初中数学综合类应用题测试卷(含答案)
七年级数学综合试卷【含答案】
七年级数学综合试卷【含答案】专业课原理概述部分一、选择题(每题1分,共5分)1. 下列哪个数是质数?A. 21B. 23C. 27D. 302. 如果一个三角形的两边长分别是8厘米和15厘米,那么第三边的长度可能是多少?A. 3厘米B. 10厘米C. 23厘米D. 17厘米3. 一个长方体的长、宽、高分别是2dm、3dm和4dm,那么它的体积是多少?A. 24立方分米B. 20立方分米C. 18立方分米D. 22立方分米4. 小明有3个苹果,小华有4个苹果,他们一共有多少个苹果?A. 6个B. 7个C. 8个D. 9个5. 下列哪个数是偶数?A. 101B. 102C. 103D. 104二、判断题(每题1分,共5分)1. 1是质数。
()2. 三角形的内角和等于180度。
()3. 2的倍数都是偶数。
()4. 长方体的六个面都是长方形。
()5. 0不能做除数。
()三、填空题(每题1分,共5分)1. 2 + 3 = __2. 9 5 = __3. 4 × 6 = __4. 36 ÷ 6 = __5. 1/4 + 1/4 = __四、简答题(每题2分,共10分)1. 请简述勾股定理。
2. 请解释什么是质数。
3. 请简述长方体的体积公式。
4. 请解释什么是偶数。
5. 请简述分数的加法规则。
五、应用题(每题2分,共10分)1. 一个长方形的长是10厘米,宽是5厘米,请计算它的面积。
2. 一个等边三角形的边长是6厘米,请计算它的周长。
3. 一个数的平方是64,请计算这个数。
4. 一个数的立方是27,请计算这个数。
5. 请计算1/3 + 1/6 的值。
六、分析题(每题5分,共10分)1. 小明有15个苹果,他给了小华一些苹果后,自己还剩下10个苹果。
请问小明给了小华多少个苹果?2. 一个长方体的长、宽、高分别是2dm、3dm和4dm,请问它的对角线长度是多少?七、实践操作题(每题5分,共10分)1. 请用直尺和圆规画一个等边三角形。
初中数学综合试卷及答案
初中数学综合试卷及答案一.选择题(共10小题)1.(2012•永州)已知a为实数,则下列四个数中一定为非负实数的是()A.a B.﹣a C.|﹣a| D.﹣|﹣a|2.若|a﹣2|+|b+1|=0,则ab的值为()A.2B.﹣2 C.±2 D.03.若|x﹣3|与|2y﹣3|互为相反数,则xy+x﹣y的值是()C.6D.﹣6A.B.﹣4.(2012•佳木斯)若(a﹣1)2+|b﹣2|=0,则(a﹣b)2012的值是()A.﹣1 B.1C.0D.20125.(2013•遵义)遵义市是国家级红色旅游城市,每年都吸引众多海内外游客前来观光、旅游.据有关部门统计报道:2012年全市共接待游客3354万人次.将3354万用科学记数法表示为()A.3.354×106B.3.354×107C.3.354×108D.33.54×106 6.(2013•自贡)在我国南海某海域探明可燃冰储量约有194亿立方米.194亿用科学记数法表示为()A.1.94×1010B.0.194×1010C.19.4×109D.1.94×109 7.(2013•宜昌)中国航母辽宁舰是中国人民海军第一艘可以搭载固定翼飞机的航空母舰,满载排水量为67500吨,这个数据用科学记数法表示为()A.6.75×104吨B.6.75×103吨C.6.75×105吨D.6.75×10﹣4吨8.(2013•资阳)资阳市2012年财政收入取得重大突破,地方公共财政收入用四舍五入取近似值后为27.39亿元,那么这个数值()A.精确到亿位B.精确到百分位C.精确到千万位D.精确到百万位9.(2013•泰安)观察下列等式:31=3,32=9,33=27,34=81,35=243,36=729,37=2187…解答下列问题:3+32+33+34…+32013的末位数字是()A.0B.1C.3D.710.计算:41+1=5,42+1=17,43+1=65,44+1=257,…,归纳各计算结果中的个位数字的规律,猜想4100+1个位数字为()A.4B.5C.6D.7二.填空题(共1小题)11.(2011•河北)若|x﹣3|+|y+2|=0,则x+y的值为_________.三.解答题(共19小题)12.(2009•凉山州)我们常用的数是十进制数,如4657=4×103+6×102+5×101+7×100,数要用10个数码(又叫数字):0,1,2,3,4,5,6,7,8,9,在电子计算机中用的二进制,只要两个数码:0和1,如二进制中110=1×22+1×21+0×20等于十进制的数6,110101=1×25+1×24+0×23+1×22+0×21+1×20等于十进制的数53.那么二进制中的数101011等于十进制中的哪个数?13.(2007•邵阳)观察下列等式:,,,将以上三个等式两边分别相加得:(1)猜想并写出:=_________;(2)直接写出下列各式的计算结果:①=_________;②=_________.(3)探究并计算:.14.(2006•自贡)计算:﹣34+(﹣0.25)100×4100+()×()﹣2÷|﹣2|.15.(2005•宿迁)计算:(﹣2)2﹣|﹣7|+3﹣2×(﹣).16.(2010•高要市二模)计算:17.计算题:(1)(﹣7)×(﹣5)﹣90÷(﹣15);(2).18.计算:(1)4﹣|﹣6|﹣3×()(2)﹣32+(﹣1)2001÷+(﹣5)219.计算:(﹣1)3×(﹣5)÷[(﹣3)2+2×(﹣5)].20.计算:(﹣2)2+{6﹣(﹣3)×2}÷4﹣5÷×21.如果有理数a,b满足|ab﹣2|+(1﹣b)2=0,试求的值.22.先观察下列等式,再完成题后问题:,,(1)请你猜想:=_________.(2)若a、b为有理数,且|a﹣1|+(ab﹣2)2=0,求:的值.23.为体现党和政府对农民健康的关心,解决农民看病难问题,我市某县全面实行新型农村合作医疗,对农民的住院医疗费实行分段报销制.例如:该县有四位农民看病分别花去了1800元、2500元、6000元、22000元住院医药费,请计算应该给这四位农民各报销多少元?24.计算:﹣(﹣3)2﹣[3+0.4×(﹣1)]÷(﹣2).25.先阅读下面的例题,再解答后面的题目.例:已知x2+y2﹣2x+4y+5=0,求x+y的值.解:由已知得(x2﹣2x+1)+(y2+4y+4)=0,即(x﹣1)2+(y+2)2=0.因为(x﹣1)2≥0,(y+2)2≥0,它们的和为0,所以必有(x﹣1)2=0,(y+2)2=0,所以x=1,y=﹣2.所以x+y=﹣1.题目:已知x2+4y2﹣6x+4y+10=0,求xy的值.26.拓广探索七年某班师生为了解决“22012个位上的数字是_________.”这个问题,通过观察、分析、猜想、验证、归纳等活动,从而使问题得以解决,体现了从特殊到一般的数学思想方法.师生共同探索如下:(1)认真填空,仔细观察.因为21=2,所以21个位上的数字是2;因为22=4,所以22个位上的数字是4;因为23=8,所以23个位上的数字是8;因为24=_________,所以24个位上的数字是_________;因为25=_________,所以25个位上的数字是_________;因为26=_________,所以26个位上的数字是_________;(2)①小明是个爱动脑筋的学生,他利用上述方法继续探索,马上发现了规律,于是猜想:210个位上的数字是4,你认为对吗?试通过计算加以验证.②同学们,你们发现的规律与小明一样吗?不妨把你们发现的规律写出来:_________.(3)利用上述得到的规律,可知:22012个位上的数字是_________.(4)利用上述研究数学问题的思想与方法,试求:32013个位上的数字是_________.27.31=3,32=9,33=27,34=81,335=243,…,通过观察.你发现了什么规律?按照你所发现的规律,则32011的末位数字为_________.28.试确定62012+(﹣25)2013的末位数字是几.29.若a=25,b=﹣3,那么a2003+b2004的末位数是多少?30.如果规定:,,,…(1)你能用幂的形式表示0.0001,0.00001吗?(2)你能将0.000001768表示成a×10n的形式吗?(其中1≤a<10,n是负整数)参考答案与试题解析一.选择题(共10小题)1.(2012•永州)已知a为实数,则下列四个数中一定为非负实数的是()A.a B.﹣a C.|﹣a| D.﹣|﹣a|考点:非负数的性质:绝对值.分析:根据绝对值非负数的性质解答.解答:解:根据绝对值的性质,为非负实数的是|﹣a|.故选C.点评:本题主要考查了绝对值非负数的性质,是基础题,熟记绝对值非负数是解题的关键.2.若|a﹣2|+|b+1|=0,则ab的值为()A.2B.﹣2 C.±2 D.0考点:非负数的性质:绝对值.专题:存在型.分析:先根据非负数的性质求出a、b的值,进而可求出ab的值.解答:解:∵|a﹣2|+|b+1|=0,∴a﹣2=0,b+1=0,解得a=2,b=﹣1,∴ab=2×(﹣1)=﹣2.故选B.点评:本题考查的是非负数的性质,即任意一个数的绝对值都是非负数,当几个数或式的绝对值相加和为0时,则其中的每一项都必须等于0.3.若|x﹣3|与|2y﹣3|互为相反数,则xy+x﹣y的值是()C.6D.﹣6A.B.﹣考点:非负数的性质:绝对值.分析:根据互为相反数的两个数的和等于0列式,再根据非负数的性质列式求出xy的值,然后代入代数式进行计算即可得解.解答:解:∵|x﹣3|与|2y﹣3|互为相反数,∴|x﹣3|+|2y﹣3|=0,∴x﹣3=0,2y﹣3=0,解得x=3,y=,所以,xy+x﹣y=3×+3﹣=4.5+3﹣1.5=6.故选C.点评:本题考查了绝对值非负数的性质,根据几个非负数的和等于0,则每一个算式都等于0列式是解题的关键.4.(2012•佳木斯)若(a﹣1)2+|b﹣2|=0,则(a﹣b)2012的值是()A.﹣1 B.1C.0D.2012考点:非负数的性质:偶次方;非负数的性质:绝对值.分析:根据非负数的性质列式求出a、b的值,然后代入代数式进行计算即可得解.解答:解:根据题意得,a﹣1=0,b﹣2=0,解得a=1,b=2,所以,(a﹣b)2012=(1﹣2)2012=1.故选B.点评:本题考查了平方数非负数,绝对值非负数的性质,根据几个非负数的和等于0,则每一个算式都等于0列式是解题的关键.5.(2013•遵义)遵义市是国家级红色旅游城市,每年都吸引众多海内外游客前来观光、旅游.据有关部门统计报道:2012年全市共接待游客3354万人次.将3354万用科学记数法表示为()A.3.354×106B.3.354×107C.3.354×108D.33.54×106考点:科学记数法—表示较大的数.分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.解答:解:将3354万用科学记数法表示为:3.354×107.故选:B.点评:此题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.6.(2013•自贡)在我国南海某海域探明可燃冰储量约有194亿立方米.194亿用科学记数法表示为()A.1.94×1010B.0.194×1010C.19.4×109D.1.94×109考点:科学记数法—表示较大的数.分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.解答:解:194亿=19400000000,用科学记数法表示为:1.94×1010.故选:A.点评:此题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.7.(2013•宜昌)中国航母辽宁舰是中国人民海军第一艘可以搭载固定翼飞机的航空母舰,满载排水量为67500吨,这个数据用科学记数法表示为()A.6.75×104吨B.6.75×103吨C.6.75×105吨D.6.75×10﹣4吨考点:科学记数法—表示较大的数.分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值是易错点,由于67500有5位,所以可以确定n=5﹣1=4.解答:解:67 500=6.75×104.故选A.点评:此题考查科学记数法表示较大的数的方法,准确确定a与n值是关键.8.(2013•资阳)资阳市2012年财政收入取得重大突破,地方公共财政收入用四舍五入取近似值后为27.39亿元,那么这个数值()A.精确到亿位B.精确到百分位C.精确到千万位D.精确到百万位考点:近似数和有效数字.分析:近似数精确到哪一位,应当看末位数字实际在哪一位.解答:解:∵27.39亿末尾数字9是百万位,∴27.39亿精确到百万位.故选D.点评:本题考查了近似数的确定,熟悉数位是解题的关键.9.(2013•泰安)观察下列等式:31=3,32=9,33=27,34=81,35=243,36=729,37=2187…解答下列问题:3+32+33+34…+32013的末位数字是()A.0B.1C.3D.7考点:尾数特征.专题:压轴题.分析:根据数字规律得出3+32+33+34…+32013的末位数字相当于:3+7+9+1+…+3进而得出末尾数字.解答:解:∵31=3,32=9,33=27,34=81,35=243,36=729,37=2187…∴末尾数,每4个一循环,∵2013÷4=503…1,∴3+32+33+34…+32013的末位数字相当于:3+7+9+1+…+3的末尾数为3,故选:C.点评:此题主要考查了数字变化规律,根据已知得出数字变化规律是解题关键.10.计算:41+1=5,42+1=17,43+1=65,44+1=257,…,归纳各计算结果中的个位数字的规律,猜想4100+1个位数字为()A.4B.5C.6D.7考点:尾数特征.分析:根据已知中尾数特征得出每2个一循环,进而得出4100+1的个位数字与第2个数字尾数相同,即可得出答案.解答:解:∵41+1=5,42+1=17,43+1=65,44+1=257,…,∴上式中尾数每42个一循环,∵100÷2=50,∴4100+1的个位数字与第2个算式尾数相同,故4100+1个位数字是7.故选:D.点评:此题主要考查了尾数特征,根据已知得出式子中尾数的变化规律是解题关键.二.填空题(共1小题)11.(2011•河北)若|x﹣3|+|y+2|=0,则x+y的值为1.考点:非负数的性质:绝对值.专题:计算题;压轴题.分析:根据非负数的性质,可求出x、y的值,然后将x,y再代入计算.解答:解:∵|x﹣3|+|y+2|=0,∴x﹣3=0,y+2=0,∴x=3,y=﹣2,∴x+y的值为:3﹣2=1,故答案为:1.点评:此题主要考查了绝对值的性质,根据题意得出x,y的值是解决问题的关键.三.解答题(共19小题)12.(2009•凉山州)我们常用的数是十进制数,如4657=4×103+6×102+5×101+7×100,数要用10个数码(又叫数字):0,1,2,3,4,5,6,7,8,9,在电子计算机中用的二进制,只要两个数码:0和1,如二进制中110=1×22+1×21+0×20等于十进制的数6,110101=1×25+1×24+0×23+1×22+0×21+1×20等于十进制的数53.那么二进制中的数101011等于十进制中的哪个数?考点:有理数的混合运算.专题:新定义.分析:认真观察已知给出的两个式子:110=1×22+1×21+0×20和110101=1×25+1×24+0×23+1×22+0×21+1×20,得出规律,再计算.解答:解:101011=1×25+0×24+1×23+0×22+1×21+1×20=32+0+8+0+2+1=43.点评:此题的关键找出规律,按照规定的规律进行计算.13.(2007•邵阳)观察下列等式:,,,将以上三个等式两边分别相加得:(1)猜想并写出:=;(2)直接写出下列各式的计算结果:①=;②=.(3)探究并计算:.考点:有理数的混合运算.专题:压轴题;规律型.分析:(1)从材料中可看出规律是;(2)直接根据规律求算式(2)中式子的值,即展开后中间的项互相抵消为零,只剩下首项和末项,要注意的是末项的符号是负号,规律为;(3)观察它的分母,发现两个因数的差为2,若把每一项展开成差的形式,则分母是2,为了保持原式不变则需要再乘以,即得出最后结果.解答:解:(1);(2)①;②;(3)原式====点评:本题考查的是有理数的运算能力和学生的归纳总结能力.解题关键是会从材料中找到数据之间的关系,并利用数据之间的规律总结出一般结论,然后利用结论直接解题.本题中的难点是第(3)个问题,找出分母因数的差为2,把每一项展开成差的形式,则分母是2,所以为了保持原式不变需要再乘以,是解决此题的关键.14.(2006•自贡)计算:﹣34+(﹣0.25)100×4100+()×()﹣2÷|﹣2|.考点:有理数的混合运算.分析:按照有理数混合运算的顺序:先乘方,再乘除,最后算加减,有括号的要先算括号里面的.注意﹣34表示4个3相乘的相反数,其结果为﹣81.解答:解:原式=﹣81+1+×36×=﹣81+1+3=﹣77.点评:本题考查的是有理数的运算能力.(1)要正确掌握运算顺序,即乘方运算(和以后学习的开方运算)叫做三级运算;乘法和除法叫做二级运算;加法和减法叫做一级运算.(2)在混合运算中要特别注意运算顺序:先三级,后二级,再一级;有括号的先算括号里面的;同级运算按从左到右的顺序.15.(2005•宿迁)计算:(﹣2)2﹣|﹣7|+3﹣2×(﹣).考点:有理数的混合运算.分析:含有有理数的加、减、乘、除、乘方多种运算的算式.根据几种运算的法则可知:减法、除法可以转化成加法和乘法,乘方是利用乘法法则来定义的,所以有理数混合运算的关键是加法和乘法.加法和乘法的法则都包括符号和绝对值两部分,同学在计算中要学会正确确定结果的符号,再进行绝对值的运算.解答:解:原式=4﹣7+3+1=1.点评:注意:(1)要正确掌握运算顺序,即乘方运算(和以后学习的开方运算)叫做三级运算;乘法和除法叫做二级运算;加法和减法叫做一级运算.(2)在混合运算中要特别注意运算顺序:先三级,后二级,再一级;有括号的先算括号里面的;同级运算按从左到右的顺序.16.(2010•高要市二模)计算:考点:有理数的混合运算.分析:按照有理数混合运算的顺序,先乘方再乘除后加减,有括号的先算括号里面的,计算过程中注意正负符号的变化并都化成分数形式.解答:解:原式=×(﹣)﹣﹣÷(﹣)=﹣﹣+=﹣.点评:本题考查的是有理数的运算能力.注意:要正确掌握运算顺序,在混合运算中要特别注意运算顺序:先三级,后二级,再一级;有括号的先算括号里面的;同级运算按从左到右的顺序.17.计算题:(1)(﹣7)×(﹣5)﹣90÷(﹣15);(2).考点:有理数的混合运算.分析:对于一般的有理数混合运算来讲,其运算顺序是先乘方,再乘除,最后算加减,如果遇括号要先算括号里面的.在此基础上,有时也应该根据具体问题的特点,灵活应变,注意方法.解答:解:(1)(﹣7)×(﹣5)﹣90÷(﹣15)=35﹣(﹣6)=41.(2)==.点评:本题考查了有理数的混合运算.注意运算顺序及运算法则.18.计算:(1)4﹣|﹣6|﹣3×()(2)﹣32+(﹣1)2001÷+(﹣5)2考点:有理数的混合运算.分析:(1)先算乘法,再算加减;(2)按照有理数混合运算的顺序,先乘方后乘除最后算加减,注意﹣32=﹣9;解答:解:(1)原式=4﹣6+1=﹣1;(2)原式=﹣9+(﹣1)×6+25=10.点评:在混合运算中要特别注意运算顺序:先三级,后二级,再一级;有括号的先算括号里面的;同级运算按从左到右的顺序.19.计算:(﹣1)3×(﹣5)÷[(﹣3)2+2×(﹣5)].考点:有理数的混合运算.分析:按照有理数混合运算的顺序,先乘方后乘除最后算加减,有括号的先算括号里面的.解答:解:原式=﹣1×(﹣5)÷(9﹣10)=﹣1×(﹣5)×(﹣1)=﹣5.点评:本题考查的是有理数的运算能力.注意:要正确掌握运算顺序,即乘方运算(和以后学习的开方运算)叫做三级运算;乘法和除法叫做二级运算;加法和减法叫做一级运算.在混合运算中要特别注意运算顺序:先三级,后二级,再一级;有括号的先算括号里面的;同级运算按从左到右的顺序.20.计算:(﹣2)2+{6﹣(﹣3)×2}÷4﹣5÷×考点:有理数的混合运算.分析:按照有理数混合运算的顺序,先乘方后乘除最后算加减,有括号的先算括号里面的.解答:解:原式=4+[6+6]÷4﹣5××=4+3﹣4=3.点评:在混合运算中要特别注意运算顺序:先三级,后二级,再一级;有括号的先算括号里面的;同级运算按从左到右的顺序.21.如果有理数a,b满足|ab﹣2|+(1﹣b)2=0,试求的值.考点:有理数的混合运算;非负数的性质:绝对值;非负数的性质:偶次方.专题:计算题.分析:由绝对值和完全平方式的结果为非负数,且两非负数之和为0可得绝对值和完全平方式同时为0,可得ab=2且b=1,把b=1代入ab=2可求出a的值为2,把求出的a与b代入所求的式子中,利用=﹣把所求式子的各项拆项后,去括号合并即可求出值.解答:解:∵|ab﹣2|≥0,(1﹣b)2≥0,且|ab﹣2|+(1﹣b)2=0,∴ab﹣2=0,且1﹣b=0,解得ab=2,且b=1,把b=1代入ab=2中,解得a=2,则=+++…+=(1﹣)+(﹣)+(﹣)+…+(﹣)=1﹣+﹣+﹣+…+﹣=1﹣=.点评:此题考查了有理数的混合运算,要求学生掌握两非负数之和为0时,两非负数必须同时为0,本题若直接按照运算顺序解题,运算量非常大,需利用计算技巧简化运算,根据所求式子各项的特点,利用拆项法进行化简,使拆开的一部分分数互相抵消,达到简化运算的目的.熟练运用=﹣是解本题的关键.22.先观察下列等式,再完成题后问题:,,(1)请你猜想:=.(2)若a、b为有理数,且|a﹣1|+(ab﹣2)2=0,求:的值.考点:有理数的混合运算;非负数的性质:绝对值;非负数的性质:偶次方.专题:规律型.分析:(1)根据=﹣,=﹣,=﹣,…则=;(2)先根据非负数的性质得出a、b的值,代入原式变形为1﹣+﹣+﹣…+﹣是解题的关键.解答:解:(1)=(2分)(2)∵|a﹣1|+(ab﹣2)2=0,∴a﹣1=0,ab﹣2=0,∴a=1,b=2(2分)原式=(2分)=.(1分)点评:考查了有理数的混合运算,通过观察,分析、归纳并发现其中的规律,并应用发现的规律解决问题是应该具备的基本能力.本题的关键规律为=﹣.23.为体现党和政府对农民健康的关心,解决农民看病难问题,我市某县全面实行新型农村合作医疗,对农民的住院医疗费实行分段报销制.例如:该县有四位农民看病分别花去了1800元、2500元、6000元、22000元住院医药费,请计算应该给这四位农民各报销多少元?考点:有理数的混合运算.专题:应用题.分析:分别用百分数表示出每人的每段报销的金额后用加法计算.解答:解;应给花1800元医药费的农民报销的金额=500×20%+1300×30%=490(元);应给花2500元医药费的农民报销的金额=500×20%+1500×30%+500×35%=725(元);应给花6000元医药费的农民报销的金额=500×20%+1500×30%+3000×35%+1000×40%=2000(元);应给花22000元医药费的农民报销的金额=500×20%+1500×30%+3000×35%+5000×40%+12000×45%=9000(元).故给这四位农民各报销490元、725元、2000元、9000元.点评:本题利用了百分数来表示报销的金额,结合当前的农村新型农村合作医疗,做到学数学用数学,学以致用.24.计算:﹣(﹣3)2﹣[3+0.4×(﹣1)]÷(﹣2).考点:有理数的混合运算.分析:按照有理数的运算顺序,先乘方,再乘除,有括号的,先算括号里的进行运算.解答:解:原式=﹣9﹣(3﹣×)×(﹣)=﹣9+×=﹣.点评:本题考查的是有理数的运算能力.注意:要正确掌握运算顺序,即乘方运算(和以后学习的开方运算)叫做三级运算;乘法和除法叫做二级运算;加法和减法叫做一级运算.在混合运算中要特别注意运算顺序:先三级,后二级,再一级;有括号的先算括号里面的;同级运算按从左到右的顺序.25.先阅读下面的例题,再解答后面的题目.例:已知x2+y2﹣2x+4y+5=0,求x+y的值.解:由已知得(x2﹣2x+1)+(y2+4y+4)=0,即(x﹣1)2+(y+2)2=0.因为(x﹣1)2≥0,(y+2)2≥0,它们的和为0,所以必有(x﹣1)2=0,(y+2)2=0,所以x=1,y=﹣2.所以x+y=﹣1.题目:已知x2+4y2﹣6x+4y+10=0,求xy的值.考点:非负数的性质:偶次方.专题:阅读型.分析:先将左边的式子写成两个完全平方的和的形式,根据非负数的性质求出x、y的值,再代入求出xy的值.解答:解:将x2+4y2﹣6x+4y+10=0,化简得x2﹣6x+9+4y2+4y+1=0,即(x﹣3)2+(2y+1)2=0.∵(x﹣3)2≥0,(2y+1)2≥0,且它们的和为0,∴x=3,y=﹣.∴xy=3×(﹣)=﹣.点评:初中阶段有三种类型的非负数:(1)绝对值;(2)偶次方;(3)二次根式(算术平方根).当它们相加和为0时,必须满足其中的每一项都等于0.根据这个结论可以求解这类题目.本题关键是将左边的式子写成两个完全平方的和的形式.26.拓广探索七年某班师生为了解决“22012个位上的数字是6.”这个问题,通过观察、分析、猜想、验证、归纳等活动,从而使问题得以解决,体现了从特殊到一般的数学思想方法.师生共同探索如下:(1)认真填空,仔细观察.因为21=2,所以21个位上的数字是2;因为22=4,所以22个位上的数字是4;因为23=8,所以23个位上的数字是8;因为24=16,所以24个位上的数字是6;因为25=32,所以25个位上的数字是2;因为26=64,所以26个位上的数字是4;(2)①小明是个爱动脑筋的学生,他利用上述方法继续探索,马上发现了规律,于是猜想:210个位上的数字是4,你认为对吗?试通过计算加以验证.②同学们,你们发现的规律与小明一样吗?不妨把你们发现的规律写出来:尾数每4个一循环分别为:2,4,8,6.(3)利用上述得到的规律,可知:22012个位上的数字是6.(4)利用上述研究数学问题的思想与方法,试求:32013个位上的数字是3.考点:尾数特征.分析:(1)根据指数运算法则直接求出各数即可;(2)①直接计算得出210个位上的数字是4;②利用(1)中所求得出尾数每4个一循环分别为:2,4,8,6;(3)利用(2)中的规律得出答案;(4)利用(2)中规律得出3的指数变化与尾数的关系.解答:解:(1)因为21=2,所以21个位上的数字是2;因为22=4,所以22个位上的数字是4;因为23=8,所以23个位上的数字是8;因为24=16,所以24个位上的数字是6;因为25=32,所以25个位上的数字是2;因为26=64,所以26个位上的数字是4;故答案为:16,6;32,2;64,4;(2)①正确,理由:由(1)可得出:尾数每4个一循环,10÷4=2…2,则210个位上的数字与第2个数据相等是4;②尾数每4个一循环分别为:2,4,8,6.(3)∵2012÷4=503,∴22012个位上的数字与第4个尾数相等,则是6;故答案为:6;(4)因为31=3,所以31个位上的数字是3;因为32=9,所以32个位上的数字是9;因为33=27,所以33个位上的数字是7;因为34=81,所以34个位上的数字是1;因为35=243,所以35个位上的数字是3;…∴尾数每4个一循环,∵2013÷4=503…1,∴32013个位上的数字是3.故答案为:3.点评:此题主要考查了数字尾数特征,根据指数的变化得出位置的变化规律是解题关键.27.31=3,32=9,33=27,34=81,335=243,…,通过观察.你发现了什么规律?按照你所发现的规律,则32011的末位数字为7.考点:尾数特征.分析:通过观察,发现3的乘方的结果上的个位数字:3,9,7,1,3,9,7,1,…4个一循环,所以根据这个规律求得答案.解答:解:∵2011÷4=502…3,∴32011的结果个位数是:7.故答案为:7.点评:本题考查的是尾数的特征,根据题意找出规律是解答此题的关键.28.试确定62012+(﹣25)2013的末位数字是几.考点:尾数特征.分析:先根据题意得出6的2012次方的末位数字,再得出(﹣25)2013的末位数字,求出其差即可.解答:解:∵61=6,62=36,63=216,64=1296,…,∴6的任何次方的结果都是正数,且末位数字均为6,∴62012次方的末位数字是6,∵(﹣25)1=﹣25,(﹣25)2=625,(﹣25)3=﹣15625,(﹣25)4=390625,…,∴(﹣25)2013的末位数字为5,其符号为负号,∴62012+(﹣25)2013的末位数字是6﹣5=1.点评:本题考查的是尾数的特征,根据题意找出规律是解答此题的关键.29.若a=25,b=﹣3,那么a2003+b2004的末位数是多少?考点:尾数特征.分析:应先确定a2003的个位数字,b2004的个位数字,让其相加即可.解答:解:原式=52003+(﹣3)2004,∵3的末位数字是﹣3,9,﹣7,1依次循环,∴(﹣3)2004的个位数字为1,∴原式的末位数字是5+1=6.故a2003+b2004的末位数是6.点评:考查了尾数特征,本题的关键在于确定﹣3的个位数字,﹣3的个位数字应是﹣3,9,﹣7,1依次循环.30.如果规定:,,,…(1)你能用幂的形式表示0.0001,0.00001吗?(2)你能将0.000001768表示成a×10n的形式吗?(其中1≤a<10,n是负整数)考点:科学记数法—表示较小的数.分析:(1)利用已知数据直接得出即可;(2)根据绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.解答:解:(1)∵,,,…∴0.0001=10﹣4,0.00001=10﹣5;(2)0.000001768=1.768×10﹣6.点评:此题主要考查了用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.。
初中数学知识的综合运用练习题与解析
初中数学知识的综合运用练习题与解析在初中数学学习中,掌握各种知识点是非常重要的,但更为关键的是能够将这些知识点进行合理的综合运用。
为了帮助同学们提高数学运用能力,本文将提供一些综合运用练习题,并附带解析,希望能够对同学们有所帮助。
练习题一:一个三位数的百位数比十位数大2,个位数比十位数小2,百位、十位、个位相加等于15,这个三位数是多少?解析:设百位数为a,十位数为b,个位数为c。
根据题目中的条件,可以得到如下方程组:a =b + 2c = b - 2a +b +c = 15将第一个等式代入第三个等式中,得到:(b+2) + b + (b-2) = 153b = 15b = 5将b的值代入第一个等式中,得到:a = 7将b的值代入第二个等式中,得到:c = 5 - 2c = 3因此,这个三位数是753。
练习题二:甲、乙两人开始同时从相距50千米的两地相对行走,甲的速度是每小时4千米,乙的速度是每小时6千米。
请问,他们多久后会相遇?解析:设甲、乙相遇的时间为t小时。
根据题目中的条件,可以得到如下方程:4t + 6t = 5010t = 50t = 5因此,他们将在5小时后相遇。
练习题三:在长方形ABCD中,AB = 8厘米,BC = 10厘米。
点E为AD边的中点,连接BE,交BC于点F。
求EF的长度。
首先,根据题目中的条件,可以得知AE = ED = 4厘米。
由于E为AD边的中点,因此BE的长度为AE + ED = 4 + 4 = 8厘米。
接着,根据题目中的条件,可以得到△BCF为等腰三角形,因此BF = CF = 10厘米。
由于EF为BE的中线,根据中线定理可知EF = 1/2 * BE = 1/2 * 8 =4厘米。
因此,EF的长度为4厘米。
通过以上的综合运用练习题与解析,我们可以看到数学知识的综合运用非常重要。
在学习过程中,我们应该注重灵活运用所学知识,加强练习和思考,这样才能更好地应对各种数学问题。
初三数学综合测试卷及答案
一、选择题(每题3分,共30分)1. 下列各数中,有理数是()A. √16B. √-9C. πD. 0.1010010001……2. 已知等腰三角形底边长为8cm,腰长为10cm,则其面积为()A. 32cm²B. 40cm²C. 48cm²D. 80cm²3. 下列函数中,一次函数是()A. y = 2x² - 3x + 1B. y = √x + 1C. y = 2x + 3D. y = 3/x4. 已知一元二次方程x² - 5x + 6 = 0,则其解为()A. x₁ = 2, x₂ = 3B. x₁ = 3, x₂ = 2C. x₁ = 6, x₂ = 1D. x₁ = 1, x₂ = 65. 在平面直角坐标系中,点A(2,3)关于原点的对称点是()A.(-2,-3)B.(2,-3)C.(-2,3)D.(3,-2)6. 下列各组数中,成等差数列的是()A. 1,4,7,10B. 2,5,8,11C. 3,6,9,12D. 4,7,10,137. 若直角三角形的两条直角边长分别为3cm和4cm,则斜边长为()A. 5cmB. 6cmC. 7cmD. 8cm8. 下列命题中,正确的是()A. 若a > b,则a² > b²B. 若a > b,则ac > bcC. 若a > b,则a² > b²D. 若a > b,则ac > bc9. 已知正方形的边长为a,则其对角线长为()A. aB. √2aC. 2aD. a√210. 在等腰三角形ABC中,若底边BC=8cm,腰AB=AC=10cm,则三角形ABC的周长为()A. 24cmB. 26cmC. 28cmD. 30cm二、填空题(每题4分,共40分)11. 分数 3/4 与 -1/2 的差是 ________。
初中数学经济问题综合测试卷含答案
初中数学经济问题综合测试卷一、单选题(共6道,每道15分)1.节日期间,某电器按成本价提高35%后标价,为了促销,决定打九折销售,为了吸引更多顾客又降价130元,此时仍可获利15%.请问该电器的成本价是多少元?设该电器的成本价为x元,根据题意可列方程为()A. B.C. D.答案:D试题难度:三颗星知识点:一元一次方程的应用——打折销售2.家电下乡是我国应对当前国际金融危机,惠农强农,带动工业生产,促进消费,拉动内需的一项重要举措.国家规定,农民购买家电下乡产品将得到销售价格13%的补贴资金.今年5月1日,甲商场向农民销售某种家电下乡手机20部.已知从甲商场售出的这20部手机国家共发放了2340元的补贴,若设该手机的销售价格为x元,以下方程正确的是()A.20x·13%=2340B.20x=2340×13%C.20x·(1-13%)=2340D.13%x=2340答案:A试题难度:三颗星知识点:一元一次方程的应用——打折销售3.目前,“低碳”已成为保护地球环境的热门话题,某高科技发展公司成功研制出一种市场需求量较大的低碳高科技产品.已知生产每件产品的成本是40元,在销售过程中发现,当销售单价定为100元时,年销售量为x万件(x>2);销售单价每增加10元,年销售量将减少1万件,则当x 取何值时,才能使销售单价为100元与销售单价为120元时的销售利润相等,可列方程为() A.(100-40)x=(120-40)(x-2) B.(100-40)x=(120-40)(x+2)C.100x=120(x-2)D.(100-40)x=(120-40)(x-1)答案:A试题难度:三颗星知识点:一元一次方程的应用——打折销售4.甲厂家销售中性笔,乙厂家销售钢笔和墨水.某段时间内,甲厂家销售了1000支中性笔,乙厂家销售的墨水数量是钢笔的10倍,乙厂家获得的利润和甲厂家获得的利润相等,有关销售策略与售价等信息如下表所示.则这段时间内,乙厂家销售了多少支钢笔?多少瓶墨水?若设乙厂家销售了x支钢笔,根据题可得方程为()A.10(15-10)x+(4-2)x=1000×(2.5-1.5)B.(4-2)x+(15-10)x=1000×(2.5-1.5)C.(15-10)x+10(4-2)x=1000×(2.5-1.5)D.(4-2)x-10(15-10)x=1000×(2.5-1.5)答案:C试题难度:三颗星知识点:一元一次方程的应用——打折销售5.某商场购进某种商品的进价是每件8元,销售价是每件10元.现为了扩大销售量,把每件的销售价降低x%出售,但要求卖出一件商品所获得的利润是降价前所获得的利润的90%,根据题意,下面所列方程正确的是()A.10(1-x%)-8=(1+90%)×(10-8)B.10(1-x%)-8=90%×(10-8)C.10·x%-8=90%×(10-8)D.10(1-x%)-8=(10-8)÷90%答案:B试题难度:三颗星知识点:一元一次方程的应用——打折销售6.某企业生产某种食品,生产该食品每袋的原材料价格为1.5元,每袋的其他成本为0.3元.前两个月,企业将该食品的售价定为3元每袋,此时每月的销售量平均为3万袋.为了完成累计利润为11万的季度目标,在接下来的一个月内企业将每袋的售价在之前的基础上提高了x%,而销售量却比之前的平均销售量减少了0.6万袋.为求出x的值,下面所列方程正确的是()A.[3(1+x%)-1.5-0.3)]×(3-0.6)=11-3×2×(3-1.5-0.3)B.[3(1+x%)-1.5-0.3)]×3=11-3×2×(3-1.5-0.3)C.[3(1+x%)-1.5-0.3)]×(3-0.6)=11-3×(3-1.5-0.3)D.[3(1+x%)-1.5)]×(3-0.6)=11-3×2×(3-1.5)答案:A试题难度:三颗星知识点:一元一次方程的应用——打折销售市场经济类问题1.某商场将某种型号的彩电按原价提高了40%,然后在广告中写上“大酬宾,八折优惠”,结果每台彩电比原价多赚了270元,那么这种型号的彩电每台原价是( ). (A )2150元(B )2200元(C )2250元(D )2300元2.某家具标价为132元,若降价以九折出售(即优惠10%),仍可获利10%,则该家具的进货价是( ).(A)108元 (B)105元 (C)100元 (D)118元3.为了迎接“3•15”,商场准备将某种商品打折出售.若按标价的七五折出售,将赔25元;若按标价的九折出售,将赚20元,则这种商品的进货价为( ). (A)245元 (B)250元 (C)270元 (D)275元4.某商场将某种型号的彩电按标价的八折出售,仍可获利20%,已知该型号的彩电每台进价为1996元,则这种型号的彩电每台标价是( )元. (A)2154元(B)2276元(C)2994元(D)3124元5.某品牌家用电脑若按标价降低20%后出售,仍可获利20%;若按标价出售,则可获利( ). (A)20% (B)40% (C)50% (D)60%6.某商品进价1000元,标价1500元,打折出售,为使利润率不低于5%最低打( ). (A)九折 (B)八折 (C)七折 (D)六折 7.某商品提价10%后,欲恢复原价,应降价( ). (A)10% (B )9% (C )1119% (D )9111% 8.某商品的进货价保持不变,若将售价提高一个百分数后,所获得的利润(按进货价而定)可由25%提高到35%,则售价提高的百分数为( ).(A)5% (B)8% (C)10% (D)16%9.某服装商贩同时卖出两件服装,每件均卖168元,以成本计算,其中一件盈利20%,另一件亏本20%,则在这次交易中,该商贩( ).(A)不赔不赚 (B)赚37.2元 (C)赚14元 (D)赔14元 10.陈老师将甲、乙两种股票同时卖出,两种股票每股卖价相同,以成本计算,其中甲种股票盈利20%,乙种股票亏本20%.若以成本计算,则陈老师在这次交易中( ). (A)不赔不赚 (B)获利4% (C)亏损8% (D)亏损4% 11.X 师傅下岗再就业,做起了小商品生意,第一次进货时,他以每件a 元的价格购进了20件甲种小商品,每件b 元的价格购进了30件乙种小商品(a >b );回来后,根据市场行情,他将这两种小商品都以每件2a b元的价格出售,在这次买卖中,X 师傅是( ).(A)赚钱(B)赔钱(C)不赚不赔(D)无法确定赚和赔12.某商场经销一种商品,由于进货价降低了20%,销售价保持不变,使得利润率提高27.5%,则原来经销这种商品的利润率为( ).(A)7.5% (B)10% (C)12.5% (D)15%13.某商场经销一批电视机,1月份每台电视机的毛利润是售出价的20%(毛利润=售出价-买入价),2月份该商场将每台电视机的售出价调低10%(买入价保持不变),结果销售台数比1月份增加了120%,那么2月份的毛利润总额与1月份的毛利润总额相比( ).(A)增加10% (B)增加12% (C)减少10% (D)减少5%14.我国政府为解决老百姓看病难的问题,决定下调药品价格.某种药品在2001年涨价30%后,2003年降价70%后至78元,则这种药品在2001年涨价前的价格为( ).(A)78元(B)100元(C)156元(D)200元15.某商品的进价为100元,按进价增长20%定为售价,销售一段时间后,发现该商品积压严重,商场决定再按售价的80%出售,则降价后的售价是( ).(A)100元(B)96元(C)72元(D)24元16.某商品的价格为a元,降价10%后,又降价10%,销售量猛增,商场决定提价20%出售,则最后这商品的售价是( ).(A)a元(B)1.08a元(C)0.96a元(D)0.972a元17.XX市某商店经销某一种商品,由于进货价降低了5%,而售价不变,使得利润由m%提高到(m+6)%,则m的值为( )(A)10 (B)12 (C)14 (D)1718.某商店积压了100件某种商品,为了使这批货物尽快脱手,该商店采用了如下销售方案:先将原价提高到原来的2.5倍,再作三次降价处理:第一次降价30%,标出“亏本价”;第二次再降价30%,标出“破产价”;第三次再降价30%,标出“跳楼价”,三次降价处理销售情况如下表:(1)“跳楼价”与原价的百分比是多少?(2)该商品按新销售方案销售,相比按原价全部销售完,哪一种方案更盈利?分段计费问题1.计算机上网时间如果每月在60小时以内,每小时按1元收费;如果超过60小时,则超过的部分加倍收费.(1)某计算机用户在本月内的上网时间是100小时,求该用户这个月应缴纳的上网费用;(2)若该用户某月上网费用为120元,求求该用户这个月的上网时间.2.有一旅客携带了30kg的行李从XX天河机场乘飞机去,按民航规定,旅客最多可免费携带20kg行李,超重部分每公斤按飞机票价的1.5%购买行李票,现该乘客购买了120元行李票,求他的飞机票价是多少元?3.学校有一批资料需要复印,现有甲、乙两家复印社,两家复印社的复印资费如下:甲复印社:每X0.4元;乙复印社:不超过30X(含30X)每X0.5元,超过30X的部分每X0.2元;(1)当复印多少X资料时,在两家复印社复印资料的费用相同?(2)当复印资料X数在什么X围时,选择甲复印社合算?当复印资料X数在什么X围时,选择乙复印社合算?(3)经过核算:学校决定在乙复印社复印这批资料较合算,且所付费用比在甲复印社少8元,你知道学校复印资料有多少X吗?4.《中华人民XX国个人所得税法》规定,公民全月工资、薪金所得,不超过880元的部分,此项税款按下表分段累计计算.不必纳税,超过880元的部分为全月应纳税所得额......(1(2)若王教授某月应纳税款400元,那么他这个月的工资、薪金共多少元?5.学生办理了“学生团体医疗保险”,保险公司按如下表中级距分段计算给住院医疗保险.费2100元,那么保险分司为该同学给付了保险金为多少元?市长:“根据市教育部门对话情境应用题一、近年来,由于受国际石油市场的影响,汽油价格不断上涨.请你根据下面的信息,帮小明计算今年5月份汽油的价格.二、若干个小朋分若干个桃子.你能根据下面信息,知道有多少个桃子?多少个小朋友吗?三、小明去文具店购买2B 铅笔,根据店主的话和小明的测算,求每支铅笔的原价是多少元?四、市长到市教育局调查义务教育入学情况,根据市长和教育局长的对话,求我市小学和初中在校学生各有多少人?如果每人分3个,还多6个; 如果每人分4个,那么还差2个.小明测算了一下:如果买50支,比按原价购买可以便宜6元.店主说:“如果多买一些,给你打八折”.我们两人每天共可制作35个玩具.教育局长:“是的,其中小学生在校人数比初中生在校人数的2倍多14万人.”我如果制作衬衫,每天可制作3件.五、小燕和小明利用课余时间两人制作同一种玩具,根据下面信息,求他们两人每天各制作多少个玩具?六、某商场正在热销2008年奥运会吉祥物“福娃”玩具和徽章两种奥运商品,根据下图提供的信息,求一盒“福娃”玩具和一枚徽章的价格各是多少元?共计135元七、福林制衣厂现有24名制作服装工人(每名工作的效率相同),每天都制作某种品牌衬衫和裤子,要使该厂要求每天制作的衬衫和裤子数量相等,根据下图提供的信息,应如何安排制作衬衫和裤子的工人?我制作90个玩具所用的时间与你制作120个玩具所用的时间相等;共计280元我如果制作裤子,每天可制作5条;八.小英和小强相约一起去某超市购买他们看中的随身听和书包.你能根据他们的对话内容(如图),求出他们看中的随身听和书包单价各是多少元吗?方案设计问题1.某工厂生产某种产品,每件产品的出厂价为50元,其成本价为25元,因为在生产过程中,平均每生产一件产品有0.5立方米的污水排出,所以为了净化环境,工厂设计两种方案对污水进行处理,并准备实施:方案1:工厂将污水先净化处理后再排出,每处理1立方米污水所用原料费用为2元,且每月排污设备损耗为30000元;方案2:工厂将污水排到污水厂统一处理,每处理1立方米污水需付14元的排污费. (1)当工厂每月生产多少产品时,工厂每月所获利润相等;(2)设工厂每月生产量为6000件产品时,你若是这个厂的厂长,在不污染环境,又节约资金的前提下应选择哪种处理污水的方案,请通过计算加以说明.2.某同学在中百、家乐福两家超市发现他看中的随身听单价相同,书包的单价也相同.已知随身听和书包的单价之和为452元,且随身听的单价比书包单价的4倍少8元. (1)求随身听和书包的单价各是多少元?(2)某天该同学上街,恰好两家超市都进行促销活动:中百超市所有商品八折销售;家我知道随身听的单价比书包的单价的4倍少8元.我知道随身听和书包的单价之和是452元.乐福超市全场购物满100元返30元销售(不足100元不返回),请问这个同学想买这两件商品,请你帮他设计出最佳的购买,并求出他所付的费用.3.某童装厂现有54名工人,每人每天可加工上衣8件或裤子10条.(1)应怎样安排加工上衣和加工裤子的人数,使每天加工的上衣和裤子刚好配套?(2)已知出售成套的童装每套可获利45元;出售单件上衣每件可获利20元;出售单件裤子每条可获利15元,请确定加工上衣和加工裤子的人数,使每天的获利最多,并求出最高获利是多少元?4.某地生产一种绿色蔬菜,若在市场上直接销售,每吨利润为1000元;经过粗加工后销售, 每吨利润为1500元;经过精加工后销售,每吨利润涨至2500元.当地一家农工商公司收获这种蔬菜120吨,该公司加工厂的生产能力是:如果对蔬菜进行粗加工,每天可加工15吨,每天需付各种加工费用5000元;如果进行精加工,每天可加工10吨,每天需付各种加工费用12000元.但每天两种方式不能同时进行.经过市场调查分析:受季节条件限制,公司必须在7天内将这批蔬菜全部销售完毕,没来得及进行加工的蔬菜,在市场上直接销售.为了获取最大利润,公司安排加工了7天.①设公司精加工x天,请用x的代数式表示:精加工销售的蔬菜吨数:;粗加工销售的蔬菜吨数:;直接市场销售的蔬菜吨数:.②请设计最佳的加工销售方案,使公司获利最多.5.要运送一批货物,若用3台大货车各运7次,结果还有12件货物未运送完;若9台小货车各运4次,结果刚好运送完.已知每台大货车比每台小货车一次多运送3件货物. (1)求这批货物共有多少件?(2)已知每台大货车每次的运送费用为60元,每台小货车每次的运送费用为40元,若要想两次将所有货物运送完(每台货车都运送3次,每次都是满载货物),问如何租用这两种货车,才合算呢?.6.某乒乓球训练馆准备购买若干副某种品牌的乒乓球拍,每副球拍配12个乒乓球. 已知A、B两家超市都有这个品牌的乒乓球拍和乒乓球出售,且每副球拍的标价都为20元,每个乒乓球的标价都为1元. 现两家超市正在促销,A超市所有商品均打九折(按原价的90%付费)销售,而B超市买1副乒乓球拍送3个乒乓球 . 若仅考虑购买球拍和乒乓球的费用,请解答下列问题:(1)如果只在某一家超市购买所需球拍和乒乓球,那么去A超市还是B超市买更合算?(2)若准备购买20副这种品牌的乒乓球拍,请设计最省钱的购买方案,并求最低的费用. ..。
初一数学初中数学综合库试题答案及解析
初一数学初中数学综合库试题答案及解析1.在“十·一”黄金周期间,小明、小亮等同学随家人一同到净月潭游玩.下图是购买门票时,小明与他爸爸的对话:问题:(1)小明他们一共去了几个成人?几个学生?(2)请你帮小明算一算,用哪种方式买票更省钱?【答案】解(1)设有个成人,有名学生解得∴有8个成人,4名学生(2)35×60%×16=336<350∴按成人票的团体票购买16人的合适【解析】略2.规定,则的值为_________。
【答案】-1【解析】略3.用计算器求25的值时,按键的顺序是()A.5、y x、2、=B.2、y x、5、=C.5、2、y x、=D.2、3、y x、=【答案】B【解析】首先确定使用的是y x键,先按底数,再按y x键,接着按指数,最后按等号即可.解答:解:在计算器中,先按2,再按y x,接着按5,最后按=即可.4.(8分)某中学计划对本校七年级10个班的480名学生按“学科”、“文体”、“手工”三个项目安排课外兴趣小组,小明从每个班中随机抽取5名学生进行问卷调查,并将统计结果制成如下所示的表和图.(1)请将统计表、统计图补充完整;(2)请以小明的统计结果来估计该校七年级480名学生参加各个项目的人数.【答案】(1)略(2)该校七年级480名学生参加“学科”、“文体”、“手工”三个项目的人数分别约为240人,96人,144人【解析】解:(1)统计表、统计图补充如下:………………………………………………5分(2)七年级480名学生参加各项目人数约为:学科:480×50%=240(人)文体:480×20%=96(人)手工:480×30%=144(人)答:该校七年级480名学生参加“学科”、“文体”、“手工”三个项目的人数分别约为240人,96人,144人. ………………………………………………8分5.吸烟有害健康!你知道吗,即使被动吸烟也大大危害健康.有消息称,我国准备从2011年元月一日起在公众场所实行“禁烟”,为配合“禁烟”行动,某校组织同学们在某社区开展了“你支持哪种戒烟方式”的问卷调查,征求市民的意见,并将调查结果整理后制成了如下统计图:根据统计图解答:(1)同学们一共随机调查了多少人?(2)请你把统计图补充完整;(3)如果在该社区随机咨询一位市民,那么该市民支持“强制戒烟”的概率是多少?假定该社区有1万人,请估计该地区大约有多少人支持“警示戒烟”这种方式.【答案】(1)300人(2)略(3)355人【解析】解:(1)设调查的人数为,则根据题意得:一共调查了300人(3分)(2)由(1)可知,完整的统计图如图所示(5分)(3)设该市民支持“强制戒烟”的概率为,由(1)可知,(7分)支持“警示戒烟”这种方式的人有(人). (8分)6.如图,下列各数中,数轴上点A表示的可能是()A.4的算术平方根B.4的平方根C.8的算术平方根D.10的算术平方根【答案】C【解析】从数轴上的点可以看出,该点所表示的数大于2并且小于3,又选项中仅有8的算术平方根在这个范围,∴选C.7.(16分)计算:(1)4﹣8×(﹣)3(2)﹣5(x2﹣3)﹣2(3x2+5)(3)﹣12011+4×(﹣3)2÷(﹣2)(4)4a2+2(3ab﹣2a2)﹣(7ab﹣1)【答案】(1)5;(2)﹣11x2+5;(3)-19;(4)﹣ab+1.【解析】(1)先算乘方,再算乘法,最后算减法;(2)去括号,再合并同类项即可;(3)先算乘方,再算乘除,最后算加法.(4)先去括号,再合并同类项即可;试题解析:(1)原式=4﹣8×(﹣)=4+1=5;(2)原式=﹣5x2+15﹣6x2﹣10=﹣11x2+5;(3)原式=﹣1+4×9÷(﹣2)=﹣1﹣18=﹣19;(4)原式=4a2+6ab﹣4a2﹣7ab+1=﹣ab+1.【考点】有理数的混合运算;整式的加减.8.有6张纸签,分别标有数字1,2,3,4,5,6.从中随机抽出一张,则抽出标有数字为偶数的概率为 .【答案】【解析】六个数中有3个数为偶数,根据概率的定义可得.【考点】概率9.(本题4分)有这样一道题目:“当时,求多项式的值”.小敏指出,题中给出的条件,是多余的,她的说法有道理吗?为什么?【答案】-3【解析】根据去括号法则,合并同类项法则,对整式化简,然后可判断.试题解析:==-3因为多项式的值为常数,与a,b的取值无关,所以小敏说法有道理【考点】整式的加减10.下列算式中,与﹣1+9的结果相同的是()A.1+9B.﹣(9﹣1)C.﹣(1+9)D.9﹣1【答案】D.【解析】﹣1+9=8,A.1+9=10,故此选项错误;B.﹣(9﹣1)=﹣8,故此选项错误;C.﹣(1+9)=﹣10,故此选项错误;D.9﹣1=8,故此选项正确;故选D.【考点】1.有理数的加法;2.有理数的减法.11.计算(1)(2)(3)【答案】(1)-56 ;(2)-6 ;(3).【解析】(1)将整数部分和分数部分分别结合在一起,再由乘法分配律计算即可;(2)按照有理数混合运算的顺序,先算乘方后算乘除最后算加减;(3)按照有理数混合运算的顺序,先算乘方后算乘除最后算加减,有括号的先算括号里面的.试题解析:解:(1)原式====-56;(2)原式===-6;(3)原式=====.【考点】有理数的混合运算.12.甲乙两座城市的铁路经过技术改造,列车在甲乙两城市间的运行速度从80千米/时提高到100千米/时,运行时间缩短了2.5小时,求甲乙两城市间的铁路路程是多少千米?【答案】1000千米.【解析】根据关键描述语为:运行时间缩短了2.5小时,等量关系为:速度为80千米/时走x千米用的时间-速度为100千米/时走x千米用的时间=运行缩短的时间2.5,即可列出方程求解.试题解析:设甲乙两城市间的铁路路程为千米,则根据题意,得,解这个方程得x=1000千米.答:甲乙两城市间的铁路路程是1000千米.【考点】一元一次方程的应用.13.如图,A,O,B三点在一条直线上,OM是∠AOC的平分线,ON是∠BOC的平分线.若∠1:∠2=1:2,则∠1=_______°.【答案】30【解析】根据角平分线的性质可得:∠1=∠BOC,∠2=∠AOC,根据∠AOC+∠BOC=180°可得:∠1+∠2=90°,根据∠1:∠2=1:2可得:∠1=30°.【考点】(1)角平分线的性质;(2)角度的计算14.已知方程组的解满足x+y=3,则k的值为.【答案】8【解析】解方程组,把解代入x+2y=k即可求解.解:解方程组,①﹣②得:x=﹣2,把x=﹣2代入②得:﹣2+y=3,解得:y=5则方程组的解是:,代入x+2y=k得:﹣2+10=k,则k=8,故答案是:8.【考点】二元一次方程组的解.15.关于x的方程(a﹣1)x2+x+a2﹣4=0是一元一次方程,则方程的解为.【答案】3【解析】由一元一次方程的定义可得出一个关于a的方程,可求得a的值,再代入解方程即可.解:因为方程为一元一次方程,所以可得a﹣1=0,解得a=1,所以方程为x+1﹣4=0,解得x=3,故答案为:3.【考点】一元一次方程的定义.16.已知3×9m×27m=321,求m的值.【答案】4【解析】试题分析:先把9m×27m分解成32m×33m,再根据同底数幂的乘法法则进行计算即可求出m 的值.解:∵3×9m×27m=3×32m×33m=31+2m+3m=321,∴1+2m+3m=21,∴m=4.【考点】幂的乘方与积的乘方;同底数幂的乘法.17.一组数2,1,3,x,7,y,23,…,如果满足“从第三个数起,若前两个数依次为a、b,则紧随其后的数就是2a﹣b”,例如这组数中的第三个数“3”是由“2×2﹣1”得到的,那么这组数中y表示的数为()A.﹣9B.﹣1C.5D.21【答案】A【解析】根据“从第三个数起,前两个数依次为a、b,紧随其后的数就是2a﹣b”,首先建立方程2×3﹣x=7,求得x,进一步利用此规定求得y即可.解:∵从第三个数起,前两个数依次为a、b,紧随其后的数就是2a﹣b∴2×3﹣x=7∴x=﹣1则2×(﹣1)﹣7=y解得y=﹣9.故选:A.【考点】规律型:数字的变化类.18.如图,直线AB、CD相交于点O,OA平分∠EOC,∠EOC=80°,则∠BOD= .【答案】40°.【解析】根据角平分线的定义求出∠AOC,再根据对顶角相等解答.解:∵OA平分∠EOC,∠EOC=80°,∴∠AOC=∠EOC=×80°=40°,∴∠BOD=∠AOC=40°.故答案为:40°.【考点】对顶角、邻补角;角平分线的定义.19.如图,AB⊥AC,AD⊥BC,垂足分别为A,D,则图中能表示点到直线距离的线段共有()A.2条B.3条C.4条D.5条【答案】D.【解析】如图所示,根据点到直线的距离就是这个点到这条直线垂线段的长度,可知线段AB是点B到AC的距离,线段CA是点C到AB的距离,线段AD是点A到BC的距离,线段BD是点B到AD的距离,线段CD是点C到AD的距离,所以图中能表示点到直线距离的线段共有5条.故答案选D.【考点】点到直线的距离.20.把“同角的补角相等”改写成如果那么的形式。
初一数学应用题试题及答案
初一数学应用题试题及答案试题:1. 某中学为了丰富学生的课余生活,计划购买一批篮球和排球。
已知篮球每个的价格为80元,排球每个的价格为50元。
学校计划花费不超过2000元,并且购买的篮球和排球总数不超过40个。
如果学校购买了x个篮球和y个排球,求x和y的可能值。
2. 某工厂生产一批零件,每个零件的成本为5元,销售价格为10元。
工厂计划在一个月内生产并销售这批零件,预计总收入为20000元。
如果工厂每天生产零件的数量相同,求工厂每天需要生产多少个零件。
3. 一个长方形的长是宽的两倍,如果长增加2米,宽增加1米,面积就增加了12平方米。
求原长方形的长和宽。
答案:1. 解:设学校购买了x个篮球和y个排球,根据题意可列出以下方程组:\[ 80x + 50y \leq 2000 \]\[ x + y \leq 40 \]由第二个方程可得 \( y \leq 40 - x \),代入第一个方程得:\[ 80x + 50(40 - x) \leq 2000 \]简化得:\[ 30x \leq 2000 \]\[ x \leq \frac{2000}{30} \]\[ x \leq 66.67 \]因为x和y都是整数,所以x的可能值为0到66,但是还要满足x+y≤40,所以x的可能值范围是0到39。
对于每一个x的值,y的可能值可以通过 \( y = 40 - x \) 计算得出。
2. 解:设工厂每天需要生产n个零件,根据题意可得:\[ 10n \times 30 = 20000 \]简化得:\[ n = \frac{20000}{10 \times 30} \]\[ n = \frac{2000}{30} \]\[ n = 66.67 \]由于零件的数量必须是整数,工厂每天需要生产67个零件。
3. 解:设原长方形的宽为a米,那么长为2a米。
根据题意可得:\[ (2a + 2)(a + 1) - 2a \cdot a = 12 \]简化得:\[ 2a^2 + 3a + 2 - 2a^2 = 12 \]\[ 3a + 2 = 12 \]\[ 3a = 10 \]\[ a = \frac{10}{3} \]\[ a = 3.33 \]因此,原长方形的宽为3.33米,长为 \( 2 \times 3.33 = 6.67 \) 米。
七年级数学综合试卷【含答案】
七年级数学综合试卷【含答案】专业课原理概述部分一、选择题(每题1分,共5分)1. 下列哪个数是质数?A. 21B. 23C. 27D. 302. 如果一个三角形的两边长分别是8厘米和15厘米,那么第三边的长度可能是多少?A. 3厘米B. 17厘米C. 23厘米D. 25厘米3. 下列哪个分数是最简分数?A. 3/6B. 4/8C. 5/10D. 6/124. 下列哪个数是偶数?A. 101B. 102C. 103D. 1045. 下列哪个图形是平行四边形?A. 矩形B. 梯形C. 正方形D. 三角形二、判断题(每题1分,共5分)1. 0是最小的自然数。
()2. 任何两个奇数相加的和都是偶数。
()3. 1是任何非0自然数的因数。
()4. 任何偶数乘以任何偶数的积都是偶数。
()5. 任何两个质数相加的和都是偶数。
()三、填空题(每题1分,共5分)1. 100的因数有:______、______、______、______、______、______。
2. 0.25小时等于______分钟。
3. 如果一个三角形的两边长分别是5厘米和12厘米,那么第三边的长度应该大于______厘米,小于______厘米。
4. 2/3的倒数是______。
5. 如果一个数的平方是64,那么这个数可能是______或______。
四、简答题(每题2分,共10分)1. 解释什么是质数。
2. 解释什么是因数。
3. 解释什么是平行四边形。
4. 解释什么是偶数。
5. 解释什么是三角形。
五、应用题(每题2分,共10分)1. 计算下列各题的值:a. 3 + 7 × 2b. (4 + 6) ÷ 2c. 9 3 × (2 + 1)2. 如果一个长方形的长是10厘米,宽是5厘米,那么这个长方形的面积是多少平方厘米?3. 如果一个数的因数有1、2、3、4、6,那么这个数是什么?4. 计算下列各题的值:a. 2/3 + 1/4b. 5/6 1/3c. 3/8 × 2/55. 如果一个三角形的两边长分别是8厘米和15厘米,那么第三边的长度可能是多少?六、分析题(每题5分,共10分)1. 分析下列各题,并解释为什么:a. 2 + 2 × 2 = 8b. 3 × (2 + 2) = 122. 分析下列各题,并解释为什么:a. 1/2 + 1/3 = 5/6b. 2/3 × 3/4 = 1/2七、实践操作题(每题5分,共10分)1. 画出一个边长为5厘米的正方形,并计算其面积。
初中数学园综合运用试卷
一、选择题(每题4分,共40分)1. 下列各数中,属于无理数的是()A. √4B. 0.1010010001...C. √9D. 2/32. 一个长方形的长是6cm,宽是4cm,那么这个长方形的面积是()A. 24cm²B. 12cm²C. 18cm²D. 10cm²3. 在一次数学竞赛中,甲得了90分,乙得了80分,丙得了70分,那么他们的平均分是()A. 80分B. 85分C. 75分D. 70分4. 下列等式中,正确的是()A. 2x + 3 = 5x - 1B. 3x - 4 = 2x + 6C. 4x + 5 = 2x + 7D. 5x - 2 = 3x + 85. 一个圆的半径是5cm,那么这个圆的直径是()A. 10cmB. 15cmC. 25cmD. 20cm6. 一个等腰三角形的底边长是8cm,腰长是6cm,那么这个三角形的面积是()A. 24cm²B. 18cm²C. 15cm²D. 12cm²7. 下列关于直角三角形的说法中,正确的是()A. 直角三角形的两个锐角都是45°B. 直角三角形的两个锐角都是90°C. 直角三角形的两个锐角都是30°D. 直角三角形的两个锐角都是60°8. 一个长方体的长、宽、高分别是4cm、3cm、2cm,那么这个长方体的体积是()A. 24cm³B. 18cm³C. 12cm³D. 6cm³9. 下列各数中,属于有理数的是()A. √16B. 0.1010010001...C. √-9D. π10. 下列关于分数的说法中,正确的是()A. 分子大于分母的分数是假分数B. 分子小于分母的分数是真分数C. 分子等于分母的分数是假分数D. 分子小于分母的分数是真分数,分子大于分母的分数是假分数二、填空题(每题4分,共40分)1. 1.5乘以2.4等于_________。
初中数学一元一次不等式的应用综合练习5(附答案)
初中数学一元一次不等式的应用综合练习5(附答案)1.等腰三角形的周长为16cm且三边均为整数,底边可能的取值有()个.A.1 B.2 C.3 D.42.如图,修正带是一种白色不透明颜料,涂在纸上可以遮盖错字,为学习和工作提供了方便.某品牌修正带原零售价为每个5元,恒诚文具店为学生们推出两种优惠方案,第一种方案:“凡一次性购买两个以上(含两个),两个按原价,其余按原价的五折付款”;第二种方案:“凡一次性购买两个以上(含两个),全部按原价的七折付款”.在购买数量相同的情况下,若要使第一种方案付款更少,则至少需要购买修正带()A.4个B.5个C.6个D.7个3.某种服装的进价为200元,出售时标价为300元,由于换季,商店准备打折销售,但要保持利润不低于20%,那么至多打()A.6折B.7折C.8折D.9折4.某商店购进甲、乙两种商品,已知每件甲种商品的价格比每件乙种商品的价格贵10元,用350元购买甲种商品的件数恰好与用300元购买乙种商品的件数相同.(1)求甲、乙两种商品每件的价格各是多少元?(2)计划购买这两种商品共50件,且投入的经费不超过3200元,那么最多购买多少件甲种商品?5.小明有1元和5角两种硬币共12枚,这些硬币的总币值小于8元.(1)根据题意,甲、乙两名同学分别列出尚不完整的不等式如下:甲:x+ <8乙:0.5x+ <8根据甲、乙两名同学所列的不等式,请你分别指出未知数x表示的意义,然后在横线上补全甲、乙两名同学所列的不等式:甲1:x表示乙1:x表示;(2)求小明可能有几枚5角的硬币.(写出完整的解答过程)6.小张去文具店购买作业本,作业本有大、小两种规格,大本作业本的单价比小本作业本贵0.3元,已知用8元购买大本作业本的数量与用5元购买小本作业本的数量相同.(1)求大本作业本与小本作业本每本各多少元?(2)因作业需要,小张要再购买一些作业本,购买小本作业本的数量是大本作业本数量的2倍,总费用不超过15元.则大本作业本最多能购买多少本?7.倡导健康生活推进全民健身,某社区去年购进A,B两种健身器材若干件,经了解,B种健身器材的单价是A种健身器材的1.5倍,用7200元购买A种健身器材比用5400元购买B种健身器材多10件.(1)A,B两种健身器材的单价分别是多少元?(2)若今年两种健身器材的单价和去年保持不变,该社区计划再购进A,B两种健身器材共50件,且费用不超过21000元,请问:A种健身器材至少要购买多少件?8.某书店用不多于20000元购进甲乙两种图书共1200本进行销售.甲、乙两种图书的进价分别为每本20元、14元,甲种图书每本的售价是乙种图书每本售价的1.4倍,若用1680元在书店购买甲种图书的数量比用1400元购买乙种图书的数量少10本.(1)甲乙两种图书的销售单价分别是多少元?(2)书店为了让利读者,决定甲种图书售价每本降低3元,乙种图书售价每本降低2元,问书店应如何进货才能获得最大利润?最大利润是多少?(购进的两种图书全部销售完)9.2019年4月23日是第24个世界读书日.为了推进中华传统文化教育,营造浓郁的读书氛围,某校举办了“让读书成为习惯,让书香飘满校园”主题活动,为此特为七年级两个班级订购了一批新的图书.七年级两个班级订购图书的情况如下表:四大名著/套老舍文集/套总费用/元七年级(1)班 2 4 460七年级(2)班 3 2 530(1)求四大名著和老舍文集每套各是多少元?(2)学校准备再购买四大名著和老舍文集共10套,总费用不超过800元,求学校最多能买几套四大名著?10.2018年“清明节”前夕,宜宾某花店用1000元购进若干菊花,很快售完,接着又用2500元购进第二批花,已知第二批所购花的数量是第一批所购花数的2倍,且每朵花的进价比第一批的进价多0.5元.(1)第一批花每束的进价是多少元.(2)若第一批菊花按3元的售价销售,要使总利润不低于1500元(不考虑其他因素),第二批每朵菊花的售价至少是多少元?11.快递公司为提高快递分拣的速度,决定购买机器人来代替人工分拣.已知购买甲型机器人1台,乙型机器人2台,共需14万元;购买甲型机器人2台,乙型机器人3台,共需24万元.(1)求甲、乙两种型号的机器人每台的价格各是多少万元;(2)已知甲型和乙型机器人每台每小时分拣快递分别是1200件和1000件,该公司计划最多用41万元购买8台这两种型号的机器人,则该公司该如何购买,才能使得每小时的分拣量最大?12.初一五班共有学生42人,其中男生人数比女生人数的2倍少3人.(1)该班男生和女生各有多少人?(2)学校决定派该班30名学生勤工俭学,练习制作乐高零件,经测试,该班男、女生每天能加工的零件数分别为50个和45个,为保证他们每天加工的零件总数不少于1460个,那么至少需要派多少名男学生?13.春节期间,某商场计划购进甲、乙两种商品,两种商品进价分别为30元、70元,商场决定甲商品以每件40元出售,乙商品以每件90元出售,为满足市场需求,需购进甲、乙两种商品共100件,且甲种商品的数量不少于乙种商品数量的4倍,设购进甲商品x件,这100件商品的销售总利润为y元.(1)求y与x的函数关系式;(2)请你设计获利最大的进货方案,并求出最大利润.14.我市某中学计划购进若干个甲种规格的排球和乙种规格的足球. 如果购买20个甲种规格的排球和15个乙种规格的足球,一共需要花费2050元;如果购买10个甲种规格的排球和20个乙种规格的足球,一共需要花费1900元。
七年级数学综合测试题含参考答案
七年级数学综合测试题含参考答案一、选择题1. 将分数4/5写成小数是:A. 0.5B. 0.4C. 0.75D. 0.8参考答案:C2. 计算:7 × 3 –(2 + 4)× 2 ÷ 3 =A. 3B. 8C. 10D. 11参考答案:B3. 下列哪个数是负数?A. 0B. -7C. 14D. 12参考答案:B4. 一个矩形的长是6cm,宽是4cm,它的面积是多少平方厘米?A. 12B. 20C. 24D. 30参考答案:C5. 解方程:2x + 5 = 17A. x = 6B. x = 7C. x = 8D. x = 9参考答案:C二、填空题1. 十进制数0.375可以写成一个分数是______。
参考答案:3/82. 一个三角形的内角和是______ 度。
参考答案:1803. 平行四边形的对角线相等,这个命题是______。
参考答案:正确4. 0.2化成百分数是______%。
参考答案:20%5. 在一个圆的直径上,半径是______。
参考答案:一半三、解答题1. 小明有100个糖果要分给他的朋友们,如果他有4个朋友,每人应该分得几个糖果?参考答案:每人分得25个糖果。
2. 把5打折25%,打完折后的价格是多少?参考答案:打完折后的价格为3.75。
3. 一升牛奶装在500ml的瓶子里,总共可以装几瓶?参考答案:可以装2瓶。
4. 将两个直角三角形拼接在一起,得到一个什么形状的图形?参考答案:一个长方形。
5. 某书店原价出售一本书为60元,后来进行促销,以原价的8折出售,促销后的价格是多少?参考答案:促销后的价格为48元。
总结:本次数学综合测试题包括选择题、填空题和解答题共计11题,涵盖了有关分数、小数、四则运算、几何图形等知识点。
通过完成这些题目,可以对学生的数学能力进行全面的考察和评估。
希望同学们认真答题,熟练掌握各种解题方法,提升数学水平。
参考答案:一、选择题1. C2. B3. B4. C5. C二、填空题1. 3/82. 1803. 正确4. 20%5. 一半三、解答题1. 每人分得25个糖果。
中考初中数学应用题经典练习题
中考初中数学应用题经典练习题中考初中数学应用题经典练题一、综合题(共8题;共85分)1.(10分)(2015•深圳)下表为深圳市居民每月用水收费标准,(单位:元/m3)。
根据表格,当用水量不超过22立方米时,每立方米的水费为a元,超过22立方米后,每立方米的水费为1.5元。
1) 已知某用户用水10立方米,共交水费23元,求a的值。
解:设a为每立方米的水费。
当用水量不超过22立方米时,总用水量为10立方米,总水费为10a元。
当用水量超过22立方米时,总用水量为0立方米,总水费为0元。
因此,总水费为10a元,根据题意,有10a+12(1.5)=23,解得a=1.05.2) 在(1)的前提下,该用户5月份交水费71元,请问该用户用水多少立方米?解:当用水量不超过22立方米时,总用水量为x立方米,总水费为xa元。
当用水量超过22立方米时,总用水量为5月份用水量减去22立方米,总水费为(5月份用水量-22)×1.5元。
因此,总水费为xa+(5月份用水量-22)×1.5元,根据题意,有xa+(5月份用水量-22)×1.5=71,代入a=1.05,解得5月份用水量为34立方米。
2.(10分)XXX要为学校科技活动小组提供实验器材,计划购买A型、B型两种型号的放大镜,若购买8个A型放大镜和5个B型放大镜需用220元;若购买4个A型放大镜和6个B型放大镜需用152元。
1) 求每个A型放大镜和每个B型放大镜各多少元?设每个A型放大镜的价格为x元,每个B型放大镜的价格为y元。
根据题意,有8x+5y=220,4x+6y=152.解得x=12,y=28,因此每个A型放大镜12元,每个B 型放大镜28元。
2) XXX决定购买A型放大镜和B型放大镜共75个,总费用不超过1180元,那么最多可以购买多少个A型放大镜?设购买A型放大镜的数量为m,购买B型放大镜的数量为n。
根据题意,有mx+ny≤1180,m+n=75.要求购买的A型放大镜数量最多,即要求x/m的值最小。
初中数学综合类应用题测试卷(含答案)
初中数学综合类应用题测试卷一、单选题(共3道,每道33分)1.在某市开展城乡综合治理的活动中,需要将A,B,C三地的垃圾50立方米、40立方米、50立方米全部运往垃圾处理场D,E两地进行处理.已知运往D地的数量比运往E地的数量的2倍少10立方米.A地运往D地a立方米(a为整数),B地运往D地30立方米,C地运往D地的数量小于A地运往D地的2倍.其余全部运往E地,且C地运往E地不超过12立方米,已知从A,B,C 三地把垃圾运往D,E两地处理所需费用如下表:(1)求运往两地的数量各是多少立方米? (2)求A、C两地运往D、E两地有几种方案? (3)在(2)的条件下,当a为多少时总费用最少?()A.90,50;2;22B.90,50;2;21C.50, 90;3;22D.50, 90;3;21答案:B试题难度:三颗星知识点:一元一次不等式组的应用;一元一次方程的应用;2.东艺中学初三(1)班学生到雁鸣湖春游,有一项活动是划船.游船有两种,甲种船每条船最多只能坐4个人,乙种船每条船最多只能坐6个人.已知初三(1)班学生的人数是5的倍数,若仅租甲种船,则不少于12条;若仅租乙种船,则不多于9条. (1)求初三(1)班学生的人数; (2)如果甲种船的租金是每条船10元,乙种船的租金是每条船12元.应怎样租船,才能使每条船都坐满,且租金最少?A.50;甲船2条,乙船7条B.50;甲船5条,乙船5条C.50;甲船8条,乙船7条D.50;甲船11条,乙船1条答案:A试题难度:三颗星知识点:一元一次不等式组的应用;二元一次方程组的应用3.红星药业股份公司为支援某受洪水灾害地区人民灾后治病防病,准备捐赠一种急需药品共320箱,该公司备有多辆甲、乙两种型号的货车,如果用甲型车若干辆,装满每辆车后还余下20箱药未装;如果用同样辆数的乙型车装,则有一辆车还可以装30箱(此时其余各车已装满).已知装满时,每辆甲型车比乙型车少装10箱. (1)求甲、乙两型车每辆装满时,甲能装箱药品,乙能装箱药品; (2)如果将这批药品从公司运到灾区的运输成本(含油费、过路费、损耗等)甲、乙两型车分别为320元/辆,350元/辆.设派甲型车a辆,乙型车b辆时,运输的总成本为z元.请你提出一个派车方案:要保证320箱药恰好装完,又使运输的总成本z最低,求此时a= ,b= . ()A.60,70;3,2B.70,60;2,3C.60,70;2,3D.70,60;3,2答案:A试题难度:三颗星知识点:分式方程的应用;一元一次不等式组的应用;。
初中数学知识的综合运用试题
初中数学知识的综合运用试题题目一:植树活动某学校举办了一场植树活动,学生们共植树规划了一个矩形花坛,花坛的长为12米,宽为8米。
学校规定,每株树占地面积为0.25平方米,每株树之间的间距为0.5米。
假设树木与花坛边缘保持相同的间距,求:1. 学生们最多能够种植多少颗树?2. 在已种植的树木周围,还剩下多少平方米的空地?解题思路:1. 首先计算整个花坛的面积,即12 * 8 = 96平方米。
2. 每株树占地面积0.25平方米,所以总共可以种植的树木数量为96 / 0.25 = 384颗。
3. 在花坛边缘与树木之间的间距为0.5米,所以花坛的边长会相应减小1米(0.5 + 0.5),即10 * 6 = 60平方米。
4. 已种植的树木占用的面积为384 * 0.25 = 96平方米。
5. 剩余的空地面积为60 - 96 = -36平方米。
结论:1. 学生们最多能够种植384颗树。
2. 已种植的树木周围剩余的空地面积为-36平方米,表示树木的面积超过了花坛的面积,需要调整计划或增加花坛的面积。
题目二:鸡兔同笼有40个头,100只脚,问笼中鸡和兔的数目各为多少?解题思路:设鸡的数量为x,兔的数量为y,则可以列出方程组:x + y = 40 (鸡和兔的数量之和等于40)2x + 4y = 100 (鸡的脚数加兔的脚数等于100)通过解方程组可以求解x和y的值。
解方程组的步骤:使用第一条方程将x表示为x = 40 - y,代入第二条方程中。
得到2(40 - y) + 4y = 100,化简可得80 - 2y + 4y = 100。
合并同类项得2y = 20,从而解得y = 10。
代入第一条方程可得x = 40 - 10 = 30。
结论:鸡的数量为30只,兔的数量为10只。
题目三:失窃的文档小明的文档被盗了,他记得他的文档里面有50个重要信息,但是他不记得全部内容。
经过一段时间的回忆,小明想起了一些信息,他记得文档的前1/4内容是有关物理的,前1/2内容是有关数学的,前1/5内容是有关化学的。
(整理)初中数学综合类应用题测试卷(含答案)
初中数学综合类应用题测试卷一、单选题(共3道,每道33分)1.在某市开展城乡综合治理的活动中,需要将A,B,C三地的垃圾50立方米、40立方米、50立方米全部运往垃圾处理场D,E两地进行处理.已知运往D地的数量比运往E地的数量的2倍少10立方米.A地运往D地a立方米(a为整数),B地运往D地30立方米,C地运往D地的数量小于A地运往D地的2倍.其余全部运往E地,且C地运往E地不超过12立方米,已知从A,B,C 三地把垃圾运往D,E两地处理所需费用如下表:(1)求运往两地的数量各是多少立方米? (2)求A、C两地运往D、E两地有几种方案? (3)在(2)的条件下,当a为多少时总费用最少?()A.90,50;2;22B.90,50;2;21C.50, 90;3;22D.50, 90;3;21答案:B试题难度:三颗星知识点:一元一次不等式组的应用;一元一次方程的应用;2.东艺中学初三(1)班学生到雁鸣湖春游,有一项活动是划船.游船有两种,甲种船每条船最多只能坐4个人,乙种船每条船最多只能坐6个人.已知初三(1)班学生的人数是5的倍数,若仅租甲种船,则不少于12条;若仅租乙种船,则不多于9条. (1)求初三(1)班学生的人数; (2)如果甲种船的租金是每条船10元,乙种船的租金是每条船12元.应怎样租船,才能使每条船都坐满,且租金最少?A.50;甲船2条,乙船7条B.50;甲船5条,乙船5条C.50;甲船8条,乙船7条D.50;甲船11条,乙船1条答案:A试题难度:三颗星知识点:一元一次不等式组的应用;二元一次方程组的应用3.红星药业股份公司为支援某受洪水灾害地区人民灾后治病防病,准备捐赠一种急需药品共320箱,该公司备有多辆甲、乙两种型号的货车,如果用甲型车若干辆,装满每辆车后还余下20箱药未装;如果用同样辆数的乙型车装,则有一辆车还可以装30箱(此时其余各车已装满).已知装满时,每辆甲型车比乙型车少装10箱. (1)求甲、乙两型车每辆装满时,甲能装箱药品,乙能装箱药品; (2)如果将这批药品从公司运到灾区的运输成本(含油费、过路费、损耗等)甲、乙两型车分别为320元/辆,350元/辆.设派甲型车a辆,乙型车b辆时,运输的总成本为z元.请你提出一个派车方案:要保证320箱药恰好装完,又使运输的总成本z最低,求此时a= ,b= . ()A.60,70;3,2B.70,60;2,3C.60,70;2,3D.70,60;3,2答案:A试题难度:三颗星知识点:分式方程的应用;一元一次不等式组的应用;。
初中数学一元一次不等式的应用综合练习2(附答案)
初中数学一元一次不等式的应用综合练习2(附答案)1.把一些书分给几名同学,若______;若每人分11本,则有剩余.依题意,设有x 名同学,可列不等式()7811x x +>,则横线的信息可以是( )A .每人分7本,则剩余8本B .每人分7本,则可多分8个人C .每人分8本,则剩余7本D .其中一个人分7本,则其他同学每人可分8本2.某种商品的进价为600元,出售时标价为900元,后来由于该商品积压,商店准备打折销售,但要保证利润率不低于5%,则最低可打( )A .6折B .7折C .8折D .9折 3.“x 的2倍与3的差不大于8”列出的不等式是( )A .2x 38-≤B .2x 38-≥C .2x 38-<D .2x 38-> 4.某中学的高中部在A 校区,初中部在B 校区,学校学生会计划在3月12日植树节当天安排部分学生到郊区公园参加植树活动.已知A 校区的每位高中学生往返车费是6元,B 校区的每位初中学生往返的车费是10元,要求初、高中均有学生参加,且参加活动的初中学生比参加活动的高中学生多4人,本次活动的往返车费总和不超过210元,求初、高中最多各有多少学生参加.5. 某超市分别以每盏150元,190元的进价购进A ,B 两种品牌的护眼灯,下表是近两天的销售情况.(1)求A ,B 两种品牌护眼灯的销售价;(2)若超市准备用不超过4900元的金额购进这两种品牌的护眼灯共30盏,求B 品牌的护眼灯最多采购多少盏?6.京东商城A 品牌电脑的定价是a 元/台,最近,该商城对A 品牌电脑举行团购促销活动,设有两种优惠方案,方案一:不论团购数量,每台均按定价的九折销售;方案二:若团购数量不超过5台,每台按定价销售,若团购数量超过5台,超过的部分每台按定价的八折销售,某校为了创建义务教育管理标准化的需要,决定从京东商城团购A 品牌电脑x 台(x >5).(1)当x=12时,应选择哪种方案,该校购买费用最少?最少费用是多少元?(结果用含a的代数式表示)(2)若该校采用方案一购买比方案二购买更合算,求x的最大值.7.益马高速通车后,将桃江马迹塘的农产品运往益阳的运输成本大大降低.马迹塘一农户需要将A,B两种农产品定期运往益阳某加工厂,每次运输A,B产品的件数不变,原来每运一次的运费是1200元,现在每运一次的运费比原来减少了300元,A,B两种产品原来的运费和现在的运费(单位:元∕件)如下表所示:(1)求每次运输的农产品中A,B产品各有多少件;(2)由于该农户诚实守信,产品质量好,加工厂决定提高该农户的供货量,每次运送的总件数增加8件,但总件数中B产品的件数不得超过A产品件数的2倍,问产品件数增加后,每次运费最少需要多少元.8.风筝又称“纸鸢”、“鸢儿”,放风筝是民间传统游戏之一,也是清明时节人们所喜爱的活动.小李打算抓住这一机遇,以每个20元的成本制作了30个风筝,再以每个40元的价格售出,很快就被一抢而空,于是小李计划加紧制作第二批风筝.(1)预计第二批风筝的成本是每个15元,仍以原价出售,若两批风筝的总利润不低于2850元,则第二批至少应该制作多少个风筝?(2)在实际制作过程中,小李按照(1)中风筝的最低数量进行制作,但制作风筝的成本比预期的15元多了a%(a>10),于是小李决定将售价也提高a%,附近的商户受到小李的启发,也纷纷卖起了风筝,在市场冲击下,小李实际还剩下12a%的风筝没卖出去,但仍然比第一次获利多1668元,求a的值.9.某商场购进A、B两种型号的智能扫地机器人共60个,这两种机器人的进价、售价如表所示.(1)若恰好用掉14.4万元,那么这两种机器人各购进多少个?(2)在每种机器人销售利润不变的情况下,若该商场计划销售这批智能扫地机器人的总利润不少于53000元,问至少需购进B 型智能扫地机器人多少个?10.某超市预测某饮料有发展前途,用1600元购进一批饮料,面市后果然供不应求,又用6000元购进这批饮料,第二批饮料的数量是第一批的3倍,但单价比第一批贵2元.(1)第一批饮料进货单价多少元?(2)若二次购进饮料按同一价格销售,两批全部售完后,获利不少于1200元,那么销售单价至少为多少元?11.某电器超市销售每台进价分别为200元,170元的A ,B 两种型号的电风扇,表中是近两周的销售情况:(进价、售价均保持不变,利润=销售收入-进货成本)(1)求A ,B 两种型号的电风扇的销售单价.(2)若超市准备用不多于5400元的金额再采购这两种型号的电风扇共30台,则A 种型号的电风扇最多能采购多少台?(3)在(2)的条件下,超市销售完这30台电风扇能否实现利润为1400元的目标?若能,请给出相应的采购方案;若不能,请说明理由.12.问题提出:我们在分析解决某些数学问题时,经常要比较两个数或代数式的大小,而解决问题的策略一般要进行一定的转化,其中“作差法”就是常用的方法之一,所谓“作差法”:就是通过作差、变形,并利用差的符号来确定它们的大小,要比较代数式M 、N 的大小,只要作出它们的差M N -,若0M N ->,则M N >.若0M N -=,则M N =.若0M N -<,则M N <.问题解决:如图,试比较图①、图②两个矩形的周长1C 、2C 的大小()b c >;主图形得:12()242C a b c b a b c =+++=++;22(3)224C a c b c a b c =-++=++,122422242()C C a b c a b c b c -=++---=-,∵b c >,∴2()0b c ->,则12C C >;类比应用:(1)用材料介绍的“作差法”比较2631x x ++与2532x x +-的大小;联系拓展:(2)小刚在超市里买了一些物品,用一个长方体的箱子“打包”,这个箱子的尺寸如图3所示(其中0b a c >>>),售货员分别可按图4、图5、图6三种方法进行捆绑,问哪种方法用绳最短?哪种方法用绳最长?请说明理由.13.某电器超市销售每台进价分别为160元、120元的A 、B 两种型号的电风扇,如表是近两周的销售情况:(进价、售价均保持不变,利润=销售收入﹣进货成本) 销售时段销售数量销售收入A 种型号种型号 第一周3台 4台 1200元 第二周 5台 6台 1900元 (1)求A 、B 两种型号的电风扇的销售单价;(2)若超市准备用不多于7500元的金额再采购这两种型号的电风扇共50台,求A 种型号的电风扇最多能采购多少台?(3)在(2)的条件下,超市销售完这50台电风扇能否实现利润超过1850元的目标?若能,请给出相应的采购方案;若不能,请说明理由.14.某商店用1000元人民币购进某种水果销售,过了一周时间,又用2400元人民币购进这种水果,所购数量是第一次购进数量的2倍,但每千克的价格比第一次购进的价格贵了2元.(1)该商店第一次购进这种水果多少千克?(2)假设该商店两次购进的这种水果按相同的标价销售,最后剩下的20千克按标价的五折优惠销售.若两次购进的这种水果全部售完,利润不低于1240元,则每千克这种水果的标价至少是多少元?15.4月23日是“世界读书日”,某校在“世界读书日”活动中,购买甲、乙两种图书共150本作为活动奖品,已知乙种图书的单价是甲种图书单价的1.5倍.若用180元购买乙种图书比要购买甲种图书少2本.(1)求甲、乙两种图书的单价各是多少元?(2)如果购买图书的总费用不超过5000元,那么乙种图书最多能买多少本?16.某校计划组织师生共300人参加一次大型公益活动,如果租用6辆大客车和5辆小客车,恰好全部坐满,已知每辆大客车的乘客座位数比小客车多17个.(1)求每辆大客车和每辆小客车的乘客座位数;(2)由于最后参加活动的人数增加了30人,学校决定调整租车方案,在保持租用车辆总数不变的情况下,且所有参加活动的师生都有座位,求租用小客车数量的最大值.17.“六一”儿童节那天,小强去商店买东西,看见每盒饼干的标价是整数,于是小强拿出10元钱递给商店的阿姨,下面是他俩的对话:小强:阿姨,我有10元,我想买一盒饼干和一袋牛奶.阿姨:小朋友,本来你用10元钱买一盒饼干是有剩的,但是要再买一袋牛奶钱就不够了,不过今天是儿童节,饼干打九折,两样东西请你拿好,还要找你8角钱.如果每盒饼干和每袋牛奶的标价分别是x元,y元,请你根据以上信息,回答下列问题:(1)找出x与y之间的关系式;(2)求出每盒饼干和每袋牛奶的标价.18.某种商品的标价为400元/件,经过两次降价后的价格为324元/件,并且两次降价的百分率相同.(1)求该种商品每次降价的百分率;(2)若该种商品进价为300元/件,两次降价共售出此种商品100件,为使两次降价销售的总利润不少于3120元.问第一次降价后至少要售出该种商品多少件?19.某书店老板去图书批发市场购买某种图书,第一次用500元购书若干本,很快售完由于该书畅销,第二次购书时,每本书的批发价已比第一次提高了20%,他用900元所购该书的数量比第一次的数量多了10本.(1)求第一次购书每本多少元?(2)如果这两次所购图书的售价相同,且全部售完后总利润不低于25%,那么每本图书的售价至少是多少元?20.某公司分两次采购甲、乙两种商品,具体情况如下:(1)求甲、乙商品每件各多少元?(2)公司计划第三次采购甲、乙两种商品共31件,要求花费资金不超过475元,问最多可购买甲商品多少件?21.某文具店用1200元购进了A、B两种羽毛球拍.已知A种羽毛球拍进价为每副12元,B种羽毛球拍进价为每副10元.文教店在销售时A种羽毛球拍售价为每副15元,B种羽毛球拍售价为每副12元,全部售完后共获利270元.(1)求这个文教店购进A、B两种羽毛球拍各多少副?(2)若该文教店以原进价再次购进A、B两种羽毛球拍,且购进A种羽毛球拍的数量不变,而购进B种羽毛球拍的数量是第一次的2倍,B种羽毛球拍按原售价销售,而A 种羽毛球拍降价销售.当两种羽毛球拍销售完毕时,要使再次购进的羽毛球拍获利不少于340元,A种羽毛球拍最低售价每副应为多少元?22.列不等式解应用题:某车间有20名工人.每人每天可加工甲种零件5个或乙种零件4个,在这20名工人中,派一部分人加工甲种零件,其余人加工乙种零件.已知每加工一个甲种零件获利16元,每加工一个乙种零件可获利24元.若要使车间每天获利不低于1800元,问至少要派多少人加工乙种零件?三、填空题23.根据数量关系:x的5倍加上1是正数,可列出不等式:__________.24.一种笔记本售价是2.3元/本,如果一次买100本以上(不含100本),售价是2.2元/本,如果张明需要100本笔记本,则张明购买______本会出现多买比少买反而付钱少的情况.(写出所有的情况)25.若三角形三边长为3,2x+1,10,则x的取值范围是______.26.对于实数a,b,我们定义符号max{a,b}的意义为:当a≥b时,max{a,b}=a;当a<b时,max{a,b]=b;如:max{4,﹣2}=4,max{3,3}=3,若关于x的函数为y=max{x+3,﹣x+1},则该函数的最小值是_____.27.“九月已经霜,蟹肥菊桂香”,古往今来,每至农历九月,蟹都是人们翘首以待的珍馐.某大闸蟹养殖户十月捕捞了第一批成熟的大闸蟹,并以每只相同的价格(价格为整数)批发给某经销商.十一月该养殖户捕捞了第二批成熟的大闸蟹,这次决定与某电商合作,将这批大闸蟹根据品质及重量分为A(小蟹)、B(中蟹)、C(大蟹)三类,每类按照不同的单价(价格都为整数)网上销售,若2只A类蟹、1只B类蟹和3只C 类蟹的价格之和正好是第一批蟹8只的价格,而6只A类蟹、3只B类蟹和2只C类蟹的价格之和正好是第一批蟹12只的价格,且A类蟹与B类蟹每只的单价之比为3:4,根据市场有关部门的要求A、B、C三类蟹的单价之和不低于40元、不高于60元,则第一批大闸蟹每只价格为________元.28.用不等式表示“2x与3的差不小于x的一半” __________________.29.某种笔记本原售价是每本5元,凡一次购买两本或以上可享受优惠价格,第1种:两本按原价,其余按七折优惠;第2种:全部按原价的八折优惠,若想在购买相同数量的情况下,要使第1种比第2种更优惠,则至少购买笔记本________________本.30.某种商品的进价为15元,出售时标价是22.5元.由于市场不景气销售情况不好,商店准备降价处理,但要保证利润率不低于10%,那么该店最多降价______元出售该商品.参考答案1.B【解析】【分析】根据不等式的意义即可求解.【详解】由7(x+8)>11x可知条件为:每人分7本,则可多分8个人.故本题选B .【点睛】本题主要考察了不等式的意义,学生们熟练掌握即可求解.2.B【解析】【分析】设打了x折,用售价×折扣-进价得出利润,根据利润率不低于5%,列不等式求解.【详解】解:设打了x折,由题意得900×0.1x-600≥600×5%,解得:x≥7.答:最低可打7折.故选B.【点睛】本题考查一元一次不等式的应用,解题的关键是读懂题意,求出打折之后的利润,根据利润率不低于5%,列不等式求解.3.A【解析】【分析】x的2倍即2x,不大于8即≤8,据此列不等式.【详解】解:根据题意,得2x-3≤8.故选:A.【点睛】本题考查列一元一次不等式,解题的关键是读懂题意,注意抓住关键词语,弄清不等关系,把文字语言的不等关系转化为用数学符号表示的不等式.4.初中最多有14名学生参加,高中最多有10名学生参加.【解析】试题分析:设参加活动的高中生x人,初中生(x+4)人,根据限制关系“初中生的往返车费+高中生的往返车费≤210”列不等式进行求解即可得.试题解析:设高中有x名学生参加,初中有(x+4)名学生参加,依题意,得6x+10(x+4)≤210,解得x≤1058,∵x为整数,∴x最多为10,∴x+4=14,答:初中最多有14名学生参加,高中最多有10名学生参加.【点睛】本题考查了一元一次不等式的应用,解题的关键是读懂题意,找到题中的不等关系列不等式进行解答.5.(1)A品牌为210元/盏,B品牌为260元/盏.(2)10盏.【解析】【分析】(1)设A品牌护眼灯的销售价为x元/盏,B品牌护眼灯的销售价为y元/盏,根据总价=单价×数量结合两天的销售情况,即可得出关于x,y的二元一次方程组,解之即可得出结论;(2)设采购m盏B品牌的护眼灯,则采购(30-m)盏A品牌的护眼灯,根据总价=单价×数量结合总费用不超过4900元,即可得出关于m的一元一次不等式,解之取其中的最大值即可得出结论.【详解】(1)设A品牌护眼灯的销售价为x元/盏,B品牌护眼灯的销售价为y元/盏,依题意,得:2680 341670x yx y+=⎧⎨+=⎩,解得:210260 xy=⎧⎨=⎩.答:A品牌护眼灯的销售价为210元/盏,B品牌护眼灯的销售价为260元/盏.(2)设采购m盏B品牌的护眼灯,则采购(30-m)盏A品牌的护眼灯,依题意,得:150(30-m)+190m≤4900,解得:m≤10.答:B品牌的护眼灯最多采购10盏.【点睛】本题考查了二元一次方程组的应用以及一元一次不等式的应用,解题的关键是:(1)找准等量关系,正确列出二元一次方程组;(2)根据各数量之间的关系,正确列出一元一次不等式.6.(1)应选方案二,该校购买费用最少,最少费用是10.6a元;(2)x的最大值为9【解析】【分析】(1)根据两个方案的优惠政策,分别求出购买12台所需费用,比较后即可得出结论;(2)根据购买x台时,该公司采用方案二购买更合算,即可得出关于x的一元一次不等式,解之即可得出结论.【详解】解:(1)当x=12时:方案一:12×90%a=10.8a(元),方案二:5a+7×80%a=10.6a(元),∵10.6a<10.8a,∴应选方案二,该校购买费用最少,最少费用是10.6a元.(2)依题意得:90%ax<5a+(x-5)×80%a,解得x <10,∵x 为整数,∴x 的最大值为9.【点睛】本题考查了一元一次不等式的应用,解题的关键是:(1)根据优惠方案,列式计算;(2)找准不等量关系,正确列出一元一次不等式.7.(1)每次运输的农产品中A 产品有10件,每次运输的农产品中B 产品有30件,(2)产品件数增加后,每次运费最少需要1120元.【解析】【分析】(1)设每次运输的农产品中A 产品有x 件,每次运输的农产品中B 产品有y 件,根据表中的数量关系列出关于x 和y 的二元一次方程组,解之即可,(2)设增加m 件A 产品,则增加了(8-m )件B 产品,设增加供货量后得运费为W 元,根据(1)的结果结合图表列出W 关于m 的一次函数,再根据“总件数中B 产品的件数不得超过A 产品件数的2倍”,列出关于m 的一元一次不等式,求出m 的取值范围,再根据一次函数的增减性即可得到答案.【详解】解:(1)设每次运输的农产品中A 产品有x 件,每次运输的农产品中B 产品有y 件, 根据题意得:4525120030201200300x y x y +⎧⎨+-⎩==, 解得:1030x y ⎧⎨⎩==, 答:每次运输的农产品中A 产品有10件,每次运输的农产品中B 产品有30件,(2)设增加m 件A 产品,则增加了(8-m )件B 产品,设增加供货量后得运费为W 元, 增加供货量后A 产品的数量为(10+m )件,B 产品的数量为30+(8-m )=(38-m )件, 根据题意得:W=30(10+m )+20(38-m )=10m+1060,由题意得:38-m≤2(10+m ),解得:m≥6,即6≤m≤8,∵一次函数W随m的增大而增大∴当m=6时,W最小=1120,答:产品件数增加后,每次运费最少需要1120元.【点睛】本题考查了一次函数的应用,二元一次方程组的应用和一元一次不等式得应用,解题的关键:(1)正确根据等量关系列出二元一次方程组,(2)根据数量关系列出一次函数和不等式,再利用一次函数的增减性求最值.8.(1)第二批至少应该制作90个风筝;(2)a的值是20.【解析】【分析】(1)根据题意可以列出相应的不等式,从而可以解答本题;(2)根据题意可以列出相应的方程,从而可以解答本题.【详解】解:(1)设第二批制作x个风筝,(40﹣15)x+(40﹣20)×30≥2850,解得,x≥90,答:第二批至少应该制作90个风筝;(2)[40(1+a%)﹣15(1+a%)]×90(1﹣12a%)﹣15(1+a%)×90×12a%﹣(40﹣20)×30=1668,解得,a=20或a=5(舍去),答:a的值是20.【点睛】本题考查一元二次方程的应用和一元一次不等式的应用,解答关键是明确题意,找出所求问题需要的条件,利用方程和不等式的思想解答.9.(1)购进A型智能扫地机器人20个,购进B型智能扫地机器人40个;(2)至少需购进B型智能扫地机器人17个.【解析】【分析】(1)设购进A型智能扫地机器人x个,购进B型智能扫地机器人y个,根据总价=单价×数量结合购进A、B两种型号的智能扫地机器人60个共花费14.4万元,即可得出关于x、y的二元一次方程组,解之即可得出结论;(2)设购进B型智能扫地机器人m个,则购进A型智能扫地机器人(60-m)个,根据总利润=单台利润×购进数量结合总利润不少于53000元,即可得出关于m的一元一次不等式,解之即可得出m的取值范围,取其中最小的整数即可得出结论.【详解】解:(1)设购进A型智能扫地机器人x个,购进B型智能扫地机器人y个,根据题意得:60 20002600144000x yx y+=⎧⎨+=⎩,解得:2040 xy=⎧⎨=⎩.答:购进A型智能扫地机器人20个,购进B型智能扫地机器人40个.(2)设购进B型智能扫地机器人m个,则购进A型智能扫地机器人(60-m)个,根据题意得:(3700-2600)m+(2800-2000)(60-m)≥53000,解得:m≥503.∵m为整数,∴m≥17.答:至少需购进B型智能扫地机器人17个.【点睛】本题考查了二元一次方程组的应用以及一元一次不等式的应用,解题的关键是:(1)找准等量关系,正确列出二元一次方程组;(2)根据各数量间的关系,正确列出一元一次不等式.10.(1)第一批饮料进货单价为8元.(2) 销售单价至少为11元.【解析】【分析】(1)设第一批饮料进货单价为x元,根据等量关系第二批饮料的数量是第一批的3倍,列方程进行求解即可;(2)设销售单价为m元,根据两批全部售完后,获利不少于1200元,列不等式进行求解即可得.【详解】(1)设第一批饮料进货单价为x元,则:16006000 32x x⨯=+解得:8x=经检验:8x =是分式方程的解答:第一批饮料进货单价为8元.(2)设销售单价为m 元,则:()()8200106001200m m -⋅+-⋅≥,化简得:()()2861012m m -+-≥,解得:11m ≥,答:销售单价至少为11元.【点睛】本题考查了分式方程的应用,一元一次不等式的应用,弄清题意,找出等量关系与不等关系是关键.11.(1) A ,B 两种型号电风扇的销售单价分别为250元/台、210元/台;(2) A 种型号的电风扇最多能采购10台;(3) 在(2)的条件下超市不能实现利润为1400元的目标.【解析】【分析】(1)设A 、B 两种型号电风扇的销售单价分别为x 元、y 元,根据3台A 型号5台B 型号的电扇收入1800元,4台A 型号10台B 型号的电扇收入3100元,列方程组求解; (2)设采购A 种型号电风扇a 台,则采购B 种型号电风扇(30-a )台,根据金额不多余5400元,列不等式求解;(3)设利润为1400元,列方程求出a 的值为20,不符合(2)的条件,可知不能实现目标.【详解】(1)设A ,B 两种型号电风扇的销售单价分别为x 元/台、y 元/台.依题意,得3518004103100x y x y +=⎧⎨+=⎩解得250210x y =⎧⎨=⎩答:A ,B 两种型号电风扇的销售单价分别为250元/台、210元/台.(2)设采购A 种型号的电风扇a 台,则采购B 种型号的电风扇(30-a )台.依题意,得200a +170(30-a )≤5400,解得a ≤10.答:A 种型号的电风扇最多能采购10台.(3)依题意,有(250-200)a +(210-170)(30-a )=1400,解得a =20.∵a ≤10,∴在(2)的条件下超市不能实现利润为1400元的目标.【点睛】本题考查了二元一次方程组和一元一次不等式的应用,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系和不等关系,列方程组和不等式求解.12.(1)22 631532x x x x ++>+-;(2) 图5的方法用绳最短,图6的方法用绳最长【解析】【分析】(1)根据两个代数式之差大于0,即可做出判断;(2)分别表示出图4的捆绑绳长为L 1,图5的捆绑绳长为L 2,图6的捆绑绳长为L 3,进而表示出它们之间的差,即可得出大小关系.【详解】(1)2631x x ++-(2532x x +-)22631532x x x x =++--+23x =+,因为20x ≥,所以230x +>,所以22631532x x x x ++>+-;(2)设图4的捆绑绳长为L 1,则L 1222242448a b c a b c =⨯+⨯+⨯=++,设图5的捆绑绳长为L 2,则L 2222222444a b c a b c =⨯+⨯+⨯=++,设图6的捆绑绳长为L 3,则L 3322232646a b c a b c =⨯+⨯+⨯=++,∵L 1-L 2()44844440a b c a b c c =++-++=>,∴L 1>L 2,∵L 3-L 2()646444220a b c a b c a c =++-++=+>,∴L 3-L 1=()()6464482a b c a b c a c ++-++=-,∵a c >,∴()20a c ->,∴L 3>L 1.∴第二种方法用绳最短,第三种方法用绳最长.【点睛】本题主要考查了整式的混合运算以及不等式的性质,根据已知表示出绳长再利用绳长之差比较是解决问题的关键.13.(1)A 、B 两种型号电风扇的销售单价分别为200元、150元;(2)超市最多采购A 种型号电风扇37台时,采购金额不多于7500元;(3)能,方案有两种:当a=36时,采购A 种型号的电风扇36台,B 种型号的电风扇14台;当a=37时,采购A 种型号的电风扇37台,B 种型号的电风扇13台.【解析】【分析】(1)设A 、B 两种型号电风扇的销售单价分别为x 元、y 元,依题意得得到方程,求解即可得到答案.(2)设采购A 种型号电风扇a 台,则采购B 种型号电风扇(50﹣a )台.由题意得160a+120(30﹣a )≤7500,求解即可得到答案.(3)根据题意得:(200﹣160)a+(150﹣120)(50﹣a )>1850,解得:a >35,由于a≤3712,且a 应为整数,所以在(2)的条件下超市能实现利润超过1850元的目标.相应方案有两种.【详解】解:(1)设A 、B 两种型号电风扇的销售单价分别为x 元、y 元,依题意得:341200561900x y x y +=⎧⎨+=⎩,解得:200{150x y ==, 答:A 、B 两种型号电风扇的销售单价分别为200元、150元.(2)设采购A 种型号电风扇a 台,则采购B 种型号电风扇(50﹣a )台.依题意得:160a+120(30﹣a )≤7500,解得:a≤3712. 答:超市最多采购A 种型号电风扇37台时,采购金额不多于7500元.(3)根据题意得:(200﹣160)a+(150﹣120)(50﹣a )>1850,解得:a >35,∵a≤3712,且a应为整数,∴在(2)的条件下超市能实现利润超过1850元的目标.相应方案有两种:当a=36时,采购A种型号的电风扇36台,B种型号的电风扇14台;当a=37时,采购A种型号的电风扇37台,B种型号的电风扇13台.【点睛】本题考查二元一次方程组和一元一次不等式的应用,解题的关键是读懂题意,设未知数,找出合适的等量关系和不等式.14.(1)该商店第一次购进水果100千克;(2)每千克这种水果的标价至少是16元.【解析】【分析】(1)设该商店第一次购进水果x千克,则第二次购进水果2x千克,然后根据每千克的价格比第一次购进的价格贵了2元,列出方程求解即可;(2)设每千克水果的标价是y元,然后根据两次购进水果全部售完,利润不低于1240元列出不等式,然后求解即可得出答案.【详解】解:(1)设该商店第一次购进这种水果x千克,则第二次购进这种水果2x千克.由题意,得1000240022x x+=,解得100x=.经检验,100x=是所列方程的解且符合题意.答:该商店第一次购进水果100千克.(2)设每千克这种水果的标价是y元,则()100100220200.5100024001240y y+⨯-⋅+⨯≥++,解得16y≥.答:每千克这种水果的标价至少是16元.【点睛】此题考查了分式方程的应用,一元一次不等式的应用,分析题意,找到合适的等量关系与不等关系是解决问题的关键15.(1)甲种图书的单价为30元/本,乙种图书的单价为45元/本;(2)乙种图书最多能买。
初中数学应用题试卷加答案
一、选择题(每题3分,共15分)1. 一个长方形的长是6厘米,宽是3厘米,它的周长是()。
A. 15厘米B. 18厘米C. 24厘米D. 36厘米2. 一个数的2倍加上3等于15,这个数是()。
A. 6B. 7C. 8D. 93. 小华步行去学校,速度是每分钟80米,用了5分钟到达学校,他走了()米。
A. 200米B. 400米C. 500米D. 600米4. 一个数的十分之三是12,这个数是()。
A. 36B. 40C. 42D. 485. 一个等腰三角形的底是10厘米,腰长是()厘米。
A. 10厘米B. 20厘米C. 30厘米D. 40厘米二、填空题(每题3分,共15分)6. 一个数的1/5等于6,这个数是()。
7. 一个正方形的边长是4厘米,它的面积是()平方厘米。
8. 一个长方形的长是8厘米,宽是5厘米,它的周长是()厘米。
9. 小明骑自行车去公园,速度是每分钟120米,用了10分钟到达公园,他走了()米。
10. 一个数的4倍减去6等于10,这个数是()。
三、解答题(每题10分,共30分)11. 一个长方形的长是15厘米,宽是8厘米,求它的面积。
12. 小华和小明分别骑自行车去公园,小华的速度是每分钟80米,小明骑的速度是每分钟100米。
如果小明比小华晚出发5分钟,那么他需要多长时间才能追上小华?13. 一个等边三角形的边长是10厘米,求它的周长和面积。
答案:一、选择题1. B2. B3. A4. B5. A二、填空题6. 307. 168. 269. 1200 10. 4三、解答题11. 长方形的面积 = 长× 宽 = 15厘米× 8厘米 = 120平方厘米。
12. 小明比小华晚出发5分钟,那么他追上小华的时间是:小华走的时间 + 5分钟 = 80米/分钟× 时间 + 5分钟小明走的时间 = 100米/分钟× 时间因为小明追上小华,所以他们走的距离相等:80米/分钟× 时间 + 5分钟 = 100米/分钟× 时间20米/分钟× 时间 = 5分钟时间 = 5分钟÷ 20米/分钟 = 0.25小时所以,小明需要0.25小时才能追上小华。
七年级下册数学综合试卷【含答案】
七年级下册数学综合试卷【含答案】专业课原理概述部分一、选择题(每题1分,共5分)1. 下列哪个数是质数?A. 21B. 23C. 27D. 302. 如果一个三角形的两边长分别是8厘米和15厘米,那么这个三角形的第三边长可能是多少厘米?A. 3厘米B. 17厘米C. 23厘米D. 25厘米3. 一个长方体的长、宽、高分别是10厘米、6厘米和4厘米,那么这个长方体的对角线长多少厘米?A. 12厘米B. 16厘米C. 18厘米D. 20厘米4. 下列哪个分数是最简分数?A. $\frac{4}{8}$B. $\frac{3}{9}$C. $\frac{5}{7}$D. $\frac{6}{12}$5. 如果一个圆的半径是5厘米,那么这个圆的周长是多少厘米?A. 15.7厘米B. 31.4厘米C. 47.1厘米D. 62.8厘米二、判断题(每题1分,共5分)1. 任何偶数都可以表示为2的倍数。
()2. 两个锐角相加的和一定大于90度。
()3. 任何数乘以0都等于0。
()4. 面积相等的两个图形一定是相似的。
()5. 对角线相等的四边形一定是矩形。
()三、填空题(每题1分,共5分)1. 1千米等于______米。
2. 如果一个正方形的边长是6厘米,那么这个正方形的面积是______平方厘米。
3. 3的立方是______。
4. $\frac{1}{2}$、$\frac{2}{3}$、$\frac{3}{4}$这三个分数中,最小的是______。
5. 一个圆的直径是10厘米,那么这个圆的半径是______厘米。
四、简答题(每题2分,共10分)1. 请简述什么是平行四边形。
2. 请简述什么是比例。
3. 请简述什么是因数。
4. 请简述什么是质数。
5. 请简述什么是相似图形。
五、应用题(每题2分,共10分)1. 一个长方形的长是10厘米,宽是5厘米,求这个长方形的周长和面积。
2. 一个等腰三角形的底边长是8厘米,腰长是5厘米,求这个三角形的周长。
初中综合数学试题及答案
初中综合数学试题及答案一、选择题(每题3分,共30分)1. 下列哪个数是最小的正整数?A. 0B. 1C. -1D. 22. 一个长方形的长是10厘米,宽是5厘米,它的面积是多少平方厘米?A. 25B. 30C. 50D. 603. 计算下列表达式的结果:\[ 3x^2 - 2x + 1 \]当 \( x = 2 \) 时,表达式的值是多少?A. 5B. 7C. 9D. 114. 一个数的平方根是它本身的数有几个?A. 0B. 1C. 2D. 35. 以下哪个分数是最简分数?A. \( \frac{4}{8} \)B. \( \frac{3}{6} \)C. \( \frac{5}{10} \)D. \( \frac{7}{14} \)6. 一个圆的直径是14厘米,它的周长是多少厘米?(π取3.14)A. 43.96B. 28.26C. 31.4D. 62.87. 一个三角形的三个内角分别是30度、60度和90度,这个三角形是什么类型的三角形?A. 锐角三角形B. 直角三角形C. 钝角三角形D. 等边三角形8. 一个数的相反数是-5,这个数是多少?A. 5B. -5C. 0D. 109. 以下哪个选项是不等式 \( 2x - 3 > 5 \) 的解?A. \( x = 4 \)B. \( x = 3 \)C. \( x = 2 \)D. \( x = 1 \)10. 一个数的立方是-8,这个数是多少?A. 2B. -2C. 8D. -8二、填空题(每题3分,共15分)11. 一个数的绝对值是5,这个数可能是______或______。
12. 一个等腰三角形的底边长为6厘米,两腰长为5厘米,它的周长是______厘米。
13. 计算表达式 \( (x+2)(x-2) \) 的结果,并填入空白处:\( x^2 - 4 \)。
14. 一个数增加20%后的结果是24,这个数原来是______。
15. 一个圆的半径是7厘米,它的面积是______平方厘米(π取3.14)。
初一数学应用试题及答案
初一数学应用试题及答案一、选择题(每题3分,共30分)1. 一件商品原价为100元,打八折后的价格是多少?A. 80元B. 120元C. 90元D. 70元答案:A2. 如果一个数的3倍加上4等于16,那么这个数是多少?A. 4B. 2C. 6D. 8答案:B3. 一个长方形的长是10厘米,宽是5厘米,那么它的周长是多少?A. 30厘米B. 25厘米C. 15厘米D. 20厘米答案:A4. 一个数的相反数是-5,那么这个数是多少?A. 5B. -5C. 0D. 10答案:A5. 一个数的绝对值是4,那么这个数可能是?A. 4或-4B. 只有4C. 只有-4D. 0答案:A6. 如果a=3,b=-2,那么a+b的值是多少?A. 1B. 5C. -1D. -5答案:C7. 一个数的平方是9,那么这个数可能是?B. -3C. 3或-3D. 0答案:C8. 一个数除以-2等于-3,那么这个数是多少?A. 6B. -6C. 3D. -3答案:B9. 如果一个数的一半加上3等于8,那么这个数是多少?A. 5B. 10D. 2答案:B10. 一个数的立方是-8,那么这个数是多少?A. -2B. 2C. -8D. 8答案:A二、填空题(每题4分,共40分)11. 一个数的50%是10,那么这个数是______。
答案:2012. 如果一个数的2倍减去3等于7,那么这个数是______。
答案:513. 一个数的平方根是4,那么这个数是______。
答案:1614. 如果一个数的3倍加上5等于15,那么这个数是______。
答案:10/315. 一个数的绝对值是5,那么这个数可能是______或______。
答案:5或-516. 如果一个数的4倍减去2等于10,那么这个数是______。
答案:317. 一个数的立方根是2,那么这个数是______。
答案:818. 如果一个数的6倍加上3等于21,那么这个数是______。