等腰三角形性质定理(基础)知识讲解

合集下载

第十七讲 等腰三角形与直角三角形

第十七讲 等腰三角形与直角三角形

第十七讲 等腰三角形与直角三角形归纳 1:等腰三角形基础知识归纳:1、等腰三角形的性质(1)等腰三角形的性质定理及推论:定理:等腰三角形的两个底角相等(简称:等边对等角)推论1:等腰三角形顶角平分线平分底边并且垂直于底边.即等腰三角形的顶角平分线、底边上的中线、底边上的高重合.推论2:等边三角形的各个角都相等,并且每个角都等于60°.2、等腰三角形的判定等腰三角形的判定定理及推论:定理:如果一个三角形有两个角相等,那么这两个角所对的边也相等(简称:等角对等边).这个判定定理常用于证明同一个三角形中的边相等.基本方法归纳:①等腰直角三角形的两个底角相等且等于45°②等腰三角形的底角只能为锐角,不能为钝角(或直角),但顶角可为钝角(或直角).③等腰三角形的三边关系:设腰长为a ,底边长为b ,则2b <a ④等腰三角形的三角关系:设顶角为顶角为∠A ,底角为∠B 、∠C ,则∠A =180°—2∠B ,∠B =∠C =2180A ∠-︒ 注意问题归纳:等腰三角形的性质与判定经常用来计算三角形的角的有关问题,并证明角相等的问题.【例1】已知等腰三角形的三边长分别为a 、b 、4,且a 、b 是关于x 的一元二次方程x 2﹣12x +m +2=0的两根,则m 的值是( )A .34B .30C .30或34D .30或36归纳2:等边三角形基础知识归纳:1.定义三条边都相等的三角形是等边三角形.2.性质:等边三角形的各角都相等,并且每一个角都等于60°3.判定三个角都相等的三角形是等边三角形;有一个角等于60°的等腰三角形是等边三角形.基本方法归纳:线段垂直平分线上的一点到这条线段的两端距离相等;到一条线段两端点距离相等的点,在这条线段的垂直平分线上.注意问题归纳:三个角都相等的三角形是等边三角形;有一个角是60°的等腰三角形是等边三角形.【例2】如图,∠EOF的顶点O是边长为2的等边△ABC的重心,∠EOF的两边与△ABC的边交于E,F,∠EOF=120°,则∠EOF与△ABC的边所围成阴影部分的面积是()A.32B.235C.33D.34归纳3:直角三角形基础知识归纳:有一个角是直角的三角形叫作直角三角形直角三角形的性质:(1)直角三角形两锐角互余.(2)在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半;(3)在直角三角形中,斜边上的中线等于斜边的一半.基本方法归纳:(1)两个内角互余的三角形是直角三角形.(2)三角形一边上的中线等于这条边的一半,那么这个三角形是直角三角形.注意问题归纳:注意区分直角三角形的性质与直角三角形的判定,在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半,它的逆命题不能直接使用.【例3】已知等腰三角形的底角是30°,腰长为,则它的周长是.归纳4:勾股定理基础知识归纳:直角三角形的两条直角边a、b的平方和等于斜边c的平方,即:a2+b2=c2;基本方法归纳:如果三角形的三条边a、b、c有关系:a2+b2=c2,那么这个三角形是直角三角形.注意问题归纳:勾股定理的逆定理也是判定直角三角形一种常用的方法,通常与直角三角形的性质结合起来考查.【例4】如图,在△ABC中,内角A、B、C所对的边分别为a、b、c.(1)若a=6,b=8,c=12,请直接写出∠A与∠B的和与∠C的大小关系;(2)求证:△ABC的内角和等于180°;(3)若()12a b caa b c c++=-+,求证:△ABC是直角三角形.【基础练习】1.一个等腰三角形的底边长是6,腰长是一元二次方程x2﹣8x+15=0的一根,则此三角形的周长是()A.16B.12C.14D.12或162.如图,在△ABC中,AB=AC,∠A=30°,直线a∥b,顶点C在直线b上,直线a交AB 于点D,交AC与点E,若∠1=145°,则∠2的度数是()A.30°B.35°C.40°D.45°3.如图,等边△OAB的边长为2,则点B的坐标为()A.(1,1)B.(1,3)C.(3,1)D.(3,3)4.如图,在△ABC中,AB=2,BC=3.6,∠B=60°,将△ABC绕点A顺时针旋转得到△ADE,当点B的对应点D恰好落在BC边上时,则CD的长为()A.1.6B.1.8C.2D.2.65.下列长度的三条线段,能组成三角形的是()A.2,2,4B.5,6,12C.5,7,2D.6,8,10 6、等腰三角形一边长为2,它的另外两条边的长度是关于x的一元二次方程x2﹣6x+k=0的两个实数根,则k的值是()A.8B.9C.8或9D.127.如图,在△ABC中,AB=AC,AC的垂直平分线交AC于点D,交AB与点E,已知△BCE的周长为10,且BC=4,则AB的长为()A.3B.4C.5D.68.如图,△ABC的周长为19,点D,E在边BC上,∠ABC的平分线垂直于AE,垂足为N,∠ACB的平分线垂直于AD,垂足为M,若BC=7,则MN的长度为()A.32B.2C.52D.3【基础练习】9.如图,在△ABC中,点D为BC边上的一点,且AD=AB=2,AD⊥AB.过点D作DE⊥AD,DE交AC于点E.若DE=1,则△ABC的面积为()A.42B.4C.25D.810.如图,△ABC中,AB=AC=10,tanA=2,BE⊥AC于点E,D是线段BE上的一个动点,则CD55BD的最小值是()A.25B.45C.53D.1011.如图,在Rt△ABC中,∠C=90°,AB=5,BC=4.点P是边AC上一动点,过点P作PQ∥AB交BC于点Q,D为线段PQ的中点,当BD平分∠ABC时,AP的长度为()A.813B.1513C.2513D.321312、如图,在平面直角坐标系中,等腰直角三角形ABC的顶点A、B分别在x轴、y轴的正半轴上,∠ABC=90°,CA⊥x轴,点C在函数y=kx(x>0)的图象上,若AB=2,则k的值为()A.4B.22 C.2D.213.如图,在△ABC中,AB=AC,AD为BC边上的中线,DE⊥AB于点E.(1)求证:△BDE∽△CAD.(2)若AB=13,BC=10,求线段DE的长.14.如图,在Rt△ABC中,∠ACB=90°,∠BAC=30°,E为AB边的中点,以BE为边作等边△BDE,连接AD,CD.(1)求证:△ADE≌△CDB;(2)若BC=3,在AC边上找一点H,使得BH+EH最小,并求出这个最小值.1.在△ABC中,点M为BC的中点,AD平分∠BAC,且BD⊥AD于点D,延长BD交AC于点N若AB=4,DM=1,则AC的长为()A.5B.6C.7D.82.如图,在△ABC中,AB=AC,AE平分∠BAC,F为AC上一点,且AF=EF.若∠B=42°,则∠EFC为()A.48°B.96°C.138°D.84°3.如图:分别以Rt△ABC的直角边AC及斜边AB为边作等边△ACD及等边△ABE,已知∠BAC=30°,EF⊥AB,垂足为F,连接DF交AC于点O.给出下列说法:①AC=EF;②四边形ADFE是平行四边形;③△ABC≌△ADO;④2FO=BC;⑤∠EAD=120°.其中正确结论的个数是()A.2B.3C.4D.54.如图,在△ABC中,∠CAB=90°,AB=AC=4,P为AC中点,点D在直线BC上运动,以为边向AD的右侧作正方形ADEF,连接PF,则在点D的运动过程中,线段PF的最小值为()A.2B.2C.1D.225.如图,Rt△ABC中,AB=9,BC=6,∠B=90°,将△ABC折叠,使点A与BC的中点D重合,折痕为MN,则线段BN的长为()A.4B.3C.2D.56.如图,△PAB与△PCD均为等腰直角三角形,点C在PB上,若△ABC与△BCD的面积之和为10,则△PAB与△PCD的面积之差为()A.5B.10C.l5D.207.《九章算术》勾股章有一“引葭赴岸”问题:“今有池方一丈,葭生其中央,出水一尺,引葭赴岸,适与岸齐.问:水深,葭长各几何.”意思是:如示意图,有一个水池,水面是一个边长为1丈的正方形,在水池正中央有一根芦苇,它高出水面1尺,如果把这根芦苇拉向水池一边的中点,它的顶端恰好到达池边的水面,水的深度和芦苇的长度分别是多少?备注:1丈=10尺.设芦苇长x尺,则可列方程为()A.x2+102=(x+1)2B.(x﹣1)2+52=x2C.x2+52=(x﹣1)2D.x2+12=(x﹣1)28.如图,在△ABC中,∠B=30°,BC的垂直平分线交AB于点E,垂足为D,如果CE=8,则ED的长为()A.2B.3C.4D.69.如图,“赵爽弦图”是由四个全等的直角三角形与中间一个小正方形拼成的一个大正方形,大正方形与小正方形的边长之比是2:1,若随机在大正方形及其内部区域投针,则针尖扎到小正方形(阴影部分)的概率是()A.0.2B.0.25C.0.4D.0.510.如图,在△ABC中,∠CAB=90°,∠ABC=60°,BD平分∠ABC,若CD=6,则AD的长为()A.2B.3C.4D.4.511.如图,在△ABC中,AB=AC,AD是BC边上的中线,AE⊥BE于点E,且BE12BC .求证:A B平分∠EAD.12.(如图,在△ABC中,AD⊥BC于点D,点F为AB上一点,连接CF,过点B作BE⊥BC 交CF的延长线于点E,交AD于点H,且∠1=∠2.(1)求证:A B=AC;(2)若∠1=22°,∠AFC=110°,求∠BCE的度数.13.如图,等边△ABC中,AB=6,D是AC的中点,E是BC延长线上的一点,CE=CD,DF⊥BE,垂足为F.(1)求BD的长;(2)求证:B F=EF;(3)求△BDE的面积.。

等腰三角形的性质与判定

等腰三角形的性质与判定

第05讲等腰三角形的性质与判定【学习目标】1.了解等腰三角形的有关概念,探索并掌握性质及判定方法。

【基础知识】一.等腰三角形的性质(1)等腰三角形的概念有两条边相等的三角形叫做等腰三角形.(2)等腰三角形的性质①等腰三角形的两腰相等②等腰三角形的两个底角相等.【简称:等边对等角】③等腰三角形的顶角平分线、底边上的中线、底边上的高相互重合.【三线合一】(3)在①等腰;②底边上的高;③底边上的中线;④顶角平分线.以上四个元素中,从中任意取出两个元素当成条件,就可以得到另外两个元素为结论.二.等腰三角形的判定判定定理:如果一个三角形有两个角相等,那么这两个角所对的边也相等.【简称:等角对等边】说明:①等腰三角形是一个轴对称图形,它的定义既作为性质,又可作为判定办法.②等腰三角形的判定和性质互逆;③在判定定理的证明中,可以作未来底边的高线也可以作未来顶角的角平分线,但不能作未来底边的中线;④判定定理在同一个三角形中才能适用.三.等腰三角形的判定与性质1、等腰三角形提供了好多相等的线段和相等的角,判定三角形是等腰三角形是证明线段相等、角相等的重要手段.2、在等腰三角形有关问题中,会遇到一些添加辅助线的问题,其顶角平分线、底边上的高、底边上的中线是常见的辅助线,虽然“三线合一”,但添加辅助线时,有时作哪条线都可以,有时不同的做法引起解决问题的复杂程度不同,需要具体问题具体分析.3、等腰三角形性质问题都可以利用三角形全等来解决,但要注意纠正不顾条件,一概依赖全等三角形的思维定势,凡可以直接利用等腰三角形的问题,应当优先选择简便方法来解决.【考点剖析】一.等腰三角形的性质(共7小题)1.(2021秋•盱眙县期末)如果等腰三角形两边长是5cm和2cm,那么它的周长是()A.7cm B.9cm C.9cm或12cm D.12cm2.(2021秋•抚远市期末)等腰三角形的两边长分别为3和6,则这个三角形的周长是()A.15B.12C.12或15D.93.(2022春•鼓楼区校级期中)如图,在△ABC中,∠A=α,∠B=∠C,点D是△ABC外一点,E,F分别在AB,AC上,ED与AC交于点G,且∠D=∠B,若∠1=2∠2,则∠EGF的度数为()A.180°﹣2αB.60°+13αC.90°−32αD.30°+23α4.(2022春•镇江期中)三角形的三边长为2,a,5,如果这个三角形中有两条边相等,那么它的周长是.5.(2022春•金湖县校级月考)在△ABC中,∠C=30°,且∠A=∠B;求∠A的度数.6.(2022春•睢宁县月考)一个等腰三角形的两条边长为4,7,那么它的周长是多少?7.(2021秋•邗江区期末)如图,△ABC中,AB=AC,AB的垂直平分线DE分别交AC、AB于点D、E.(1)若∠A=50°,求∠CBD的度数;(2)若AB=7,△CBD周长为12,求BC的长.二.等腰三角形的判定(共7小题)8.(2021秋•仪征市期末)在△ABC中,∠A=100°,当∠B=°时,△ABC是等腰三角形.9.(2021秋•靖江市期末)已知a,b是△ABC的两条边长,且a2+b2﹣2ab=0,则△ABC的形状是()A.等腰三角形B.等边三角形C.锐角三角形D.不确定10.(2021秋•滨海县期末)用三根木棒首尾相连围成一个等腰三角形,其中两根木棒的长度分别为3cm和6cm,则第三根木棒长为cm.11.(2021秋•泗阳县期中)如图,∠EAC是△ABC的外角,AD平分∠EAC,AD∥BC.(1)求证:AB=AC;(2)若点H是BC的中点,求证:AH⊥AD.12.(2021秋•鼓楼区校级期末)下列长度的三条线段能组成等腰三角形的是()A.1,2,3B.3,4,5C.2,2,3D.2,2,413.(2021秋•龙华区校级期末)如图,在3×3的正方形网格中,点A、B在格点上,要找一个格点C,使△ABC是等腰三角形(AB是其中一腰),则图中符合条件的格点有()A.2个B.3个C.4个D.5个14.(2020秋•定西期末)如图,在△ABC中,∠B=90°,AB=16cm,BC=12cm,AC=20cm,P、Q是△ABC边上的两个动点,其中点P从点A开始沿A→B方向运动,且速度为每秒1cm,点Q从点B开始沿B→C→A方向运动,且速度为每秒2cm,它们同时出发,设出发的时间为t秒.(1)当点Q在边BC上运动时,出发几秒后,△PQB是等腰三角形?(2)当点Q在边CA上运动时,出发几秒后,△BCQ是以BC或BQ为底边的等腰三角形?三.等腰三角形的判定与性质(共6小题)15.(2020秋•绿园区期末)如图,直线l分别与直线AB、CD相交于点E、F,EG平分∠BEF交直线CD 于点G,若∠1=∠BEF,若EF=3,则FG为()A.4B.3C.5D.1.516.(2021•建湖县二模)若一条长为32cm的细线能围成一边长等于8cm的等腰三角形,则该等腰三角形的腰长为cm.17.(2021秋•句容市期末)如图,BD平分∠ABC,DE∥BC交BA于点E,若DE=52,则EB=.18.(2021秋•射阳县校级期末)已知:如图,在△ABC中,∠ABC、∠ACB的平分线相交于点O,且MN ∥BC,分别交AB、AC于点M、N.求证:MN=BM+CN.19.(2021秋•盱眙县期末)如图,在△ABC中,AB=AC,∠A=36°,BD平分∠ABC交AC于点D,点E是AB的中点,连结DE.(1)求证:△ABD是等腰三角形;(2)求∠BDE的度数.20.(2021秋•苏州期末)如图,在△ABC中,AD⊥BC,∠B=62°,AB+BD=CD,则∠BAC的度数为()A.87°B.88°C.89°D.90°【过关检测】一.选择题(共6小题)1.(2021秋•溧阳市期末)若等腰三角形边长别为6cm和3cm,则该等腰三角形的周长是()A.9cm B.12cm C.15cm D.12cm或15cm2.(2021秋•江阴市期末)等腰三角形的周长为21cm,其中一边长为5cm,则该等腰三角形的底边长为()A.5cm B.11cm C.8cm或5cm D.11cm或5cm3.(2022•陕西模拟)如图,在△ABC中,AB=AC,BD=CD,点E为AC的中点,连接DE.若△ABC 的周长为20cm,则△CDE的周长为()A.10 cm B.12 cm C.14 cm D.16cm4.(2022•黔东南州模拟)如图,在△ABC中,AB=AC,BD为△ABC的高.若∠CBD=20°,则∠BAC 的度数是()A.30°B.40°C.50°D.60°5.(2021秋•鼓楼区校级期末)下列长度的三条线段能组成等腰三角形的是()A.1,2,3B.3,4,5C.2,2,3D.2,2,46.(2021秋•靖江市期末)已知a,b是△ABC的两条边长,且a2+b2﹣2ab=0,则△ABC的形状是()A.等腰三角形B.等边三角形C.锐角三角形D.不确定二.填空题(共3小题)7.(2021秋•溧水区期末)如图,在△ABC中,∠ABC、∠ACB的平分线交于点O,MN经过点O,且MN ∥BC,分别交AB、AC于点M、N.若BM=3cm,MN=5cm,则CN=cm.8.(2021秋•宁津县期末)如图,△ABC中,∠A=∠ACB,CP平分∠ACB,BD,CD分别是△ABC的两外角的平分线,下列结论中:①CP⊥CD;②∠P=12∠A;③BC=CD;④∠D=90°−12∠A;⑤PD∥AC.其中正确的结论是(直接填写序号).9.(2021秋•东城区校级期末)如图,在△ABC中,ED∥BC,∠ABC和∠ACB的平分线分别交ED于点G、F,若BE=3,CD=4,ED=5,则FG的长为.三.解答题(共3小题)10.(2022春•无锡期中)如图①,△ABC的角平分线BD、CE相交于点P.(1)如果∠A=80°,求∠BPC的度数;(2)如图②,过P点作直线MN,分别交AB和AC于点M和N,且MN平行于BC,试求∠MPB+∠NPC 的度数(用含∠A的代数式表示);(3)将(2)中的直线MN绕点P旋转,分别交线段AB于点M(不与A、B重合),交直线AC于N,试探索∠MPB、∠NPC、∠A三者之间的数量关系,并说明理由.11.(2021秋•淮安区期末)如图,在△ABC中,AB=AC,∠A=50°,AB的垂直平分线MN交AC于点D,交AB于点E,求∠DBC的度数.12.(2021秋•泗洪县期末)如图,在△ABC中,AB=AC,角平分线BD,CE相交于点O,求证:OB=OC.第05讲等腰三角形的性质与判定【学习目标】1.了解等腰三角形的有关概念,探索并掌握性质及判定方法。

等腰三角形的判定 知识讲解 (基础)

等腰三角形的判定  知识讲解 (基础)

等腰三角形的判定 (基础)知识讲解责编:杜少波【学习目标】1. 理解等腰三角形的判定定理及其证明过程.2. 掌握等边三角形的判定定理及其证明过程.3. 熟练运用等腰三角形,等边三角形的判定定理与性质定理进行推理证明和计算.【要点梳理】要点一、等腰三角形的判定如果一个三角形中有两个角相等,那么这两个角所对的边也相等(简称“等角对等边”).要点诠释:等腰三角形的判定是证明两条线段相等的重要定理,是将三角形中的角的相等关系转化为边的相等关系的重要依据.等腰三角形的性质定理和判定定理是互逆定理.要点二、等边三角形的判定(1)三条边都相等的三角形是等边三角形;(2)三个角都相等的三角形是等边三角形;(3)有一个角是60°的等腰三角形是等边三角形.要点诠释:等边三角形是中考常考的知识点,需要记住以下数据:边长为a的等边三角形它的高是2a . 【典型例题】类型一、等腰三角形的判定1、如图,在△ABC 中,点E 在AB 上,点D 在BC 上,BD=BE ,∠BAD=∠BCE ,AD 与CE 相交于点F ,试判断△AFC 的形状,并说明理由.【思路点拨】要判断△AFC 的形状,可通过判断角的关系来得出结论,那么就要看∠FAC 和∠FCA 的关系.因为∠BAD=∠BCE ,因此我们只比较∠BAC 和∠BCA 的关系即可.根据题中的条件:BD=BE ,∠BAD=∠BCE ,△BDA 和△BEC 又有一个公共角,因此两三角形全等,那么AB=AC ,于是∠BAC=∠BCA ,由此便可推导出∠FAC=∠FCA ,那么三角形AFC 应该是个等腰三角形.【答案与解析】 解:△AFC 是等腰三角形.理由如下:在△BAD 与△BCE 中,B B BAD BCEBD BE ∠=∠⎧⎪∠=∠⎨⎪=⎩(公共角) ∴△BAD ≌△BCE (AAS ),∴BA=BC ,∠BAC=∠BCA ,∴∠BAC-∠BAD=∠BCA-∠BCE ,即∠FAC=∠FCA .∴AF=CF,∴△AFC是等腰三角形.【总结升华】本题考查了全等三角形的判定与性质及等腰三角形的判定等知识点,利用全等三角形来得出角相等是本题解题的关键.举一反三:【变式】如图,△ABC中,D、E分别是AC、AB上的点,BD与CE交于点O.给出下列四个条件:①∠EBD=∠DCO;②∠BEO=∠CDO;③BE=CD;④OB=OC.上述四个条件中,哪两个条件可判定△ABC是等腰三角形,选择其中的一种情形,证明△ABC是等腰三角形.【答案】①③;②③;①④;②④都可以组合证明△ABC是等腰三角形;选①③为条件证明△ABC是等腰三角形;证明:∵在△EBO和△DCO中,∵,∴△EBO≌△DCO(AAS),∴BO=CO,∴∠OBC=∠OCB,∴∠EBO+∠OBC=∠DCO+∠OCB,即∠ABC=∠ACB,∴AB=AC,∴△ABC是等腰三角形.2、(2016•常州)如图,已知△ABC中,AB=AC,BD、CE是高,BD与CE相交于点O(1)求证:OB=OC;(2)若∠ABC=50°,求∠BOC的度数.【思路点拨】(1)首先根据等腰三角形的性质得到∠ABC=∠ACB,然后利用高线的定义得到∠ECB=∠DBC,从而得证;(2)首先求出∠A的度数,进而求出∠BOC的度数.【答案与解析】(1)证明:∵AB=AC,∴∠ABC=∠ACB,∵BD、CE是△ABC的两条高线,∴∠BDC=∠CEB=90°,∴∠DBC=∠ECB,∴OB=OC;(2)∵∠ABC=50°,AB=AC,∴∠A=180°﹣2×50°=80°,∴∠AEC+∠A +∠ADB+∠EOD=360°即90°+80°+90°+∠EOD=360°∴∠EOD=100°∴∠BOC=∠EOD=100°【总结升华】本题考查了等腰三角形的性质及三角形的内角和定理;关键是掌握等腰三角形等角对等边.举一反三:【变式】已知:如图,△ABC中,∠ACB=90°,CD⊥AB于D,BF平分∠ABC交CD于E,交AC于F.求证:CE=CF.【答案】证明:∵∠ACB=90°,CD⊥AB,∴∠CBF+∠CFB=∠DBE+∠DEB=90°.∵BF平分∠ABC,∴∠CBF=∠DBE.∴∠CFB=∠DEB.∵∠FEC=∠DEB(对顶角相等),∴∠CFB=∠FEC.∴CE=CF.类型二、等边三角形的判定3、已知:如图,AB=AC,点D是BC的中点,AB平分∠DAE,AE⊥BE,垂足为E.(1)求证:AD=AE.(2)若BE∥AC,试判断△ABC的形状,并说明理由.【思路点拨】(1)由边角关系求证△ADB≌△AEB即可;(2)由题中条件可得∠BAC=60°,进而可得△ABC 为等边三角形.【答案与解析】证明:(1)∵AB=AC,点D是BC的中点,∴AD⊥BC,∴∠ADB=90°,∵AE⊥AB,∴∠E=90°=∠ADB,∵AB平分∠DAE,∴∠1=∠2,在△ADB和△AEB中,,∴△ADB≌△AEB(AAS),∴AD=AE;(2)△ABC是等边三角形.理由:∵BE∥AC,∴∠EAC=90°,∵AB=AC,点D是BC的中点,∴∠1=∠2=∠3=30°,∴∠BAC=∠1+∠3=60°,∴△ABC是等边三角形.【总结升华】本题主要考查了全等三角形的判定及性质以及等边三角形的判定问题,要熟练掌握.举一反三:【变式】等边△ABC,P为BC上一点,含30°、60°的直角三角板60°角的顶点落在点P上,使三角板绕P点旋转.如图,当P为BC的三等分点,且PE⊥AB时,判断△EPF的形状.【答案】解:∵PE⊥AB,∠B=60°,因此直角三角形PEB中,BE=12BP=13BC=PC,∴∠BPE=30°,∵∠EPF=60°,∴FP⊥BC,∵∠B=∠C=60°,BE=PC,∠PEB=∠FPC=90°,∴△BEP≌△CPF,∴PE=PF,∵∠EPF=60°,∴△EPF是等边三角形.4、(1)如图,点O 是线段AD 的中点,分别以AO 和DO 为边在线段AD 的同侧作等边三角形OAB 和等边三角形OCD ,连接AC 和BD ,相交于点E ,连接BC ,求∠AEB 的大小;(2)如图,△OAB 固定不动,保持△OCD 的形状和大小不变,将△OCD 绕着点O 旋转(△OAB 和△OCD 不能重叠),求∠AEB 的大小.【答案与解析】证明:(1)∵O 是AD 的中点,∴AO =DO又∵等边△AOB 和等边△COD∴AO =DO =CO =BO ,∠DOC =∠BOC =∠AOB =60°∴∠CAO =∠ACO =∠BDO =∠DBO =30°∴∠AEB =∠BDO +∠CAO =60°(2)∵∠BOD =∠DOC +∠BOC ,∠AOC =∠AOB +∠BOC∴∠BOD =∠AOC在△BOD 与△AOC 中,BO AO BOD AOC DO CO =⎧⎪∠=∠⎨⎪=⎩∴△BOD ≌△AOC (SAS )∴∠ACO =∠BDO∵∠AED =∠ACO +∠DCO +∠CDB=∠BDO +60°+∠CDB =60°+∠CDO =60°+60°=120°∴∠AEB =180°-∠AED =60°.【总结升华】这道题利用等边三角形每个角都是60°的性质,并借助全等三角形,和三角形的外角性质使问题加以解决.举一反三:【变式】如图,已知△ABC 和△CDE 都是等边三角形,AD 、BE 交于点F ,求∠AFB 的度数.【答案】解:∵△ABC和△CDE都是等边三角形,∴AC=BC,CE=CD,又∵∠ACB+∠BCD=∠ECD+∠BCD,即∠ACD=∠BCE,∴△ACD≌△BCE,∴∠CAD=∠CBE,设AD与BC相交于P点,在△ACP和△BFP中,有一对对顶角,∴∠AFB=∠ACB=60°.。

等腰三角形知识点总结

等腰三角形知识点总结

等腰三角形知识点总结等腰三角形是指有两条边相等的三角形。

在几何学中,等腰三角形具有很多特性和性质,下面将对等腰三角形的定义、性质以及相关的定理进行总结。

一、定义和性质等腰三角形的定义:拥有两条边相等的三角形被称为等腰三角形。

等腰三角形的性质:1. 两个底角(底边所对的两个角)是相等的。

2. 两条腰(与底边相等的两条边)相等。

3. 顶角(顶点所对的角)等于180度减去底角的一半。

二、等腰三角形的角度性质1. 顶角等于底角的两倍:在等腰三角形中,顶角是底角的两倍。

也就是说,当一个底角为x度时,顶角就是2x度。

2. 底角相等:在等腰三角形中,两个底角是相等的。

如果一个底角为x度,另一个底角也是x度。

3. 顶角对应的边相等:在等腰三角形中,顶角对应的两条边是相等的。

如果一个顶角对应的边长为a,另一个顶角对应的边长也是a。

三、等腰三角形的边长性质1. 两条腰相等:在等腰三角形中,两条腰是相等的。

如果一条腰的长度为a,另一条腰的长度也是a。

2. 底边对应的高相等:在等腰三角形中,底边对应的高是相等的。

如果一条底边的高为h1,另一条底边的高也是h1。

3. 高的长度:在等腰三角形中,可以通过勾股定理来计算高的长度。

如果底边的长度为b,腰的长度为a,则高的长度等于根号下(a^2 -b^2/4)。

四、等腰三角形的判定条件等腰三角形的判定条件:如果三角形的两边边长相等或两个角度相等,则该三角形为等腰三角形。

五、等腰三角形的定理1. 等腰三角形的高与底边垂直:在等腰三角形中,高线与底边垂直。

2. 角平分线等于高线:在等腰三角形中,底边上的角平分线等于高线。

3. 底边上的角平分线相等:在等腰三角形中,底边上的两条角平分线是相等的。

总结:等腰三角形是几何学中重要的概念,在很多问题中都有应用。

通过对等腰三角形的定义、性质以及相关的定理进行了解和掌握,可以帮助我们解决等腰三角形相关的问题,并在数学和几何学中运用到其他各种应用中。

等腰三角形知识点总结等腰三角形知识点归纳重点

等腰三角形知识点总结等腰三角形知识点归纳重点

等腰三角形知识点总结等腰三角形知识点归纳重点等腰三角形是初中数学中的一种基本几何图形,具有很多特殊的性质和定理。

本文将对等腰三角形的相关知识点进行总结和归纳,帮助读者更好地理解和掌握等腰三角形的特点和应用。

以下是等腰三角形知识点总结汇总,希望对大家的学习有所帮助。

1、等腰三角形知识总结,定义(1)等腰三角形:有两条边相等的三角形叫等腰三角形,相等的两条边叫腰,另一条边叫做底边,两腰所夹的角叫做顶角,底边与腰的夹角叫做底角。

(2)等边三角形:特殊的等腰三角形,三条边都相等的三角形叫做等边三角形。

2、等腰三角形知识总结,等腰三角形的相关概念(1)等腰三角形是轴对称图形,底边上的中线(顶角平分线、底边上的高)所在的直线就是它的对称轴。

(2)等腰三角形的外心、内心、重心和垂心都在顶角平分线上,即四心共线。

(3)等边三角形的外心、内心、重心和垂心四心合一,成为等边三角形的中心。

3、等腰三角形知识总结,等腰三角形的性质定理(1)推理格式:在△ABC中,因为AB=AC,所以∠B=∠C。

(2)定理的作用:证明同—个三角形中的两个角相等。

4、等腰三角形知识总结,等腰三角形性质定理的推论(1)等腰三角形的顶角平分线平分底边并且垂直于底边。

(2)等边三角形的三个内角都相等,并且每个角都等于60°。

5、等腰三角形知识总结,等腰三角形的判定定理(1)该定理是证明两条线段相等的重要定理,是将三角形中的角的相等关系转化为边的相等关系的重要依据。

(2)注意:该定理不能叙述为“如果一个三角形中有两个底角相等,那么它的两腰也相等”。

因为在没有判定出它是等腰三角形之前,不能用“底角”、“腰”这些名词,只有等腰三角形才有“底角”、“腰”。

相等的两条边叫腰;两腰的夹角叫顶角;顶角所对的边叫底;腰与底的夹角叫底角。

(2)等边对等角;(3)底边上的高、底边上的中线、顶角平分线互相重合;(4)是轴对称图形,对称轴是顶角平分线;(5)底边小于腰长的两倍并且大于零,腰长大于底边的一半;(6)顶角等于180°减去底角的两倍;(7)顶角可以是锐角、直角、钝角,而底角只能是锐角.等边三角形性质:①具备等腰三角形的一切性质。

等腰三角形的判定知识讲解

等腰三角形的判定知识讲解
事地点(不考虑风浪因素)?
O
A
B
学习目标:
1. 掌握等腰三角形的判定定理.
重点
2、会综合运用等腰三角形的性质和判定进行有关的
计算和证明。
重点
3、理解勾股定理逆定理的证明方法。 难点
自学课本P89---90,并完成学案----自主学习
把“等腰三角形的两个底角相等”改写成 “如果------那么-----”形式。
∴ BA=BC(等角对等边) ∵AB=20(12-10)=40
A
∴BC=40
答:B处到达灯塔C40海里


如图,在△ABC中,AB=AC,∠ABC和∠ACB的平分 线交于点O.过O作EF∥BC交AB于E,交AC于F.
身 (1)、请你写出图中所有等腰三角形,并探究EF、BE、
手 FC之间的关系;
AA
赶到出事地点(不考虑风浪因素)?
O
A
B
课堂小结
今天你学到了什么?
1、等腰三角形的判定定理:等角对等边。
2、用构造直角三角形证明了勾股定理的逆定理。 3、会运用等腰三角形的性质和判定进行计算和 证明。

馈 1、如图,把一张矩形的纸沿对 D E
C
矫 角线折叠,重合部分是一个等
正 腰三角形吗?说明理由。
400
750
小试牛刀
例1:如图,上午10 时,一条船从A处出发以20海里 每小时的速度向正北航行,中午12时到达B处,从 A、B望灯塔C,测得∠NAC=40°∠NBC=80°求从 B处到灯塔C的距离解:∵∠NBC=∠A+∠C
∴∠C=80°- 40°= 40°
C
80° N 北
∴ ∠C = ∠A
B 40°

等腰三角形知识点

等腰三角形知识点

等腰三角形【知识精读】(-)等腰三角形的性质1. 有关定理及其推论定理:等腰三角形有两边相等;定理:等腰三角形的两个底角相等(简写成“等边对等角”)。

推论1:等腰三角形顶角的平分线平分底边并且垂直于底边,这就是说,等腰三角形的顶角平分线、底边上的中线、底边上的高互相重合。

推论2:等边三角形的各角都相等,并且每一个角都等于60°。

等腰三角形是以底边的垂直平分线为对称轴的轴对称图形;2. 定理及其推论的作用等腰三角形的性质定理揭示了三角形中边相等与角相等之间的关系,由两边相等推出两角相等,是今后证明两角相等常用的依据之一。

等腰三角形底边上的中线、底边上的高、顶角的平分线“三线合一”的性质是今后证明两条线段相等,两个角相等以及两条直线互相垂直的重要依据。

(二)等腰三角形的判定1. 有关的定理及其推论定理:如果一个三角形有两个角相等,那么这两个角所对的边也相等(简写成“等角对等边”。

)推论1:三个角都相等的三角形是等边三角形。

推论2:有一个角等于60°的等腰三角形是等边三角形。

推论3:在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半。

2. 定理及其推论的作用。

等腰三角形的判定定理揭示了三角形中角与边的转化关系,它是证明线段相等的重要定理,也是把三角形中角的相等关系转化为边的相等关系的重要依据,是本节的重点。

3. 等腰三角形中常用的辅助线等腰三角形顶角平分线、底边上的高、底边上的中线常常作为解决有关等腰三角形问题的辅助线,由于这条线可以把顶角和底边折半,所以常通过它来证明线段或角的倍分问题,在等腰三角形中,虽然顶角的平分线、底边上的高、底边上的中线互相重合,添加辅助线时,有时作哪条线都可以,有时需要作顶角的平分线,有时则需要作高或中线,这要视具体情况来定。

【分类解析】例1. 如图,已知在等边三角形ABC 中,D 是AC 的中点,E 为BC 延长线上一点,且CE =CD ,DM ⊥BC ,垂足为M 。

初中等腰三角形综合知识归纳

初中等腰三角形综合知识归纳

初中等腰三角形综合知识归纳几何是数学学习中的一道难题,想要学好初中等腰三角形,没有那么容易。

为了帮助大家更好的学习初中等腰三角形。

以下是店铺分享给大家的初中等腰三角形综合知识,希望可以帮到你!初中等腰三角形综合知识1、等腰三角形的性质(1)等腰三角形的性质定理及推论:定理:等腰三角形的两个底角相等(简称:等边对等角)推论1:等腰三角形顶角平分线平分底边并且垂直于底边。

即等腰三角形的顶角平分线、底边上的中线、底边上的高重合。

推论2:等边三角形的各个角都相等,并且每个角都等于60°。

2、三角形中的中位线连接三角形两边中点的线段叫做三角形的中位线。

(1)三角形共有三条中位线,并且它们又重新构成一个新的三角形。

(2)要会区别三角形中线与中位线。

三角形中位线定理:三角形的中位线平行于第三边,并且等于它的一半。

三角形中位线定理的作用:位置关系:可以证明两条直线平行。

数量关系:可以证明线段的倍分关系。

常用结论:任一个三角形都有三条中位线,由此有:结论1:三条中位线组成一个三角形,其周长为原三角形周长的一半。

结论2:三条中位线将原三角形分割成四个全等的三角形。

结论3:三条中位线将原三角形划分出三个面积相等的平行四边形。

结论4:三角形一条中线和与它相交的中位线互相平分。

结论5:三角形中任意两条中位线的夹角与这夹角所对的三角形的顶角相等。

等腰三角形问题的求解误区一、腰和底不分例1、等腰三角形的周长为14,其一边长为4,那么它的底边为_______.误区警示在等腰三角形中,一边长为4,周长为14,设底边长为x,则x+4×2=14,,∴x=6,所以底边长为6.思路分析等腰三角形的一边长为4,这条边可能是腰,也可能是底,应分两种情况进行讨论:(1)当腰是4时,另两边是4,6,且4+4>6,6-4 <4,满足三角形三边关系定理;(2)当底是4时,另两边长是5,5,又5+4>5,5-4 <5,满足三角形三边关系定理.所以等腰三角形的底边为4或6.二、顶角和底角不分例2、已知等腰三角形的一个内角为700,则另外两个内角的度数是( )(A)55°,55°(B)70°,40°(C)55°,55°或70°,40°(D)以上都不对误区警示在等腰三角形中,一个内角为70°,设底角的度数为x,则2x+70=180,∴x=55,所以另外两个内角的度数是55°、55°.思路分析等腰三角形的一个内角为70°,这个角可能是顶角,也可能是底角,应分两种情况进行讨论:(1)当70°角为顶角时,设底角的度数为x,2x+70=180,∴x=55,所以另外两个内角的度数是55°、55°;(2)当70°角为底角时,设顶角的度数为y,y+70×2=180,∴y=40,所以另外两个内角的度数是70°、40°.故选C点拨根据等腰三角形的性质求角的度数时,要分是顶角还是底角两种情况进行讨论.另外,若角度改变时还要考虑利用三角形的内角和定理验证三角形是否存在.三、顶角顶点和底角顶点不分例3、如图2,坐标平面内一点A(2,-1),O为原点,P是x轴上的一个动点,如果以点P、O、A为顶点的三角形是等腰三角形,那么符合条件的动点P的个数为( )(A)2 (B)3 (C)4 (D)5误区警示若三角形是等腰三角形,则OP=OA,所以符合符合条件的动点P有两个.思路分析根据题意,结合图形,分三种情况讨论:(1)若点P为顶角顶点,O、A为底角顶点,则PO=OA,符合条件的动点P有一个;(2)若点O为顶角顶点,P、A为底角顶点,则OP=OA,符合条件的动点P有两个;(3)若点A为顶角顶点,O、P为底角顶点,则AP=AO,符合条件的动点P有一个;综上所述,符合条件的动点P的个数共4个.故选C.点拨判定一个三角形是否为等腰三角形,关键是将三角形的三个顶点分别作为顶角顶点进行讨论,把情况考虑完整.四、锐角三角形和钝角三角形不分例4、等腰三角形一腰上的高与另一腰的夹角为40°,则顶角为_______.误区警示不少学生想当然地误解为:如图所示,图3(1)中顶角为50°.思路分析根据题意,应分锐角三角形和钝角三角形两种情况讨论:(1)如图3(1)所示,等腰三角形为锐角三角形时,一腰上的高在三角形内,此时顶角为50°;(2)如图3(2)所示,等腰三角形为钝角三角形时,一腰上的高是在三角形外,此时顶角为130°.故顶角为50°或130°.点拨等腰三角形为锐角三角形或钝角三角形时,一腰上的高可能在三角形内,也可能在三角形外,要注意分两种情况讨论.初中数学解题方法总结一、选择题的解法1、直接法:根据选择题的题设条件,通过计算、推理或判断,,最后得到题目的所求。

2.3等腰三角形的性质定理

2.3等腰三角形的性质定理

B
D
C
等腰三角形“三线合一”的性质
用符号语言表示为:
A
在△ABC中 12 (1)∵AB=AC,AD⊥BC, ∴∠___= ∠___ 2 ,____=____ 1 BD CD ; (2)∵AB=AC,AD是中线, B D 1 =∠_, 2 ____ AD ⊥____ ∴∠_ BC ; (3)∵AB=AC,AD是角平分线, BC ,____ AD ⊥____ ∴____ BD =____. CD
2.3 等腰三角形的性质定理
等腰三角形性质定理1: 等腰三角形的两个底角相等. 这个定理也可以说成: 在同一个三角形中,等边对等角.
已知:在△ABC中,AB=AC.
求证:∠B=∠C
A
方法一:作顶角平分线(SAS) 方法二:作底边上的中线(SSS) 方法三:作底边上的高(HL)
B C
已知:如图,在△ABC中, AB=AC, AD⊥BC于点D,E为AD 上的一, EF⊥AB, EG⊥AC, F,G分别为垂足.求证:EF=EG
求证:PD=PE
C
已知:如图,在△ABC中, AB=AC, AD⊥BC于点D,E为AD 上的一, EF⊥AB, EG⊥AC, F,G分别为垂足.求证:EF=EG
如图,D,E在BC上,AB=AC, AD=AE,则BD与CE相等吗?
A
Hale Waihona Puke BD H EC
例1、已知:如图,在△ABC中,AB=AC, O是△ABC中内一点,且OB=OC.则AO⊥BC 吗?请说明理由。
A
O
B
H
C
例2 已知线段a, h,用直尺和圆规作等腰三 角形ABC,使底边BC=a, BC边上的高为h. 作法: 1.作线段BC=a. 2.作BC的中垂线m,交BC于点D. 3.在直线 m上截取DA=h,连接AB,AC. △ABC就是所求的等腰三角形. h a

2019届中考数学一轮复习讲义第27讲等腰三角形

2019届中考数学一轮复习讲义第27讲等腰三角形

2019届中考数学一轮复习讲义考点二十七:等腰三角形聚焦考点☆温习理解一、等腰三角形1、等腰三角形的性质(1)等腰三角形的性质定理及推论:定理:等腰三角形的两个底角相等(简称:等边对等角)推论1:等腰三角形顶角平分线平分底边并且垂直于底边。

即等腰三角形的顶角平分线、底边上的中线、底边上的高重合。

推论2:等边三角形的各个角都相等,并且每个角都等于60°(2)等腰三角形的其他性质:①等腰直角三角形的两个底角相等且等于45 °②等腰三角形的底角只能为锐角,不能为钝角(或直角),但顶角可为钝角(或直角)。

③等腰三角形的三边关系:设腰长为a,底边长为b,则b<a2④等腰三角形的三角关系:设顶角为顶角为∠ A ,底角为∠ B、/ C,则∠ A=180—2 ∠ B,/ B= ∠180 AC=—22、等腰三角形的判定等腰三角形的判定定理及推论:定理:如果一个三角形有两个角相等,那么这两个角所对的边也相等(简称:等角对等边)。

这个判定定理常用于证明同一个三角形中的边相等。

学!科网推论1:三个角都相等的三角形是等边三角形推论2 :有一个角是60°的等腰三角形是等边三角形。

推论3:在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半。

二•等边三角形1•定义三条边都相等的三角形是等边三角形• 2.性质:3•判定三个角都相等的三角形是等边三角形;有一个角等于60°的等腰三角形是等边三角形.三.线段垂直平分线1•定义垂直一条线段,并且平分这条线段的直线叫作这条线段的垂直平分线2•性质线段垂直平分线上的一点到这条线段的两端距离相等3•判定到一条线段两端点距离相等的点,在这条线段的垂直平分线上名师点睛☆典例分类考点典例一、等腰三角形的性质【例1】(2018黑龙江齐齐哈尔中考模拟)经过三边都不相等的三角形的一个顶点的线段把三角形分成两个小三角形,如果其中一个是等腰三角形,另外一个三角形和原三角形相似,那么把这条线段定义为原三角形的和谐分割线”.如图,线段CD是ABC的和谐分割线”,ACD为等腰三角形,CBD和ABC相【解析】试题分析:T △比CDS AEA∙G∕∙Z⅛CD=Z44h ,'∕Δ⅛CD是等腰三角形,,∕Z ADC>Z BCD J.'.Z AD OZA J即AC≠CD,①⅛AC?=AJ)时’ ZACD=ZADC=^ =67, .∖ZACE=670+4S C=113° *■②当DADC 时,ZCD=ZjL= 46 Q R √.ZACB=46" +46' =93Q J 故答案为M时或财-考点:1∙相似三角形的性质;2.等腰三角形的性质.【点睛】本题考查的是等腰三角形的性质和相似三角形的性质,熟知等腰三角形的两底角相等是解答此题的关键.【举一反三】如图,AD , CE分别是△ABC的中线和角平分线.若AB=AC , ∠ CAD=20 ,则∠ ACE的度数是( )A. 20 °B. 35 °C. 40 °D. 70 °【来源】浙江省湖州市2018年中考数学试题【答案】B【解析】分析;先⅛据等腰三角形的⅛m及三角形内角和定S⅛⅛ZCAfr=2ZCADM0% ZB=ZACH £( IS^ZCAB) =70°.再禾U用角平分线定义即可得出ZX*E W√ACB=3實.徉解::AD 是∆ABC 的中线』AB-AC J. ZaAD=20%/.ZCAB=2ZQAD=40S ZB=ZACB=I (IS^-ZCAB) =70t.ICE是AABC的甬平分线,∕÷ ZACE=i ZACB=JS ci.Z故选:B.点睛:本题考查了等腰三角形的两个底角相等的性质,等腰三角形的顶角平分线、底边上的中线、底边上的高相互重合的性质,三角形内角和定理以及角平分线定义,求出∠ACB=70是解题的关键.考点典例二、等腰三角形的多解问题1【例2】(2018黑龙江绥化中考模拟)在等腰ABC中,AD BC交直线BC于点D ,若AD -BC ,2则ABC的顶角的度数为 ____________ .【答案】30°或150°或90°. 【解析】 试题分析:①BC 为腰,1∙∙∙ AD 丄 BC 于点 D , AD= BC ,/∙∠2②BC 为底,如图3,CAD= - ×80 °90 °2腰时,应在符合三角形三边关系的前提下分类讨论. 【举一反三】(湖南省衡阳市船山实验中学 2017-2018学年八年级上期末模拟)等腰三角形的一个内角为 70°它的一腰上的高与底边所夹的角的度数是()ACD=30° ,如图1 , AD 在△ABC 内部时, 顶角∠ C=30 ,如图2,AD 在△ABC 外部时,顶角∠ ACB=180 - 30o=150°,∙∙∙ AD 丄 BC 于点 D , AD= I BC,∙∙∙ AD=BD=CD , ∙∙∙ ∠ B= ∠ BAD , ∠ C= ∠ CAD , /. ∠ BAD+ ∠【点睛】题考查了等腰三角形的性质;对于底和腰不等的等腰三角形,若条件中没有明确哪边是底哪边∙顶角∠ BAC=90 ,来源学科网ZXXMA. 35 °B. 20 °C. 35 °或20 °D. 无法确定【答案】C【解析】70°是顶角,它的一腰上的高与底边所夹的角的度数是35° 70°是底角,顶角是40°它的一腰上的高与底边所夹的角的度数是20°.故选C.考点典例三、等边三角形的性质与判定【例3】已知:在附鳥中,悴F T&I,为的中点V-銅,:■,垂足分别为点,且册•罔•求证:1是等边三角形.【来源】浙江省嘉兴市2018年中考数学试题【答案】证明见解析MMfi】分析;由等腥三角形的性质得SUZR=NG再用HL证明I∆CTF,得到厶IYG从而得到ZAQNG即可得到结论,徉解:「密FU /.Z5=ZC.∖'DElAB f DFLBC J ,\ZD£^=ZDFO90&.丁D为的卫匚中⅛jλΣfA=DC.又YDE=D F, -IR L AAE实RlACDF (HL),--ZJi=N方-ΞZ^C?:-AA^C是等边三角形- 点睛:本题考查了等边三角形的判定、等腰三角形的性质以及直角三角形全等的判定与性质•解题的关键是证明∠ A=∠ C.【举一反三】(重庆市江津区2017-2018学年八年级上学期期末模拟 )如图所示,AABC为等边三角形,P为BC上一点,Q为AC上一点,AQ=PQ , PR=PS, PR⊥ AB于R, PS⊥ AC于S, ?则对下面四个结论判断正确的是()①点P在∠ BAC的平分线上,②AS=AR , ③QP// AR , ④厶BRP^Δ QSP.A.全部正确;B.仅①和②正确;C.仅②③正确;D.仅①和③正确【答案】A【解析】试题解析:∙∙∙PR⊥ AB于R, PS⊥ AC于S.∙∙∙∠ARP= ∠ ASP=90 .∙∙∙ PR=PS, AP=AP..∙. Rt △A RP也Rt AASP.∙∙∙ AR=AS ,故(2)正确,∠ BAP= ∠ CAP..AP是等边三角形的顶角的平分线,故(1)正确.∙AP是BC边上的高和中线,即点P是BC的中点.∙∙∙ AQ=PQ.∙点Q是AC的中点.∙PQ是边AB对的中位线.∙PQ // AB ,故(3)正确.∙.∙∠ B= ∠ C=60 ,∠ BRP= ∠ CSP=90 , BP=CP.•••△ BRPQSP,故(4)正确.•全部正确.•故选A.考点典例四、线段垂直平分线的性质运用【例3】.如图,MM中,川,小聪同学利用直尺和圆规完成了如下操作:①作的平分线交•于点;②作边的垂直平分线,'与!相交于点;③连接•,'.请你观察图形解答下列问题:(1) __________________________________________ 线段PA^B^C之间的数量关系是(2)若曲吭-潜,求的度数.【来源】湖北省孝感市2018年中考数学试题【答案】(1)•:'「二-b 二V; (2)80°【解析】分析:(1)根据线段的垂直平分线的性质可得:PA=PB=PC;(2)根据等腰三角形的性质得:∠ ABC= ∠ ACB=70 ,由三角形的内角和得:∠BAC=180 -2 ×0°=40°,由角平分线定义得:∠ BAD= ∠ CAD=20 ,最后利用三角形外角的性质可得结论.详解:(1)如图,PA=PB=PC ,理由是:∙∙∙ AB=AC , AM 平分∠ BAC ,∙∙∙ AD是BC的垂直平分线,∙∙∙ PB=PC ,∙∙∙ EP是AB的垂直平分线,∙PA=PB,∙PA=PB=PC ;故答案为:PA=PB=PC ;⑵ 丁AE=AG/.Z ABC-Z ACE-VO O J.∖ ZBAC=I 80o-2^70c=40e,TANl 平分ZBAC,.,.ZBAD=ZCAD=2fl D,TPA=PB=PG・∖ ZABP= Z BAP=ZACP»20C,/. ZBPc=ZABP-Z BAC+Z ACP=20 i→0fr-2 =So S.点睛:本题考查了角平分线和线段垂直平分线的基本作图、等腰三角形的三线合一的性质、三角形的外角性质、线段的垂直平分线的性质,熟练掌握线段的垂直平分线的性质是关键.【举一反三】(2018广西钦州市中考模拟)如图,在△ABC中,∠ ACB=90 ,分别以点A和点B为圆心,以相同的长(大于AB )为半径作弧,两弧相交于点M和点N ,作直线MN 交AB于点D ,交BC于点巳若AC=3 , AB=5 ,则DE等于()A. B. C.D.【答案】C【解析】根据勾股定理求出BC ,根据线段垂直平分线性质求出AE=BE ,根据勾股定理求出AE ,再根据勾股定理求出DE 即可.解:在RtABC 中,由勾股定理得:BC==4,连接AE,从作法可知:DE 是AB 的垂直评分线,根据性质AE=BE ,在Rt △ACE 中,由勾股定理得AC +CE =AE+ (4-AE )即3=AE解得:AE=在Rt △ADEAD= AB=勾股定理得) DE +(=(解得:DE=故选C.课时作业☆能力提升一、选择题1. (2018年湖北省松滋市初级中学数学中考模拟试题(一))如图,在△ABC中,AB=AC , AB的垂直平分线交边AB于D点,交边AC于E点,若ΔABC与ΔEBC的周长分别是40,24,则AB为()S CA. 8B. 12C. 16D. 20【答案】C【解析】试题解析:∙∙∙DE是AB的垂直平分线,ME = RE :的周长任「Δ EHC的周长I = EE + EC + IiC =AE^ Ec [ IiC = AC + 甘:.∙. I总盒强:的周长—M 泪的周长=AB ,∣ΛZP=40-24=16.故选C.点睛:线段的垂直平分线上的点到线段两个端点的距离相等.2. (2017黑龙江大庆)如图,ΔABD是以BD3. 已知 汀 口耽:,用尺规作图的方法在 冋上确定一点冈,使Un ,则符合要求的作图痕迹是ΔBCD 中,∠ DBC=90° ∠ BCD=60° DC 中点为E , AD 与BE 的延长线交于点 F ,则∠ AF B 的度数为()A. 30 °B.15 °C.45 °D.25 °【答案】B【解析】解:τ∠ DBC=90° E 为 DC 中点,∙∙∙ BE=CE=CD ,τ∠ BCD=60° Λ∠ CBE=60° ∕∙∠ DBF=30°∙∠ ABF=75° ∙∠ AFB=180° - 90° - 75°=15° 故选B .为斜边的等腰直角三角形, •••△ ABD 是等腰直角三角形,∙∠ ABD=45° , A.【答案】D【解折】分析:夷使PZPC=BC,必有PA=PB,所以选项中只有作AB 的中垂线才能满足遗个条件,故D 正确. 详解:D 选项中作的是AB 的中垂线,.∖PA=PB.'.PB-PC-BC J∕r PA+PC=BC故选D*点睛:本题主要考查了作图知识,解题的关键是根据中垂线的性质得出 PA=PB .4.(河北省故城县运河中学 2017-2018学年八年级(上)期末)等边三角形的边长为 2,则该三角形的面积为()A. D. 3 【答案】CB.C.【解析】如图,作CD丄AB ,贝U CD是等边△ABC底边AB上的高,根据等腰三角形的三线合一,可得AD=I ,所以,在直角ΔADC中,利用勾股定理,可求出CD= =面积计算公式,解答,代入出S AABC = ×2×故选:C.5. (2017-2018 学年苏州市工业园区金鸡湖学校期末复习)如图,在于占4八、、于占4八、、边的中点,连接则下列结论①②为等边三角形.下面判断正确是( )A. ①正确B. ②正确C. ①②都正确D. ①②都不正确【答案】C【解析】试题解析:①∙∙∙BM丄AC于点M, CN丄AB于点N , P为BC边的中点,PN= ∙∙∙ PM=PN ,正确;②∙∙∙∠ A=60 , BM 丄AC 于点M , CN 丄AB 于点N ,∙∠ ABM= ∠ ACN=30 ,在 AABC 中,∠ BCN+ ∠ CBlvF 180° -60 °-30 °×2=60° , •••点P 是BC 的中点,BM 丄AC , CN 丄AB , ∙ PM=PN=PB=PC ,∙∠ BPN=2 ∠ BCN , ∠ CPM=2 ∠ CBM ,∙∠ BPN+ ∠ CPM=2 (∠ BCN+ ∠ CBM ) =2×60°=120° , ∙∠ MPN=60 ,•••△ PMN 是等边三角形,正确; 所以①②都正确.PM= BCBC ,故选C .6.在平面直角坐标系中,点 A ( J2 ,迈),B ( 3J2 , 3丿2 ),动点C 在X 轴上,若以A 、B 、C 三点为 顶点的三角形是等腰三 角形,则点C 的个数为()A . 2B . 3C . 4D . 5【答案】B . 【解析】试爾分析:SC≡√∕AB 所在的M ⅛⅛Sy = X ,Λ⅛ AB 的中垂线所在的直线野二 V 丁点BZCgZ 的中点坐 ⅛⅛(2∙d, 2 如 把 x=2√∑,产 2√Σ 代AF = -K+占,解得 b=4√2, …朋的中垂线所在的S÷⅞≡y = -χ+4√2 , .'.C 1 ¢4^, O )J決点启为圆^以期的长为半^画弧P 与-轴的交点为点55 ^B √(3√2 -√2)z + (3√2 -√2)z =4, V3√2>4,圆心,以朋的长九半径画弧 与耳轴沒有交点.综上,可得若以久趴€三点为顶点的三角形是等腰三角形P 则点f 的个数为取故选亠考点:1.等腰三角形的判定;2•坐标与图形性质;3•分类讨论;4 •综合题;5•压轴题.7(浙江省上杭县西南片区 2017-2018学年八年级上册期末模拟 )如图,在 MBC 中,∠ B= ∠ C, AD 为AABC 的中线,那么下列结论错误的是()A. AABD ACDB. AD为ΔABC的高线C. ADD. ΔABC是等边三角形为ΔABC的角平分线【答案】D【解析】试题解析:τ∠ B= ∠ C, ∙∙∙ AB=AC ,∙∙∙ AD是△ABC的中线,∙AD丄BC ,∠ BAD= ∠ CAD ,即AD是ΔABC的高,AD为△ABC的角平分线,∙∠ADB= ∠ ADC=9°0 ,在ΔABD和ΔACD中•••△ ABD BΔ ACD ,即选项A、B、C 都正确,根据已知只能推出AC=AB ,不能推出AC、AB 和BC 的关系,即不能得出△ABC 是等边三角形,选项D 错误,故选D .二、填空题8. (2018广州市黄埔区中考数学一模)如图,已知ΔABC和ΔAED均为等边三角形,点D在BC边上,DE 与AB相交于点F,如果AC=12 , CD=4 ,那么BF的长度为__.答案】解析】试题分析:△ABC 和△AED 均为等边三角形,~ ?ACD, 又2017-2018 学年八年级上期末模拟 )已知:点 P 、Q 是 △ABC 的边 BC 上的两个 ,∠BAC 的度数是( ) 9. ( 山西省汾西县双语学校点,且 BP=PQ=QC=AP=AQA. 100 °B. 120 °C.130 °D. 150【答案】B【解析】VPctAP=AQ l l.∖ ZAP Q= ZPAQ= ZAQP=605,ZAP=BP,.∖Z B-Z TAB J Z,∖PQ-Z B÷ZPAB-SO C),∖ZB=ZTAB=SO fi,同理ZQAC=ZC=30%.∖ZBAoZPAQ十ZPAB十ZQAOl2'O HS.故选B. I10.(浙江省宁波市东方中学2017-2018学年八年级上册期末模拟)等腰△ABC ,其中AB=AC=17cm , BC=16cm ,则三角形的面积为___________ cm2.【答案】120 【解析】利用等腰三角形的顶角的平分线、底边上的中线、底边上的高的重合的性质,勾股定理求出三角形的高AD= =15cm ,再利用三角形面积公式求S AABC = BC?AD=×16×15=120cm2故答案为:120.11.(浙江省宁波市李兴贵中学2017-2018学年八年级上册期末模拟)等腰三角形一腰上的高与另一腰的夹角为40°则等腰三角形顶角的度数是________[来]【答案】50或130【解析】首先根据题意画出图形,一种情况等腰三角形为锐角三角形,①如图 1 ,∙∙∙ BD 丄AC , ∠ ABD=40 ,∙∙∙∠A=50 ,即顶角的度数为50°.另一种情况等腰三角形为钝角三角形,②如图2,∙∙∙ BD 丄AC , ∠ DBA=40∙∙∙∠ BAD=50 ,∙∙∙∠ BAC=130 .故答案为:50或130.12.(浙师大附属秀洲实验学校 2017-2018学年九年级下学期第三次模拟 )已知□ ABCD 中,AB=4, ABC 与 EDC 的角平分线交AD 边于点E , F ,且EF=3,则边AD 的长为 ___________________ .【答案】5或11;【解析】∙∙∙ BE 平分∠ ABC,∙∠ ABE= ∠ CBE ,•••四边形ABCD 是平行四边形,∙ AD // CB , CD=AB=4 ,∙∠ AEB= ∠ CBE∙∠ ABE= ∠ AEB ,∙ AE=AB=4 ,同理:DF=CD=4 ,分两种情况:∙ AD=AE+EF+DF=4+3+4=11∙ AF=1 , ∙ AD=AF+DF=1+4=5; ①如图1所示:∙∙∙ EF=3②如图2所示:■/ EF=4 ,AE=DF=4综上所述: AD的长为11或5;故答案为:5或11.13. (2017新疆建设兵团第15题)如图,在四边形 ABCD 中,AB=AD , CB=CD ,对角线AC , BD 相交于 点0,下列结论中:① ∠ ABC= ∠ ADC ;② AC 与BD 相互平分;③ AC ,BD 分别平分四边形 ABCD 的两组对角;1④ 四边形ABCD 的面积S= AC?BD .2试题解析:①在 △ABC 和ΔADC 中,AB AD∙∙∙ BC CD ,AC AC•••△ ABC ADC ( SSS),∙∙∙∠ ABC= ∠ ADC ,故①结论正确;②•••△ ABC BΔ ADC ,∙∠ BAC= ∠ DAC ,∙∙∙ AB=AD ,• OB=OD , AC 丄 BD ,而AB 与BC 不一定相等,所以 AO 与OC 不一定相等,故②结论不正确; ③由②可知:AC 平分四边形 ABCD 的∠ BAD 、/ BCD,1 而AB 与BC 不一定相等,所以 BD 不一定平分四边形 ABCD 的对角; 故③结论不正确;④∙∙∙ AC 丄 BD ,[来源学科网]•••四边形ABCD 1 1 1的面积 S=SSS 3 2 BD ?A O + 2 BD ?CO = 2 BD ?(AO+CO )=AC?BD . 2故④结论正确;所以正确的有:①④考点:全等三角形的判定与性质;线段垂直平分线的性质.14.等腰三角形 中,顶角为 ,点在以为圆心,'长为半径的圆上,且为 _________ .【来源】2018年浙江省绍兴市中考数学试卷解析【答案】 或【解析】【分析】画出示意图,分两种情况进行讨论即【解答】如图:分两种情况进行讨论■■■ ^PBC = ^ABP + ^ABC= Ilo Dl 同理:^AffP r ^^BAC )J-ABP a■ 2.BAC = 40\ LABC = tβo"-+t>*1 Λ ^P I ffC = ^AeC-= 30°.故答案为:3^或】1孑【点评】考查全等三角形的判定与性质,等腰三角形的性质等,注意分类讨论思想在数学中的应用15. (2017广西贵港第16题)如图,点P 在等边 ABC 的内部,且PC 6,PA 8,PB 10 ,将线段PC绕点C 顺时针旋转60o得到P'C ,连接AP',则Sin PAP'的值为 ___________________ . 【答案】35∙∙∙ CP=CP =6,∠ PCP =60°•••△ CPP 为等边三角形,• PP =PC=6•••△ ABC 为等边三角形,• CB=CA , ∠ ACB=60 ,∙∠ PCB= ∠ P' CA在△PCB 和 ΔP ,CA 中 PC PCPCB PCACB CAτ 62+82=102,• PP 2+AP 2=P'A,∙ PB=P A=10,[来源学。

初中数学课件等腰三角形的性质(几何)ppt课件

初中数学课件等腰三角形的性质(几何)ppt课件
接求出等腰三角形的面积。
利用三角函数
通过已知角度和边长,利用三角函 数求出高或底,再代入公式计算面 积。
利用向量
在平面直角坐标系中,可以利用向 量表示三角形的顶点,通过向量的 运算求出三角形的面积。
案例分析:不同类型题目解法
01
02
03
04
已知等腰三角形的底和高,直 接代入公式求解。
已知等腰三角形三边长度,利 用海伦公式求解。
勾股定理在等腰三角形中的推广
对于非直角的等腰三角形,可以通过作高将其分为两个直角三角形,再利用勾股定理求解 相关问题。
相似三角形与等腰三角形关系探讨
相似三角形定义
两个三角形如果它们的对应角相等,则称这两个三角形相 似。
等腰三角形的相似性质
对于两个等腰三角形,如果它们的顶角相等,则这两个三 角形相似。此外,如果两个等腰三角形的底边和腰成比例 ,则这两个三角形也相似。
实际应用:测量、作图等问题
01
测量
在实际生活中,等腰三角形的性质可以应用于测量问题。例如,在无法
直接测量某一边长时,可以通过测量等腰三角形的底角和腰长来间接计
算。
02
作图
在几何作图中,等腰三角形的性质也有广泛应用。例如,可以通过作等
腰三角形的高来平分底边,或者通过作等腰三角形的角平分线来得到对
称的图形。
初中数学课件等腰三角形的性质(几 何)ppt课件
目录
• 等腰三角形基本概念与性质 • 等腰三角形判定方法 • 等腰三角形面积计算 • 等腰三角形在生活中的应用 • 等腰三角形相关定理和推论 • 练习题与课堂互动环节
01
等腰三角形基本概念与性质
等腰三角形定义及特点
定义
有两边相等的三角形叫做等腰三 角形。

等腰三角形的性质定理和判定定理

等腰三角形的性质定理和判定定理

等腰三角形的性质和判定一、知识梳理知识点1:等腰三角形的性质定理1(1)文字语言:等腰三角形的两个底角相等(简称“等边对等角”)(2)符号语言:如图,在△ABC中,因为AB=AC,所以∠B=∠C(3)证明:取BC的中点D,连接AD在△ABD和△ACD中∴△ABD≌△ACD(SSS)∴∠B=∠C(全等三角形对应角相等)(4)定理的作用:证明同一个三角形中的两个角相等。

知识点2:等腰三角形性质定理2(1)文字语言:等腰三角形的顶角平分线,底边上的中线,底边上的高,互相重合(简称“三线合一”)(2)符号语言:∵AB=AC ∵AB=AC ∵AB=AC∠1=∠2 AD⊥BC BD=DC∴AD⊥BC,BD=DC ∴∠1=∠2 ∴∠1=∠2BD=DC AD⊥BC(3)定理的作用:可证明角相等,线段相等或垂直。

知识3:等腰三角形的判定定理(1)文字语言:如果一个三角形的两个角相等,那么这两个角所对的边也相等(简写为“等角对等边”)(2)符号语言:在△ABC中∵∠B=∠C ∴AB=AC(3)证明:过A作AD⊥BC于D,则∠ADB=∠ADC=90°。

在△ABD和△ACD中∴△ABD≌△ACD (AAS)∴AB=AC(4)定理的作用:证明同一个三角形中的边相等。

二、【典型例题分析】基础知识应用题:例1. 如图,已知P、Q是△ABC边BC上两点,且BP=PQ=AP=AQ=QC,求∠BAC的度数。

例2. 已知:如图,在△ABC中,∠B=∠C,D、E、F分别为AB,BC,AC上的点,且BD=CE,∠DEF=∠B。

求证:△DEF是等腰三角形。

综合应用题:例3. 已知:如图,AC和BD相交于点O,AB∥CD,OA=OB,求证:OC=OD例4. 如图,在四边形ABDC中,AB=2AC,∠1=∠2,DA=DB,试判断DC与AC的位置关系,并证明你的结论。

例5. 求证:等腰三角形两腰上的中线相等解:已知:如图所示,在△ABC中,AB=AC,BD,CE是△ABC的中线求证:BD=CE例6. 如图,点C为线段AB上的一点,△ACM,△BCN是等边三角形,AN,MC相交于点E,CN与BM相交于点F。

等腰三角形的性质与定理

等腰三角形的性质与定理

等腰三角形的性质与定理等腰三角形是指具有两条边相等的三角形。

在几何学中,等腰三角形有一些独特的性质和定理,本文将详细介绍这些性质和定理。

1、等腰三角形的定义和性质等腰三角形是指具有两条边相等的三角形。

具体来说,等腰三角形的两条边(即两条等腰边)相等,而另外一条边(即底边)则不同。

这种特殊性质使得等腰三角形在几何学中具有独特的地位。

2、等腰三角形的角度性质(1)等腰三角形的底角(即底边所对的角)相等。

这是等腰三角形的一个重要性质。

当两条等腰边相等时,底边两侧的两个角也必然相等。

(2)等腰三角形的顶角(即顶点所对的角)是基于等腰边的夹角的平分线。

这一性质可以通过等腰三角形的对称性进行证明。

由于等腰三角形具有对称性,所以顶角必然是基于等腰边夹角的平分线。

3、等腰三角形的中线、高线和角平分线等腰三角形的中线是指连接等腰三角形底边中点和顶点的线段。

等腰三角形的中线是等腰三角形的高线和角平分线。

(1)等腰三角形的中线与底边垂直,并且把底边分成两段相等的线段。

这是等腰三角形的一个重要性质。

(2)等腰三角形的高线是指从顶点到底边的垂直线段。

等腰三角形的高线把底边分成两段,并且高线与底边重合的那一段为等腰边。

(3)等腰三角形的角平分线是指由顶点与底边上某一点相连,并且把顶角平分成两个相等的角的线段。

等腰三角形的角平分线在底边上的长度与等腰边的长度相等。

4、等腰三角形的斜线性质等腰三角形的斜线指从顶点到底边上某一点的线段。

等腰三角形的斜线有一些独特的性质。

(1)等腰三角形的斜线在底边上的长度小于等腰边的长度。

(2)等腰三角形的斜线的长度与所夹的两个角的大小成正比。

当所夹的两个角越大时,斜线的长度也越长。

5、等腰三角形的周长和面积计算公式等腰三角形的周长是指等腰三角形三条边的长度之和。

对于已知等腰三角形的两条等腰边长度a和底边长度b,可以使用周长计算公式C=a+a+b=2a+b来计算等腰三角形的周长。

等腰三角形的面积是指等腰三角形所围成的区域的大小。

等腰三角形的性质与判定

等腰三角形的性质与判定

等腰三角形的性质与判定【知识梳理】1.等腰三角形的概念:有 相等的三角形,叫做等腰三角形, 叫做腰,另一条边叫做 .两腰所夹的角叫做 ,底边与腰所夹的角叫做 .2.等腰三角形性质定理:(1)等腰三角形的两个 相等,也能够说成 .. (3)等腰三角形是 图形.3.等腰三角形的判定:(1)有 相等的三角形是等腰三角形. (2)假如一个三角形有两个角相等,那么这两个角 也相等.简写成 .【例题讲解】例1等腰三角形ABC 中,AB =AC ,一腰上的中线BD •将这个等腰三角形周长分成15和6两局部,求这个三角形的腰长及底边长.例2如图,在△ABC 中,AB =AC ,∠ABD =∠ACD .求证:△DBC 是等腰三角形.例3 如图,AB =AE ,BC =ED , ∠B =∠E .求证:∠C =∠D .例4如图,AB =AC ,BD ⊥AC 于D . 求证:∠BAC =2∠DBC .例5 相关等腰三角形的基本图形.(1)如图3,若OD 平分∠AOB ,DE ∥OB交OA 于E .求证:EO =ED .提问:这个结论的逆命题是否准确?(2)如图 3,若 OD 平分∠AOB , EO =ED ,求证: DE ∥OB . (3)如图 3,若 DE ∥OB 交OA 于E , EO =ED ,求证: OD 平分∠AOB .总结:图3是相关等腰三角形的一个很常用的基本图形.以上三个小题说明:在图3中,“角平分线.平行线.等腰三角形”这三者中,若有两条成立,则第三条必成立.熟悉这个结论,对解决包含该图形的较复杂的题目是很有协助的.相关的题组练习.(1)如图4,AD ∥BC , BD 平分∠ABC .求证: AB =AD .(2)已知:如图5(a ),AB =AC ,BD 平分∠ABC ,CD 平分∠ACB .问:①图中有几个等腰三角形?②如图5(b ),若过D 作EF ∥BC 交AB 于E ,交AC 于F ,图中又增加了几个等腰三角形? (3)如图5(c ),若将第(2)题中的△ABC 改为不等边三角形,其它条件不变,情况会如何?还可证出哪些线段的和差关系?(4)对第(3)题中“两内角平分线”可作怎样的推广?相对应的线段和差关系如何?推广①当过△ABC 的一个内角和一个外角平分线的交点作这两角的公共边的平行线时,如图5(d ).推广②当过△ABC 的两个外角平分线上一点作这两个角的公共边的平行线时,如图5(e ).(5)如图6,若BD ,CD 分别平分∠ABC 和∠ACB ,过D 作DE ∥AB 交BC 于E ,作DF ∥AC 交BC 于F .求证:BC 的长等于△DEF 的周长.【课后巩固】1.在△ABC 中,AB =AC ,若∠B =56º,则DCBAED CBADCB A 3334∠C =__________.2. 若等腰三角形的一个角是50°,则这个等腰三角形的底角为_____________.3. 若等腰三角形的两边长分别为x cm 和(2x-6)cm ,且周长为17cm ,则第三边的长为________.4. 如图,在△ABC 中,AB =AC ,AD ⊥BC 于D ,BE ⊥AC 于E ,若∠CAD =25°,则∠ABE = ,若BC =6,则CD = .5.△ABC 中,AB =AC ,∠ABC =36°,D .E 是BC 上的点,∠BAD =∠DAE =∠EAC ,则图中等腰三角形有______个6.等腰三角形一腰上的高与底边夹角为20°,则其顶角的大小为___________. 7.如图,∠ABC =50°,∠ACB =80°,延长CB 到D ,使BD =AB ,延长BC 到E ,使CE =CA ,连接AD .AE ,则∠DAE =_______.EDCB A8.如下列图,△MNP 中,∠P =60°,MN =NP ,MQ ⊥PN ,垂足为Q ,延长MN 至G ,取NG =NQ ,若△MNP 的周长为12,MQ =a ,则△MGQ 周长是 .9.△ABC 中,∠C =∠B ,D .E 分别是AB .AC上的点,•AE =•2cm ,•且DE •∥BC ,•则AD =______10.如图,∠AOB 是一个钢架且∠AOB =10°,为了使钢架更加牢固,需在内部添加一些钢管EF ,FG ,GH ,…,添加的钢管长度都与OE 相等,则最多能添加这样的钢管______根.11.如图△ABC 中,AB =AC ,AD 、BE 是△ABC 的高,它们相交于H ,且AE=BE . 求证:AH =2BD . 12.△ABC 为非等腰三角形,分别以AB 、AC 为 向△ABC 外作等腰直角三角形ABD 和等腰直角三角 形ACE ,且∠DAB =∠EAC =90°. 求证:(1)BE =CD ;(2)BE ⊥CD .13.如图,点D 、E 在ABC ∆的边BC 上,AB AC =,AD AE =. 求证:BD CE = 14.如图,AB AC =,30BAD ∠=,且AD AE =.求EDC ∠的度数.15.如图,ABC ∆中,90ACB ∠=,CD BA ⊥于D ,AE 平分BAC ∠交CD 于F ,交BC 于E ,求证:CEF ∆是等腰三角形.16.Rt ABC ∆中,AB AC =,90BAC ∠=,O 为 AB 中点,若点M .N 分别在线段AB .AC 上移 动,且在移动过程中保持AN BM =,试判断 OMN ∆的形状,并证明你的结论.17.已知:如图,△ABC 中,D 在AB 上,E 在AC 延长线上,且BD =CE ,DE 交BC 于M ,MD =ME ,求证:△ABC 是等腰三角形.18.已知一个等腰三角形,从它的一个顶点出发引一条直线将它分成两个等腰三角形,这样的等腰三角形有几种情况?画出图形并写出原等腰三角形各角度数. E D C B AP QM N G 35E M DCB A36。

《等腰三角形的判定定理》 知识讲解 (基础)

《等腰三角形的判定定理》 知识讲解  (基础)

等腰三角形的判定定理(基础)【学习目标】1. 理解等腰三角形的判定方法及其证明过程.2. 通过定理的证明和应用,初步了解转化思想,并培养学生逻辑思维能力、分析问题和解决问题的能力.3.了解命题与逆命题、定理与逆定理、互逆定理以及它们之间的关系.4.线段垂直平分线定理的逆定理及其运用.【要点梳理】要点一、等腰三角形的判定定理1.等腰三角形的判定定理如果一个三角形有两个角相等,那么这个三角形是等腰三角形.可以简单的说成:在一个三角形中,等角对等边.2.等边三角形的判定定理三个角相等的三角形是等边三角形.有一个角是60°的等腰三角形是等边三角形.要点诠释:(1)要弄清判定定理的条件和结论,不要与性质定理混淆.判定定理得到的结论是等腰三角形,性质定理是已知三角形是等腰三角形,得到边边和角角关系.(2)不能说“一个三角形两底角相等,那么两腰边相等”,因为还未判定它是一个等腰三角形.(3)等边三角形是中考中常考的知识点,需要记住一下数据:边长为a的等边三角形2.要点二、命题与逆命题,定理与逆定理在两个命题中,如果第一个命题的条件是第二个命题的结论,而第一个命题的结论是第二个命题的条件,那么这两个命题叫做互逆命题,如果把其中一个命题叫做原命题,那么另一个命题叫做它的逆命题.每个命题都有它的逆命题,但每个真命题的逆命题不一定是真命题.如果一个定理的逆命题能被证明是真命题,那么就叫它是原定理的逆定理,这两个定理叫做互逆定理.要点诠释:每一个定理不一定都有逆定理,如果它存在逆定理,那么它一定是正确的.要点三、线段垂直平分线定理的逆定理到线段两端距离相等的点在线段的垂直平分线上.已知:AB是一条线段,P是一点,且PA=PB.求证:点P在线段AB的垂直平分线上.证明 (1)当点P在线段AB上时,结论显然成立.(2)当点P不在线段AB上时,作PC⊥AB于点O.PA=PB,PO⊥AB,∵ OA=OB,∴PC是AB的垂直平分线.∴点P在线段AB的垂直平分线上.【典型例题】类型一、等腰三角形的判定定理1、数学课上,同学们探究下面命题的正确性:顶角为36°的等腰三角形具有一种特性,即经过它某一顶点的一条直线可把它分成两个小等腰三角形.为此,请你解答问题(1).(1)已知:如图①,在△ABC中,AB=AC,∠A=36°,直线BD平分∠ABC交AC于点D.求证:△ABD与△DBC都是等腰三角形;(2)在证明了该命题后,小乔发现:下面两个等腰三角形如图②、③也具有这种特性.请你在图②、图③中分别画出一条直线,把它们分成两个小等腰三角形,并在图中标出所有等腰三角形两个底角的度数;(3)接着,小乔又发现:其它一些非等腰三角形也具有这样的特性,即过它其中一个顶点画一条直线可以将原三角形分成两个小等腰三角形.请你画出两个不同类型且具有这种特性的三角形的示意图,并在图中标出可能的各内角的度数.(说明:要求画出的两个三角形不相似,且不是等腰三角形.)(4)请你写出两个符合(3)中一般规律的非等腰三角形的特征.【思路点拨】(1)根据等边对等角,及角平分线定义,易得∠1=∠2=36°,∠C=72°,那么∠BDC=72°,可得AD=BD=CB,∴△ABD与△DBC都是等腰三角形;(2)把等腰直角三角形分为两个小的等腰直角三角形即可,把108°的角分为36°和72°即可;(3)由(1),(2)易得所知的两个角要么是2倍关系,要么是3倍关系,可猜测只要所给的三个角中有2个角是2倍或3倍关系都可得到上述图形;(4)按照发现的(3)的特点来写,注意去掉特殊三角形的形式.【答案与解析】∴AD=BD,BD=BC,∴△ABD与△BDC都是等腰三角形.(2)解:如下图所示:(3)解:如图所示:(4)解:特征一:2倍内角关系,如图①.0°<α<45°,其中,α≠30°,α≠特征二:3倍内角关系,如图②.0°<α<45°,其中,α≠30°,α≠36度.【总结升华】本题考查了等腰三角形的判定;注意应根据题中所给的范例用类比的方法推测出把一般三角形分为两个等腰三角形的一般结论.举一反三【变式】如图,在△ABC中,D,E分别是AB,AC上的一点,BE与CD交于点O,给出下列四个条件:①∠DBO=∠ECO;②∠BDO=∠CEO;③BD=CE;④OB=OC.(1)上述四个条件中,哪两个可以判定△ABC是等腰三角形?(2)选择第(1)题中的一种情形为条件,试说明△ABC是等腰三角形.【答案】解:(1)①③,①④,②③和②④;(2)以①④为条件,理由:∵OB=OC,∴∠OBC=∠OCB.又∵∠DBO=∠ECO,∴∠DBO+∠OBC=∠ECO+∠OCB,即∠ABC=∠ACB,∴AB=AC,∴△ABC是等腰三角形.2、如图,在△ABC 中,点E 在AB 上,点D 在BC 上,BD=BE ,∠BAD=∠BCE ,AD 与CE 相交于点F ,试判断△AFC 的形状,并说明理由.【思路点拨】要判断△AFC 的形状,可通过判断角的关系来得出结论,那么就要看∠FAC 和∠FCA 的关系.因为∠BAD=∠BCE ,因此我们只比较∠BAC 和∠BCA 的关系即可.根据题中的条件:BD=BE ,∠BAD=∠BCE ,△BDA 和△BEC 又有一个公共角,因此两三角形全等,那么AB=AC ,于是∠BAC=∠BCA ,由此便可推导出∠FAC=∠FCA ,那么三角形AFC 应该是个等腰三角形.【答案与解析】解:△AFC 是等腰三角形.理由如下:在△BAD 与△BCE 中,B B BAD BCEBD BE ∠=∠⎧⎪∠=∠⎨⎪=⎩(公共角) ∴△BAD ≌△BCE (AAS ),∴BA=BC ,∠BAC=∠BCA ,∴∠BAC-∠BAD=∠BCA-∠BCE ,即∠FAC=∠FCA .∴AF=CF ,∴△AFC 是等腰三角形.【总结升华】本题考查了全等三角形的判定与性质及等腰三角形的判定等知识点,利用全等三角形来得出角相等是本题解题的关键.3、(2016•常州)如图,已知△ABC 中,AB=AC ,BD 、CE 是高,BD 与CE 相交于点O(1)求证:OB=OC ;(2)若∠ABC=50°,求∠BOC 的度数.【思路点拨】(1)首先根据等腰三角形的性质得到∠ABC=∠ACB ,然后利用高线的定义得到∠ECB=∠DBC ,从而得证;(2)首先求出∠A 的度数,进而求出∠BOC 的度数.【答案与解析】(1)证明:∵AB=AC ,∴∠ABC=∠ACB ,∵BD、CE是△ABC的两条高线,∴∠BDC=∠CEB=90°,∴∠DBC=∠ECB,∴OB=OC;(2)∵∠ABC=50°,AB=AC,∴∠A=180°﹣2×50°=80°,∴∠AEC+∠A +∠ADB+∠EOD=360°即90°+80°+90°+∠EOD=360°∴∠EOD=100°∴∠BOC=∠EOD=100°【总结升华】本题考查了等腰三角形的性质及三角形的内角和定理;关键是掌握等腰三角形等角对等边.举一反三【变式】如图,在△ABC中,AD平分∠BAC,点D是BC的中点,DE⊥AB于点E,DF⊥AC于点F.求证:(1)∠B=∠C;(2)△ABC是等腰三角形.【答案】证明:(1)∵AD平分∠BAC,DE⊥AB于点E,DF⊥AC于点F,∴DE=DF,在Rt△BDE和Rt△CDF中,,∴Rt△BDE≌Rt△CDF(HL),∴∠B=∠C;(2)由(1)可得∠B=∠C,∴△ABC为等腰三角形.类型二、命题与逆命题,定理与逆定理4、小明在证明“等腰三角形底边上的高线、底边上的中线和顶角的平分线互相重合”这一命题时,画出图形,写出“已知”、“求证”(如图1).(1)请你帮助小明完成证明过程.(2)请你作出判断:小明写出的“已知”、“求证”是否完整?在横线上填“是”或“否”._________(3)做完(1)后,小明模仿老师上课时的方法,又提出了如下几个问题:如:①若将题中“AD⊥BC”与“AD平分∠ABC”的位置交换,得到的是否仍是真命题?②若将题中“AD⊥BC”与“BD=CD”的位置交换,得到的是否仍是真命题?请你作出判断,在下列横线上填写“是”或“否”:①__________ ②_________.并对②的判断作出证明.(若是则写出证明过程;若不是则举出一个反例).(图1) 【思路点拨】(1)由AD ⊥BC 得到∠ADB=∠ADC=90°,然后根据AB=AC,得到∠B=∠C,得到△ADB ≌△ADC ,则∠BAD=∠CAD ,BD=CD ,即AD 平分∠BAC ;(2)小明写出的“已知”、“求证”是完整的;(3)若将题中“AD ⊥BC ”与“AD 平分∠ABC ”的位置交换或将题中“AD ⊥BC ”与“BD=CD ”的位置交换,得到的结论仍是真命题,利用三角形全等的判定与性质进行证明.【答案与解析】(1)证明:∵AD ⊥BC ,∴∠ADB=∠ADC=90°,∵AB=AC, ∴∠B=∠C.在△ADB 和△ADC 中B C ADB ADC 90AB AC ∠=∠⎧⎪∠=∠=︒⎨⎪⎩=,∴△ADB ≌△ADC (AAS ),∴∠BAD=∠CAD ,BD=CD ,∴AD 平分∠BAC ;(2)是;(3)①若将题中“AD ⊥BC ”与“AD 平分∠ABC ”的位置交换,得到的仍是真命题;【总结升华】本题考查了命题:判断一件事物的语句叫命题;正确的命题叫真命题,错误的命题叫假命题.也考查了三角形全等的判定与性质.举一反三【变式】请写出“全等三角形的对应角相等”的逆命题,判断此逆命题的真假性,并给出证明.【答案】解:命题“全等三角形的对应角相等”的题设是“全等三角形”,结论是“对应角相等”,故其逆命题是对应角相等的三角形是全等三角形,是假命题,举例证明:如图DE∥BC,∠ADE=∠B,∠AED=∠C,∠A=∠A,但△ADE△ABC不全等.要点三、线段垂直平分线定理的逆定理5、在△ABC中,AD是高,在线段DC上取一点E,使BD=DE,已知AB+BD=DC,求证:E点在线段AC的垂直平分线上.【思路点拨】根据线段的垂直平分线性质求出BD=DE,推出DE+EC=AE+DE,得出EC=AE,根据线段垂直平分线性质推出即可.【答案与解析】证明:∵AD是高,∴AD⊥BC,又∵BD=DE,∴AD所在的直线是线段BE的垂直平分线,∴AB=AE,∴AB+BD=AE+DE,又∵AB+BD=DC,∴DC=AE+DE,∴DE+EC=AE+DE∴EC=AE,∴点E在线段AC的垂直平分线上.【总结升华】本题考查了线段的垂直平分线的应用,解此题的关键是熟练地运用性质进行推理,培养了学生分析问题和解决问题的能力.。

等腰三角形(基础)知识讲解

等腰三角形(基础)知识讲解

等腰三角形(基础)【学习目标】1. 掌握等腰三角形,等边三角形的性质,并能利用它证明两个角相等、两条线段相等以及两条直线垂直.2. 掌握等腰三角形,等边三角形的判定定理.3. 熟练运用等腰三角形,等边三角形的判定定理与性质定理进行推理和计算.【要点梳理】要点一、等腰三角形1.等腰三角形的定义有两条边相等的三角形,叫做等腰三角形,其中相等的两条边叫做腰,另一边叫做底,两腰所夹的角叫做顶角,底边与腰的夹角叫做底角.如图所示,在△ABC中,AB=AC,则它叫等腰三角形,其中AB、AC为腰,BC为底边,∠A是顶角,∠B、∠C是底角.要点诠释:等腰直角三角形的两个底角相等,且都等于45°.等腰三角形的底角只能为锐角,不能为钝角(或直角),但顶角可为钝角(或直角).∠A=180°-2∠B,∠B=∠C=1802A︒-∠.2.等腰三角形的性质性质1:等腰三角形的两个底角相等(简称“等边对等角”).性质2:等腰三角形的顶角平分线、底边上的高、底边上的中线互相重合(简称“三线合一”).3.等腰三角形的性质的作用性质1证明同一个三角形中的两角相等.是证明角相等的一个重要依据.性质2用来证明线段相等,角相等,垂直关系等.4.等腰三角形是轴对称图形等腰三角形底边上的高(顶角平分线或底边上的中线)所在直线是它的对称轴,通常情况只有一条对称轴.5.等腰三角形的判定如果一个三角形中有两个角相等,那么这两个角所对的边也相等(简称“等角对等边”).要点诠释:等腰三角形的判定是证明两条线段相等的重要定理,是将三角形中的角的相等关系转化为边的相等关系的重要依据.等腰三角形的性质定理和判定定理是互逆定理.要点二、等边三角形1.等边三角形定义:三边都相等的三角形叫等边三角形.要点诠释:由定义可知,等边三角形是一种特殊的等腰三角形.也就是说等腰三角形包括等边三角形.2.等边三角形的性质:等边三角形三个内角都相等,并且每一个内角都等于60°.3.等边三角形的判定:(1)三条边都相等的三角形是等边三角形;(2)三个角都相等的三角形是等边三角形;(3)有一个角是60°的等腰三角形是等边三角形.【典型例题】类型一、等腰三角形中有关度数的计算题1、(2015春•张家港)如图,已知△ABC中,AB=BD=DC,∠ABC=105°,求∠A,∠C 度数.【答案与解析】解:∵AB=BD,∴∠BDA=∠A,∵BD=DC,∴∠C=∠CBD,设∠C=∠CBD=x,则∠BDA=∠A=2x,∴∠ABD=180°﹣4x,∴∠ABC=∠ABD+∠CDB=180°﹣4x+x=105°,解得:x=25°,所以2x=50°,即∠A=50°,∠C=25°.【总结升华】本题考查了等腰三角形的性质及三角形内角和定理;解题中运用了等腰三角形“等边对等角”的性质,并联系三角形的内角定理求解有关角的度数问题.举一反三:【变式】已知:如图,D、E分别为AB、AC上的点,AC=BC=BD,AD=AE,DE=CE,求∠B的度数.【答案】解:∵AC=BC=BD,AD=AE,DE=CE,∴设∠ECD=∠EDC=x,∠BCD=∠BDC=y,则∠AED=∠ADE=2x,∠A=∠B=180°-4x在△ABC中,根据三角形内角和得,x+y+180°-4x+180°-4x=180°①又∵A、D、B在同一直线上,∴2x+x+y=180°②由①,②解得x=36°∴∠B=180°-4x=180°-144°=36°.类型二、等腰三角形中的分类讨论2、在等腰三角形中,有一个角为40°,求其余各角.【思路点拨】唯独等腰三角形的角有专用名词“顶角”“底角”,别的三角形没有,然而此题没有指明40°的角是顶角还是底角,所以要分类讨论.【答案与解析】解:(1)当40°的角为顶角时,由三角形内角和定理可知:两个底角的度数之和=180°-40°=140°,又由等腰三角形的性质可知:两底角相等,故每个底角的度数1140702=⨯︒=︒;(2)当40°的角为底角时,另一个底角也为40°,则顶角的度数=180°-40°-40°=100°.∴其余各角为70°,70°或40°,100°.【总结升华】条件指代不明,做此类题应分类讨论,把可能出现的情况都讨论到,别遗漏.3、已知等腰三角形的周长为13,一边长为3,求其余各边.【答案与解析】解:(1)3为腰长时,则另一腰长也为3,底边长=13-3-3=7;(2)3为底边长时,则两个腰长的和=13-3=10,则一腰长1105 2=⨯=.这样得两组:①3,3,7 ②5,5,3.而由构成三角形的条件:两边之和大于第三边可知:3+3<7,故不能组成三角形,应舍去.∴等腰三角形的周长为13,一边长为3,其余各边长为5,5.【总结升华】唯独等腰三角形的边有专用名词“腰”“底”,别的三角形没有,此题没有说明边长为3的边是腰还是底,所以做此题应分类讨论.同时结合三角形内角和定理、三角形两边之和大于第三边、两边之差小于第三边,来验证讨论哪些情况符合,哪些情况不符合,从而决定取舍,最后得到正确答案.举一反三:【变式】(2015•威海模拟)如图,△ABC中BD、CD平分∠ABC、∠ACB,过D作直线平行于BC,交AB、AC于E、F,AB=5,AC=7,BC=8,△AEF的周长为()E B A D CF A .13 B .12 C .15 D .20【答案】选B .解:∵EF ∥BC ,∴∠EDB=∠DBC ,∵BD 平分∠ABC ,∴∠EBD=∠CBD ,∴∠EDB=∠EBD ,∴BE=ED ,同理DF=CF ,∴△AEF 的周长是AE+EF+AF=AE+ED+DF+AF=AE+BE+CF+AF=AB+AC=5+7=12.类型三、等腰三角形性质和判定综合应用4、已知:如图,ABC △中,45ACB ∠=︒,AD⊥BC 于D ,CF 交AD 于点F ,连接BF 并延长交AC 于点E ,BAD FCD ∠=∠.求证:(1)△ABD≌△CFD;(2)BE⊥AC.【思路点拨】此题由等腰三角形的判定知AD =DC ,易证△ABD ≌△CFD ,要证BE ⊥AC ,只需证∠BEC =90°即可,DF =BD ,可知∠FBD =45°,由已知∠ACD =45°,可知∠BEC =90°.【答案与解析】证明:(1) ∵ AD⊥BC,∴ ∠ADC=∠FDB=90°.∵ 45ACB ∠=︒,∴ 45ACB DAC ∠=∠=︒ ∴ AD=CD∵ BAD FCD ∠=∠, ∴ △ABD≌△CFD(2)∵△ABD≌△CFD ∴ BD=FD.∵ ∠FDB=90°,∴ 45FBD BFD ∠=∠=︒.∵ 45ACB ∠=︒,∴ 90BEC ∠=︒.∴ BE⊥AC.【总结升华】本题主要考查全等三角形判定定理及性质,垂直的性质,三角形内角和定理,等腰直角三角形的性质等知识点,关键在于熟练的综合运用相关的性质定理,通过求证△ABD≌△CFD,推出BD=FD,求出∠FBD=∠BFD=45°.类型四、等边三角形5、如图.在等边△ABC中,∠ABC与∠ACB的平分线相交于点O,且OD∥AB,OE∥AC.(1)试判定△ODE的形状,并说明你的理由;(2)线段BD、DE、EC三者有什么关系?写出你的判断过程.【答案与解析】解:(1)△ODE是等边三角形,其理由是:∵△ABC是等边三角形,∴∠ABC=∠ACB=60°,∵OD∥AB,OE∥AC,∴∠ODE=∠ABC=60°,∠OED=∠ACB=60°∴△ODE是等边三角形;(2)答:BD=DE=EC,其理由是:∵OB平分∠ABC,且∠ABC=60°,∴∠ABO=∠OBD=30°,∵OD∥AB,∴∠BOD=∠ABO=30°,∴∠DBO=∠DOB,∴DB=DO,同理,EC=EO,∵DE=OD=OE,∴BD=DE=EC.【总结升华】(1)根据平行线的性质及等边三角形的性质可得到△ODE是等边三角形;(2)根据角平分线的性质及平行线的性质可得到∠DBO=∠DOB,根据等角对等边可得到DB=DO,同理可证明EC=EO,因为DE=OD=OE,所以BD=DE=EC.举一反三:【变式】等边△ABC,P为BC上一点,含30°、60°的直角三角板60°角的顶点落在点P 上,使三角板绕P点旋转.如图,当P为BC的三等分点,且PE⊥AB时,判断△EPF的形状.【答案】解:∵PE⊥AB,∠B=60°,因此直角三角形PEB中,BE=12BP=13BC=PC,∴∠BPE=30°,∵∠EPF=60°,∴FP⊥BC,∵∠B=∠C=60°,BE=PC,∠PEB=∠FPC=90°,∴△BEP≌△CPF,∴PE=PF,∵∠EPF=60°,∴△EPF是等边三角形.。

初中数学知识点精讲精析 等腰三角形的性质定理

初中数学知识点精讲精析 等腰三角形的性质定理

2.3 等腰三角形的性质定理学习目标1.经历利用等腰三角形的性质加深对轴对称的认识。

2.经历利用轴对称变换推导等腰三角形的性质。

知识详解1.等腰三角形性质1(1)性质1:等腰三角形的两个底角相等(简写成“等边对等角”)。

(2)理解:这是等腰三角形的重要性质,它是证明角相等常用的方法,它的应用可省去三角形全等的证明,因而更简便。

(3)适用条件:必须在同一个三角形中。

(4)应用模式:在△ABC中,因为AB=AC,所以∠B=∠C.(5)推论:等边三角形的各个内角都等于60°。

2.等腰三角形性质2(1)性质2:等腰三角形的顶角平分线、底边上的中线、底边上的高相互重合.习惯上称作等腰三角形“三线合一”性质。

(2)含义:这是等腰三角形所特有的性质,它实际上是一组定理,应用过程中,只要是在等腰三角形前提下,知道是其中“一线”,就可以说明是其他的“两线”,性质中包含有线段相等、角相等、垂直等关系,所以应用非常广泛。

(3)对称性:等腰三角形是轴对称图形,顶角平分线(或底边上的高、底边上的中线)所在的直线是它的对称轴。

(4)应用模式:如图,在△ABC中,①∵AB=AC,AD⊥BC,∴AD平分∠BAC(或BD=CD);②∵AB=AC,BD=DC,∴AD⊥BC(或AD平分∠BAC);③∵AB=AC,AD平分∠BAC,∴BD=DC(或AD⊥BC).“三线合一”的应用:因为题目的证明或计算所求结果大多都是单一的,所以“三线合一”性质实际的应用也是单一的,一般得出一个结论,因此应用要灵活。

【典型例题】例1:等腰直角三角形的一个底角的度数是()A.30°B.45°C.60°D.90°【答案】B【解析】因为等腰三角形的两个底角相等,而等腰直角三角形的两个底角互余,所以每个底角等于45°例2:如图,在Rt△ABC中,AB=AC,AD⊥BC,垂足为D.E、F分别是CD、AD上的点,且CE=AF.如果∠AED=62º,那么∠DBF=()A.62º B.38º C.28º D.26º【答案】C【解析】在Rt△ABC中,AB=AC,AD⊥BC得∠BAF=∠C=∠CAD=45 º,又∠AED=62º,∴∠EAC=62º- 45 º=17 º,又CE=AF,∴△ABF≌△CAE, ∴∠ABF=17 º, ∴∠DBF=45 º-17 º=28º.例3:如图,在△ABC中,AB=AC,点D在AC上,且BD=BC=AD,则∠A等于()A、30ºB、40ºC、45ºD、36º【答案】D【解析】∵AB=AC,BD=BC=AD,∴∠A=∠ABD,∠C=∠ABC=∠BDC,设∠A=xº,则∠ABD= xº, ∠C=∠ABC=∠BDC=2 xº, 在△ABC中,x+2x+2x=180,∴x=36,故∠A=36º【误区警示】易错点1:线段垂直平分线的性质与等腰三角形的性质1.如图,等腰△ABC中,AB=AC,∠DBC=15°,AB的垂直平分线MN交AC于点D,则∠A的度数是【答案】50°【解析】∵MN是AB的垂直平分线,∴AD=BD,∴∠A=∠ABD,∵∠DBC=15°,∴∠ABC=∠A+15°,∵AB=AC,∴∠C=∠ABC=∠A+15°,∴∠A+∠A+15°+∠A+15°=180°,解得∠A=50°易错点2:等腰三角形的性质2.如图,在Rt△ABC中,D,E为斜边AB上的两个点,且BD=BC,AE=AC,则∠DCE的大小为(度).【答案】45【解析】设∠DCE=x,∠ACD=y,则∠ACE=x+y,∠BCE=90°﹣∠ACE=90°﹣x﹣y.∵AE=AC,∴∠ACE=∠AEC=x+y,∵BD=BC,∴∠BDC=∠BCD=∠BCE+∠DCE=90°﹣x﹣y+x=90°﹣y.在△DCE中,∵∠DCE+∠CDE+∠DEC=180°,∴x+(90°﹣y)+(x+y)=180°,解得x=45°,∴∠DCE=45°【综合提升】针对训练1.如图,在△ABC中,AB=AC,∠A=40°,点D在AC上,BD=BC,则∠ABD的度数是.2.如图,在等腰△ABC中,AB=AC,∠A=36°,BD⊥AC于点D,则∠CBD=3.如图,将等边△ABC 绕顶点A 顺时针方向旋转,使边AB 与AC 重合得△ACD ,BC 的中点E 的对应点为F ,则∠EAF 的度数是1.【答案】30°【解析】∵AB=AC ,∠A=40°,∴∠ABC=∠C=12(180°﹣40°)=70°, ∵BD=BC , ∴∠CBD=180°﹣70°×2=40°, ∴∠ABD=∠ABC ﹣∠CBD =70°﹣40° =30°2.【答案】18°【解析】∵AB=AC ,∠A=36°,∴∠ABC=∠ACB=72°. ∵BD ⊥AC 于点D , ∴∠CBD=90°﹣72°=18°3.【答案】60°【解析】∵将等边△ABC 绕顶点A 顺时针方向旋转,使边AB 与AC 重合得△ACD ,BC的中点E 的对应点为F , ∴旋转角为60°,E ,F 是对应点, 则∠EAF 的度数为:60°【中考链接】(2014年盐城)若等腰三角形的顶角为40°,则它的底角度数为( )A . 40°B . 50°C . 60°D . 70°【答案】D【解析】因为等腰三角形的两个底角相等, 又因为顶角是40°, 所以其底角为180402︒-︒ =70°课外拓展黄金三角形是一个等腰三角形,它的顶角为36°,每个底角为72°,它的腰与它的底成黄金比。

初二数学等腰三角形的性质知识精讲 人教义务几何

初二数学等腰三角形的性质知识精讲 人教义务几何

初二数学等腰三角形的性质知识精讲人教义务几何【学习目标】1.能熟练地说出等腰三角形的性质定理及两个推论,并会进行有关计算.2.能运用性质和推论证明两条线段相等、两个角相等及两条直线互相垂直的问题.3.会证明用文字语言叙述的几何命题.【主体知识归纳】1.等腰三角形的性质定理等腰三角形的两个底角相等(简写成“等边对等角”).2.三线合一性质等腰三角形的顶角平分线、底边上的中线、底边上的高互相重合.3.等边三角形的性质等边三角形各边都相等,各角都相等,并且每个角都等于60°.【基础知识精讲】1.为了牢固地掌握等腰三角形的性质,并能灵活地运用它们,应非常熟练地进行下面的推理.如图3—143,在△ABC中,(1)∵AB=AC,∴∠B=∠C.(2)∵AB=AC,∠1=∠2,∴AD⊥BC,BD=CD.(3)∵AB=AC,BD=CD,∴AD⊥BC,∠1=∠2.(4)∵AB=AC,AD⊥BC,∴BD=DC,∠1=∠2.2.证明用文字语言叙述的几何命题是这一节的难点.首先应读懂题意,画出图形;然后分析题设和结论,结合图形写出已知、求证,最后给出证明,如果已知中有“等腰三角形”这个条件,在已知中一般要具体写出哪两条边相等,以便证明时应用.3.在等腰三角形中,作顶角的平分线或作底边上的中线或作底边上的高是一种常见的辅助线.【例题精讲】[例1]求证:等腰三角形顶角的外角平分线平行于底边.剖析:本题的题设“等腰三角形顶角的外角平分线”,结论是“外角的平分线平行于底边”,因此,先作一个等腰三角形,在此基础上作出顶角的一个外角平分线,如图3—144,结合图形写出已知、求证,即已知:如图3—144,△ABC中,AB=AC,E在BA延长线上,∠1=∠2.求证:AD∥BC.剖析:要证平行,从角上考虑,本题的图形AD与BC既被BE所截又被AC所截,同时存在同位角、内错角和同旁内角,可证∠1=∠B或∠2=∠C或∠BAD+∠B=180°之一成立即可,结合等腰三角形的性质与三角形外角性质这并不难办到.证明:∵AB=AC(已知),∴∠B=∠C(等边对等角).又∵∠1+∠2=∠B+∠C(三角形外角性质),又∵∠1=∠2(已知),∴2∠1=2∠B,∴∠1=∠B.∴AD∥BC(同位角相等,两直线平行).说明:其他证法请读者写出,此略.[例2]如图3—145,已知在△ABC中,AB=AC,D为AC上任意一点,延长BA到E,使AE=AD,连结DE,求证:DE⊥BC.剖析:欲证DE⊥BC,BC是等腰三角形的底边,三角形的高垂直于底边,所以想到作AF⊥BC,垂足为F,要证DE⊥BC,只需证DE∥AF,由等腰三角形的性质和外角的性质容易证明.证明:作AF⊥BC,垂足为F.∵AB=AC,∴∠1=∠2,又∵∠BAC=∠E+∠ADE,∴2∠1=∠E+∠ADE,∵AE=AD,∴∠E=∠ADE,∴2∠1=2∠E,即∠1=∠E,∴DE∥AF,∴DE⊥BC.说明:等腰三角形的高、中线、顶角的平分线这三条辅助线,有时作哪一条效果是相同的,但有的题目需根据实际情况选择合适的辅助线.[例3]等腰△ABC中,有一内角为40°,求其余两个内角.剖析:40°的角可能是顶角,也可能是底角,所以,应分两种情况来解.解:(1)若40°角为顶角,则两底角相等,且底角为︒=︒-︒70240180,所以其余两个内角都是70°.(2)若40°角为底角,则另一底角也是40°,顶角应为180°-2×40°=100°,所以其余两个内角度数分别为40°、100°.说明:(1)有关等腰三角形的角的计算题,一般要与三角形内角和定理及推论相结合,应注意等腰三角形的顶角可能是钝角,可能是锐角,也可能是直角,但底角一定是锐角.(2)若已知角为锐角,则此角可作顶角,也可作底角;若已知角为钝角,则此角只可能作顶角;若等腰三角形的顶角为n °,则等腰三角形的底角为2180︒-︒n .若等腰三角形的底角为m °,则等腰三角形的顶角为(180°-2m °).[例4]已知等腰三角形一腰上的中线把它的周长分为18 cm 和21 cm 两部分. 求:它的三边长.剖析:在△ABC 中,AB =AC ,BD 是中线,BD 把周长分为18 cm 和21 cm 两部分,有可能是AB +AD =18 cm ,也有可能是BC +CD =18 cm ,所以要分两种情况进行讨论.解:在△ABC 中,设AB =AC ,BD 是它的中线,根据题意,设腰长为x cm ,底边长为y cm ,则有:⎩⎨⎧==⎩⎨⎧==⎪⎪⎩⎪⎪⎨⎧=+=+⎪⎪⎩⎪⎪⎨⎧=+=+;11,14;15,12:;1821,2121;2121,1821y x y x x y x x x y x x 或解这两个方程组得或 ∴△ABC 的三边长AB =AC =12,BC =15或AB =AC =14,BC =11.说明:(1)有关等腰三角形的边的计算题,一般要与周长和三角形的有关概念相结合,应注意用三角形的三边关系定理检查求出的三边.(2)在一个等腰三角形中没有注明哪条边是腰,哪条边是底的情况下,要注意讨论,看一看各种条件是否符合题意.【同步达纲练习】 1.判断题(1)若等腰三角形腰长为4,则底边长x <8; (2)最大内角是60°的三角形是等边三角形. 2.填空题(1)如图3—147,在△ABC 中,①∵AB =AC ,∴∠_____=∠_______;②∵AB=AC,∠1=∠2,∴BD=__________,__________⊥__________.(2)已知等腰三角形的一个角是80°,则顶角为__________.(3)在等腰三角形ABC中,一腰上的高是1 cm,这条高与底的夹角是45°,则△ABC 的面积为__________.(1)如图3—148,AB=AC,FD⊥BC于D,DE⊥AB于E,若∠AFD=145°,则∠EDF=__________.(5)如图3—149,B、D在AN上,C、E在AG上,且AB=BC=CD,EC=ED=EF,∠A=20°,则∠FEG=__________.(6)如图3—150,∠A=15°,AB=BC=CD=DE=EF,那么∠FEM=__________.(7)一个等腰三角形的顶角为钝角,则它的底角的取值X围是__________.(8)若等腰三角形腰上的高与底边的夹角为α,它和顶角β之间的关系是__________.3.选择题(1)等腰三角形中的一个角等于100°,则另两个内角的度数分别为A.40°,40°B.100°,20°C.50°,50°D.40°,40°或100°,20°(2)等腰三角形的一个外角等于100°,则这个三角形的三个内角分别为A.50°,50°,80°B.80°,80°,20°C.100°,100°,20°D.50°,50°,80°或80°,80°,20°(3)如果一个等腰三角形的一个底角比顶角大15°,那么顶角为A.45°B.40°C.55°D.50°(4)已知等腰三角形的一边长为5 cm,另一边长为6 cm,则它的周长为A.11 cmB.17 cmC.16 cmD.16 cm或17 cm(5)已知等腰三角形的一边长为4 cm,另一边长为9 cm,则它的周长为A.13 cmB.17 cmC.22 cmD.17 cm或22 cm(6)等腰三角形底边长为5 cm,一腰上的中线把其周长分为两部分的差为3 cm,则腰长为A.2 cmB.8 cmC.2 cm或8 cmD.以上结论都不对(7)已知:如图3—151,在△ABC中,AB=AC,点D在AC上,且BD=BC=AD,则∠A的度数为A.30°B.45°C.36°D.72°(8)如图3—152,在△ABC中,AB=AC,∠BAD=30°且AD=AE,则∠EDC等于A.10°B.12.5°C.15°D.20°(9)如图3—153,△ABC中,点D在AC上,且AB=AD,∠ABC=∠C+30°,则∠CBD等于A.15°B.18°C.20°D.22.5°(10)如图3—154,△ABC中,D为BC上一点,而且AB=AC=BD,则图中∠1与∠2的关系为A.∠1=2∠2B.2∠1+∠2=180°C.∠1+3∠2=180°D.3∠1-2∠2=180°(11)下列命题为真命题的是A.等腰三角形顶角的外角平分线与底边平行B.等腰三角形的高、中线、角平分线互相重合C.顶角相等的两个等腰三角形全等D.等腰三角形一边不可以是另一边的二倍(12)在等腰三角形中,AB的长是BC的2倍,周长为40,则AB的长为A.20B.16C.16或20D.以上都不对4.如图3—155,在正三角形ABC的BC边上任取一点D,以CD为边向外作正三角形CDE.求证:BE=AD.5.如图3—156,在△ABC 中,AB =AC ,E 是AB 的中点,以点E 为圆心,EB 为半径画弧,交BC 于点D ,连结ED ,并延长ED 到点F ,使DF =DE ,连结FC .求证:∠F =∠A .6.如图3—157,在△ABC 中,D 是BC 边上一点,AD =BD ,AB =AC =CD ,求∠BAC 的度数.7.如图3—158,在△ABC 中,AB =AC ,∠BAD =30°,且AD =AE .求∠EDC 的度数.8.如图3—159,已知在△ABC 中,AB =AC =CE ,B 是AD 上一点,BE ⊥CB 交CD 于E ,AC ⊥DC .求证:BE =21BC .9.已知:如图3—160,D 、E 分别为等边△ABC 的边BC 、AC 上的点,且BD =CE ,连结BE 、AD ,它们交于F .求证:∠AFE =60°.【思路拓展题】 想一想如图3—161,AOB 是一钢架,且∠AOB =10°,为使钢架更加坚固,需在其内部添加一些钢管EF 、FG 、GH ……,添加的钢管长度若都与OE 相等,那么最多能添加这样的钢管多少根?参考答案【同步达纲练习】 1.(1)× (2)√ 2.(1)①B C ②DC(或21BC ) ADBC (2)80°或20° (3)21cm 2 (4)55° (5)100° (6)75° (7)0°<α<45° (8)α=21β3.(1)A (2)D (3)D (4)D (5)C (6)B (7)C (8)C (9)A (10)D (11)A (12)B 4.提示:证△ACD ≌△BCE .5.证明:连结AD ,∵ED =E B ,∴∠B =∠EDB ∵E A =ED ,∴∠EAD =∠EDA ,∴2∠EDB +2∠EDA =180°,∴∠EDB +∠EDA =90°,即AD ⊥BC , 又∵AB =AC ,∴BD =DC ,又∵∠EDB =∠CDF ,ED =DF ,∴△BDE ≌△CDF ,∴∠F =∠BED , ∵AB =AC ,∴∠EDB =∠ACB ,∵EF ∥AC ,∴∠A =∠BED ,∴∠F =∠A .6.108°.提示:设∠B =x °,则∠C =∠BAD =x °,∠AD C =90°-21x °,利用∠AD C =∠B +∠BAD =2x °,可求得x =36.7.15°8.证明:作AF ⊥BC 于点F ,则∵AC =AB , ∴AF 同时为△ABC 的中线,即CF =21BC , 由已知条件易证△ACF ≌△CEB , ∴BE =CF ,即BE =21BC . 9.提示:证明△ABD ≌△BCE (SAS ) ∴∠BAD =∠CBE∵∠AFE =∠BAD +∠ABE ∴∠AFE =∠C B E +∠ABE , ∴∠AFE =∠ABC =60°【思路拓展题】 想一想最多能添加这样的钢管八根.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

等腰三角形性质定理(基础)
责编:杜少波
【学习目标】
1. 了解等腰三角形的有关概念, 掌握等腰三角形的轴对称性
2.利用轴对称变换推导等腰三角形的性质,并加深对轴对称变换的认识.
3. 掌握等腰三角形的下列性质:等腰三角形的两个底角相等;等腰三角形三线合一.
4. 会利用等腰三角形的性质进行简单的推理、判断、计算和作图.
【要点梳理】
要点一、等腰三角形的定义
1.等腰三角形
有两条边相等的三角形,叫做等腰三角形,其中相等的两条边叫做腰,另一边叫做底,两腰所夹的角叫做顶角,底边与腰的夹角叫做底角.
如图所示,在△ABC中,AB=AC,△ABC是等腰三角形,其中AB、AC为腰,BC为底边,∠A是顶角,∠B、∠C是底角.
2.等腰三角形的作法
已知线段a,b(如图).用直尺和圆规作等腰三角形ABC,使AB=AC=b,BC=a.
作法:1.作线段BC=a;
2.分别以B,C为圆心,以b为半径画弧,两弧
相交于点A;
3.连接AB,AC.
△ABC为所求作的等腰三角形.
3.等腰三角形的对称性
(1)等腰三角形是轴对称图形;
(2)∠B=∠C;
(3)BD=CD,AD为底边上的中线.
(4)∠ADB=∠ADC=90°,AD为底边上的高线.
结论:等腰三角形是轴对称图形,顶角平分线(底边上的高线或中线)所在的直线是它的对称轴.
4.等边三角形
三条边都相等的三角形叫做等边三角形.也称为正三角形.等边三角形是一类特殊的等腰三角形,有三条对称轴,每个角的平分线(底边上的高线或中线)所在的直线就是它的对称轴.
要点诠释:(1)等腰直角三角形的两个底角相等,且都等于45°,等腰三角形的底角只能为锐角,不能为钝角(或直角),但顶角可为钝角(或直角).∠A =180°-2∠B ,∠B =∠C =1802
A ︒-∠ . (2)用尺规作图时,画图的痕迹一定要保留,这些痕迹一般是画的轻一些,能看清就可以了,题目中要求作的图要画成实线,最后一定要点题,即“xxx 即为所求”.
(3) 等边三角形与等腰三角形的关系:等边三角形是特殊的等腰三角形,等腰三角形不一定是等边三角形.
等边三角形是中考中常考的知识点,并且有关它的计算也很常见,因此对于等边三角
形的特殊数据要熟记于心,比如边长为a 的等边三角形它的高是2a ,面积是24
a . 【高清课堂:389301 等腰三角形的性质及判定,知识要点】
要点二、等腰三角形的性质
1.等腰三角形的性质
性质1:等腰三角形的两个底角相等,简称“在同一个三角形中,等边对等角”. 推论:等边三角形的各个内角都等于60°.
性质2:等腰三角形的顶角平分线、底边上中线和高线互相重合.简称“等腰三角形三
线合一”.
2.等腰三角形的性质的作用
证明两条线段或两个角相等的一个重要依据.
3.尺规作图:已知底边和底边上的高
已知线段a ,h (如图)用直尺和圆规作等腰三角形ABC,使底边BC =a,BC 边上的高线为h.
作法:1.作线段BC=a.
2.作线段BC 的垂直平分线l,交BC 与点D.
3.在直线l 上截取DA=h,连接AB,AC.
△ABC 就是所求作的等腰三角形.
【典型例题】
类型一、等腰三角形中有关度数的计算题
【高清课堂:389301 等腰三角形的性质及判定:例1】
1、如图,在△ABC中,D在BC上,且AB=AC=BD,∠1=30°,求∠2的度数.
【答案与解析】
解:∵AB=AC
∴∠B =∠C
∵AB=BD
∴∠2=∠3
∵∠2=∠1+∠C
∴∠2=∠1+∠B
∵∠2+∠3+∠B=180°
∴∠B=180°-2∠2
∴∠2=∠1+180°-2∠2
∴3∠2=∠1+180°
∵∠1=30°
∴∠2=70°
【总结升华】解该题的关键是要找到∠2和∠1之间的关系,显然∠2=∠1+∠C,只要再找出∠C与∠2的关系问题就好解决了,而∠C=∠B,所以把问题转化为△ABD的角之间的关系,问题就容易的多了.关于角度问题可以通过建立方程进行解决.
【高清课堂:389301 等腰三角形的性质及判定:例1练习】
举一反三:
【变式】已知:如图,D、E分别为AB、AC上的点,AC=BC=BD,AD=AE,DE=CE,求∠B的度数.
【答案】
解:∵AC=BC=BD,AD=AE,DE=CE,
∴设∠ECD=∠EDC=x,∠BCD=∠BDC=y,
则∠AED=∠ADE=2x,∠A=∠B=180°-4x
在△ABC中,根据三角形内角和得,
x+y+180°-4x+180°-4x=180°①
又∵A、D、B在同一直线上,∴2x+x+y=180°②
由①,②解得x=36°
∴∠B=180°-4x=180°-144°=36°.
类型二、等腰三角形中的分类讨论
2、(2016秋•威海期中)在等腰三角形中,已知一个角为40°,那么另两个角的度数是.
【思路点拨】由一个等腰三角形内角为40°,分别从40°是等腰三角形顶角与40°是底角的角度去分析求解即可求得答案.
【答案与解析】
解:(1)当40°的角为顶角时,由三角形内角和定理可知:
两个底角的度数之和=180°-40°=140°,
又由等腰三角形的性质可知:两底角相等,
故每个底角的度数
1
14070
2
=⨯︒=︒;
(2)当40°的角为底角时,另一个底角也为40°,
则顶角的度数=180°-40°-40°=100°.
∴另两个角为70°,70°或40°,100°.
【总结升华】此题考查了等腰三角形的性质.此题比较简单,注意掌握分类讨论思想的应用,小心别漏解.
【高清课堂:389301 等腰三角形的性质及判定:例2(2)】
3、已知等腰三角形的周长为13,一边长为3,求其余各边.
【答案与解析】
解:(1)3为腰长时,则另一腰长也为3,底边长=13-3-3=7;
(2)3为底边长时,则两个腰长的和=13-3=10,则一腰长
1
105 2
=⨯=.
这样得两组:①3,3,7 ②5,5,3.
由三角形三边关系可知:两边之和大于第三边,3+3<7,故不能构成三角形,应舍去.∴等腰三角形的周长为13,一边长为3,其余各边长为5,5.
【总结升华】唯独等腰三角形的边有专用名词“腰”“底”,别的三角形没有,此题没有说明边长为3的边是腰还是底,所以做此题应分类讨论.同时结合三角形内角和定理、三角形两边之和大于第三边、两边之差小于第三边,来验证讨论哪些情况符合,哪些情况不符合,从而决定取舍,最后得到正确答案.
举一反三:
【变式】计算:
(1)一个等腰三角形的一边长为8cm,周长为20cm,求其它两边的长.
(2)已知等腰三角形的一边长等于6cm,一边长等于7cm,求它的周长.
(3)已知等腰三角形的一边长等于5cm,一边长等于12cm,求它的周长.
【答案】
解:(1)①底边长为8,则腰长为:(20﹣8)÷2=6,所以另两边的长为6cm,6cm,能构成三角形;②腰长为8,则底边长为:20﹣8×2=4,底边长为8cm,另一个腰长为4cm,能构成三角形.
因此另两边长为8cm、4cm或6cm、6cm;
(2)①6是腰长时,周长=6+6+7=19;
②6是底边时,7是腰,周长=6+7+7=20;
综上,它的周长为19或20;
(3)分两种情况:
当腰为5cm时,5+5<12,所以不能构成三角形;
当腰为12cm时,12+12>5,12﹣12<5,所以能构成三角形,周长是:12+12+5=29cm.类型三、等腰三角形的性质及其运用
4、如图,△ABC是等腰三角形,D,E分别是腰AB及AC延长线上的一点,且BD=CE,连接DE交底BC于G.求证GD=GE.
【思路点拨】过E作EF∥AB交BC延长线于F,根据等腰三角形的性质及平行线的性质可推出∠F=∠FCE,从而可得到BD=CE=EF,再根据AAS判定△DGB≌△EGF,根据全等三角形的性质即可证得结论.
【答案与解析】
证明:过E作EF∥AB交BC延长线于F.
∵AB=AC,
∴∠B=∠ACB,
∵EF∥AB,
∴∠F=∠B,
∵∠ACB=∠FCE,
∴∠F=∠FCE,
∴CE=EF,
∵BD=CE,。

相关文档
最新文档