(完整版)化学平衡常数及其计算
化学平衡常数及转化率的计算
化学平衡常数及转化率的计算一、化学平衡常数的计算1.平衡常数的定义对于反应总体方程式:aA+bB⇌cC+dD平衡常数(K)的定义为:K=[C]^c[D]^d/[A]^a[B]^b其中,[A]、[B]、[C]、[D]分别表示反应物A、B和生成物C、D的浓度。
需要注意的是,平衡常数只与温度有关,与浓度无关。
它表征了反应体系在平衡状态下反应物和生成物的浓度之间的比例关系。
2.平衡常数的计算方法对于已知的反应总体方程式和已知浓度,可以通过以下方法计算平衡常数:方法一:代入已知浓度直接计算根据反应总体方程式,将已知浓度代入化学平衡常数的定义式中,就可以得到平衡常数的数值。
例如,对于反应总体方程式:2NO2(g)⇌N2O4(g)当反应物NO2和生成物N2O4的浓度已知时,可以将它们的浓度代入平衡常数的定义式中计算平衡常数的数值。
方法二:根据摩尔浓度计算如果已知反应物和生成物的摩尔浓度,可以将摩尔浓度代入平衡常数的定义式中计算平衡常数的数值。
例如,对于反应总体方程式:2H2(g)+O2(g)⇌2H2O(g)当反应物H2和O2的摩尔浓度已知时,可以将它们的摩尔浓度代入平衡常数的定义式中计算平衡常数的数值。
需要注意的是,在计算平衡常数时需要保证浓度或摩尔浓度的单位一致,以确保计算的准确性。
转化率是指反应物转化成产物的比例或程度,通常用百分比表示。
转化率的计算方法取决于反应物和产物的类型以及实验条件。
下面以摩尔转化率和体积转化率为例介绍其计算方法。
1.摩尔转化率摩尔转化率(X_mol)表示反应物转化成产物的摩尔数与反应物的初始摩尔数之比。
X_mol = (n_0 - n_t) / n_0 * 100%其中,n_0表示反应物的初始摩尔数,n_t表示反应结束时反应物的剩余摩尔数。
例如,对于反应总体方程式:A⇌B+C当反应物A的初始摩尔数已知,并在反应结束时测得反应物A的剩余摩尔数,可以计算摩尔转化率。
2.体积转化率体积转化率(X_vol)表示反应物转化成产物的体积与反应物的初始体积之比。
化学反应的平衡常数计算
化学反应的平衡常数计算化学反应平衡常数是用来描述反应在平衡状态下的浓度比例的一个数值。
它可以通过计算反应物和生成物的浓度比来确定。
平衡常数对于理解反应方向和反应强度等方面非常重要,能够提供有关反应动力学和平衡性质的信息。
本文将介绍如何计算化学反应的平衡常数,并探讨一些与计算相关的重要概念。
1. 平衡常数的定义平衡常数(K)表示在某一温度下反应物和生成物之间的平衡浓度比例。
对于一般反应aA + bB ⇌ cC + dD,平衡常数可表示为:K = [C]^c[D]^d / [A]^a[B]^b在该式中,方括号表示物质的浓度,a、b、c、d分别表示反应物和生成物的摩尔系数。
K值越大,代表正向反应偏离平衡更远;K值越小,代表正向反应靠近平衡状态;当K=1时,反应达到平衡状态。
2. 平衡常数的计算方法平衡常数可以通过实验测定或计算获得。
实验测定需要考虑化学反应的平衡位置和测量基准。
计算方法则依赖于已知的反应物和生成物的浓度,以及反应式中的摩尔系数。
(1)已知浓度计算在实验室中,可以通过测量反应物和生成物的浓度,然后代入平衡常数的表达式来计算K值。
通过实验得到的浓度值可以作为已知量来计算平衡常数。
(2)计算所有变量的值理论上,如果知道了所有反应物和生成物的浓度,我们就可以直接计算出K值。
但在实际情况中,很难准确测量所有物质的浓度。
因此,常用的方法是根据反应的初步条件和限制条件,计算未知浓度的变量。
(3)利用转化和平均浓度求解在某些情况下,反应物和生成物的浓度变化不明显,此时可以使用转化率和平均浓度来近似计算平衡常数。
转化率是指反应物被转化为生成物的比例,平均浓度则是反应物和生成物初始和最终浓度的平均值。
3. 平衡常数的影响因素平衡常数的值与反应温度密切相关。
改变反应温度会导致平衡常数的变化,同时也会对反应速率产生影响。
一般来说,温度升高会导致正向反应得到加强,平衡常数增大;温度降低会导致正向反应减弱,平衡常数减小。
化学平衡常数和平衡体系的计算
化学平衡常数和平衡体系的计算在化学反应中,平衡常数是衡量反应进行程度的重要指标。
平衡常数的大小决定了反应的方向和反应的强度。
了解如何计算化学平衡常数以及平衡体系的构建对于理解反应的性质和控制反应过程至关重要。
一、化学平衡常数的定义和计算化学平衡常数是指在给定温度下,反应物和生成物浓度之间的比例关系。
对于一般的化学反应:aA + bB ⇌ cC + dD平衡常数Kc定义为生成物浓度的乘积除以反应物浓度的乘积的比值,即:Kc = [C]^c [D]^d / [A]^a [B]^b其中,[A]、[B]、[C]和[D]分别表示反应物A、B和生成物C、D的浓度。
平衡常数Kc的大小决定了反应的方向和反应的强度。
当Kc大于1时,反应向生成物的方向进行;当Kc小于1时,反应向反应物的方向进行;当Kc等于1时,反应处于平衡状态。
计算平衡常数的关键在于确定反应物和生成物的浓度。
这可以通过实验测定或者化学方程式中的系数来确定。
在实验测定中,可以通过测量反应物和生成物的浓度来确定平衡常数。
在化学方程式中,反应物和生成物的系数可以直接作为浓度的比例关系。
二、平衡体系的构建和计算平衡体系是指在给定条件下,反应物和生成物之间达到平衡的状态。
平衡体系的构建需要考虑温度、压力和浓度等因素。
在构建平衡体系时,需要遵循Le Chatelier原理,即系统倾向于抵抗外界的变化,以维持平衡。
平衡体系的计算可以通过平衡常数和化学方程式的系数来实现。
首先,根据反应物和生成物的摩尔比例,确定反应物和生成物的初始浓度。
然后,根据平衡常数的定义,计算反应物和生成物的浓度变化。
最后,根据Le Chatelier原理,确定平衡时反应物和生成物的浓度。
例如,考虑以下反应:N2(g) + 3H2(g) ⇌ 2NH3(g)假设初始时N2和H2的浓度分别为1 mol/L,NH3的浓度为0 mol/L。
根据平衡常数的定义,可以计算出平衡时NH3的浓度为4 mol/L,N2和H2的浓度分别为0.5 mol/L。
化学反应的平衡常数
化学反应的平衡常数化学反应是物质之间发生变化的过程,其中一些反应可以到达平衡状态。
平衡反应是指反应物和生成物之间的速率相等,产生了动态平衡。
在化学反应中,平衡常数是描述化学系统平衡状态的一个重要参数。
本文将介绍化学反应的平衡常数及其计算方法,并探讨平衡常数对化学反应的影响。
一、平衡常数的概念平衡常数(K)是在反应达到平衡时,反应物浓度和生成物浓度之间的比例关系。
平衡常数与反应的摩尔比有关,用于描述反应物转化为生成物的比率。
平衡常数表示为如下形式的表达式:aA + bB ⇌ cC + dD,其中,A、B为反应物,C、D为生成物,a、b、c、d分别表示平衡状态下各物质的摩尔数。
平衡常数可以通过以下公式计算:K = [C]^c × [D]^d / ([A]^a × [B]^b),其中,[C]、[D]为生成物C和D的浓度,[A]、[B]为反应物A和B 的浓度。
二、平衡常数的性质1. 平衡常数的大小表示能否达到平衡平衡常数越大,表示在平衡状态下生成物的浓度较高,反应的转化率较大,反应向右进行的趋势增大。
反之,平衡常数越小,表示在平衡状态下反应物的浓度较高,反应的转化率较小,反应向左进行的趋势增大。
2. 平衡常数与反应方程式的系数有关平衡常数是根据反应方程式中各物质的摩尔比计算得出的,因此反应方程式各物质的系数对平衡常数有直接影响。
当反应方程式的系数改变时,平衡常数也会相应变化。
3. 温度对平衡常数的影响平衡反应的温度是一个重要因素,不同温度下平衡常数可能会有所变化。
通常情况下,随着温度的升高,平衡常数增大;而随着温度的降低,平衡常数减小。
这是因为化学反应是与能量有关的,温度的改变会改变反应物和生成物的能量,从而影响平衡常数的值。
三、计算平衡常数的方法计算平衡常数需要知道反应物和生成物的浓度,以及反应方程式中各物质的摩尔比。
实际实验中,可以通过以下方法来确定平衡常数:1. 定容法在定容反应容器中,将一定摩尔比的反应物与过量溶剂混合,进行实验观察。
化学平衡与平衡常数的计算与解析
化学平衡与平衡常数的计算与解析化学平衡是指在反应物和生成物之间达到相对稳定的状态,其中反应速率的前后趋于相等。
平衡常数是用来描述平衡体系中物质浓度的数值指标。
本文将探讨如何计算和解析化学平衡和平衡常数。
一、平衡常数的定义和表达式平衡常数通常用K表示,对于一般的反应aA + bB ⇌ cC + dD,其平衡常数的表达式如下:K = [C]^c[D]^d / [A]^a[B]^b其中,[A]、[B]、[C]、[D]分别表示反应物A、B以及生成物C、D 的浓度。
二、化学平衡的计算方法1. 浓度法浓度法是最常用的计算化学平衡的方法。
首先,我们需要实验数据来确定反应物和生成物的浓度。
然后,根据平衡常数的表达式,将对应物质的浓度代入计算,得到平衡常数K的数值。
2. 压力法当反应物和生成物是气体时,可以使用压力法来计算化学平衡。
根据理想气体定律,可以将气体摩尔数与分压之间建立关系。
通过测量反应体系的压力,将对应的分压代入平衡常数的表达式中,求得平衡常数K的值。
三、平衡常数的解析平衡常数的数值不仅可以用于计算平衡时的反应物和生成物浓度或分压,还可以通过解析得到一些重要信息。
1. 平衡常数与反应方向平衡常数的数值可以表明反应的偏向性。
当K > 1时,表示反应偏向生成物;当K < 1时,则偏向反应物;当K = 1时,反应物和生成物的浓度相等。
2. 平衡常数与反应的强弱平衡常数的数值越大,表示反应越偏向生成物;反之,越小则偏向反应物。
平衡常数的大小可以反映出反应的强弱。
3. 影响平衡常数的因素平衡常数受到温度、压力和物质浓度的影响。
根据化学平衡的Le Chatelier原理,当改变这些因素时,系统会通过平衡常数的改变来调整平衡状态。
四、平衡常数的应用平衡常数的计算和解析在化学领域中具有广泛的应用,其中包括以下几个方面:1. 反应条件的选择通过计算和解析平衡常数,可以预测不同条件下反应物和生成物浓度的变化,从而优化反应条件,提高反应效率。
化学平衡常数及其计算
化学平衡常数及其计算对于一个一般的反应aA+bB⇌cC+dD,平衡常数K定义为生成物浓度的乘积与反应物浓度的乘积之比的一般表达式:K=[C]c[D]d/[A]a[B]b,其中方括号内表示物质的摩尔浓度。
计算化学平衡常数的方法主要有两种:实验法和理论法。
实验法主要是通过实验测定反应物与生成物的浓度,然后根据平衡常数的定义进行计算。
一般来说,实验法需要进行一系列浓度的测定,只有在反应达到平衡的情况下,才能得到准确的平衡常数。
理论法是基于热力学原理和反应动力学原理来计算平衡常数。
其中,热力学原理主要是利用化学势之间的关系来推导平衡常数的表达式,而反应动力学原理则是利用化学反应速率的关系来得到平衡常数的表达式。
在计算化学平衡常数时,需要考虑温度的影响。
化学平衡常数与温度有关,随着温度的变化,平衡常数也会发生变化。
可以通过反应方程式中各种物质的热力学数据(如标准生成焓、标准摩尔熵等)来计算不同温度下的平衡常数。
此外,有些反应的平衡常数可以根据反应物与生成物的浓度比关系直接得出。
比如,当反应物与生成物的摩尔比为1:1时,平衡常数为1;当反应物与生成物的摩尔比为2:1时,平衡常数为4;当反应物与生成物的摩尔比为1:2时,平衡常数为1/4在实际应用中,化学平衡常数有广泛的应用。
例如,可以根据化学平衡常数来预测反应的方向和强弱,设计化学反应的条件以达到理想的平衡状态,以及优化工业生产过程等。
总结起来,化学平衡常数是用来描述化学反应平衡达到时反应物与生成物浓度的关系的一个量。
计算化学平衡常数的方法有实验法和理论法,其中实验法需要进行实验测定,而理论法则基于热力学和反应动力学原理。
化学平衡常数与温度有关,可以通过反应方程式中物质的热力学数据来计算不同温度下的平衡常数。
化学平衡常数在实际应用中有重要的意义,可以用来预测反应的方向和强弱,优化工业生产过程等。
化学反应平衡常数计算公式
化学反应平衡常数计算公式化学平衡是指在封闭容器中,化学反应物质之间的浓度达到一种稳定状态,反应速度的前后相等。
平衡常数(K)是用来描述化学平衡的定量指标,计算公式为反应物浓度与生成物浓度的乘积之比。
本文将介绍化学反应平衡常数的计算公式以及其应用的相关知识。
1. 平衡常数的定义平衡常数是在一定温度下,反应物与生成物之间浓度之比的一个常数。
对于一般的化学反应:aA + bB ⇄ cC + dD,平衡常数的表达式可以写为:K = (C^c × D^d)/(A^a × B^b),其中A、B、C和D分别为反应物与生成物的浓度。
2. 摩尔平衡常数如果化学反应的表达式是用摩尔表示的,那么摩尔平衡常数可以用反应物与生成物的摩尔浓度之比来表示。
对于反应物与生成物的摩尔平衡常数计算公式为:K' = (C^c × D^d)/(A^a × B^b),其中A、B、C和D分别为反应物与生成物的摩尔浓度。
3. 反应系数和平衡常数的关系反应系数是指化学反应中各种物质的摩尔数与平衡系数之间的比例关系。
在平衡状态下,平衡系数与反应系数相等。
当给出反应方程式的反应系数时,可以通过反应系数来确定平衡常数的计算公式。
4. 离子在水溶液中的平衡常数当涉及到溶液中的化学反应时,需要考虑离子的平衡常数计算。
对于含有离子的反应,平衡常数的计算公式与一般反应一样,只是反应物和生成物的浓度指的是溶解度和离子活度。
5. 温度对平衡常数的影响化学反应的平衡常数与温度之间存在着一定的关系。
在常规条件下,温度升高,反应速率也会升高。
而平衡常数则随着温度的变化而改变。
可由Arrhenius方程表示为:ln(K2/K1) = ΔH/R × (1/T1 - 1/T2),其中K2和K1分别为两个温度下的平衡常数,ΔH为反应焓变,R为气体常数,T1和T2分别为两个温度。
通过该方程,可以计算出不同温度下的平衡常数。
化学平衡的平衡常数计算
化学平衡的平衡常数计算化学平衡是指在一定的条件下,反应物与生成物的浓度或压力不再发生变化的状态。
平衡常数则是用来描述反应的平衡程度,可以通过该常数来确定反应的方向以及反应物与生成物的浓度或压力比例。
本文将介绍化学平衡的平衡常数的计算方法。
一、平衡常数的定义平衡常数(Keq)是在一定温度下,反应物与生成物浓度的比例的乘积的指数与各物质的摩尔浓度比例之积的比值。
对于一般反应aA + bB ⇌ cC + dD,其平衡常数可以表示为:Keq = [C]^c[D]^d / [A]^a[B]^b其中,[A]、[B]、[C]、[D]分别表示反应物A、B和生成物C、D的浓度。
二、浓度和压力的影响平衡常数的数值与反应物和生成物的浓度(或压力)直接相关。
当平衡常数的值大于1时,生成物的浓度相对较多,而当平衡常数的值小于1时,反应物的浓度相对较多。
对于已知反应物和生成物的浓度,可以通过平衡常数来计算未知物质的浓度。
在计算平衡常数时,需要注意物质的浓度要以摩尔浓度表示,即物质的摩尔数与溶液体积的比值。
三、酸碱反应中的平衡常数计算在酸碱反应中,平衡常数被称为酸碱反应常数(Ka或Kb)。
酸碱反应的平衡常数可以通过酸解离常数(Ka)和碱解离常数(Kb)来计算。
对于一般的酸碱反应为HA + H2O ⇌ H3O+ + A-,其酸解离常数Ka 的计算公式如下:Ka = [H3O+][A-] / [HA]其中,[HA]表示酸的浓度,[H3O+]表示氢离子(H+)的浓度,[A-]表示酸根离子的浓度。
类似地,碱解离常数Kb的计算公式如下:Kb = [OH-][BH+] / [B]其中,[B]表示碱的浓度,[BH+]表示氢氧根离子(OH-)的浓度,[OH-]表示氢氧根离子的浓度。
四、气体平衡反应中的平衡常数计算在气体平衡反应中,平衡常数可以使用浓度或压力来计算。
当选择使用压力来计算平衡常数时,需要根据气体的分压来确定平衡常数的数值。
对于一般的气体反应aA + bB ⇌ cC + dD,平衡常数可以通过反应物和生成物的分压比例来计算。
化学平衡常数
化学平衡常数化学平衡常数(Kc)是指在一定温度下,反应物浓度与生成物浓度之间的比例关系。
它描述了化学反应是否趋向于产生反应物或生成物的平衡状态。
平衡常数的计算和应用在化学工程、环境科学等领域具有重要意义。
本文将介绍化学平衡常数的定义、计算方法以及相关应用。
一、化学平衡常数的定义化学平衡常数是在化学反应达到平衡时,反应物与生成物浓度之间的比例关系的数学表达式。
对于一般的化学反应:aA + bB ⇌ cC + dD反应物A和B的浓度分别为[A]和[B],生成物C和D的浓度分别为[C]和[D],则该反应的平衡常数Kc定义为:Kc = ([C]^c [D]^d) / ([A]^a [B]^b)其中,[X]表示物质X的浓度,a、b、c、d分别为反应物和生成物的摩尔系数。
二、化学平衡常数的计算方法计算化学平衡常数的方法主要有两种:定量法和定性法。
1. 定量法定量法是通过实验数据来直接计算化学平衡常数。
首先,需要确定反应物和生成物的浓度。
然后,将实验数据代入平衡常数表达式,计算平衡常数的值。
通过多组实验数据的对比,可以得出平衡常数的数值范围和趋势。
2. 定性法定性法是通过理论推导和估算来预测化学平衡常数的数量级。
通过分析反应物与生成物的结构、键型、电性等因素,利用化学原理和经验公式,推测平衡常数的相对大小。
虽然定性法无法给出具体的数值,但可以在实验前提供重要的参考信息。
三、化学平衡常数的应用化学平衡常数在很多领域都有广泛的应用,下面介绍其中几个重要的应用。
1. 化学反应的平衡判断根据化学平衡常数,可以判断反应是偏向于反应物还是生成物。
如果平衡常数Kc的值远大于1,那么反应趋向向生成物方向进行;反之,如果Kc的值远小于1,反应偏向于反应物。
通过对平衡常数的分析,可以预测反应的趋势和判断一组反应条件是否接近平衡状态。
2. 受控释放药物的研发在药物研发中,控制药物的释放速率和量是非常重要的。
通过调控药物在体内的溶解度以及与其它物质的反应平衡,可以实现药物的缓慢释放和持续疗效。
第三节 化学平衡常数及计算
几乎不发生反应。
②平衡常数数值极小的反应,说明正反应在该条 件下不可能进行。
如:N2+O2
2NO ;K=10-30(298K)所以常
温下用此反应固定氮气是不可能的。因此没有必
要在该条件下进行实验,以免浪费人力物力。或
者改变条件使反应在新的条件下进行比较好一些。
A
8
3、同一条件下正、逆反应的化学平衡常数有何关 系?
cm(A)·cn(B)
A
15
二、平衡常数的有关计算 1.直接求平衡常数
练习:对于反应2SO3(g)
2SO2(g)+
O2(g),若在一定温度下,将2密闭容器中,当达到平衡状态时,
测得O2(g)的物质的量为0.6mol,试求此反应的 平衡常数。
2.平衡转化率与平衡常数的相互求算
思考:不同温度时,反应:H2(g)+I2(g) △ 2HI(g),的浓度平衡常数与温度的关系如下:
温度 浓度平衡常数
623K 66 .9
698K 54.4
763K 45.9
通过改变温度,平衡常数大小的变化趋势可 以判断上可逆反应的正方向是 放 热反应.
4、利用K可判断反应吸热还是放热
(1)若升高温度,K值增大,则正反应为 热
用平衡常数来表示反应的限度有时不够直观, 常用平衡转化率α来表示反应限度。
对于可逆反应: mA(g)+nB (g)
pC(g)+qD(g)
反应物A的平衡转化率(该条件最大转化率)可 表示:
(A)%A初始的 A初物始质 的 A的 的物平 量质衡的物量质 10的 %0
n始n平10%0 n始
(1)已知初始浓度和平衡浓度求平衡常数和平衡 转化率
(完整版)化学平衡常数及其计算
考纲要求1.了解化学平衡常数(K)的含义。
2.能利用化学平衡常数进行相关计算。
考点一化学平衡常数1.概念在一定温度下,当一个可逆反应达到化学平衡时,生成物浓度幂之积与反应物浓度幂之积的比值是一个常数,用符号K 表示。
2.表达式对于反应mA(g)+nB(g) pC(g)+qD(g),c pC ·cqDK=m n (固体和纯液体的浓度视为常数,通常不计入平衡常数表达式中)。
c A ·c B3.意义及影响因素(1) K 值越大,反应物的转化率越大,正反应进行的程度越大。
(2) K 只受温度影响,与反应物或生成物的浓度变化无关 (3) 化学平衡常数是指某一具体反应的平衡常数 4.应用(1) 判断可逆反应进行的程度(2) 利用化学平衡常数,判断反应是否达到平衡或向何方向进行Q <K ,反应向正反应方向进行; Q =K ,反应处于平衡状态; Q >K ,反应向逆反应方向进行。
(3) 利用 K 可判断反应的热效应:若升高温度, 度, K 值减小,则正反应为放热反应。
深度思考对于化学反应 aA(g) +bB(g)cC(g)+dD(g)的任意状态,浓度商:c cC ·c dD Qc =c a A ·c b BK 值增大,则正反应为吸热反应;若升高温1.正误判断,正确的打“√” ,错误的打“×”(1) 平衡常数表达式中,可以是物质的任一浓度( )(2) 催化剂能改变化学反应速率,也能改变平衡常数( )(3) 平衡常数发生变化,化学平衡不一定发生移动( )(4) 化学平衡发生移动,平衡常数不一定发生变化( )(5) 平衡常数和转化率都能体现可逆反应进行的程度( )(6) 化学平衡常数只受温度的影响,温度升高,化学平衡常数的变化取决于该反应的反应热() 2.书写下列化学平衡的平衡常数表达式。
(1) Cl2+H2O HCl+HClO(2) C(s)+H2O(g) C O(g)+H2(g)(3) CH3COOH+C2H5OH C H3COOC2H5+H2O(4) CO32-+H2O HCO3-+OH-(5) CaCO3(s) C aO(s)+CO2(g)3.一定温度下,分析下列三个反应的平衡常数的关系①N2(g)+3H2(g) 2NH3(g) K113②2N2(g)+2H2(g) NH3(g) K2③ 2NH3(g) N2(g)+3H2(g) K3(1) K1 和K2,K1=K22。
化学反应的平衡常数计算公式和例题
化学反应的平衡常数计算公式和例题化学反应的平衡常数是描述反应在达到平衡状态下各物质浓度的数值。
在化学反应中,平衡常数是非常重要的指标,可以帮助我们了解反应的进行方向和程度。
本文将介绍平衡常数的计算公式和通过例题来解释其应用。
一、平衡常数的基本概念和计算公式在化学反应中,平衡常数(K)定义为在特定温度下,反应物和生成物浓度的乘积之比。
对于一般的反应方程式:aA + bB ⇌ cC + dD,平衡常数计算公式如下:K = [C]^c[D]^d / [A]^a[B]^b其中,方括号表示物质的浓度,上标表示物质的摩尔系数。
平衡常数是与温度密切相关的,反应在不同温度下其平衡常数也会有所不同。
此外,平衡常数与反应物和生成物的物质摩尔比有关,可以通过确定平衡浓度来计算。
平衡常数的数值可以告诉我们反应的方向和程度。
当K大于1时,表示反应向生成物的方向进行,生成物浓度高于反应物浓度;当K小于1时,表示反应向反应物的方向进行,反应物浓度高于生成物浓度;当K等于1时,反应物和生成物的浓度相等,反应处于平衡状态。
二、平衡常数计算公式的应用举例下面通过例题来进一步说明平衡常数计算公式的应用。
例题1:对于反应方程式H2(g) + I2(g) ⇌ 2HI(g),在25℃下,平衡浓度为[H2] = 1.0mol/L,[I2] = 0.5mol/L,[HI] = 2.0mol/L,请计算平衡常数K的数值。
根据平衡常数计算公式K = [HI]^2 / [H2][I2],代入浓度数值得:K = (2.0mol/L)^2 / (1.0mol/L)(0.5mol/L) = 8.0mol/L因此,在25℃下,反应H2(g) + I2(g) ⇌ 2HI(g)的平衡常数K为8.0mol/L。
例题2:对于反应方程式2NO2(g) ⇌ N2O4(g),在特定温度下,平衡常数为K = 2.0。
已知平衡时,[NO2] = 0.1mol/L,请计算平衡时[N2O4]的浓度。
化学平衡平衡常数的计算公式
化学平衡平衡常数的计算公式化学平衡是指在封闭容器中,反应物通过化学反应转化为生成物的过程中,反应物和生成物的浓度达到一个恒定的状态。
在化学平衡中,平衡常数是用来描述反应物和生成物浓度之间的关系的重要指标。
本文将介绍化学平衡平衡常数的计算公式,并对其应用进行讨论。
一、平衡常数的定义平衡常数(K)是定量表征化学平衡状态的参数。
对于一般的化学平衡反应:aA + bB ↔ cC + dD平衡常数可由下式定义:K = [C]^c[D]^d / [A]^a[B]^b其中,[A]、[B]、[C]和[D]分别表示反应物A、B和生成物C、D的浓度。
二、平衡常数计算公式的推导在推导平衡常数计算公式时,首先需要确定反应物和生成物的化学式,并确定其浓度的表达式。
然后,根据反应物和生成物的摩尔比例关系,建立反应物和生成物浓度之间的关系式。
最后,根据平衡时的浓度关系,利用反应物和生成物的浓度表达式,得到平衡常数计算公式。
三、平衡常数的应用平衡常数在化学平衡反应的研究、工业生产和实验设计中有着广泛的应用。
通过平衡常数,我们可以了解反应的方向性和反应的强弱。
当K > 1时,生成物浓度较大,反应偏向生成物的方向,反应趋向于右移;当K < 1时,反应物浓度较大,反应偏向反应物的方向,反应趋向于左移。
此外,平衡常数还可以用于计算反应的平衡浓度、判断反应条件下反应的进行程度等。
四、示例分析以N2(g) + 3H2(g) ↔ 2NH3(g)的氨合成反应为例。
根据平衡常数的定义和计算公式,可以得到该反应的平衡常数计算公式为:K = [NH3]^2 / [N2][H2]^3在该反应中,氨的浓度越高,平衡常数越大,表示反应向生成氨的方向偏移,利于生成氨的产生。
五、总结化学平衡平衡常数的计算公式是描述化学反应平衡状态的重要工具。
通过平衡常数的计算与应用,可以了解到化学反应在平衡状态下的浓度关系、反应方向性以及反应进行程度等信息。
在实际应用中,化学平衡常数对于工业生产、实验设计和反应方向控制等方面发挥着重要作用。
化学反应的平衡常数与平衡常数计算
化学反应的平衡常数与平衡常数计算化学反应的平衡常数是描述反应物浓度与产物浓度之间关系的一个重要参数,它反映了反应在达到平衡时物质的浓度分布情况。
平衡常数可以帮助我们了解反应的倾向性和反应速率的大小,对于化学反应的研究和工业应用具有重要的意义。
一、平衡常数的定义与表示方式平衡常数是指在特定温度下,反应物浓度和产物浓度之间的比值。
对于一般的反应aA + bB ↔ cC + dD,平衡常数表示为Kc,其表达式为:Kc = [C]^c[D]^d / [A]^a[B]^b其中,[A]、[B]、[C]、[D]分别表示反应物A、B和产物C、D的浓度。
平衡常数的大小可以指示反应在平衡时的位置。
二、平衡常数的计算计算平衡常数需要获得反应物和产物的浓度数据,并将其代入平衡常数的表达式中。
常见的计算方法有以下几种:1. 实验法通过实验测量反应物和产物浓度的变化,再根据平衡时的浓度值计算平衡常数。
这需要准确测量各组分的浓度,并在反应过程中保持温度和压力的稳定。
2. 利用定容定压反应的终态浓度对于反应物和产物的摩尔数已知的情况下,可以根据终态浓度来计算平衡常数。
设反应物A、B为气体,产物C为固体,反应为定容定压反应,终态浓度满足Stoichiometry定律,则平衡常数的计算公式为:Kc = ([C]/P)^c / ([A]/P)^a * ([B]/P)^b其中,P为系统总压力。
3. 利用反应物和产物的初始浓度在初始浓度已知的情况下,可以通过反应物和产物的浓度变化来计算平衡常数。
设反应物A、B为气体,产物C为固体,反应为定容定压反应,平衡时反应物浓度变化为Δn,则平衡常数的计算公式为:Kc = ([C]/[A]^a * [B]^b)^c * (P/RT)^(Δn)其中,R为气体常数,T为反应温度。
三、平衡常数的意义和应用平衡常数可以揭示化学反应在平衡时物质浓度的分布情况。
根据平衡常数的大小,可以得到以下结论:1. 平衡常数大于1,表示反应物浓度较低、产物浓度较高,反应倾向向产物方向进行。
化学反应的平衡常数计算方法和公式
化学反应的平衡常数计算方法和公式化学反应的平衡常数是描述反应体系平衡状态的重要参量,它可以定量地反映反应物与生成物在平衡浓度下的相对浓度关系。
平衡常数的计算方法和公式因反应类型的不同而有所不同。
下面将详细介绍一些常见的反应类型及其平衡常数的计算方法和公式。
一、气相反应的平衡常数计算方法和公式对于气相反应,平衡常数用气体分压表示。
以一般化学反应为例:aA + bB ⇌ cC + dD其中,A、B为反应物,C、D为生成物,a、b、c、d为反应物和生成物的计数系数。
平衡常数K的表达式为:K = (C^c * D^d) / (A^a * B^b)其中,A、B、C、D分别为相应物质的分压。
二、液相反应的平衡常数计算方法和公式对于液相反应,平衡常数用物质的浓度表示。
以一般化学反应为例:aA + bB ⇌ cC + dD其中,A、B为反应物,C、D为生成物,a、b、c、d为反应物和生成物的计数系数。
平衡常数K的表达式为:K = ([C]^c * [D]^d) / ([A]^a * [B]^b)其中,[A]、[B]、[C]、[D]分别为相应物质的浓度。
三、溶液反应的平衡常数计算方法和公式对于溶液反应,平衡常数用物质的浓度表示。
以一般化学反应为例:aA + bB ⇌ cC + dD其中,A、B为反应物,C、D为生成物,a、b、c、d为反应物和生成物的计数系数。
平衡常数K的表达式为:K = ([C]^c * [D]^d) / ([A]^a * [B]^b)其中,[A]、[B]、[C]、[D]分别为相应物质的浓度。
注意:对于溶液反应,平衡常数K通常使用摩尔浓度(mol/L)表示。
四、其他反应类型的平衡常数计算方法和公式除了上述介绍的气相反应、液相反应和溶液反应,还有一些其他特殊类型的反应,其平衡常数的计算方法和公式稍有不同。
例如,对于纯净固体反应、液相与气相混合反应、液相反应与溶液反应等,其平衡常数表达式会根据具体情况进行调整。
化学平衡常数及其计算
(3)平衡常数的表达式与方程式的书写方式有关 若反应方向改变,则平衡常数改变 若方程式中各物质的化学计量数等倍扩大或
缩小
4、平衡常数的意义
定量的衡量化学反应进行的程度
(1)K值越大,表示反应进行的程度越大, 反应物转化率也越大。
(2)一般当K>105时,该反应进行得基本完 全。
解:设平衡时CO2和H2的浓度为x mol·L-1
CO(g) + H2O(g)
CO2(g) + H2(g)
c(始) /mol·L-1 0.200 0.200
0
0
c(变)/mol·L-1
x
x
x
x
c(平)/mol·L-1 0.200-x 0.200-x
x
x
K=
c(CO2) ·c(H2) c(CO) ·c(0-x)(0.200-x)
=
1.00
解得: x = 0.1
= 0.100 ×100%= 83.0% 0.200
反应物的起始物质的量
注意:
×100%
(1)转化率是对反应物而言的;
(2)在一定温度下可逆反应中,K值越大,反应 物的转化率就越高;
例2:在一密闭容器中,CO与H2O混合加热到 800℃达到下列平衡:CO(g)+H2O(g) CO2(g)+H2(g) K=1.00,若反应开始时CO和 H2O的浓度均为0.200 mol·L-1 ,求达到平衡时 CO转化为CO2转化率是多少?
计算模式——“三段式法”
mA + nB
起始量: a
b
pC + qD 00
转化量: mx nx
px qx
化学平衡常数的计算
化学平衡常数的计算化学平衡常数是描述化学反应平衡状态的重要物理量,通过计算化学平衡常数可以了解反应的趋势以及平衡位置。
本文将介绍化学平衡常数的计算方法,并且以具体的化学反应为例进行说明。
一、化学平衡常数的定义及意义化学平衡常数(Kc)是指在特定温度下,在单位体积中参与化学反应的物质浓度之比的稳定值。
其表达式可以表示为:Kc = [C]^c * [D]^d / ([A]^a * [B]^b)其中,[A]、[B]、[C]、[D]分别表示反应物A、B、C、D的浓度,a、b、c、d为对应反应物的摩尔系数。
计算化学平衡常数的目的在于了解反应的平衡位置以及各物质的浓度变化趋势,对于反应条件的优化以及工业生产有着重要的指导意义。
二、化学平衡常数的计算方法计算化学平衡常数的过程需要确定反应物的初始浓度以及反应物的浓度变化。
下面以一元一次反应为例进行说明。
假设化学反应为:A ⇌ B,反应式中的箭头表示反应的双向性。
1. 假设初始时刻反应物A的浓度为[A]0,B的浓度为[B]0。
2. 在反应过程中,假设A的浓度降低为[A],B的浓度增加为[B]。
在达到平衡时,反应物A与产物B的浓度不再发生变化。
3. 根据所给反应式和反应物的变化情况,可以得到反应物和产物的浓度表达式:[A]0 - x = [A][B]0 + x = [B]其中,x为反应物A的浓度减少值以及产物B的浓度增加值。
4. 将上述浓度表达式代入化学平衡常数的定义式中,进行计算:Kc = [B] / [A] = ([B]0 + x) / ([A]0 - x)这样,我们就可以通过计算化学平衡常数Kc来确定反应的平衡位置。
三、实例说明以二氧化碳的溶解度平衡反应为例:CO2(g) ⇌ CO2(aq)在特定温度下,该反应的平衡常数为Kc。
1. 假设初始时刻CO2的气相浓度为[CO2(g)]0,溶解后的CO2的浓度为[CO2(aq)]0。
2. 在溶解过程中,CO2的气相浓度降低为[CO2(g)],溶解后的CO2浓度增加为[CO2(aq)]。
化学反应的平衡常数计算
化学反应的平衡常数计算化学反应的平衡常数(也称为平衡常数或反应定量常数)是在化学反应达到平衡时,与反应物浓度相关的数值。
它可以用来描述反应的平衡位置和反应物浓度的关系,是化学平衡的一个重要指标。
本文将介绍如何计算化学反应的平衡常数。
1. 平衡常数的定义在化学反应 aA + bB ⇌ cC + dD 中,反应物为A和B,生成物为C 和D,a、b、c、d为各个物质的系数。
根据平衡反应的浓度,可以定义平衡常数(K)如下:K = [C]^c [D]^d / [A]^a [B]^b其中,[A]、[B]、[C]、[D]分别表示反应物和生成物的浓度。
2. 平衡常数的计算步骤为了计算化学反应的平衡常数,我们可以采取以下步骤:步骤1: 确定反应物和生成物。
根据给定的反应方程式,识别出反应物和生成物。
步骤2: 确定各个物质的系数。
根据反应方程式中的系数,确定各个物质的系数。
步骤3: 写出平衡常数表达式。
根据平衡常数的定义,写出平衡常数表达式。
步骤4: 测定浓度并代入表达式。
根据实验条件,测定反应物和生成物的浓度,并代入平衡常数表达式。
步骤5: 计算平衡常数。
根据实测浓度代入平衡常数表达式,计算得到平衡常数的数值。
3. 举例说明考虑以下气相反应的平衡常数计算:N2(g) + 3H2(g) ⇌ 2NH3(g)根据上述步骤,我们可以进行以下计算:步骤1: 确定反应物和生成物。
反应物:N2(g)、H2(g)生成物:NH3(g)步骤2: 确定各个物质的系数。
N2(g): 1H2(g): 3NH3(g): 2步骤3: 写出平衡常数表达式。
K = [NH3]^2 / [N2][H2]^3步骤4: 测定浓度并代入表达式。
假设在某实验条件下,[N2] = 0.5 M,[H2] = 1.0 M,[NH3] = 0.2 M。
步骤5: 计算平衡常数。
K = (0.2 M)^2 / (0.5 M)(1.0 M)^3 = 0.08 / 0.5 = 0.16因此,该反应的平衡常数为0.16。
化学平衡常数的计算方法
化学平衡常数的计算方法化学平衡常数是描述化学反应体系中各反应物与生成物之间相对浓度的定量指标。
在化学平衡反应中,反应物会逐渐转化为生成物,直到达到某个平衡状态。
平衡常数是根据平衡时各组分的浓度而确定的,与反应体系中物质的总量无关。
本文将介绍计算化学平衡常数的方法。
1. 浓度法在化学平衡反应中,平衡常数可以使用反应物与生成物的浓度之比来表示。
考虑一般的平衡反应:aA + bB ⇌ cC + dD平衡常数Kc的计算公式为:Kc = [C]^c [D]^d / [A]^a [B]^b其中,方括号表示物质的浓度,a、b、c和d分别表示反应物A、B以及生成物C、D的摩尔系数。
该计算方法适用于溶液体系或气体体系中的平衡反应。
2. 压力法在气体体系的平衡反应中,可以使用气体分压之比代替浓度之比。
平衡常数Kp的计算公式为:Kp = (PC)^c (PD)^d / (PA)^a (PB)^b其中,P为气体的分压,a、b、c和d的含义与浓度法中相同。
该计算方法适用于气体体系中的平衡反应。
3. 其他计算方法除了浓度法和压力法,还有其他计算化学平衡常数的方法,如酸碱平衡中的pH法、溶度积法等。
这些方法根据不同反应体系的特点,采用不同的计算方式。
不同计算方法适用于不同的反应体系,选择合适的方法需要考虑反应物的性质、实验条件以及所需精度等因素。
根据实际情况,可以综合运用多种方法进行计算,以获得更准确的结果。
化学平衡常数的计算对于理解和预测化学反应的平衡状态至关重要。
通过计算平衡常数,可以确定反应的方向和平衡位置,进而解释反应体系中物质的浓度变化规律。
同时,平衡常数的计算还可以为工业生产和实验设计提供指导,优化反应条件,提高产物收率。
总结起来,化学平衡常数的计算方法主要包括浓度法、压力法和其他特定体系的计算方法。
根据实际情况选择合适的方法进行计算,可以帮助我们深入理解化学反应的平衡状态,并为实验和工业应用提供指导。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
考纲要求 1.了解化学平衡常数(K)的含义。
2.能利用化学平衡常数进行相关计算。
考点一化学平衡常数1.概念在一定温度下,当一个可逆反应达到化学平衡时,生成物浓度幂之积与反应物浓度幂之积的比值是一个常数,用符号K表示。
2.表达式对于反应m A(g)+n B(g)p C(g)+q D(g),K=c p?C?·c q?D?c m?A?·c n?B?(固体和纯液体的浓度视为常数,通常不计入平衡常数表达式中)。
3.意义及影响因素(1)K值越大,反应物的转化率越大,正反应进行的程度越大。
(2)K只受温度影响,与反应物或生成物的浓度变化无关。
(3)化学平衡常数是指某一具体反应的平衡常数。
4.应用(1)判断可逆反应进行的程度。
(2)利用化学平衡常数,判断反应是否达到平衡或向何方向进行。
对于化学反应a A(g)+b B(g)c C(g)+d D(g)的任意状态,浓度商:Q c=c c?C?·c d?D?c a?A?·c b?B?。
Q<K,反应向正反应方向进行;Q=K,反应处于平衡状态;Q>K,反应向逆反应方向进行。
(3)利用K可判断反应的热效应:若升高温度,K值增大,则正反应为吸热反应;若升高温度,K值减小,则正反应为放热反应。
深度思考1.正误判断,正确的打“√”,错误的打“×”(1)平衡常数表达式中,可以是物质的任一浓度()(2)催化剂能改变化学反应速率,也能改变平衡常数()(3)平衡常数发生变化,化学平衡不一定发生移动()(4)化学平衡发生移动,平衡常数不一定发生变化()(5)平衡常数和转化率都能体现可逆反应进行的程度()(6)化学平衡常数只受温度的影响,温度升高,化学平衡常数的变化取决于该反应的反应热()2.书写下列化学平衡的平衡常数表达式。
(1)Cl2+H2O HCl+HClO(2)C(s)+H2O(g)CO(g)+H2(g)(3)CH3COOH+C2H5OH CH3COOC2H5+H2O(4)CO2-3+H2O HCO-3+OH-(5)CaCO3(s)CaO(s)+CO2(g)3.一定温度下,分析下列三个反应的平衡常数的关系①N2(g)+3H2(g)2NH3(g)K1②12N2(g)+32H2(g)NH3(g)K2③2NH3(g)N2(g)+3H2(g)K3(1)K1和K2,K1=K22。
(2)K1和K3,K1=1K3。
题组一平衡常数的含义1.研究氮氧化物与悬浮在大气中海盐粒子的相互作用时,涉及如下反应:2NO2(g)+NaCl(s)NaNO3(s)+ClNO(g)K12NO(g)+Cl2(g)2ClNO(g)K2则4NO2(g)+2NaCl(s)2NaNO3(s)+2NO(g)+Cl2(g)的平衡常数K=(用K1、K2表示)。
2.在一定体积的密闭容器中,进行如下化学反应:CO2(g)+H2(g)CO(g)+H2O(g),其化学平衡常数K和温度t的关系如表所示:t/℃700 800 830 1 000 1 200K0.6 0.9 1.0 1.7 2.6回答下列问题:(1)该反应的化学平衡常数表达式为K=。
(2)该反应为(填“吸热”或“放热”)反应。
(3)某温度下,各物质的平衡浓度符合下式:3c(CO2)·c(H2)=5c(CO)·c(H2O),试判断此时的温度为℃。
(4)若830 ℃时,向容器中充入1 mol CO、5 mol H2O,反应达到平衡后,其化学平衡常数K(填“大于”“小于”或“等于”)1.0。
(5)830 ℃时,容器中的化学反应已达到平衡。
在其他条件不变的情况下,扩大容器的体积。
平衡(填“向正反应方向”、“向逆反应方向”或“不”)移动。
题组二化学平衡常数的应用3.甲醇是重要的化学工业基础原料和清洁液体燃料。
工业上可利用CO或CO2来生产燃料甲醇。
已知制备甲醇的有关化学反应以及在不同温度下的化学反应平衡常数如下表所示:温度/℃化学反应平衡常数500 800①2H2(g)+CO(g)CH3OH(g) K1 2.5 0.15②H2(g)+CO2(g)H2O(g)+CO(g) K2 1.0 2.50③3H2(g)+CO2(g)CH3OH(g)+H2O(g) K3(1)据反应①与②可推导出K1、K2与K3之间的关系,则K3=(用K1、K2表示)。
(2)反应③的ΔH(填“>”或“<”)0。
4.在一个体积为2 L的真空密闭容器中加入0.5 mol CaCO3,发生反应CaCO3(s)CaO (s)+CO2(g),测得二氧化碳的物质的量浓度随温度的变化关系如下图所示,图中A表示CO2的平衡浓度与温度的关系曲线,B表示不同温度下反应经过相同时间时CO2的物质的量浓度的变化曲线。
请按要求回答下列问题:(1)该反应正反应为(填“吸”或“放”)热反应,温度为T5℃时,该反应耗时40 s达到平衡,则T5℃时,该反应的平衡常数数值为。
(2)如果该反应的平衡常数K值变大,该反应(选填字母)。
a.一定向逆反应方向移动b.在平衡移动时正反应速率先增大后减小c.一定向正反应方向移动d.在平衡移动时逆反应速率先减小后增大(3)请说明随温度的升高,曲线B向曲线A逼近的原因:。
(4)保持温度、体积不变,充入CO2气体,则CaCO3的质量,CaO的质量,CO2的浓度(填“增大”,“减小”或“不变”)。
(5)在T5℃下,维持温度和容器体积不变,向上述平衡体系中再充入0.5 mol N2,则最后平衡时容器中的CaCO3的质量为g。
1.一个模式——“三段式”如m A(g)+n B(g)p C(g)+q D(g),令A、B起始物质的量浓度分别为a mol·L-1、b mol·L -1,达到平衡后消耗A的物质的量浓度为mx mol·L-1。
m A(g)+n B(g)p C(g)+q D(g)c始/(mol·L-1) a b0 0c转/(mol·L-1) mx nx px qxc平/(mol·L-1) a-mx b-nx px qxK=?px?p·?qx?q?a-mx?m·?b-nx?n。
2.明确三个量的关系(1)三个量:即起始量、变化量、平衡量。
(2)关系①对于同一反应物,起始量-变化量=平衡量。
②对于同一生成物,起始量+变化量=平衡量。
③各转化量之比等于各反应物的化学计量数之比。
3.掌握四个公式(1)反应物的转化率=n?转化?n?起始?×100%=c?转化?c?起始?×100%。
(2)生成物的产率:实际产量(指生成物)占理论产量的百分数。
一般来讲,转化率越大,原料利用率越高,产率越大。
产率=实际产量理论产量×100%。
(3)混合物组分的百分含量=平衡量平衡时各物质的总量×100%。
(4)某组分的体积分数=某组分的物质的量混合气体总的物质的量。
题组一平衡常数与转化率的关系1.羰基硫(COS)可作为一种粮食熏蒸剂,能防止某些昆虫、线虫和真菌的危害。
在恒容密闭容器中,将CO和H2S混合加热并达到下列平衡:CO(g)+H2S(g)COS(g)+H2(g)K=0.1反应前CO物质的量为10 mol,平衡后CO物质的量为8 mol。
下列说法正确的是() A.升高温度,H2S浓度增加,表明该反应是吸热反应B.通入CO后,正反应速率逐渐增大C.反应前H2S物质的量为7 molD.CO的平衡转化率为80%2.已知可逆反应:M(g)+N(g)P(g)+Q(g)ΔH>0,请回答下列问题:(1)在某温度下,反应物的起始浓度分别为c(M)=1 mol·L-1,c(N)=2.4 mol·L-1;达到平衡后,M的转化率为60%,此时N的转化率为。
(2)若反应温度升高,M的转化率(填“增大”、“减小”或“不变”)。
(3)若反应温度不变,反应物的起始浓度分别为c(M)=4 mol·L-1,c(N)=a mol·L-1;达到平衡后,c(P)=2 mol·L-1,a=。
(4)若反应温度不变,反应物的起始浓度为c(M)=c(N)=b mol·L-1,达到平衡后,M的转化率为。
题组二速率常数与平衡常数的关系3.(2016·海南,16)顺-1,2-二甲基环丙烷和反-1,2-二甲基环丙烷可发生如下转化:该反应的速率方程可表示为v(正)=k(正)c(顺)和v(逆)=k(逆)c(反),k(正)和k(逆)在一定温度时为常数,分别称作正、逆反应速率常数。
回答下列问题:(1)已知:t1温度下,k(正)=0.006 s-1,k(逆)=0.002 s-1,该温度下反应的平衡常数值K1=;该反应的活化能E a(正)小于E a(逆),则ΔH(填“小于”、“等于”或“大于”)0。
(2)t2温度下,图中能表示顺式异构体的质量分数随时间变化的曲线是(填曲线编号),平衡常数值K2=;温度t1t2(填“小于”、“等于”或“大于”),判断理由是。
4.无色气体N2O4是一种强氧化剂,为重要的火箭推进剂之一。
N2O4与NO2转换的热化学方程式为N2O4(g)2NO2(g)ΔH=+24.4 kJ·mol-1。
上述反应中,正反应速率v正=k正·p(N2O4),逆反应速率v逆=k逆·p2(NO2),其中k正、k逆为速率常数,则K p为(以k正、k逆表示)。
若将一定量N2O4投入真空容器中恒温恒压分解(温度298 K、压强100 kPa),已知该条件下k正=4.8×104 s-1,当N2O4分解10%时,v 正=kPa·s-1。
题组三压强平衡常数的相关计算5.汽车尾气是造成雾霾天气的重要原因之一,尾气中的主要污染物为C x H y、NO、CO、SO2及固体颗粒物等。
研究汽车尾气的成分及其发生的反应,可以为更好的治理汽车尾气提供技术支持。
请回答下列问题:活性炭也可用于处理汽车尾气中的NO,在1 L恒容密闭容器中加入0.100 0 mol NO和2.030 mol固体活性炭,生成A、B两种气体,在不同温度下测得平衡体系中各物质的物质的量以及容器内压强如下表:活性炭/mol NO/mol A/mol B/mol p/MPa200 ℃ 2.000 0.040 0 0.030 0 0.030 0 3.93335 ℃ 2.005 0.050 0 0.025 0 0.025 0 p根据上表数据,写出容器中发生反应的化学方程式:,判断p(用“>”、“<”或“=”填空)3.93 Pa。
计算反应体系在200 ℃时的平衡常数K p=(用平衡分压代替平衡浓度计算,分压=总压×体积分数)。