PN结及其单向导电特性半导体二极管的伏安特性曲线
电工电子学第二版第六章
硅0.6~0.7V 锗0.2~0.3V
例:
D2 D1
求:UAB
两个二极管的阴极接在一起 A 取 B 点作参考点,断开二极管, + 分析二极管阳极和阴极的电位。 U
AB
6V
3k 12V
–
B
自由电子和空穴都称为载流子。 自由电子和空穴成对地产生的同时,又不断复合。在一 定温度下,载流子的产生和复合达到动态平衡,半导体中载 流子便维持一定的数目。
注意: (1) 常温下本征半导体中载流子数目极少, 其导电性能很差; (2) 温度愈高, 载流子的数目愈多,半导体的导电性能也就愈 好。所以,温度对半导体器件性能影响很大。 (3)相同条件下,本征半导体较一般半导体导电性弱很多。
Si
Si
Si 空穴
Si
价电子
在外电场的作用下,空穴吸引相邻原子的价电子来填 补,而在该原子中出现一个空穴,其结果相当于空穴的运动 (相当于正电荷的移动)称为复合运动。
本征半导体的导电机理 当半导体两端加上外电压时,在半导体中将出现两部分电流 (1)自由电子作定向运动 电子电流 (2)价电子递补空穴 空穴电流
DB导通
DA导通 均导通
当输入均为同3V时,输出才为3V 当输入有一为0V时,输出为0V 实现了“与”门逻辑
总结:
2、多个二极管连接: 若 共阴极,阳级最高一个先导通
若 共阳级,阴级最低一个先导通
先导通的一个二极管起嵌位作用。
例3限幅作用:R + ui – D + uo –
8V
已知:ui 18sin t V 二极管是理想的,试画 出 uo 波形。
半导体的导电特性
半导体
本征半导体 杂质半导体
P型半导体(空穴型) N型半导体(电子型)
常用半导体材料硅和锗的原子结构
价电子:最外层的电子受原子核的束缚最 小,最为活跃,故称之为价电子。 最外层有几个价电子就叫几价元素, 半导体材料硅和锗都是四价元素。
Si+14 2 8 4
Ge+32 2 8 18 4
2. 半导体的内部结构及导电方式:
一是势垒电容CB 二是扩散电容CD
(1) 势垒电容CB
势垒电容是由空间电荷区的离子薄层形成的。 当外加电压使PN结上压降发生变化时,离子薄层 的厚度也相应地随之改变,这相当PN结中存储的 电荷量也随之变化,犹如电容的充放电。
图 01.09 势垒电容示意图
(2) 扩散电容CD
扩散电容是由多子扩散后,在PN结的另一侧 面积累而形成的。因PN结正偏时,由N区扩散 到P区的电子,与外电源提供的空穴相复合,形 成正向电流。刚扩散 过来的电子就堆积在P 区内紧靠PN结的附近, 形成一定的多子浓度 梯度。
vi
RL vo
vo
t
例3:设二极管的导通电压忽略,已知
vi=10sinwt(V),E=5V,画vo的波形。
vi 10v
5v
R
t
D
vo
vi
E
vo
5v
t
例4:电路如下图,已知v=10sin(t)(V),
E=5V,试画出vo的波形
vi
解:
t
vD
t
例5:VA=3V, VB=0V,求VF (二极管的导 通电压忽略)
根据理论推导,二极管的伏安特性曲线可用下式表示
V
I IS (e VT 1)
式中IS 为反向饱和电流,V 为二极管两端的电压降 ,VT =kT/q 称为温度的电压当量,k为玻耳兹曼常数 ,q 为电子电荷量,T 为热力学温度。对于室温(相 当T=300 K),则有VT=26 mV。
模拟电子技术学习指导与习题解答分析
把电路分成两个部分,一部分是由二极管组成的非线性电路,另一部分则是由电源、 电阻等线性元件组成的线性部分。分别画出非线性部分(二极管)的伏安特性曲线和线性部
分的特性曲线,两条特性曲线的交点即为电路的工作电压和电流。
2)等效模型分析法
二极管的等效模型有四种:理想、恒压降、折线和微变等效模型。一般情况下,理想 模型和恒压降模型用得较多。
还兼作阴极),其中,阴极有发射电子的作用,阳极有接收电子的作用。二极管具有单向导 电的特性,可用作整流和检波。在二极管的基础上增加一个栅极就成了电子三极管,栅极
能控制电流,栅极上很小的电流变化,都会引起阳极很大的电流变化,所以,电子三极管 有放大作用。
5.晶体管和集成电路
1)晶体管
通俗地说,晶体管是半导体做的固体电子元件。像金、银、铜、铁等金属,它们导电 性能好,叫做导体。木材、玻璃、陶瓷、云母等不易导电,叫做绝缘体。导电性能介于导 体和绝缘体之间的物质,叫半导体。晶体管就是用半导体材料制成的,这类材料中最常见 的便是锗和硅两种。晶体管的出现是电子技术之树上绽开的一朵绚丽多彩的奇葩。
图2.5 PN结的形成
当浓度差引起的多子的扩散运动和内电场引起的少子的漂移运动达到动态平衡时,就 形成了PN结。
2)PN结的单向导电性
PN结加正向偏置时,能形成较大的正向电流,PN结正向电阻很小;加反向偏置时,
反向饱和电流很小,PN结呈高阻这就是PN结的单向导电性。
3.半导体二极管
1)二极管的伏安特性
PN结外加正向电压一一正向偏置时, 由于是多子导电,因而外加电压的微小变化将使
电流有较大的变化。结果,扩散力大于电场力 一一由多子形成的扩散(正向)电流起主导地
位,而少子形成的漂移电流可忽略不计, 空间电荷区变窄,电阻变小。当外加负向电压 ——
半导体二极管及其应用习题解答
半导体二极管及其应用习题解答Document number:NOCG-YUNOO-BUYTT-UU986-1986UT第1章半导体二极管及其基本电路教学内容与要求本章介绍了半导体基础知识、半导体二极管及其基本应用和几种特殊二极管。
教学内容与教学要求如表所示。
要求正确理解杂质半导体中载流子的形成、载流子的浓度与温度的关系以及PN结的形成过程。
主要掌握半导体二极管在电路中的应用。
表第1章教学内容与要求内容提要1.2.1半导体的基础知识1.本征半导体高度提纯、结构完整的半导体单晶体叫做本征半导体。
常用的半导体材料是硅(Si)和锗(Ge)。
本征半导体中有两种载流子:自由电子和空穴。
自由电子和空穴是成对出现的,称为电子空穴对,它们的浓度相等。
本征半导体的载流子浓度受温度的影响很大,随着温度的升高,载流子的浓度基本按指数规律增加。
但本征半导体中载流子的浓度很低,导电能力仍然很差,2.杂质半导体(1) N 型半导体 本征半导体中,掺入微量的五价元素构成N 型半导体,N 型半导体中的多子是自由电子,少子是空穴。
N 型半导体呈电中性。
(2) P 型半导体 本征半导体中,掺入微量的三价元素构成P 型半导体。
P 型半导体中的多子是空穴,少子是自由电子。
P 型半导体呈电中性。
在杂质半导体中,多子浓度主要取决于掺入杂质的浓度,掺入杂质越多,多子浓度就越大。
而少子由本征激发产生,其浓度主要取决于温度,温度越高,少子浓度越大。
1.2.2 PN 结及其特性1.PN 结的形成在一块本征半导体上,通过一定的工艺使其一边形成N 型半导体,另一边形成P 型半导体,在P 型区和N 型区的交界处就会形成一个极薄的空间电荷层,称为PN 结。
PN 结是构成其它半导体器件的基础。
2.PN 结的单向导电性PN 结具有单向导电性。
外加正向电压时,电阻很小,正向电流是多子的扩散电流,数值很大,PN 结导通;外加反向电压时,电阻很大,反向电流是少子的漂移电流,数值很小,PN 结几乎截止。
第二个教案 2.1 半导体二极管
二极管的伏安特性曲线 二极管的伏安特性曲线: 伏安特性曲线: 硅管
UBE(on)= 0.7V IS=(10-9~10-16)A UBE(on)= 0.25V IS=(10-6~10-8)A
PN结导通; PN结导通; 结导通
锗管
U >UBE(on)时
随着U
↑
I
↑↑
正向R很小 正向R
很小( U < UBE(on)时 IR很小(IR≈ 反向R PN结截止 结截止。 反向R很大 PN结截止。 I S) 温度每升高1℃ 1℃, 约减小2.5mV 2.5mV。 温度每升高1℃, UBE(on)约减小2.5mV。 温度每升高10℃ 10℃, 约增加一倍。 温度每升高10℃,IS约增加一倍。
1.1 半导体的特性
半导体:指导电能力介于导体与绝缘体之间的物质。 半导体:指导电能力介于导体与绝缘体之间的物质。
大多数半导体器件所用的主要材料是硅 (Si) 、锗 (Ge) 大多数半导体器件所用的主要材料是硅
原子结构及简化模型: 硅 、锗 原子结构及简化模型:
+4 +14 2 8 4 +32 2 8 18 4
当原子中的价电子在光照或温度升高时获得能量挣脱共价键的束 缚而成为自由电子,原子中留下空位(即空穴),(即产生自由电 同时原子因失去价电子而带正电。 子-空穴对)同时原子因失去价电子而带正电。 当邻近原子中的价电子释放能量不断填补这些空位时( 当邻近原子中的价电子释放能量不断填补这些空位时(自由电子与空穴 的复合)形成一种运动,该运动可等效地看作是空穴的运动 空穴的运动。 的复合)形成一种运动,该运动可等效地看作是空穴的运动。空穴运动方向 与价电子填补方向相反。 与价电子填补方向相反。即自由电子和空穴都能在晶格中自由移动。因 而统称它们为半导体的载流子。
测定半导体二极管的伏安特性
测定半导体二极管的伏安特性1背景知识电子器件的伏安特性电子器件的伏安特性是指流过电子器件的电流随器件两端电压的变化特性测定出电子器件的伏安特性,对其性能了解与其实际应用具有重要意义。
在生产和科研中,可用晶体管特性图示仪自动测绘其曲线,在现代实验技术中,可用传感器及计算机进行测定给出测量结果。
如果手头没有现成的自动测量仪器,提出应用电流表和电压表进行人工测量的方法,进行应急的测量是很有用的。
半导体二极管半导体二极管是具有单向导电性的非线性电子元件,其电阻值与工作电流(或电压)有关。
二极管的单向导电性就是PN结的单向导电性:PN结正向偏置时,结电阻很低,正向电流甚大(PN结处于导通状态);PN结反向偏置时,结电阻很高,反向电流很小(PN结处于截止状态),这就是PN结的单向导电性。
(正向偏置);(反向偏置)。
二极管的结构:半导体二极管是由一个PN结,加上接触电极、引线和管壳而构成。
按内部结构的不同,半导体二极管有点接触和面接触型两类,通常由P区引出的电极称为阳极,N区引出的电极称为阴极。
二极管的伏安特性及主要参数:二极管具有单向导电性,可用其伏安特性来描述。
所谓伏安特性,就是指加到二极管两端的电压与流过二极管的电流的关系曲线,如下图所示。
这个特性曲线可分为正向特性和反向特性两个部分。
图1二极管的伏安特性曲线(1)正向特性当二极管加上正向电压时,便有正向电流通过。
但是,当正向电压很低时,外电场还不能克服PN结内电场对多数载流子扩散运动所形成的阻力,故正向电流很小,二极管呈现很大的电阻。
当正向电压超过一定数值(硅管约,锗管约)以后,内电场被大大削弱,二极管电阻变得很小,电流增长很快,这个电压往往称为阈电压UTH(又称死区电压:0-U0)。
二极管正向导通时,硅管的压降一般为,锗管则为。
导通以后,在二极管中无论流过多大的电流(当然是允许范围之内的电流),在极管的两端将始终是一个基本不变的电压,我们把这个电压称为二极管的“正向导通压降”。
模电教材(PDF)
1.正向特性2.反向特性3.反向击穿特性4.温度对特性的影响1.2.3 半导体二极管的主要参数1.最大整流电流IF2.最大反向工作电压URM3.反向饱和电流IR4.二极管的直流电阻R5.最高工作频率fM1.2.4 半导体二极管的命名及分类1.半导体二极管的命名方法第2章半导体三极管及其放大电路本章重点内容�晶体三极管的放大原理、输入特性曲线、输出特性曲线�基本放大电路的工作原理及放大电路的三种基本偏置方式�利用估算法求静态工作点�微变等效电路及其分析方法�三种基本放大电路的性能、特点2.1 半导体三极管2.1.1 三极管的结构及分类1.三极管的内部结构及其在电路中的符号N PP2.输出特性曲线(1)放大区(2) 饱和区(3) 截止区2.1.4 三极管正常工作时的主要特点1.三极管工作于放大状态的条件及特点2.三极管工作于饱和状态的条件及特点3.三极管工作于截止状态时的条件及特点*2.1.5 特殊晶体管简介1.光电三极管2.1.6 三极管的主要参数1.电流放大系数2.反向饱和电流ICBO3.穿透电流ICEO4.集电极最大允许电流ICM5.集电极、发射极间的击穿电压UCEO。
6.集电极最大耗散功率PCM2.1.7 三极管的检测与代换1.国产三极管的命名方法简介2.三极管三个电极(管脚)的估测(aωωωωω2.4.2 放大电路的图解分析法1.用图解法确定静态工作点的步骤:(1)在i c 、u ce 平面坐标上作出晶体管的输出特性曲线。
(2)根据直流通路列出放大电路直流输出回路的电压方程式:U CE = V CC -I C ·R C(3)根据电压方程式,在输出特性曲线所在坐标平面上作直流负载线。
因为两点可决定一条直线,所以分别取(I C =0,U CE =V CC )和(U CE =0,I C =E C /R c )两点,这两点也就是横轴和纵轴的截距,连接两点,便得到直流负载线。
(4)根据直流通路中的输入回路方程求出I BQ 。
晶体二极管伏安特性曲线课件
CONTENCT
录
• 晶体二极管伏安特性曲线的实验研 • 参考文献
01
晶体二极管基本原理
晶体二极管的结构与工作原理
晶体二极管的基本结构
由半导体材料制成的PN结结构,具有P型半导体和N型半导体接 触形成的空间电荷层。
晶体二极管的工作原理
PN结加正向电压时,空间电荷层变薄,载流子容易通过,形成大 的电流;加反向电压时,空间电荷层变厚,载流子不易通过,电 流很小。
分析故障原因
结合伏安特性曲线的变化 趋势和元件参数,可以分 析出故障原因,为修复提 供指导。
晶体二极管伏安特性曲线在器件性能评估中的应用
评估器件性能
通过对比不同型号、批次晶体二极管的伏安特性曲线,可以对它 们的性能进行评估和比较。
选择合适的器件
了解不同晶体二极管的伏安特性曲线,可以帮助选择适合特定需求 的器件,确保其性能和稳定性。
100%
非线性
在大信号或高电压条件下,晶体 二极管伏安特性曲线表现出明显 的非线性特征,即电流与电压之 间不再是线性关系。
80%
应用
线性二极管用于小信号处理,如 音频放大和整流电路;非线性二 极管用于大信号处理,如开关电 源和直流控制电路。
03
晶体二极管伏安特性曲线的分析
晶体二极管伏安特性曲线的分段分析
实验步骤与实验数据记录
实验步骤 1. 搭建测试电路,将晶体二极管接入电路中; 2. 调节电源,为晶体二极管提供不同的电压;
3. 使用万用表测量流过二极管的电流,并记录下来;
4. 改变电压,重复上述步骤,直至获得足够的实验数据。
实验数据记录:在实验过程中,记录下不同电压下的电流 值,这些数据将用于后续的实验结果分析。
模拟电子技术基础目录
模拟电子技术基础目录模拟电子技术基础目录模拟电子技术基础目录前言教学建议第1章半导体二极管及其应用1.1 半导体物理基础知识1.1.1 本征半导体1.1.2 杂质半导体1.2 pn结1.2.1 pn结的形成1.2.2 pn结的单向导电性1.2.3 pn结的反向击穿特性1.2.4 pn结的电容特性1.3 半导体二极管及其基本电路1.3.1 半导体二极管的伏安特性曲线1.3.2 半导体二极管的主要参数1.3.3 半导体二极管的电路模型1.3.4 二极管基本应用电路1.4 特殊二极管1.4.1 稳压二极管.1.4.2 变容二极管1.4.3 光电二极管1.4.4 发光二极管思考题习题第2章双极型晶体管及其放大电路2.1 双极型晶体管的工作原理2.1.1 双极型晶体管的结构2.1.2 双极型晶体管的工作原理2.2 晶体管的特性曲线2.2.1 共射极输出特性曲线2.2.2 共射极输入特性曲线2.2.3 温度对晶体管特性的影响2.2.4 晶体管的主要参数2.3 晶体管放大电路的放大原理2.3.1 放大电路的组成2.3.2 静态工作点的作用2.3.3 晶体管放大电路的放大原理2.3.4 基本放大电路的组成原则2.3.5 直流通路和交流通路2.4 放大电路的静态分析和设计2.4.1 晶体管的直流模型及静态工作点的估算2.4.2 静态工作点的图解分析法2.4.3 晶体管工作状态的判断方法2.4.4 放大状态下的直流偏置电路2.5 共射放大电路的动态分析和设计2.5.1 交流图解分析法2.5.2 放大电路的动态范围和非线性失真2.5.3 晶体管的交流小信号模型2.5.4 等效电路法分析共射放大电路2.5.5 共射放大电路的设计实例2.6 共集放大电路(射极输出器)2.7 共基放大电路2.8 多级放大电路2.8.1 级间耦合方式2.8.2 多级放大电路的性能指标计算2.8.3 常见的组合放大电路思考题习题第3章场效应晶体管及其放大电路3.1 场效应晶体管3.1.1 结型场效应管3.1.2 绝缘栅场效应管3.1.3 场效应管的参数3.2 场效应管工作状态分析及其偏置电路3.2.1 场效应管工作状态分析3.2.2 场效应管的偏置电路3.3 场效应管放大电路3.3.1 场效应管的低频小信号模型3.3.2 共源放大电路3.3.3 共漏放大电路思考题习题第4章放大电路的频率响应和噪声4.1 放大电路的频率响应和频率失真4.1.1 放大电路的幅频响应和幅频失真4.1.2 放大电路的相频响应和相频失真4.1.3 波特图4.2 晶体管的高频小信号模型和高频参数4.2.1 晶体管的高频小信号模型4.2.2 晶体管的高频参数4.3 晶体管放大电路的频率响应4.3.1 共射放大电路的频率响应4.3.2 共基、共集放大器的频率响应4.4 场效应管放大电路的频率响应4.4.1 场效应管的高频小信号等效电路4.4.2 共源放大电路的频率响应4.5 多级放大器的频率响应4.5.1 多级放大电路的上限频率4.5.2 多级放大电路的下限频率4.6 放大电路的噪声4.6.1 电子元件的噪声4.6.2 噪声的度量思考题习题第5章集成运算放大电路5.1 集成运算放大电路的特点5.2 电流源电路5.3 以电流源为有源负载的放大电路5.4 差动放大电路5.4.1 零点漂移现象5.4.2 差动放大电路的工作原理及性能分析5.4.3 具有电流源的差动放大电路5.4.4 差动放大电路的大信号分析5.4.5 差动放大电路的失调和温漂5.5 复合管及其放大电路5.6 集成运算放大电路的输出级电路5.7 集成运算放大电路举例5.7.1 双极型集成运算放大电路f0075.7.2 cmos集成运算放大电路mc145735.8 集成运算放大电路的外部特性及其理想化5.8.1 集成运放的模型5.8.2 集成运放的主要性能指标5.8.3 理想集成运算放大电路思考题习题第6章反馈6.1 反馈的基本概念及类型6.1.1 反馈的概念6.1.2 反馈放大电路的基本框图6.1.3 负反馈放大电路的基本方程6.1.4 负反馈放大电路的组态和四种基本类型6.2 负反馈对放大电路性能的影响6.2.1 稳定放大倍数6.2.2 展宽通频带6.2.3 减小非线性失真6.2.4 减少反馈环内的干扰和噪声6.2.5 改变输入电阻和输出电阻6.3 深度负反馈放大电路的近似计算6.3.1 深负反馈放大电路近似计算的一般方法6.3.2 深负反馈放大电路的近似计算6.4 负反馈放大电路的稳定性6.4.1 负反馈放大电路的自激振荡6.4.2 负反馈放大电路稳定性的判断6.4.3 负反馈放大电路自激振荡的消除方法思考题习题第7章集成运算放大器的应用7.1 基本运算电路7.1.1 比例运算电路7.1.2 求和运算电路7.1.3 积分和微分运算电路7.1.4 对数和反对数运算电路7.2 电压比较器7.2.1 电压比较器概述7.2.2 单门限比较器7.2.3 迟滞比较器7.2.4 窗口比较器7.3 弛张振荡器7.4 精密二极管电路7.4.1 精密整流电路7.4.2 峰值检波电路7.5 有源滤波器7.5.1 滤波电路的作用与分类7.5.2 一阶有源滤波器7.5.3 二阶有源滤波器7.5.4 开关电容滤波器思考题习题第8章功率放大电路8.1 功率放大电路的特点与分类8.2 甲类功率放大电路8.3 互补推挽乙类功率放大电路8.3.1 双电源互补推挽乙类功率放大电路8.3.2 单电源互补推挽乙类功率放大电路8.3.3 采用复合管的准互补推挽功率放大电路8.4 集成功率放大器8.5 功率器件8.5.1 双极型大功率晶体管8.5.2 功率mos器件8.5.3 绝缘栅双极型功率管及功率模块8.5.4 功率管的保护思考题习题第9章直流稳压电源9.1 直流电源的组成9.2 整流电路9.2.1 单相半波整流电路9.2.2 单相全波整流电路9.2.3 单相桥式整流电路9.2.4 倍压整流电路9.3 滤波电路9.3.1 电容滤波电路9.3.2 电感滤波电路9.3.3 复合型滤波电路9.4 稳压电路9.4.1 稳压电路的主要指标9.4.2 线性串联型直流稳压电路9.4.3 开关型直流稳压电路思考题习题第10章可编程模拟器件与电子电路仿真软件10.1 在系统可编程模拟电路原理与应用10.1.1 isppac10的结构和原理10.1.2 其他isppac器件的结构和原理10.1.3 isppac的典型应用10.2 multisim软件及其应用10.2.1 multisim 8的基本界面10.2.2 元件库10.2.3 仿真仪器10.2.4 仿真分析方法10.2.5 在模拟电路设计中的应用思考题习题第11章集成逻辑门电路11.1 双极型晶体管的开关特性11.2 mos管的开关特性11.3 ttl门电路11.3.1 ttl标准系列与非门11.3.2 其他类型的ttl标准系列门电路11.3.3 ttl其他系列门电路11.4 ecl门电路简介11.5 cmos门11.5.1 cmos反相器11.5.2 其他类型的cmos电路11.5.3 使用cmos集成电路的注意事项11.5.4 cmos其他系列门电路11.6 cmos电路与ttl电路的连接思考题习题参考文献延伸阅读:模拟电子技术基础50问1、空穴是一种载流子吗?空穴导电时电子运动吗?答:不是,但是在它的运动中可以将其等效为载流子。
电子元件的伏安特性曲线实验报告
电子元件的伏安特性曲线实验报告实验一电子元件伏安特性的测定一、实验目的1.掌握电压表、电流表、直流稳压电源等仪器的使用方法2.学习电阻元件伏安特性曲线的测量方法3.加深理解欧姆定律,熟悉伏安特性曲线的绘制方法二、原理若二端元件的特性可用加在该元件两端的电压U 和流过该元件的电流I 之间的函数关系I =f (U )来表征,以电压U 为横坐标,以电流I 为纵坐标,绘制I-U 曲线,则该曲线称为该二端元件的伏安特性曲线。
电阻元件是一种对电流呈阻力特性的元件。
当电流通过电阻元件时,电阻元件将电能转化为其它形式的能量,例如热能、光能等,同时,沿电流流动的方向产生电压降,流过电阻R 的电流等于电阻两端电压U 与电阻阻值之比,即RU I(1-1)这一关系称为欧姆定律。
若电阻阻值R 不随电流I 变化,则该电阻称为线性电阻元件,常用的普通电阻就近似地具有这一特性,其伏安特性曲线为一条通过原点的直线,如图1-1所示,该直线斜率的倒数为电阻阻值R 。
线性电阻的伏安特性曲线对称于坐标原点,说明在电路中若将线性电阻反接,也不会不影响电路参数。
这种伏安特性曲线对称于坐标原点的元件称为双向性元件。
白炽灯工作时,灯丝处于高温状态,灯丝的电阻随温度升高而增大,而灯丝温度又与流过灯丝的电流有关,所以,灯丝阻值随流过灯丝的电流而变化,灯丝的伏安特性曲线不再是一条直线,而是如图1-2所示的曲线。
半导体二极管的伏安特性曲线取决于PN 结的特性。
在半导体二极管的PN 结上加正向电压时,由于PN 结正向压降很小,流过PN 结的电流会随电压的升高而急剧增大;在PN 结上加反向电压时,PN 结能承受和大的压降,流过PN 结的电流几乎为零。
所以,在一定电压变化范围内,半导体二极管具有单向导电的特性,其伏安特性曲线如图1-3所示。
图1-1 线性电阻元件的伏安特性曲线图1-2 小灯泡灯丝的伏安特性曲线图1-4 稳压二极管的伏安特性曲线稳压二极管是一种特殊的二极管,其正向特性与普通半导体二极管的特性相似。
半导体基础--PN结
半导体基础--PN结介绍PN结之前先了解N型半导体和P型半导体:N型半导体:在本征半导体(⾮常纯净的半导体单晶)中掺⼊五价的元素(如磷),⽤⼀个五价元素的原⼦代替⼀个四价元素的原⼦在晶体中的位置。
由于掺⼊的五价元素的原⼦很容易贡献出⼀个⾃由电⼦,所以把它称为“施主原⼦”。
五价元素的原⼦提供⼀个⾃由电⼦后,本⾝变成正离⼦,但在它周围的共价键中没有空位,所以并不产⽣新的空⽳,这与本征激发产⽣的⾃由电⼦不同。
在掺⼊五价元素的半导体中,除了五价元素的原⼦提供的⼤量⾃由电⼦外,还同时存在由本征激发产⽣的电⼦-空⽳对,此时,⾃由电⼦的浓度远远⼤于空⽳的浓度,这种杂质半导体的导电主要以⾃由电⼦导电为主,因⽽称为电⼦型半导体,或N型半导体。
在N型半导体中,⾃由电⼦是多数载流⼦,简称多⼦;空⽳是少数载流⼦,简称少⼦。
简记:N是Negative,掺5价元素,多⼦是电⼦,少⼦是空⽳。
(Negative表⽰负,⽽电⼦带负电,所以电⼦是多⼦,空⽳是少⼦)P型半导体:在本征半导体中掺⼊三价元素(如硼),⽤⼀个三价元素的原⼦代替⼀个四价元素的原⼦在晶体中的位置。
三价原⼦的三个价电⼦和四价原⼦中的三个价电⼦分别形成共价键结构,因缺少⼀个电⼦,在晶体中会出现⼀个空位。
这个空位会吸引附近原⼦的价电⼦;得到电⼦的硼原⼦,变成不能移动的负离⼦,⽽原来的硅原⼦因少了⼀个价电⼦,形成了空⽳。
此时,空⽳的形成,并没有等量的⾃由电⼦产⽣,这和本征激发产⽣的空⽳不同。
在掺⼊三价元素的杂质半导体中,还同时存在由本征激发产⽣的电⼦-空⽳对。
此时,在半导体中,空⽳的浓度远远⼤于⾃由电⼦的浓度,⽽半导体的导电主要以空⽳导电为主,因⽽称为空⽳型半导体,或P型半导体。
在P型半导体中,空⽳是多数载流⼦,⾃由电⼦是少数载流⼦。
简记:P是Positive,掺3价元素,多⼦是空⽳,少⼦是电⼦。
(Positive表⽰正,⽽空⽳带正电,所以空⽳是多⼦,电⼦是少⼦)1.PN结的形成:在同⼀块半导体的两个不同区域分别掺⼊三价和五价的杂质元素,⼀端成为P型半导体,另⼀端成为N型半导体;这两种半导体紧密地接触在⼀起,便形成了PN结。
物理实验讲义实验11 半导体二极管伏安特性的研究
实验3 半导体二极管伏安特性的研究世界上的物质种类繁多,但就其导电性能来说,大体上可分为导体、绝缘体和半导体三类。
某些物质,如硅、锗等,它们的导电性能介于导体和绝缘体之间,被称为半导体。
半导体之所以引起人们极大的兴趣,原因并不在于它具有一定的导电能力,而在于它具有许多独特的性质。
同一块半导体材料,它的导电能力在不同的条件下会有非常大的差别,比如,在很纯的半导体中掺入微量的其他杂质,它的导电性能将有成千上万倍地增加,并且可以根据掺入杂质的多少来控制半导体的导电性能。
人们正是利用半导体的这种独特的性质做出了各种各样的半导体器件。
本实验通过对常用的半导体器件—二极管特性的研究,了解PN结的特性、结构和工作原理,并测量二极管的部分参数。
【实验目的】1、了解PN结产生的机理和它的作用。
2、学习测量二极管伏安特性曲线的方法。
3、通过实验,加深对二极管单向导电特性的理解。
【仪器用具】HG61303型数字直流稳压电源、GDM-8145型数字万用表、滑线变阻器、FBZX21型电阻箱、C31-V型电压表、C31-A型电流表、FB715型物理设计性实验装置、可调电阻及导线若干、普通二极管、发光二极管、稳压二极管等【实验原理】1.电学元件的伏安特性在某一电学元件两端加上直流电压,在元件内就会有电流通过,通过元件的电流与其两端电压之间的关系称为电学元件的伏安特性。
一般以电压为横坐标,电流为纵坐标作出元件的电压-电流关系曲线,称为该元件的伏安特性曲线。
对于碳膜电阻、金属膜电阻、线绕电阻等电学元件,在通常情况下,通过元件的电流与加在元件两端的电压成正比,即其伏安特性曲线为一通过原点的直线,这类元件称为线性元件,如图3-1的直线a。
至于半导体二极管、稳压管、三极管、光敏电阻、热敏电阻等元件,通过元件的电流与加在元件两端的电压不成线性关系变化,其伏安特性为一曲线,这类元件称为非线性元件,如图3-1的曲线b、c。
伏安法的主要用途是测量研究非线性元件的特性。
半导体导电特性解读
简单的电子技术基础刘海军摘编一、课程背景:电子技术的发展十分迅速,应用非常广泛,现代一切新的科学技术无不与电有着密切的关系。
因此,电子技术是一门重要课程。
为他们将来涉及到电的知识打基础;也为他们自学、深造、拓宽和创新打下基础。
二、课程目标:1、了解模拟电路构成的最基本元件,特性及工作原理。
2、了解集成电路的特点和两种整流电路。
3、了解两种振荡电路及调制方式。
4、了解无线电广播与接收的简单知识。
5、培养学生学习物理的兴趣,用物理知识解决实际问题的能力,热爱生活的情操。
三、教学方式:讲座、讨论、探究(观看教学片、维修店调查、信息采集整理等)四、课程安排:1、时间:每周一课时,共9课时2、对象:全校各年级五、课程内容:向运动形成较大的电流。
因而导体的电阻率很小,只有作用也不会形成电流,所以,绝缘体的电阻率很大,在纯净的半导体单晶硅在室温下电阻率约为(如磷)后,其电阻率急剧下降为,几乎降低了一百万倍。
半导体具有这种性能的根(按一定规则整齐地排列着的晶体。
非常纯净的单晶半导体称为半导体锗和硅都是四价元素,其原子结构示意图如图个电子,带结其符表室一、半波整流电路半波整流电路如图Z0702所示。
它由电源变压器T r整流二极管D和负载电阻RL组成,变压器的初级接交流电源,次级所感应的交流电压为其中U2m为次级电压的峰值,U2为有效值。
电路的工作过程是:在u2的正半周(ωt = 0~π),二极管因加正向偏压而导通,有电流i L流过负载电阻R L。
由于将二极管看作理想器件,故R L上的电压u L与u2的正半周电压基本相同。
在u2的负半周(ωt =π~2π),二极管D因加反向电压而截止,R L 上无电流流过,R L 上的电压u L = 0。
可画出整流波形如图I0702所示。
可见,由于二极管的单向导电作用,使流过负载电阻的电流为脉动电流,电压也为一单向脉动电压,其电压的平均值(输出直流分量)为GS0701流过负载的平均电流为GS0702流过二极管D的平均电流(即正向电流)为GS0703加在二极管两端的最高反向电压为GS0704 。
模电第1单元自测题解答
第1章习题一、填空题:1. N型半导体是在本征半导体中掺入极微量的五价元素构成。
这种半导体内的多数载流子为自由电子,少数载流子为空穴,定域的杂质离子带正电。
2. 双极型三极管内部分有基区、发射区和集电区三个区,发射结和集电结两个PN结,从三个区向外引出三个铝电极。
3. PN结正向偏置时,内、外电场方向相反,电阻很小,多子扩散形成较大的正向电流,PN结导通;PN结反向偏置时,其内、外电场方向相同,电阻很大,少子漂移形成很小的反向电流,PN结几乎截止。
PN结的这种特性称为单向导电性。
4. 二极管的伏安特性曲线划分为四个区,分别是死区、正向导通区、反向截止区和反向击穿区。
5. 用指针式万用表检测二极管极性时,需选用欧姆挡的R×1k档位,检测中若指针偏转较大,可判断与红表棒相接触的电极是二极管的阴极;与黑表棒相接触的电极是二极管的阳极。
检测二极管好坏时,若两表棒位置调换前后万用表指针偏转都很大,说明二极管已经被击穿;两表棒位置调换前后万用表指针偏转都极小时,说明该二极管已经老化不通。
6. BJT中,由于集电极大电流i c受基极小电流i b控制,属于电流控制型器件;FET 中,由于漏极大电流i D受栅源电压u Gs控制,属于电压控制型器件。
7. 温度升高时,PN结内电场增强,造成二极管正向电压减小,反向电压增大。
8. 稳压管正常工作时应在反向击穿区;发光二极管正常工作时应在正向导通区;光电二极管正常工作应在反向截止区。
9. 晶闸管有阳极、阴极和门控极三个电极。
10. 晶闸管既有单向导电的整流作用,又有可以控制导通时间的作用。
晶闸管正向导通的条件是阳极加正电压时,门控极也要有正向触发电压,关断的条件是晶闸管反偏或电流小于维持电流。
二. 判断下列说法的正确与错误:1. 半导体中自由电子是带负电的离子,空穴是带正电的离子。
(错)2. 晶体管和场效应管都是由两种载流子同时参与导电。
(错)3. 用万用表测试晶体管好坏和极性时,应选择欧姆档R×10k档位。
平面型半导体二极管的伏安特性曲线式中IS为反向饱和电流
P型半导体的结构示意图
空穴很容易俘获电子,使杂质原
子成为负离子。三价杂质 因而也称为受主 杂质。P型半导体的结构示意图如图所示
。
P型半导体的结构示意图
杂质对半导体导电性的影响
掺入杂 质对本征半导体的导电性有很大 的影响,一些典型的数据如下:
如果外加电压使PN结中:P区的电位高于 N 区的 电位,称为加正向电压,简称正偏;
P 区的电位低于 N 区的电位,称为加反向电压, 简称反偏。
(1) PN结加正向电压时的导电情况
PN结加正向电压时的导电情况如图
外加的正向电压有一部分降 落在 PN 结区,方向与PN结内电 场方向相反,削弱了内电场。内电 场对多子扩散运动的阻碍减弱,扩 散电流加大。扩散电流远大于漂移 电流,可忽略漂移电流的影响, PN 结呈现低阻性。
3.1.1 本征半导体及其导电性
本征半导体——化学成分纯净的半导体 晶体。
制造半导体器件的半导体材料的纯度要达 到 99.9999999% , 常 称 为 “ 九 个 9” 。 它 在 物 理结构上呈单晶体形态。
(1)本征半导体的共价键结构
硅和锗是四价元素,在原子最外层轨道上的四个电子称为价 电子。它们分别与周围的四个原子的价电子形成共价键。共价键中 的价电子为这些原子所共有,并为它们所束缚,在空间形成排列有 序的晶体。
在本征半导体中掺入某些微量元素作为杂质,可使半导体 的导电性发生显著变化。掺入的杂质主要是三价或五价元素。掺入 杂N型半导体
在本征半导体中掺入五价杂质元素,例 如磷,可形成 N型半导体,也称电子型半导体。
因五价杂质原子中只有四个价电子能与周围 四个半导体原子中的价电子形成共价键,而多余 的一个价电子因无共价键束缚而很容易形成自由
电力电子学课后答案第二章
2.1 说明半导体PN结单向导电的基本原理和静态伏-安特性。
答案答:PN 结——半导体二极管在正向电压接法下(简称正偏),外加电压所产生的外电场与内电场方向相反,因此PN 结的内电场被削弱。
内电场所引起的多数载流子的漂移运动被削弱,多数载流子的扩散运动的阻力减小了,扩散运动超过了反方向的漂移运动。
大量的多数载流子能不断地扩散越过交界面,P区带正电的空穴向N区扩散,N区带负电的电子向P区扩散。
这些载流子在正向电压作用下形成二极管正向电流。
二极管导电时,其PN结等效正向电阻很小,管子两端正向电压降仅约1V左右(大电流硅半导体电力二极管超过1V,小电流硅二极管仅0.7V,锗二极管约0.3V)。
这时的二极管在电路中相当于一个处于导通状态(通态)的开关。
PN结——半导体二极管在反向电压接法下(简称反偏)外加电压所产生的外电场与原内电场方向相同。
因此外电场使原内电场更增强。
多数载流子(P区的空穴和N区的电子)的扩散运动更难于进行。
这时只有受光、热激发而产生的少数载流子(P区的少数载流子电子和N区的少数载流子空穴)在电场力的作用下产生漂移运动。
因此反偏时二极管电流极小。
在一定的温度下,二极管反向电流在一定的反向电压范围内不随反向电压的升高而增大,为反向饱和电流。
因此半导体PN结呈现出单向导电性。
其静态伏-安特性曲线如左图曲线①所示。
但实际二极管静态伏-安特性为左图的曲线②。
二极管正向导电时必须外加电压超过一定的门坎电压(又称死区电压),当外加电压小于死区电压时,外电场还不足以削弱PN结内电场,因此正向电流几乎为零。
硅二极管的门坎电压约为0.5V,锗二极管约为0.2V ,当外加电压大于后内电场被大大削弱,电流才会迅速上升。
二极管外加反向电压时仅在当外加反向电压不超过某一临界击穿电压值时才会使反向电流保持为反向饱和电流。
实际二极管的反向饱和电流是很小的。
但是当外加反向电压超过后二极管被电击穿,反向电流迅速增加。
2.2 说明二极管的反向恢复特性。
【报告】伏安特性实验报告
【关键字】报告伏安特性实验报告篇一:电路元件伏安特性的测量(实验报告答案)实验一电路元件伏安特性的测量一、实验目的1.学习测量电阻元件伏安特性的方法;2.掌握线性电阻、非线性电阻元件伏安特性的逐点尝试法;3.掌握直流稳压电源和直流电压表、直流电流表的使用方法。
二、实验原理在任何时刻,线性电阻元件两端的电压与电流的关系,符合欧姆定律。
任何一个二端电阻元件的特性可用该元件上的端电压U与通过该元件的电流I之间的函数关系式I=f(U)来表示,即用I-U平面上的一条曲线来表征,这条曲线称为电阻元件的伏安特性曲线。
根据伏安特性的不同,电阻元件分为两大类:线性电阻和非线性电阻。
线性电阻元件的伏安特性曲线是一条通过坐标原点的直线,如图1-1(a)所示。
该直线的斜率只由电阻元件的电阻值R 决定,其阻值R为常数,与元件两端的电压U和通过该元件的电流I无关;非线性电阻元件的伏安特性曲线不是一条经过坐标原点的直线,其阻值R不是常数,即在不同的电压作用下,电阻值是不同的。
常见的非线性电阻如白炽灯丝、普通二极管、稳压二极管等,它们的伏安特性曲线如图1-1(b)、(c)、(d)所示。
在图1-1中,U >0的部分为正向特性,U<0的部分为反向特性。
(a)线性电阻(b)白炽灯丝绘制伏安特性曲线通常采用逐点尝试法,电阻元件在不同的端电压U作用下,测量出相应的电流I,然后逐点绘制出伏安特性曲线I=f(U),根据伏安特性曲线便可计算出电阻元件的阻值。
三、实验设备与器件1.直流稳压电源1 台2.直流电压表1 块3.直流电流表1 块4.万用表1 块5.白炽灯泡 1 只6. 二极管1 只7.稳压二极管1 只8.电阻元件 2 只四、实验内容1.测定线性电阻的伏安特性按图1-2接线。
调节直流稳压电源的输出电压U,从0伏开始缓慢地增加(不得超过10V),在表1-1中记下相应的电压表和电流表的读数。
2将图1-2中的1kΩ线性电阻R换成一只12V,0.1A的灯泡,重复1的步骤,在表1-2中记下相应的电压表和电流表的读数。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
本章重点内容 PN结及其单向导电特性 半导体二极管的伏安特性曲线 二极管在实际中的应用 三极管的结构和工作原理 三极管的放大作用 三极管的测量
1.1 PN结
+4
+4
+4
1.1.1 本征半导体
价电子
+4
+4
+4
+4
c
b
a
+4
+4
+4
共价键的两 个价电子
自由电子
空穴
(a)硅和锗原子的简化结构模型
1.2.4 半导体二极管的命名及分类
1.半导体二极管的命名方法
用数字表示规格 用数字表示序号 用字母表示类型 用字母表示材料和极性 用数字表示电极数目
图1.8 半导体器件的型号组成 2.半导体二极管的分类 1.2.5 二极管的判别及使用注意事项 1.二极管的判别(用万用表进行检测) (1)二极管正、负极性及好坏的判断
1.3 半导体三极管
1.3.1 三极管的结构及类型
半导体三极管是由两个背靠背的PN结构成 的。在工作过程中,两种载流子(电子和空 穴)都参与导电,故又称为双极型晶体管, 简称晶体管或三极管。
两个PN结,把半导体分成三个区域。 这三个区域的排列,可以是N-P-N,也可以 是P-N-P。因此,三极管有两种类型:NPN 型和PNP型。
(b)符号
(2).稳压管的主要参数 2. 发光二极管
(1).普通发光二极管 (2).红外线发光二极管 3.激光二极管 4 光电二极管 5 变容二极管
CJ/p F
80
60
40
20
VD
0
2 4 6 8 10 12 14 U/V
(a) 压控特性曲线
(b) 电路符号
图1.10 变容二极管的压控特性曲线和电路符号
+4
电子一空穴对
图1.3 P型半导体的结构
N区
P区
空间电荷区 N区
内电场
图1.4 PN结的形成
4. PN结的单向导电特性 (1) PN结的正向导通特性
P
空穴 (多数)
变薄
IR
内电场
外电场
N
电子 (多数)
R
P
电子 (少数)
变厚
IR≈0
内电场
外电场
N
空穴 (少数)
R
(a) 正向偏置 图1.5 PN结的导电特性
(2) PN结的反向截止特性
(b)反向偏置
1.2 半导体二极管
1.2.1 半导体二极管的结构及其在电路中的符号
外壳
(阳极)
PN
阳极引线
(a) 结构
(阴极) -
VD (阴极)
+
-
阴极引线
(b)电路符号
(c)实物外形
图1.6 二极管结构、符号及外形
1.2.2 半导体二极管的伏安特性
iv/m A
锗
硅
1
B′
三极管的输入特性曲线
2.输出特性曲线
(1)放大区:发射极正向偏置,集电结反向偏置
(2)截止区:发iC射结反i向B 偏置,集电结反向偏置
(3)饱和区:iB发射0结,正iC向偏0置,集电结正向偏置
iB 0, uBE 0, uCE uBE
此时 iC iB
截止区
IC /mA 4
3
2
1
饱和区 100μA
表明基极电流对集电极具有小量控制大量的作用,这
就是三极管的电流放大作用。
1.3.3 三极管的特性 工作状态及接法
1.输入特性曲线 IC mA
IB μA
+ UCE
E
UCC
UBB
-
测量三极管特性的实验电路
与二极管类似
IB /mA
40
30 20
UCE≥1V
10
0 0.4 0.8 UBE /V
(3)集电极最大允许功耗PCM 。
1.3.5 三极管的检测与代换
1.国产三极管的命名方法简介
2.三极管三个电极(管脚)的估测
EBC
EBC
B E
C1397
3.南韩、日本三极管介绍。
BCE
C
4.彩电和彩显行输出管简介
5.三极管好坏的判别
(a)
(b)
图1.17 三极管引脚识别示意图
6.三极管的代换原则
80μA
放
60μA
大
40μA
区 20μA
IB=0
0
36
9 12 UCE /V
1.3.4 三极管的主要参数
1、电流放大系数β:iC= β iB 2、极间反向电流iCBO、iCEO:iCEO=(1+ β )iCBO 3、极限参数 (1)集电极最大允许电流 ICM:下降到额定值的 2/3时所允许的最大集电极电流。 (2)反向击穿电压U(BR)CEO:基极开路时,集电 极、发射极间的最大允许电压。
(2)三极管内部载流子的 传输过程
a)发射区向基区注入电子
,形成发射极电流 iE b)电子在基区中的扩散与 IB
复合,形成基极电流 iB c)集电区收集扩散过来的
RB
电子,形成集电极电流 iC
(3)电流分配关系:
UBB
IE
iE = iC + iB
IC N RC
P UCC N
实验表明IC比IB大数十至数百倍,因而有。IB虽然很 小,但对IC有控制作用,IC随IB的改变而改变,即基 极电流较小的变化可以引起集电极电流较大的变化,
(b)晶体的共价键结构及电子空穴对的产生
图 1.1硅、锗原子结构模型及共价键结构示意图
1.1.2 杂质半导体 1.N型半导体 2.P型半导体
+4
+4
+4
+4
+5
+4
+4
+4
+4
磷原子 自由电子
电子一空穴对
图1.2 N型半导体的结构
空穴
+4
+4
+4
+4
+3
+4
硼原子
+4
+4
3. PN结的形成 P区
B
5
-U(
BR)
I
-R 30
1 00
A′ 0.2
A 0.4
uv/
C
5 - 0.6 0.8
V
C′
5
D D′
(μA )
图1。.7 二极管伏安特性曲线
1.正向特性 2.反向特性 3.反向击穿特性 4.温度对特性的影响
1.2.3 半导体二极管的主要参数
1.最大整流电流IF 2.最大反向工作电压URM
3.反向饱和电流IR 4.二极管的直流电阻R 5.最高工作频率fM
NPN型
集电结
B 发射结
C 集电区
N P 基区 B
N 发射区
E
PNP型
集电结 B 发射结
C 集电区
P
N 基区 B
P
发射区
E
C
正箭
E
向头
电方
压向
时表
的示
电发
C
流射
方结
向加
E
1.3.2 电流分配和电流放大作用
(1)产生放大作用的条件 内部:a)发射区杂质浓度>>基区>>集电区 b)基区很薄 外部:发射结正偏,集电结反偏
(2)二极管好坏的判别 (3)硅二极管和锗二极管的判断
(4)普通二极管和稳压管的判别
2.二极管使用注意事项
1.2.6 几种常用的特殊二极管
1. 稳压二极管
(1).稳压二极管的工作特性
I/mA
UZ
ΔUZ
UB
UA
0
VD
U/V
A
IA(Izmin)
ΔIZ
IZ
IA(Izmax) B
(a) 伏安特性 图1.9 稳压二极管的特性曲线和符号