一元二次方程根的分布情况归纳(完整版)
二次方程根的分布情况归纳(完整版)
二次方程根的分布与二次函数在闭区间上的最值归纳1、一元二次方程02=++c bx ax 根的分布情况 设方程()200ax bx c a ++=≠的不等两根为12,x x 且12x x <,相应的二次函数为()20f x ax bx c =++=,方程的根即为二次函数图象与x 轴的交点,它们的分布情况见下面各表(每种情况对应的均是充要条件)表一:(两根与0的大小比较即根的正负情况)分布情况两个负根即两根都小于0()120,0x x << 两个正根即两根都大于0()120,0x x >>一正根一负根即一个根小于0,一个大于0()120x x <<大致图象(>a )得出的结论()00200b a f ∆>⎧⎪⎪-<⎨⎪>⎪⎩ ()00200b a f ∆>⎧⎪⎪->⎨⎪>⎪⎩ ()00<f大致图象(<a )得出的结论()00200b a f ∆>⎧⎪⎪-<⎨⎪<⎪⎩ ()00200b a f ∆>⎧⎪⎪->⎨⎪<⎪⎩ ()00>f综合结论(不讨论a)()00200b a a f ∆>⎧⎪⎪-<⎨⎪⋅>⎪⎩ ()00200b a a f ∆>⎧⎪⎪->⎨⎪⋅>⎪⎩ ()00<⋅f a分布情况两根都小于k 即 k x k x <<21, 两根都大于k 即 k x k x >>21, 一个根小于k ,一个大于k 即21x k x <<大致图象(>a )得出的结论()020b k a f k ∆>⎧⎪⎪-<⎨⎪>⎪⎩ ()020b k a f k ∆>⎧⎪⎪->⎨⎪>⎪⎩ ()0<k f大致图象(<a )得出的结论()020b k a f k ∆>⎧⎪⎪-<⎨⎪<⎪⎩ ()020b k a f k ∆>⎧⎪⎪->⎨⎪<⎪⎩ ()0>k f综合结论(不讨论a)()020b k a a f k ∆>⎧⎪⎪-<⎨⎪⋅>⎪⎩ ()020b k a a f k ∆>⎧⎪⎪->⎨⎪⋅>⎪⎩ ()0<⋅k f akkk分布情况两根都在()n m ,内两根有且仅有一根在()n m ,内(图象有两种情况,只画了一种) 一根在()n m ,内,另一根在()q p ,内,q p n m <<<大致图象(>a )得出的结论()()0002f m f n b m na ∆>⎧⎪>⎪⎪>⎨⎪⎪<-<⎪⎩()()0<⋅n f m f 同时检验00)(0)(=∆==或或n f m f 的情况()()()()0000f m f n f p f q ⎧>⎪<⎪⎨<⎪⎪>⎩或()()()()00f m f n f p f q <⎧⎪⎨<⎪⎩ 大致图象(<a )得出的结论()()0002f m f n b m na ∆>⎧⎪<⎪⎪<⎨⎪⎪<-<⎪⎩()()0<⋅n f m f 同时检验00)(0)(=∆==或或n f m f 的情况()()()()0000fm f n f p f q ⎧<⎪>⎪⎨>⎪⎪<⎩或()()()()00f m f n f p f q <⎧⎪⎨<⎪⎩综合结论(不讨论a)——————()()0<⋅n f m f 同时检验00)(0)(=∆==或或n f m f 的情况()()()()⎪⎩⎪⎨⎧<<00q f p f n f m f 根在区间上的分布还有一种情况:两根分别在区间()n m ,外,即在区间两侧12,x m x n <>,(图形分别如下)需满足的条件是(1)0a >时,()()00f m f n <⎧⎪⎨<⎪⎩; (2)0a <时,()()0f m f n >⎧⎪⎨>⎪⎩对以上的根的分布表中一些特殊情况作说明: (1)两根有且仅有一根在()n m ,内有以下特殊情况:1︒ 若()0f m =或()0f n =,则此时()()0f m f n <不成立,但对于这种情况是知道了方程有一根为m 或n ,可以求出另外一根,然后可以根据另一根在区间()n m ,内,从而可以求出参数的值。
一元二次方程根的分布(精品)
一.一元二次方程根的基本分布——零分布
所谓一元二次方程根的零分布,指的是方程的根相对于零的关系。比如二次方程有一正根,有一负根,其实就是指这个二次方程一个根比零大,一个根比零小,或者说,这两个根分布在零的两侧。
设一元二次方程ax2+bx+c=0(a≠0)的两个实根为x1,x2,且x1≤x2。
【定理4】①x1=0,x2>0c=0且<0;②x1<0,x2=0c=0且>0。
例3:若一元二次方程kx2+(2k-1)x+k-3=0有一根为零,则另一根是正根还是负根?
二.一元二次方程根的非零分布——k分布
设一元二次方程ax2+bx+c=0(a≠0)的两实根为x1,x2,且x1≤x2。k为常数。则一元二次方程根的k分布(即x1、x2相对于k的位置)有以下若干定理。
【定理1】k<x1≤x2
【定理2】x1≤x2<k。
【定理3】x1<k<x2af(k)<0。
推论1x1<0<x2ac<0。推论2x1<1<x2a(a+b+c)<0。
【定理4】有且仅有一个根x1(或x2)满足k1<x1(或x2)<k2f(k1)f(k2)<0
【定理5】k1<x1<k2≤p1<x2<p2
【定理6】k1<x1≤x2<k2
【定理1】x1>0,x2>0,
推论:x1>0,x2>0
上述推论结合二次函数图象不难得到。
例1:若一元二次方程(m-1)x2+2(m+1)x-m=0有两个正根,求m的取值范围。
【定理2】x1<0,x2<0,
推论:x1<0,x2<0
由二次函数图象易知它的正确性。
【定理3】x1<0<x2<0
例2:k在何范围内取值,一元二次方程kx2+3kx+k-3=0有一个正根和一个负根?
一元二次方程根的分布情况归纳总结
1 一元二次方程ax 2• bx • c 二0根的分布情况 2 2 设方程ax • bx • c = 0 a = 0的不等两根为X |,x 2且为:::x 2,相应的二次函数为 f x 二ax bx 0, 方程的根 即为二次函数图象与 x 轴的交点的横坐标(也即是函数的零点),它们的分布情况见下面各表 表一:两根与0的大小比较即根的正负情况(a>0)表二:(两根与k 的大小比较)(a>0) 表三:(根在区间上的分布)(a>0) 两根有且仅有一根在 m, n 内 (图象有两种情况,只画了一种) 一根在 m,n 内,另一根在 p,q 内,m :: n :: p :: q. "■: 0f m .0f n 广0 b m … n 2a大致图象分布情况两个负根即两根都小于 0 X :: 0, x 2 :: 0两个正根即两根都大于 0 x 1 0, x 2 0 一正根一负根即一个根小于 0, 一个大于 0 % ::: 0 ::: 大致图象f 0 ::: 0 分布情况两根都小于k 即x 1 :: k, x 2 :: k两根都大于k 即 x 1 k, x 2 k 一个根小于k ,一个大于k 即 捲::k . x 2 大致图象f k :: 0 分布情况两根都在m, n 内f m f n :: 0 f n :::0 0. "■: 0 f k .0函数与方程思想:(1)方程f(x°)=O有根二y=f(x)与x轴有交点x°=函数y=f(x)有零点X。
(2)若y=f(x)与y = g( x)有交点(x o , y°)= f(x)=g(x)有解x。
根的分布练习题例1、已知二次方程2m 1 x2-2mxrm-1 = 0有一正根和一负根,求实数m的取值范围。
2例2、已知二次函数y = m • 2 x 7:2m - 4 x:「]3m - 3与x轴有两个交点,一个大于1,一个小于1,求实数m的取值范围。
一元二次方程根的分布情况归纳(完整版)
二次方程根的分布与二次函数在闭区间上的最值归纳1、一元二次方程02=++c bx ax 根的分布情况 设方程()200ax bx c a ++=≠的不等两根为12,x x 且12x x <,相应的二次函数为()20f x ax bx c =++=,方程的根即为二次函数图象与x 轴的交点,它们的分布情况见下面各表(每种情况对应的均是充要条件)表一:(两根与0的大小比较即根的正负情况)根在区间上的分布还有一种情况:两根分别在区间()n m ,外,即在区间两侧12,x m x n <>,(图形分别如下)需满足的条件是(1)0a >时,()()00f m f n <⎧⎪⎨<⎪⎩; (2)0a <时,()()0f m f n >⎧⎪⎨>⎪⎩对以上的根的分布表中一些特殊情况作说明: (1)两根有且仅有一根在()n m ,内有以下特殊情况:若()0f m =或()0f n =,则此时()()0f m f n <不成立,但对于这种情况是知道了方程有一根为m 或n ,可以求出另外一根,然后可以根据另一根在区间()n m ,内,从而可以求出参数的值。
如方程()2220mx m x -++=在区间()1,3上有一根,因为()10f =,所以()()()22212mx m x x mx -++=--,另一根为2m,由213m <<得223m <<即为所求;方程有且只有一根,且这个根在区间()n m ,内,即0∆=,此时由0∆=可以求出参数的值,然后再将参数的值带入方程,求出相应的根,检验根是否在给定的区间内,如若不在,舍去相应的参数。
如方程24260x mx m -++=有且一根在区间()3,0-内,求m 的取值范围。
分析:①由()()300f f -<即()()141530m m ++<得出15314m -<<-;②由0∆=即()2164260m m -+=得出1m =-或32m =,当1m =-时,根()23,0x =-∈-,即1m =-满足题意;当32m =时,根()33,0x =∉-,故32m =不满足题意;综上分析,得出15314m -<<-或1m =-根的分布练习题例1、已知二次方程()()221210m x mx m +-+-=有一正根和一负根,求实数m 的取值范围。
一元二次方程根的分布
一元二次方程的形式为ax^2+bx+c=0,其中a、b、c为常数。
一元二次方程根的分布取决于方程的解的个数,有如下三种情况:1 两个不相等的实根:如果一元二次方程有两个不相等的实根,那么方程的解为x1=r1、x2=r2,其中r1和r2是方程的两个实根。
2 两个相等的实根:如果一元二次方程有两个相等的实根,那么方程的解为x1=x2=r,其中r是方程的两个相等的实根。
3 两个复数根:如果一元二次方程有两个复数根,那么方程的解为x1=r1+r2i、x2=r1-r2i,其中r1和r2是方程的两个复数根的实部和虚部。
一元二次方程的根分布可以通过求解方程的判别式来确定。
判别式为b^2-4ac,如果判别式>0,则方程有两个不相等的实根;如果判别式=0,则方程有两个相等的实根;如果判别式<0,则方程有两个复数根。
在数学中,一元二次方程是由一个二次项和一个一次项组成的方程。
它的形式为ax^2+bx+c=0,其中a、b、c为常数。
解决一元二次方程的方法有多种,常见的方法有求解公式法、因式分解法、二分法、牛顿迭代法等。
求解公式法是最常见的求解一元二次方程的方法,它的公式为:x1= (-b+sqrt(b^2-4ac))/(2a)x2= (-b-sqrt(b^2-4ac))/(2a)其中sqrt(b^2-4ac)表示根号内的值。
因式分解法是将一元二次方程写成两个一次方程的形式,然后分别求解两个一次方程的解。
二分法是一种数值解法,通过取方程的两个端点的中点来逐步缩小解的范围,最终得到方程的解。
牛顿迭代法是一种逐步迭代的方法,通过不断迭代来逼近方程的解,最终得到方程的解。
在解决一元二次方程时,应根据具体情况选择合适的方法。
二次方程根的分布情况归纳(完整版)
二次方程根的分布与二次函数在闭区间上的最值归纳1、一元二次方程02=++c bx ax 根的分布情况 设方程()200ax bx c a ++=≠的不等两根为12,x x 且12x x <,相应的二次函数为()20f x ax bx c =++=,方程的根即为二次函数图象与x 轴的交点,它们的分布情况见下面各表(每种情况对应的均是充要条件)表一:(两根与0的大小比较即根的正负情况)k k k根在区间上的分布还有一种情况:两根分别在区间()n m ,外,即在区间两侧12,x m x n <>,(图形分别如下)需满足的条件是(1)0a >时,()()00f m f n <⎧⎪⎨<⎪⎩; (2)0a <时,()()0f m f n >⎧⎪⎨>⎪⎩对以上的根的分布表中一些特殊情况作说明: (1)两根有且仅有一根在()n m ,内有以下特殊情况:1︒ 若()0f m =或()0f n =,则此时()()0f m f n <不成立,但对于这种情况是知道了方程有一根为m 或n ,可以求出另外一根,然后可以根据另一根在区间()n m ,内,从而可以求出参数的值。
如方程()2220mx m x -++=在区间()1,3上有一根,因为()10f =,所以()()()22212mx m x x mx -++=--,另一根为2m,由213m <<得223m <<即为所求;2︒ 方程有且只有一根,且这个根在区间()n m ,内,即0∆=,此时由0∆=可以求出参数的值,然后再将参数的值带入方程,求出相应的根,检验根是否在给定的区间内,如若不在,舍去相应的参数。
如方程24260x mx m -++=有且一根在区间()3,0-内,求m 的取值范围。
分析:①由()()300f f -<即()()141530m m ++<得出15314m -<<-;②由0∆=即()2164260m m -+=得出1m =-或32m =,当1m =-时,根()23,0x =-∈-,即1m =-满足题意;当32m =时,根()33,0x =∉-,故32m =不满足题意;综上分析,得出15314m -<<-或1m =-根的分布练习题例1、已知二次方程()()221210m x mx m +-+-=有一正根和一负根,求实数m 的取值范围。
二次方程根的分布情况归纳(完整版)
二次方程根的分布与二次函数在闭区间上的最值归纳1、一元二次方程02=++c bx ax 根的分布情况 设方程()200ax bx c a ++=≠的不等两根为12,x x 且12x x <,相应的二次函数为()20f x ax bx c =++=,方程的根即为二次函数图象与x 轴的交点,它们的分布情况见下面各表(每种情况对应的均是充要条件)表一:(两根与0的大小比较即根的正负情况)k k k根在区间上的分布还有一种情况:两根分别在区间()n m ,外,即在区间两侧12,x m x n <>,(图形分别如下)需满足的条件是(1)0a >时,()()00f m f n <⎧⎪⎨<⎪⎩; (2)0a <时,()()0f m f n >⎧⎪⎨>⎪⎩对以上的根的分布表中一些特殊情况作说明: (1)两根有且仅有一根在()n m ,内有以下特殊情况:1︒ 若()0f m =或()0f n =,则此时()()0f m f n <不成立,但对于这种情况是知道了方程有一根为m 或n ,可以求出另外一根,然后可以根据另一根在区间()n m ,内,从而可以求出参数的值。
如方程()2220mx m x -++=在区间()1,3上有一根,因为()10f =,所以()()()22212mx m x x mx -++=--,另一根为2m,由213m <<得223m <<即为所求;2︒ 方程有且只有一根,且这个根在区间()n m ,内,即0∆=,此时由0∆=可以求出参数的值,然后再将参数的值带入方程,求出相应的根,检验根是否在给定的区间内,如若不在,舍去相应的参数。
如方程24260x mx m -++=有且一根在区间()3,0-内,求m 的取值范围。
分析:①由()()300f f -<即()()141530m m ++<得出15314m -<<-;②由0∆=即()2164260m m -+=得出1m =-或32m =,当1m =-时,根()23,0x =-∈-,即1m =-满足题意;当32m =时,根()33,0x =∉-,故32m =不满足题意;综上分析,得出15314m -<<-或1m =-根的分布练习题例1、已知二次方程()()221210m x mx m +-+-=有一正根和一负根,求实数m 的取值范围。
二次方程根的分布情况归纳(完整版)
一元二次方程02=++c bx ax 根的分布情况 设方程()200ax bx c a ++=≠的不等两根为12,x x 且12x x <,相应的二次函数为()20f x ax bx c =++=,方程的根即为二次函数图象与x 轴的交点,它们的分布情况见下面各表(每种情况对应的均是充要条件)表一:(两根与0的大小比较即根的正负情况)k k k根在区间上的分布还有一种情况:两根分别在区间()n m ,外,即在区间两侧12,x m x n <>,(图形分别如下)需满足的条件是(1)0a >时,()()00f m f n <⎧⎪⎨<⎪⎩; (2)0a <时,()()0f m f n >⎧⎪⎨>⎪⎩根的分布练习题例1、已知二次方程()()221210m x mx m +-+-=有一正根和一负根,求实数m 的取值范围。
解:由 ()()2100m f +< 即 ()()2110m m +-<,从而得112m -<<即为所求的范围。
例2、已知方程()2210x m x m -++=有两个不等正实根,求实数m 的取值范围。
解:由()()0102200m f ∆>⎧⎪-+⎪->⎨⎪>⎪⎩⇒ ()218010m m m m ⎧+->⎪>-⎨⎪>⎩ ⇒330m m m ⎧<->+⎪⎨>⎪⎩⇒03m <<-3m >+例3、已知二次函数()()()222433y m x m x m =+-+++与x 轴有两个交点,一个大于1,一个小于1,求实数m 的取值范围。
解:由 ()()210m f +< 即 ()()2210m m ++< ⇒ 122m -<<即为所求的范围。
例4、已知二次方程()22340mx m x +-+=只有一个正根且这个根小于1,求实数m 的取值范围。
一元二次方程根的分布情况小结
一元二次方程根的分布一.知识要点二次方程02=++c bx ax 的根从几何意义上来说就是抛物线c bx ax y ++=2与x 轴交点的横坐标,所以研究方程02=++c bx ax 的实根的情况,可从c bx ax y ++=2的图象上进行研究.若在),(+∞-∞内研究方程02=++c bx ax 的实根情况,只需考察函数c bx ax y ++=2与x 轴交点个数及交点横坐标的符号,根据判别式以及韦达定理,由c bx ax y ++=2的系数可判断出2121,,x x x x +∆的符号,从而判断出实根的情况.若在区间),(n m 内研究二次方程02=++c bx ax ,则需由二次函数图象与区间关系来确定.0∆>⎩表二:(两根与k的大小比较)k k k表三:(根在区间上的分布)根在区间上的分布还有一种情况:两根分别在区间()n m ,外,即在区间两侧12,x m x n <>,(图形分别如下)需满足的条件是(1)0a >时,()()00f m f n <⎧⎪⎨<⎪⎩; (2)0a <时,()()0f m f n >⎧⎪⎨>⎪⎩对以上的根的分布表中一些特殊情况作说明: (1)两根有且仅有一根在()n m ,内有以下特殊情况:1︒ 若()0f m =或()0f n =,则此时()()0f m f n <不成立,但对于这种情况是知道了方程有一根为m 或n ,可以求出另外一根,然后可以根据另一根在区间()n m ,内,从而可以求出参数的值。
如方程()2220mx m x -++=在区间()1,3上有一根,因为()10f =,所以()()()22212mx m x x mx -++=--,另一根为2m,由213m <<得223m <<即为所求;2︒方程有且只有一根,且这个根在区间()n m ,内,即0∆=,此时由0∆=可以求出参数的值,然后再将参数的值带入方程,求出相应的根,检验根是否在给定的区间内,如若不在,舍去相应的参数。
高一数学《二次方程根的分布情况》归纳(完整版)
1 若 f m 0 或 f n 0 ,则此时 f m f n 0 不成立,但对于这种情况是知道了方程有一根为 m 或 n ,可
以求出另外一根,然后可以根据另一根在区间 m, n内,从而可以求出参数的值。如方程 mx2 m 相应的根,检验根是否在给定的区间内,如若不在,舍去相应的参数。如方程 x2 4mx 2m 6 0 有
且 一 根 在 区 间 3, 0 内 , 求 m 的 取 值 范 围 。 分 析 : ① 由 f 3 f 0 0 即 14m 15m 3 0 得 出
a
)
0
b 2a
0
f 0 0
0
b 0 2a
a f 0 0
f 0 0 a f 0 0
1
表二:(两根与 k 的大小比较)
分
两根都小于 k 即
布
情
况
x1 k, x2 k
大 致 图 象 (
k
)
a 0
两根都大于 k 即 x1 k, x2 k
f f
x max
x min
f f
3 2
3a b 2 5
2b 2
a 1 b 0 ;
(2)当 a
0 时,函数
f
x
在区间
2,
3
上是减函数,故
f f
x max
x min
f f
2 3
b2 3a b 2
5
2
a 1
二次方程根的分布情况归纳(完整版)
二次方程根的分布与二次函数在闭区间上的最值归纳1、一元二次方程02=++c bx ax 根的分布情况 设方程()200ax bx c a ++=≠的不等两根为12,x x 且12x x <,相应的二次函数为()20f x ax bx c =++=,方程的根即为二次函数图象与x 轴的交点,它们的分布情况见下面各表(每种情况对应的均是充要条件)表一:(两根与0的大小比较即根的正负情况)k k k根在区间上的分布还有一种情况:两根分别在区间()n m ,外,即在区间两侧12,x m x n <>,(图形分别如下)需满足的条件是(1)0a >时,()()00f m f n <⎧⎪⎨<⎪⎩; (2)0a <时,()()0f m f n >⎧⎪⎨>⎪⎩对以上的根的分布表中一些特殊情况作说明: (1)两根有且仅有一根在()n m ,内有以下特殊情况:1︒ 若()0f m =或()0f n =,则此时()()0f m f n <不成立,但对于这种情况是知道了方程有一根为m 或n ,可以求出另外一根,然后可以根据另一根在区间()n m ,内,从而可以求出参数的值。
如方程()2220mx m x -++=在区间()1,3上有一根,因为()10f =,所以()()()22212mx m x x mx -++=--,另一根为2m,由213m <<得223m <<即为所求;2︒ 方程有且只有一根,且这个根在区间()n m ,内,即0∆=,此时由0∆=可以求出参数的值,然后再将参数的值带入方程,求出相应的根,检验根是否在给定的区间内,如若不在,舍去相应的参数。
如方程24260x mx m -++=有且一根在区间()3,0-内,求m 的取值范围。
分析:①由()()300f f -<即()()141530m m ++<得出15314m -<<-;②由0∆=即()2164260m m -+=得出1m =-或32m =,当1m =-时,根()23,0x =-∈-,即1m =-满足题意;当32m =时,根()33,0x =∉-,故32m =不满足题意;综上分析,得出15314m -<<-或1m =-根的分布练习题例1、已知二次方程()()221210m x mx m +-+-=有一正根和一负根,求实数m 的取值范围。
一元二次方程根的分布情况归纳(完整版)
二次方程根的分布与二次函数在闭区间上的最值归纳1、一元二次方程02=++c bx ax 根的分布情况设方程()200ax bx c a ++=≠的不等两根为12,x x 且12x x <,相应的二次函数为()20f x ax bx c =++=,方程的根即为二次函数图象与x 轴的交点,它们的分布情况见下面各表(每种情况对应的均是充要条件)表一:(两根与0的大小比较即根的正负情况)分布情况两个负根即两根都小于0()120,0x x <<两个正根即两根都大于0()120,0x x >>一正根一负根即一个根小于0,一个大于0()120x x <<大致图象(>a )得出的结论()00200b a f ∆>⎧⎪⎪-<⎨⎪>⎪⎩()00200b a f ∆>⎧⎪⎪->⎨⎪>⎪⎩()00<f 大致图象(<a )得出的结论()00200b a f ∆>⎧⎪⎪-<⎨⎪<⎪⎩()00200b a f ∆>⎧⎪⎪->⎨⎪<⎪⎩()00>f 综合结论(不讨论a)()00200b a a f ∆>⎧⎪⎪-<⎨⎪⋅>⎪⎩()00200b a a f ∆>⎧⎪⎪->⎨⎪⋅>⎪⎩()00<⋅f a分布情况两根都小于k 即k x k x <<21,两根都大于k 即k x k x >>21,一个根小于k ,一个大于k 即21x k x <<大致图象(>a )得出的结论()020b k a f k ∆>⎧⎪⎪-<⎨⎪>⎪⎩()020b k a f k ∆>⎧⎪⎪->⎨⎪>⎪⎩()0<k f 大致图象(<a )得出的结论()020b k a f k ∆>⎧⎪⎪-<⎨⎪<⎪⎩()020b k a f k ∆>⎧⎪⎪->⎨⎪<⎪⎩()0>k f 综合结论(不讨论a)()020b k a a f k ∆>⎧⎪⎪-<⎨⎪⋅>⎪⎩()020b k a a f k ∆>⎧⎪⎪->⎨⎪⋅>⎪⎩()0<⋅k f a kkk分布情况两根都在()n m ,内两根有且仅有一根在()n m ,内(图象有两种情况,只画了一种)一根在()n m ,内,另一根在()q p ,内,qp n m <<<大致图象(>a )得出的结论()()0002f m f n b m na ∆>⎧⎪>⎪⎪>⎨⎪⎪<-<⎪⎩()()0<⋅n f m f ()()()()0000f m f n f p f q ⎧>⎪<⎪⎨<⎪⎪>⎩或()()()()00f m f n f p f q <⎧⎪⎨<⎪⎩大致图象(<a )得出的结论()()0002f m f n b m na ∆>⎧⎪<⎪⎪<⎨⎪⎪<-<⎪⎩()()0<⋅n f m f ()()()()0000fm f n f p f q ⎧<⎪>⎪⎨>⎪⎪<⎩或()()()()00f m f n f p f q <⎧⎪⎨<⎪⎩综合结论(不讨论a)——————()()0<⋅n f m f ()()()()⎪⎩⎪⎨⎧<<00q f p f n f m f 根在区间上的分布还有一种情况:两根分别在区间()n m ,外,即在区间两侧12,x m x n <>,(图形分别如下)需满足的条件是(1)0a >时,()()0f m f n <⎧⎪⎨<⎪⎩;(2)0a <时,()()0f m f n >⎧⎪⎨>⎪⎩对以上的根的分布表中一些特殊情况作说明:(1)两根有且仅有一根在()n m ,内有以下特殊情况:若()0f m =或()0f n =,则此时()()0f m f n < 不成立,但对于这种情况是知道了方程有一根为m 或n ,可以求出另外一根,然后可以根据另一根在区间()n m ,内,从而可以求出参数的值。
二次方程根的分布情况归纳(完整版)
二次方程根的分布与二次函数在闭区间上的最值归纳1、一元二次方程02=++c bx ax 根的分布情况 设方程()200ax bx c a ++=≠的不等两根为12,x x 且12x x <,相应的二次函数为()20f x ax bx c =++=,方程的根即为二次函数图象与x 轴的交点,它们的分布情况见下面各表(每种情况对应的均是充要条件)表一:(两根与0的大小比较即根的正负情况)k k k根在区间上的分布还有一种情况:两根分别在区间()n m ,外,即在区间两侧12,x m x n <>,(图形分别如下)需满足的条件是(1)0a >时,()()00f m f n <⎧⎪⎨<⎪⎩; (2)0a <时,()()0f m f n >⎧⎪⎨>⎪⎩对以上的根的分布表中一些特殊情况作说明: (1)两根有且仅有一根在()n m ,内有以下特殊情况:1︒ 若()0f m =或()0f n =,则此时()()0f m f n <不成立,但对于这种情况是知道了方程有一根为m 或n ,可以求出另外一根,然后可以根据另一根在区间()n m ,内,从而可以求出参数的值。
如方程()2220mx m x -++=在区间()1,3上有一根,因为()10f =,所以()()()22212mx m x x mx -++=--,另一根为2m,由213m <<得223m <<即为所求;2︒ 方程有且只有一根,且这个根在区间()n m ,内,即0∆=,此时由0∆=可以求出参数的值,然后再将参数的值带入方程,求出相应的根,检验根是否在给定的区间内,如若不在,舍去相应的参数。
如方程24260x mx m -++=有且一根在区间()3,0-内,求m 的取值范围。
分析:①由()()300f f -<即()()141530m m ++<得出15314m -<<-;②由0∆=即()2164260m m -+=得出1m =-或32m =,当1m =-时,根()23,0x =-∈-,即1m =-满足题意;当32m =时,根()33,0x =∉-,故32m =不满足题意;综上分析,得出15314m -<<-或1m =-根的分布练习题例1、已知二次方程()()221210m x mx m +-+-=有一正根和一负根,求实数m 的取值范围。
一元二次方程根的分布
0
5 .方程两根都小于m (x1 m) (x2 m) 0
(x1 m) (x2 m) 0
6. 方程一根大于m另一根小于m
(x1 m) (x2 m) 0
• 例1பைடு நூலகம் 方程x2+2ax+1=0有两个不等负
• 二、二次方程与二次函数联系紧密,关于二次 方程问题求解的另一思路是转化为二次函数来 解,因此一元二次方程根的分布问题可借助二 次函数图象来研究求解。(函数法) 抓△,对称轴的位置,特殊点的函数值
令f(x)=ax2+bx+c(a>0) 则有如下结论
1 .方程两根都大于m
2.方程两根都小于m 3.方程一个根大于m另一根小于m 4.方程两根都大于m且都小于n
C.必要不充分条件 D.既不必要不充分条件
例5:求方程3x2-2mx+m+1=0一根在0,1之 间另一根在1,2之间的充要条件
例6 : 抛物线y=-x2+3x-m与直线y=3-x在 0<x<3时只有一个交点,求m的范围. -3<m≤0或m=1
根,求实数a的取值范围。(a>1)
例2: 方程mx2+(2m-1)x-3(m-1)=0 两根都大于3,求实数m的取值范围。
;资质代办 /daiban/ 资质代办
;
替那些果实遮过阴凉、从枝头跌落、背井离乡的叶子。 祖母在秋天的离世毫无征兆,只是那一天刮了很大的风,院子里的那棵老柳树稀里哗啦地掉落了所有的叶子。其实,也只有风能让叶子喘息或者感叹。在叶子的生命中,风往往扮演着接生婆和送行者的双重角色,所以叶子的心思只 和风说,它只和风窃窃私语。 落叶也有遗言吗?在离开枝头的刹那,它和风都说了什么?谁
一元二次方程求根的分布
一元二次方程求根的分布
一元二次方程求根的分布跟方程的判别式有关。
设一元二次方程为ax^2+bx+c=0,其判别式Δ=b^2-4ac。
1. 如果Δ大于0,即Δ>0,则方程有两个不相等的实根。
根的值可以通过求解方程的公式x=(-b±√Δ) / (2a)得到。
2. 如果Δ等于0,即Δ=0,则方程有两个相等的实根。
根的值可以通过求解方程的公式x=-b / (2a)得到。
3. 如果Δ小于0,即Δ<0,则方程没有实根,而是有两个虚根。
虚根的值可以通过求解方程的公式x=(-b±i√|Δ|) / (2a)得到,其中i是虚数单位。
根据判别式的不同取值,一元二次方程的根的分布可以归纳如下:- 当Δ>0时,根分布在数轴上的两个不相等的点;
- 当Δ=0时,根重合在数轴上的一个点;
- 当Δ<0时,根不存在于实数范围内,而是分布在复数平面上的两个虚根。
这就是一元二次方程求根的分布情况。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
二次方程根的分布与二次函数在闭区间上的最值归纳1、一元二次方程02=++c bx ax 根的分布情况设方程()200ax bx c a ++=≠的不等两根为12,x x 且12x x <,相应的二次函数为()20f x ax bx c =++=,方程的根即为二次函数图象与x 轴的交点,它们的分布情况见下面各表(每种情况对应的均是充要条件)表一:(两根与0的大小比较即根的正负情况)a根在区间上的分布还有一种情况:两根分别在区间()n m ,外,即在区间两侧12,x m x n <>,(图形分别如下)需满足的条件是(1)0a >时,()()00f m f n <⎧⎪⎨<⎪⎩;(2)0a <时,()()0f m f n >⎧⎪⎨>⎪⎩对以上的根的分布表中一些特殊情况作说明: (1)两根有且仅有一根在()n m ,内有以下特殊情况:若()0f m =或()0f n =,则此时()()0f m f n <不成立,但对于这种情况是知道了方程有一根为m 或n ,可以求出另外一根,然后可以根据另一根在区间()n m ,内,从而可以求出参数的值。
如方程()2220mx m x -++=在区间()1,3上有一根,因为()10f =,所以()()()22212mx m x x mx -++=--,另一根为2m,由213m <<得223m <<即为所求;方程有且只有一根,且这个根在区间()n m ,内,即0∆=,此时由0∆=可以求出参数的值,然后再将参数的值带入方程,求出相应的根,检验根是否在给定的区间内,如若不在,舍去相应的参数。
如方程24260x mx m -++=有且一根在区间()3,0-内,求m 的取值范围。
分析:①由()()300f f -<即()()141530m m ++<得出15314m -<<-;②由0∆=即()2164260m m -+=得出1m =-或32m =,当1m =-时,根()23,0x =-∈-,即1m =-满足题意;当32m =时,根()33,0x =∉-,故32m =不满足题意;综上分析,得出15314m -<<-或1m =-根的分布练习题例1、已知二次方程()()221210m x mx m +-+-=有一正根和一负根,求实数m 的取值范围。
解:由()()2100m f +<即()()2110m m +-<,从而得112m -<<即为所求的范围。
例2、已知方程()2210x m x m -++=有两个不等正实根,求实数m 的取值范围。
解:由03m <<-3m >+即为所求的范围。
例3、已知二次函数()()()222433y m x m x m =+-+++与x 轴有两个交点,一个大于1,一个小于1,求实数m 的取值范围。
解:由()()210m f +<即()()2210m m ++<⇒122m -<<即为所求的范围。
例4、已知二次方程()22340mx m x +-+=只有一个正根且这个根小于1,求实数m 的取值范围。
解:由题意有方程在区间()0,1上只有一个正根,则()()010f f <⇒()4310m +<⇒13m <-即为所求范围。
(注:本题对于可能出现的特殊情况方程有且只有一根且这个根在()0,1内,由0∆=计算检验,均不复合题意,计算量稍大)例1、当关于x 的方程的根满足下列条件时,求实数a 的取值范围: (1)方程2270x ax a -+-=的两个根一个大于2,另一个小于2;(2)方程227(13)20x a x a a -++--=的一个根在区间(0,1)上,另一根在区间(1,2)上; (3)方程022=++ax x 的两根都小于0; 变题:方程022=++ax x 的两根都小于?1.(4)方程22(4)2530x a x a a -+-++=的两根都在区间[1,3]-上; (5)方程042=+-ax x 在区间(?1,1)上有且只有一解;例2、已知方程042=+-mx x 在区间[?1,1]上有解,求实数m 的取值范围.例3、已知函数f (x )1)3(2+-+=x m mx 的图像与x 轴的交点至少有一个在原点右侧,求实数m 的取值范围.检测反馈:1.若二次函数2()(1)5f x x a x =--+在区间1(,1)2上是增函数,则(2)f 的取值范围是___________. 2.若α、β是关于x 的方程06k kx 2x 2=++-的两个实根,则22)1()1(-β+-α的最小值为. 3.若关于x 的方程2(2)210x m x m +-+-=只有一根在(0,1)内,则m ∈__. 4.对于关于x 的方程x 2+(2m ?1)x+4?2m=0求满足下列条件的m 的取值范围: (1)有两个负根(2)两个根都小于?1(3)一个根大于2,一个根小于2(4)两个根都在(0,2)内(5)一个根在(?2,0)内,另一个根在(1,3)内(6)一个根小于2,一个根大于4 (7)在(0,2)内有根(8)一个正根,一个负根且正根绝对值较大5.已知函数1)(2-+=x mx x f 的图像与x 轴的交点至少有一个在原点的右侧,求实数m 的取值范围。
2、二次函数在闭区间[]n m ,上的最大、最小值问题探讨设()()002>=++=a c bx ax x f ,则二次函数在闭区间[]n m ,上的最大、最小值有如下的分布情况:对于开口向下的情况,讨论类似。
其实无论开口向上还是向下,都只有以下两种结论: (1)若[]n m a b,2∈-,则()()()⎭⎬⎫⎩⎨⎧⎪⎭⎫ ⎝⎛-=n f a b f m f x f ,2,max max ,()()()⎭⎬⎫⎩⎨⎧⎪⎭⎫⎝⎛-=n f a b f m f x f ,2,min min ;(2)若[]n m ab,2∉-,则()()(){}n f m f x f ,m ax max =,()()(){}n f m f x f ,m in min = 另外,当二次函数开口向上时,自变量的取值离开x 轴越远,则对应的函数值越大;反过来,当二次函数开口向下时,自变量的取值离开x 轴越远,则对应的函数值越小。
二次函数在闭区间上的最值练习二次函数在闭区间上求最值,讨论的情况无非就是从三个方面入手:开口方向、对称轴以及闭区间,以下三个例题各代表一种情况。
例1、函数()()2220f x ax ax b a =-++≠在[]2,3上有最大值5和最小值2,求,a b 的值。
解:对称轴[]012,3x =∉,故函数()f x 在区间[]2,3上单调。
(1)当0a >时,函数()f x 在区间[]2,3上是增函数,故()()()()max min32f x f f x f ⎧=⎪⎨=⎪⎩⇒32522a b b ++=⎧⎨+=⎩⇒10a b =⎧⎨=⎩; (2)当0a <时,函数()f x 在区间[]2,3上是减函数,故()()()()max min23f x f f x f ⎧=⎪⎨=⎪⎩⇒25322b a b +=⎧⎨++=⎩⇒13a b =-⎧⎨=⎩ 例2、求函数()[]221,1,3f x x ax x =-+∈的最小值。
解:对称轴0x a =(1)当1a <时,()min 122y f a ==-(2)当13a ≤≤时,()2min 1y f a a ==-;(3)当3a >时,()min 3106y f a ==-改:1.本题若修改为求函数的最大值,过程又如何?解:(1)当2a <时,()()max 3106f x f a ==-; (2)当2a ≥时,()()max 122f x f a ==-。
2.本题若修改为求函数的最值,讨论又该怎样进行?解:(1)当1a <时,()()max 3106f x f a ==-,()()min 122f x f a ==-;(2)当12a ≤<时,()()max 3106f x f a ==-,()()2min 1f x f a a ==-; (3)当23a ≤<时,()()max 122f x f a ==-,()()2min 1f x f a a ==-; (4)当3a ≥时,()()max 122f x f a ==-,()()min 3106f x f a ==-。
例3、求函数243y x x =-+在区间[],1t t +上的最小值。
解:对称轴02x =(1)当2t <即2t >时,()2min 43y f t t t ==-+;(2)当21t t ≤≤+即12t ≤≤时,()min 21y f ==-; (3)当21t >+即1t <时,()2min 12y f t t t =+=- 例4、讨论函数()21f x x x a =+-+的最小值。
解:()2221,11,x a x x a f x x x a x ax x a ≥⎧+-+=+-+=⎨<-++⎩,这个函数是一个分段函数,由于上下两段上的对称轴分别为直线12x =-,12x =,当12a <-,1122a -≤<,12a ≥时原函数的图象分别如下(1),(2),(3)因此,(1)当12a <-时,()min 1324f x f a ⎛⎫=-=- ⎪⎝⎭;(2)当1122a -≤<时,()()2min 1f x f a a ==+;(3)当12a ≥时,()min 1324f x f a ⎛⎫==+ ⎪⎝⎭。