高等数学.厦门大学出版社徐荣聪.高数课后习题详细参考答案

合集下载

高等数学(下)课后习题答案

高等数学(下)课后习题答案

高等数学(下)习题七1. 在空间直角坐标系中,定出下列各点的位置:A(1,2,3); B(-2,3,4); C(2,-3,-4);D(3,4,0); E(0,4,3); F(3,0,0).解:点A在第Ⅰ卦限;点B在第Ⅱ卦限;点C在第Ⅷ卦限;点D在xOy面上;点E在yOz面上;点F在x轴上.2. xOy坐标面上的点的坐标有什么特点?yOz面上的呢?zOx面上的呢?答: 在xOy面上的点,z=0;在yOz面上的点,x=0;在zOx面上的点,y=0.3. x轴上的点的坐标有什么特点?y轴上的点呢?z轴上的点呢?答:x轴上的点,y=z=0;y轴上的点,x=z=0;z轴上的点,x=y=0.4. 求下列各对点之间的距离:(1)(0,0,0),(2,3,4);(2)(0,0,0),(2,-3,-4);(3)(-2,3,-4),(1,0,3);(4)(4,-2,3),(-2,1,3).解:(1)s=(2) s==(3) s=(4) s==.5. 求点(4,-3,5)到坐标原点和各坐标轴间的距离.解:点(4,-3,5)到x轴,y轴,z轴的垂足分别为(4,0,0),(0,-3,0),(0,0,5).s==故s==xs==ys==.5z6. 在z轴上,求与两点A(-4,1,7)和B(3,5,-2)等距离的点.解:设此点为M(0,0,z),则222222-++-=++--(4)1(7)35(2)z z解得149z=即所求点为M(0,0,149).7. 试证:以三点A(4,1,9),B(10,-1,6),C(2,4,3)为顶点的三角形是等腰直角三角形.证明:因为|AB|=|AC|=7.且有|AC|2+|AB|2=49+49=98=|BC|2.故△ABC为等腰直角三角形.8. 验证:()()++=++a b c a b c.证明:利用三角形法则得证.见图7-1图7-19. 设2,3.u v=-+=-+-a b c a b c 试用a, b, c表示23.u v-解:232(2)3(3)2243935117u v-=-+--+-=-++-+=-+a b c a b ca b c a b ca b c10. 把△ABC的BC边分成五等份,设分点依次为D1,D2,D3,D4,再把各分点与A 连接,试以AB=c,BC=a表示向量1D A,2D A,3D A和4D A.解:1115D A BA BD=-=--c a2225D A BA BD=-=--c a3335D A BA BD=-=--c a444.5D A BA BD=-=--c a11. 设向量OM的模是4,它与投影轴的夹角是60°,求这向量在该轴上的投影.解:设M的投影为M',则1Pr j cos604 2.2uOM OM=︒=⨯=12. 一向量的终点为点B(2,-1,7),它在三坐标轴上的投影依次是4,-4和7,求这向量的起点A的坐标.解:设此向量的起点A的坐标A(x, y, z),则{4,4,7}{2,1,7}AB x y z =-=----解得x =-2, y =3, z =0故A 的坐标为A (-2, 3, 0).13. 一向量的起点是P 1(4,0,5),终点是P 2(7,1,3),试求:(1) 12PP 在各坐标轴上的投影; (2) 12PP 的模;(3) 12PP 的方向余弦; (4) 12PP 方向的单位向量.解:(1)12Pr j 3,x x a PP ==12Pr j 1,y y a PP == 12Pr j 2.z z a PP ==-(2) 12(7PP == (3) 12cos 14xa PP α== 12cos 14ya PP β==12cos 14za PP γ==(4) 12012{14PPPP ===-e j . 14. 三个力F 1=(1,2,3), F 2=(-2,3,-4), F 3=(3,-4,5)同时作用于一点. 求合力R 的大小和方向余弦.解:R =(1-2+3,2+3-4,3-4+5)=(2,1,4)||==Rcos coscos αβγ=== 15. 求出向量a = i +j +k , b =2i -3j +5k 和c =-2i -j +2k 的模,并分别用单位向量,,a b c e e e 来表达向量a , b , c .解:||==a||==b||3==c, , 3. a b c ==a b c e16. 设m =3i +5j +8k , n =2i -4j -7k , p =5i +j -4k ,求向量a =4m +3n -p 在x 轴上的投影及在y 轴上的分向量.解:a =4(3i +5j +8k )+3(2i -4j -7k )-(5i +j -4k )=13i +7j +15k在x 轴上的投影a x =13,在y 轴上分向量为7j .17. 向量r 与三坐标轴交成相等的锐角,求这向量的单位向量e r .解:因αβγ==,故23cos 1 α=,cos αα==则{cos ,cos ,cos })r αβγ===++e i j k . 18. 已知两点M 1(2,5,-3),M 2(3,-2,5),点M 在线段M 1M 2上,且123M M MM =,求向径OM 的坐标.解:设向径OM ={x , y , z }12{2,5,3}{3,2,5}M M x y z MM x y z =--+=----因为,123M M MM = 所以,11423(3)153(2) 433(5)3x x x y y y z z z ⎧=⎪-=-⎧⎪⎪⎪-=--⇒=-⎨⎨⎪⎪+=-⎩=⎪⎪⎩故OM ={111,,344-}. 19. 已知点P 到点A (0,0,12)的距离是7,OP 的方向余弦是236,,777,求点P 的坐标. 解:设P 的坐标为(x , y , z ),2222||(12)49PA x y z =++-=得2229524x y z z ++=-+126570cos 6, 749z z γ==⇒==又122190cos 2, 749x x α==⇒==123285cos 3, 749y y β==⇒== 故点P 的坐标为P (2,3,6)或P (190285570,,494949). 20. 已知a , b 的夹角2π3ϕ=,且3,4a b ==,计算: (1) a ·b ; (2) (3a -2b )·(a + 2b ). 解:(1)a ·b =2π1cos ||||cos3434632ϕ⋅⋅=⨯⨯=-⨯⨯=-a b (2) (32)(2)3624-⋅+=⋅+⋅-⋅-⋅a b a b a a a b b a b b2223||44||334(6)41661.=+⋅-=⨯+⨯--⨯=-a a b b21. 已知a =(4,-2, 4), b =(6,-3, 2),计算:(1)a ·b ; (2) (2a -3b )·(a + b ); (3)2||-a b解:(1)46(2)(3)4238⋅=⨯+-⨯-+⨯=a b(2) (23)()2233-⋅+=⋅+⋅-⋅-⋅a b a b a a a b a b b b 222222222||3||2[4(2)4]383[6(3)2]23638349113=-⋅-=⨯+-+--+-+=⨯--⨯=-a a b b(3) 222||()()2||2||-=-⋅-=⋅-⋅+⋅=-⋅+a b a b a b a a a b b b a a b b 36238499=-⨯+=22. 已知四点A (1,-2,3),B (4,-4,-3),C (2,4,3),D (8,6,6),求向量AB 在向量CD 上的投影.解:AB ={3,-2,-6},CD ={6,2,3}Pr j CD AB CD AB CD ⋅=4.7==- 23. 设重量为100kg 的物体从点M 1(3, 1, 8)沿直线移动到点M 2(1,4,2),计算重力所作的功(长度单位为m ).解:取重力方向为z 轴负方向,依题意有f ={0,0, -100×9.8}s = 12M M ={-2, 3,-6}故W = f ·s ={0,0,-980}·{-2,3,-6}=5880 (J)24. 若向量a +3b 垂直于向量7a -5b ,向量a -4b 垂直于向量7a -2b ,求a 和b 的夹角. 解: (a +3b )·(7a -5b )=227||1615||0+⋅-=a a b b ①(a -4b )·(7a -2b ) = 227||308||0-⋅+=a a b b ② 由①及②可得:222221()1||||2||||4⋅⋅⋅==⇒=a b a b a b a b a b 又21||02⋅=>a b b ,所以1cos ||||2θ⋅==a b a b , 故1πarccos 23θ==. 25. 一动点与M 0(1,1,1)连成的向量与向量n =(2,3,-4)垂直,求动点的轨迹方程. 解:设动点为M (x , y , z )0{1,1,1}M M x y z =---因0M M n ⊥,故00M M n ⋅=.即2(x -1)+3(y-1)-4(z-1)=0整理得:2x +3y-4z-1=0即为动点M 的轨迹方程.26. 设a =(-2,7,6),b =(4, -3, -8),证明:以a 与b 为邻边的平行四边形的两条对角线互相垂直.证明:以a ,b 为邻边的平行四边形的两条对角线分别为a +b ,a -b ,且a +b ={2,4, -2}a-b ={-6,10,14}又(a +b )·(a-b )= 2×(-6)+4×10+(-2)×14=0故(a +b )⊥(a-b ).27. 已知a =3i +2j -k , b =i -j +2k ,求:(1) a ×b ;(2) 2a ×7b ;(3) 7b ×2a ; (4) a ×a .解:(1) 211332375122111--⨯=++=----a b i j k i j k(2) 2714()429870⨯=⨯=--a b a b i j k(3) 7214()14()429870⨯=⨯=-⨯=-++b a b a a b i j k(4) 0⨯=a a .28. 已知向量a 和b 互相垂直,且||3, ||4==a b .计算:(1) |(a +b )×(a -b )|;(2) |(3a +b )×(a -2b )|.(1)|()()|||2()|+⨯-=⨯-⨯+⨯-⨯=-⨯a b a b a a a b b a b b a bπ2||||sin 242=⋅⋅=a b (2) |(3)(2)||362||7()|+⨯-=⨯-⨯+⨯-⨯=⨯a b a b a a a b b a b b b aπ734sin 842=⨯⨯⨯= 29. 求垂直于向量3i-4j-k 和2i-j +k 的单位向量,并求上述两向量夹角的正弦. 解:411334555111221----⨯=++=--+--a b i j k i j k与⨯a b平行的单位向量)||⨯==--+⨯a b e i j k a b||sin ||||θ⨯===⨯a b a b . 30. 一平行四边形以向量a =(2,1,-1)和b =(1,-2,1)为邻边,求其对角线夹角的正弦. 解:两对角线向量为13=+=-l a b i j ,232=-=+-l a b i j k因为12|||2610|⨯=++l l i j k12||||==l l 所以1212||sin 1||||θ⨯===l l l l . 即为所求对角线间夹角的正弦.31. 已知三点A (2,-1,5), B (0,3,-2), C (-2,3,1),点M ,N ,P 分别是AB ,BC ,CA 的中点,证明:1()4MN MP AC BC ⨯=⨯. 证明:中点M ,N ,P 的坐标分别为31(1,1,), (1,3,), (0,1,3)22M N P -- {2,2,2}MN =--3{1,0,}2MP =- {4,4,4}AC =--{2,0,3}BC =- 22222235233100122MN MP ----⨯=++=++--i j k i j k 44444412208033220AC BC ---⨯=++=++--i j k i j k 故 1()4MN MP AC BC ⨯=⨯. 32. 求同时垂直于向量a =(2,3,4)和横轴的单位向量.解:设横轴向量为b =(x ,0,0)则同时垂直于a ,b 的向量为3442230000x x ⨯=++a b i j k =4x j -3x k故同时垂直于a ,b 的单位向量为1(43)||5⨯=±=±-⨯a b e j k a b . 33. 四面体的顶点在(1,1,1),(1,2,3),(1,1,2)和(3,-1,2)求四面体的表面积. 解:设四顶点依次取为A , B , C , D .{0,1,2}, {2,2,1}AB AD ==-则由A ,B ,D 三点所确定三角形的面积为111|||542|222S AB AD =⨯=+-=i j k .同理可求其他三个三角形的面积依次为12故四面体的表面积122S =+. 34. 已知三点A (2,4,1), B (3,7,5), C (4,10,9),证:此三点共线.证明:{1,3,4}AB =,{2,6,8}AC =显然2AC AB =则22()0AB AC AB AB AB AB ⨯=⨯=⨯=故A ,B ,C 三点共线.35. 求过点(4,1,-2)且与平面3x -2y +6z =11平行的平面方程.解:所求平面与平面3x -2y +6z =11平行故n ={3,-2,6},又过点(4,1,-2)故所求平面方程为:3(x -4)-2(y -1)+6(z +2)=0即3x -2y +6z +2=0.36. 求过点M 0(1,7,-3),且与连接坐标原点到点M 0的线段OM 0垂直的平面方程. 解:所求平面的法向量可取为0{1,7,3}OM ==-n故平面方程为:x -1+7(y -7)-3(z +3)=0即x +7y -3z -59=037. 设平面过点(1,2,-1),而在x 轴和z 轴上的截距都等于在y 轴上的截距的两倍,求此平面方程.解:设平面在y 轴上的截距为b 则平面方程可定为122x y z b b b++= 又(1,2,-1)在平面上,则有121122b b b-++= 得b =2. 故所求平面方程为1424x y z ++= 38. 求过(1,1,-1),(-2,-2,2)和(1,-1,2)三点的平面方程.解:由平面的三点式方程知1112121213131310x x y y z z x x y y z z x x y y z z ------=--- 代入三已知点,有1112121*********x y z --+----+=---+ 化简得x -3y -2z =0即为所求平面方程.39. 指出下列各平面的特殊位置,并画出其图形:(1) y =0; (2) 3x -1=0;(3) 2x -3y -6=0; (4) x –y =0;(5) 2x -3y +4z =0.解:(1) y =0表示xOz 坐标面(如图7-2)(2) 3x -1=0表示垂直于x 轴的平面.(如图7-3)图7-2 图7-3(3) 2x-3y-6=0表示平行于z轴且在x轴及y轴上的截距分别为x=3和y =-2的平面.(如图7-4)(4) x–y=0表示过z轴的平面(如图7-5)(5) 2x-3y+4z=0表示过原点的平面(如图7-6).图7-4 图7-5 图7-6 40. 通过两点(1,1,1,)和(2,2,2)作垂直于平面x+y-z=0的平面. 解:设平面方程为Ax+By+Cz+D=0则其法向量为n={A,B,C}已知平面法向量为n1={1,1,-1}过已知两点的向量l={1,1,1}由题知n·n1=0, n·l=0即0,.A B CC A BA B C+-=⎧⇒==-⎨++=⎩所求平面方程变为Ax-Ay+D=0又点(1,1,1)在平面上,所以有D=0故平面方程为x-y=0.41. 决定参数k的值,使平面x+ky-2z=9适合下列条件:(1)经过点(5,-4,6);(2)与平面2x-3y+z=0成π4的角. 解:(1)因平面过点(5,-4,6)故有 5-4k-2×6=9得k=-4.(2)两平面的法向量分别为n1={1,k,-2} n2={2,-3,1}且122123π2cos cos||||42514kkθ⋅-====+⋅n nn n解得2k =±42. 确定下列方程中的l 和m :(1) 平面2x +ly +3z -5=0和平面mx -6y -z +2=0平行; (2) 平面3x -5y +lz -3=0和平面x +3y +2z +5=0垂直. 解:(1)n 1={2,l ,3}, n 2={m ,-6,-1}12232,18613l m l m ⇒==⇒=-=--n n (2) n 1={3, -5, l }, n 2={1,3,2}12315320 6.l l ⊥⇒⨯-⨯+⨯=⇒=n n43. 通过点(1,-1,1)作垂直于两平面x -y +z -1=0和2x +y +z +1=0的平面.解:设所求平面方程为Ax +By +Cz +D =0 其法向量n ={A ,B ,C }n 1={1,-1,1}, n 2={2,1,1}12203203A C A B C A B C CB ⎧=-⎪⊥⇒-+=⎪⇒⎨⊥⇒++=⎪=⎪⎩n n n n 又(1,-1,1)在所求平面上,故A -B +C +D =0,得D =0故所求平面方程为2033CCx y Cz -++= 即2x -y -3z =044. 求平行于平面3x -y +7z =5,且垂直于向量i -j +2k 的单位向量. 解:n 1={3,-1,7}, n 2={1,-1,2}.12,⊥⊥n n n n故1217733152122111--=⨯=++=+---n n n i j k i j k则2).n =+-e i j k 45. 求通过下列两已知点的直线方程: (1) (1,-2,1), (3,1,-1); (2) (3,-1,0),(1,0,-3). 解:(1)两点所确立的一个向量为s ={3-1,1+2,-1-1}={2,3,-2}故直线的标准方程为:121232x y z -+-==- 或 311232x y z --+==- (2)直线方向向量可取为s ={1-3,0+1,-3-0}={-2,1,-3}故直线的标准方程为:31213x y z -+==-- 或 13213x y z -+==-- 46. 求直线234035210x y z x y z +--=⎧⎨-++=⎩的标准式方程和参数方程.解:所给直线的方向向量为12311223719522335--=⨯=++=----s n n i j k i j k另取x 0=0代入直线一般方程可解得y 0=7,z 0=17于是直线过点(0,7,17),因此直线的标准方程为:7171719x y z --==-- 且直线的参数方程为:771719x t y t z t =⎧⎪=-⎨⎪=-⎩47. 求下列直线与平面的交点:(1)11126x y z-+==-, 2x +3y +z -1=0; (2) 213232x y z +--==, x +2y -2z +6=0. 解:(1)直线参数方程为1126x ty t z t =+⎧⎪=--⎨⎪=⎩代入平面方程得t =1 故交点为(2,-3,6).(2) 直线参数方程为221332x t y t z t =-+⎧⎪=+⎨⎪=+⎩代入平面方程解得t =0. 故交点为(-2,1,3). 48. 求下列直线的夹角:(1)533903210x y z x y z -+-=⎧⎨-+-=⎩ 和 2223038180x y z x y z +-+=⎧⎨++-=⎩;(2)2314123x y z ---==- 和 38121y z x --⎧=⎪--⎨⎪=⎩解:(1)两直线的方向向量分别为:s 1={5, -3,3}×{3, -2,1}=533321ij k--={3,4, -1}s 2={2,2, -1}×{3,8,1}=221381i j k-={10, -5,10}由s 1·s 2=3×10+4×(-5)+( -1) ×10=0知s 1⊥s 2 从而两直线垂直,夹角为π2. (2) 直线2314123x y z ---==-的方向向量为s 1={4, -12,3},直线38121y z x --⎧=⎪--⎨⎪=⎩的方程可变为22010y z x -+=⎧⎨-=⎩,可求得其方向向量s 2={0,2, -1}×{1,0,0}={0, -1, -2},于是1212cos 0.2064785θθ⋅==≈⋅'≈︒s s s s 49. 求满足下列各组条件的直线方程:(1)经过点(2,-3,4),且与平面3x -y +2z -4=0垂直; (2)过点(0,2,4),且与两平面x +2z =1和y -3z =2平行; (3)过点(-1,2,1),且与直线31213x y z --==-平行. 解:(1)可取直线的方向向量为s ={3,-1,2}故过点(2,-3,4)的直线方程为234312x y z -+-==- (2)所求直线平行两已知平面,且两平面的法向量n 1与n 2不平行,故所求直线平行于两平面的交线,于是直线方向向量12102{2,3,1}013=⨯==--i j ks n n故过点(0,2,4)的直线方程为24231x y z --==- (3)所求直线与已知直线平行,故其方向向量可取为 s ={2,-1,3}故过点(-1,2,1)的直线方程为121213x y z +--==-. 50. 试定出下列各题中直线与平面间的位置关系:(1)34273x y z++==--和4x -2y -2z =3; (2)327x y z ==-和3x -2y +7z =8;(3)223314x y z -+-==-和x +y +z =3. 解:平行而不包含. 因为直线的方向向量为s ={-2,-7,3}平面的法向量n ={4,-2,-2},所以(2)4(7)(2)3(2)0⋅=-⨯+-⨯-+⨯-=s n于是直线与平面平行.又因为直线上的点M 0(-3,-4,0)代入平面方程有4(3)2(4)2043⨯--⨯--⨯=-≠.故直线不在平面上.(2) 因直线方向向量s 等于平面的法向量,故直线垂直于平面.(3) 直线在平面上,因为3111(4)10⨯+⨯+-⨯=,而直线上的点(2,-2,3)在平面上. 51. 求过点(1,-2,1),且垂直于直线23030x y z x y z -+-=⎧⎨+-+=⎩ 的平面方程.解:直线的方向向量为12123111-=++-i j ki j k , 取平面法向量为{1,2,3},故所求平面方程为1(1)2(2)3(1)0x y z ⨯-+++-=即x +2y +3z =0.52. 求过点(1,-2,3)和两平面2x -3y +z =3, x +3y +2z +1=0的交线的平面方程. 解:设过两平面的交线的平面束方程为233(321)0x y z x y z λ-+-++++= 其中λ为待定常数,又因为所求平面过点(1,-2,3) 故213(2)33(13(2)231)0λ⨯-⨯-+-++⨯-+⨯+= 解得λ=-4.故所求平面方程为2x +15y +7z +7=053. 求点(-1,2,0)在平面x +2y -z +1=0上的投影.解:过点(-1,2,0)作垂直于已知平面的直线,则该直线的方向向量即为已知平面的法向量,即s =n ={1,2,-1}所以垂线的参数方程为122x t y t z t =-+⎧⎪=+⎨⎪=-⎩将其代入平面方程可得(-1+t )+2(2+2t )-(-t )+1=0 得23t =-于是所求点(-1,2,0)到平面的投影就是此平面与垂线的交点522(,,)333- 54. 求点(1,2,1)到平面x +2y +2z -10=0距离.解:过点(1,2,1)作垂直于已知平面的直线,直线的方向向量为s =n ={1,2,2}所以垂线的参数方程为12212x t y t z t =+⎧⎪=+⎨⎪=+⎩将其代入平面方程得13t =. 故垂足为485(,,)333,且与点(1,2,1)的距离为1d == 即为点到平面的距离. 55. 求点(3,-1,2)到直线10240x y z x y z +-+=⎧⎨-+-=⎩的距离.解:过点(3,-1,2)作垂直于已知直线的平面,平面的法向量可取为直线的方向向量即11133211==-=---ij kn s j k 故过已知点的平面方程为y +z =1.联立方程组102401x y z x y z y z +-+=⎧⎪-+-=⎨⎪+=⎩解得131,,.22x y z ==-= 即13(1,,)22-为平面与直线的垂足于是点到直线的距离为2d ==56. 建立以点(1,3,-2)为中心,且通过坐标原点的球面方程. 解:球的半径为22213(2)14.R =++-=设(x ,y ,z )为球面上任一点,则(x -1)2+(y -3)2+(z +2)2=14即x 2+y 2+z 2-2x -6y +4z =0为所求球面方程.57. 一动点离点(2,0,-3)的距离与离点(4,-6,6)的距离之比为3,求此动点的轨迹方程.解:设该动点为M (x ,y ,z ),由题意知222222(2)(0)(3) 3.(4)(6)(6)x y z x y z -+-++=-+++-化简得:8x 2+8y 2+8z 2-68x +108y -114z +779=0 即为动点的轨迹方程.58. 指出下列方程所表示的是什么曲面,并画出其图形:(1)22()()22a a x y -+=; (2)22149x y -+=; (3)22194x z +=; (4)20y z -=; (5)220x y -=; (6)220x y +=. 解:(1)母线平行于z 轴的抛物柱面,如图7-7. (2)母线平行于z 轴的双曲柱面,如图7-8.图7-7 图7-8 (3)母线平行于y 轴的椭圆柱面,如图7-9. (4)母线平行于x 轴的抛物柱面,如图7-10.图7-9 图7-10(5)母线平行于z 轴的两平面,如图7-11. (6)z 轴,如图7-12.图7-11 图7-12 59. 指出下列方程表示怎样的曲面,并作出图形:(1)222149y z x ++=; (2)22369436x y z +-=; (3)222149y z x --=; (4)2221149y z x +-=; (5)22220x y z -+=; (6)22209z x y +-=. 解:(1)半轴分别为1,2,3的椭球面,如图7-13. (2) 顶点在(0,0,-9)的椭圆抛物面,如图7-14.图7-13 图7-14(3) 以x 轴为中心轴的双叶双曲面,如图7-15. (4) 单叶双曲面,如图7-16.图7-15 图7-16(5) 顶点在坐标原点的椭圆锥面,其中心轴是y 轴,如图7-17. (6) 顶点在坐标原点的圆锥面,其中心轴是z 轴,如图7-18.图7-17 图7-1860. 作出下列曲面所围成的立体的图形: (1) x 2+y 2+z 2=a 2与z =0,z =2a(a >0); (2) x +y +z =4,x =0,x =1,y =0,y =2及z =0; (3) z =4-x 2, x =0, y =0, z =0及2x +y =4; (4) z =6-(x 2+y 2),x =0, y =0, z =0及x +y =1. 解:(1)(2)(3)(4)分别如图7-19,7-20,7-21,7-22所示.图7-19 图7-20图7-21 图7-22 61. 求下列曲面和直线的交点:(1) 222181369x y z ++=与342364x y z --+==-; (2) 22211694x y z +-=与2434x y z +==-. 解:(1)直线的参数方程为334624x t y t z t =+⎧⎪=-⎨⎪=-+⎩代入曲面方程解得t =0,t =1. 得交点坐标为(3,4,-2),(6,-2,2). (2) 直线的参数方程为4324x t y tz t =⎧⎪=-⎨⎪=-+⎩代入曲面方程可解得t =1, 得交点坐标为(4,-3,2).62. 设有一圆,它的中心在z 轴上,半径为3,且位于距离xOy 平面5个单位的平面上,试建立这个圆的方程.解:设(x ,y ,z )为圆上任一点,依题意有2295x y z ⎧+=⎨=±⎩ 即为所求圆的方程.63. 建立曲线x 2+y 2=z , z =x +1在xOy 平面上的投影方程. 解:以曲线为准线,母线平行于z 轴的柱面方程为x 2+y 2=x +1即2215()24x y -+=. 故曲线在xOy 平面上的投影方程为2215()240x y z ⎧-+=⎪⎨⎪=⎩64. 求曲线x 2+y 2+z 2=a 2, x 2+y 2=z 2在xOy 面上的投影曲线.解:以曲线为准线,母线平行于z 轴的柱面方程为2222a x y +=故曲线在xOy 面上的投影曲线方程为22220a x y z ⎧+=⎪⎨⎪=⎩65. 试考察曲面22219254x y z -+=在下列各平面上的截痕的形状,并写出其方程. (1) 平面x =2; (2) 平面y =0; (3) 平面y =5; (4) 平面z =2.解:(1)截线方程为2212x ⎧=⎪⎪⎨⎪⎪=⎩ 其形状为x =2平面上的双曲线.(2)截线方程为221940x z y ⎧+=⎪⎨⎪=⎩为xOz 面上的一个椭圆.(3)截线方程为2215y ⎧==⎩为平面y =5上的一个椭圆.(4) 截线方程为2209252x y z ⎧-=⎪⎨⎪=⎩为平面z =2上的两条直线.66. 求单叶双曲面22211645x y z +-=与平面x -2z +3=0的交线在xOy 平面,yOz 平面及xOz 平面上的投影曲线. 解:以32x z +=代入曲面方程得 x 2+20y 2-24x -116=0.故交线在xOy 平面上的投影为2220241160x y x z ⎧+--=⎨=⎩ 以x =2z -3代入曲面方程,得 20y 2+4z 2-60z -35=0.故交线在yOz 平面上的投影为2220460350y z z x ⎧+--=⎨=⎩ 交线在xOz 平面上的投影为230,0.x z y -+=⎧⎨=⎩习题八1. 判断下列平面点集哪些是开集、闭集、区域、有界集、无界集?并分别指出它们的聚点集和边界:(1) {(x ,y )|x ≠0};(2) {(x ,y )|1≤x 2+y 2<4};(3) {(x ,y )|y <x 2};(4) {(x ,y )|(x -1)2+y 2≤1}∪{(x ,y )|(x +1)2+y 2≤1}.解:(1)开集、无界集,聚点集:R 2,边界:{(x ,y )|x =0}. (2)既非开集又非闭集,有界集,聚点集:{(x ,y )|1≤x 2+y 2≤4},边界:{(x ,y )|x 2+y 2=1}∪{(x ,y )| x 2+y 2=4}. (3)开集、区域、无界集,聚点集:{(x ,y )|y ≤x 2},边界:{(x ,y )| y =x 2}.(4)闭集、有界集,聚点集即是其本身,边界:{(x ,y )|(x -1)2+y 2=1}∪{(x ,y )|(x +1)2+y 2=1}. 2. 已知f (x ,y )=x 2+y 2-xy tanxy,试求(,)f tx ty . 解:222(,)()()tan(,).tx f tx ty tx ty tx ty t f x y ty=+-⋅= 3. 已知(,,)w u vf u v w u w+=+,试求(,,).f x y x y xy +-解:f (x +y , x -y , xy ) =(x +y )xy+(xy )x +y +x -y=(x +y )xy +(xy )2x.4. 求下列各函数的定义域:2(1)ln(21);z y x =-+(2)z=+(3)z =(4)u =+(5)z =(6)ln()z y x =-+(7)u =解:2(1){(,)|210}.D x y y x =-+>(2){(,)|0,0}.D x y x y x y =+>->22222(3){(,)|40,10,0}.D x y x y x y x y =-≥-->+≠(4){(,,)|0,0,0}.D x y z x y z =>>> 2(5){(,)|0,0,}.D x y x y x y =≥≥≥ 22(6){(,)|0,0,1}.D x y y x x x y =->≥+< 22222(7){(,,)|0,0}.D x y z x y x y z =+≠+-≥5. 求下列各极限:10y x y →→22001(2)lim;x y x y →→+00x y →→0x y →→00sin (5)lim ;x y xyx →→222222001cos()(6)lim .()e x y x y x y x y +→→-++ 解:(1)原式0ln 2.=(2)原式=+∞. (3)原式=001.4x y →→=-(4)原式=002.x y →→=(5)原式=00sin lim100.x y xyy xy →→⋅=⨯=(6)原式=22222222222()00001()2lim lim 0.()e 2ex y x y x x y y x y x y x y ++→→→→++==+6. 判断下列函数在原点O (0,0)处是否连续:33222222sin(),0,(1)0,0;x y x y z x y x y ⎧++≠⎪=+⎨⎪+=⎩33333333sin(),0,(2)0,0;x y x y z x y x y ⎧++≠⎪=+⎨⎪+=⎩(3) 222222222,0,(2)()0,0;x y x y z x y x y x y ⎧+≠⎪=+-⎨⎪+=⎩解:(1)由于3333333322223333sin()sin()sin()0()x y x y x y x y y x x y x y x y x y++++≤=≤+⋅++++ 又00lim()0x y y x →→+=,且3333000sin()sin lim lim 1x u y x y ux y u →→→+==+, 故0lim 0(0,0)x y z z →→==.故函数在O (0,0)处连续. (2)000sin lim lim1(0,0)0x u y uz z u→→→==≠=故O (0,0)是z 的间断点.(3)若P (x ,y ) 沿直线y =x 趋于(0,0)点,则2222000lim lim 10x x y x x x z x x →→=→⋅==⋅+, 若点P (x ,y ) 沿直线y =-x 趋于(0,0)点,则22222220000()lim lim lim 0()44x x x y x x x x z x x x x →→→=-→-===⋅-++ 故00lim x y z →→不存在.故函数z 在O (0,0)处不连续.7. 指出下列函数在向外间断:(1) f (x ,y )=233x y x y -+;(2) f (x ,y )=2222y xy x +-;(3) f (x ,y )=ln(1-x 2-y 2);(4)f (x ,y )=222e ,0,0,0.x y x y yy -⎧⎪≠⎨⎪=⎩解:(1)因为当y =-x 时,函数无定义,所以函数在直线y =-x 上的所有点处间断,而在其余点处均连续.(2)因为当y 2=2x 时,函数无定义,所以函数在抛物线y 2=2x 上的所有点处间断.而在其余各点处均连续.(3)因为当x 2+y 2=1时,函数无定义,所以函数在圆周x 2+y 2=1上所有点处间断.而在其余各点处均连续.(4)因为点P (x ,y )沿直线y =x 趋于O (0,0)时.1200lim (,)lime x x y x xf x y x-→→=→==∞. 故(0,0)是函数的间断点,而在其余各点处均连续. 8. 求下列函数的偏导数:(1)z =x 2y +2xy;(2)s =22u v uv+;(3)z =x(4)z =lntan x y; (5)z =(1+xy )y; (6)u =z xy;(7)u =arctan(x -y )z; (8)y zu x =.解:(1)223122,.z z x xy x x y y y∂∂=+=-∂∂ (2)u v s v u =+2211,.s v s u u v u v v u∂∂=-=-+∂∂(3)2222212ln(),2z x x x x y x x y ∂==++∂+222.z xy x y y x y ∂==∂+ (4)21122sec csc ,tan z x x x x y y y yy∂=⋅⋅=∂ 222122sec ()csc .tan z x x x x x y y y y yy∂=⋅⋅-=-∂ (5)两边取对数得ln ln(1)z y xy =+故[]221(1)(1)(1).ln(1)1y y y x z y xy xy y xy y xy x xy-∂'=+⋅=+⋅=++∂+[]ln(1)(1)(1)ln(1)1ln(1)(1).1y y y y x z xy yxy xy y xy xy y xy xy xy xy ∂⎡⎤'++=+⋅=++⎢⎥+∂⎣⎦⎡⎤++=+⎢⎥+⎣⎦(6)1ln ln xy xy xy u u uz z y z z x xy z x y z-∂∂∂=⋅⋅=⋅⋅=⋅∂∂∂ (7)11221()().1[()]1()z z z z u z x y z x y x x y x y --∂-=⋅-=∂+-+- 112222()(1)().1[()]1()()ln()()ln().1[()]1()z z z z z zz z u z x y z x y y x y x y u x y x y x y x y z x y x y --∂-⋅--==-∂+-+-∂----==∂+-+-(8)1.yzu y x x z-∂=∂ 2211ln ln .ln ln .y yzzyy z zu x x x x y z zu y y x x x x z z z ∂=⋅=∂∂⎛⎫=⋅=-- ⎪∂⎝⎭9.已知22x y u x y=+,求证:3u u x y u x y ∂∂+=∂∂. 证明: 222223222()2()()u xy x y x y x y xy x x y x y ∂+-+==∂++. 由对称性知 22322()u x y yx y x y ∂+=∂+. 于是 2223()3()u u x y x y x y u x y x y ∂∂++==∂∂+. 10.设11ex y z ⎛⎫+- ⎪⎝⎭=,求证:222z z xy z x y∂∂+=∂∂. 证明: 11112211e e x y x y z x xx ⎛⎫⎛⎫++-- ⎪ ⎪⎝⎭⎝⎭∂⎡⎤⎛⎫=-=- ⎪⎢⎥∂⎝⎭⎣⎦, 由z 关于x ,y 的对称性得1121ex y z y y⎛⎫+- ⎪⎝⎭∂=∂ 故 11111122222211e e 2e 2.x y x y x y z z x y x y z x y x y⎛⎫⎛⎫⎛⎫+++--- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭∂∂+⋅=⋅+⋅==∂∂11.设f (x ,y )=x +(yf x (x ,1) .解:1(,)1(x f x y y y =+- 则(,1)101x f x =+=.12.求曲线2244x y z y ⎧+=⎪⎨⎪=⎩在点(2,4,5)处的切线与正向x 轴所成的倾角.解:(2,4,5)1,1,2z z x x x ∂∂==∂∂ 设切线与正向x 轴的倾角为α, 则tan α=1. 故α=π4. 13.求下列函数的二阶偏导数: (1)z =x 4+ y 4-4x 2y 2; (2)z=arctan y x; (3)z =y x ;(4)z =2ex y+.解:(1)2322224812816z z z x xy x y xy x x x y∂∂∂=-=-=-∂∂∂∂ ,, 由x ,y 的对称性知22222128.16.z z y x xy y y x∂∂=-=-∂∂∂ (2)222211zy y xx y x y x ∂⎛⎫=⋅=-- ⎪∂+⎝⎭⎛⎫+ ⎪⎝⎭,2222222222222222222222222222222222222222()022,()()11,12,()()2,()()2.()()z x y y x xyx x y x y z x y x x y y x z xyy x y z x y y y y x x y x y x y z x y x x y x y x x y x y ∂+⋅-⋅=-=∂++∂=⋅=∂+⎛⎫+ ⎪⎝⎭∂=-∂+∂+-⋅-=-=∂∂++∂+-⋅-=-=∂∂++ (3)222ln ,ln ,xx z z y y y y x x∂∂==∂∂ 21222112111,(1),1ln (1ln ),ln (1ln ).x x x x x x x x z z xy x x y y y z y xy y y x y x y y zy x y y y x y y x-------∂∂==-∂∂∂=⋅+=+∂∂∂=+⋅⋅=+∂∂ (4)22e 2,e ,x y x y z zx x y++∂∂=⋅=∂∂ 222222222e 22e 22e (21),e ,2e ,2e .x y x y x y x y x y x y z x x x xz z z x x y x y y x++++++∂=⋅⋅+⋅=+∂∂∂∂===∂∂∂∂∂14.设f (x ,y ,z )=xy 2+yz 2+zx 2,求(0,0,1),(0,1,0),(2,0,1).xx yz zzx f f f -解:2(,,)2x f x y z y zx =+22(,,)2,(0,0,1)2,(,,)2(,,)2,(0,1,0)0,(,,)2(,,)2(,,)0,(2,0,1)0.xx xx y yz yz z zz zzx zzx f x y z z f f x y z xy z f x y z z f f x y z yz x f x y z yf x y z f ===+=-==+===15.设z =x ln(xy ),求32z x y ∂∂∂及32zx y ∂∂∂.解:ln()1ln(),z yx xy xy x xy∂=⋅+=+∂ 232223221,0,11,.z y zx xy x x y z x z x y xy y x y y∂∂===∂∂∂∂∂===-∂∂∂∂16.求下列函数的全微分: (1)22ex y z +=;(2)z =(3)zy u x =; (4)yzu x =.解:(1)∵2222e 2,e 2x y x y z zx y x y++∂∂=⋅=⋅∂∂ ∴222222d 2e d 2e d 2e (d d )x y xy xy z x x y y x x y y +++=+=+(2)∵22223/21()z xy y x y x x y ∂⎛⎫-=⋅=- ⎪+∂+⎝⎭2223/2()z x yx y ∂==∂+ ∴223/2d (d d ).()xz y x x y x y =--+(3)∵11,ln z z z y y z u u y x x x zy x y--∂∂==⋅⋅∂∂ 2ln ln y z ux x y y z∂=⋅⋅⋅∂ ∴211d d ln d ln ln d .z z zy y z y z u y x x x x zy y x x y y z --=+⋅+⋅⋅⋅(4)∵1yz u y x x z-∂=∂ 1ln yz u x x y z∂=⋅⋅∂ln yz u y x x z z 2∂⎛⎫=⋅⋅- ⎪∂⎝⎭∴121d d ln d ln d .y y yz z z y y u x x x x y x x z z z z -⎛⎫=+⋅⋅+⋅⋅- ⎪⎝⎭17. 求下列函数在给定点和自变量增量的条件下的全增量和全微分: (1)222,2,1,0.2,0.1;z x xy y x y x y =-+==-∆=∆=- (2)e ,1,1,0.15,0.1.xy z x y x y ===∆=∆=解:(1)22()()()2()9.688 1.68z x x x x y y y y z ∆=+∆-+∆+∆++∆-=-=d (2)(4) 1.6z x y x x y y =-∆+-+∆=(2)()()0.265ee e(e 1)0.30e.x x y y xy z +∆+∆∆=-=-=d e e e ()0.25e xy xy xy z y x x y y x x y =∆+∆=∆+∆=18.利用全微分代替全增量,近似计算: (1) (1.02)3·(0.97)2;(3)(1.97)1.05.解:(1)设f (x ,y )=x 3·y 2,则223(,)3,(,)2,x y f x y x y f x y x y ==故d f (x ,y )=3x 2y 2d x +2x 3y d y =xy (3xy d x +2x 2d y ) 取x =1,y =1,d x =0.02,d y =-0.03,则(1.02)3·(0.97)2=f (1.02,0.97)≈f (1,1)+d f (1,1)d 0.02d 0.03x y ==-=13×12+1×1[3×1×1×0.02+2×12×(-0.03)]=1.(2)设f (x ,y,则(,)(,)x y f x y f x y ===故d (,)d d )f x y x x y y =+取4,3,d 0.05,d 0.07x y x y ====-,则d0.05d0.07(4.05,2.93)(4,3)d(4,3)0.053(0.07)]15(0.01)54.998xyf f f==-=≈+=⨯+⨯-=+⨯-=(3)设f(x,y)=x y,则d f(x,y)=yx y-1d x+x y ln x d y,取x=2,y=1,d x=-0.03,d y=0.05,则1.05d0.03d0.05(1.97)(1.97,1.05)(2,1)d(2,1)20.0393 2.0393.xyf f f=-==≈+=+=19.矩型一边长a=10cm,另一边长b=24cm,当a边增加4mm,而b边缩小1mm时,求对角线长的变化.解:设矩形对角线长为l,则d d).l l x x y y==+当x=10,y=24,d x=0.4,d y=-0.1时,d0.4240.1)0.062l=⨯-⨯=(cm)故矩形的对角线长约增加0.062cm.20. 1mol理想气体在温度0℃和1个大气压的标准状态下,体积是22.4L,从这标准状态下将温度升高3℃,压强升高0.015个大气压,问体积大约改变多少?解:由PV=RT得V=RTP,且在标准状态下,R=8.20568×10-2,ΔV≈d v=-2d dRT Rp TP P+=d dV RP TP P-+222.48.20568100.01530.0911-⨯=-⨯+⨯≈-故体积改变量大约为0.09.21. 测得一物体的体积V=4.45cm3,其绝对误差限是0.01cm3,质量m=30.80g,其绝对误差限是0.01g,求由公式mvρ=算出密度ρ的绝对误差与相对误差.解:当V=4.45,m=30.80,d v=0.01,d m=0.01时,22130.801d d d0.010.014.45 4.450.01330.0133mv mv vρ==-+-⨯+⨯≈=-当v=4.45, m=30.80时30.806.92134.45ρ=≈d 0.00192160.19216%ρρ≈=.22. 求下列复合函数的偏导数或全导数:(1)22,cos ,sin ,z x y xy x u v y u v =-==求z u ∂∂,z v∂∂; (2) z =arc tanx y ,x =u +v ,y =u -v ,求z u ∂∂,z v∂∂; (3) ln(e e )xyu =+,y =x 3,求d d ux; (4) u =x 2+y 2+z 2,x =e cos tt ,y =e sin tt ,z =e t,求d d ut. 解:(1)222(2)cos (2)sin 3sin cos (cos sin )z z x z y xy y v x xy v u x u y u u v v v v ∂∂∂∂∂=⋅+⋅=-⋅+-∂∂∂∂∂=-223333(2)sin (2)cos 2sin cos (sin cos )(sin cos ).z z x z yxy y u v x xy u v v x v y v u v v v v u v v ∂∂∂∂∂=⋅+⋅=--⋅+-⋅∂∂∂∂∂=-+++ (2)222222211111x z z x z y y x v y u x u y uyx yu v x x y y ∂∂∂∂∂--⎛⎫-=⋅+⋅=⋅+⋅== ⎪∂∂∂∂∂++⎝⎭⎛⎫⎛⎫++ ⎪ ⎪⎝⎭⎝⎭2222222111(1)11.x z z x z y y v x v y vyx x y y y x ux y u v -∂∂∂∂∂⎛⎫=⋅+⋅=⋅+⋅⋅- ⎪∂∂∂∂∂⎝⎭⎛⎫⎛⎫++ ⎪ ⎪⎝⎭⎝⎭+==++ (3)33222d d d 11e 3e e 3e e e 3.d d d e e e e e e e ex y x x x y x y x y x yx x u u x u y x x x x x x y x ∂∂++=⋅+⋅=⋅+⋅⋅==∂∂++++ (4)d d d d d d d d u u x u y u z t x t y t z t∂∂∂=⋅+⋅+⋅∂∂∂ 22(e cos e sin )2(e sin e cos )2e 4e t t t t t t x t t y t t z =-+++⋅=.23. 设f 具有一阶连续偏导数,试求下列函数的一阶偏导数: (1)22(,e );xyu f x y =-(2),;x y u f y z ⎛⎫= ⎪⎝⎭(3)().,,u f x xy xyz = 解:(1)12122e 2e .xy xy uf x f y xf y f x∂''''=⋅+⋅⋅=+∂ 1212(2)e 2e .xy xy uf y f x yf x f y∂''''=⋅-+⋅⋅=-+∂ (2)1111u f f x y y∂''=⋅=∂ 121222222211..x u x f f f f y y z y z u y y f f z z z ∂⎛⎫''''-=⋅+⋅=-+ ⎪∂⎝⎭∂⎛⎫''=⋅=-- ⎪∂⎝⎭(3)1231231,uf f y f yz f yf yzf x∂''''''=⋅+⋅+⋅=++∂ 12323330,.uf f x f xz xf xzf yuf xy xyf z∂'''''=⋅+⋅+⋅=+∂∂''=⋅=∂24.设(),,()yz xy xF u u F u x=+=为可导函数,证明: .z z xy z xy x y∂∂+=+∂∂ 证明:2()()()()z y y y xF u F u F u y F u x x x ∂⎛⎫''=+⋅+=+-- ⎪∂⎝⎭1()().z x xF u x F u y x∂''=+⋅=+∂ 故[]()()()()()()().z z F u y xy x y x F u F u y x y x xF u xy yF u xy yF u xy xF u xyz xy '∂∂⎡⎤'+=+++-⎢⎥∂∂⎣⎦''=+-++=++=+ 25. 设22()yz f x y =-,其中f (u )为可导函数,验证:211z z zx x y y y∂∂+=∂∂. 证明:∵2222z yf x xyf x f f ''∂⋅=-=-∂, 222(2)2z f y f y f y f y f f ''∂-⋅⋅-+==∂, ∴22222112211z z yf f y f y zx x y y f yf yf f y y ''∂∂++=-+==⋅=∂∂⋅ 26. 22()z f x y =+,其中f 具有二阶导数,求22222,,.z z zx x y y ∂∂∂∂∂∂∂ 解:2,2,z zxf yf x y∂∂''==∂∂ 222222224,224,z f x xf f x f xzxf y xyf x y∂''''''=+⋅=+∂∂''''=⋅=∂∂由对称性知,22224.z f y f y∂'''=+∂27. 设f 是c 2类函数,求下列函数的二阶偏导数: (1),;x x z f y ⎛⎫= ⎪⎝⎭(2)()22;,z f xy x y =(3)().sin ,cos ,e x y z f x y += 解:(1)1212111,z f f f f x y y∂''''=⋅+⋅=+∂ 2212211121112222221222122222222222222222223211121,1111,,2z f f f f f f f y x y y y yx x z x f f f f f f y y y x y y y y yx z x f f y y y z x x f f y y y ∂⎛⎫''''''''''''''+⋅=+⋅+=+⋅+ ⎪∂⎝⎭∂⎛⎫⎛⎫⎛⎫''''''''''--+=⋅-+⋅=-- ⎪ ⎪ ⎪∂∂⎝⎭⎝⎭⎝⎭∂⎛⎫''-==- ⎪∂⎝⎭∂''=-∂22222342.x x x f f y yy ⎛⎫''''-⋅=+ ⎪⎝⎭,。

高等数学课后习题答案--第九章

高等数学课后习题答案--第九章

9. 设 x n >0,
10. 讨论下列级数的收敛性(包括条件收敛与绝对收敛)
182
⑴ ⑶ ⑸ ⑺ ⑼
x sin ; n n =1 ∞ n (−1) n −1 n −1 ; ∑ 3 n =1 n +1 ∞ (−1) ( x > 0 ); ∑ n =1 n + x
∑ (−1)

n +1
⑵ ⑷ ⑹ ⑻ ⑽
180
(4) (6)



n =1 ∞

n =1
ln n ln n 1 ln n 1 n 1 , = = 3 . 收敛; < 2 2 n n n n n n n2 1 1 1 , < , 收敛; n ln (n + 2) ln(n + 2) 2
n
(5)
收敛;
(7) (8) (13) (14)
∑ (
n =1
n −1
)
n
发散
由于 lim (10
a −1
1 n
n →∞
= ln a , 而 n n − 1 > n a − 1 ;
(11)
发散;

n =1



n =1
( n + 1 − n − 1 ), ( n + 1 − (2n − n + 1 − n − 1) = (n −
2 2 2 2 2
(9) 收敛;
收敛;
5.利用级数收敛的必要条件,证明: nn (1) lim = 0, (2) n →∞ ( n !) 2

n →∞
lim
( 2 n) ! = 0. 2 n ( n +1)

高等数学课后习题及答案(共11单元)08无穷级数

高等数学课后习题及答案(共11单元)08无穷级数

习题9-11.写出下列级数的前五项:(1) ∑∞=++1211n n n; (2) ∑∞=⋅-12)12(1n nn ; (3) ∑∞=-1)1(n nn ; (4)∑∞=1n nne.解 (1)第一项为1,第二项为53,第三项为104,第四项为175,第五项为266。

(2)第一项为21,第二项为121,第三项为401,第四项为1121,第五项为2881。

(3)第一项为-1,第二项为21,第三项为31-,第四项为41,第五项为51-。

(4)第一项为e ,第二项为22e ,第三项为33e ,第四项为44e ,第五项为55e 。

2.写出下列级数的一般项:(1) 1111357++++… (2) 1112ln 23ln 34ln 4+++…(3) 11234024567-++++++…(4)2345625101726a a a a a -+-+-…解 (1) 121-=n u n (2)()()1ln 11++=n n u n(3)12+-=n n u n (4)()11211-+-=+n a u n n n3.根据级数收敛与发散的定义,判别下列级数的敛散性,如果收敛,并求其和. (1)∑∞=12n n ; (2)∑∞=+-1)12)(12(1n n n ; (3)∑∞=++-+1)122(n n n n .解:(1) 级数的部分和为()222-12-121-==+n nn S 因为 ()+∞=-=+∞→∞→22lim lim 1n n n n S所以级数∑∞=12n n发散.(2)因为()()⎪⎭⎫⎝⎛+=+-121-1-212112121n n n n所以级数的部分和为 ()()12121751531311+-++⨯+⨯+⨯=n n S n⎪⎭⎫⎝⎛+++++=121-1-2171-5151-3131-121n n ⎪⎭⎫ ⎝⎛+=121-121n 12+=n n而 21121lim12limlim =+=+=∞→∞→∞→nn nS n n n n 所以级数∑∞=+-1)12)(12(1n n n 收敛.且级数的和为21.(3)因为()()()n n n n n n n -+-+-+=+++11212-2所以级数的部分和为()()n n n S n ++++++++=12-2232-4122-3 )(()()()()()nn n n -11-22-3-3-41-2-2-3+-+++++= )(()()1212--+-+=n n()()12121--+++=n n而 ()()2-112lim121limlim =--+++=∞→∞→∞→n n n n n n s所以级数∑∞=+-1)12)(12(1n n n 收敛.且级数的和为2-1. 4.判别下列级数的敛散性,若收敛,并求其和. (1) 1111124816-+-+-… (2) 234e e e e -+-+… (3) 2233121212()()()232323++++++… (4) 231ln 3ln 3ln 3++++ (5)∑∞=+1)11ln(n n n(6)∑∞=1sinn nn π(7) 231sin1sin 1sin 1-+-+ (8)++-++⋅+⋅+⋅)15)(45(1161111161611n n解:(1) 级数的部分和可写为∑=-⎪⎭⎫ ⎝⎛⨯-=nn n n n s 1142141因为∑∞=-1141n n 是41=q 的等比数列,收敛并且和为3441-11=.同理∑∞=⨯1421n n是41=q 的等比数列,收敛并且和为3241-1121=⨯. 根据级数性质,∑∞=-⎪⎭⎫⎝⎛⨯-1142141n n n 也收敛,其和为 ∑∞=-⎪⎭⎫ ⎝⎛⨯-1142141n n n =∑∞=-1141n n -∑∞=⨯1421n n=3232-34=(2) 级数的部分和可写为()()()()n n n nn nn n e e e ee e e e e ees 2222221212111111-+=-----=-=∑=- 因为 ()-∞=-+=∞→∞→n n n n e ees 211limlim所以根据定义,该级数发散。

高等数学课后习题及参考答案(第十章)

高等数学课后习题及参考答案(第十章)

高等数学课后习题及参考答案(第十章)习题10-11.设在xOy面内有一分布着质量的曲线弧L,在点(x,y)处它的线密度为μ(x,y),用对弧长的曲线积分分别表达:(1)这曲线弧对x轴、对y轴的转动惯量I x,I y;(2)这曲线弧的重心坐标,.解在曲线弧L上任取一长度很短的小弧段ds(它的长度也记做ds),设(x,y)为小弧段ds上任一点.曲线L对于x轴和y轴的转动惯量元素分别为dI x=y2μ(x,y)ds,dI y=x2μ(x,y)ds.曲线L对于x轴和y轴的转动惯量分别为,.曲线L对于x轴和y轴的静矩元素分别为dM x=yμ(x,y)ds,dM y=xμ(x,y)ds.曲线L的重心坐标为,.2.利用对弧长的曲线积分的定义证明:如果曲线弧L分为两段光滑曲线L1和L2,则.证明划分L,使得L1和L2的连接点永远作为一个分点,则.令λ=max{∆s i}→0,上式两边同时取极限,即得.3.计算下列对弧长的曲线积分:(1),其中L为圆周x=a cos t,y=a sin t (0≤t≤2π);解=.(2),其中L为连接(1, 0)及(0, 1)两点的直线段;解L的方程为y=1-x (0≤x≤1);.(3), 其中L 为由直线y =x 及抛物线y =x 2所围成的区域的整个边界; 解 L 1: y =x 2(0≤x ≤1), L 2: y =x (0≤x ≤1) ..(4), 其中L 为圆周x 2+y 2=a 2, 直线y =x 及x 轴在第一象限内所围成的扇形的整个边界;解 L =L 1+L 2+L 3, 其中L 1: x =x , y =0(0≤x ≤a ),L 2: x =a cos t , y =a sin t ,L 3: x =x , y =x ,因而 ,.(5)⎰Γ++ds zy x 2221, 其中Γ为曲线x =e t cos t , y =e t sin t , z =e t 上相应于t 从0变到2的这段弧;解,.(6), 其中Γ为折线ABCD , 这里A 、B 、C 、D 依次为点(0, 0, 0)、(0, 0, 2)、(1, 0, 2)、(1, 3, 2);解 Γ=AB +BC +CD , 其中AB : x =0, y =0, z =t (0≤t ≤1),BC : x =t , y =0, z =2(0≤t ≤3),CD : x =1, y =t , z =2(0≤t ≤3),故.(7), 其中L 为摆线的一拱x =a (t -sin t ), y =a (1-cos t )(0≤t ≤2π);解.(8), 其中L 为曲线x =a (cos t +t sin t ), y =a (sin t -t cos t )(0≤t ≤2π).解.4. 求半径为a , 中心角为2ϕ的均匀圆弧(线密度μ=1)的重心.解 建立坐标系如图10-4所示, 由对称性可知, 又ϕϕsin a =, 所以圆弧的重心为)0 ,sin (ϕϕa 5. 设螺旋形弹簧一圈的方程为x =a cos t , y =a sin t , z =kt , 其中0≤1≤2π, 它的线密度ρ(x , y , z )=x 2+y 2+z 2, 求:(1)它关于z 轴的转动惯量I z ; (2)它的重心.解 .(1).(2),,,,故重心坐标为.习题 10-21. 设L 为xOy 面内直线x =a 上的一段, 证明: .证明 设L 是直线x =a 上由(a , b 1)到(a , b 2)的一段,则L : x =a , y =t , t 从b 1变到b 2. 于是.2. 设L 为xOy 面内x 轴上从点(a , 0)到(b , 0)的一段直线,证明.证明L : x =x , y =0, t 从a 变到b , 所以.3. 计算下列对坐标的曲线积分:(1), 其中L 是抛物线y =x 2上从点(0, 0)到点(2, 4)的一段弧;解 L : y =x 2, x 从0变到2, 所以.(2), 其中L 为圆周(x -a )2+y 2=a 2(a >0)及x 轴所围成的在第一象限内的区域的整个边界(按逆时针方向绕行);解 L =L 1+L 2, 其中L 1: x =a +a cos t , y =a sin t , t 从0变到π,L 2: x =x , y =0, x 从0变到2a ,因此.(3), 其中L 为圆周x =R cos t , y =R sin t 上对应t 从0到的一段弧;解.(4)⎰+--+L yx dy y x dx y x 22)()(, 其中L 为圆周x 2+y 2=a 2(按逆时针方向绕行); 解 圆周的参数方程为: x =a cos t , y =a sin t , t 从0变到2π, 所以⎰+--+L y x dy y x dx y x 22)()(.(5), 其中Γ为曲线x =k θ, y =a cos θ, z =a sin θ上对应θ从0到π的一段弧;解 ⎰⎰--+=-+Γπθθθθθθ022]cos cos )sin (sin )[(d a a a a k k ydz zdy dx x .(6), 其中Γ是从点(1, 1, 1)到点(2, 3, 4)的一段直线;解 Γ的参数方程为x =1+t , y =1+2t , z =1+3t , t 从0变到1..(7), 其中Γ为有向闭折线ABCA , 这里的A , B , C依次为点(1, 0, 0), (0, 1, 0), (0, 0, 1);解 Γ=AB +BC +CA , 其中AB : x =x , y =1-x , z =0, x 从1变到0,BC : x =0, y =1-z , z =z , z 从0变到1,CA : x =x , y =0, z =1-x , x 从0变到1,故.(8), 其中L 是抛物线y =x 2上从(-1, 1)到(1, 1)的一段弧.解 L : x =x , y =x 2, x 从-1变到1, 故4. 计算, 其中L 是:(1)抛物线y =x 2上从点(1, 1)到点(4, 2)的一段弧;解 L : x =y 2, y =y , y 从1变到2, 故.(2)从点(1, 1)到点(4, 2)的直线段;解 L : x =3y -2, y =y , y 从1变到2, 故(3)先沿直线从点(1, 1)到(1, 2), 然后再沿直线到点(4, 2)的折线;解 L =L 1+L 2, 其中L 1: x =1, y =y , y 从1变到2,L 2: x =x , y =2, x 从1变到4,故dy x y dx y x dy x y dx y x L L )()()()(21-+++-++=⎰⎰ .(4)沿曲线x =2t 2+t +1, y =t 2+1上从点(1, 1)到(4, 2)的一段弧.解 L : x =2t 2+t +1, y =t 2+1, t 从0变到1, 故.5. 一力场由沿横轴正方向的常力F 所构成, 试求当一质量为m的质点沿圆周x 2+y 2=R 2按逆时针方向移过位于第一象限的那一段时场力所作的功.解 已知场力为F =(|F |, 0), 曲线L 的参数方程为x =R cos θ, y =R sin θ,θ从0变到, 于是场力所作的功为.6. 设z 轴与力方向一致, 求质量为m 的质点从位置(x 1, y 1, z 1)沿直线移到(x 2, y 2, z 2)时重力作的功.解 已知F =(0, 0, mg ). 设Γ为从(x 1, y 1, z 1)到(x 2, y 2, z 2)的直线,则重力所作的功为7.把对坐标的曲线积分化成对弧长的曲线积分,其中L为:(1)在xOy面内沿直线从点(0, 0)到(1, 1);解L的方向余弦,故.(2)沿抛物线y=x2从点(0, 0)到(1, 1);解曲线L上点(x,y)处的切向量为τ=(1, 2x),单位切向量为,故.(3)沿上半圆周x2+y2=2x从点(0, 0)到(1, 1).解L的方程为,其上任一点的切向量为,单位切向量为,故.8.设Γ为曲线x=t,y=t2,z=t3上相应于t从0变到1的曲线弧,把对坐标的曲线积分化成对弧长的曲线积分.解曲线Γ上任一点的切向量为τ=(1, 2t, 3t2)=(1, 2x, 3y),单位切向量为,.习题10-31.计算下列曲线积分,并验证格林公式的正确性:(1),其中L是由抛物线y=x2及y2=x所围成的区域的正向边界曲线;解L=L1+L2,故,而 dxdy x dxdy y P x Q DD )21()(-=∂∂-∂∂⎰⎰⎰⎰ ,所以 ⎰⎰⎰+=∂∂-∂∂l D Qdy Pdx dxdy yP x Q )(. (2), 其中L 是四个顶点分别为(0, 0)、(2, 0)、(2, 2)、和(0, 2)的正方形区域的正向边界.解 L =L 1+L 2+L 3+L 4, 故dy xy y dx xy x L L L L )2())((2324321-+-+++=⎰⎰⎰⎰ ⎰⎰⎰⎰+-+-+=202002022222)8()4(dy y dx x x dy y y dx x ,而,所以 ⎰⎰⎰+=∂∂-∂∂l D Qdy Pdx dxdy yP x Q )(. 2. 利用曲线积分, 求下列曲线所围成的图形的面积:(1)星形线x =a cos 3t , y =a sin 3t ;解.(2)椭圆9x 2+16y 2=144;解 椭圆9x 2+16y 2 =144的参数方程为x =4cos θ, y =3sin θ, 0≤θ≤2π, 故.(3)圆x 2+y 2=2ax .解 圆x 2+y 2=2ax 的参数方程为x =a +a cos θ, y =a sin θ, 0≤θ≤2π,故.3. 计算曲线积分,其中L为圆周(x-1)2+y2=2,L的方向为逆时针方向.解,.当x2+y2≠0时.在L内作逆时针方向的ε小圆周l:x=εcosθ,y=εsinθ(0≤θ≤2π),在以L和l为边界的闭区域Dε上利用格林公式得,即.因此.4.证明下列曲线积分在整个xOy面内与路径无关,并计算积分值:(1);解P=x+y,Q=x-y,显然P、Q在整个xOy面内具有一阶连续偏导数,而且,故在整个xOy面内,积分与路径无关.取L为点(1, 1)到(2, 3)的直线y=2x-1,x从1变到2,则.(2);解P=6xy2-y3,Q=6x2y-3xy2,显然P、Q在整个xOy面内具有一阶连续偏导数,并且,故积分与路径无关,取路径(1, 2)→(1, 4)→(3, 4)的折线,则.(3).解P=2xy-y4+3,Q=x2-4xy3,显然P、Q在整个xOy面内具有一阶连续偏导数,并且,所以在整个xOy面内积分与路径无关,选取路径为从(1, 0)→(1, 2)→(2, 1)的折线,则.5. 利用格林公式, 计算下列曲线积分:(1), 其中L 为三顶点分别为(0, 0)、(3, 0)和(3, 2)的三角形正向边界;解 L 所围区域D 如图所示, P =2x -y +4, Q =5y +3x -6,4)1(3=--=∂∂-∂∂yP x Q , 故由格林公式,得.(2)⎰-+-+Lx x dy ye x x dx e y x xy x y x )2sin ()sin 2cos (222, 其中L 为正 向星形线(a >0);解 , ,,由格林公式⎰-+-+L x x dy ye x x dx e y x xy x y x )2sin ()sin 2cos (222.(3), 其中L 为在抛物线2x =πy 2上由点(0, 0)到的一段弧;解 , ,,所以由格林公式,其中L 、OA 、OB 、及D 如图所示.故.(4), 其中L 是在圆周上由点(0, 0)到点(1, 1)的一段弧.解 P =x 2-y , Q =-x -sin 2y ,0)1(1=---=∂∂-∂∂yP x Q , 由格林公式有,其中L 、AB 、BO 及D 如图所示.故.6.验证下列P(x,y)dx+Q(x,y)dy在整个xOy平面内是某一函数u(x,y)的全微分,并求这样的一个u(x,y):(1)(x+2y)dx+(2x+y)dy;证明因为,所以P(x,y)dx+Q(x,y)dy是某个定义在整个xOy面内的函数u(x,y )的全微分..(2)2xydx+x2dy;解因为,所以P(x,y)dx+Q(x,y)dy是某个定义在整个xOy面内的函数u(x,y)的全微分..(3)4sin x sin3y cos xdx–3cos3y cos2xdy解因为,所以P(x,y)dx+Q(x,y)dy是某个定义在整个xOy平面内的函数u(x,y)的全微分..(4)解因为,所以P(x,y)dx+Q(x,y)dy是某个定义在整个xOy平面内的函数u(x,y)的全微分..(5)解因为,所以P(x,y)dx+Q(x,y)dy是某个函数u(x,y)的全微分.7.设有一变力在坐标轴上的投影为X=x+y2,Y=2xy-8,这变力确定了一个力场,证明质点在此场内移动时,场力所做的功与路径无关.解场力所作的功为.由于,故以上曲线积分与路径无关,即场力所作的功与路径无关.习题10-41.设有一分布着质量的曲面∑,在点(x,y,z)处它的面密度为μ(x,y,z),用对面积的曲面积分表达这曲面对于x轴的转动惯量.解. 假设μ(x , y , z )在曲面∑上连续, 应用元素法, 在曲面∑上任意一点(x , y , z )处取包含该点的一直径很小的曲面块dS (它的面积也记做dS ), 则对于x 轴的转动惯量元素为dI x =(y 2+z 2)μ(x , y , z )dS ,对于x 轴的转动惯量为.2. 按对面积的曲面积分的定义证明公式,其中∑是由∑1和∑2组成的.证明 划分∑1为m 部分, ∆S 1, ∆S 2, ⋅⋅⋅, ∆S m ;划分∑2为n 部分, ∆S m +1, ∆S m +2, ⋅⋅⋅, ∆S m +n ,则∆S 1, ⋅⋅⋅, ∆S m , ∆S m +1, ⋅⋅⋅, ∆S m +n 为∑的一个划分, 并且.令, , , 则当λ→0时, 有.3. 当∑是xOy 面内的一个闭区域时, 曲面积分与二重积分有什么关系?解 ∑的方程为z =0, (x , y )∈D ,,故 .4. 计算曲面积分, 其中∑为抛物面z =2-(x 2+y 2)在xOy 面上方的部分, f (x , y , z )分别如下:(1) f (x , y , z )=1;解 ∑: z =2-(x 2+y 2), D xy : x 2+y 2≤2,.因此⎰⎰+=πθ2020241rdr r d .(2) f (x , y , z )=x 2+y 2;解 ∑: z =2-(x 2+y 2), D xy : x 2+y 2≤2,dxdy y x dxdy z z dS y x 22224411++=++=.因此 dxdy y x y x dS z y x f xyD 2222441)(),,(+++=⎰⎰⎰⎰∑ ⎰⎰+=πθ2020241rdr r d.(3) f (x , y , z )=3z .解 ∑: z =2-(x 2+y 2), D xy : x 2+y 2≤2,.因此dxdy y x y x xyD 2222441)](2[3+++-=⎰⎰.5. 计算, 其中∑是:(1)锥面及平面z =1所围成的区域的整个边界曲面; 解 将∑分解为∑=∑1+∑2, 其中∑1: z =1 , D 1: x 2+y 2≤1, dS =dxdy ;∑1:, D 2: x 2+y 2≤1, .+.提示: .(2)锥面z 2=3(x 2+y 2)被平面z =0及z =3所截得的部分. 解 ∑:, D xy : x 2+y 2≤3,,因而 .提示: .6. 计算下面对面积的曲面积分:(1), 其中∑为平面在第一象限中的部分;解 , ,,.(2), 其中∑为平面2x +2y +z =6在第一象限中的部分; 解 ∑: z =6-2x -2y , D xy : 0≤y ≤3-x , 0≤x ≤3,,⎰⎰--+--=x dy y xy x x dx 30230)22236(3.(3)dS z y x )(++∑⎰⎰, 其中∑为球面x 2+y 2+z 2=a 2上z ≥h (0<h <a )的部分;解 ∑:, D xy : x 2+y 2≤a 2-h 2,,(根据区域的对称性及函数的奇偶性).提示:,(4), 其中∑为锥面被x 2+y 2=2ax 所截得的有限部分. 解 ∑: , D xy : x 2+y 2≤2ax ,,dxdy y x y x xy dS zx yz xy xyD ])([2)(22+++=++⎰⎰⎰⎰∑421564a =. 提示: .7. 求抛物面壳的质量, 此壳的面密度为μ=z .解 ∑: , D xy : x 2+y 2≤2,.故.8. 求面密度为μ0的均匀半球壳x 2+y 2+z 2=a 2(z ≥0)对于z 轴的转动惯量.解 ∑: , D xy : x 2+y 2≤a 2,,.提示:.习题10-51. 按对坐标的曲面积分的定义证明公式:.解 证明把∑分成n 块小曲面∆S i (∆S i 同时又表示第i 块小曲面的面 积), ∆S i 在yOz 面上的投影为(∆S i )yz , (ξi , ηi ,ζi )是∆S i 上任意取定的一点, λ是各小块曲面的直径的最大值, 则.2. 当∑为xOy 面内的一个闭区域时, 曲面积分与二重积分有什么关系?解 因为∑: z =0, (x , y )∈D xy , 故dxdy z y x R dxdy z y x R xyD ),,(),,(⎰⎰⎰⎰±=∑,当∑取的是上侧时为正号, ∑取的是下侧时为负号.3. 计算下列对坐标的曲面积分:(1)zdxdy y x 22∑⎰⎰其中∑是球面x 2+y 2+z 2=R 2的下半部分的下侧;解 ∑的方程为, D xy : x 2+y 2≤R , 于是zdxdyy x 22∑⎰⎰dxdy y x R y x xyD )(22222----=⎰⎰.(2), 其中z 是柱面x 2+y 2=1被平面z =0及z =3所截得的第一卦限内的部分的前侧;解 ∑在xOy 面的投影为零, 故.∑可表示为, (y , z )∈D yz ={(y , z )|0≤y ≤1, 0≤z ≤3}, 故⎰⎰⎰⎰⎰⎰⎰-=-=-=∑3010102221311dy y dy y dz dydz y xdyz yz D ∑可表示为, (z , x )∈D zx ={(z , x )|0≤z ≤3, 0≤x ≤1}, 故dzdx x ydzdx zx D 21-=⎰⎰⎰⎰∑⎰⎰⎰-=-=30101022131dx x dx x dz . 因此 .解法二 ∑前侧的法向量为n =(2x , 2y , 0), 单位法向量为,由两种曲面积分之间的关系,dS z y x ydzdx xdydz zdxdy )cos cos cos (γβα++=++∑∑⎰⎰⎰⎰.提示: 表示曲面的面积.(3), 其中f (x , y , z )为连续函数, ∑是平面x -y +z =1在第四卦限部分的上侧;解 曲面∑可表示为z =1-x +y , (x , y )∈D xy ={(x , y )|0≤x ≤1, 0≤y ≤x -1}, ∑上侧的法向量为n =(1, -1, 1), 单位法向量为,由两类曲面积分之间的了解可得dS z f y f x f ]cos )(cos )2(cos )[(γβα+++++=∑⎰⎰.(4), 其中∑是平面x =0, y =0, z =0, x +y +z =1所围成的空间区域的整个边界曲面的外侧.解 ∑=∑1+∑2+∑3+∑4, 其中∑1: x =0, D yz : 0≤y ≤1, 0≤z ≤1-y ,∑2: y =0, D zx : 0≤z 1, 0≤x ≤1-z ,∑3: z =0, D xy : 0≤x ≤1, 0≤y ≤1-x ,∑4: z =1-x -y , D xy : 0≤x ≤1, 0≤y ≤1-x ,于是 xzdxdy 4000∑⎰⎰+++=由积分变元的轮换对称性可知.因此 .解 ∑=∑1+∑2+∑3+∑4, 其中∑1、∑2、∑3是位于坐标面上的三块;∑4: z =1-x -y , D xy : 0≤x ≤1, 0≤y ≤1-x .显然在∑1、∑2、∑3上的曲面积分均为零, 于是yzdzdx xydydz xzdxdy ++=∑⎰⎰4dS xz yz xy )cos cos cos (4γβα++=∑⎰⎰dS xz yz xy )(34++=∑⎰⎰.4. 把对坐标的曲面积分化成对面积的曲面积分:(1)∑为平面在第一卦限的部分的上侧;解 令, ∑上侧的法向量为:,单位法向量为,于是 Rdxdy Qdzdx Pdydz ++∑⎰⎰.(2)∑是抛物面z =8-(x 2+y 2)在xOy 面上方的部分的上侧.解 令F (x , y , z )=z +x 2+y 2-8, ∑上侧的法向量n =(F x , F y , F z )=(2x , 2y , 1),单位法向量为,于是 Rdxdy Qdzdx Pdydz ++∑⎰⎰10-61.利用高斯公式计算曲面积分:(1),其中∑为平面x=0,y=0,z=0,x=a,y=a,z=a所围成的立体的表面的外侧;解由高斯公式原式(这里用了对称性).(2),其中∑为球面x2+y2+z2=a2的外侧;解由高斯公式原式.(3),其中∑为上半球体x2+y2≤a2,的表面外侧;解由高斯公式原式.(4)其中∑界于z=0和z=3之间的圆柱体x2+y2≤9的整个表面的外侧;解由高斯公式原式.(5),其中∑为平面x=0,y=0,z=0,x=1,y=1,z=1所围成的立体的全表面的外侧.解由高斯公式原式.2.求下列向量A穿过曲面∑流向指定侧的通量:(1)A=yz i+xz j+xy k,∑为圆柱x+y2≤a2(0≤z≤h )的全表面,流向外侧;解P=yz,Q=xz,R=xy,⎰⎰⎰dv.=0=Ω(2)A=(2x-z)i+x2y j-xz2k,∑为立方体0≤x≤a, 0≤y≤a, 0≤z≤a,的全表面,流向外侧;解P=2x-z,Q=x2y,R=-xz2,.(3)A=(2x+3z)i-(xz+y)j+(y2+2z)k,∑是以点(3,-1, 2)为球心,半径R=3的球面,流向外侧.解P=2x+3z,Q=-(xz+y),R=y2+2z,⎰⎰⎰dv.π=3=108Ω3.求下列向量A的散度:(1)A=(x2+yz)i+(y2+xz)j+(z2+xy)k;解P=x2+yz,Q=y2+xz,R=-z2+xy,.(2)A=e xy i+cos(xy)j+cos(xz2)k;解P=e xy,Q=cos(xy),R=cos(xz2),.(3)A=y2z i+xy j+xz k;解P=y2,Q=xy,R=xz,.4.设u (x,y,z)、v (x,y,z)是两个定义在闭区域Ω上的具有二阶连续偏导数的函数,,依次表示u (x,y,z)、v (x,y,z)沿∑的外法线方向的方向导数.证明,其中∑是空间闭区间Ω的整个边界曲面,这个公式叫作林第二公式.证明由第一格林公式(见书中例3)知,.将上面两个式子相减,即得.5.利用高斯公式推证阿基米德原理:浸没在液体中所受液体的压力的合力(即浮力)的方向铅直向上,大小等于这物体所排开的液体的重力.证明取液面为xOy面,z轴沿铅直向下,设液体的密度为ρ,在物体表面∑上取元素dS上一点,并设∑在点(x,y,z)处的外法线的方向余弦为cos α, cos β, cos γ, 则dS 所受液体的压力在坐标轴x , y , z 上的分量 分别为-ρz cos αdS , -ρz cos β dS , -ρz cos γ dS ,∑所受的压力利用高斯公式进行计算得,,||cos Ω-=-=-=-=ΩΩ∑⎰⎰⎰⎰⎰⎰⎰⎰ρρργρdv dv dS z F z ,其中|Ω|为物体的体积. 因此在液体中的物体所受液体的压力的合力, 其方向铅直向上, 大小等于这物体所排开的液体所受的重力, 即阿基 米德原理得证.习题10-71. 利用斯托克斯公式, 计算下列曲线积分:(1), 其中Γ为圆周x 2+y 2+z 2=a 2, , 若从z 轴的正向看去, 这圆周取逆时针方向;解 设∑为平面x +y +z =0上Γ所围成的部分, 则∑上侧的单位法向量为.于是.提示: 表示∑的面积, ∑是半径为a 的圆.(2), 其中Γ为椭圆x 2+y 2=a 2,(a >0, b >0), 若从x 轴正向看去, 这椭圆取逆时针方向;解 设∑为平面上Γ所围成的部分, 则∑上侧的单位法向量为.于是.提示: ∑(即)的面积元素为.(3), 其中Γ为圆周x 2+y 2=2z , z =2, 若从z 轴的正向看去, 这圆周是取逆时针方向;解 设∑为平面z =2上Γ所围成的部分的上侧, 则.(4), 其中Γ为圆周x 2+y 2+z 2=9, z =0, 若从z 轴的正向看去, 这圆周是取逆时针方向.解 设∑为xOy 面上的圆x 2+y 2≤9的上侧, 则.2. 求下列向量场A 的旋度:(1)A =(2z -3y )i +(3x -z )j +(-2x )k ;解 .(2)A =(sin y )i -(z -x cos y )k ;解 .(3)A =x 2sin y i +y 2sin(xz )j +xy sin(cos z )k .解=[x sin(cos z )-xy 2cos(xz )]i -y sin(cos z )j +[y 2z cos(xz )-x 2cos y ]k . 3. 利用斯托克斯公式把曲面积分化为曲线积分, 并计算积分值, 其中A 、∑及n 分别如下:(1)A =y 2i +xy j +xz k , ∑为上半球面, 的上侧, n 是∑的单位法向量;解 设∑的边界Γ : x 2+y 2=1, z =0, 取逆时针方向, 其参数方程为x =cos θ, y =sin θ, z =0(0≤θ≤2π,由托斯公式.(2)A =(y -z )i +yz j -xz k , ∑为立方体0≤x ≤2, 0≤y ≤2, 0≤z ≤2的表面外侧 去掉xOy 面上的那个底面, n 是∑的单位法向量.解.4. 求下列向量场A 沿闭曲线Γ(从z 轴正向看依逆时针方向)的环流量:(1)A =-y i +x j +c k (c 为常量), Γ为圆周x 2+y 2=1, z =0;解.(2)A =(x -z )i +(x 3+yz )j -3xy 2k , 其中Γ为圆周, z =0.解 有向闭曲线Γ的参数方程为x =2cos θ, y =2sin θ, z =0(0≤π≤2π). 向量场A 沿闭曲线Γ的环流量为⎰⎰-++-=++L L dz xy dy yz x dx z x Rdz Qdy Pdx 223)()(.5.证明rot(a+b)=rot a+rot b.解令a=P1(x,y,z)i+Q1(x,y,z)j+R1(x,y,z)k,b=P2(x,y,z)i+Q2(x,y,z)j+R2(x,y,z)k,由行列式的性质,有.6.设u=u(x,y,z)具有二阶连续偏导数,求rot(grad u)解因为grad u=u x i+u y j+u z k,故=(u zy-u yz)i+(u zx-u xz)j+(u yx-u xy)k=0.*7.证明:(1)∇(uv)=u∇v+v∇u解=u∇v+v∇u.(2)解==u∆v+v∆u+2∇u⋅∇u.(3) ∇⋅(A⨯B )=B⋅(∇⨯A )-A⋅(∇⨯B )解B=P2i+Q2j+R2k,而所以∇⨯(A⨯B)=B⨯(∇⨯A)-A⨯( ∇⨯B )(4) ∇⨯(∇⨯A )=∇(∇⋅A )-∇2a解令A=Pi+Q j++R k,则从而命题地证总习题十1. 填空:(1)第二类曲线积分化成第一类曲线积分是____________, 其中α、β、γ为有向曲线弧Γ上点(x , y , z )处的_____________的方向角.解 , 切向量.(2)第二类曲面积分Rdxdy Qdzdx Pdydz ++∑⎰⎰化成第一类曲面积分是_______, 其中α、β、γ为有向曲面∑上点(x , y , z )处的________的方向角.解 , 法向量.2. 选择下述题中给出的四个结论中一个正确的结论:设曲面∑是上半球面: x 2+y 2+z 2=R 2(z ≥0), 曲面∑1是曲面∑在第一卦限中的部分, 则有________.(A )xdS xdS 14∑∑⎰⎰⎰⎰=; (B );(C )xdS zdS 14∑∑⎰⎰⎰⎰=; (D )xyzdS xyzdS 14∑∑⎰⎰⎰⎰=.解 (C ).3. 计算下列曲线积分:(1), 其中L 为圆周x 2+y 2=ax ;解 L 的参数方程为, (0≤θ≤2π), 故θθθθπd y x ax ds ax ds y x L L )()()(222022'+'⋅==+⎰⎰⎰().(2), 其中Γ为曲线x =t cos t , y =t sin t , z =t (0≤t ≤t 0);解.(3), 其中L 为摆线x =a (t -sin t ), y =a (1-cos t )上对应t 从0到2π的一段弧;解 ⎰⎰⋅-+-⋅+-=+-π20]sin )sin ()cos 1()cos 2[()2(dt t a t t a t a t a a a xdy dx y a L.(4), 其中Γ是曲线x =t , y =t 2, z =t 3上由听t 1=0到t 2=1的一段弧;解.(5), 其中L 为上半圆周(x -a )2+y 2=a 2, y ≥0, 沿逆时针方向;解 这里P =e x sin y -2y , Q =e x cos y -2, .令L 1为x 轴上由原点到(2a , 0)点的有向直线段, D 为L 和L 1所围成的区域, 则由格林公式,.(6), 其中Γ是用平面y =z 截球面x 2+y 2+z 2=1所得的截痕, 从z 轴的正向看去, 沿逆时针方向.解 曲线Γ的一般方程为, 其参数方程为, t 从0变到2π.于是.4. 计算下列曲面积分:(1), 其中∑是界于平面z =0及z =H 之间的圆柱面x 2+y 2=R 2;解 ∑=∑1+∑2, 其中, D xy : -R ≤y ≤R , 0≤z ≤H , ;, D xy : -R ≤y ≤R , 0≤z ≤H , ,于是.(2), 其中∑为锥面(0≤z ≤h ) 的外侧;解 这里P =y 2-z , Q =z 2-x , R =x 2-y , 0=∂∂+∂∂+∂∂zR y Q x P . 设∑1为z =h (x 2+y 2≤h 2)的上侧, Ω为由∑与∑1所围成的空间区域, 则由高斯公式,而40222024)sin cos ()(1h d r r d dxdy y x h πθθθθπ=-=-⎰⎰⎰⎰∑, 所以 .(3)zdxdy ydzdx xdydz ++∑⎰⎰, 其中∑为半球面的上侧;解 设∑1为xOy 面上圆域x 2+y 2≤R 2的下侧, Ω为由∑与∑1所围成的空间区域, 则由高斯公式得,而 ,所以 33202R R zdxdy ydzdx xdydz ππ=-=++∑⎰⎰.(4), 其中∑为曲面(z ≥0)的上侧;解 这里, , , 其中., , ,.设∑1为z =0的下侧, Ω是由∑和∑1所围成的空间区域, 则由高斯公式,32223222)()(1z y x zdxdy ydzdx xdydz z y x zdxdy ydzdx xdydz ++++-=++++∑∑⎰⎰⎰⎰. (5)xyzdxdy∑⎰⎰, 其中∑为球面x 2+y 2+z 2=1(x ≥0, y ≥0)的外侧. 解 ∑=∑1+∑2, 其中∑1是(x 2+y 2≤1, x ≥0, y ≥0)的上侧;∑2是(x 2+y 2≤1, x ≥0, y ≥0)的下侧,xyzdxdy xyzdxdy xyzdxdy 21∑∑∑⎰⎰⎰⎰⎰⎰+=dxdy y x xy dxdy y x xy xyxy D D )1(12222------=⎰⎰⎰⎰ ⎰⎰⎰⎰-⋅⋅=--=103220221sin cos 212ρρρθθθπd d dxdy y x xy xy D .5. 证明22y x ydy xdx ++在整个xOy 平面除去y 的负半轴及原点的区域G 内是某个二元函数的全微分, 并求出一个这样的二元函数.解 这里, . 显然, 区域G 是单连通的, P 和Q 在G 内具有一阶连续偏导数, 并且 , 所以22y x ydy xdx ++在开区域G 内是某个二元函数u (x , y )的全微分. .6. 设在半平面x >0内有力构成力场, 其中k 为常数, . 证明在此力场中场力所作的功与所取的路径无关.解 场力沿路径L 所作的功为.令, . 因为P 和Q 在单连通区域x >0内具有一阶连续的偏导数, 并且,所以上述曲线积分所路径无关, 即力场所作的功与路径无关.7. 求均匀曲面的质心的坐标.解 这里∑:, (x , y )∈D xy ={(x , y )|x 2+y 2≤a 2}.设曲面∑的面密度为ρ=1, 由曲面的对称性可知, . 因为,222421a a dS ππ=⋅=∑⎰⎰, 所以 .因此该曲面的质心为.8. 设u (x , y )、v (x , y )在闭区域D 上都具有二阶连续偏导数, 分段光滑的曲线L 为D 的正向边界曲线. 证明:(1);(2),其中、分别是u 、v 沿L 的外法线向量n 的方向导数, 符号称为二维拉普拉斯算子. 证明 设L 上的单位切向量为T =(cos α, sin α), 则n =(sin α, -cos α).(1),所以 .(2)dxdy u v v u dxdy y u x u v y v x v u DD )()]()([22222222∆-∆=∂∂+∂∂-∂∂+∂∂=⎰⎰⎰⎰. 9. 求向量A =x i +y j +z k 通过闭区域Ω={(x , y , z )|0≤x ≤1, 0≤y ≤1, 0≤z ≤1}的边界曲面流向外侧的通量.解 设∑为区域Ω的边界曲面的外侧, 则通量为33==Ω⎰⎰⎰dv .10. 求力F =y i +z j +x k 沿有向闭曲线Γ所作的功, 其中Γ为平面x +y +z =1被三个坐标面所截成的三角形的整个边界, 从z 轴正向看去, 沿顺时针方向.解 设∑为平面x +y +z =1在第一卦部分的下侧, 则力场沿其边界L (顺时针方向)所作的功为.曲面∑的的单位法向量为, 由斯托克斯公式有.温馨提示-专业文档供参考,请仔细阅读后下载,最好找专业人士审核后使用!。

微积分(大学数学基础教程答案)大学数学基础教程(二)多元函数微积分王宝富 钮海第二章习题解答(下)

微积分(大学数学基础教程答案)大学数学基础教程(二)多元函数微积分王宝富 钮海第二章习题解答(下)

习题2-1 1、解:在任意一个面积微元σd 上的压力微元σρg x d dF =,所以,该平面薄片一侧所受的水压力⎰⎰=Dgxd F σρ2、解:在任意一个面积微元σd 上的电荷微元σμd y x dF ),(=,所以,该平面薄片的电荷总量⎰⎰=Dd y x Q σμ),(3、解:因为10,10≤≤≤≤y x ,所以1122++≤++y x y x ,又u ln 为单调递增函数,所以()()1ln 1ln 22++≤++y x y x ,由二重积分的保序性得()()⎰⎰⎰⎰≤≤≤≤≤≤≤≤++≤++10101010221ln 1ln y x y x d y x d y x σσ4、解:积分区域D 如图2-1-1所示,所以该物体的质量34)384438()()(1032122222=-+-=+=+=⎰⎰⎰⎰⎰-dy y y y dx y x dy d y x M y yDσ 5、解:(1)积分区域如图2-1-2所示,所以⎰⎰⎰⎰=1101),(),(xy dy y x f dx dx y x f dy(2)积分区域如图2-1-3所示,所以⎰⎰⎰⎰=xx y ydy y x f dx dx y x f dy 2/4022),(),(2(3)积分区域如图2-1-4所示,所以⎰⎰⎰⎰+----=1121222122),(),(y yx x xdx y x f dy dy y x f dx(4)积分区域如图2-1-5所示,所以⎰⎰⎰⎰=eexey dx y x f dy dy y x f dx ),(),(10ln 06、解:(1)积分区域如图2-1-6所示,所以()⎰⎰⎰⎰⎰=⎪⎭⎫ ⎝⎛-=-==101054/1134/3105565111432322x x dx x x x dy y x dx d y xxxDσ (2)积分区域如图2-1-7所示,所以1564)4(2122224022222=-==⎰⎰⎰⎰⎰--dy y y dx xy dy d xy y Dσ (3)积分区域如图2-1-8所示,所以11021011211011111101101)()()()(----+-----+-+-++--+-+-=-+-=-+-=+=⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰e e dx e e e dx e ee dxe e e dx e e e dy e dx dy e dx d e x x x x x x x x xxy x x xy x Dyx σ(4)积分区域如图2-1-9所示,所以613832419)()(20232/22222=⎪⎭⎫ ⎝⎛-=-+=-+⎰⎰⎰⎰⎰dy y y dx x y x dy d x y x yy Dσ 7、解:(1)积分区域如图2-1-10所示,令θθsin ,cos r y r x ==,所以ar ≤≤≤≤-0,22πθπ,故()⎰⎰⎰⎰⋅=-aDdr r r f r d d y x f 022sin)cos,(,ππθσ(2)积分区域如图2-1-11所示,令θθsin ,cos r y r x ==,所以θπθsin 20,0≤≤≤≤r ,故⎰⎰⎰⎰⋅=θπθθθσsin 20)sin ,cos (),(dr r r f r d d y x f D8、解:(1)积分区域如图2-1-12所示,令θθsin ,cos r y r x ==,所以θθπθ2cos sin 0,40≤≤≤≤r ,故[]12sec tan sec )(4040cos sin 014021221022-===⋅=+⎰⎰⎰⎰⎰--ππθθπθθθθθd dr r r d dy y x dx xx(2)积分区域如图2-1-13所示,令θθsin ,cos r y r x ==,所以θπθsin 20,0≤≤≤≤r ,故8)(432022022a dr r d dx y x dy ay a aπθπ==+⎰⎰⎰⎰-9、解:(1)积分区域如图2-1-14所示,故49)(12131221222=+-==⎰⎰⎰⎰⎰dx x x dy y dx x d yx x x D σ (2)积分区域如图2-1-15所示,令θθsin ,cos r y r x ==,所以10,20≤≤≤≤r πθ,故()28)1(21a r c2121)1(41121211211************21010444210143410421022202222-=⎥⎥⎦⎤⎢⎢⎣⎡-+=⎪⎪⎭⎫⎝⎛--+-=⎪⎪⎭⎫⎝⎛---=--=⋅+-=++--⎰⎰⎰⎰⎰⎰⎰⎰⎰ππππππθσπr rr r d r dr dr r r dr r rrdr rr rdr r r d d y x y x D(3)积分区域如图2-1-16所示, 故433222232214)32()()(a dy a y a ay dx y x dy d y xaayay a aD=+-=+=+⎰⎰⎰⎰⎰-σ(4)积分区域如图2-1-17所示,令θθsin ,cos r y r x ==,所以b r a ≤≤≤≤,20πθ,故()33220212232)(a b dr r d d y xbaD-==+⎰⎰⎰⎰πθσπ10、解:积分区域如图2-1-18所示,由图形的对称性得:⎰⎰==1441D d S S σ,所以24024022sin 0402cos 2sin 24a a d a rdr d S a =-===⎰⎰⎰ππθπθθθθ图2-1-1 图2-1-2 图2-1-3 图2-1-4图2-1-5 图2-1-6 图2-1-7 图2-1-8图2-1-9 图2-1-10 图2-1-11 图2-1-12图2-1-13 图2-1-14 图2-1-15 图2-1-16图2-1-17 图2-1-18习题2-21、解:⎰⎰⎰Ω=dv z y x Q ),,(μ2、化三重积分为直角坐标中的累次积分解:(1)因为积分区域Ω的上曲面为开口向上的旋转抛物面22y x z +=,下曲面为0=z ,积分区域Ω在xoy 坐标面上的投影区域x y x D xy -≤≤≤≤10;10:,所以()()⎰⎰⎰⎰⎰⎰-+Ω=101022,,,,xy x dz z y x f dy dx dv z y x f(2)因为积分区域Ω的上曲面为开口向下的抛物柱面22x z -=与下曲面为开口向上的旋转抛物面222y x z +=围成,二曲面的交线在x o y平面上的投影为圆122=+y x ,即⎪⎩⎪⎨⎧-≤≤+-≤≤--≤≤-Ω22222221111:x z y x x y x x ,所以()()⎰⎰⎰⎰⎰⎰-----+Ω=11112222222,,,,x x x y x dz z y x f dy dx dv z y x f(3)因为积分区域Ω的上曲面为开口向上的旋转抛物面22y x z +=,下曲面为0=z ,积分区域Ω在xoy 坐标面上的投影区域1;11:2≤≤≤≤-y x x D xy ,所以()()⎰⎰⎰⎰⎰⎰-+Ω=111222,,,,xy x dz z y x f dy dx dv z y x f3、解:积分区域Ω如图2-2-1所示0)1(61211161211111022=-===⎰⎰⎰⎰⎰⎰⎰⎰⎰--Ω-dx x x dy y xdx zdz dy xdx xzdxdydz xxy 另解:因为积分区域Ω关于坐标面yoz 对称,又xz z y x f =),,(关于第一坐标是奇函数,所以0=⎰⎰⎰Ωxzdxdydz 。

高等数学课后习题及参考答案(第八章)

高等数学课后习题及参考答案(第八章)

高等数学课后习题及参考答案(第八章)习题8-11. 判定下列平面点集中哪些是开集、闭集、区域、有界集、无界集?并分别指出它们的聚点所成的点集(称为导集)和边界. (1){(x , y )|x ≠0, y ≠0};解 开集, 无界集, 导集为R 2, 边界为 {(x , y )|x =0或y =0}. (2){(x , y )|1<x 2+y 2≤4};解 既非开集, 又非闭集, 有界集, 导集为 {(x , y )|1≤x 2+y 2≤4}, 边界为 {(x , y )|x 2+y 2=1或x 2+y 2=4}. (3){(x , y )|y >x 2}; 解 开集, 区域, 无界集, 导集为 {(x , y )| y ≥x 2}, 边界为 {(x , y )| y =x 2}.(4){(x , y )|x 2+(y -1)2≥1}⋂{(x , y )|x 2+(y -2)2≤4}. 解 闭集, 有界集, 导集与集合本身相同, 边界为 {(x , y )|x 2+(y -1)2=1}⋃{(x , y )|x 2+(y -2)2=4}.2. 已知函数yx xy y x y x f tan ),(22-+=, 试求f (tx , ty ).解 )(tan )()()()(),(22ty tx ty tx ty tx ty tx f ⋅⋅-+=),()tan (2222y x f t y x xy y x t =-+=.3. 试证函数F (x , y )=ln x ⋅ln y 满足关系式:F (xy , uv )=F (x , u )+F (x , v )+F (y , u )+F (y , v ).证明 F (xy , uv )=ln((x , y )⋅ln(uv )=(ln x +ln y )(ln u +ln v )=ln x ⋅ln u +ln x ⋅ln v +ln y ⋅ln u +ln y ⋅ln v =F (x , u )+F (x , v )+F (y , u )+F (y , v ). 4. 已知函数f (u , v , w )=u w +w u +v , 试求f (x +y , x -y , xy ). 解 f (x +y , x -y , xy )=(x +y )xy +(xy )(x +y )+(x -y )=(x +y )xy +(xy )2x .5. 求下列各函数的定义域: (1)z =ln(y 2-2x +1); 解 要使函数有意义, 必须 y 2-2x +1>0, 故函数的定义域为D ={(x , y )|y 2-2x +1>0}. (2)y x y x z -++=11;解 要使函数有意义, 必须 x +y >0, x -y >0, 故函数的定义域为D ={(x , y )|x +y >0, x -y >0}.(3)y x z -=;解 要使函数有意义, 必须 y ≥0,0≥-y x 即y x ≥, 于是有 x ≥0且x 2≥y , 故函数定义域为D ={(x , y )| x ≥0, y ≥0, x 2≥y }. (4)221)ln(yx x x y z --+-=; 解 要使函数有意义, 必须 y -x >0, x ≥0, 1-x 2-y 2>0, 故函数的定义域为D ={(x , y )| y -x >0, x ≥0, x 2+y 2<1}.(5)222222221r z y x z y x R u -+++---=(R >r >0); 解 要使函数有意义, 必须R 2-x 2-y 2-z 2≥0且x 2+y 2+z 2-r 2>0, 故函数的定义域为D ={(x , y , z )| r 2<x 2+y 2+z 2≤R 2}. (6)22arccos y x z u +=.解 要使函数有意义, 必须 x 2+y 2≠0, 且1||22≤+y x z 即z 2≤x 2+y 2, 故函数定义域为D ={(x , y , z )|z 2≤x 2+y 2, x 2+y 2≠0}.6. 求下列各极限: (1)22)1,0(),(1lim y x xyy x +-→;解110011lim22)1,0(),(=+-=+-→y x xy y x .(2)22)0,1(),()ln(lim yx e x y y x ++→; 解 2ln 01)1ln()ln(lim 22022)0,1(),(=++=++→e y x e x y yx . (3)xyxy y x 42lim )0,0(),(+-→; 解xy xy y x 42lim)0,0(),(+-→)42()42)(42(lim )0,0(),(+++++-=→xy xy xy xy y x 41)42(1lim )0,0(),(-=++-=→xy y x .(4)11lim )0,0(),(-+→xy xyy x ;解11lim)0,0(),(-+→xy xyy x )11)(11()11(lim)0,0(),(-+++++=→xy xy xy xy y x 2)11lim )11(lim )0,0(),()0,0(),(=++=++=→→xy xyxy xy y x y x . (5)yxy y x )sin(lim)0,2(),(→;解 y xy y x )sin(lim )0,2(),(→221sin lim )0,2(),(=⋅=⋅=→x xy xyy x .(6)22)()cos(1lim 2222)0,0(),(yx y x e y x y x ++-→. 解 2222)()(21lim )()cos(1lim 22222)0,0(),(2222)0,0(),(yx y x y x y x e y x y x e y x y x ++=++-→→ 0lim 212222)0,0(),(=+=→y x y x e y x (用等价无穷小代换). 7. 证明下列极限不存在: (1)yx yx y x -+→)0,0(),(lim;证明 如果动点p (x , y )沿y =0趋向(0, 0), 则1lim lim00 )0,0(),(==-+→=→x x y x yx x y y x ;如果动点p (x , y )沿x =0趋向(0, 0), 则1lim lim00 )0,0(),(-=-=-+→=→y yy x y x y x y x .因此, 极限yx yx y x -+→)0,0(),(lim不存在.(2)22222)0,0(),()(lim y x y x y x y x -+→. 证明 如果动点p (x , y )沿y =x 趋于(0, 0), 则1lim )(lim 44022222 )0,0(),(==-+→=→x x y x y x y x x xy y x ;如果动点p (x , y )沿y =2x 趋向(0, 0), 则044lim )(lim 2440222222 )0,0(),(=+=-+→=→x x x y x y x y x x xy y x .因此, 极限22222)0,0(),()(lim y x y x y x y x -+→不存在.8. 函数xy xy z 2222-+=在何处间断?解 因为当y 2-2x =0时, 函数无意义, 所以在y 2 -2x =0处, 函数xy x y z 2222-+=间断.9. 证明0lim 22)0,0(),(=+→yx xyy x . 证明 因为22||||2222222222y x yx y x y x xy y x xy +=++≤+=+,所以 02lim ||lim 022)0,0(),(22)0,0(),(=+≤+≤→→y x y x xyy x y x .因此 0lim22)0,0(),(=+→yx xyy x . 方法二:证明 因为2||22y x xy +≤, 故22||22222222y x y x y x y x xy +=++=+. 对于任意给定的ε>0, 取δ=2ε, 当δ<+<220y x 时恒有εδ=<+≤-+22|0|2222y x y x xy,所以 0lim22)0,0(),(=+→yx xyy x .10. 设F (x , y )=f (x ), f (x )在x 0处连续, 证明: 对任意y 0∈R , F (x , y )在(x 0, y 0)处连续.证明 由题设知, f (x )在x 0处连续, 故对于任意给定的ε>0, 取δ>0, 当|x -x 0|<δ时, 有|f (x )-f (x 0)|<ε.作(x 0, y 0)的邻域U ((x 0, y 0), δ), 显然当(x , y )∈U ((x 0, y 0), δ)时, |x -x 0|<δ, 从而|F (x , y )-F (x 0, y 0)|=|f (x )-f (x 0)|<ε, 所以F (x , y )在点(x 0, y 0)处连续.又因为y 0是任意的, 所以对任意y 0∈R , F (x , y )在(x 0, y 0)处连续.习题8-21. 求下列函数的偏导数: (1) z =x 3y -y 3x ; 解 323y y x xz -=∂∂,233xy x y z -=∂∂.(2)uvvu s 22+=;解 21)(uv v u v v u u u s -=+∂∂=∂∂,21)(vu u u v v u v v s -=+∂∂=∂∂.(3))ln(xy z =;解 x y x y x x x z 1ln ln 121)ln ln (⋅+⋅=+∂∂=∂∂)ln(21xy x =. 同理 )ln(21xy y y z =∂∂.(4) z =sin(xy )+cos 2(xy );解 y xy xy y xy xz ⋅-⋅+⋅=∂∂)]sin([)cos(2)cos()]2sin()[cos(xy xy y -=根据对称性可知)]2sin()[cos(xy xy x yz -=∂∂.(5)yx z tan ln =;解 yx y y y x yx x z 2csc 21sec tan 12=⋅⋅=∂∂,yx y x y x y x yx y z 2csc 2sec tan 1222-=-⋅⋅=∂∂. (6) z =(1+xy )y ;解 121)1()1(--+=⋅+=∂∂y y xy y y xy y xz ,]1)1[ln()1ln()1ln(xyx y xy e e y y z xy y xy y +⋅++=∂∂=∂∂++]1)1[ln()1(xy xyxy xy y ++++=.(7)zy x u =;解 )1(-=∂∂z y x zy x u ,x x zz x x y u z yz y ln 11ln ⋅=⋅=∂∂,x x zy z y x x z u z yz y ln )(ln 22⋅-=-=∂∂.(8) u =arctan(x -y )z ;解 zz y x y x z x u 21)(1)(-+-=∂∂-, zz y x y x z y u 21)(1)(-+--=∂∂-, zz y x y x y x z u 2)(1)ln()(-+--=∂∂. 2. 设g l T π2=, 试证0=∂∂+∂∂g T g l T l .解 因为lg l T ⋅⋅=∂∂1π,gg g l g T 1)21(223⋅-=⋅-⋅=∂∂-ππ, 所以 0=⋅-⋅=∂∂+∂∂g l g l g T g l T l ππ. 3. 设)11(yx ez +-=, 求证z yz y x z x 222=∂∂+∂∂.解 因为2)11(1x ex z yx ⋅=∂∂+-, 2)11(1y e yz y x ⋅=∂∂+-, 所以 z eeyz y x z x yx yx 2)11()11(22=+=∂∂+∂∂+-+-4. 设y x y x y x f arcsin )1(),(-+=, 求)1 ,(x f x .解 因为x x x x f =-+=1arcsin )11()1 ,(,所以 1)1 ,()1 ,(==x f dx d x f x .5. 曲线⎪⎩⎪⎨⎧=+=4422y y x z 在点(2, 4, 5)处的切线与正向x 轴所成的倾角是多少? 解 因为242x x x z ==∂∂,αtan 1)5,4,2(==∂∂xz ,故 4πα=.6. 求下列函数的22x z ∂∂, 22y z ∂∂, yx z ∂∂∂2. (1) z =x 4+y 4-4x 2y 2;解 2384xy x xz -=∂∂, 2222812y x x z -=∂∂; y x y yz 2384-=∂∂, 2222812x y y z -=∂∂;xy y x y yy x z 16)84(232-=-∂∂=∂∂∂. (2)xyz arctan =;解 22222)(11y x y x y xy x z +-=-⋅+=∂∂,22222)(2y x xy x z +=∂∂; 2222)1(11y x x x xy yz +=⋅+=∂∂, 22222)(2y x xy y z +-=∂∂;22222222222222)()(2)()(y x x y y x y y x y x y y y x z +-=+-+-=+-∂∂=∂∂∂. (3) z =y x .解 y y xz xln =∂∂, y y x z x 222ln =∂∂; 1-=∂∂x xy yz , 222)1(--=∂∂x y x x y z ;)1ln (1ln )ln (112+=⋅+=∂∂=∂∂∂--y x y yy y xy y y y y x z x x x x . 7. 设f (x , y , z )=xy 2+yz 2+zx 2, 求f xx (0, 0, 1), f xz (1, 0, 2), f yz (0, -1, 0)及f zzx (2, 0, 1). 解 因为f x =y 2+2xz , f xx =2z , f xz =2x , f y =2xy +z 2, f yz =2z ,f z =2yz +x 2, f zz =2y , f zzx =0, 所以 f xx (0, 0, 1)=2, f xz (1, 0, 2)=2, f yz (0, -1, 0)=0, f zzx (2, 0, 1)=0.8. 设z =x ln(xy ), 求y x z ∂∂∂23及23y x z ∂∂∂. 解 1)ln()ln(+=⋅+=∂∂xy xyyx xy x z ,x xy y x z 122==∂∂, 023=∂∂∂y x z ,y xy x y x z 12==∂∂∂, 2231y y x z -=∂∂∂. 9. 验证:(1)nx e y tkn sin 2-=满足22xy k t y ∂∂=∂∂;证明 因为nx e kn kn nx e t y t kn t kn sin )(sin 2222⋅-=-⋅⋅=∂∂--, nx ne x y tkn cos 2-=∂∂, nx e n x y t kn sin 2222--=∂∂, nx e kn xy k t kn sin 2222--=∂∂,所以 22xyk t y ∂∂=∂∂.(2)222z y x r ++=满足rz r y r x r 2222222=∂∂+∂∂+∂∂. 证明 r x z y x x x r =++=∂∂222, 322222r x r r x r x r xr -=∂∂-=∂∂, 由对称性知32222ry r y r -=∂∂, 32222r z r z r -=∂∂,因此 322322322222222rz r r y r r x r z r y r x r -+-+-=∂∂+∂∂+∂∂ rr r r r z y x r 23)(332232222=-=++-=. 习题8-31. 求下列函数的全微分: (1)yx xy z +=;解 dy y z dx x z dz ∂∂+∂∂=dy y x x dx y y )()1(2-++=.(2)xy e z =;解 xdy e x dx e x y dy y z dx x z dz y x y 12+-=∂∂+∂∂=.(3) 22yx y z +=;解 因为2/3222322)()(21y x xy y x y x z +-=+-=∂∂-, 2/3222222222)(y x x y x y x yy y x y z +=++⋅-+=∂∂, 所以 dy y x x dx y x xy dz 2/32222/322)()(+++-=)()(2/322xdy ydx y x x -+-=.(4)u =x yz . 解 因为1-⋅=∂∂yz x yz x u , x zx yu yz ln =∂∂, x yx z u yz ln =∂∂,所以 xdz yx xdy zx dx yzx du yz yz yz ln ln 1++=-.2. 求函数z =ln(1+x 2+y 2)当x =1, y =2时的全微分. 解 因为2212y x x x z ++=∂∂, 2212y x y y z ++=∂∂, 3121=∂∂==y x xz, 3221=∂∂==y x y z , 所以 dy dx dz y x 323121⋅+===.3. 求函数xyz =当x =2, y =1, ∆x =0.1, ∆y =-0.2时的全增量和全微分. 解 因为xy x x y y z -∆+∆+=∆, y x x x ydz ∆+∆-=12,所以, 当x =2, y =1, ∆x =0.1, ∆y =-0.2时,119.0211.02)2.0(1-=-+-+=∆z , 125.0)2.0(211.041-=-⨯+⨯-=dz .4. 求函数z =e xy 当x =1, y =1, ∆x =0.15, ∆y =0.1时的全微分. 解 因为y xe x ye y yz x x z dz xy xy ∆+∆=∆∂∂+∆∂∂=所以, 当x =1, y =1, ∆x =0.15, ∆y =0.1时, e e e dz 25.01.015.0=⋅+⋅=.*5. 计算33)97.1()102(+的近似值. 解 设33y x z +=, 由于y yz x x z y x y y x x ∆∂∂+∆∂∂++≈∆++∆+3333)()(332233233y x y y x x y x +∆+∆++=, 所以取x =1, y =2, ∆x =0.02, ∆y =-0.03可得95.2212)03.0(2302.0321)97.1()02.1(32333=+-⋅⋅+⋅++≈+. *6. 计算(1.97)1.05的近似值(ln2=0.693). 解 设z =x y , 由于y yz x x z x x x y y y ∆∂∂+∆∂∂+≈∆+∆+)(y x x x yx x y y y ∆+∆+=-ln 1,所以取x =2, y =1, ∆x =-0.03, ∆y =0.05可得(1.97)1.05≈2-0.03+2ln2⋅0.05+1.97+0.0693 ≈2.093.*7. 已知边长为x =6m 与y =8m 的矩形, 如果x 边增加5cm 而y 边减少10cm ,问这个矩形的对角线的近似变化怎样?解 矩形的对角线为22y x z +=,)(122y y x x yx y dy dz x dx dz dz z ∆+∆+=∆+∆=≈∆,当x =6, y =8, ∆x =0.05, ∆y =-0.1时,05.0)1.0805.06(86122-=⋅-⋅+≈∆z .这个矩形的对角线大约减少5cm .*8. 设有一无盖圆柱形容器, 容器的壁与底的厚度均为0.1cm , 内高为20cm ,内半径为4厘米, 求容器外壳体积的近似值.解 圆柱体的体积公式为V =πR 2h , ∆V ≈dV =2πRh ∆R +πR 2∆h , 当R =4, h =20, ∆R =∆h =0.1时,∆V ≈2⨯3.14⨯4⨯20⨯0.1+3.14⨯42⨯0.1≈55.3(cm 3), 这个容器外壳的体积大约是55.3cm 3.*9. 设有直角三角形, 测得其两腰的长分别为7±0.1cm 和24±0.1cm , 试求利用上述二值来计算斜边长度时的绝对误差. 解 设两直角边的长度分别为x 和y , 则斜边的长度为22y x z +=.||||||||||||y y z x x z dz z ∆⋅∂∂+∆⋅∂∂≤≈∆|)|||(122y y x x y x ∆+∆+=.令x =7, y =24, |∆x |≤0.1, |∆y |≤0.1, 则得斜边长度z 的绝对误差约为124.0)1.0241.07(247122=⋅+⋅+=z δcm .*10. 测得一块三角形土地的两边长分别为63±0.1m 和78±0.1m ,这两边的夹角为60︒±1︒, 试求三角形面积的近似值, 并求其绝对误差和相对误差.解 设三角形的两边长为x 和y , 它们的夹角z , 为则三角形面积为z xy s sin 21=.zdz xy zdy x zdx y dS cos 21sin 21sin 21++=||cos 21||sin 21||sin 21||||dz z xy dy z x dx z y dS S ++≤≈∆.令x =63, y =78, 3π=z , |dx |=0.1, |dy |=0.1, 180π=dz , 则55.2718021278631.0232631.023278=⨯⨯⨯+⨯⨯+⨯⨯≈πδs ,82.21273sin 786321=⋅⋅⋅=πS ,%29.182.212755.27==S s δ,所以三角形面积的近似值为2127.82m 2, 绝对误差为27.55m 2, 相对误差为1.29%.*11. 利用全微分证明: 两数之和的绝对误差等于它们各自的绝对误差之和.证明 设u =x +y , 则||||||||||||y x y x y yu x x u du u ∆+∆≤∆+∆=∆∂∂+∆∂∂=≈∆.所以两数之和的绝对误差|∆u |等于它们各自的绝对误差|∆x |与|∆y |的和.*12. 利用全微分证明: 乘积的相对误差等于各因子的相对误差之和; 商的相对误差等于被除数及除数的相对误差之和. 证明 设u =xy , y x v =, 则∆u ≈du =ydx +xdy ,2yxdyydx dv v -=≈∆, 由此可得相对误差;||||||||y dy x dx xy xdy ydx u du u u +=+=≈∆||||||||yyx x y dy x dx ∆+∆=+≤;||||||||2y dy x dx yxy xdy ydx v dv v v -=⋅-==∆||||||||y yx x y dy x dx ∆+∆=+≤.习题8-41. 设z =u 2-v 2, 而u =x +y , v =x -y , 求x z ∂∂, y z ∂∂.解 xv v z x u u z x z ∂∂⋅∂∂+∂∂⋅∂∂=∂∂=2u ⋅1+2v ⋅1=2(u +v )=4x ,y v v z y u u z y z ∂∂⋅∂∂+∂∂⋅∂∂=∂∂=2u ⋅1+2v ⋅(-1)=2(u -v )=4y .2. 设z =u 2ln v , 而y x u =, v =3x -2y , 求x z ∂∂, y z ∂∂.解 xv v z x u u z x z ∂∂⋅∂∂+∂∂⋅∂∂=∂∂31ln 22⋅+⋅=v u y v u 222)23(3)23ln(2y y x x y x y x -+-=, yv v z y u u z y z ∂∂⋅∂∂+∂∂⋅∂∂=∂∂)2()(ln 222-+-⋅=v u y x v u 2232)23(2)23ln(2y y x x y x y x ----=. 3. 设z =e x -2y , 而x =sin t , y =t 3, 求dtdz .解 dt dyy z dt dx x z dt dz ⋅∂∂+⋅∂∂=2223)2(cos t e t e y x y x ⋅-⋅+=--)6(cos )6(cos 22sin 223t t e t t e t t y x -=-=--.4. 设z =arcsin(x - y ), 而x +3t , y =4t 3, 求dtdz .解 dt dy y z dt dx x z dt dz ⋅∂∂+⋅∂∂=22212)(113)(11t y x y x ⋅---+⋅--= 232)43(1)41(3t t t ---=. 5. 设z =arctan(xy ), 而y =e x , 求dxdz .解 dx dy y z x z dx dz ⋅∂∂+∂∂=x xxe x x e e y x x y x y 2222221)1(11++=⋅+++=.6. 设1)(2+-=a z y e u ax , 而y =a sin x , z =cos x , 求dxdu .解 dxdz dz u dx dyy u x u dx du ⋅∂+⋅∂∂+∂∂=)sin (1cos 11)(222x a e x a a e a z y ae ax ax ax -⋅+-⋅+++-= )sin cos cos sin (122x x a x a x a a e ax ++-+=x e ax sin =. 7. 设yx z arctan =, 而x =u +v , y =u -v , 验证22v u v uv z u z +-=∂∂+∂∂. 证明)()(vy y z v x x z u y y z u x x z v z u z ∂∂⋅∂∂+∂∂⋅∂∂+∂∂⋅∂∂+∂∂⋅∂∂=∂∂+∂∂)()(111)(11222y x yx y y x -⋅++⋅+=)1()()(111)(11222-⋅-⋅++⋅++y x yx y y x22222v u v u y x y +-=+=. 8. 求下列函数的一阶偏导数(其中f 具有一阶连续偏导数): (1) u =f (x 2-y 2, e xy );解 将两个中间变量按顺序编为1, 2号, 2122212)()(f ye f x xe f x y x f x u xy xy '+'=∂∂⋅'+∂-∂⋅'=∂∂, 212)2212)((f xe f y y e f y y x f y u xy xy '+'-=∂∂⋅'+∂-∂⋅'=∂∂.(2)) ,(zyy x f u =;解1211)()(f yz y x f y x x f x u '=∂∂⋅'+∂∂⋅'=∂∂, )()(21z yy f y x y f y u ∂∂⋅'+∂∂'=∂∂2121f z f y x '+'-=,)()(21z y z f z x z f z u ∂∂⋅'+∂∂'=∂∂22f zy'⋅-=.(3) u =f (x , xy , xyz ).解 yz f y f f x u ⋅'+⋅'+⋅'=∂∂3211321f yz f y f '+'+'=,3232f xz f x xz f x f y u '+'=⋅'+⋅'=∂∂,33f xy xy f zu '=⋅'=∂∂.9. 设z =xy +xF (u ), 而xyu =, F (u )为可导函数, 证明xy z yz y x z x +=∂∂+∂∂⋅. 证明 y z y x z x ∂∂⋅+∂∂⋅])([])()([y u u F x x y x u u F x u F y x ∂∂'+⋅+∂∂'++=)]([)]()([u F x y u F xyu F y x '+⋅+'-+==xy +xF (u )+xy =z +xy .10. 设)(22y x f yz -=, 其中f (u )为可导函数, 验证211y z y z y x z x =∂∂+∂∂.证明 ()()u f f xy u f x f y x z 2222'-=⋅'⋅-=∂∂, ()()u f f y u f u f y f y u f y z 2222)(1)2()('-+=-⋅'⋅-=∂∂, 所以 )(11221122u f y u f f y u f f y y z y x z x ⋅+'+'-=∂∂⋅+∂∂⋅211yz zy y =⋅. 11. 设z =f (x 2+y 2), 其中f 具有二阶导数, 求22x z ∂∂, y x z ∂∂∂2, 22yz ∂∂. 解 令u =x 2+y 2, 则z =f (u ), f x xu u f x z '=∂∂'=∂∂2)(,f y yu u f y z '=∂∂'=∂∂2)(,f x f x u f x f x z ''+'=∂∂⋅''+'=∂∂2224222,f xy yu f x y x z ''=∂∂⋅''=∂∂∂422, f y f yu f y f y z ''+'=∂∂⋅''+'=∂∂422222. 12. 求下列函数的22x z ∂∂,y x z ∂∂∂2,22y z ∂∂(其中f 具有二阶连续偏导数):(1) z =f (xy , y );解 令u =xy , v =y , 则z =f (u , v ).ufy v f y u f x v v f x u u f x z ∂∂=⋅∂∂+⋅∂∂=∂∂⋅∂∂+∂∂⋅∂∂=∂∂0,vfu f x v f x u f y v v f y u u f y z ∂∂+∂∂=⋅∂∂+⋅∂∂=∂∂⋅∂∂+∂∂⋅∂∂=∂∂1.因为f (u , v )是u 和v 的函数, 所以u f∂∂和vf ∂∂也是u 和v 的函数, 从而u f∂∂和vf ∂∂是以u 和v 为中间变量的x 和y 的函数. )()()(22uf x y u f y x x z x x z ∂∂∂∂=∂∂∂∂=∂∂∂∂=∂∂222222222)0()(u f y v u f y u f y x v v u f x u u f y ∂∂=⋅∂∂∂+⋅∂∂=∂∂⋅∂∂∂+∂∂⋅∂∂=,)(1)()(2uf y y u f u f y y x z y y x z ∂∂∂∂+∂∂⋅=∂∂∂∂=∂∂∂∂=∂∂∂ )(222yvv u f y u u f y u f ∂∂⋅∂∂∂+∂∂⋅∂∂+∂∂=v u fy u f xy u f v u f x u f y u f ∂∂∂+∂∂+∂∂=⋅∂∂∂+⋅∂∂+∂∂=222222)1(,)()()()(22vf y u f y x v f u f x y y z y y z∂∂∂∂+∂∂∂∂=∂∂+∂∂∂∂=∂∂∂∂=∂∂ y vv f y u u v f y v v u f y u u f x ∂∂⋅∂∂+∂∂⋅∂∂∂+∂∂⋅∂∂∂+∂∂⋅∂∂=222222)(1)1(222222⋅∂∂+⋅∂∂∂+⋅∂∂∂+⋅∂∂=v fx u v f v u f x u f x 2222222vf v u f x u f x ∂∂+∂∂∂+∂∂=. (2)) ,(yx x f z =;解 令u =x ,yx v =, 则z =f (u , v ).v fy u f x v v f dx du u f x z ∂∂⋅+∂∂=∂∂⋅∂∂+⋅∂∂=∂∂1,vfy x dy dv v f y z ∂∂⋅-=⋅∂∂=∂∂2.因为f (u , v )是u 和v 的函数, 所以u f∂∂和vf ∂∂也是u 和v 的函数, 从而u f∂∂和v f ∂∂是以u 和v 为中间变量的x 和y 的函数. )(1)()1()(22vf x y u f x v f y u f x x z x x z ∂∂∂∂⋅+∂∂∂∂=∂∂⋅+∂∂∂∂=∂∂∂∂=∂∂ )(1)(222222xvv f dx du u v f y x v v u f dx du u f ∂∂⋅∂∂+⋅∂∂∂+∂∂⋅∂∂∂+⋅∂∂=22222212vfy v u f y u f ∂∂⋅+∂∂∂⋅+∂∂=,)1()(2vf y u f y x z y y x z ∂∂⋅+∂∂∂∂=∂∂∂∂=∂∂∂ )(1)1()(vfy y v f y dy d u f y ∂∂∂∂⋅+∂∂⋅+∂∂∂∂=y vv f y v f y y v v u f ∂∂⋅∂∂⋅+∂∂⋅-∂∂⋅∂∂∂=222112232221v f y x v f y v u f y x ∂∂⋅-∂∂⋅-∂∂∂⋅-= )()()(2222vf y y x v f y x y y z y y z ∂∂∂∂⋅-∂∂⋅-∂∂=∂∂∂∂=∂∂ 22423222322v f y x v f y x y v v f y x v f y x ∂∂⋅+∂∂⋅=∂∂⋅∂∂⋅-∂∂⋅=. (3) z =f (xy 2, x 2y );解 z x =f 1'⋅y 2+f 2'⋅2xy =y 2f 1'+2xyf 2',z y=f1'⋅2xy+f2'⋅x2=2xyf1'+x2f2';z xx=y2[f11''⋅y2+f12''⋅2xy]+2yf2''+2xy[f21''⋅y2+f22''⋅2xy]=y4f11''+2xy3f12''+2yf2''+2xy3f21''+4x2y2 f22''=y4f11''+4xy3f12''+2yf2''+4x2y2 f22'',z xy=2y f1'+y2[f11''⋅2xy+f12''⋅x2]+2xf2'+2xy[f21''⋅2xy+f22''⋅x2]=2y f1'+2xy3f11''+x2y2f12''+2xf2'+4x2y2f21''+2x3yf22''=2y f1'+2xy3f11''+5x2y2f12''+2xf2'+2x3yf22'',z yy=2xf1'+2xy[f11''⋅2xy+f12''⋅x2]+x2[f21''⋅2xy+f22''⋅x2]=2xf1'+4x2y2f11''+2x3y f12''+2x3yf21''+x4f22''=2xf1'+4x2y2f11''+4x3y f12''+x4f22''.(4) z=f(sin x, cos y,e x+y).解z x=f1'⋅cos x+ f3'⋅e x+y=cos x f1'+e x+y f3',z y=f2'⋅(-sin y)+ f3'⋅e x+y=-sin y f2'+e x+y f3',z xx=-sin x f1'+cos x⋅(f11''⋅cos x+ f13''⋅e x+y)+e x+y f3'+e x+y(f31''⋅cos x+ f33''⋅e x+y)=-sin x f1'+cos2x f11''+e x+y cos x f13''+e x+y f3'+e x+y cos x f31''+e2(x+y) f33''=-sin x f1'+cos2x f11''+2e x+y cos x f13''+e x+y f3'+e2(x+y) f33'', z xy=cos x[f12''⋅(-sin y)+ f13''⋅e x+y]+e x+y f3'+e x+y [f32''⋅(-sin y)+ f33''⋅e x+y]=-sin y cos x f12''+e x+y cos x f13'+e x+y f3'-e x+y sin y f32'+e2(x+y)f33'=-sin y cos x f12''+e x+y cos x f13''+e x+y f3'-e x+y sin y f32''+e2(x+y)f33'',z yy=-cos y f2'-sin y[f22''⋅(-sin y)+ f23''⋅e x+y]+e x+y f3'+e x+y[f32''⋅(-sin y)+ f33''⋅e x+y]=-cos y f 2'+sin 2y f 22''-e x +y sin y f 23'' +e x +y f 3'-e x +y sin y f 32''+ f 33''⋅e 2(x +y )=-cos y f 2'+sin 2y f 22''-2e x +y sin y f 23''+e x +y f 3'+f 33''⋅e 2(x +y ). 13. 设u =f (x , y )的所有二阶偏导数连续, 而23t s x -=,23ts y +=, 证明2222)()()()(tu s u y u x u ∂∂+∂∂=∂∂+∂∂及22222222t u s u y u x u ∂∂+∂∂=∂∂+∂∂.证明 因为y u x u s yy u s x x u s u ∂∂⋅+∂∂⋅=∂∂⋅∂∂+∂∂⋅∂∂=∂∂2321yu x u t yy u t x x u t u ∂∂⋅+∂∂⋅-=∂∂⋅∂∂+∂∂⋅∂∂=∂∂2123所以2222)2123()2321()()(y u x u y u x u t u s u ∂∂+∂∂-+∂∂+∂∂=∂∂+∂∂22)()(yu x u ∂∂+∂∂=.又因为)2321()(22yu x u s s u s s u∂∂⋅+∂∂⋅∂∂=∂∂∂∂=∂∂ )(23)(21222222s y y u s x x y u s y y x u s x x u ∂∂⋅∂∂+∂∂⋅∂∂∂+∂∂⋅∂∂∂+∂∂⋅∂∂= )2321(23)2321(21222222yu x y u y x u x u ∂∂⋅+∂∂∂⋅+∂∂∂⋅+∂∂⋅=22222432341y u y x u x u ∂∂⋅+∂∂∂⋅+∂∂⋅=, )2123()(22yu x u t t u t t u ∂∂⋅+∂∂⋅-∂∂=∂∂∂∂=∂∂ )(21)(23222222t y y u t x x y u t y y x u t x x u ∂∂⋅∂∂+∂∂⋅∂∂∂+∂∂⋅∂∂∂+∂∂⋅∂∂-= )2123(21)2123(23222222y u x y u y x u x u ∂∂⋅+∂∂∂⋅-+∂∂∂⋅+∂∂⋅--= 22222412343yu y x u x u ∂∂⋅+∂∂∂⋅-∂∂⋅=, 所以 22222222yu x u t u s u ∂∂+∂∂=∂∂+∂∂. 习题8-51. 设sin y +e x-xy 2=0, 求dxdy.解 令F (x , y )=sin y +e x -xy 2, 则F x =e x -y 2, F y =cos y -2xy , xy y e y xy y y e F F dx dy xy x 2cos 2cos 222--=---=-=. 2. 设xy y x arctan ln 22=+, 求dx dy.解 令xy y x y x F arctan ln ),(22-+=, 则22222222)()(11221y x y x x y xy y x x y x F x ++=-⋅+-+⋅+=, 22222221)(11221yx x y x xy y x y y x F y +-=⋅+-+⋅+=, y x y x F F dx dyy x -+=-=. 3. 设022=-++xyz z y x , 求x z ∂∂及y z ∂∂.解 令xyz z y x z y x F 22),,(-++=, 则 xyz yz F x -=1, xyzxz F y -=2, xyz xyF z -=1, xy xyz xyz yz F F x z z x --=-=∂∂, xy xyz xyz xz F F y z z y --=-=∂∂2. 4. 设y z z x ln =, 求x z ∂∂及y z ∂∂,解 令yz z x z y x F ln ),,(-=, 则 z F x 1=, y y z y z F y 1)(12=-⋅-=, 2211z z x y yz z x F z +-=⋅--=, 所以 z x z F F x z z x +=-=∂∂, )(2z x y z F F yz z y +=-=∂∂.5. 设2sin(x +2y -3z )=x +2y -3z , 证明1=∂∂+∂∂y z x z证明 设F (x , y , z )=2sin(x +2y -3z )-x -2y +3z , 则F x =2cos(x +2y -3z )-1, F y =2cos(x +2y -3z )⋅2-2=2F x ,F z =2cos(x +2y -3z )⋅(-3)+3=-3F x ,313=--=-=∂∂x x z x F F F F x z ,3232=--=-=∂∂x x z y F F F F y z , 于是 13231=+=--=∂∂+∂∂z z z x F FF F y z x z .6. 设x =x (y , z ), y =y (x , z ), z =z (x , y )都是由方程F (x , y , z )=0所确定的具有连续偏导数的函数, 证明1-=∂∂⋅∂∂⋅∂∂x z z yy x .解 因为x y F F y x -=∂∂, y z F F z y -=∂∂, zx F F x z -=∂∂, 所以 1)()()(-=-⋅-⋅-=∂∂⋅∂∂⋅∂∂zx y z x y F F F F F F x z z y y x . 7. 设ϕ(u , v )具有连续偏导数, 证明由方程ϕ(cx -az , cy -bz )=0 所确定的函数z =f (x , y )满足 c y z b x z a =∂∂+∂∂.证明 因为vu u v u u b a c b a c x z ϕϕϕϕϕϕ+=⋅-⋅-⋅-=∂∂,vu vv u v b a c b a c y z ϕϕϕϕϕϕ+=⋅-⋅-⋅-=∂∂,所以 c b a c b b a c a y z b x z a vu v v u u =+++⋅=∂∂+∂∂ϕϕϕϕϕϕ.8. 设e z-xyz =0, 求22x z ∂∂. 解 设F (x , y , z )=e z -xyz , 则F x =-yz , F z =e z-xy , xye yz F F x z zz x -=-=∂∂, 222)()()()(xy e y x z e yz xy e x z y x z x x z z z z --∂∂--∂∂=∂∂∂∂=∂∂ 222)()(xy e xye yzyze xy ye z y zz z z ----+=32232)(22xy e e z y z xy ze y z zz ---=. 9. 设z 3-3xyz =a 3, 求yx z ∂∂∂2. 解 令F (x , y , z )=z 3-3xyz -a 3, 则 xy z yzxy z yz F F x z z x -=---=-=∂∂22333,xyz xz xy z xz F F y z z y -=---=-=∂∂22333, )()(22xyz yz y x z y y x z -∂∂=∂∂∂∂=∂∂∂ 222)()2())((xy z x yz z yz xy z y z y z --∂∂--∂∂+=22222)()2()()(xy z x xyz xz z yz xy z xy z xz yz -----⋅-+=322224)()2(xy z y x xyz z z ---=. 10. 求由下列方程组所确定的函数的导数或偏导数: (1)设⎩⎨⎧=+++=203222222z y x y x z , 求dx dy , dx dz ; 解 视y =y (x ), z =z (x ), 方程两边对x 求导得 ⎪⎩⎪⎨⎧=+++=064222dx dz z dx dy y x dx dy y x dx dz , 即⎪⎩⎪⎨⎧-=+-=-xdx dzz dxdy y x dx dz dx dy y 3222.解方程组得 )13(2)16(++-=∂∂z y z x x y , 13+=z x dx dz.(2)设⎩⎨⎧=++=++10222z y x z y x , 求dz dx ,dz dy ; 解 视x =x (z ), y =y (z ), 方程两边对z 求导得 ⎪⎩⎪⎨⎧=++=++022201z dz dy y dz dx x dz dy dz dx , 即⎪⎩⎪⎨⎧-=+-=+zdz dy y dzdxx dz dy dz dx 2221.解方程组得y x z y z x --=∂∂, yx xz z y --=∂∂.(3)设⎩⎨⎧-=+=),(),(2y v x u g v y v ux f u , 其中f , g 具有一阶连续偏导数, 求x u ∂∂,xv ∂∂; 解 视u =u (x , y ), v =v (x , y ), 方程两边对x 求偏导得⎪⎩⎪⎨⎧∂∂⋅'+-∂∂⋅'=∂∂∂∂⋅'+∂∂+⋅'=∂∂x v yv g x u g xv x vf x u x u f x u 21212)1()( , 即 ⎪⎩⎪⎨⎧'=∂∂⋅⋅-'+∂∂'''-=∂∂⋅'+∂∂-'121121)12()1(g x v g yv xu g f u x v f x u f x . 解之得1221221)12)(1()12(g f g yv f x g f g yv f u x u ''--'-'''--''-=∂∂, 1221111)12)(1()1(g f g yv f x f u f x g x v ''--'-'-'+''=∂∂.(4)设⎩⎨⎧-=+=vu e y v u e x u u cos sin , 求x u ∂∂, y u ∂∂, x v ∂∂, y v ∂∂. 解 视u =u (x , y ), v =v (x , y ), 方程两边微分得⎩⎨⎧+-=++=vdv u vdu du e dy vdv u vdu du e dx u u sin cos cos sin , 即 ⎩⎨⎧=+-=++dy vdv u du v e dx vdv u du v e u u sin )cos (cos )sin (, 从中解出du , dv 得dy v v e v dx v v e v du u u 1)cos (sin cos 1)cos (sin sin +--++-=, dy v v e u e v dx v v e u e v dv u u u u ]1)cos (sin [sin ]1)cos (sin [cos +-+++--=, 从而 1)cos (sin sin +-=∂∂v v e v x u u , 1)cos (sin cos +--=∂∂v v e v y u u , ]1)cos (sin [cos +--=∂∂v v e u e v x v u u , ]1)cos (sin [sin +-+=∂∂v v e u e v y v u u . 11. 设y =f (x , t ), 而t 是由方程F (x , y , t )=0所确定的x , y 的函数, 其中f , F 都具有一阶连续偏导数, 试证明:tFy F t f x F t f t F x f dx dy ∂∂+∂∂⋅∂∂∂∂⋅∂∂-∂∂⋅∂∂=. 证明 由方程组⎩⎨⎧==0),,(),(t y x F t x f y 可确定两个一元隐函数⎩⎨⎧==)()(x t t x y y , 方程两边对x 求导可得 ⎪⎩⎪⎨⎧=⋅∂∂+⋅∂∂+∂∂⋅∂∂+∂∂=0dxdt t F dx dy y F x F dx dt t f x f dx dy , 移项得 ⎪⎩⎪⎨⎧∂∂-=∂∂+⋅∂∂∂∂=⋅∂∂-x F dxdt t F dx dy y F x f dx dt t f dx dy ,在01≠∂∂⋅∂∂+∂∂=∂∂∂∂∂∂-=y F t f t F t F y F t fD 的条件下 yF t f t F x F t f t F x f t F x F t f x f D dx dy ∂∂⋅∂∂+∂∂∂∂⋅∂∂-∂∂⋅∂∂=∂∂∂∂-∂∂-∂∂⋅=1.习题8-61. 求曲线x =t -sin t , y =1-cos t , 2sin 4t z =在点)22 ,1 ,12 (-π处的切线及法平面方程.解 x '(t )=1-cos t , y '(t )=sin t , 2cos 2)(t t z ='. 因为点)22 ,1 ,12 (-π所对应的参数为2π=t , 故在点)22 ,1 ,12(-π处的切向量为)2 ,1 ,1(=T . 因此在点)22 ,1 ,12(-π处, 切线方程为 22211121-=-=-+z y x π, 法平面方程为0)22(2)1(1)12(1=-+-⋅++-⋅z y x π, 即422+=++πz y x .2. 求曲线t t x +=1, tt y +=1, z =t 2在对应于t =1的点处的切线及法平面方程.解 2)1(1)(t t x +=', 21)(t t y -=', z '(t )=2t . 在t =1所对应的点处, 切向量)2 ,1 ,41(-=T , t =1所对应的点为)1 ,2 ,21(, 所以在t =1所对应的点处, 切线方程为 21124121-=--=-z y x , 即8142121-=--=-z y x ; 法平面方程为0)1(2)2()21(41=-+---z y x , 即2x -8y +16z -1=0. 3. 求曲线y 2=2mx , z 2=m -x 在点(x 0, y 0, z 0)处的切线及法平面方程.解 设曲线的参数方程的参数为x , 将方程y 2=2mx 和z 2=m -x 的两边对x 求导, 得m dx dy y 22=, 12-=dxdz z , 所以y m dx dy =, z dxdz 21-=. 曲线在点(x 0, y 0, z 0,)的切向量为)21,,1(00z y m -=T , 所求的切线方程为0000211z z z y m y y x x --=-=-, 法平面方程为0)(21)()(00000=---+-z z z y y y m x x . 4. 求曲线⎩⎨⎧=-+-=-++0453203222z y x x z y x 在点(1, 1, 1)处的切线及法平面方程.解 设曲线的参数方程的参数为x , 对x 求导得,⎪⎩⎪⎨⎧=+-=-++053203222dx dz dx dy dx dz z dx dy y x , 即⎪⎩⎪⎨⎧=-+-=+2533222dxdz dx dy x dx dz z dx dy y . 解此方程组得z y z x dx dy 61015410----=, zy y x dx dz 610946---+=. 因为169)1,1,1(=dx dy , 161)1,1,1(-=dx dz , 所以)161 ,169 ,1(=T . 所求切线方程为1611169111--=-=-z y x , 即1191161--=-=-z y x ; 法平面方程为0)1(161)1(169)1(=---+-z y x , 即16x +9y -z -24=0. 5. 求出曲线x =t , y =t 2, z =t 3上的点, 使在该点的切线平行于平面x +2y +z =4.解 已知平面的法线向量为n =(1, 2, 1).因为x '=1, y '=2t , z '=3t 2, 所以参数t 对应的点处的切向量为T =(1, 2t , 3t 2). 又因为切线与已知平面平行, 所以T ⋅n =0, 即1+4t +3t 2=0,解得t =-1, 31-=t . 于是所求点的坐标为(-1, 1, -1)和)271 ,91 ,31(--. 6. 求曲面e z -z +xy =3在点(2,1,0)处的切平面及法线方程. 解 令F (x , y , z )=e z -z +xy -3, 则n =(F x , F y , F z )|(2, 1, 0)=(y , x , e z -1)|(2, 1, 0)=(1, 2, 0),点(2,1, 0)处的切平面方程为1⋅(x -2)+2(y -1)+0⋅(z -0)=0, 即x +2y -4=0,法线方程为02112-=-=-z y x . 7. 求曲面ax 2+by 2+cz 2=1在点(x 0, y 0, z 0)处的切平面及法线方程.解 令F (x , y , z )=ax 2+by 2+cz 2-1, 则n =(F x , F y , F z )=(2ax , 2by , 2cz )=(ax , by , cz ).在点(x 0, y 0, z 0)处, 法向量为(ax 0, by 0, cz 0), 故切平面方程为 ax 0(x -x 0)+by 0(y -y 0)+cz 0(z -z 0)=0,即 202020000cz by ax z cz y by x ax ++=++,法线方程为00000cz z z by y y ax x x -=-=-.8. 求椭球面x 2+2y 2+z 2=1上平行于平面x -y +2z =0的切平面方程.解 设F (x , y , z )=x 2+2y 2+z 2-1, 则n =(F x , F y , F z )=(2x , 4y , 2z )=2(x , 2y , z ).已知切平面的法向量为(1, -1, 2). 因为已知平面与所求切平面平行, 所以2121z y x =-=, 即z x 21=, z y 41-=, 代入椭球面方程得1)4(2)2(222=+-+z z z ,解得1122±=z , 则1122±=x , 11221 =y . 所以切点坐标为)1122,11221,112(±± . 所求切平面方程为0)1122(2)11221()112(=±+-±z y x , 即 2112±=+-z y x . 9. 求旋转椭球面3x 2+y 2+z 2=16上点(-1, -2, 3)处的切平面与xOy 面的夹角的余弦.解 x O y 面的法向为n 1=(0, 0, 1).令F (x , y , z )=3x 2+y 2 +z 2-16, 则点(-1, -2, 3)处的法向量为 n 2=(F x , F y , F z )|(-1, -2, 3)=(6x , 2y , 2z )|(-1, -2, 3)=(-6, -4, 6). 点(-1, -2, 3)处的切平面与xOy 面的夹角的余弦为22364616||||cos 2222121=++⋅=⋅⋅=n n n n θ.10. 试证曲面a z y x =++(a >0)上任何点处的切平面在各坐标轴上的截距之和等于a .证明 设a z y x z y x F -++=),,(, 则)21,21,21(zy x =n . 在曲面上任取一点M (x 0, y 0, z 0), 则在点M 处的切平面方程为0)(1)(1)(1000000=-+-+-z z z y y y x x x , 即 a z y x z z y y x x =++=++000000. 化为截距式, 得1000=++az z ay y ax x , 所以截距之和为a z y x a az ay ax =++=++)(000000.习题8-71. 求函数z =x 2+y 2在点(1, 2)处沿从点(1, 2)到点)32 ,2(+的方向的方向导数.解 因为从点(1, 2)到点)32 ,2(+的向量为)3 ,1(=l , 故 )cos ,(cos )23 ,21(||βα===l l e l . 又因为22)2,1()2,1(==∂∂x x z , 42)2,1()2,1(==∂∂y y z , 故所求方向导数为321234212cos cos +=⋅+⋅=∂∂+∂∂=∂∂βαy z x z l z . 2. 求函数z =ln(x +y )在抛物线y 2=4x 上点(1, 2)处, 沿这抛物线在该点处偏向x 轴正向的切线方向的方向导数.解 方程y 2=4x 两边对x 求导得2yy '=4, 解得y y 2='.。

高等数学课后答案 第八章 习题详细解答

高等数学课后答案 第八章 习题详细解答

习 题 8-11.设有一个面薄板(不计其厚度),占有xOy 面上的闭区域D ,薄板上分布有面密度为(,)x y μμ=的电荷,且(,)x y μ在D 上连续,试用二重积分表达该板上的全部电荷Q .解 用一组曲线将D 分成n 个小闭区域i σ∆,其面积也记为(1,2,,)i i n σ∆= .任取一点(,)i i i ξησ∈∆,则i σ∆上分布的电量(,)i i i Q μξησ∆≈∆.通过求和、取极限,便得到该板上的全部电荷为1lim (,)(,)d ,ni i i i DQ x y λμξησμσ→==∆=∑⎰⎰其中1max{i i nλσ≤≤=∆的直径}.2. 设12231()d D I x y σ=+⎰⎰其中1{(,)11,22}D x y x y =-≤≤-≤≤;又22232()d D I x y σ=+⎰⎰其中2{(,)01,02}D x y x y =≤≤≤≤.试利用二重积分的几何意义说明1I 与2I 之间的关系.解 由二重积分的几何意义知,1I 表示底为1D 、顶为曲面223()z x y =+的曲顶柱体1Ω的体积;2I 表示底为2D 、顶为曲面223()z x y =+的曲顶柱体2Ω的体积.由于位于1D 上方的曲面223()z x y =+关于yOz 面和zOx 面均对称,故yOz 面和zOx 面将1Ω分成四个等积的部分,其中位于第一卦限的部分即为2Ω.由此可知124I I =.3. 利用二重积分定义证明: (1) d ()DD σσσ=⎰⎰其中为的面积;(2) (,)d (,)d ()DDkf x y k f x y k σσ=⎰⎰⎰⎰其中为常数;(3)12(,)d (,)d (,)d ,DD D f x y f x y f x y σσσ=+⎰⎰⎰⎰⎰⎰其中12D D D= ,1D 、2D 为两个无公共内点的闭区域.证 (1) 由于被积函数(,)1f x y ≡,故由二重积分定义得11d lim (,)lim lim .nniiii i i Df λλλσξησσσσ→→→===∆=∆==∑∑⎰⎰(2) 011(,)d lim (,)lim (,)(,)d .nni i i i i i i i DDkf x y kf k f k f x y λλσξησξησσ→→===∆=∆=∑∑⎰⎰⎰⎰(3) 因为函数(,)f x y 在闭区域D 上可积,故不论把D 怎样分割,积分和的极限总是不变的,因此在分割D 时,可以使1D 和2D 的公共边界永远是一条分割线。

徐荣聪,厦门大学出版社高数第2章参考答案详细解答

徐荣聪,厦门大学出版社高数第2章参考答案详细解答

第二章参考答案习题2-1 P431、(1)t g g V ∆--=2110,(2)g V -=10,(3)t g gt V ∆--=21100,(4)010gt V -=; 2、30;3、(1))(a f '-,(2))(a f '-,(3))(3a f ';4、(1)45x ,(2)332x⋅,(3)331xx ⋅-,(4)73717x x ⋅; 5、切线方程:216323++-=πx y ,法线方程:21932332+-=πx y ; 6、(1))0,0(,(2))41,21(,(3)221x x x +=对应的点; 7、(1)连续,不可导,(2)连续,可导,(3)连续,可导, (4)在0=x 处不连续,不可导,在4=x 连续,不可导; 习题2-2 P46 1、(1)5243++x x ,(2)1218-x ,(3)ϕϕϕϕ2sec tan 21+,(4)2sin cos x x x x - (5)23)21(21lnx x +⋅,(6)v v sin 52+,(7)x e x cos 2, (8)22sec tan sec sec tan uu u u u u u u -++,(9))cos 1(csc 523t t +-, (10)2)110(10ln 210--x x ,(11)38343537-+s s ,(12)x x x 2cos 2sin 21+,(13)1ln -+a x ax a a ,(14)222)1(sec 4)1(tan sec 2x xx x x x +-+,(15)2)1()1(t t t -+-, (16)232)cos (sin )cos (sin 3)cos (sin 9x x x x x x x x -+--; 2、(1)1-,2-,(2)181-3、(1)0123=+-y x ,(2)03133=-+-πy x ;4、2=y ,32=y ; 习题2-3 P491、(1)xx x x x xy +++++='21)211)(211((2)221x x y -='(3))sin 2sin cos (2222cos x x x x e y x ⋅-⋅='(4)6)53(21+='x y(5)u u u cos )cos(sin )]n cos[sin(si ⋅⋅='ω(6))32()2(313323x x e e x y +⋅+='-(7)x y x cos 2ln 2sin ⋅='(8)21)1(1t t y --='(9)422sec 2122+-='t t y (10)2ln )1(122⋅+--='x x x y (11)25214x x y +-='(12)2ln )1(122⋅+--='x x x y (13)22x a y -='(14)x x x x y cot 112+--='(15)xx y 2arcsin 4122⋅-=' (16)x x x x x y 1cos 11sin 3cot 3csc31-+-='(17))ln 1(1t t S +=' (18))72(2sin 2+-='x a y (19)22)cot )(1(1x arc x y +='(20)x x y tan 3sec 62=' (21)xx y 2sin22='(22)2tan 2sec 41x x y ⋅=' 2、kt e T T k T v ---='=)(10 3、kt e km m --='0 习题2-4 P51 1、(1)12124,2++=''='x x e y ey (2))tan()(sec 2),(sec 22a x a x y a x y ++=''+='(3)2728)2(,)1(26)(,)1(1)(323222-=''-+=''-+='f x x x x f x x x f (4)2)ln 2sin()ln 2cos(2)(,)ln 2sin()(t t t t f t t t f -=''=' 2、(1)x n e x n y)()(+=(2)x x x y 2sin cos sin 2==')22s i n (22c o s2x x y +==''π)222s i n (2))22(2sin(22)22cos(222x x x y +=++=⋅+='''ππππ)223s i n (2))222(2sin(22)222cos(2332)4(x x x y+=++=⋅+=ππππ……)22)1(s i n (21)(x n yn n +-=-π(3)1)1(2112121111-+=-+=++--=+-=-x xx x x x y 2)1(2)1(-+⋅⋅-='x y 3)1(2)2()1(-+⋅⋅-⋅-=''x y 4)1(2)3()2()1(-+⋅⋅-⋅-⋅-='''x y……)1()4()1(2!)1(+-+⋅⋅⋅-=n n x n y(4))2(,)!2()1()1()(≥⋅--=--n x n y n n n (5)!)(n y n =3、解:因为t A S ωsin =所以物体的运动速度为t A S v ωωcos ='=,物体运动的加速度为t A S a ωωsin 2-=''=,且有0sin sin 22222=⋅+-=+t A t A S dtS d ωωωωω习题2-5 P551、(1)y x a b y ⋅-='22(2))1(322-='y a y (3)2221yy y ++='(4)x e y e y y x y x ---='++ (5)两边同时取对数得,y x x y ln ln = 两边同时对x 求导得,y y x y x y x y '⋅+=+'ln ln ,所以)1(ln )1(ln --='x x y y y (6)yyxee y +-='12、(1)32222)()(,yy x y yxx y y y x y y x y y x y +-=---='--='-=''-=' (2)3))cos(1()sin(,)cos(1)cos(y x y x y y x y x y +-+-=''+-+=' 3、(1)两边取对数得,))1ln()25ln()23(ln(21ln -----=x x x y 两边同时对x 求导得,)11252233(211---+-='⋅x x x y y 所以)11252233()1)(25(2321)11252233(21---+-⋅---=---+-⋅='x x x x x x x x x y y (2)两边取对数得,)1ln(31)6ln(21)32ln(4ln +--++=x x x y 两边同时对x 求导得,)1(31)6(213281+--++='⋅x x x y y 所以))1(31)6(21328(16)32(34+--++⋅+-+='x x x x x x y(3)令3222)4()1(--=x x x u ,则u x e y x⋅⋅=sin , 对于3222)4()1(--=x x x u,两边同时取对数得,))4ln(2)1ln((ln 31ln 22---+=x x x u求得)44121()4()1(31223222---+⋅--⋅='x xx x x x x x u 所以)sin ('⋅⋅='u x e y xu x e u x e u x e xx x '⋅⋅+⋅⋅+⋅⋅=s i n c o s s i n)44121()4()1(sin 31cos sin 223222---+⋅--⋅⋅+⋅⋅+⋅⋅=x xx x x x x x x e u x e u x e x xx(4)两边取对数得,x x y sin ln cos ln ⋅=两边同时对x 求导得, xxx x y y sin cos sin ln sin 12+⋅-='⋅所以)sin cos sin ln sin ()(sin )sin cos sin ln sin (2cos 2xx x x x x x x x y y x+⋅-⋅=+⋅-=' 4、(1)t b dx dy cot -=(2)θθθθθθcos sin 1sin cos ---=dx dy 5、(1)解:当4π=t 时,0,2==y x ,即当4π=t 时,曲线经过点)0,2(2s i n 2c o s22s i n 2444-=-=-====πππt t t t t tdx dy所求的切线方程为:)2(20--=-x y ,即22+-=x y 所求的法线方程为:)2(210-=-x y ,即121-=x y(2)解:当0=t 时,0,1==y x ,即当0=t 时,曲线经过点)0,1(2420220-=-+==-=t ttt t e te e dx dy所求的切线方程为:)1(20--=-x y ,即22+-=x y 所求的法线方程为:)1(210-=-x y ,即2121-=x y 习题2-6 P592、(1)16.2-(2)025.0-(3)dx x x dy )2326(35-+=(4)dx x xdy 122-=(5)dx x x dy 21arccos 2--=(6)dx xx dy 232ln 1-=(7)dx bx b ax a dy )2sin 2sin (33-=(8)dx e x x dy x2)1(2+=(9)dx xx x dy 221)2(++=(10)dx x x x dy 322)1tan()1sec(2--=-- 3、(1)C x +3(2)C x +arctan (3)C x +2sin (4)C x +sec(5)C x a ++23)(32(6)C x +2)(ln 21(7)C x +-cos ln (8)C ex +--22434、(1)0083.612016≈+(2)0052.219212≈+(3)8572.036023≈-π(4)99.0(5)002.0(6)0478.10005.05.01132≈⨯-+π5、面积2)(x x S π=,则Rh h R S R h R S πππ2)()(22=⋅'≈-+=∆6、(1)利用第5题结论得ππ6.92.0242=⋅⋅=∆S (2)0167.0246.92≈=∆ππS S 综合练习(二)一、填空题1、)()(0x f '+βα;2、)(210x f ';3、x x f x f ∆⋅'+)()(00;4、!100;5、yy xe e -1;6、0,!0n a ⋅;7、x e x n )(+;8、dx x f e e e f x f x x )]()([)('⋅+⋅';9、012=-+y x ;10、01=-+y x ;二、选择题1、A ;2、C ;3、C ;4、D ;5、B ;6、D ;7、B ;8、A ;9、A ;10、B ; 三、计算题 1、2211ln xa a a x a axy x a x a +++='-2、dx x x dy x x y 22)(arctan ,)(arctan ==' 3、dx x x x dy 232)1(ln -=4、15、解:两边取对数,得)11ln()(ln xx x f += 两边同时对x 求导,得x x x f x f +-+='⋅11)11ln()()(1 所以]11)11[ln()11(]11)11)[ln(()(xx x x x x f x f x +-++=+-+=' 所以)323(ln 3)21(-='f6、dx x x f x x f dy )2sin )(cos 2sin )(sin (22'-'=7、21032102210102)1()2(,1e xe xe e dxyd e xe e dx dy y x y y y y x y x yy y x =--==-=========8、52222)(2)(2,)(1y x y x dx y d y x dx dy +++-=+= 9、)!2()1()1(,)!2()1()()()1()(--=--=--n f x n x fn n n n n10、解:21111lim 11lim )(lim 00=-+=--=---→→→x x x x f x x x b b ax x f x x =+=++→→)(lim )(lim 0要使函数在0=x 处连续,须有)0()(lim )(lim 0f x f x f x x ==+-→→,所以21=b 2000212)2(lim 02111lim 0)0()(lim )0(x x x x x x x f x f f x x x ---=----=--='---→→→- 81)12)2((21lim )12)2((2)12)2)((12)2((lim 020=-+-=-+--+----=--→→x x x x x x x x x x xa x ax x f x f f x x =--+=--='-+→→+021)21(lim 0)0()(lim )0(00 要使函数在0=x 处可导,须有)0()0(-+'='f f ,所以81=a 所以当81=a ,21=b 时,函数)(x f 在0=x 处连续且可导。

高等数学课后习题及参考答案(第五章)

高等数学课后习题及参考答案(第五章)

高等数学课后习题及参考答案(第五章)习题5-11. 利用定积分定义计算由抛物线y =x 2+1, 两直线x =a 、x =b (b >a )及横轴所围成的图形的面积.解 第一步: 在区间[a , b ]内插入n -1个分点i nab a x i -+=(i =1, 2, ⋅ ⋅ ⋅, n -1), 把区间[a , b ]分成n 个长度相等的小区间, 各个小区间的长度为: nab x i -=∆(i =1, 2, ⋅ ⋅ ⋅, n ). 第二步: 在第i 个小区间[x i -1, x i ] (i =1, 2, ⋅ ⋅ ⋅, n )上取右端点i nab a x i i -+==ξ, 作和 nab i n a b a x f S ni i i ni n -⋅+-+=∆=∑∑==]1)[()(211ξ ∑=+-+-+-=n i i na b i n a b a a n a b 12222]1)()(2[ ]6)12)(1()(2)1()(2[)(222n n n n n a b n n n a b a na n a b +++⋅-++⋅-+-= ]16)12)(1()()1)(()[(222+++-++-+-=n n n a b n n a b a a a b . 第三步: 令λ=max{∆x 1, ∆x 2, ⋅ ⋅ ⋅ , ∆x n }nab -=, 取极限得所求面积 ∑⎰=→∆==ni i i ba x f dx x f S 10)(lim )(ξλ]16)12)(1()()1)(()[(lim 222+++-++-+-=∞→n n n a b n n a b a a a b n a b a b a b a b a a a b -+-=+-+-+-=)(31]1)(31)()[(3322.2. 利用定积分定义计算下列积分:(1)xdx ba ⎰(a <b ); (2)dx e x ⎰10.解 (1)取分点为i n a b a x i -+=(i =1, 2, ⋅ ⋅ ⋅, n -1), 则nab x i -=∆(i =1, 2, ⋅ ⋅ ⋅, n ). 在第i 个小区间上取右端点i nab a x i i -+==ξ (i =1, 2, ⋅ ⋅ ⋅, n ). 于是 ∑∑⎰=∞→=∞→-⋅-+=∆=ni n ni i i n ba nab i n a b a x xdx 11)(lim lim ξ )(21]2)1()()([lim )(22222a b n n n a b a b a a b n -=+-+--=∞→. (2)取分点为n i x i =(i =1, 2, ⋅ ⋅ ⋅, n -1), 则nx i 1=∆(i =1, 2, ⋅ ⋅ ⋅, n ). 在第i 个小区间上取右端点nix i i ==ξ (i =1, 2, ⋅ ⋅ ⋅, n ). 于是) (1lim 1lim 21110n n n n n n i n i n xe e e nn e dx e +⋅⋅⋅++==∞→=∞→∑⎰1)1(]1[lim1])(1[1lim 11111-=--=--⋅=∞→∞→e e n e e e e e nnn n nn n n n .3. 利用定积分的几何意义 说明下列等式: (1)1210=⎰xdx ; (2)41102π=-⎰dx x ;(3)⎰-=ππ0sin xdx ;(4)⎰⎰=-2022cos 2cos πππxdx xdx .解 (1)⎰102xdx 表示由直线y =2x 、x 轴及直线x =1所围成的面积, 显然面积为1.(2)⎰-1021dx x 表示由曲线21x y -=、x 轴及y 轴所围成的四分之一圆的面积, 即圆x 2+y 2=1的面积的41:41411212ππ=⋅⋅=-⎰dx x .(3)由于y =sin x 为奇函数, 在关于原点的对称区间[-π, π]上与x 轴所夹的面积的代数和为零, 即⎰-=ππ0sin xdx .(4)⎰-22cos ππxdx 表示由曲线y =cos x 与x 轴上]2,2[ππ-一段所围成的图形的面积. 因为cos x为偶函数, 所以此图形关于y 轴对称. 因此图形面积的一半为⎰20cos πxdx , 即⎰⎰=-2022cos 2cos πππxdx xdx .4. 水利工程中要计算拦水闸门所受的水压力, 已知闸门上水的压强p (单位面积上的压力大小)是水深h 的函数, 且有p =9⋅8h (kN/m 2). 若闸门高H =3m , 宽L =2m , 求水面与闸门顶相齐时闸门所受的水压力P .解 建立坐标系如图. 用分点i nHx i =(i =1, 2, ⋅ ⋅ ⋅, n -1)将区间[0, H ]分为n 分个小区间, 各小区间的长为nHx i =∆(i =1, 2, ⋅ ⋅ ⋅, n ). 在第i 个小区间[x i -1, x i ]上, 闸门相应部分所受的水压力近似为 ∆P i =9.8x i l ⋅∆x i . 闸门所受的水压力为22118.42)1(lim 8.9lim 8.98.9lim H L nn n H L n Hi n H L x L x P n ni n ni i i n ⋅=+⋅=⋅=∆⋅⋅=∞→=∞→=∞→∑∑.将L =2, H =3代入上式得P =88.2(千牛).5. 证明定积分性质: (1)⎰⎰=ba b a dx x f k dx x kf )()(; (2)a b dx dx ba b a -==⋅⎰⎰1.证明 (1)⎰∑∑⎰=∆=∆==→=→ba ni i i ni i i ba dx x f k x f k x kf dx x kf )()(lim )(lim )(1010ξξλλ.(2)a b a b x x dx ni i ni i ba -=-=∆=∆⋅=⋅→=→=→∑∑⎰)(lim lim 1lim 101010λλλ.6. 估计下列各积分的值: (1)⎰+412)1(dx x ; (2)⎰+ππ4542)sin 1(dx x ;(3)⎰331arctan xdx x ;(4)⎰-022dx e xx.解 (1)因为当1≤x ≤4时, 2≤x 2+1≤17, 所以 )14(17)1()14(2412-⋅≤+≤-⋅⎰dx x , 即 51)1(6412≤+≤⎰dx x . (2)因为当ππ454≤≤x 时, 1≤1+sin 2x ≤2, 所以 )445(2)sin 1()445(14542ππππππ-⋅≤+≤-⋅⎰dx x ,即 ππππ2)sin 1(4542≤+≤⎰dx x .(3)先求函数f (x )=x arctan x 在区间]3 ,31[上的最大值M 与最小值m .21arctan )(xx x x f ++='. 因为当331≤≤x 时, f '(x )>0, 所以函数f (x )=x arctan x 在区间]3 ,31[上单调增加. 于是3631arctan31)31(π===f m , 33arctan 3)3(π===f M .因此)313(3arctan )313(36331-≤≤-⎰ππxdx x ,即32arctan 9331ππ≤≤⎰xdx x . (4)先求函数xx e x f -=2)(在区间[0, 2]上的最大值M 与最小值m .)12()(2-='-x e x f xx , 驻点为21=x .比较f (0)=1, f (2)=e 2,41)21(-=e f ,得41-=e m , M =e 2. 于是)02()02(220412-⋅≤≤-⎰--e dx e e xx,即 41022222---≤≤-⎰e dx dx e e xx .7. 设f (x )及g (x )在[a , b ]上连续, 证明:(1)若在[a , b ]上 f (x )≥0, 且0)(=⎰ba dx x f , 则在[a ,b ]上f (x )≡0; (2)若在[a , b ]上, f (x )≥0, 且f (x )≢0, 则0)(>⎰ba dx x f ;(3)若在[a , b ]上, f (x )≤g (x ), 且⎰⎰=b a ba dx x g dx x f )()(, 则在[ab ]上f (x )≡g (x ).证明 (1)假如f (x )≢0, 则必有f (x )>0. 根据f (x )在[a , b ]上的连续性, 在[a , b ]上存在一点x 0, 使f (x 0)>0, 且f (x 0)为f (x )在[a , b ]上的最大值.再由连续性, 存在[c , d ]⊂[a , b ], 且x 0∈[c , d ], 使当x ∈[c , d ]时, 2)()(0x f x f >. 于是0)(2)()()()()()(0>-≥≥++=⎰⎰⎰⎰⎰c d x f dx x f dx x f dx x f dx x f dx x f dc bd d c c a b a . 这与条件0)(=⎰ba dx x f 相矛盾. 因此在[a ,b ]上f (x )≡0.(2)证法一 因为f (x )在[a , b ]上连续, 所以在[a , b ]上存在一点x 0, 使f (x 0)>0, 且f (x 0)为f (x )在[a , b ]上的最大值.再由连续性, 存在[c , d ]⊂[a , b ], 且x 0∈[c , d ], 使当x ∈[c , d ]时, 2)()(0x f x f >. 于是⎰⎰>-≥≥badcc d x f dx x f dx x f 0)(2)()()(0. 证法二 因为f (x )≥0, 所以0)(≥⎰ba dx x f . 假如0)(>⎰ba dx x f 不成立. 则只有0)(=⎰ba dx x f , 根据结论(1), f (x )≡0, 矛盾. 因此0)(>⎰ba dx x f . (3)令F (x )=g (x )-f (x ), 则在[a ,b ]上F (x )≥0且0)()()]()([)(=-=-=⎰⎰⎰⎰ba b a b a b a dx x f dx x g dx x f x g dx x F ,由结论(1), 在[a , b ]上F (x )≡0, 即f (x )≡g (x ).4. 根据定积分的性质及第7题的结论, 说明下列积分哪一个的值较大: (1)⎰102dx x 还是⎰103dx x ?(2)⎰212dx x 还是⎰213dx x ? (3)⎰21ln xdx 还是⎰212)(ln dx x ? (4)⎰10xdx 还是⎰+10)1ln(dx x ? (5)⎰10dx e x 还是⎰+10)1(dx x ?解 (1)因为当0≤x ≤1时, x 2≥x 3, 所以⎰⎰≥103102dx x dx x . 又当0<x <1时, x 2>x 3, 所以⎰⎰>103102dx x dx x . (2)因为当1≤x ≤2时, x 2≤x 3, 所以⎰⎰≤213212dx x dx x . 又因为当1<x ≤2时, x 2<x 3, 所以⎰⎰<213212dx x dx x .(3)因为当1≤x ≤2时, 0≤ln x <1, ln x ≥(ln x )2, 所以⎰⎰≥21221)(ln ln dx x xdx . 又因为当1<x ≤2时, 0<ln x <1, ln x >(ln x )2, 所以⎰⎰>21221)(ln ln dx x xdx . (4)因为当0≤x ≤1时, x ≥ln(1+x ), 所以⎰⎰+≥1010)1ln(dx x xdx . 又因为当0<x ≤1时, x >ln(1+x ), 所以⎰⎰+>1010)1ln(dx x xdx .(5)设f (x )=e x -1-x , 则当0≤x ≤1时f '(x ) =e x -1>0, f (x )=e x -1-x 是单调增加的. 因此当0≤x ≤1时, f (x )≥f (0)=0, 即e x ≥1+x , 所以⎰⎰+≥1010)1(dx x dx e x .又因为当0<x ≤1时, e x >1+x , 所以⎰⎰+>1010)1(dx x dx e x .习题5-21. 试求函数⎰=xtdt y 0sin 当x =0及4π=x 时的导数.解 x tdt dx dy x sin sin 0=='⎰, 当x =0时, y '=sin0=0;当4π=x 时, 224sin =='πy .2. 求由参数表示式⎰=tudu x 0sin , ⎰=tudu y 0cos 所给定的函数y 对x的导数.解 x '(t )=sin t , y '(t )=cos t ,t t x t y dx dy cos )()(=''=. 3. 求由⎰⎰=+xy ttdt dt e 00cos 所决定的隐函数y 对x 的导数dxdy. 解 方程两对x 求导得 0cos =+'x y e y , 于是ye x dx dy cos -=. 4. 当x 为何值时, 函数⎰-=xt dt te x I 02)(有极值?解 2)(x xe x I -=', 令I '(x )=0, 得x =0.因为当x <0时, I '(x )<0; 当x >0时, I '(x )>0, 所以x =0是函数I (x )的极小值点. 5. 计算下列各导数:(1)⎰+2021x dt t dx d ; (2)⎰+32411x x dt tdx d ; (3)⎰x x dtt dxd cos sin 2)cos(π.解 (1)dxdu dt t du d u x dt t dx d u x ⋅+=+⎰⎰02202112令 421221x x x u +=⋅+=.(2)⎰⎰⎰+++=+323204044111111x x x x dt t dx d dt t dx d dt t dx d ⎰⎰+++-=3204041111x x dt t dx d dt t dx d )()(11)()(11343242'⋅++'⋅+-=x x x x 12281312xx x x +++-=. (3)⎰⎰⎰+-=x x x x dt t dx d dt t dx d dt t dx d cos 02sin 02cos sin 2)cos()cos()cos(πππ))(cos cos cos())(sin sin cos(22'+'-=x x x x ππ )cos cos(sin )sin cos(cos 22x x x x ππ⋅-⋅-= )sin cos(sin )sin cos(cos 22x x x x πππ-⋅-⋅-= )sin cos(sin )sin cos(cos 22x x x x ππ⋅+⋅-= )sin cos()cos (sin 2x x x π-=.6. 计算下列各定积分: (1)⎰+-adx x x 02)13(;解a a a x x x dx x x a a+-=+-=+-⎰230230221|)21()13(.(2)⎰+2142)1(dx xx ;解852)11(31)22(31|)3131()1(333321332142=---=-=+---⎰x x dx x x . (3)⎰+94)1(dx x x ;解94223942194|)2132()()1(x x dx x x dx x x +=+=+⎰⎰6145)421432()921932(223223=+-+=.(4)⎰+33121x dx ; 解 66331arctan 3arctan arctan 13313312πππ=-=-==+⎰x x dx . (5)⎰--212121x dx ; 解3)6(6)21arcsin(21arcsin arcsin 1212121212πππ=--=--==---⎰x x dx .(6)⎰+ax a dx 3022;解aa a ax a x a dx a a30arctan 13arctan 1arctan 1303022π=-==+⎰.(7)⎰-1024x dx ;解60arcsin 21arcsin 2arcsin 41012π=-==-⎰x x dx .(8)dx x x x ⎰-+++012241133; 解 01301221224|)arctan ()113(1133---+=++=+++⎰⎰x x dx x x dx x x x 41)1arctan()1(3π+=----=.(9)⎰---+211e xdx ; 解1ln 1ln ||1|ln 12121-=-=+=+------⎰e x xdx e e .(10)⎰402tan πθθd ;解4144tan )(tan )1(sec tan 4040242πππθθθθθθπππ-=-=-=-=⎰⎰d d .(11)dx x ⎰π20|sin |;解⎰⎰⎰-=ππππ2020sin sin |sin |xdx xdx dx xπππ20cos cos x x +-==-cos π +cos0+cos2π-cos π=4. (12)⎰2)(dx x f , 其中⎪⎩⎪⎨⎧>≤+=1 2111)(2x x x x x f . 解38|)61(|)21(21)1()(213102212102=++=++=⎰⎰⎰x x x dx x dx x dx x f . 7. 设k 为正整数. 试证下列各题: (1)⎰-=ππ0cos kxdx ;(2)⎰-=ππ0sin kxdx ;(3)⎰-=πππkxdx 2cos ;(4)⎰-=πππkxdx 2sin .证明 (1)⎰--=-=--==ππππππ000)(sin 1sin 1|sin 1cos k kk k kx k kxdx . (2))(cos 1cos 1cos 1sin ππππππ-+-=-=--⎰k kk k x k k kxdxcos 1cos 1=+-=ππk kk k(3)πππππππππ=+=+=+=---⎰⎰22|)2sin 21(21)2cos 1(21cos 2kx k x dx kx kxdx . (4)πππππππππ=+=-=-=---⎰⎰22|)2sin 21(21)2cos 1(21sin 2kx k x dx kx kxdx . 8. 设k 及l 为正整数, 且k ≠l . 试证下列各题: (1)⎰-=ππ0sin cos lxdx kx ;(2)⎰-=ππ0cos cos lxdx kx ;(3)⎰-=ππ0sin sin lxdx kx .证明 (1)⎰⎰----+=ππππdx x l k x l k lxdx kx ])sin()[sin(21sin cos0])cos()(21[])cos()(21[=----++-=--ππππx l k l k x l k l k .(2)⎰⎰---++=ππππdx x l k x l k lxdx kx ])cos()[cos(21cos cos0])sin()(21[])sin()(21[=--+++=--ππππx l k l k x l k l k .(3)⎰⎰----+-=ππππdx x l k x l k lxdx kx ])cos()[cos(21sin sin . 0])sin()(21[])sin()(21[=--+++-=--ππππx l k l k x l k l k .9. 求下列极限: (1)xdt t xx ⎰→020cos lim ; (2)⎰⎰→xt xt x dttedt e 0220022)(lim.解 (1)11cos lim cos lim20020==→→⎰x xdt t x xx . (2)22222200022)(2lim)(limx xt x t x xt xt x xedt e dt e dttedt e '⋅=⎰⎰⎰⎰→→222220202lim2limx xt x x x xt x xedte xeedt e ⎰⎰→→=⋅=2212lim 22lim 2020222=+=+=→→x e x e e x x x x x . 10. 设⎩⎨⎧∈∈=]2 ,1[ ]1 ,0[ )(2x x x x x f . 求⎰=x dt t f x 0)()(ϕ在[0, 2]上的表达式,并讨论ϕ(x )在(0, 2)内的连续性.解 当0≤x ≤1时, 302031)()(x dt t dt t f x xx===⎰⎰ϕ;当1<x ≤2时, 6121212131)()(2211020-=-+=+==⎰⎰⎰x x tdt dt t dt t f x xxϕ.因此 ⎪⎩⎪⎨⎧≤<-≤≤=21 612110 31)(23x x x x x ϕ.因为31)1(=ϕ, 3131lim )(lim 30101==-→-→x x x x ϕ,316121)6121(lim )(lim 20101=-=-=+→+→x x x x ϕ,所以ϕ(x )在x =1处连续, 从而在(0, 2)内连续.11. 设⎪⎩⎪⎨⎧><≤≤=ππx x x x x f 或0 00 sin 21)(. 求⎰=x dt t f x 0)()(ϕ在(-∞, +∞)内的表达式.解 当x <0时,00)()(0===⎰⎰xxdt dt t f x ϕ;当0≤x ≤π时,21cos 21|cos 21sin 21)()(000+-=-===⎰⎰x t tdt dt t f x xxxϕ;当x >π时,πππϕ000|cos 210sin 21)()(t dt tdt dt t f x x x-=+==⎰⎰⎰10cos 21cos 21=+-=π.因此 ⎪⎩⎪⎨⎧≥≤≤-<=ππϕx x x x x 10 )cos 1(210 0)(.12. 设f (x )在[a , b ]上连续, 在(a , b )内可导且f '(x )≤0,⎰-=x a dt t f ax x F )(1)(. 证明在(a , b )内有F '(x )≤0.证明 根据积分中值定理, 存在ξ∈[a , x ], 使))(()(a x f dt t f xa -=⎰ξ.于是有)(1)()(1)(2x f ax dt t f a x x F x a -+--='⎰ ))(()(1)(12a x f a x x f a x ----=ξ )]()([1ξf x f ax --=.由 f '(x )≤0可知f (x )在[a , b ]上是单调减少的, 而a ≤ξ≤x , 所以f (x )-f (ξ)≤0. 又在(a , b )内, x -a >0, 所以在(a , b )内)]()([1)(≤--='ξf x f a x x F .习题5-31. 计算下列定积分:(1)⎰+πππ2)3sin(dx x ;解 0212132cos 34cos)3cos()3sin(22=-=+-=+-=+⎰ππππππππx dx x . (2)⎰-+123)511(x dx;解51251110116101)511(2151)511(22122123=⋅+⋅-=+-⋅=+-----⎰x x dx. (3)⎰203cos sin πϕϕϕd ;解⎰⎰-=20323sin cos cos sin ππϕϕϕϕϕd s d410cos 412cos 41cos 4144204=+-=-=πϕπ.(4)⎰-πθθ03)sin 1(d ; 解⎰⎰⎰⎰-+=+=-πππππθθθθθθθθ02002003cos )cos 1(cos sin )sin 1(d d d d34)cos 31(cos 03-=-+=πθθππ.(5)⎰262cos ππudu ;解2626262622sin 4121)2cos 1(21cos ππππππππu u du u udu +=+=⎰⎰836)3sin (sin 41)62(21-=-+-=πππππ.(6)dx x ⎰-2022;解dt t tdt t t x dx x ⎰⎰⎰+=⋅=-202022)2cos 1(cos 2cos 2sin 22ππ令2)2sin 21(20ππ=+=t t .(7)dy y ⎰--22228;解⎰⎰⎰---⋅=-=-44222222cos 2cos 22sin 24228ππxdx x xy dy y dy y 令)2(2)2sin 21(22)2cos 1(224444+=+=+=--⎰πππππy x dx x .(8)⎰-121221dx xx ;解41)cot ()1sin 1(cos sin cos sin 12424224212122πππππππ-=--=-=⋅=-⎰⎰⎰t t dt t tdt t t t x dx x x 令.(9)⎰-adx x a x 0222; 解⎰⎰⎰=⋅⋅=-2024202202222sin4cos cos sin sin ππtdt a tdt a t a t a t a x dx x a xa令164sin 328)4cos 1(84204204204ππππa t a t a dt t a =-=-=⎰. (10)⎰+31221xxdx ;解⎰⎰⋅⋅=+34223122secsec tan 1tan 1ππtdt t t tx xxdx 令3322sin 1sin cos 34342-=-==⎰ππππt dt tt. (11)⎰--1145xxdx ;解61)315(81)5(81454513133211=--=-=--⎰⎰-u u du u u x x xdx 令. (12)⎰+411xdx ;解)32ln 1(2|)1|ln (2)111(2211121212141+=+-=+-=⋅+=+⎰⎰⎰u u du u udu u u x x dx 令.(13)⎰--14311x dx ;解2ln 21|)1|ln (2)111(2)2(11111210210021143-=-+=-+=-⋅-=---⎰⎰⎰u u du u du u u ux x dx 令.(14)⎰-axa xdx 20223;解)13(3)3(3121320202222222022-=--=---=-⎰⎰a x a x a d x a xa xdx a a a.(15)dt te t ⎰-1022;解2110102221021)2(222-----=-=--=⎰⎰e etd e dt tet t t .(16)⎰+21ln 1e x x dx; 解)13(2ln 12ln ln 11ln 1222111-=+=+=+⎰⎰e e e xx d xxx dx .(17)⎰-++02222x x dx;解 2)1arctan(1arctan )1arctan()1(112202022022π=--=+=++=++---⎰⎰x dx x x x dx .(18)⎰-222cos cos ππxdx x ;解32)sin 32(sin sin )sin 21(2cos cos 22322222=-=-=---⎰⎰ππππππx x x d x xdx x . (19)⎰--223cos cos ππdx x x ;解⎰⎰---=-222223cos 1cos cos cos ππππdx x x dx x x34cos 32cos 32sin cos )sin (cos 20230223202=-=+-=--⎰⎰ππππx xxdx x dx x x (20)⎰+π02cos 1dx x .解22cos 2sin 22cos 1000=-==+⎰⎰πππxxdx dx x .2. 利用函数的奇偶性计算下列积分: (1)⎰-ππxdx x sin 4;解 因为x 4sin x 在区间[-π, π]上是奇函数, 所以0sin 4=⎰-ππxdx x . (2)⎰-224cos 4ππθθd ;解⎰⎰⎰+==-202204224)22cos 1(8cos 42cos 4ππππθθθθθd x d d ⎰⎰++=++=20202)4cos 212cos 223(2)2cos 2cos 21(2ππθθd x x d x x23)4sin 412sin 23(20πθπ=++=x x . (3)⎰--2121221)(arcsin dx xx ;解⎰⎰⎰=-=--21221022212122)(arcsin )(arcsin 21)(arcsin 21)(arcsin x d x dx xx dx xx324)(arcsin 3232103π==x .(4)⎰-++55242312sin dx x x xx . 解 因为函数12sin 2423++x x x x 是奇函数, 所以012sin 552423=++⎰-dx x x x x .3. 证明:⎰⎰-=aa adx x dx x 022)(2)(ϕϕ, 其中ϕ(u )为连续函数.证明 因为被积函数ϕ(x 2)是x 的偶函数, 且积分区间[-a , a ]关于原点对称, 所以有⎰⎰-=aa adx x dx x022)(2)(ϕϕ.4. 设f (x )在[-b , b ]上连续, 证明⎰⎰---=bb bb dx x f dx x f )()(. 证明 令x =-t , 则dx =-dt , 当x =-b 时t =b , 当x =b 时t =-b , 于是⎰⎰⎰----=--=b b bb bbdt t f dt t f dx x f )()1)(()(,而 ⎰⎰---=-bb bb dx x f dt t f )()(, 所以⎰⎰---=bb bb dx x f dx x f )()(.5. 设f (x )在[a , b ]上连续., 证明⎰⎰-+=ba ba dx xb a f dx x f )()(. 证明 令x =a +b -t , 则dx =d t , 当x =a 时t =b , 当x =b 时t =a , 于是 ⎰⎰⎰-+=--+=b a ba ab dt t b a f dt t b a f dx x f )()1)(()(, 而 ⎰⎰-+=-+ba badx x b a f dt t b a f )()(,所以⎰⎰-+=ba ba dx xb a f dx x f )()(.6. 证明:⎰⎰>+=+11122)0(11x x x x dxx dx. 证明 令t x 1=, 则dt tdx 21-=, 当x =x 时x t 1=, 当x =1时t =1, 于是⎰⎰⎰+=-⋅+=+11121122211)1(1111xx xdt t dt t tx dx , 而 ⎰⎰+=+x x dx x dt t 1121121111,所以 ⎰⎰+=+1112211x xxdx x dx.7. 证明:⎰⎰-=-1010)1()1(dx x x dx x xm n n m.证明 令1-x =t , 则⎰⎰⎰⎰-=-=--=-10100110)1()1()1()1(dx x x dt t t dt t t dx x x m n n m n m n m , 即⎰⎰-=-1010)1()1(dx x x dx x x m n n m . 8. 证明: ⎰⎰=ππ020sin 2sinxdx xdx n n.证明 ⎰⎰⎰+=ππππ2020sin sin sin xdx xdx xdx nn n,而⎰⎰⎰⎰==---=2020202sin sin ))((sin sinπππππππxdx tdt dt t t x xdx n n nn 令,所以⎰⎰=ππ020sin 2sinxdx xdx n n.9. 设f (x )是以l 为周期的连续函数, 证明⎰+1)(a a dx x f 的值与a 无关.证明 已知f (x +l )=f (x ). ⎰⎰⎰⎰⎰⎰⎰-+=++=+++ala ll la ll a a adx x f dx x f dx x f dx x f dx x f dx x f dx x f 00001)()()()()()()(,而 ⎰⎰⎰⎰=+=++=+a a ala ldx x f dx l x f dt l t f l t x dx x f 000)()()()(令,所以 ⎰⎰=+la adx x f dx x f 01)()(.因此⎰+1)(a adx x f 的值与a 无关.10. 若f (t )是连续函数且为奇函数, 证明⎰xdt t f 0)(是偶函数; 若f (t )是连续函数且为偶函数, 证明⎰xdt t f 0)(是奇函数. 证明 设⎰=xdt t f x F 0)()(.若f (t )是连续函数且为奇函数, 则f (-t )=-f (t ), 从而)()()()1)(()()(0000x F dx x f dx u f du u f u t dt t f x F x x xx ===---==-⎰⎰⎰⎰-令,即⎰=xdt t f x F 0)()(是偶函数.若f (t )是连续函数且为偶函数, 则f (-t )=f (t ), 从而)()()()1)(()()(0000x F dx x f dx u f du u f u t dt t f x F x x x x -=-=-=---==-⎰⎰⎰⎰-令,即⎰=xdt t f x F 0)()(是奇函数.11. 计算下列定积分: (1)⎰-10dx xe x ; 解11011010101021--------=--=+-=-=⎰⎰⎰e e e dx e xe xde dx xe xx x x x .(2)⎰e xdx x 1ln ; 解)1(414121121ln 21ln 21ln 21220212121+=-=⋅-==⎰⎰⎰e x e dx x x x x xdx xdx x ee e e e.(3)⎰ωπω20sin tdt t (ω为常数); 解⎰⎰⎰+-=-=ωπωπωπωπωωωωωωω20202020cos 1cos 1cos 1sin tdt tt t td tdt t 220222sin 12ωπωωωπωπ-=+-=t.(4)⎰342sin ππdx xx;解34343434342sin ln 4313cot cot cot sin ππππππππππππxxdx xx x xd dx x x++⋅-=+-=-=⎰⎰⎰23ln 21)9341(+-=π.(5)⎰41ln dx x x; 解 ⎰⎰⎰⋅-==4141414112ln 2ln 2ln dx xx x x x xd dx xx )12ln 2(442ln 8122ln 84141-=-=-=⎰x dx x.(6)⎰10arctan xdx x ;解x d x x x x xdx xdx x ⎰⎰⎰+⋅-==1022102102101121arctan 21arctan 21arctan214)41(218)arctan (218)111(21810102-=--=--=+--=⎰πππππx x x d x. (7)⎰202cos πxdx e x ; 解⎰⎰⎰-==202202202202sin 2sin sin cos ππππxdx e xe x d e xdx e x x x x⎰⎰⎰-+=-+=+=202202202202cos 42cos 4cos 2cos 2πππππππxdx e e xdx e xe e x d e e x x xx所以)2(51cos 202-=⎰ππe xdx e x ,于是(8)⎰212log xdx x ; 解⎰⎰⎰⋅-==212212221222122ln 121log 21log 21log dx x x x x xdx xdx x2ln 432212ln 212212-=⋅-=x . (9)⎰π02)sin (dx x x ; 解⎰⎰⎰-=-=ππππ02302022sin 4161)2cos 1(21)sin (x d x x dx x x dx x x πππππππ03000332cos 41622sin 412sin 416⎰⎰-=⋅+-=xxd xdx x xx 462sin 81462cos 412cos 416303003ππππππππ-=+-=+-=⎰x xdx x x .(10)⎰edx x 1)sin(ln ; 解法一 ⎰⎰⋅=101sin ln )sin(ln dt e t tx dxx te令.因为⎰⎰⎰-==⋅10101010cos sin sin sin tdt e te tde dt e t t tt t⎰⎰--⋅=-⋅=101010sin cos 1sin cos 1sin tdt e t e e tde e t t t⎰-+⋅-⋅=10sin 11cos 1sin tdt e e e t , 所以 )11cos 1sin (21sin 10+⋅-⋅=⎰e e tdt e t .因此)11cos 1sin (21)sin(ln 1+⋅-⋅=⎰e e dx x e. 解法二⎰⎰⎰-⋅=⋅⋅-⋅=e e eedx x e dx x x x x x dx x 1111)cos(ln 1sin 1)cos(ln )sin(ln )sin(ln ⎰⋅⋅-⋅-⋅=e edx x x x x x e 111)sin(ln )cos(ln 1sin ⎰-+⋅-⋅=edx x e e 0)sin(ln 11cos 1sin , 故)11cos 1sin (21)sin(ln 1+⋅-⋅=⎰e e dx x e . (11)dx x e e⎰1|ln |; 解⎰⎰⎰⎰⎰-++-=+-=eee eee e e dx dx xx x x dx x dx x dx x 1111111111ln ln ln ln |ln |)11(2)1()11(1ee e e e -=---++-=.(12)⎰-1022)1(dx xm (m 为自然数); 解⎰⎰+=-2011022cos sin )1(πtdt t x dx xm m 令.根据递推公式⎰⎰--=20220cos 1cos ππxdx n n xdx n n ,⎪⎩⎪⎨⎧⋅⋅⋅⋅⋅--⋅--⋅+⋅⋅⋅⋅⋅⋅--⋅--⋅+=-⎰为偶数为奇数m m m m m m m m m m m m m m dx x m325476 34121 2214365 34121)1(1022π. (13)⎰=π0sin xdx x J m m (m 为自然数). 解 因为⎰⎰⎰⎰-=----=ππππππππ0000sin sin )1)((sin )(sin tdt t tdt dt t t t x xdx x mm m m 令,所以 ⎰⎰⎰⎰=⋅===20200sin sin 22sin 2sin πππππππxdx xdx xdx xdx x J m m mmm (用第8题结果).根据递推公式⎰⎰--=20220sin 1sin ππxdx n n xdx n n , ⎪⎩⎪⎨⎧⋅⋅⋅⋅⋅--⋅--⋅-⋅⋅⋅⋅⋅⋅--⋅--⋅-=为奇数为偶数m m m m m m m m m m m m m m J m 325476 45231 2214365 452312ππ.习题5-71. 判别下列各反常积分的收敛性, 如果收敛, 计算反常积分的值:(1)⎰+∞14xdx; 解 因为3131)31(lim 3131314=+-=-=-+∞→+∞-+∞⎰x x x dx x , 所以反常积分⎰+∞14x dx收敛, 且3114=⎰∞+x dx . (2)⎰+∞1xdx ;解 因为+∞=-==+∞→+∞∞+⎰22lim 211x xxdx x , 所以反常积分⎰+∞1xdx 发散.(3)dx e ax ⎰+∞-0(a >0); 解 因为aa e a e adx e ax x ax ax 11)1(lim 100=+-=-=-+∞→+∞-+∞-⎰, 所以反常积分dx e ax ⎰+∞-0收敛, 且adx e ax 10=⎰+∞-.(4)⎰+∞-0ch tdt e pt (p >1); 解 因为1]1111[21][21ch 2)1()1(0)1()1(0-=+--=+=+∞+--∞++--∞+-⎰⎰p p e pe p dt e e tdt e tp t p t p tp pt ,所以反常积分⎰+∞-0ch tdt e pt 收敛, 且1ch 20-=⎰∞+-p p tdt e pt .(5)⎰+∞-0sin tdt e pt ω(p >0, ω>0); 解⎰⎰+∞-+∞--=0cos 1sin t d e tdt e pt pt ωωω⎰⎰+∞-+∞-+∞--=-⋅+-=020sin 1)(cos 1cos 1t d e pdt pe t te pt pt pt ωωωωωωω⎰+∞-+∞--⋅+-=0202)(sin sin 1dt pe t pte p ptpt ωωωωω⎰+∞--=022sin 1tdt e p pt ωωω,所以 22sin w p tdt e pt +=⎰+∞-ωω.(6)⎰+∞∞-++222x x dx;解 πππ=--=+=++=++⎰⎰+∞∞-+∞∞-+∞∞-)2(2)1arctan()1(12222x x dxx x dx .(7)dx xx ⎰-121;解 这是无界函数的反常积分, x =1是被积函数的瑕点.11)1(lim 112110212=+--=--=--→⎰x x dx x x x . (8)⎰-22)1(x dx;解 这是无界函数的反常积分, x =1是被积函数的瑕点. 因为⎰⎰⎰-+-=-212102202)1()1()1(x dxx dx x dx , 而 +∞=--=-=--→⎰111lim 11)1(110102xx x dx x ,所以反常积分⎰-202)1(x dx发散. (9)⎰-211x xdx ;解 这是无界函数的反常积分, x =1是被积函数的瑕点.21232121]12)1(32[)111(1-+-=-+-=-⎰⎰x x dx x x x xdx322]12)1(32[lim 38231=-+--=+→x x x . (10)⎰-ex x dx 12)(ln 1.解 这是无界函数的反常积分, x =e 是被积函数的瑕点.2)arcsin(ln lim )arcsin(ln ln )(ln 11)(ln 111212π===-=--→⎰⎰x x x d x x x dx ex e ee.2. 当k 为何值时, 反常积分⎰+∞)(ln kx x dx收敛? 当k 为何值时, 这反常积分发散? 又当k 为何值时, 这反常积分取得最小值?解 当k <1时, +∞=-==+∞+-+∞+∞⎰⎰2122)(ln 11ln )(ln 1)(ln k k k x k x d x x x dx ;当k =1时, +∞===+∞+∞+∞⎰⎰222)ln(ln ln ln 1)(ln x x d x x x dxk ; 当k >1时,k k kkk x kx d x x x dx -+∞+-+∞+∞-=-==⎰⎰12122)2(ln 11)(ln 11ln )(ln 1)(ln . 因此当k >1时, 反常积分⎰+∞0)(ln k x x dx 收敛; 当k ≤1时, 反常积分⎰+∞0)(ln k x x dx发散. 当k >1时, 令k kk x x dx k f -∞+-==⎰10)2(ln 11)(ln )(, 则 )2ln ln 11()1(2ln ln )2(ln 2ln ln )2(ln 11)2(ln )1(1)(21112+---=----='---k k k k k f k kk. 令f '(k )=0得唯一驻点2ln ln 11-=k . 因为当2ln ln 111-<<k 时f '(k )<0, 当2ln ln 11->k 时f '(k )>0, 所以2ln ln 11-=k 为极小值点,同时也是最小值点, 即当2ln ln 11-=k 时, 这反常积分取得最小值 3. 利用递推公式计算反常积分⎰+∞-=0dx e x I x n n . 解 因为101000-+∞--+∞-+∞-+∞-=+-=-==⎰⎰⎰n x n x n x n x n n nI dx e x n e x de x dx e x I ,所以 I n = n ⋅(n -1)⋅(n -2)⋅ ⋅ ⋅2⋅I 1. 又因为 1000001=-=+-=-==+∞-+∞-+∞-+∞-+∞-⎰⎰⎰xx xx x e dx e xe xde dx xe I ,所以 I n = n ⋅(n -1)⋅(n -2)⋅ ⋅ ⋅2⋅I 1=n !.总习题五1. 填空:(1)函数f (x )在[a , b ]上(常义)有界是f (x )在[a , b ]上可积的______条件, 而f (x )在[a , b ]上连续是f (x )在[a , b ]上可积______的条件;解 函数f (x )在[a , b ]上(常义)有界是f (x )在[a , b ]上可积的___必要___条件, 而f (x )在[a , b ]上连续是f (x )在[a , b ]上可积___充分___的条件;(2)对[a , +∞)上非负、连续的函数f (x ), 它的变上限积分⎰xa dx x f )(在[a , +∞)上有界是反常积分⎰+∞a dx x f )(收敛的______条件;解 对[a , +∞)上非负、连续的函数f (x ), 它的变上限积分⎰xa dx x f )(在[a , +∞)上有界是反常积分⎰+∞a dx x f )(收敛的___充分___条件;(3)绝对收敛的反常积分⎰+∞a dx x f )(一定______; 解 绝对收敛的反常积分⎰+∞a dx x f )(一定___收敛___;(4)函数f (x )在[a , b ]上有定义且|f (x )|在[a , b ]上可积, 此时积分⎰ba dx x f )(______存在. 解 函数f (x )在[a ,b ]上有定义且|f (x )|在[a , b ]上可积, 此时积分⎰b a dx x f )(___不一定___存在.2. 计算下列极限:(1)∑=∞→+n i n nin 111lim ;解 )122(32)1(32111lim 103101-=+=+=+⎰∑=∞→x dx x n i n n i n . (2)121lim+∞→+⋅⋅⋅++p pp p n nn (p >0);解 11111])( )2()1[(lim 21lim 101101+=+==⋅⋅⋅⋅++=+⋅⋅⋅+++∞→+∞→⎰p x p dx x n n n n n n n p p p p p n p p p p n . (3)nn nn !lnlim ∞→; 解 ]ln 1)ln 2ln 1(ln 1[lim !lnlim n n nn n n n n nn ⋅-+⋅⋅⋅++=∞→∞→nn n n n n 1)]ln (ln )ln 2(ln )ln 1[(ln lim ⋅-+⋅⋅⋅+-+-=∞→⎰=⋅+⋅⋅⋅++=∞→10ln 1)ln 2ln 1(ln lim xdx n n n n n n1)ln ()ln (10101010-=-=-=⎰xx x dx x x .(4)⎰-→xaa x dt t f a x x )(lim, 其中f (x )连续; 解法一 )()(lim )(lima af xf dt t f ax x axa ax ==-→→⎰ξξ (用的是积分中值定理). 解法二 )(1)()(lim )(lim )(lim a af x xf dt t f a x dt t f x dt t f a x x xaa x xa a x x a a x =+=-=-⎰⎰⎰→→→ (用的是洛必达法则). (5)1)(arctan lim 22+⎰+∞→x dtt xx .解4)(arctan 1lim 1)(arctan lim 1)(arctan lim 22222202π=+=+=+∞→+∞→+∞→⎰x x x x x x x dtt x x xx . 3. 下列计算是否正确, 试说明理由:(1)⎰⎰----=-=+-=+111111222)1arctan ()1(1)1(1πx xx d x dx ;解 计算不正确, 因为x 1在[-1, 1]上不连续. (2)因为⎰⎰--++-=++111122111t t dt tx x x dx , 所以⎰-=++11201x x dx .解 计算不正确, 因为t1在[-1, 1]上不连续.(3)01lim 122=+=+⎰⎰-∞→+∞∞-A A A dx x xdx x x . 解 不正确, 因为⎰⎰⎰⎰-+∞→+∞→+∞∞--∞→+≠+++=+A A A b b a a dx xxdx x x dx x x dx x x 2020221lim 1lim 1lim 1. 4. 设p >0, 证明⎰<+<+10111p x dx p p. 证明 p pp p p p px x x x x x x ->+-=+-+=+>11111111. 因为⎰⎰⎰<+<-1010101)1(dx x dxdx x pp,而 110=⎰dx , pp p x x dx x p p+=+-=-+⎰1)1()1(10110, 所以⎰<+<+10111pxdx p p. 5. 设f (x )、g (x )在区间[a , b ]上均连续, 证明: (1)⎰⎰⎰⋅≤ba ba ba dx x g dx x f dx x g x f )()(])()([222;证明 因为[f (x )-λg (x )]2≥0, 所以λ2g 2(x )-2λ f (x )g (x )+f 2(x )≥0, 从而 0)()()(2)(222≥+-⎰⎰⎰ba ba ba dx x f dx x g x f dx x g λλ.上式的左端可视为关于λ的二次三项式, 因为此二次三项式大于等于0, 所以其判别式小于等于0, 即0)()(4])()([4222≤⋅-⎰⎰⎰ba ba ba dx x g dx x f dx x g x f ,亦即 ⎰⎰⎰⋅≤ba ba ba dx x g dx x f dx x g x f )()(])()([222. (2)()()()212212212)()()]()([⎰⎰⎰+≤+b ab a b a dx x g dx x f dx x g x f , 证明⎰⎰⎰⎰++=+ba ba ba ba dx x g x f dx x g dx x f dx x g x f )()(2)()()]()([222。

高等数学教材答案解析完整版下册

高等数学教材答案解析完整版下册

高等数学教材答案解析完整版下册第一章:极限与连续1.1 极限的定义和性质对于极限的理解,我们首先需要明确极限的概念以及相关的性质。

在数学上,我们将极限定义为:若数列{an}满足当n趋近于无穷时,an 趋近于某个常数A,则称A为数列{an}的极限,记作lim(n→∞)an= A。

根据极限的性质,我们可以推导得到一系列有用的定理,如极限的唯一性定理、有界性定理等。

1.2 函数连续性函数的连续性在高等数学中占据着重要地位。

我们知道,一个函数若在某点x=a处连续,则在该点的左极限等于函数值等于右极限,即lim(x→a^-)f(x) = f(a) = lim(x→a^+)f(x)。

根据函数连续性相关的定理,如函数四则运算的连续性、复合函数的连续性等,我们可以更加深入地理解和运用连续函数的性质。

1.3 导数与微分导数的概念是微积分中的核心概念之一,其本质是对函数在某一点的变化率进行描述。

函数f(x)在点x=a处的导数定义为:lim(h→0)[f(a+h) - f(a)] / h。

导数的求解涉及到一系列的求导法则,如基本导数法则、高阶导数的计算等。

微分是导数的几何意义,可以描述函数曲线在某一点的切线斜率。

第二章:导数的应用2.1 最值与最值问题在求解最值问题时,我们需要使用导数和极值的概念。

根据导数的性质,我们可以得到一系列求解函数最大值和最小值的定理,如费马定理和辅助函数法。

2.2 函数的凹凸性与拐点函数的凹凸性和拐点是函数图像的重要特征之一。

我们可以通过导数和二阶导数的方法来判断函数的凹凸性和拐点。

根据函数的凹凸性和拐点的性质,我们可以更好地理解和分析函数的变化趋势。

2.3 泰勒展开与函数逼近泰勒展开是将一个函数在某点附近展开成幂级数的形式。

利用泰勒展开,我们可以对函数进行逼近和求解近似值。

泰勒展开在工程和科学计算中具有广泛的应用,如求解方程和优化问题等。

第三章:定积分与不定积分3.1 定积分的定义和性质定积分是对函数在一定区间上的积分运算。

高等数学下册习题答案

高等数学下册习题答案

高等数学下册习题答案高等数学是大学数学的一门重要课程,它是数学的一门基础性课程,也是培养学生数学思维和解决问题能力的重要途径。

在高等数学学习过程中,习题是必不可少的一部分,通过解答习题可以帮助学生巩固所学知识,提高解决实际问题的能力。

下面我将为大家提供一些高等数学下册习题的答案,希望对大家的学习有所帮助。

1. 求函数 f(x) = 2x^3 - 3x^2 - 12x + 5 的极值点和极值。

首先,我们需要求出函数的导数 f'(x)。

对于 f(x) = 2x^3 - 3x^2 - 12x + 5,求导得到 f'(x) = 6x^2 - 6x - 12。

接下来,我们将 f'(x) = 0,解得 x = -1 和 x = 2。

将这两个解代入 f(x) 中,得到f(-1) = 20 和 f(2) = -11。

因此,函数 f(x) 的极值点为 x = -1 和 x = 2,极小值为 f(-1) = 20,极大值为 f(2) = -11。

2. 求函数 f(x) = x^4 - 4x^3 + 6x^2 的拐点。

为了求出函数的拐点,我们需要求出函数的二阶导数 f''(x)。

对于 f(x) = x^4 -4x^3 + 6x^2,求导得到 f'(x) = 4x^3 - 12x^2 + 12x,再次求导得到 f''(x) =12x^2 - 24x + 12。

接下来,我们将 f''(x) = 0,解得 x = 1。

将这个解代入 f(x) 中,得到 f(1) = 3。

因此,函数 f(x) 的拐点为 x = 1,拐点坐标为 (1, 3)。

3. 求曲线 y = e^x 在点 (0, 1) 处的切线方程。

为了求出切线方程,我们需要求出曲线在点 (0, 1) 处的斜率。

对于曲线 y = e^x,求导得到 y' = e^x。

将 x = 0 代入 y',得到 y'(0) = e^0 = 1。

高等数学(第六版)课后习题(完整版)及答案

高等数学(第六版)课后习题(完整版)及答案

高等数学课后答案习题1-11. 设A =(-∞, -5)⋃(5, +∞), B =[-10, 3), 写出A ⋃B , A ⋂B , A \B 及A \(A \B )的表达式. 解 A ⋃B =(-∞, 3)⋃(5, +∞), A ⋂B =[-10, -5),A \B =(-∞, -10)⋃(5, +∞),A \(A \B )=[-10, -5).2. 设A 、B 是任意两个集合, 证明对偶律: (A ⋂B )C =A C ⋃B C . 证明 因为x ∈(A ⋂B )C ⇔x ∉A ⋂B ⇔ x ∉A 或x ∉B ⇔ x ∈A C 或x ∈B C ⇔ x ∈A C ⋃B C , 所以 (A ⋂B )C =A C ⋃B C .3. 设映射f : X →Y , A ⊂X , B ⊂X . 证明(1)f (A ⋃B )=f (A )⋃f (B ); (2)f (A ⋂B )⊂f (A )⋂f (B ). 证明 因为y ∈f (A ⋃B )⇔∃x ∈A ⋃B , 使f (x )=y⇔(因为x ∈A 或x ∈B ) y ∈f (A )或y ∈f (B )⇔ y ∈f (A )⋃f (B ), 所以 f (A ⋃B )=f (A )⋃f (B ). (2)因为y ∈f (A ⋂B )⇒∃x ∈A ⋂B , 使f (x )=y ⇔(因为x ∈A 且x ∈B ) y ∈f (A )且y ∈f (B )⇒ y ∈ f (A )⋂f (B ), 所以 f (A ⋂B )⊂f (A )⋂f (B ).4. 设映射f : X →Y , 若存在一个映射g : Y →X , 使X I f g = , Y I g f = , 其中I X 、I Y 分别是X 、Y 上的恒等映射, 即对于每一个x ∈X , 有I X x =x ; 对于每一个y ∈Y , 有I Y y =y . 证明: f 是双射, 且g 是f 的逆映射: g =f -1.证明 因为对于任意的y ∈Y , 有x =g (y )∈X , 且f (x )=f [g (y )]=I y y =y , 即Y 中任意元素都是X 中某元素的像, 所以f 为X 到Y 的满射.又因为对于任意的x 1≠x 2, 必有f (x 1)≠f (x 2), 否则若f (x 1)=f (x 2)⇒g [ f (x 1)]=g [f (x 2)] ⇒ x 1=x 2. 因此f 既是单射, 又是满射, 即f 是双射.对于映射g : Y →X , 因为对每个y ∈Y , 有g (y )=x ∈X , 且满足f (x )=f [g (y )]=I y y =y , 按逆映射的定义, g 是f 的逆映射.5. 设映射f : X →Y , A ⊂X . 证明:(1)f -1(f (A ))⊃A ;(2)当f 是单射时, 有f -1(f (A ))=A .证明 (1)因为x ∈A ⇒ f (x )=y ∈f (A ) ⇒ f -1(y )=x ∈f -1(f (A )), 所以 f -1(f (A ))⊃A .(2)由(1)知f -1(f (A ))⊃A .另一方面, 对于任意的x ∈f -1(f (A ))⇒存在y ∈f (A ), 使f -1(y )=x ⇒f (x )=y . 因为y ∈f (A )且f 是单射, 所以x ∈A . 这就证明了f -1(f (A ))⊂A . 因此f -1(f (A ))=A . 6. 求下列函数的自然定义域: (1)23+=x y ;解 由3x +2≥0得32->x . 函数的定义域为) ,32[∞+-.(2)211xy -=;解 由1-x 2≠0得x ≠±1. 函数的定义域为(-∞, -1)⋃(-1, 1)⋃(1, +∞). (3)211x x y --=;解 由x ≠0且1-x 2≥0得函数的定义域D =[-1, 0)⋃(0, 1]. (4)241x y -=; 解 由4-x 2>0得 |x |<2. 函数的定义域为(-2, 2). (5)x y sin =;解 由x ≥0得函数的定义D =[0, +∞). (6) y =tan(x +1);解 由21π≠+x (k =0, ±1, ±2, ⋅ ⋅ ⋅)得函数的定义域为 12-+≠ππk x (k =0, ±1, ±2, ⋅ ⋅ ⋅).(7) y =arcsin(x -3);解 由|x -3|≤1得函数的定义域D =[2, 4]. (8)xx y 1arctan 3+-=;解 由3-x ≥0且x ≠0得函数的定义域D =(-∞, 0)⋃(0, 3). (9) y =ln(x +1);解 由x +1>0得函数的定义域D =(-1, +∞).(10)xe y 1=.解 由x ≠0得函数的定义域D =(-∞, 0)⋃(0, +∞).7. 下列各题中, 函数f (x )和g (x )是否相同?为什么? (1)f (x )=lg x 2, g (x )=2lg x ; (2) f (x )=x , g (x )=2x ;(3)334)(x x x f -=,31)(-=x x x g .(4)f (x )=1, g (x )=sec 2x -tan 2x . 解 (1)不同. 因为定义域不同.(2)不同. 因为对应法则不同, x <0时, g (x )=-x . (3)相同. 因为定义域、对应法则均相相同. (4)不同. 因为定义域不同.8. 设⎪⎩⎪⎨⎧≥<=3||03|| |sin |)(ππϕx x x x , 求)6(πϕ, )4(πϕ, )4(πϕ-, ϕ(-2), 并作出函数y =ϕ(x )的图形. 解 21|6sin |)6(==ππϕ, 22|4sin |)4(==ππϕ, 22|)4sin(|)4(=-=-ππϕ, 0)2(=-ϕ. 9. 试证下列函数在指定区间内的单调性: (1)x x y -=1, (-∞, 1);(2)y =x +ln x , (0, +∞).证明 (1)对于任意的x 1, x 2∈(-∞, 1), 有1-x 1>0, 1-x 2>0. 因为当x 1<x 2时, 0)1)(1(112121221121<---=---=-x x x x x x x x y y , 所以函数x x y -=1在区间(-∞, 1)内是单调增加的.(2)对于任意的x 1, x 2∈(0, +∞), 当x 1<x 2时, 有0l n )()l n ()l n (2121221121<+-=+-+=-x xx x x x x x y y ,所以函数y =x +ln x 在区间(0, +∞)内是单调增加的.10. 设 f (x )为定义在(-l , l )内的奇函数, 若f (x )在(0, l )内单调增加, 证明f (x )在(-l , 0)内也单调增加.证明 对于∀x 1, x 2∈(-l , 0)且x 1<x 2, 有-x 1, -x 2∈(0, l )且-x 1>-x 2. 因为f (x )在(0, l )内单调增加且为奇函数, 所以f (-x 2)<f (-x 1), -f (x 2)<-f (x 1), f (x 2)>f (x 1),这就证明了对于∀x 1, x 2∈(-l , 0), 有f (x 1)< f (x 2), 所以f (x )在(-l , 0)内也单调增加. 11. 设下面所考虑的函数都是定义在对称区间(-l , l )上的, 证明: (1)两个偶函数的和是偶函数, 两个奇函数的和是奇函数;(2)两个偶函数的乘积是偶函数, 两个奇函数的乘积是偶函数, 偶函数与奇函数的乘积是奇函数.证明 (1)设F (x )=f (x )+g (x ). 如果f (x )和g (x )都是偶函数, 则 F (-x )=f (-x )+g (-x )=f (x )+g (x )=F (x ),所以F (x )为偶函数, 即两个偶函数的和是偶函数. 如果f (x )和g (x )都是奇函数, 则F (-x )=f (-x )+g (-x )=-f (x )-g (x )=-F (x ), 所以F (x )为奇函数, 即两个奇函数的和是奇函数.(2)设F (x )=f (x )⋅g (x ). 如果f (x )和g (x )都是偶函数, 则 F (-x )=f (-x )⋅g (-x )=f (x )⋅g (x )=F (x ),所以F (x )为偶函数, 即两个偶函数的积是偶函数. 如果f (x )和g (x )都是奇函数, 则F (-x )=f (-x )⋅g (-x )=[-f (x )][-g (x )]=f (x )⋅g (x )=F (x ), 所以F (x )为偶函数, 即两个奇函数的积是偶函数. 如果f (x )是偶函数, 而g (x )是奇函数, 则F (-x )=f (-x )⋅g (-x )=f (x )[-g (x )]=-f (x )⋅g (x )=-F (x ), 所以F (x )为奇函数, 即偶函数与奇函数的积是奇函数.12. 下列函数中哪些是偶函数, 哪些是奇函数, 哪些既非奇函数又非偶函数? (1)y =x 2(1-x 2); (2)y =3x 2-x 3;(3)2211x xy +-=;(4)y =x (x -1)(x +1); (5)y =sin x -cos x +1;(6)2x x aa y -+=.解 (1)因为f (-x )=(-x )2[1-(-x )2]=x 2(1-x 2)=f (x ), 所以f (x )是偶函数.(2)由f (-x )=3(-x )2-(-x )3=3x 2+x 3可见f (x )既非奇函数又非偶函数.(3)因为())(111)(1)(2222x f xx x x x f =+-=-+--=-, 所以f (x )是偶函数. (4)因为f (-x )=(-x )(-x -1)(-x +1)=-x (x +1)(x -1)=-f (x ), 所以f (x )是奇函数.(5)由f (-x )=sin(-x )-cos(-x )+1=-sin x -cos x +1可见f (x )既非奇函数又非偶函数.(6)因为)(22)()()(x f a a a a x f x x x x =+=+=-----, 所以f (x )是偶函数. 13. 下列各函数中哪些是周期函数?对于周期函数, 指出其周期: (1)y =cos(x -2);解 是周期函数, 周期为l =2π. (2)y =cos 4x ;解 是周期函数, 周期为2π=l .(3)y =1+sin πx ;解 是周期函数, 周期为l =2. (4)y =x cos x ;解 不是周期函数.(5)y =sin 2x .解 是周期函数, 周期为l =π. 14. 求下列函数的反函数:(1)31+=x y 错误!未指定书签。

高等数学(三)课后题答案

高等数学(三)课后题答案

第一章 行列式1.()()[][][]23154110103631254=520010=8(1)3(1)321(1)(2)(3)2441(1)3214243(1)321012)4n n n n n n n n m n m n n n m n m n n m 1τ=++++=2τ+++++-τ-⋯=-+-+-+⋯+2+1+0===+τ-⋯=+=+τ-⋯=⋯()该数列为奇排列()该排列为偶排列() 当或时,为偶数,排列为偶排列当或时,为奇数,排列为奇排列(其中,,()[][][]12(1)13521)246(2)0123(1)244113521)246(2)424313521)246(2)012)2.(1)(2)(n n n n n n n m n m n n n m n m n n m i i i k n n n -τ⋯-⋯=++++⋯+-===+τ⋯-⋯=+=+τ⋯-⋯=⋯⋯-+-+( 当或时,(为偶数,排列为偶排列当或时,(为奇数,排列为奇排列(其中,,解:已知排列的逆序数为,这个数按从大到小排列时逆序数为()()111112(1)3)2(1)2x x x n x n x n n n n n n x i r i i i n x r i n x n n i i i i i i -+-+---+⋯+2+1+0=----τ⋯=-τ⋯个.设第数之后有个数比小,则倒排后的位置变为,其后个数比小,两者相加为故3 证明:.因为:对换改变排列的奇偶性,即一次变换后,奇排列改变为偶排列,偶排列改变为奇排列∴当n ≥2时,将所有偶排列变为奇排列,将所有奇排列变为偶排列 因为两个数列依然相等,即所有的情况不变。

∴偶排列与奇排列各占一半。

4 (1)13243341a a a a 不是行列式的项 14233142a a a a 是行列式的项 因为它的列排排列逆序列τ=(4321)=3+2+0+0=5为奇数,∴应带负号(2)5142332451a a a a a 不是行列式的项 1352413524a a a a a =1324354152a a a a a 因为它的列排排列逆序列τ(34512)=2+2+2+0+0=6 为偶数∴应带正号。

高等数学课后习题及参考答案(第十二章)

高等数学课后习题及参考答案(第十二章)

高等数学课后习题及参考答案(第十二章)习题12-1 1试说出下列各微分方程的阶数(1)x (y ')2-2yy '+x =0 解 一阶 (2)x 2y '-xy '+y =0 解 一阶 (3)xy '''+2y '+x 2y =0解 三阶(4)(7x -6y )dx +(x +y )dy =0解 一阶(5)022=++C Qdt dQ RdtQ d L解 二阶(6)θρθρ2sin =+d d解 一阶 2 指出下列各题中的函数是否为所给微分方程的解(1)xy '=2y y =5x 2解 y '=10x因为xy '=10x 2=2(5x 2)=2y 所以y =5x 2是所给微分方程的解(2)y '+y =0y =3sin x -4cos x解 y '=3cos x +4sin x因为y '+y =3cos x +4sin x +3sin x -4cos x =7sin x -cos x ≠0所以y =3sin x -4cos x 不是所给微分方程的解(3)y ''-2y '+y =0 y =x 2e x解 y '=2xe x +x 2e xy ''=2e x +2xe x +2xe x +x 2e x =2e x +4xe x +x 2e x因为y ''-2y '+y =2e x +4xe x +x 2e x -2(2xe x +x 2e x )+x 2e x =2e x ≠0所以y =x 2e x 不是所给微分方程的解(4)y ''-(1+2)y '+12y =0xx e C e C y 2121λλ+= 解 x x e C e C y 212211λλλλ+=' xx e C e C y 21222211λλλλ+=''因为y y y 2121)(λλλλ+'+-'')())((2121212121221121222211x x x x x x e C e C e C e C e C e C λλλλλλλλλλλλλλ++++-+= =0所以x x e C e C y 2121λλ+=是所给微分方程的解3 在下列各题中验证所给二元方程所确定的函数为所给微分方程的解(1)(x -2y )y '=2x -yx 2-xy +y 2=C解 将x 2-xy +y 2=C 的两边对x 求导得 2x -y -xy '+2y y '=0即 (x -2y )y '=2x -y所以由x 2-xy +y 2=C 所确定的函数是所给微分方程的解(2)(xy -x )y ''+xy '2+yy '-2y '=0 y =ln(xy )解 将y =ln(xy )的两边对x 求导得y y x y '+='11 即x xy yy -='再次求导得)(1)()()1()(2222y y y y y x x xy x xy y y y x x xy y x y y x xy y y '+'-'-⋅-=-+-'-=--'+--'=''注意到由y y x y '+='11可得1-'='y x y yx 所以)2(1])1([12y y y y x x xy y y y y y x x xy y '+'-'-⋅-='+'-'-'-⋅-=''从而 (xy -x )y ''+xy '2+yy '-2y '=0即由y =ln(xy )所确定的函数是所给微分方程的解4 在下列各题中确定函数关系式中所含的参数 使函数满足所给的初始条件 (1)x 2-y 2=Cy |x =0=5解 由y |x =0=0得02-52=C C =-25 故x 2-y 2=-25(2)y =(C 1+C 2x )e 2x y |x =0=0y '|x =0=1解 y '=C 2e 2x +2(C 1+C 2x )e 2x由y |x =0=0y '|x =0=1得⎩⎨⎧=+=1121C C C解之得C 1=0 C 2=1故y =xe 2x(3)y =C 1sin(x -C 2) y |x ==1 y '|x ==0解 y '=C 1cos(x -C 2) 由y |x ==1y '|x ==0得⎩⎨⎧=-=-0)cos(1)sin(2121C C C C ππ 即⎩⎨⎧=-=0cos 1sin 2121C C C C解之得C 1=1 22π=C 故)2sin(π-=x y 即y =-cos x5写出由下列条件确定的曲线所满足的微分方程(1)曲线在点(x y )处的切线的斜率等于该点横坐标的平方解 设曲线为y =y (x ) 则曲线上点(xy )处的切线斜率为y '由条件y '=x 2 这便是所求微分方程(2)曲线上点P (xy )处的法线与x 轴的交点为Q 且线段PQ 被y 轴平分解 设曲线为y =y (x ) 则曲线上点P (xy )处的法线斜率为y '-1 由条件第PQ 中点的横坐标为0 所以Q 点的坐标为(-x0) 从而有y x x y '-=+-10即yy '+2x =0 6用微分方程表示一物理命题某种气体的气压P 对于温度T 的变化率与气压成正比 所温度的平方成反比解 2T P k dT dP = 其中k 为比例系数习题12-21 求下列微分方程的通解 (1)xy '-y ln y =0 解 分离变量得dx xdy y y 1ln 1=两边积分得⎰⎰=dx xdy y y 1ln 1即 ln(ln y )=ln x +ln C , 故通解为y =e Cx .(2)3x 2+5x -5y '=0 解 分离变量得5dy =(3x 2+5x )dx 两边积分得⎰⎰+=dxx x dy )53(52即 123255C x x y ++=故通解为C x x y ++=232151 其中151C C =为任意常数(3)2211y y x -='-解 分离变量得2211x dx y dy-=-两边积分得⎰⎰-=-2211x dx y dy即 arcsin y =arcsin x +C故通解为y =sin(arcsin x +C ) (4)y '-xy '=a (y 2+y ')解 方程变形为(1-x -a )y '=ay 2分离变量得dx x a a dy y--=112两边积分得⎰⎰--=dx x a a dy y112即 1)1ln(1C x a a y----=-故通解为)1ln(1x a a C y --+= 其中C =aC 1为任意常数(5)sec 2x tan ydx +sec 2y tan xdy =0 解 分离变量得dx xx y y y tan sec tan sec 22-=两边积分得⎰⎰-=dx xx y y y tan sec tan sec 22 即 ln(tan y )=-ln(tan x )+ln C故通解为tan x tan y =C(6)y x dxdy+=10解 分离变量得10-y dy =10x dx 两边积分得⎰⎰=-dxdy x y 1010即 10ln 10ln 1010ln 10C x y +=-- 或 10-y =10x +C 故通解为y =-lg(C -10x )(7)(e x +y -e x )dx +(e x +y +e y )dy =0解 方程变形为e y (e x +1)dy =e x (1-e y )dx分离变量得dxe e dy e e xx y y +=-11两边积分得⎰⎰+=-dx e e dy e e xx y y 11 即 -ln(e y )=ln(e x +1)-ln C 故通解为(e x +1)(e y -1)=C(8)cos x sin ydx +sin x cos ydy =0 解 分离变量得dx xx dy y ysin cos sin cos -= 两边积分得⎰⎰-=dx xx dy y ysin cos sin cos 即 ln(sin y )=-ln(sin x )+ln C 故通解为sin x sin y =C(9)0)1(32=++x dxdyy解 分离变量得(y +1)2dy =-x 3dx 两边积分得⎰⎰-=+dxx dy y 32)1(即 14341)1(31C x y +-=+故通解为4(y +1)3+3x 4=C (C =12C 1) (10)ydx +(x 2-4x )dy =0 解 分离变量得dx xx dy y )411(4-+=两边积分得⎰⎰-+=dx xx dy y )411(4即 ln y 4=ln x -ln(4-x )+ln C 故通解为y 4(4-x )=Cx2 求下列微分方程满足所给初始条件的特解(1)y '=e 2x -y y |x =0=0 解 分离变量得 e y dy =e 2x dx 两边积分得⎰⎰=dxe dy e x y 2即 C e e x y +=221或 )21ln(2C e y x +=由y |x =0=0得0)21ln(=+C 21=C所以特解)2121ln(2+=x e y(2)cos x sin ydy =cos y sin xdx 4|0π==x y解 分离变量得 tan y dy =tan x dx 两边积分得⎰⎰=xdxydy tan tan即 -ln(cos y )=-ln(cos x )-ln C 或 cos y =C cos x 由4|0π==x y 得CC ==0cos 4cos π 21=C所以特解为x y cos cos 2=(3)y 'sin x =y ln yey x ==2π解 分离变量得dx xdy y y sin 1ln 1=两边积分得⎰⎰=dx x dy y y sin 1ln 1即 Cx y ln )2ln(tan )ln(ln +=或2tan x C e y =由e y x ==2π得4tan πC e e = C =1所以特解为2tan x e y =(4)cos ydx +(1+e -x )sin ydy =0 4|0π==x y解 分离变量得dx e e dy y y xx +=-1cos sin两边积分得⎰⎰+=-dx e e dy y y xx 1cos sin即 ln|cos y |=ln(e x +1)+ln |C |或 cos y =C (e x +1)由4|0π==x y 得)1(4cos 4+=ππe C 42=C 所以特解为)1(42cos +=x e y(5)xdy +2ydx =0 y |x =2=1 解 分离变量得 dx xdy y 21-=两边积分得⎰⎰-=dx xdy y 21即 ln y =-2ln x +ln C 或 y =Cx -2由y |x =2=1得C ⋅2-2=1 C =4 所以特解为24xy =3. 有一盛满了水的圆锥形漏漏斗, 高为10cm , 顶角为60︒, 漏斗下面有面积为0. 5cm 2的孔, 求水面高度变化的规律及流完所需的时间.解 设t 时该已流出的水的体积为V , 高度为x 则由水力学有 x dtdV )9802(5.062.0⨯⨯⨯=, 即dt x dV )9802(5.062.0⨯⨯⨯=. 又因为330tan x x r =︒=,故 dx x dx r V 223ππ-=-=,从而 dx x dt x 23)9802(5.062.0π-=⨯⨯⨯,即 dx x dt 2398025.062.03⨯⨯⨯=π,因此 C x t +⨯⨯⨯-=2598025.062.032π.又因为当t =0时, x =10, 所以251098025.062.053⨯⨯⨯⨯=πC ,故水从小孔流出的规律为645.90305.0)10(98025.062.0532252525+-=-⨯⨯⨯⨯=x x t π.令x =0, 得水流完所需时间约为10s .4. 质量为1g (克)的质点受外力作用作直线运动, 这外力和时间成正比, 和质点运动的速度成反比. 在t =10s 时, 速度等于50cm/s , 外力为4g cm/s 2, 问从运动开始经过了一分钟后的速度是多少?解 已知v t k F =, 并且法t =10s 时, v =50cm/s , F =4g cm/s 2, 故50104k =, 从而k =20, 因此vt F 20=.又由牛顿定律, F =ma , 即vt dt dv 201=⋅, 故v dv =20t d t . 这就是速度与时间应满足的微分方程. 解之得C t v +=221021, 即C t v 2202+=.由初始条件有C +⨯=⨯2210105021, C =250. 因此500202+=t v .当t =60s 时, cm/s 3.26950060202=+⨯=v .5. 镭的衰变有如下的规律: 镭的衰变速度与它的现存量R 成正比. 由经验材料得知, 镭经过1600年后, 只余原始量R 0的一半. 试求镭的量R 与时间t 的函数关系.解 由题设知,R dt dR λ-=, 即dt RdR λ-=,两边积分得ln R =-λt +C 1, 从而 )( 1C t e C Ce R ==-λ.因为当t =0时, R =R 0, 故R 0=Ce 0=C , 即R =R 0e -λt .又由于当t =1600时, 021R R =, 故λ16000021-=e R R , 从而16002ln =λ.因此t te R e R R 000433.0010002ln 0--==.6. 一曲线通过点(2, 3), 它在两坐标轴间的任一切线线段均被切点所平分, 求这曲线方程.解 设切点为P (x , y ), 则切线在x 轴, y 轴的截距分别为2x , 2y , 切线斜率为x yx y -=--2002,故曲线满足微分方程:xy dx dy -=, 即dx x dy y 11-=,从而 ln y +ln x =ln C , xy =C .因为曲线经过点(2, 3), 所以C =2⨯3=6, 曲线方程为xy =6.7. 小船从河边点O 处出发驶向对岸(两岸为平行直线). 设船速为a , 船行方向始终与河岸垂直, 又设河宽为h , 河中任一点处的水流速度与该点到两岸距离的乘积成正比(比例系数为k ). 求小船的航行路线.解 建立坐标系如图. 设t 时刻船的位置为(x , y ), 此时水速为)(y h ky dtdx v -==, 故dx =ky (h -y )dt . 又由已知, y =at , 代入上式得 dx =kat (h -at )dt , 积分得C t ka kaht x +-=3223121.由初始条件x |t =0=0, 得C =0, 故3223121t ka kaht x -=.因此船运动路线的函数方程为⎪⎩⎪⎨⎧=-=ayy t ka kaht x 3223121, 从而一般方程为)312(32y y h a k x -=.习题12-31 求下列齐次方程的通解 (1)022=---'x y y y x解 原方程变为1)(2--=xy x y dx dy令xyu =则原方程化为12-+=+u u dxdu x u 即dxx du u 1112=-两边积分得C x u u ln ln )1ln(2+=-+ 即Cx u u =-+12将xyu =代入上式得原方程的通解 Cx xyx y =-+1)(2 即222Cx x y y =-+(2)xy y dx dy xln =解 原方程变为xyx y dx dy ln =令xy u =则原方程化为u u dxdu x u ln =+ 即dx x du u u 1)1(ln 1=-两边积分得ln(ln u -1)=ln x +ln C 即u =e Cx +1将xyu =代入上式得原方程的通解y =xe Cx +1(3)(x 2+y 2)dx -xydy =0 解 这是齐次方程令xy u =即y =xu 则原方程化为(x 2+x 2u 2)dx -x 2u (udx +xdu )=0即dxxudu 1=两边积分得u 2=ln x 2+C将xyu =代入上式得原方程的通解y 2=x 2(ln x 2+C )(4)(x 3+y 3)dx -3xy 2dy =0解 这是齐次方程 令x yu = 即y =xu则原方程化为(x 3+x 3u 3)dx -3x 3u 2(udx +xdu )=0即dx x du u u 121332=-两边积分得C x u ln ln )21ln(213+=-- 即2312x Cu -= 将xyu =代入上式得原方程的通解x 3-2y 3=Cx(5)0ch 3)ch 3sh 2(=-+dy xyx dx x y y x y x解 原方程变为xyx y dx dy +=th 32令xyu = 则原方程化为u u dx du x u +=+th 32 即dx xdu u u 2sh ch 3=两边积分得3ln(sh u )=2ln x +ln C 即sh 3u =Cx 2将xyu =代入上式得原方程的通解22sh Cx xy=(6)0)1(2)21(=-++dy yx e dx e y xy x解 原方程变为yx y xe e yx dydx 21)1(2+-=令yx u = 则原方程化为uu e e u dy du y u 21)1(2+-=+ 即uue e u dy du y 212++-=分离变量得dyy du eu e u u1221-=++两边积分得ln(u +2e u )=-ln y +ln C 即y (u +2e u )=C将y x u =代入上式得原方程的通解Ce yx y y x=+)2(即C ye x yx=+22 求下列齐次方程满足所给初始条件的特解 (1)(y 2-3x 2)dy +2xydx =0 y |x =0=1解 这是齐次方程 令xyu =, 即y =xu 则原方程化为(x 2u 2-3x 2)(udx +xdu )+2x 2udx =0即 dx x du u u u 1332=-- 或dx xdu u u u 1)11113(=-+++-两边积分得-3ln |u |+ln|u +1|+ln|u -1|=ln|x |+ln|C | 即u 2-1=Cxu 3将xyu =代入上式得原方程的通解y 2-x 2=Cy 3由y |x =0=1得C =1 故所求特解为y 2-x 2=y 3(2)xyy x y +=' y |x =1=2解 令xyu =, 则原方程化为 u u dx du x u +=+1 即dx xudu 1=两边积分得C x u +=ln 212将xyu =代入上式得原方程的通解y 2=2x 2(ln x +C )由y |x =1=2得C =2 故所求特解为y 2=2x 2(ln x +2)(3)(x 2+2xy -y 2)dx +(y 2+2xy -x 2)dy =0 y |x =1=1解 这是齐次方程 令xyu =, 即y =xu 则原方程化为(x 2+2x 2u -x 2u 2)dx +(x 2u 2+2x 2u -x 2)(udx +xdu )=0即 dxx du u u u u u 1112232-=+++-+或 dx xdu u u u 1)1211(2=+-+ 两边积分得ln|u +1|-ln(u 2+1)=ln|x |+ln|C | 即u +1=Cx (u 2+1)将xyu =代入上式得原方程的通解x +y =C (x 2+y 2)由y |x =1=1得C =1 故所求特解为x +y =(x 2+y 2)3设有连结点O (00)和A (11)的一段向上凸的曲线弧A O对于A O上任一点P (xy ) 曲线弧P O与直线段OP 所围图形的面积为x 2 求曲线弧A O的方程解 设曲线弧A O的方程为y =y (x ) 由题意得20)(21)(x x xy dx x y x=-⎰两边求导得x x y x x y x y 2)(21)(21)(='--即 4-='x yy令xy u = 则有4-=+u dx du x u 即dx xdu u 41-=两边积分得u =-4ln x +C将xyu =代入上式得方程的通解y =-4x ln x +Cx 由于A (1 1)在曲线上 即y (1)=1 因而C =1 从则所求方程为y =-4x ln x +x习题12-41. 求下列微分方程的通解:(1)x e y dxdy-=+;解 )()()(C x e C dx e e e C dx e e e y x x x x dxx dx +=+⋅=+⎰⋅⎰=-----⎰⎰.(2)xy '+y =x 2+3x +2;解 原方程变为x x y x y 231++=+'.])23([11C dx e xx e y dx x dxx +⎰⋅++⎰=⎰- ])23([1])23([12C dx x x xC xdx x x x +++=+++=⎰⎰xC x x C x x x x +++=+++=22331)22331(1223.(3)y '+y cos x =e -sin x ;解 )(cos sin cos C dx e e e y xdxx dx +⎰⋅⎰=⎰--)()(sin sin sin sin C x e C dx e e e x x x x +=+⋅=---⎰.(4)y '+y tan x =sin 2x ;解 )2sin (tan tan C dx e x e y xdx xdx +⎰⋅⎰=⎰- )2sin (cos ln cos ln C dx e x e x x +⋅=⎰- ⎰+⋅=)cos 1cos sin 2(cos C dx xx x x=cos x (-2cos x +C )=C cos x -2cos 2x . (5)(x 2-1)y '+2xy -cos x =0;解 原方程变形为1cos 1222-=-+'x x y x x y .)1cos (1221222C dx e x x e y dx x xdx x x +⎰⋅-⎰=⎰--- )(sin 11])1(1cos[112222C x x C dx x x x x +-=+-⋅--=⎰. (6)23=+ρθρd d ;解 )2(33C d e e d d +⎰⋅⎰=⎰-θρθθ)2(33C d e e +=⎰-θθθ θθθ33332)32(--+=+=Ce C e e .(7)x xy dxdy42=+;解 )4(22C dx e x e y xdxxdx +⎰⋅⎰=⎰-)4(22C dx e x e x x +⋅=⎰- 2222)2(x x x Ce C e e --+=+=. (8)y ln ydx +(x -ln y )dy =0;解 原方程变形为y x y y dy dx 1ln 1=+.)1(ln 1ln 1C dy e ye x dy y y dyy y +⎰⋅⎰=⎰-)ln 1(ln 1C ydy yy +⋅=⎰yC y C y y ln ln 21)ln 21(ln 12+=+=.(9)3)2(2)2(-+=-x y dxdyx ; 解 原方程变形为2)2(221-=--x y x dx dy.])2(2[21221C dx e x e y dxx dx x +⎰⋅-⎰=⎰---⎰+-⋅--=]21)2(2)[2(2C dx x x x=(x -2)[(x -2)2+C ]=(x -2)3+C (x -2).(10)02)6(2=+-y dxdyx y .解 原方程变形为y x y dy dx 213-=-.])21([33C dy e y e x dy y dy y +⎰⋅-⎰=⎰- )121(33C dy yy y +⋅-=⎰32321)21(Cy y C y y +=+=.2. 求下列微分方程满足所给初始条件的特解:(1)x x y dx dysec tan =-, y |x =0=0;解 )sec (tan tan C dx e x e y xdxxdx+⎰⋅⎰=⎰-)(cos 1)cos sec (cos 1C x xC xdx x x +=+⋅=⎰. 由y |x =0=0, 得C =0, 故所求特解为y =x sec x .(2)x x x ydx dy sin =+, y |x =π=1;解)sin (11C dx e xx e y dx x dx x +⎰⋅⎰=⎰-)cos (1)sin (1C x xC xdx x x x +-=+⋅=⎰.由y |x =π=1, 得C =π-1, 故所求特解为)cos 1(1x x y --=π.(3)x e x y dx dycos 5cot =+, 4|2-==πx y ; 解 )5(cot cos cot C dx e e e y xdx x xdx +⎰⋅⎰=⎰-)5(sin 1)sin 5(sin 1cos cos C e xC xdx e x x x +-=+⋅=⎰. 由4|2-==πx y , 得C =1, 故所求特解为)15(sin 1cos +-=x e x y .(4)83=+y dxdy, y |x =0=2; 解 )8(33C dx e e y dxdx +⎰⋅⎰=⎰-x x x x x Ce C e e C dx e e 3333338)38()8(---+=+=+=⎰.由y |x =0=2, 得32-=C , 故所求特解为)4(323x e y --=.(5)13232=-+y x x dx dy , y |x =1=0. 解)1(32323232C dx e e y dxx x dx x x +⎰⋅⎰=⎰---)21()1(22221131313C e e x C dx e x e x x x x x +=+=--⎰. 由y |x =1=0, 得eC 21-=, 故所求特解为)1(211132--=x e x y .3. 求一曲线的方程, 这曲线通过原点, 并且它在点(x , y )处的切线斜率等于2x +y .解 由题意知y '=2x +y , 并且y |x =0=0. 由通解公式得)2()2(C dx xe e C dx xe e y x x dxdx +=+⎰⎰=⎰⎰--=e x (-2xe -x -2e -x +C )=Ce x -2x -2.由y |x =0=0, 得C =2, 故所求曲线的方程为y =2(e x -x -1).4. 设有一质量为m 的质点作直线运动, 从速度等于零的时刻起, 有一个与运动方向一至、大小与时间成正比(比例系数为k 1)的力作用于它, 此外还受一与速度成正比(比例系数为k 2)的阻力作用. 求质点运动的速度与时间的函数关系.解 由牛顿定律F =ma , 得v k t k dtdv m 21-=, 即t m kv m k dt dv 12=+.由通解公式得 )()(222211C dt e t m k e C dt e t m k ev t m kt m k dt mk dt m k +⋅=+⎰⋅⎰=⎰⎰--)(22222121C e k m k te k k et m kt mk tmk +-=-. 由题意, 当t =0时v =0, 于是得221k mk C =. 因此 )(22122121222k m k e k m k te k k ev t m k t m k t m k +-=-即 )1(222121t m ke k mk t k k v ---=.5. 设有一个由电阻R =10Ω、电感L =2h(亨)和电源电压E =20sin5t V (伏)串联组成的电路. 开关K 合上后, 电路中有电源通过. 求电流i 与时间t 的函数关系. 解 由回路电压定律知01025sin 20=--i dt di t , 即t i dtdi 5sin 105=+.由通解公式得t dtdt Ce t t C dt e t e i 5555cos 5sin )5sin 10(--+-=+⎰⋅⎰=⎰.因为当t =0时i =0, 所以C =1. 因此)45sin(25cos 5sin 55π-+=+-=--t e e t t i t t (A).6. 设曲dy x x xf dx x yf L])(2[)(2-+⎰在右半平面(x >0)内与路径无关, 其中f (x )可导, 且f (1)=1, 求f (x ).解 因为当x >0时, 所给积分与路径无关, 所以 ])(2[)]([2x x xf xx yf y -∂∂=∂∂,即 f (x )=2f (x )+2xf '(x )-2x , 或 1)(21)(=+'x f x x f .因此xC x C dx x x C dx e e x f dx x dxx +=+=+⎰⋅⎰=⎰⎰-32)(1)1()(2121. 由f (1)=1可得31=C , 故x x x f 3132)(+=.7. 求下列伯努利方程的通解:(1))sin (cos 2x x y y dxdy-=+;解 原方程可变形为x x ydx dy y sin cos 112-=+, 即x x y dx y d cos sin )(11-=---. ])cos sin ([1C dx e x x e y dxdx +⎰⋅-⎰=--⎰x Ce C dx e x x e x x x sin ])sin (cos [-=+-=⎰-, 原方程的通解为x Ce yx sin 1-=.(2)23xy xy dxdy=-; 解 原方程可变形为 x y x dxdy y =-1312, 即x xy dx y d -=+--113)(. ])([331C dx e x e y xdxxdx +⎰⋅-⎰=⎰--)(222323C dx xe e x x +-=⎰-31)31(222232323-=+-=--x x x Ce C e e , 原方程的通解为311223-=-x Ce y . (3)4)21(3131y x y dx dy -=+; 解 原方程可变形为 )21(31131134x y dx dy y -=+, 即12)(33-=---x y dx y d . ])12([3C dx e x e y dxdx +⎰⋅-⎰=--⎰x x x Ce x C dx e x e +--=+-=⎰-12])12([, 原方程的通解为1213--=x Ce yx .(4)5xy y dxdy=-; 解 原方程可变形为 x ydx dy y =-4511, 即x y dx y d 44)(44-=+--. ])4([444C dx e x e y dxdx +⎰⋅-⎰=⎰--)4(44C dx xe e x +-=⎰- x Ce x 441-++-=,原方程的通解为x Ce x y 44411-++-=.(5)xdy -[y +xy 3(1+ln x )]dx =0. 解 原方程可变形为)ln 1(11123x y x dx dy y +=⋅-⋅, 即)ln 1(22)(22x y x dx y d +-=+--.])ln 1(2[222C dx e x e ydx x dx x +⎰⋅+-⎰=⎰-- ])ln 1(2[122C dx x x x++-=⎰ x x x x C 94ln 322--=, 原方程的通解为x x x x C y 94ln 32122--=. 8. 验证形如yf (xy )dx +xg (xy )dy =0的微分方程, 可经变量代换v =xy 化为可分离变量的方程, 并求其通解. 解 原方程可变形为)()(xy xg xy yf dx dy -=. 在代换v =xy 下原方程化为)()(22v g x v vf x v dx dv x -=-, 即dx xdu v f v g v v g 1)]()([)(=-, 积分得 C x du v f v g v v g +=-⎰ln )]()([)(, 对上式求出积分后, 将v =xy 代回, 即得通解.9. 用适当的变量代换将下列方程化为可分离变量的方程, 然 后求出通解:(1)2)(y x dxdy+=;解 令u =x +y , 则原方程化为 21u dx du =-, 即21udu dx +=.两边积分得x =arctan u +C .将u =x +y 代入上式得原方程的通解x =arctan(x +y )+C , 即y =-x +tan(x -C ).(2)11+-=yx dx dy;解 令u =x -y , 则原方程化为111+=-udx du , 即dx =-udu .两边积分得1221C u x +-=.将u =x +y 代入上式得原方程的通解12)(21C y x x +--=, 即(x -y )2=-2x +C (C =2C 1).(3)xy '+y =y (ln x +ln y );解 令u =xy , 则原方程化为u x u x u x u dx du x x ln )1(2=+-, 即du uu dx x ln 11=.两边积分得ln x +ln C =lnln u , 即u =e Cx . 将u =xy 代入上式得原方程的通解 xy =e Cx , 即Cx e xy 1=.(4)y '=y 2+2(sin x -1)y +sin 2x -2sin x -cos x +1; 解 原方程变形为y '=(y +sin x -1)2-cos x . 令u =y +sin x -1, 则原方程化为 x u x dx du cos cos 2-=-, 即dx du u =21. 两边积分得C x u+=-1.将u =y +sin x -1代入上式得原方程的通解C x x y +=-+-1sin 1, 即Cx x y +--=1sin 1.(5)y (xy +1)dx +x (1+xy +x 2y 2)dy =0 . 解 原方程变形为)1()1(22y x xy x xy y dx dy +++-=. 令u =xy , 则原方程化为)1()1(1222u u x u u x u dx du x +++-=-, 即)1(1223u u x u dx du x ++=. 分离变量得du uu u dx x )111(123++=. 两边积分得u uu C x ln 121ln 21+--=+.将u =xy 代入上式得原方程的通解xy xy y x C x ln 121ln 221+--=+, 即 2x 2y 2ln y -2xy -1=Cx 2y 2(C =2C 1).习题12-5 1判别下列方程中哪些是全微分方程并求全微分方程的通解(1)(3x 2+6xy 2)dx +(6x 2y +4y 2)dy =0解 这里P =3x 2+6xy 2 Q =6x 2y +4y 2因为x Qxy y P ∂∂==∂∂12所以此方程是全微分方程 其通解为Cdy y y x dx x yx=++⎰⎰02202)46(3即 Cy y x x =++3223343(2)(a 2-2xy -y 2)dx -(x +y )2dy =0解 这里P =a 2-2xy -y 2Q =-(x +y )2 因为x Qy x y P ∂∂=--=∂∂22所以此方程是全微分方程 其通解为Cdy y x dx a yx=+-⎰⎰0202)(即 a 2x -x 2y -xy 2=C(3)e y dx +(xe y -2y )dy =0解 这里P =e y Q =xe y -2y因为x Qe y P y ∂∂==∂∂所以此方程是全微分方程 其通解为Cdy y xe dx e yy x =-+⎰⎰000)2(即 xe y -y 2=C(4)(x cos y +cos x )y '-y sin x +sin y =0解 原方程变形为(x cos y +cos x )dy -(y sin x +sin y )dx =0这里P =-(y sin x +sin y ) Q =x cos y +cos x因为x Qx y y P ∂∂=-=∂∂sin cos所以此方程是全微分方程 其通解为Cdy x y x dx yx=++⎰⎰00)cos cos (0即 x sin y +y cos x =C 解(5)(x 2-y )dx -xdy =0 解 这里P =x 2-yQ =-x 因为xQy P ∂∂=-=∂∂1所以此方程是全微分方程 其通解为Cxdy dx x yx=-⎰⎰002即 C xy x =-331(6)y (x -2y )dx -x 2dy =0解 这里P =y (x -2y ) Q =-x 2 因为yx y P 4-=∂∂ x x Q 2-=∂∂所以此方程不是全微分方程 (7)(1+e 2)d+2e 2d=0解 这里P =1+e 2 Q =2e 2因为x Qe y P ∂∂==∂∂θ22所以此方程是全微分方程 其通解为Cd e d =+⎰⎰θθρθρρ02022即(e 2+1)=C(8)(x 2+y 2)dx +xydy =0解 这里P =x 2+y 2 Q =xy 因为y y P 2=∂∂ y x Q=∂∂所以此方程不是全微分方程2利用观察法求出下列方程的积分因子并求其通解(1)(x +y )(dx -dy )=dx +dy解 方程两边同时乘以yx +1得yx dydx dy dx ++=- 即d (x -y )=d ln(x +y )所以y x +1为原方程的一个积分因子 并且原方程的通解为x -y =ln(x +y )+C(2)ydx -xdy +y 2xdx =0解 方程两边同时乘以21y 得02=+-xdx yxdyydx 即0)2()(2=+x d y x d所以21y为原方程的一个积分因子并且原方程的通解为C x y x =+22(3)y 2(x -3y )dx +(1-3y 2x )dy =0解 原方程变形为xy 2dx -3y 3dx +dy -3x 2dy =0两边同时乘以21y并整理得)33(2=+-+xdy ydx ydyxdx 即0)(3)1()2(2=--xy d yd x d所以21y为原方程的一个积分因子并且原方程的通解为C xy yx =--3122 (4)xdx +ydy =(x 2+y 2)dx解 方程两边同时乘以221y x +得 022=-++dx y x ydyxdx 即0)]ln(21[22=-+dx y x d所以221y x +为原方程的一个积分因子 并且原方程的通解为x 2+y 2=Ce 2x(5)(x -y 2)dx +2xydy =0 解 原方程变形为 xdx -y 2dx +2xydy =0两边同时乘以21x得0222=-+x dx y xydy x dx 即0)()(ln 2=+x y d x d 所以21x为原方程的一个积分因子 并且原方程的通解为C xy x =+2ln 即x ln x +y 2=Cx(6)2ydx -3xy 2dx -xdy =0 解 方程两边同时乘以x 得 2xydx -x 2dy -3x 2y 2dx =0 即yd (x 2)-x 2dy -3x 2y 2dx =0再除以y 2得03)(2222=--dx x ydyx x yd 即0)(32=-x y x d所以2yx 为原方程的一个积分因子并且原方程的通解为032=-x yx3 验证)]()([1xy g xy f xy -是微分方程yf (xy )dx +xg (xy )dy =0的积分因子并求下列方程的通解解 方程两边乘以)]()([1xy g xy f xy -得0])()([)]()([1=+-dy xy xg dx xy yf xy g xy f xy 这里)]()([)(xy g xy f x xy f P -= )]()([)(xy g xy f y xy g Q -=因为x Qxy g xy f xy g xy f xy g xy f y P ∂∂=-'-'=∂∂2)]()([)()()()( 所以)]()([1xy g xy f xy -是原方程的一个积分因子(1)y (x 2y 2+2)dx +x (2-2x 2y 2)dy =0解 这里f (xy )=x 2y 2+2 g (xy )=2-2x 2y 2所以3331)]()([1y x xy g xy f xy =- 是方程的一个积分因子方程两边同乘以3331y x 得全微分方程 032323222232=-++dy y x y x dx y x x其通解为Cdy y x y x dx x x y x=-++⎰⎰132221323232即 Cy x y x =-+-)11ln (ln 31222或2212yx e Cy x =(2)y (2xy +1)dx +x (1+2xy -x 3y 3)dy =0解 这里f (x y )=2x y +1 g (x y )=1+2x y -x 3 y 3 , 所以441)]()([1yx xy g xy f xy =- 是方程的一个积分因子 方程两边同乘以441yx 得全微分方程2112433334=-+++dy y x y x xy dx y x xy其通解为 C dy y x y x xy dx x x y x =-+++⎰⎰14333142112即 C y y x y x =++||ln 31133224用积分因子法解下列一阶线性方程(1)xy '+2y =4ln x解 原方程变为xxy x y ln 42=+' 其积分因子为22)(x e x dxx =⎰=μ在方程x x y x y ln 42=+'的两边乘以x 2得x 2y '+2xy =4x ln x 即(x 2y )'=4x ln x两边积分得C x x x xdx x y x +-==⎰222ln 2ln 4原方程的通解为21ln 2x Cx y +-=(2)y '-tan x ⋅y =x解 积分因子为x e x xdxcos )(tan =⎰=-μ在方程的两边乘以cos x 得 cos x ⋅y '-sin x ⋅y =x cos x 即(cos x ⋅y )'=x cos x两边积分得C x x x xdx x y x ++==⋅⎰cos sin cos cos方程的通解为xCx x y cos 1tan ++=习题12-61 求下列各微分方程的通解 (1)y ''=x +sin x解 12cos 21)sin (C x x dx x x y +-=+='⎰21312sin 61)cos 21(C x C x x dx C x x y ++-=+-=⎰原方程的通解为213sin 61C x C x x y ++-=(2)y '''=xe x解 12C e xe dx xe y x x x +-==''⎰21122)2(C x C e xe dx C e xe y x x x x ++-=+-='⎰3221213)22(C x C x C e xe dx C x C e xe y x x x x +++-=++-=⎰原方程的通解为32213C x C x C e xe y x x +++-=(3)211xy +=''解 12arctan 11C x dx xy +=+='⎰x C dx xx x x dx C x y 1211arctan )(arctan ++-=+=⎰⎰212)1ln(21arctan C x C x x x +++-=原方程的通解为2121ln arctan C x C x x x y +++-=(4)y ''=1+y '2解 令p =y ' 则原方程化为p '=1+p 2 即dx dp p=+211两边积分得arctan p =x +C 1 即y '=p =tan(x +C 1) 211|)cos(|ln )tan(C C x dx C x y ++-=+=⎰原方程的通解为21|)cos(|ln C C x y ++-=(5)y ''=y '+x解 令p =y ' 则原方程化为 p '-p =x由一阶线性非齐次方程的通解公式得1)()(111--=+=+⎰⋅⎰=⎰⎰--x e C C dx xe e C dx e x e p x x x dxdx即 y '=C 1e x -x -1于是 221121)1(C x x e C dx x e C y x x +--=--=⎰原方程的通解为22121C x x e C y x +--=(6)xy ''+y '=0解 令p =y ' 则原方程化为 x p '+p =0 即01=+'p xp由一阶线性齐次方程的通解公式得xC e C e C p xdxx 1ln 111==⎰=--即 x C y 1=' 于是 211ln C x C dx xCy +==⎰原方程的通解为 y =C 1ln x +C 2(7)yy ''+'=y '2 解 令p =y ' 则dydppdx dy dy dp y =⋅='' 原方程化为 21p dydpyp=+ 即dy y dp p p 112=-两边积分得||ln ||ln |1|ln 2112C y p +=- 即22121y C p ±-当|y '|=|p |>1时 方程变为 2211y C y +±=' 即dxdy y C ±=+21)(11两边积分得arcsh(C 1y )=±C 1x +C 2 即原方程的通解为)(sh 1121x C C C y ±=当|y '|=|p |<1时方程变为2211y C y -±=' 即dxdy y C ±=-21)(11两边积分得arcsin(C 1y )=±C 1x +C 2 即原方程的通解为)(sin 1121x C C C y ±=(8)y 3y ''-1=0 解 令p =y ' 则dydp py ='' 原方程化为013=-dydppy 即pdp =y -3dy两边积分得122212121C y p +-=- 即p 2=-y -2+C 1故 21--±='y C y 即dx dy yC ±=--211两边积分得)(12121C x C y C +±=-即原方程的通解为 C 1y 2=(C 1x +C 2)2(9)y y 1=''解 令p =y ' 则dydp py ='' 原方程化为y dy dp p1= 即dyypdp 1=两边积分得122221C y p += 即1244C y p += 故 12C y y +±=' 即dx dy C y ±=+11两边积分得原方程的通 211231]2)(32[C C y C C y x ++-+±=(10)y ''=y '3+y ' 解 令p =y '则dydppy ='' 原方程化为 p p dy dp p +=3 即0)]1([2=+-p dydpp由p =0得y =C 这是原方程的一个解由0)1(2=+-p dydp得arctan p =y -C 1 即y '=p =tan(y -C 1)从而 )sin(ln )tan(1112C y dy C y C x -=-=+⎰ 故原方程的通解为12arcsin C e y C x +=+2 求下列各微分方程满足所给初始条件的特解(1)y 3 y ''+1=0 y |x =1=1 y '|x =1=0解 令p =y ', 则dy dpp y ='', 原方程化为013=+dy dppy , 即dy ypdp 31-=, 两边积分得1221C yp +=, 即y y C y 211+±='.由y |x =1=1, y '|x =1=0得C 1=-1, 从而y y y 21-±=',分离变量得 dx dy yy=-±21, 两边积分得221C x y +=-± 即22)(1C x y +-±=由y |x =1=1得C 2=-1, 2)1(1--=x y 从而原方程的通解为22x x y -=.(2)y ''-ay '2=0 y |x =0=0 y '|x =0=-1解 令p =y ', 则原方程化为02=-ap dxdp即adxdp p=21两边积分得11C ax p+=- 即11C ax y +-='由y '|x =0=-1得C 1=111+-='ax y 两边积分得2)1ln(1C ax a y ++-=由y |x =0=0得C 2=0故所求特解为)1ln(1+-=ax ay(3)y '''=e ax y |x =1=y '|x =1=y ''|x =1=0 解 11C e adx e y ax ax +==''⎰由y ''|x =1=0得a e aC 11-=2211)11(C x e a e a dx e a e a y a ax a ax +-=-='⎰由y '|x =1=0得a a e ae a C 2211-=dx e a e a x e a e a y a a a ax )1111(22⎰-+-= 322311211C x e a x e a x e a e a a a a ax +-+-= 由y |x =1=0得a a a a e a e a e a e a C 32312111-+-= 故所求特解为 322232)22()1(2a a a e a x a e a x e a e y a a a ax ----+-=(4)y ''=e 2y y |x =0=y '|x =0=0解 令p =y ', 则dydpp y ='', 原方程化为y e dydpp 2= 即pdp =e 2y dy积分得p 2=e 2y +C 1即12C e y y +±='由y |x =0=y '|x =0=0得C 1=-1 故12-±='y e y 从而dx dy e y±=-112 积分得-arcsin e -y =±x +C 2 由y |x =0=0得22π-=C 故x x e y cos )2sin(=-=-π从而所求特解为y =-lncos x (5)yy 3='' y |x =0=1y '|x =0=2解 令p =y ', 则dydppy ='', 原方程化为 y dydpp 3= 即dy y pdp 3=两边积分得12322221C y p += 即1232C y y +±=' 由y |x =0=1 y '|x =0=2得C 1=0432y y =' 从而dxdy y 243=-两边积分得24124C x y += 即42)4121(C x y +=由y |x =0=1得C 2=4故原方程的特解为4)121(+=x y(6)y ''+y '2=1 y |x =0=0 y '|x =0=0解 令p =y ', 则dy dpp y ='', 原方程化为12=+p dydpp 即2222=+p dydp于是 1)2(211222+=+⎰⋅⎰=--⎰y dydy e C C dy e e p即 121+±='-y e C y由y |x =0=0 y '|x =0=0得C 1=-1ye y 21--±='故dx dy ey ±=--211两边积分得22)1ln(C x e e y y +±=-+由y |x =0=0得C 2=0xe e y y ±=-+)1ln(2从而得原方程的特解y =lnch x3 试求y ''=x 的经过点M (01)且在此点与直线121+=x y 相切的积分曲线解 1221C x y +='21361C x C x y ++=由题意得y |x =0=121|0='=x y由21|0='=x y 得211=C 再由y |x =0=1得C 2=1 因此所求曲线为121613++=x x y4 设有一质量为m 的物体 在空中由静止开始下落 如果空气阻力为R =c 2v 2(其中c 为常数 v 为物体运动的速度) 试求物体下落的距离s 与时间t 的函数关系解 以t =0对应的物体位置为原点 垂直向下的直线为s 正轴 建立坐标系由题设得⎪⎩⎪⎨⎧==-===0| |0022t t v s v c mg dt dv m将方程分离变量得 dt vc mg mdv =-22两边积分得 1||ln C kt mgcv mgcv +=-+(其中m g c k 2=) 由v |t =0=0得C 1=0ktmgcv mg cv =-+||ln 即ktem gcv m g cv =-+。

(整理)高等数学课后答案第八章习题详细解答

(整理)高等数学课后答案第八章习题详细解答

习 题 8-11.设有一个面薄板(不计其厚度),占有xOy 面上的闭区域D ,薄板上分布有面密度为(,)x y μμ=的电荷,且(,)x y μ在D 上连续,试用二重积分表达该板上的全部电荷Q .解 用一组曲线将D 分成n 个小闭区域i σ∆,其面积也记为(1,2,,)i i n σ∆=.任取一点(,)i i i ξησ∈∆,则i σ∆上分布的电量(,)i i i Q μξησ∆≈∆.通过求和、取极限,便得到该板上的全部电荷为1lim (,)(,)d ,ni i i i DQ x y λμξησμσ→==∆=∑⎰⎰其中1max{i i nλσ≤≤=∆的直径}.2. 设12231()d D I x y σ=+⎰⎰其中1{(,)11,22}D x y x y =-≤≤-≤≤;又22232()d D I x y σ=+⎰⎰其中2{(,)01,02}D x y x y =≤≤≤≤.试利用二重积分的几何意义说明1I 与2I 之间的关系.解 由二重积分的几何意义知,1I 表示底为1D 、顶为曲面223()z x y =+的曲顶柱体1Ω的体积;2I 表示底为2D 、顶为曲面223()z x y =+的曲顶柱体2Ω的体积.由于位于1D 上方的曲面223()z x y =+关于yOz 面和zOx 面均对称,故yOz 面和zOx 面将1Ω分成四个等积的部分,其中位于第一卦限的部分即为2Ω.由此可知124I I =.3. 利用二重积分定义证明: (1) d ()DD σσσ=⎰⎰其中为的面积;(2) (,)d (,)d ()DDkf x y k f x y k σσ=⎰⎰⎰⎰其中为常数;(3)12(,)d (,)d (,)d ,DD D f x y f x y f x y σσσ=+⎰⎰⎰⎰⎰⎰其中12D DD =,1D 、2D 为两个无公共内点的闭区域.证 (1) 由于被积函数(,)1f x y ≡,故由二重积分定义得11d lim (,)lim lim .nniiii i i Df λλλσξησσσσ→→→===∆=∆==∑∑⎰⎰(2) 011(,)d lim (,)lim (,)(,)d .nni i i i i i i i DDkf x y kf k f k f x y λλσξησξησσ→→===∆=∆=∑∑⎰⎰⎰⎰(3) 因为函数(,)f x y 在闭区域D 上可积,故不论把D 怎样分割,积分和的极限总是不变的,因此在分割D 时,可以使1D 和2D 的公共边界永远是一条分割线。

高等数学.厦门大学出版社徐荣聪.高数课后习题详细参考答案

高等数学.厦门大学出版社徐荣聪.高数课后习题详细参考答案

第三章参考答案习题3-1(P66) 1、(1)不满足,在1=x 处不连续;(2)不满足,在2=x 处不可导; 2、(1)、1-=e ξ;(2)ππξ-=4;3、证明:设任意区间),(],[+∞-∞⊂b a ,显然函数在],[b a 上连续,在),(b a 内可导, 所以函数满足拉格朗日中值定理的条件,所以有q b a p ab r qa pa r qb pb f ++=-++-++=')()()()(22ξ 又q p r qx px f x +='++='=ξξξ2)()(2所以q p q b a p +=++ξ2)(,从而2ba +=ξ 所以命题成立。

4、方程有2个根,分别位于区间)2,1(和)3,2(内;5、)4,2(;6、证明:设x x f arctan )(=,显然函数)(x f 在),(+∞-∞内处处连续,处处可导, 设区间),(],[+∞-∞⊂a b ,则)(x f 在],[a b 上满足拉格朗日子中值定理的条件 所以),(a b 内至少存在一点ξ,使)(11arctan arctan 2b a b a -+=-ξ, 所以b a b a b a -≤-⋅+=-211arctan arctan ξ, 即b a b a -≤-arctan arctan习题3-2(P70)1、(1)1;(2)2;(3)a cos ;(4)53-;(5)81-; (6)0;(7)21-;(8)π2;(9)0;(10)21;2、(1)1,不能;(2)1,不能;习题3-3(P77)1、(1))1,(-∞增加,),1(+∞减少;(2)),(+∞-∞减少;(3))1,(--∞和),1(+∞增加,)1,1(-减少;(4))2,0(减少,),2(+∞增加;2、(1))3,(-∞减少,),3(+∞增加;(2)),0(1-e 减少,),(1+∞-e 增加;(3))0,(-∞增加,),0(+∞减少; (4))1,(-∞和),2735(+∞增加,)2735,1(减少; 3、证明:设1)(--=x e x f x ,则1)(-='xe xf ,当0>x 时,0)(>'x f所以函数)(x f 在),0(+∞上单调增加,所以当0>x 时,0)0()(=>f x f ,即01>--x e x ,从而x e x+>1 4、证明:设13)(23+-=x x x f ,显然函数)(x f 在]1,0[上连续,且01)1(,01)0(<-=>=f f由零点存在定理知,函数)(x f 在)1,0(至少有一个零点,又当)1,0(∈x 时,0)2(363)(2<-=-='x x x x x f ,函数单调减少所以函数)(x f 在)1,0(至多只有一个零点,即方程01323=+-x x 在)1,0(至多只有一个实根,因为0)1(,0)0(≠≠f f ,所以1,0==x x 不是方程的根,所以方程01323=+-x x 在]1,0[至多只有一个实根。

高等数学基础教材课后答案

高等数学基础教材课后答案

高等数学基础教材课后答案1. 第一章:函数与极限1.1 函数的概念与性质1.2 极限的定义与性质1.3 常用极限和极限运算法则2. 第二章:导数与微分2.1 导数的定义与基本性质2.2 高阶导数与导数的计算2.3 微分的概念与运算3. 第三章:微分中值定理与导数应用3.1 罗尔定理与拉格朗日中值定理3.2 洛必达法则与泰勒公式3.3 极值与最值的判定3.4 应用题:切线与法线、曲率与弧长4. 第四章:不定积分与定积分4.1 不定积分的概念与性质4.2 基本积分表与积分方法4.4 牛顿-莱布尼茨公式与换元积分法5. 第五章:多元函数微分学5.1 多元函数的概念与性质5.2 偏导数与全微分5.3 隐函数与参数方程的求导5.4 高阶导数与泰勒展开5.5 一元函数与多元函数的导数比较6. 第六章:多元函数的极值与条件极值6.1 多元函数的极值判定与求解6.2 条件极值的求解6.3 隐函数的极值7. 第七章:重积分与曲线积分7.1 二重积分的概念与计算7.2 广义积分的概念与性质7.3 三重积分的概念与计算7.4 曲线积分的概念与计算8. 第八章:无界区域上的积分8.1 狄利克雷条件8.2 无界闭区域上的积分8.3 圆周率的计算9. 第九章:常微分方程9.1 一阶常微分方程的解法与应用9.2 高阶常微分方程的解法9.3 变量分离与恰当方程9.4 拉普拉斯变换与常系数线性微分方程10. 第十章:偏微分方程10.1 偏微分方程的基本概念10.2 分离变量方法与特征线法10.3 热传导方程与波动方程10.4 边界值问题与最值问题以上为《高等数学基础教材》课后习题答案的大致内容。

对于每个章节的习题,下面是一些示例题目及其解答作为参考:【第一章:函数与极限】习题1:已知函数f(x)=3x^2+2x-1,求f(-2)的值。

解答:将x=-2代入f(x),得到f(-2)=3*(-2)^2+2*(-2)-1=13。

习题2:证明函数f(x)=x^3+2x^2-3x+5是奇函数。

高等数学课后习题答案--第七章

高等数学课后习题答案--第七章

−( x+ y )
;
x2 − y2 (6) 2 ; x + y2
(8)
(7)
1 − cos( x 2 + y 2 ) ; x2 + y2
x2 . x2 + y2 − x
【答案】 (1) 0; (2) 2; (3) 0; (4) 不存在; (5) 0 ; (6) 不存在; (7) 0; (8) 不存在.
(2) z ′ x = −
y 1 + , x2 y
z ′y =
1 y , z ′y = , (4) y y y y 2 x cos sin x sin cos x x x x xy xy +1 ′ z′ ln x . x = x y (ln x + 1) , z y = x
1 x − ,(3) z ′ x = − x y2
14. 计算下列映射的导数: ⎛x+ y ⎞ ⎟ (1) f ( x, y ) = ⎜ ⎜ x 2 + y 2 ⎟; ⎝ ⎠
⎛ u cos v ⎞ ⎟ ⎜ (2) g (u , v) = ⎜ u sin v ⎟. ⎟ ⎜v ⎠ ⎝
⎛ dx ⎞ ⎛ dx + dy ⎞ ⎛1 1⎞ ⎜ ⎟ ⎟ df = J , 【解】 (1) J = ⎜ ⎜ dy ⎟ ⎟=⎜ ⎜ ⎜ 2x 2 y ⎟ ⎟; ⎝ ⎠ ⎝ 2 xdx + 2 ydy ⎠ ⎝ ⎠
⎡ (4) u = sin 2 x + sin ⎢( y − 1) ln tan ⎣
【解】(1)
x ⎤ ⎛π ⎞ ⎥ 在 ⎜ , 1⎟ 处的 u ′ x。 y⎦ ⎝4 ⎠
6 1 12 6 6 ,− ; ; (2) − ,− , 12 36 18 36 3

出版社的高等数学教材答案

出版社的高等数学教材答案

出版社的高等数学教材答案高等数学教材答案本文旨在为出版社的高等数学教材提供答案,以帮助学生更好地理解和掌握数学知识。

以下将按照章节顺序依次给出每一章节的答案。

第一章:函数与极限1.1 函数的概念与表示答案略1.2 极限的概念与性质答案略1.3 极限的计算方法答案略第二章:导数与微分2.1 导数的概念与性质答案略2.2 基本求导公式答案略2.3 高阶导数与隐函数求导答案略第三章:微分中值定理与导数的应用3.1 微分中值定理答案略3.2 函数的单调性与曲线的凹凸性答案略3.3 泰勒公式及其应用答案略第四章:定积分与不定积分4.1 定积分的概念与性质答案略4.2 牛顿-莱布尼兹公式答案略4.3 不定积分的性质与基本积分表答案略第五章:多元函数微分学5.1 多元函数的概念与表示答案略5.2 偏导数与全微分答案略5.3 隐函数与参数方程求导答案略第六章:重积分与曲线曲面积分6.1 重积分的概念与性质答案略6.2 置换积分与极坐标系答案略6.3 曲线曲面积分的计算答案略第七章:无穷级数与函数级数7.1 数项级数的收敛性答案略7.2 函数项级数的收敛性答案略7.3 幂级数与傅里叶级数答案略第八章:常微分方程8.1 常微分方程的基本概念答案略8.2 一阶常微分方程的解法答案略8.3 高阶常微分方程的解法答案略以上为出版社高等数学教材各章节的答案概述。

希望这些答案能够为学生提供参考和帮助,使他们更好地理解和掌握高等数学知识。

如有其他问题,请及时与出版社或教师联系。

祝学习顺利!。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第三章参考答案习题3-1(P66) 1、(1)不满足,在1=x 处不连续;(2)不满足,在2=x 处不可导; 2、(1)、1-=e ξ;(2)ππξ-=4;3、证明:设任意区间),(],[+∞-∞⊂b a ,显然函数在],[b a 上连续,在),(b a 内可导, 所以函数满足拉格朗日中值定理的条件,所以有q b a p ab r qa pa r qb pb f ++=-++-++=')()()()(22ξ 又q p r qx px f x +='++='=ξξξ2)()(2所以q p q b a p +=++ξ2)(,从而2ba +=ξ 所以命题成立。

4、方程有2个根,分别位于区间)2,1(和)3,2(内;5、)4,2(;6、证明:设x x f arctan )(=,显然函数)(x f 在),(+∞-∞内处处连续,处处可导, 设区间),(],[+∞-∞⊂a b ,则)(x f 在],[a b 上满足拉格朗日子中值定理的条件 所以),(a b 内至少存在一点ξ,使)(11arctan arctan 2b a b a -+=-ξ, 所以b a b a b a -≤-⋅+=-211arctan arctan ξ, 即b a b a -≤-arctan arctan习题3-2(P70)1、(1)1;(2)2;(3)a cos ;(4)53-;(5)81-; (6)0;(7)21-;(8)π2;(9)0;(10)21;2、(1)1,不能;(2)1,不能;习题3-3(P77)1、(1))1,(-∞增加,),1(+∞减少;(2)),(+∞-∞减少;(3))1,(--∞和),1(+∞增加,)1,1(-减少;(4))2,0(减少,),2(+∞增加;2、(1))3,(-∞减少,),3(+∞增加;(2)),0(1-e 减少,),(1+∞-e 增加;(3))0,(-∞增加,),0(+∞减少; (4))1,(-∞和),2735(+∞增加,)2735,1(减少; 3、证明:设1)(--=x e x f x ,则1)(-='xe xf ,当0>x 时,0)(>'x f所以函数)(x f 在),0(+∞上单调增加,所以当0>x 时,0)0()(=>f x f ,即01>--x e x ,从而x e x+>1 4、证明:设13)(23+-=x x x f ,显然函数)(x f 在]1,0[上连续,且01)1(,01)0(<-=>=f f由零点存在定理知,函数)(x f 在)1,0(至少有一个零点,又当)1,0(∈x 时,0)2(363)(2<-=-='x x x x x f ,函数单调减少所以函数)(x f 在)1,0(至多只有一个零点,即方程01323=+-x x 在)1,0(至多只有一个实根,因为0)1(,0)0(≠≠f f ,所以1,0==x x 不是方程的根,所以方程01323=+-x x 在]1,0[至多只有一个实根。

5、(1)极小值5)1(-=-f ,无极大值; (2)极小值3)2(-=f ,极大值23)1(=-f ; (3)极小值47)3(-=f ,极大值17)1(=-f ; (4)极小值45)43(=f ,无极大值; (5)极小值0)0(=f ,极大值24)2(ef =; (6)无极值;(7)极小值0)0(=f ,极大值1)1(=-f ; (8)提示:111-+-=x x y ,极小值2)0(-=f ,极大值2)2(=f ;6、解:显然函数)(x f 在),(+∞-∞上可导, 要使函数)(x f 在3π=x 处取得极值,须有0)3(='πf ,即0cos 3cos=+ππa ,解得2=a因为03)3sin 3sin 2()3(3<-=--=''=ππx x x f所以函数)(x f 在3π=x 处取得极大值,此时3sin 313sin2)3(=+=πππf 所以当2=a 时,函数)(x f 在3π=x 处取极大值3。

7、(1)最大值80)4(=f ,最小值5)1(-=-f ; (2)最大值11)3(=f ,最小值14)2()2(-==-f f ; (3)最大值1)1(=f ,最小值0)2()0(==f f ; (4)最大值0)0(=f ,最小值2ln )41(-=f ; (5)最大值21)1(=f ,最小值21)1(-=-f ; (6)最大值416)4(e f =-,最小值0)0(=f ;8、解:设车间靠墙壁的长为x 米,则不靠墙壁的长为)210(x -米,面积)210()(x x x S -=,200<<xx x S -='10)(,令0)(='x S ,得唯一驻点10=x ,因为01)(<-=''x S 所以)(x S 在10=x 处取极大值,又驻点唯一, 所以)(x S 在10=x 处取最大值,所以当小屋靠墙壁的长为10米,不靠墙壁的长为5米时,面积最大。

9、解:设经过x 小时两船相距为y 海里,则⎪⎩⎪⎨⎧>+-≤<+-=25.6,)6()]25.6(12[25.60,)6()1275(2222x x x x x x y当25.60≤<x 时,1125)5(180180036056251800180180036022+--=+--='x x x x x y ,令0='y ,得驻点5=x ,没有不可导点,依题意知目标函数存在最小值,且驻点唯一,所以当5=x 时,函数y 取最小值515 当25.6>x 时,5155.37)25.66(2>=⨯>y综上可知,经过5小时,两船距离最近。

10、解:设)(m x BM =,那么22200,600+=-=x CM x AM ,所以掘进费2220013)600(5++-=x x y )6000(≤≤x 52001322-+='x x y ,令0='y ,得唯一驻点3250=x ,没有不可导点 当0=x 时,5600=y ;当3250=x 时,2.4717≈y ;600=x 时,9.8221≈y 比较得2.4717≈y 最小,此时7.5163250600≈-=AM ,所以从A 处沿水平掘进516.7米后,再斜向下沿直线掘进到C 处,掘进费最省,为4717.2元。

11、解:矩形底宽为x 米,高为h 米,则周长2)2(2++=πx h y 由582=+x xh π得85x x h π-=,所以4)4(10++=πx x y )0(>x 21044x y -+='π,令0='y ,得驻点440+=πx 依题意目标函数存在最小值,且驻点唯一,所以当440+=πx 米时,截面的周长最小。

12、解:设漏斗的地面半径为r ,高为h ,则h r V ⋅=231π 由ϕπR r =2,得πϕ2R r =,222242ϕππ-=-=R r R h所以22223242431ϕπϕππ-=⋅=R h r V )20(πϕ<< 2222234)38(24ϕπϕπϕπ--⋅='R V ,令0='V ,解得πϕ38= 依题意,目标函数存在最大值,且驻点唯一,所以当πϕ38=时,函数取最大值,即当πϕ38=时,做成的漏斗容积最大。

13、解:设内接直圆柱的底半径为r ,高为h 2,则圆柱的体积h r V 22π=因为球内接圆柱,所以有222R h r =+,得22r R h -=所以6242rR r V -=π)0(R r <<, 2222)32(2rR r R r V --='π,令0='V ,得R r 32=,此时R h 342= 依题意,函数存在最大值,且驻点=唯一,所以当R r 32=时,函数取最大值, 所以内接直圆柱的半径为R 32、高为R 34时,体积最大。

14、解:如图ϕϕtan 3sin 152-=--=DC DA h 因为ϕϕtan 3,5.1sin 15=+=DC DA , 所以5.0tan 3sin 15--=ϕϕh )20(πϕ<<ϕϕϕϕ232cos 3cos 15sec 3cos 15-=-='h ,令0='h ,解得351cos =ϕ 此时81.02511cos1sin 32≈-=-=ϕϕ, 39.11251cos 11sec tan 322≈-=-=-=ϕϕϕ依题意知,函数存在最大值,且驻点唯一,所以当351cos =ϕ时,函数取最大值 648.75.039.1381.0155.0tan 3sin 15>≈-⨯-⨯≈--=ϕϕh 所该吊车能把屋架吊上去。

15、解:利润50015001.0)()()(2-+-=-=x x x C x R x L15002.0)(+-='x x L ,令0)(='x L ,得唯一驻点7500=x依题意,函数存在最大值,且驻点唯一,所以当7500=x 时,)(x L 最大, 即应生成7500台,才能获得最大利润。

习题3-4(P83)1、(1)凸区间为)35,(-∞,凹区间为),35(+∞,拐点为)2720,35(; (2)凸区间为)1,(--∞和),1(+∞,凹区间为)1,1(-,拐点为)2ln ,1(-和)2ln ,1(; (3)凸区间为)0,(-∞和),21(+∞,凹区间为)21,0(,拐点为)0,0(和)161,21(; (4)凸区间为)1,0(和),(2+∞e ,凹区间为),1(2e ,拐点为)2,(22e e ;(5)凸区间为)3,(--∞和)3,0(,凹区间为)0,3(-和),3(+∞,拐点为)43,3(--、)0,0(和)43,3(; 2、略;综合练习(三)(P83) 一、填空题1、2;2、2;3、)1,0(),,1(+∞;4、1,1-;5、)2,2(),1,1(2e e ;6、2;7、)0,(),,0(-∞+∞; 8、0;9、必要;10、)(bf ;二、选择题1、D ;2、C ;3、A ;4、B ;5、B ;6、C ;7、B ;8、D ;9、C ;10、B ; 三、计算题 1、(1)61;(2)21-; (3)原式)1ln(ln lim)1ln(ln 0ln 0)1ln(1lim lim --→→+→+-+===x x xx e e x exx xx e e ee e e exx xx xx x x x x xe e e xe e e ex ====+--+→+→+→00lim1lim11lim ;(4)原式xx x x x 22220sin sin lim -=→xx x x x xx x x cos sin 2sin 22cos sin 2lim220+-=→xx x x xx x 2sin sin 222sin lim 220+-=→xx x x x x x x x 2cos 22sin 22sin 2sin 222cos 2lim220+++-=→xx x x x x x 2cos 2sin 2sin 12cos lim220++-=→ xx x x x x x x xx 2sin 22cos 22cos 42sin 22sin 2sin 2lim20-+++-=→ xx x x x xx 2sin 22cos 62sin 32sin 2lim20-+-=→ xx x x x x x x 2sin 2cos 322sin 322sin 2lim 0-+⋅⋅-=→31-=2、解:函数的定义域为),(+∞-∞ 3232)6(3)4(3x x x x y -⋅-=',令0='y ,得驻点41=x ,导数不存在的点为6,032==x x所以,函数在区间)0,(-∞和),4(+∞单调减少,在区间)4,0(单调增加,极小值为0,极大值为342。

相关文档
最新文档