⎝⎭⎣⎦=↔⇒=*⇒=++--⎛⎫↔⇒-↔ ⎪⎝⎭令二、解:()[]()1(1)1(1)(1)11()()(1)1()1(1)()()()()()(1)1(1)2(1)s t t t e H s h t e u t s e t u t r t e t h t h e t d e u u t d ed e d e u t τττττττττττ---∞-∞∞---∞+∞+-----=↔=-+=+-=*=-=-+--=+=--⎰⎰⎰⎰三、解:12132220/0.1100/520/1sin t sin 5trad s T rad s rad s A A πππωωΩ=======Ω====Ω∴ΩΩ滤除和 四、解:()()()()()()()()()()()()()()()()221e 11te 1111()111211()1221()111()111111()()()t t zi zi zi t zi zs t zs zi zs u t s u t s R s H s s s s R s H s s s s H s s R s s Y t e u t R s s s s s Y t u t e u t r t r t u t ---↔+↔++=+⋯⋯⋯⋯1+++-=+⋯⋯⋯⋯2+++1-2⇒=+⇒=+==⋅=-++⇒=-⇒+=单位阶跃电压作用下的全响应为:五、解:()()()()32222223212525()523513217112017043139141412070()cos 4sin 4()33912355164551t s sH s s s s s s s s s s s h t e t t u t s s ss -==+++++++=-+++++++⎡⎤⇒=-++⎢⎥⎣⎦∴由劳斯公式: 系统稳定六、已知系统在()()026,110zi zi ==y y 且激励为()k δ时,完全响应为:()()()120.2210.5()k ky k u k ⎡⎤=+⎣⎦,试计算该系统在()()0 2.6,11zi zi ==y y 激励为u(k)时的系统响应。
信号与系统课后习题与解答第一章
1-1 分别判断图1-1所示各波形是连续时间信号还是离散时间信号,若是离散时间信号是否为数字信号?图1-1图1-2解 信号分类如下:⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧--⎩⎨⎧--))(散(例见图数字:幅值、时间均离))(连续(例见图抽样:时间离散,幅值离散))(连续(例见图量化:幅值离散,时间))(续(例见图模拟:幅值、时间均连连续信号d 21c 21b 21a 21图1-1所示信号分别为 (a )连续信号(模拟信号); (b )连续(量化)信号; (c )离散信号,数字信号; (d )离散信号;(e )离散信号,数字信号; (f )离散信号,数字信号。
1-2 分别判断下列各函数式属于何种信号?(重复1-1题所示问) (1))sin(t e at ω-; (2)nT e -; (3))cos(πn ;(4)为任意值)(00)sin(ωωn ;(5)221⎪⎭⎫⎝⎛。
解由1-1题的分析可知: (1)连续信号; (2)离散信号;(3)离散信号,数字信号; (4)离散信号; (5)离散信号。
1-3 分别求下列各周期信号的周期T : (1))30t (cos )10t (cos -; (2)j10t e ;(3)2)]8t (5sin [;(4)[]为整数)(n )T nT t (u )nT t (u )1(0n n ∑∞=-----。
解 判断一个包含有多个不同频率分量的复合信号是否为一个周期信号,需要考察各分量信号的周期是否存在公倍数,若存在,则该复合信号的周期极为此公倍数;若不存在,则该复合信号为非周期信号。
(1)对于分量cos (10t )其周期5T 1π=;对于分量cos (30t ),其周期15T 2π=。
由于5π为21T T 、的最小公倍数,所以此信号的周期5T π=。
(2)由欧拉公式)t (jsin )t (cos e t j ωωω+= 即)10t (jsin )10t (cos e j10t +=得周期5102T ππ==。
信号与系统第二版课后答案 (3)
信号与系统第二版课后答案第一章简介1.1 信号与系统的定义1.1.1 信号的定义信号是对某一现象或信息的描述,可以是物理量、采样值、传感器输出等。
根据信号的不同特性,可以将其分为连续信号和离散信号。
1.1.2 系统的定义系统是对信号加工与处理过程的描述。
系统可以是硬件电路、算法或计算机软件。
根据系统对信号的作用方式,可以将其分为线性系统和非线性系统。
1.2 信号的分类1.2.1 连续信号与离散信号连续信号是在时间上连续变化的信号,可以用数学函数进行描述。
离散信号则是在时间上呈现离散变化的信号,通常通过采样离散化得到。
1.2.2 有限信号与无限信号有限信号是在有限时间内存在的信号,其持续时间有限。
无限信号则是在无限时间内存在的信号,持续时间可以是无限的。
1.3 系统的分类1.3.1 线性系统与非线性系统线性系统满足线性叠加原理,即将输入信号与线性系统的响应相加所得到的输出信号仍然是系统的响应。
非线性系统则不满足线性叠加原理。
1.3.2 因果系统与非因果系统因果系统的输出只与当前和过去的输入有关,不受未来输入的影响。
非因果系统的输出则可能与未来的输入有关。
第二章离散信号与系统2.1 离散信号的表示与性质2.1.1 离散信号的表示离散信号可以通过序列来表示,其中序列是一组按照一定顺序排列的数字。
离散信号可以是有限序列或无限序列。
2.1.2 离散信号的性质离散信号的性质包括幅度、相位、频率、周期性等。
这些性质可以通过变换来描述和分析离散信号。
2.2 离散系统的表示与性质2.2.1 离散系统的表示离散系统可以通过差分方程来表示,其中差分方程描述了输入和输出之间的关系。
离散系统也可以通过单位脉冲响应来描述,单位脉冲响应是当输入为单位脉冲序列时系统的输出。
2.2.2 离散系统的性质离散系统的性质包括稳定性、因果性、线性性等。
这些性质对系统的行为和性能有重要影响。
2.3 离散系统的频域分析2.3.1 傅立叶变换傅立叶变换是一种将信号从时域转换到频域的方法,可以将信号表示为频率的函数。
信号与系统课后答案(PDF)
第二章第二章 课后题答案课后题答案2-1.1.图题2-1所示电路,求响应u 2(t)对激励f(t)的转移算子H(p)及微分方程。
解 其对应的算子电路模型如图题2.1(b )所示,故对节点①,②可列出算子形式的KCL 方程为= +++−=−+0)(111)(1)()(1)(1312121t u p p t u p t f t u p t u p即()=+++−=−+0)(1)()()()(13122121t u p p t u t pf t u t u p联解得)()()(443)(22t f p H t f p p t u =++=故得转移算子为443)()()22++==p p t f t u p H (u 2(t)对f(t)的微分方程为())()(t f t u p p 34422=++即)(t f t u t u dt d t u dt d 3)(4)(4)(22222=++2-2图题2-2所示电路,求响应i(t)对激励f(t)的转移算子H(p)及微分方程。
解 其对应的算子电路模型如图2.2(b)所示。
故得)()(t f p p p p pp t f t i 3011101022221.01)(2+++=+×++=故得转移算子为30111010)()()(2+++==p p p t f t i p Hi(t)对f(t)的微分方程为)()1010()()3011(2t f p t i p p +=++即)(10)(10)(30)(11)(22t f t f dt d t i t i dt d t i dt d +=++2-3图题2-3所示电路,已知u C (0-)=1 V, i(0-)=2 A。
求t>0时的零输入响应i(t)和u C (t)。
解 其对应的算子电路模型如图题2.3(b)所示。
故对节点N 可列写出算子形式的KCL 方程为0)(2312= ++t u p p C又有uc(t)=pi(t),代入上式化简,即得电路的微分方程为=====++−+−+1)0()0(2)0()0(0)()23(2c cu u i i t i p p电路的特征方程为0232=++p p故得特征根(即电路的自然频率)为p 1=-1,p 2=-2。
《信号与系统》习题参考答案
《信号与系统》习题参考答案(1)2—1(1) 01()()()()(1)()ta at x t h t x u t d e d e u t aτττττ∞---∞*=⋅-==-⎰⎰ (2) 00()()(cos sin )()x t h t t d ωτωτδττ∞-∞*=+⋅-⎰0000(cos sin )()cos sin t t t d t t ωωδττωω∞-∞=+⋅-=+⎰(3) 当0t <时 ()()0x t h t *=当01t ≤<时 20()()(1)2tt x t h t d t ττ*=+=+⎰当12t ≤<时 13()()(1)2x t h t d ττ*=+=⎰ 当23t ≤<时 12213()()(1)22t x t h t d t t ττ-*=+=-++⎰ 当3t ≥时 ()()0x t h t *= (4) 当0t <时 ()()0x t h t *=当0t ≥时 01()()sin 2(1cos 2)2tx t h t d t ττ*==-⎰ (5) 22222(2)2(4)241()()(2)2t t t t t t t x t h t e d e d e ee ττττ-----*=-=-+⎰⎰ (6)()x t at b =+11212()()()()()(2)3363tt x t h t a b d a tb t a t a bττδ-*=+++*--=++⎰2—2(1) [][][][2](2)[2]x n h n nu n n n u n δ*=*-=--(2) 10[][](2)[](21)[]nin i x n h n u n u n +=*==-∑(3) 当0n ≥时 1111[][]2()()232i n in i x n h n --=-∞*==∑ 当0n <时 111[][]2()223n i n i n i x n h n --=-∞*==⋅∑ (4) 当0n <时 [][]0x n h n *=当0n ≥时 110[][]()[]n n nin ii x n h n u n βααββα++-=-*==-∑(5) 当07n ≤≤时 071[][](1)[1(1)]2in i n x n h n -=-*=-=--∑ 当70n -≤≤时 71[][](1)[(1)1]2ni n i x n h n -=-*=-=--∑ 2—3(1) 12()()[(1)(1)][(5)(5)]x t x t u t u t t t δδ*=+--*++- (6)(4)(4)(6)u t u t u t u t =++--+-- (2) 123()()()x t x t x t **{[(6)(4)][(4)(6)]}*[u t u t u t u t =+-++---11()()]22t t δδ++- ( 6.5)( 4.5)( 5.5)( 3.5)( 3.5)( 5.5)u t u t u t u t u t u t =+-+++-++--- ( 4.5)( 6.5)u t u t +---(3) 1311()()[(1)(1)][()()]22x t x t u t u t t t δδ*=+--*++- ( 1.5)(0.5)(0.5)( 1.5)u t u t u t u t =+--++-- 2—4 0(3)331()(3)1t k k t tk k y t eu t k e e e e∞-----=-∞=-∞=-=⋅=-∑∑311A e-=- 2—5(1) 当2t ≥时 ()()0x t h t *= 当20t -<<时 11()()2t x t h t d t τ+-*==+⎰当02t <<时 11()()2t x t h t d t τ-*==-⎰(2) 当01t <<时 1()()22(1)tx t h t d t τ*==-⎰ 当10t -<<时 01()()22(1)2t tx t h t d d t t t ττ+*=+=-++=+⎰⎰当21t -<<-时 11()()2t x t h t d t τ+-*==+⎰当 1t ≥ 或 2t <-时 ()()0x t h t *=此题也可利用性质,先对()x t 积分,对()h t 微分,'()()()y t x t dt h t =*⎰(3) 当0t <时 (1)1()()1t x t h t e dt +∞--*==⎰当0t ≥时 1(1)(1)11()()22t t t t t x t h t e dt e dt e ++∞-----+*=+=-⎰⎰(4) 当t π< 或 5t π>时 ()()0x t h t *= 当3t ππ<<时 0()()sin 1cos t x t h t d t πττ-*==+⎰当35t ππ<<时 23()()sin 1cos t x t h t d t ππττ-*==--⎰(5) 当01t <<时 2211()()222()22x t h t t t t *=-=--当12t <≤时 2231()()264[2()]22x t h t t t t *=-+-=---()()x t h t *是以2为周期的周期函数 2—7(1) 111[][1]()[]()[1]22nn h n Ah n u n A u n ---=--111()[()()][1]()22nn n A u n n δδ-=+--=12A =(2) 111[][][][1][][]h n h n Ah n h n h n n δ---*-*-=*11[][][1]2h n n n δδ-∴=-- (3) 11[][][]2[[][1]][]nx n h n h n u n u n h n --**=--* 2[]2[[][4]]2[[1][5]]nn x n u n u n u n u n -∴=------2—8(1) 0()3()y t y t =(2) 00()()(2)y t y t y t =-- (3) 0()(1)y t y t =- (4) 0()()y t y t =-(5) 0()()dy t y t dt=(6) 202()()d y t y t dt =2—9 12111[][]()[]()[1]222n n x n h n u n u n -*=-+--1()([][1])[]2nu n u n n δ=---=1221[][][][]([][])*[]y n x n h n h n x n h n h n =**=* []*([][])[][]n n n n n u n u n u n u n δαβαβ=+=+ 2—10(1) 341201[][]((0.5))[3]2(1())[3]2n nn n x n x n u n u n ++=*=+=-+∑ (2) 4123[][][]2(1(0.5))[3]([][1])n x n x n x n u n n n δδ+**=-+*-- 43312(1(0.5))[3]2(1(0.5))[2]()[3]2n n n u n u n u n +++=-+--+=+ (3) 23[][][3]([][1])[3][2][3]x n x n u n n n u n u n n δδδ*=+*--=+-+=+ 2—11(1) 12345[][]([][][])[]h n h n h n h n h n h n =*-*+ (2) 34[][][1]h n h n nu n *=- 234[][][](1)[][1][]h n h n h nn u n n u n u n -*=+--= 12345[][]([][][])[]h n h n h n h n h n h n =*-*+514()([][3])*[][]2nu n u n u n hn =--+ 4[]6[1]7[2][]4[3]5[]6[1]7[2]4[3]n n u n n n n n u n n δδδδδδδ=+-+-++-=+-+---(1)'()()(2)(2)()(2)tt y t e x d x t y t x t τττ---∞=--+-=-+-⎰(2)()(2)t h t eu t --=- (2)当1t ≤时 ()0y t =当14t <≤时 1(2)(1)2()1t t y t e d e ττ+----==-⎰当4t >时 1(2)(4)(1)2()t t t t y t e d e e ττ+-------==-⎰2—13(1)213()()()()(1)[()](1)[()](1)h t h t h t u t t t u t t u t δδδ**=*-*-=-*-=-- 1213()()()()()()(1)h t h t h t h t h t u t u t =+**=--(2)1(10)1(02)()3(23)0t t t y t t t +-<<⎧⎪<<⎪=⎨-<<⎪⎪⎩其余2—14(1)因果、稳定 (2)非因果、非稳定 (3)非因果、稳定 (4)非因果、稳定 (5)非因果、稳定 (6)因果、稳定 (7)因果、非稳定 2—15(1)因果、稳定 (2)非因果、稳定 (3)非因果、非稳定 (4)非因果、稳定 (5)因果、非稳定 (6)非因果、稳定 (7)因果、稳定 2—16(1)对 (2)对()h t dt ∞-∞=+∞⎰(3)错 例如单位冲激响应(1)t δ-是因果的,但LTI 系统的逆系统(1)t δ+不是因果的。
大学信号与系统习题答案
§ 1.1 信号与系统信号(signal)消息(Message):在通信系统中,一般将语言、文字、图像或数据统称为消息。
信号(Signal):指消息的表现形式与传送载体。
信息(Information):一般指消息中赋予人们的新知识、新概念,定义方法复杂,将在后续课程中研究。
信号是消息的表现形式与传送载体,消息是信号的传送内容。
如电信号传送声音、图像、文字等。
电信号是应用最广泛的物理量,如电压、电流、电荷、磁通等。
系统(system)系统(system):由若干相互作用和相互依赖的事物组合而成的,具有稳定功能的整体。
如太阳系、通信系统【-----为传送消息而装设的全套技术设备(包括传输信道),其方框如下图所示:消息信号】、控制系统、经济系统、生态系统等。
系统可以看作是变换器、处理器。
电系统具有特殊的重要地位,某个电路的输入、输出是完成某种功能,如微分、积分、放大,也可以称系统。
在电子技术领域中,“系统”、“电路”、“网络”三个名词在一般情况下可以通用。
信号理论与系统理论信号理论信号分析:研究信号的基本性能,如信号的描述、性质等。
信号传输:通信的目的是为了实现消息的传输。
原始的光通信系统——古代利用烽火传送边疆警报;声音信号的传输——击鼓鸣金。
利用电信号传送消息。
1837年,莫尔斯(F.B.Morse)发明电报;1876年,贝尔(A.G.Bell)发明电话利用电磁波传送无线电信号。
1901年,马可尼(G.Marconi)成功地实现了横渡大西洋的无线电通信;全球定位系统GPS(Global Positioning System);个人通信具有美好的发展前景光纤通信带来了更加宽广的带宽。
信号的传输离不开信号的交换。
信号处理:对信号进行某种加工或变换。
其目的是:消除信号中的多余内容;滤除混杂的噪声和干扰;将信号变换成容易分析与识别的形式,便于估计和选择它的特征参量。
信号处理的应用已遍及许多科学技术领域。
上海大学831信号与系统科目1998-2010真题
三 、 已 知 某 低 通 滤 波 器 的 幅 频 特 性 为 | ( )| | ( )| ( ) ,其 中 ( )
为理想低通滤波器的特性, 应 。 ( 15 分)
() {
|| o求该系统的冲激响
||
硕渡考研,渡你成硕!
四、 如图( a)所示为幅 频调制系统,输入 信号 ( ) 为带限实时间信号,其频谱函 数为 E( ) ,且带宽为 ƒ ;( ) 为周期冲激序列,如图( b)所示; ( ) 为 理 想低 通滤波器, 带宽 3 ƒ 为, 如图( c) 所示。
硕渡考研,渡你成硕!
( 2) 若 要 求 ( ) x( ) , 画 出 ( ) 的 幅 频 特 性 。 ( 12 分 ) 四 、 已 知 信 号 ƒ( ) 的 频 谱 函 数 ( ) 如 图 所 示 :
( ω)
−302 −300 −
1
298 300
ω
( 1) 试求 ƒ( ) ; ( 2) ƒ( ) 是 什 么信 号 ? 并画 出其波 形。 ( 12 分)
硕渡考研,渡你成硕!
( 3) 定 性 画 出 系 统 的 幅 频 特 性 。 ( 14 分) 七、设 (k) 为一个实数序列, 而且对应的象函数为 (Z)。
( 1 ) 证 明 (Z) (Z ) 。 ( 2 ) 若 Z 为 (Z) 的 一 个 零 点 , 证 明 Z 也 (Z) 是 的 零 点 。 (10 分) 八 、 已 知 某 线 性 系 统 1 的 差 分 方 程 为 (k) x(k) a
五、 如图所示某系统的系统模拟框图:
x( )
∑
()
∑
1/5
∑
-5
1/5
-5
∑
-23
1/5
-51
《信号与系统》期末考试试题答案
第1 页(共4 页)《信号与系统》须知:符号e (t)(t)、、e (k)(k)分别为单位阶跃函数和单位阶跃序列。
分别为单位阶跃函数和单位阶跃序列。
LTI 表示线性时不变。
为加法器。
一、单项选择题(每小题4分,共32分)D 1、序列和33(2)ii i d ¥-=-¥-å等于A .3e (k –2)B .3e (k)C .1D .3 D 2、积分55(1)d 2t t e t d --ò等于A .0B .1C .eD .e 2 B 3、()(a )f t t d =A .(0)f t d()B .1(0)()|a |f t d C .(0)f aD .0()f t a æöd ç÷èøB 4、1()f t 、2()f t 波形如题4图所示,12()()*()f t f t f t =则(2)f =t1()f t -22240t2()f t 11-120题4图A .12B .1C .32D .2 B 5、已知)()()(21k f k f k f *=,)(1k f 、)(2k f 波形如题5图所示,)0(f 等于1()f k 012312()f k 011-11kk题5图A .1B .2C .3D .4 D 6、已知()1sgn()f t t =+则其傅立叶变换的频谱函数()F j w 等于A .12()j pd w +w B .2j wC .1()j pd w +wD .2()j 2pd w +w∑D 7、已知单边拉普拉斯变换的象函数22()1F s s =+则原函数)(t f 等于等于A .()te t -e B .2()te t -e C .2cos ()t t e D .2sin ()t t e B 8、已知)()(k k kf e =,其双边Z 变换的象函数)(z F 等于等于 A .1-z z B .2)1(-z z C .1--z z D .2)1(--z z二、填空题(每小题5分,共30分)分) 9、单边拉普拉斯变换定义()F S =0()stf t e dt-¥-ò;双边Z 变换定义式()F Z =()kk f k z¥-=-¥å10、已知()f t 的波形如题10图所示,则(12)f t -波形波形 (1) ;()df t dt波形波形(2) 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
上海大学 1998 年初试《信号与系统》考研试题答案
( ) 一.解:令 rzi (t) = C1e−t + C2e−2t u(t),
将初始状态 r(0− ) = 1, r′(0− ) = 2 代入上式得到
⎧ C1 + C2 = 1 ⎩⎨− C1 − 2C2 = 2
(−
jt )2
g2 (t) =
−t2g2 (t),加之δ (t)
↔1⇒1↔
2πδ
(w), 2
2−t2
∴ F( jw) = 2πδ (w)+ 2Sa(w)+ 2Sa(2) (w)
1
1
1
t
题二图
三.解:由图有
ru
(t
)
=
(t
−
1)[u(t
−
1)
−
u
(t
−
2)]
+
u(t
−
2)
,
h(t
)
=
r (1)
u
(t
)
解得:
⎧ C1 ⎩⎨C2
=4 = −3
( ) ∴rzi (t ) = 4e−t − 3e−2t u(t )
( ) 由于 rzs (t ) = r(t )− rzi (t),∴rzs (t) = 1.5 − 2e−t + 0.5e−2t u(t ),
经拉斯变换得
Rzs
(s)
=
s(s
s+3 + 1)( s
+
2)
。又由于
H
(s)
=
Rzs
(s)E(s),
E(s)
=
1 s
,
⇒ H (s) = 2 − 1 ,
s+1 s+ 2
( ) 所以 h(t) = 2e−t − e−2t u(t)
二.解: f (t) = 1+ (1− t 2 )g2 (t),由于 g2(t) ↔ 2Sa(w),由频域微分性质得
f(t)
2Sa(2) (w) ↔
-1
0
1 R e [s]
( ) ( ) (2)V1
=
s
10 2+
1
,则
V2
=
10(1− s) 10 s2 +1 (s +1) = (s +1) −
10s s2 +1
。因此,
( ) V2 (t) = 10e−t −10 cost u(t)
共 3 页 第3 页
2
2
2
2
e(t)
ru (t)
1
1
1
t
1
2
t
题三图
共 3 页 第1 页
上海大学 1998 年初试《信号与系统》考研试题答案
k
四.解:(1)由上图可得 H (s) = s(s + 2) = k(s + 3)
1
+
s(s
+
k
2)(s
+
3)
s3 + 5s2 + 6s + k
s3 s2
(2)由劳斯判据 s1
s0
6
6 60
− 31 ,
s+5
⇒
h(t
)
=
⎜⎜⎛ ⎝
60 31
cos
6t + 105 6 sin 31
6t
−
60 31
e−5t
⎟⎟⎞u ⎠
(t
)
r1(s) +
∑
k
-
1
r2 (s)
s(s + 2)
1 s+3
题四图
五.解:(1)由系统的信号流程图可得状态方程为:
⎡ ẋ1
⎢ ⎣
ẋ2
⎤ ⎥ ⎦
=
⎡− ⎢⎣−
=
u(t
−
1)
−
u(t
−
2)
rzs (t) = e(t)∗ h(t) = [tu(t)− 2(t −1)u(t −1)+ (t − 2)u(t − 2)]∗[u(t −1)− u(t − 2)]
= 1 (t −1)2u(t −1)− 3 (t − 2)2u(t − 2)+ 3 (t − 3)2u(t − 3)− 1 (t − 4)2u(t − 4)
e(t) ẋ2 x2 ẋ1
x1 r(t)
−4 −3
共 3 页 第2 页
六.
上海大学 1998 年初试《信号与系统》考研试题答案
1Ω
+
+
V1(t) 1F
1F V2(t)
−
ห้องสมุดไป่ตู้
1Ω
题六图
1
解:(1)V2
=
s 1+
1
V1
−1+
1 s
V1
=
1− 1+
s s
V1 , ⇒
H
(s)
=
1− 1+
s s
,
s
I m [s]
1
5 30 − k
5 k
6
k 0
可得
⎧30 − k
⎨ ⎩
k>
> 0
0 ,
⇒
0
<
k
<
30
(3)当 k = 0 或 k = 30 时系统处于零界状态,而当 k=0 时 H (s) = 0 系统不存
在,当
k=30
时,
H (s)
=
s3
30(s + 3)
+ 5s2 + 6s + 30
=
60 31
s
105 +
31 s2 + 6
4 3
1⎤ 0⎥⎦
⎡ ⎢ ⎣
x1 x2
⎤ ⎥ ⎦
+
⎢⎣⎡10⎥⎦⎤e
输出方程为; r = [1
0]⎢⎡
⎣
x1 x2
⎤ ⎥ ⎦
(2)
A
=
⎡− ⎢⎣−
4 3
1⎤ 0⎥⎦
,
B
=
⎡0⎤ ⎢⎣1⎥⎦
,
C
=
[1
0],
H
(s)
=
C(sI
−
)A −1
B
=
s2
+
1 4s
=
3
,
系统输入输出微分方程为: r(2) (t)+ 4r(1) (t)+ 3r(t) = e(t)