山西省康杰中学09年高一数学竞赛选拔试题(缺答案)

合集下载

高一数学竞赛试题及答案

高一数学竞赛试题及答案

高一数学竞赛试题及答案一、选择题(每题5分,共50分)1. 已知函数\( f(x) = x^2 - 4x + 3 \),求\( f(1) \)的值。

A. -2B. -1C. 0D. 12. 圆的半径为5,圆心到直线的距离为3,求圆与直线的位置关系。

A. 相切B. 相交C. 相离D. 内切3. 集合\( A = \{1, 2, 3\} \),\( B = \{2, 3, 4\} \),求\( A \cup B \)。

A. \( \{1, 2, 3, 4\} \)B. \( \{1, 2, 3\} \)C. \( \{2, 3, 4\} \)D. \( \{1, 4\} \)4. 已知等差数列的第1项为2,公差为3,求第5项的值。

A. 14B. 17C. 20D. 235. 已知正弦函数\( y = \sin x \)的周期为2π,求\( y = \sin 2x\)的周期。

A. πB. 2πC. 4πD. 8π6. 已知三角形ABC的三边长分别为3, 4, 5,求三角形ABC的面积。

A. 6B. 9C. 12D. 157. 函数\( g(x) = \frac{1}{x} \)在区间(1, 2)上的单调性是?A. 单调递增B. 单调递减C. 先减后增D. 先增后减8. 已知\( a^2 + b^2 = 13 \),\( a + b = 5 \),求ab的值。

A. 12B. 10C. 8D. 69. 已知\( \cos x = \frac{3}{5} \),\( \sin x \)的值在区间[-1,1]内,求\( \sin x \)的值。

A. \( -\frac{4}{5} \)B. \( \frac{4}{5} \)C. \( -\frac{3}{5} \)D. \( \frac{3}{5} \)10. 已知\( \log_2 8 = 3 \),求\( \log_{16} 8 \)的值。

A. \( \frac{3}{4} \)B. \( \frac{1}{2} \)C. \( \frac{3}{2} \)D. \( \frac{4}{3} \)二、填空题(每题5分,共30分)11. 已知函数\( h(x) = x^3 - 6x^2 + 11x - 6 \),求\( h(2) \)的值。

山西省康杰中学2009届高三第一次月考试题(数学文)

山西省康杰中学2009届高三第一次月考试题(数学文)

康杰中学2008—2009学年度高三第一次月考数学(文科)试题2008.9注:答案一律写在答案页上一、选择题(本大题共12小题,每小题5分,共60分,每小题所给的四个选项中只有一项符合题目要求)1.已知{}{}{}2,3,4,5,6,7,3,4,5,7,2,4,5,6U M N ===,则:( )(A ){}4,6M N ⋂=(B )M N U ⋃= (C )()CuN M U ⋃=(D )()CuM N N ⋂=2.“|1|2x -<成立”是“(3)0x x -<成立”的( )条件(A )充分不必要 (B )必要不充分 (C )充要(D )既不充分也不必要3.已知“非p 且q ”为真,则下列命题中是真命题的为( )(A )p(B )p 或q(C )p 且q(D )非q4.已知集合{}|A x x a =<,{}|12B x x =<<,且()R A C B R ⋃=,则实数a 范围为( ) (A )1a ≤(B )1a <(C )2a ≥(D )2a >5.一元二次方程2210(0)ax x a ++=≠有一个正根和一个负根的充分不必要条件为( ) (A )0a <(B )0a >(C )1a <-(D )1a >6.对总数为N 的一批零件抽取一个容量为30的样本,若每个零件被抽取的概率为14,则N 的值为( )(A )120 (B )200 (C )150 (D )1007.某人5次上班途中所花时间(单位:分钟)分别为:x y ,,10,11,9,已知这组数据的平均数为10,方差为2,则x y +的值为( ) (A )17(B )18(C )19(D )208.曲线23y x x =-上在P 点处的切线平行于x 轴,则P 的坐标为( )(A )39(,)24- (B )39(,)24-(C )39(,)24--(D )39(,)249.已知函数2(0)()2(0)x x f x x x +≤⎧=⎨-+>⎩,则不等式2()f x x ≥的解集为( )(A )[1,1]-(B )[2,2]-(C )[2,1]- (D )[1,2]-10.已知函数32()(6)1f x x ax a x =++++有极大值和极小值,则实数a 的取值范围为( ) (A )12a -<<(B )36a -<<(C )3a <-或6a >(D )1a <-或2a >11.如果函数()y f x =的图象如右图,那么导函数()y f x '=的图象可能是( )(A ) (B ) (C ) (D )12.函数32()f x x x x a =--+与x 轴仅有一个交点且(1)0f >,则a 的取值范围为( ) (A )1127a <(B )1a > (C )1a < (D )1127a >二、填空题(本大题共4小题,每小题5分,共20分) 13.命题:“若a b >,则221a b >-”的否命题为__________. 14.不等式:(1)(1||)0x x +->的解集为_________.15.为了调查某厂工人生产某种产品的能力,随机抽查了20位工人某天生产该产品的数量,产品数量的分组区间为[45,55),[55,65),[65,75),[75,85),[85,95),由此得到频率分布直方图如图,则这20名工人中一天生产该产品数量在[55,85)的人数为_________.16.若函数3()3f x x x a =--在区间[0,3]上的最大值,最小值分别为M 、N ,则M —N 的值为__________.三、解答题(本大题共6小题,共70分)17.(本题10分)已知集合{}2|320A x x x =++=,{}2|20B x x mx =-+=,若A B B ⋂=,求m 的取值范围.18.(本题12分)设函数32()33f x x ax bx =-+的图象与直线1210x y +-=相切于点(1,-11),求()f x 的解析式. 19.(本题12分)解关于x 的不等式:2(1)10()ax a x a R -++<∈20.(本题12分)将一长为8cm ,宽为5cm 的矩形铁皮,在各角剪去相同的四个小正方形,然后折成一个无盖铁盒,问剪去的小正方形边长为多少时,铁盒容积最大。

2009年全国高中数学联赛一试(经典试题参考答案及评分标准)

2009年全国高中数学联赛一试(经典试题参考答案及评分标准)

2009年全国高中数学联赛一试 试题参考答案及评分标准说明:1.评阅试卷时,请依据本评分标准,填空题只设7分和0分两档;其他各题的评阅,请严格按照本评分标准的评分档次给分,不要增加其他中间档次.2.如果考生的解答方法和本解答不同,只要思路合理、步骤正确,在评卷时可参考本评分标准适当划分档次评分,解答题中至少4分为一个档次,不要增加其他中间档次. 一、填空(共8小题,每小题7分,共56分)1. 若函数()f x =且()()()n nf x f f f f x ⎡⎤=⎡⎤⎣⎦⎣⎦ ,则()()991f = . 【答案】 110【解析】 ()()()1f x f x =, ()()()2f x f f x =⎡⎤⎣⎦……()()99f x =.故()()991110f =.2. 已知直线:90L x y +-=和圆22:228810M x y x y +---=,点A 在直线L 上,B ,C 为圆M 上两点,在ABC ∆中,45BAC ∠=︒,AB 过圆心M ,则点A 横坐标范围为 .【答案】 []36, 【解析】 设()9A a a -,,则圆心M 到直线AC 的距离sin 45d AM =︒,由直线AC 与圆M相交,得d 解得36a ≤≤.3. 在坐标平面上有两个区域M 和N ,M 为02y y x y x ⎧⎪⎨⎪-⎩≥≤≤,N 是随t 变化的区域,它由不等式1t x t +≤≤所确定,t 的取值范围是01t ≤≤,则M 和N 的公共面积是函数()f t = .【答案】 212t t -++【解析】 由题意知()f t S =阴影部分面积 AOB OCD BEF S S S ∆∆∆=-- ()22111122t t =--- 212t t =-++4. 使不等式1111200712213a n n n +++<-+++ 对一切正整数n 都成立的最小正整数a的值为 . 【答案】2009 【解析】 设()1111221f n n n n =++++++ .显然()f n 单调递减,则由()f n 的最大值()1120073f a <-,可得2009a =.5. 椭圆22221x y a b +=()0a b >>上任意两点P ,Q ,若OP OQ ⊥,则乘积OP OQ ⋅的最小值为 . 【答案】 22222a b a b +【解析】 设()cos sin P OP OP θθ,,ππcos sin 22Q OQ OQ θθ⎛⎫⎛⎫⎛⎫±± ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,.由P ,Q 在椭圆上,有222221cos sin a b OP θθ=+ ① 222221sin cos a b OQ θθ=+ ② ①+②得221111a b OP OQ+=+.于是当OP OQ =OP OQ 达到最小值22222a b a b +.6. 若方程()lg 2lg 1kx x =+仅有一个实根,那么k 的取值范围是 . 【答案】0k <或4k = 【解析】 ()20101kx x kx x ⎧>⎪⎪+>⎨⎪=+⎪⎩ 当且仅当 0kx > ① 10x +> ② ()2210x k x +-+=③对③由求根公式得1x,2122x k ⎡=-⎣ ④2400k k k ∆=-⇒≥≤或4k ≥.(ⅰ)当0k <时,由③得 12122010x x k x x +=-<⎧⎨=>⎩ 所以1x ,2x 同为负根.又由④知121010x x +>⎧⎨+<⎩所以原方程有一个解1x .(ⅱ)当4k =时,原方程有一个解112kx =-=. (ⅲ)当4k >时,由③得12122010x x k x x +=->⎧⎨=>⎩所以1x ,2x 同为正根,且12x x ≠,不合题意,舍去. 综上可得0k <或4k =为所求.7. 一个由若干行数字组成的数表,从第二行起每一行中的数字均等于其肩上的两个数之和,最后一行仅有一个数,第一行是前100个正整数按从小到大排成的行,则最后一行的数是 (可以用指数表示) 【答案】981012⨯ 【解析】 易知:(ⅰ)该数表共有100行;(ⅱ)每一行构成一个等差数列,且公差依次为11d =,22d =,232d =,…,98992d =(ⅲ)100a 为所求.设第()2n n ≥行的第一个数为n a ,则 ()22111222n n n n n n a a a a -----=++=+3222222n n n a ---⎡⎤=++⎣⎦24223222222n n n n a ----⎡⎤=++⨯+⎣⎦323232n n a --=+⨯……()121212n n a n --=+-⨯()212n n -=+故981001012a =⨯.8. 某车站每天800~900∶∶,900~1000∶∶都恰有一辆客车到站,但到站的时刻是随机的,且两一旅客820∶到车站,则它候车时间的数学期望为 (精确到分).【答案】 27 【解析】 旅候车时间的数学期望为1111110305070902723361218⨯+⨯+⨯+⨯+⨯=二、解答题1. (本小题满分14分)设直线:l y kx m =+(其中k ,m 为整数)与椭圆2211612x y +=交于不同两点A ,B ,与双曲线221412x y -=交于不同两点C ,D,问是否存在直线l ,使得向量0AC BD += ,若存在,指出这样的直线有多少条?若不存在,请说明理由. 【解析】 由2211612y kx m x y =+⎧⎪⎨+=⎪⎩消去y 化简整理得()2223484480k xkmx m +++-=设()11A x y ,,()22B x y ,,则122834kmx x k +=-+()()()222184344480km k m ∆=-+-> ① (4)分由221412y kx m x y =+⎧⎪⎨-=⎪⎩消去y 化简整理得()22232120k xkmx m ----=设()34C x y ,,()44D x y ,,则34223kmx x k +=- ()()()2222243120km k m ∆=-+-+> ② ………………………………………………8分因为0AC BD +=,所以()()42310x x x x -+-=,此时()()42310y y y y -+-=.由1234x x x x +=+得 2282343km kmk k -=+-. 所以20km =或2241343k k -=+-.由上式解得0k =或0m =.当0k =时,由①和②得m -<m 是整数,所以m 的值为3-,2-,1-,0,1,2,3.当0m =,由①和②得k .因k 是整数,所以1k =-,0,1.于是满足条件的直线共有9条.………14分2. (本小题15分)已知p ,()0q q ≠是实数,方程20x px q -+=有两个实根α,β,数列{}n a 满足1a p =,22a p q =-,()1234n n n a pa qa n --=-= ,, (Ⅰ)求数列{}n a 的通项公式(用α,β表示);(Ⅱ)若1p =,14q =,求{}n a 的前n 项和.【解析】 方法一:(Ⅰ)由韦达定理知0q αβ⋅=≠,又p αβ+=,所以()1212n n n n n a px qx a a αβαβ------=+-,()345n = ,,,整理得()112n n n n a a a a βαβ----=-令1n n n b a a β+=-,则()112n n b b n α+== ,,.所以{}n b 是公比为α的等比数列. 数列{}n b 的首项为:()()222121b a a p q p ββαβαββαβα=-=--=+--+=. 所以21n n n b ααα-+=⋅=,即11n n n a a βα++-=()12n = ,,.所以11n n n a a βα++=+()12n = ,,. ①当240p q ∆=-=时,0αβ=≠,12a p ααα==+=,11n n n a a βα++=+()12n = ,,变为11n n n a a αα++=+()12n = ,,.整理得,111n n n n a a αα++-=,()12n = ,,.所以,数列n n a α⎧⎫⎨⎬⎩⎭成公差为1的等差数列,其首项为122a ααα==.所以()2111nna n n α=+-=+.于是数列{}n a 的通项公式为()1n n a n α=+;……………………………………………………………………………5分 ②当240p q ∆=->时,αβ≠,11n n n a a βα++=+1n n a βαβαβα+-=+-11n n n a βαβααβαβα++=+---()12n = ,,.整理得211n n n n a a ααββαβα+++⎛⎫+=+ ⎪--⎝⎭,()12n = ,,. 所以,数列1n n a αβα+⎧⎫+⎨⎬-⎩⎭成公比为β的等比数列,其首项为2221a ααβαββαβαβα+=++=---.所以121n n n a αβββαβα+-+=--. 于是数列{}n a 的通项公式为11n n n a βαβα++-=-. (10)分(Ⅱ)若1p =,14q =,则240p q ∆=-=,此时12αβ==.由第(Ⅰ)步的结果得,数列{}n a 的通项公式为()11122nn n n a n +⎛⎫=+= ⎪⎝⎭,所以,{}n a 的前n 项和为231234122222n n n n n s -+=+++++234112341222222n n n n s n ++=+++++以上两式相减,整理得1133222n n n s ++=-所以332n n n s +=-. (15)分 方法二:(Ⅰ)由韦达定理知0q αβ⋅=≠,又p αβ+=,所以1a αβ=+,222a αβαβ=++.特征方程20p q λλ-+=的两个根为α,β.①当0αβ=≠时,通项()()1212n n a A A n n α=+= ,,由12a α=,223a α=得()()122212223A A A A αααα+=⎧⎪⎨+=⎪⎩ 解得121A A ==.故 ()1n n a n α=+.……………………………………………………5分②当αβ≠时,通项()1212n n n a A A n αβ=+= ,,.由1a αβ=+,222a αβαβ=++得12222212A A A A αβαβαβαβαβ+=+⎧⎪⎨+=++⎪⎩ 解得1A αβα-=-,2A ββα=-.故1111n n n n n a αββαβαβαβα++++--=+=---.…………………………………………………………10分(Ⅱ)同方法一.3. (本小题满分15分)求函数y 【解析】 函数的定义域为[]013,.因为y=当0x =时等号成立.故y 的最小值为.……………………………………………5分又由柯西不等式得22y =()()()11122731312123x x x ⎛⎫+++++-= ⎪⎝⎭≤所以11y ≤. ………………………………………………………………………………10分 由柯西不等式等号成立的条件,得()491327x x x =-=+,解得9x =.故当9x =时等号成立.因此y 的最大值为1.…………………………………………………………………………………15分。

2009年全国高中数学联赛一、二试及详细答案和评分标准(A卷)

2009年全国高中数学联赛一、二试及详细答案和评分标准(A卷)

2009年全国高中数学联合竞赛一试试题参考答案及评分标准说明:1.评阅试卷时,请依据本评分标准,填空题只设7分和0分两档;其他各题的评阅,请严格按照本评分标准的评分档次给分,不要增加其他中间档次.2.如果考生的解答方法和本解答不同,只要思路合理、步骤正确,在评卷时可参考本评分标准适当划分档次评分,解答题中至少4分为一个档次,不要增加其他中间档次. 一、填空(共8小题,每小题7分,共56分)1. 若函数()f x ()()()n nf x f f f f x ⎡⎤=⎡⎤⎣⎦⎣⎦,则()()991f = . 【答案】 110【解析】 ()()()1f x f x ==, ()()()2f x f f x ==⎡⎤⎣⎦……()()99f x =故()()991110f =.2. 已知直线:90L x y +-=和圆22:228810M x y x y +---=,点A 在直线L 上,B ,C 为圆M 上两点,在ABC ∆中,45BAC ∠=︒,AB 过圆心M ,则点A 横坐标范围为 .【答案】 []36, 【解析】 设()9A a a -,,则圆心M 到直线AC 的距离sin 45d AM =︒,由直线AC 与圆M 相交,得d 解得36a ≤≤.3. 在坐标平面上有两个区域M 和N ,M 为02y y x y x ⎧⎪⎨⎪-⎩≥≤≤,N 是随t 变化的区域,它由不等式1t x t +≤≤所确定,t 的取值范围是01t ≤≤,则M 和N 的公共面积是函数()f t = .【答案】 212t t -++【解析】 由题意知 ()f t S =阴影部分面积A OB OCD BS S S ∆∆∆=-- ()22111122t t =---212t t =-++4. 使不等式1111200712213a n n n +++<-+++对一切正整数n 都成立的最小正整数a 的值为 .【答案】 2009【解析】 设()1111221f n n n n =++++++.显然()f n 单调递减,则由()f n 的最大值()1120073f a <-,可得2009a =.5. 椭圆22221x y a b +=()0a b >>上任意两点P ,Q ,若OP OQ ⊥,则乘积OP OQ ⋅的最小值为 .【答案】 22222a ba b+【解析】 设()cos sin P OP OP θθ,,ππcos sin 22Q OQ OQ θθ⎛⎫⎛⎫⎛⎫±± ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,.由P ,Q 在椭圆上,有 222221cos sin a b OP θθ=+ ① 222221sin cos a b OQ θθ=+ ② ①+②得22221111a b OP OQ+=+.于是当OP OQ ==OP OQ 达到最小值22222a b a b+.6. 若方程()lg 2lg 1kx x =+仅有一个实根,那么k 的取值范围是 . 【答案】 0k <或4k = 【解析】 ()20101kx x kx x ⎧>⎪⎪+>⎨⎪=+⎪⎩当且仅当0kx > ① 10x +>② ()2210x k x +-+=③对③由求根公式得1x,2122x k ⎡=-⎣ ④2400k k k ∆=-⇒≥≤或4k ≥.(ⅰ)当0k <时,由③得 12122010x x k x x +=-<⎧⎨=>⎩ 所以1x ,2x 同为负根. 又由④知121010x x +>⎧⎨+<⎩所以原方程有一个解1x .(ⅱ)当4k =时,原方程有一个解112kx =-=. (ⅲ)当4k >时,由③得12122010x x k x x +=->⎧⎨=>⎩所以1x ,2x 同为正根,且12x x ≠,不合题意,舍去. 综上可得0k <或4k =为所求.7. 一个由若干行数字组成的数表,从第二行起每一行中的数字均等于其肩上的两个数之和,最后一行仅有一个数,第一行是前100个正整数按从小到大排成的行,则最后一行的数是 (可以用指数表示)【答案】 981012⨯ 【解析】 易知:(ⅰ)该数表共有100行;(ⅱ)每一行构成一个等差数列,且公差依次为11d =,22d =,232d =,…,98992d =(ⅲ)100a 为所求.设第()2n n ≥行的第一个数为n a ,则 ()22111222n n n n n n a a a a -----=++=+3222222n n n a ---⎡⎤=++⎣⎦24223222222n n n n a ----⎡⎤=++⨯+⎣⎦323232n n a --=+⨯……()121212n n a n --=+-⨯ ()212n n -=+故981001012a =⨯.8. 某车站每天800~900∶∶,900~1000∶∶都恰有一辆客车到站,但到站的时刻是随机的,且两者到站一旅客820∶到车站,则它候车时间的数学期望为 (精确到分)【答案】 27 【解析】 旅客候车的分布列为候车时间的数学期望为1111110305070902723361218⨯+⨯+⨯+⨯+⨯=二、解答题1. (本小题满分14分)设直线:l y kx m =+(其中k ,m 为整数)与椭圆2211612x y +=交于不同两点A ,B ,与双曲线221412x y -=交于不同两点C ,D ,问是否存在直线l ,使得向量0AC BD +=,若存在,指出这样的直线有多少条?若不存在,请说明理由. 【解析】 由2211612y kx m x y =+⎧⎪⎨+=⎪⎩消去y 化简整理得()2223484480k xkmx m +++-=设()11A x y ,,()22B x y ,,则122834kmx x k +=-+()()()222184344480km k m ∆=-+-> ① ………………………………………………4分由221412y kx m x y =+⎧⎪⎨-=⎪⎩消去y 化简整理得()22232120k xkmx m ----=设()34C x y ,,()44D x y ,,则34223kmx x k+=- ()()()2222243120km k m ∆=-+-+> ② ………………………………………………8分因为0AC BD +=,所以()()42310x x x x -+-=,此时()()42310y y y y -+-=.由1234x x x x +=+得2282343km kmk k -=+-. 所以20km =或2241343k k -=+-.由上式解得0k =或0m =.当0k =时,由①和②得m -<m 是整数,所以m 的值为3-,2-,1-,0,1,2,3.当0m =,由①和②得k .因k 是整数,所以1k =-,0,1.于是满足条件的直线共有9条.………14分2. (本小题15分)已知p ,()0q q ≠是实数,方程20x px q -+=有两个实根α,β,数列{}n a 满足1a p =,22a p q =-,()1234n n n a pa qa n --=-=,,(Ⅰ)求数列{}n a 的通项公式(用α,β表示);(Ⅱ)若1p =,14q =,求{}n a 的前n 项和.【解析】 方法一:(Ⅰ)由韦达定理知0q αβ⋅=≠,又p αβ+=,所以()1212n n n n n a px qx a a αβαβ------=+-,()345n =,,,整理得()112n n n n a a a a βαβ----=- 令1n n n b a a β+=-,则()112n n b b n α+==,,.所以{}n b 是公比为α的等比数列.数列{}n b 的首项为:()()222121b a a p q p ββαβαββαβα=-=--=+--+=.所以211n n n b ααα-+=⋅=,即11n n n a a βα++-=()12n =,,.所以11n n n a a βα++=+()12n =,,.①当240p q ∆=-=时,0αβ=≠,12a p ααα==+=,11n n n a a βα++=+()12n =,,变为11n n n a a αα++=+()12n =,,.整理得,111n nn na a αα++-=,()12n =,,.所以,数列n n a α⎧⎫⎨⎬⎩⎭成公差为1的等差数列,其首项为122a ααα==.所以()2111nna n n α=+-=+.于是数列{}n a 的通项公式为()1n n a n α=+;……………………………………………………………………………5分②当240p q ∆=->时,αβ≠, 11n n n a a βα++=+1n n a βαβαβα+-=+-11n n n a βαβααβαβα++=+---()12n =,,.整理得211n n n n a a ααββαβα+++⎛⎫+=+ ⎪--⎝⎭,()12n =,,.所以,数列1n n a αβα+⎧⎫+⎨⎬-⎩⎭成公比为β的等比数列,其首项为2221a ααβαββαβαβα+=++=---.所以121n n n a αβββαβα+-+=--.于是数列{}n a 的通项公式为11n n n a βαβα++-=-.………………………………………………10分(Ⅱ)若1p =,14q =,则240p q ∆=-=,此时12αβ==.由第(Ⅰ)步的结果得,数列{}n a 的通项公式为()11122nn n n a n +⎛⎫=+= ⎪⎝⎭,所以,{}n a 的前n 项和为231234122222n n n n n s -+=+++++234112341222222n n n n s n ++=+++++以上两式相减,整理得1133222n n n s ++=-所以332n n n s +=-.……………………………………………………………………………15分方法二:(Ⅰ)由韦达定理知0q αβ⋅=≠,又p αβ+=,所以1a αβ=+,222a αβαβ=++.特征方程20p q λλ-+=的两个根为α,β. ①当0αβ=≠时,通项()()1212n n a A A n n α=+=,,由12a α=,223a α=得()()122212223A A A A αααα+=⎧⎪⎨+=⎪⎩ 解得121A A ==.故 ()1n n a n α=+.……………………………………………………5分 ②当αβ≠时,通项()1212n n n a A A n αβ=+=,,.由1a αβ=+,222a αβαβ=++得12222212A A A A αβαβαβαβαβ+=+⎧⎪⎨+=++⎪⎩ 解得1A αβα-=-,2A ββα=-.故1111n n n n n a αββαβαβαβα++++--=+=---.…………………………………………………………10分 (Ⅱ)同方法一.3. (本小题满分15分)求函数y=【解析】函数的定义域为[]013,.因为y=当0x =时等号成立.故y的最小值为.……………………………………………5分 又由柯西不等式得 22y =()()()11122731312123x x x ⎛⎫+++++-= ⎪⎝⎭≤所以11y ≤. ………………………………………………………………………………10分 由柯西不等式等号成立的条件,得()491327x x x =-=+,解得9x =.故当9x =时等号成立.因此y 的最大值为11.…………………………………………………………………………………15分2009年全国高中数学联合竞赛加试试题参考答案及评分标准(A 卷)说明:1.评阅试卷时,请严格按照本评分标准的评分档次给分.2.如果考生的解答方法和本解答不同,只要思路合理、步骤正确,在评卷时可参考本评分标准适当划分档次评分,10分为一个档次,不要增加其他中间档次. 一、填空(共4小题,每小题50分,共200分)9. 如图,M ,N 分别为锐角三角形ABC ∆(A B ∠<∠)的外接圆Γ上弧BC 、AC 的中点.过点C 作PC MN ∥交圆Γ于P 点,I 为ABC ∆的内心,连接PI 并延长交圆Γ于T . ⑴求证:MP MT NP NT ⋅=⋅;⑵在弧AB (不含点C )上任取一点Q (Q A ≠,T ,B ),记AQC ∆,QCB △的内心分别为1I ,2I ,B求证:Q ,1I ,2I ,T 四点共圆.【解析】 ⑴连NI ,MI .由于PC MN ∥,P ,C ,M ,N 共圆,故PCMN 是等腰梯形.因此NP MC =,PM NC =.ABCMNPTI连AM ,CI ,则AM 与CI 交于I ,因为MIC MAC ACI MCB BCI MCI ∠=∠+∠=∠+∠=∠,所以MC MI =.同理NC NI =.于是NP MI =,PM NI =.故四边形MPNI 为平行四边形.因此PMT PNT S S =△△(同底,等高). 又P ,N ,T ,M 四点共圆,故180TNP PMT ∠+∠=︒,由三角形面积公式1sin 2PMT S PM MT PMT =⋅∠△1s i n 2PNT S PN NT PNT ==⋅∠△1s i n 2P N N T P MT =⋅∠ 于是PM MT PN NT ⋅=⋅.⑵因为1111NCI NCA ACI NQC QCI CI N ∠=∠+∠=∠+∠=∠,B所以1NC NI =,同理2MC MI =.由MP MT NP NT ⋅=⋅得NT MTMP NP=. 由⑴所证MP NC =,NP MC =,故 12NT MTNI MI =. 又因12I NT QNT QMT I MT ∠=∠=∠=∠,有12I NT I MT ∆∆∽.故12NTI MTI ∠=∠,从而1212I QI NQM NTM I TI ∠=∠=∠=∠.因此Q ,1I ,2I ,T 四点共圆. 10. 求证不等式:2111ln 12n k k n k =⎛⎫-<- ⎪+⎝⎭∑≤,1n =,2,… 【解析】 证明:首先证明一个不等式: ⑴ln(1)1x x x x<+<+,0x >. 事实上,令()ln(1)h x x x =-+,()ln(1)1xg x x x=+-+. 则对0x >,1()101h x x '=->+,2211()01(1)(1)x g x x x x '=-=>+++. 于是()(0)0h x h >=,()(0)0g x g >=.在⑴中取1x n=得⑵111ln 11n n n⎛⎫<+< ⎪+⎝⎭. 令21ln 1nn k k x n k ==-+∑,则112x =,121ln 111n n n x x n n -⎛⎫-=-+ ⎪+-⎝⎭ 211n n n<-+210(1)n n=-<+因此1112n n x x x -<<<=.又因为111ln (ln ln(1))(ln(1)ln(2))(ln 2ln1)ln1ln 1n k n n n n n k -=⎛⎫=--+---++-+=+ ⎪⎝⎭∑.从而12111ln 11nn n k k k x k k -==⎛⎫=-+ ⎪+⎝⎭∑∑12211ln 111n k k n k k n -=⎛⎫⎛⎫=-++ ⎪ ⎪++⎝⎭⎝⎭∑12111n k kk k -=⎛⎫>- ⎪+⎝⎭∑1211(1)n k k k -==-+∑111(1)n k k k -=-+∑≥111n=-+>-.11. 设k ,l 是给定的两个正整数.证明:有无穷多个正整数m k ≥,使得C k m 与l 互素.【解析】 证法一:对任意正整数t ,令(!)m k t l k =+⋅⋅.我们证明()C 1k m l =,. 设p 是l 的任一素因子,只要证明:C k m p Œ.若!p k Œ,则由 1!C ()kkmi k m k i ==-+∏1[((!)]k i i t l k =≡+∏ 1ki i =≡∏()1!m o d k p α+≡.及|!p k α,且1!p k α+Œ,知|!C k m p k α且1!C k m p k α+Œ.从而C k m p Œ.证法二:对任意正整数t ,令2(!)m k t l k =+⋅⋅,我们证明()C 1k m l =,. 设p 是l 的任一素因子,只要证明:C k m p Œ.若!p k Œ,则由1!C ()kkmi k m k i ==-+∏21[((!)]ki i t l k =≡+∏ 1ki i =≡∏()!m o dk p ≡. 即p 不整除上式,故C k m p Œ.若|!p k ,设1α≥使|!p k α,但1!p k α+Œ.12|(!)p k α+.故由 11!C ()k kmi k m k i -==-+∏21[((!)]ki i t l k =≡+∏ 1ki i =≡∏()1!mod k p α+≡及|!p k α,且1!p k α+Œ,知|!C k m p k α且1!C k m p k α+Œ.从而C k m p Œ.12. 在非负数构成的39⨯数表111213141516171212223242526272829313233343536373839x x x x x x x x x P x x x x x x x x x x x x x x x x x x⎛⎫ ⎪= ⎪ ⎪⎝⎭ 中每行的数互不相同,前6列中每列的三数之和为1,1728390x x x ===,27x ,37x ,18x ,38x ,19x ,29x 均大于.如果P 的前三列构成的数表111213212223313233x x x S x x x x x x ⎛⎫ ⎪= ⎪ ⎪⎝⎭满足下面的性质()O :对于数表P 中的任意一列123k k k x x x ⎛⎫ ⎪⎪ ⎪⎝⎭(1k =,2,…,9)均存在某个{}123i ∈,,使得⑶{}123min ik i i i i x u x x x =≤,,.求证:(ⅰ)最小值{}123min i i i i u x x x =,,,1i =,2,3一定自数表S 的不同列. (ⅱ)存在数表P 中唯一的一列***123k k k x x x ⎛⎫ ⎪⎪ ⎪ ⎪⎝⎭,*1k ≠,2,3使得33⨯数表***111212122231323k k k x x x S x x x x x x ⎛⎫ ⎪'= ⎪ ⎪ ⎪⎝⎭ 仍然具有性质()O .【解析】 (ⅰ)假设最小值{}123min i i i i u x x x =,,,1i =,2,3不是取自数表S 的不同列.则存在一列不含任何i u .不妨设2i i u x ≠,1i =,2,3.由于数表P 中同一行中的任何两个元素都不等,于是2i i u x <,1i =,2,3.另一方面,由于数表S 具有性质()O ,在⑶中取2k =,则存在某个{}0123i ∈,,使得002i i x u ≤.矛盾.(ⅱ)由抽届原理知{}1112min x x ,,{}2122min x x ,,{}3132min x x , 中至少有两个值取在同一列.不妨设 {}212222min x x x =,,{}313232min x x x =,.由前面的结论知数表S 的第一列一定含有某个i u ,所以只能是111x u =.同样,第二列中也必含某个i u ,1i =,2.不妨设222x u =.于是333u x =,即i u 是数表S 中的对角线上数字.111213212223313233x x x S x x x x x x ⎛⎫⎪= ⎪ ⎪⎝⎭记{}129M =,,,,令集合 {}{}12|min 13ik i i I k M x x x i =∈>=,,,.显然{}111332|k k I k M x x x x =∈>>,且1,23I ∉.因为18x ,38111x x >≥,32x ,所以8I ∈. 故I ∅≠.于是存在*k I ∈使得{}*22max |k k x x k I =∈.显然,*1k ≠,2,3. 下面证明33⨯数表 ***111212122231323k k k x x x S x x x x x x ⎛⎫ ⎪'= ⎪ ⎪ ⎪⎝⎭具有性质()O .从上面的选法可知{}{}*1212:min min i i i i i ik u x x x x x '==,,,,(13)i =,.这说明 {}*111211min k x x x u >,≥,{}*313233min k x x x u >,≥.又由S 满足性质()O .在⑶中取*k k =,推得*22k x u ≤,于是{}**2212222min k k u x x x x '==,,.下证对任意的k M ∈,存在某个1i =,2,3使得i ik u x '≥.假若不然,则{}12min ik i i x x x >,,1i =,3且*22k k x x >.这与*2k x 的最大性矛盾.因此,数表S '满足性质()O .下证唯一性.设有k M ∈使得数表 111212122231323k k k x x x S x x x x x x ⎛⎫⎪= ⎪ ⎪⎝⎭具有性质()O ,不失一般性,我们假定 {}111121311m i n u x x x x ==,, ⑷{}221222322min u x x x x ==,,{}331323333m i n u x x xx ==,,3231x x <.由于3231x x <,2221x x <及(ⅰ),有{}11112111min k u x x x x ==,,.又由(ⅰ)知:或者()a {}3313233min k k u x x x x ==,,,或者{}2212222()min k k b u x x x x ==,,.如果()a 成立,由数表S 具有性质()O ,则 {}11112111m i n ku x x x x ==,,, ⑸{}22122222min k u x x x x ==,,, {}3313233m i n k k u x x x x ==,,.由数表S 满足性质()O ,则对于3M ∈至少存在一个{}123i ∈,,使得*i ik u x ≥.由*k I ∈及⑷和⑹式知,*1111k x x u >=,*3323k x x u >=.于是只能有*222k k x u x =≤.类似地,由S '满足性质()O 及k M ∈可推得*222k k x u x '=≤.从而*k k =.。

2009年全国高中数学联赛一试(试题参考答案及评分标准)

2009年全国高中数学联赛一试(试题参考答案及评分标准)

2009年全国高中数学联合竞赛一试试题参考答案及评分标准说明:1.评阅试卷时,请依据本评分标准,填空题只设7分和0分两档;其他各题的评阅,请严格按照本评分标准的评分档次给分,不要增加其他中间档次.2.如果考生的解答方法和本解答不同,只要思路合理、步骤正确,在评卷时可参考本评分标准适当划分档次评分,解答题中至少4分为一个档次,不要增加其他中间档次. 一、填空(共8小题,每小题7分,共56分)1. 若函数()f x =且()()()n nf x f f f f x ⎡⎤=⎡⎤⎣⎦⎣⎦,则()()991f = . 【答案】 110【解析】 ()()()1f x f x = ()()()2f x f f x =⎡⎤⎣⎦……()()99f x故()()991110f =.2. 已知直线:90L x y +-=和圆22:228810M x y x y +---=,点A 在直线L 上,B ,C 为圆M 上两点,在ABC ∆中,45BAC ∠=︒,AB 过圆心M ,则点A 横坐标范围为 .【答案】 []36, 【解析】 设()9A a a -,,则圆心M 到直线AC 的距离sin 45d AM =︒,由直线AC 与圆M相交,得d 解得36a ≤≤.3. 在坐标平面上有两个区域M 和N ,M 为02y y x y x ⎧⎪⎨⎪-⎩≥≤≤,N 是随t 变化的区域,它由不等式1t x t +≤≤所确定,t 的取值范围是01t ≤≤,则M 和N 的公共面积是函数()f t = .【答案】 212t t -++【解析】 由题意知 ()f t S =阴影部分面积A OB OCD BS S S ∆∆∆=-- ()22111122t t =---212t t =-++4. 使不等式1111200712213a n n n +++<-+++对一切正整数n 都成立的最小正整数a的值为 .【答案】 2009 【解析】 设()1111221f n n n n =++++++.显然()f n 单调递减,则由()f n 的最大值()1120073f a <-,可得2009a =.5. 椭圆22221x y a b +=()0a b >>上任意两点P ,Q ,若OP OQ ⊥,则乘积OP OQ ⋅的最小值为 .【答案】 22222a b a b+【解析】 设()cos sin P OP OP θθ,,ππcos sin 22Q OQ OQ θθ⎛⎫⎛⎫⎛⎫±± ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,.由P ,Q 在椭圆上,有 222221cos sin a b OP θθ=+ ① 222221sin cos a b OQ θθ=+ ② ①+②得22221111ab OP OQ+=+. 于是当OP OQ ==OP OQ 达到最小值22222a b a b+.6. 若方程()lg 2lg 1kx x =+仅有一个实根,那么k 的取值范围是 . 【答案】 0k <或4k = 【解析】 ()20101kx x kx x ⎧>⎪⎪+>⎨⎪=+⎪⎩当且仅当0kx >① 10x +>② ()2210x k x +-+=③对③由求根公式得1x ,2122x k ⎡=-⎣ ④2400k k k ∆=-⇒≥≤或4k ≥.(ⅰ)当0k <时,由③得 12122010x x k x x +=-<⎧⎨=>⎩ 所以1x ,2x 同为负根. 又由④知121010x x +>⎧⎨+<⎩所以原方程有一个解1x .(ⅱ)当4k =时,原方程有一个解112kx =-=. (ⅲ)当4k >时,由③得12122010x x k x x +=->⎧⎨=>⎩所以1x ,2x 同为正根,且12x x ≠,不合题意,舍去. 综上可得0k <或4k =为所求.7. 一个由若干行数字组成的数表,从第二行起每一行中的数字均等于其肩上的两个数之和,最后一行仅有一个数,第一行是前100个正整数按从小到大排成的行,则最后一行的数是 (可以用指数表示)【答案】 981012⨯ 【解析】 易知:(ⅰ)该数表共有100行;(ⅱ)每一行构成一个等差数列,且公差依次为11d =,22d =,232d =,…,98992d =(ⅲ)100a 为所求.设第()2n n ≥行的第一个数为n a ,则 ()22111222n n n n n n a a a a -----=++=+3222222n n n a ---⎡⎤=++⎣⎦24223222222n n n n a ----⎡⎤=++⨯+⎣⎦323232n n a --=+⨯……()121212n n a n --=+-⨯ ()212n n -=+故981001012a =⨯.8. 某车站每天800~900∶∶,900~1000∶∶都恰有一辆客车到站,但到站的时刻是随机的,且两者一旅客820∶到车站,则它候车时间的数学期望为 (精确到分).【答案】 27 【解析】 旅客候车的分布列为候车时间的数学期望为1111110305070902723361218⨯+⨯+⨯+⨯+⨯=二、解答题1. (本小题满分14分)设直线:l y kx m =+(其中k ,m 为整数)与椭圆2211612x y +=交于不同两点A ,B ,与双曲线221412x y-=交于不同两点C ,D ,问是否存在直线l ,使得向量0AC BD +=,若存在,指出这样的直线有多少条?若不存在,请说明理由. 【解析】 由2211612y kx m x y =+⎧⎪⎨+=⎪⎩消去y 化简整理得()2223484480k xkmx m +++-=设()11A x y ,,()22B x y ,,则122834kmx x k +=-+()()()222184344480km k m ∆=-+-> ① ………………………………………………4分由221412y kx m x y =+⎧⎪⎨-=⎪⎩消去y 化简整理得()22232120k xkmx m ----=设()34C x y ,,()44D x y ,,则34223kmx x k+=- ()()()2222243120km k m ∆=-+-+> ② ………………………………………………8分 因为0AC BD +=,所以()()42310x x x x -+-=,此时()()42310y y y y -+-=.由1234x x x x +=+得2282343km kmk k -=+-. 所以20km =或2241343k k -=+-.由上式解得0k =或0m =.当0k =时,由①和②得m -<.因m 是整数,所以m 的值为3-,2-,1-,0,1,2,3.当0m =,由①和②得k k 是整数,所以1k =-,0,1.于是满足条件的直线共有9条.………14分2. (本小题15分)已知p ,()0q q ≠是实数,方程20x px q -+=有两个实根α,β,数列{}n a 满足1a p =,22a p q =-,()1234n n n a pa qa n --=-=,,(Ⅰ)求数列{}n a 的通项公式(用α,β表示);(Ⅱ)若1p =,14q =,求{}n a 的前n 项和.【解析】 方法一:(Ⅰ)由韦达定理知0q αβ⋅=≠,又p αβ+=,所以()1212n n n n n a px qx a a αβαβ------=+-,()345n =,,,整理得()112n n n n a a a a βαβ----=- 令1n n n b a a β+=-,则()112n n b b n α+==,,.所以{}n b 是公比为α的等比数列.数列{}n b 的首项为:()()222121b a a p q p ββαβαββαβα=-=--=+--+=.所以21n n n b ααα-+=⋅=,即11n n n a a βα++-=()12n =,,.所以11n n n a a βα++=+()12n =,,.①当240p q ∆=-=时,0αβ=≠,12a p ααα==+=,11n n n a a βα++=+()12n =,,变为11n n n a a αα++=+()12n =,,.整理得,111n nn na a αα++-=,()12n =,,.所以,数列n n a α⎧⎫⎨⎬⎩⎭成公差为1的等差数列,其首项为122a ααα==.所以()2111nna n n α=+-=+.于是数列{}n a 的通项公式为()1n n a n α=+;……………………………………………………………………………5分②当240p q ∆=->时,αβ≠, 11n n n a a βα++=+1n n a βαβαβα+-=+-11n n n a βαβααβαβα++=+---()12n =,,.整理得211n n n n a a ααββαβα+++⎛⎫+=+ ⎪--⎝⎭,()12n =,,.所以,数列1n n a αβα+⎧⎫+⎨⎬-⎩⎭成公比为β的等比数列,其首项为2221a ααβαββαβαβα+=++=---.所以121n n n a αβββαβα+-+=--.于是数列{}n a 的通项公式为11n n n a βαβα++-=-.………………………………………………10分(Ⅱ)若1p =,14q =,则240p q ∆=-=,此时12αβ==.由第(Ⅰ)步的结果得,数列{}n a 的通项公式为()11122nn n n a n +⎛⎫=+= ⎪⎝⎭,所以,{}n a 的前n 项和为231234122222n n n n n s -+=+++++234112341222222n n n n s n ++=+++++以上两式相减,整理得1133222n n n s ++=-所以332n n n s +=-.……………………………………………………………………………15分方法二:(Ⅰ)由韦达定理知0q αβ⋅=≠,又p αβ+=,所以 1a αβ=+,222a αβαβ=++.特征方程20p q λλ-+=的两个根为α,β. ①当0αβ=≠时,通项()()1212n n a A A n n α=+=,,由12a α=,223a α=得()()122212223A A A A αααα+=⎧⎪⎨+=⎪⎩ 解得121A A ==.故 ()1n n a n α=+.……………………………………………………5分 ②当αβ≠时,通项()1212n n n a A A n αβ=+=,,.由1a αβ=+,222a αβαβ=++得12222212A A A A αβαβαβαβαβ+=+⎧⎪⎨+=++⎪⎩ 解得1A αβα-=-,2A ββα=-.故1111n n n n n a αββαβαβαβα++++--=+=---.…………………………………………………………10分 (Ⅱ)同方法一.3. (本小题满分15分)求函数y 【解析】 函数的定义域为[]013,.因为y =当0x =时等号成立.故y 的最小值为.……………………………………………5分 又由柯西不等式得 22y =()()()11122731312123x x x ⎛⎫+++++-= ⎪⎝⎭≤所以11y ≤. ………………………………………………………………………………10分 由柯西不等式等号成立的条件,得()491327x x x =-=+,解得9x =.故当9x =时等号成立. 因此y 的最大值为11…………………………………………………………………………………15分。

山西省运城市康杰中学分校高一数学文联考试题含解析

山西省运城市康杰中学分校高一数学文联考试题含解析

山西省运城市康杰中学分校高一数学文联考试题含解析一、选择题:本大题共10小题,每小题5分,共50分。

在每小题给出的四个选项中,只有是一个符合题目要求的1. 已知等差数列{a n}中,|a3|=|a9|,公差d<0,则使前n项和取最大值的正整数n是()A、4或5B、5或6C、6或7D、8参考答案:B略2. 将函数y=sin(2x+)的图象经过怎样的平移后所得的图象关于点中心对称()A.向左平移单位B.向左平移单位C.向右平移单位D.向右平移单位参考答案:C【考点】HJ:函数y=Asin(ωx+φ)的图象变换.【分析】设出将函数y=sin(2x+)的图象向左平移ρ个单位得到关系式,然后将x=﹣代入使其等于0,再由正弦函数的性质可得到ρ的所有值,再对选项进行验证即可.【解答】解:假设将函数y=sin(2x+)的图象向左平移ρ个单位得到y=sin(2x+2ρ+)的图象,再根据y=sin(2x+2ρ+)的图象关于点(﹣,0)中心对称,∴将x=﹣代入,得到sin(﹣+2ρ+)=sin(+2ρ)=0,∴+2ρ=kπ,∴ρ=﹣+,k∈Z,当k=0时,ρ=﹣,即实际向右平移个单位,故选:C.3. 已知O是内部一点,且,,,则的面积为A. B. C. D.参考答案:D4. 若集合A={x|log2x≤﹣2},则?R A=()A.B.C.D.[,+∞)参考答案:B【考点】补集及其运算.【分析】先由对数函数的性质求出集合A,再由补集的定义求出?R A.【解答】解:∵集合A={x|log2x≤﹣2}={x|}={x|0<x},∴?R A={x|x≤0或x>}=(﹣∞,0]∪(,+∞).故选:B.5. 下列说法正确的是()A.若直线l1与l2斜率相等,则l1∥l2B.若直线l1∥l2,则k1=k2C.若直线l1,l2的斜率不存在,则l1∥l2D.若两条直线的斜率不相等,则两直线不平行参考答案:D【考点】I1:确定直线位置的几何要素.【分析】根据两条直线的斜率相等时,这两条直线平行或重合,两条直线平行时,这两条直线的斜率相等或它们的斜率不存在,判断即可.【解答】解:对于A,直线l1与l2斜率相等时,l1∥l2或l1与l2重合,∴A错误;对于B,直线l1∥l2时,k1=k2或它们的斜率不存在,∴B错误;对于C,直线l1、l2的斜率不存在时,l1∥l2或l1与l2重合,∴C错误;对于D,直线l1与l2的斜率不相等时,l1与l2不平行,∴D正确.故选:D.6. 已知全集,则正确表示集合和关系的韦恩(Venn)图是()参考答案:B7. 函数在以下哪个区间内一定有零点 ( )A. B. C. D.参考答案:D略8. 若直线与直线平行,则的值为A.B.C.D.参考答案:A略9. 已知函数的部分图象如图所示,则点P的坐标为()A . B. C. D.参考答案:B略10. 的值为()A.B.C.D.参考答案:A略二、填空题:本大题共7小题,每小题4分,共28分11. 经过点,且在两坐标轴上截距相等的直线方程是.参考答案:或12. 点P为x轴上的一点,,则的最小值是_____.参考答案:略13. 给出下列角的范围:①(0,);②(,π);③(,);④(-,);⑤(-,).当x∈____________(填序号),函数y==2cosx.参考答案:④略14. 已知随机事件A发生的频率是0.02,事件A出现了10次,那么共进行了________次试验.参考答案:500 设共进行了n 次试验,则=0.02,解得n =500. 15. 设函数,,若,则__________;参考答案:略16. 函数f (x )=log (x-x 2)的单调递增区间是参考答案:(,1)17. 已知函数f (x )=alnx+blog 2,若f (2017)=1,则 f ()= .参考答案:﹣1【考点】函数的值. 【分析】由已知得f 的值.【解答】解:∵函数f (x )=alnx+blog 2,若f (2017)=aln2017+blog 2=aln2017﹣blog 22017=1,∴f()=aln+blog 22017=﹣aln2017+blog 22017=﹣1.故答案为:﹣1.三、 解答题:本大题共5小题,共72分。

山西省康杰中学2009届高三上学期期末调研考试(数学理)

山西省康杰中学2009届高三上学期期末调研考试(数学理)

运城市2008--2009学年第一学期期末调研测试高三数学试题(理)2009.1(本试题满分150分,考试时间120分钟,答案一律写在答卷页上)一、选择题(本大题共12小题,每小题5分, 60分。

在每小题给出的四个选项中,只有一项是符合要求的) 1.已知a 是第三象限角,8tan=15,则sina= ( ) A .817 B .817- C .1517 D .1517-2.已知−−−→=12P P 2,点P 在−−−→12P P 延长线上,且−−→=2PP 1,则P 分−−−→12P P所成的比是 ( )A .3B .2C .一3D .一23.设集合{}{},,=-><<+⋃=S x x 21x a x a 4S T R ,则a 的取值范围是 ( )A .-<<1a 1B .-≤≤1a 1C . ≤-≥或a 1a 1D .<->或a 1a 14.已知等差数列{}n a 中,,+-=-=3710114a a a 8a a 4,记...=+++n 12n S a a a ,则S 13= ( )A .78B .152C .156D .1685.将函数sin()=-θy 2x 的图象F 按向量:(,)π−−→=a 13平移得到的图象'F ,若'F 一对称轴是直线π=x 4,则θ的一个可能取值是 ( ) A .-π1112 B .-π512 C .π512 D .π11126.函数cos =+y x 2x 在,π⎡⎤⎢⎥⎣⎦02上取最大值时,x 的值是 ( )A .0B .π6 C .π3 D .π27.由直线=+y x 1上的点向圆()-+=22x 3y 1引切线,则切线长的最小值为 ( )AB .7C .3D .9 8.设,,a b c 都是正数,且满足+=141a b,则使+≥a b c 恒成立的c 的取值范围是 ( ) A .(0,3] B .(0,5] C .(0,7] D .(0,9] 9.在△ABC中,,==AB BC 2∠A=π2.如果不等式−−→-−−→≥−−→BA BC ACt 恒成立,则实数t 的取值范围是A .[),+∞1B .,⎡⎫⎪⎢⎣⎭112C .[),,⎛⎤-∞⋃+∞ ⎥⎝⎦112D .(][),,-∞⋃+∞0110.已知点A(1,0)和圆:+=22C x y 4上一点Q ,动点P 满足−−→=−−→QA AP 2,则点P 的轨迹方程是A .()-+=223x y 12 B .()++=223x y 12C .()+-=223x y 12D .()++=223x y 1211.点M 从P(2,0)出发,沿圓+=22x y 4按逆时针方向运动π23弧长到达Q 点:则Q 点的坐标为 ( ) A.(-12 B.(1 C.)1 D.(-1 12.已知P 是⊙O 外一点,(O 为圆心),线段PO 交⊙O 于点A ,过点P 作⊙O 的切线PB ,切点为B ,若劣弧且AB 等分△POB 的面积,∠AOB=a 弧度,则 ( ) A .tan =a a B .tan =a 2a C .sin cos =a 2a D .sin cos =2a a 二、填空题(本大题共4小题.每小题5分,共20分)13.已知直线1l 的方向向量−−→a=(一1,3),直线1l 过点(0,5),且1l ⊥2l ,则直线2l 的方程为____________________ 14.若cos sin()=π-2a a 4,则cos sin +=a a _____________ 15.若不等式-<3x b 4的解集中的整数只有1,2,3,则b 的取值范围是____________16.已知函数()=-+2f x x 4x 3,集合{}(,)()()=+≤M x y f x f y 0,集合{}(,)()()=-≥N x y f x f y 0,则集合⋂M N 在平面直角坐标系中所表示图形的面积是__ 三、解答题(本大题共6小题,共70分。

高一数学竞赛试题及答案

高一数学竞赛试题及答案

高一数学竞赛试题及答案一、选择题(每题5分,共30分)1. 若a,b,c是三角形的三边长,且满足a² + b² = c²,那么这个三角形是:A. 锐角三角形B. 直角三角形C. 钝角三角形D. 不能确定2. 函数f(x) = 2x³ - 3x² + 1在区间[-1,2]上的最大值是:A. 1B. 7C. 9D. 无法确定3. 已知集合A = {1, 2, 3},B = {2, 3, 4},求A∪B的元素个数:A. 3B. 4C. 5D. 64. 等差数列的首项a₁ = 3,公差d = 2,第10项a₁₀的值是:A. 23B. 25C. 27D. 295. 圆的方程为(x - 2)² + (y - 3)² = 9,圆心到直线x + 2y - 7= 0的距离是:A. 2B. 3C. 4D. 56. 已知函数y = |x| + 1的图像与直线y = kx平行,那么k的值是:A. 1B. -1C. 0D. 无法确定二、填空题(每题4分,共20分)7. 若二次函数y = ax² + bx + c的顶点坐标为(-1, -4),则a =_______。

8. 已知等比数列的首项为2,公比为3,第5项的值为 _______。

9. 一个正六边形的内角和为 _______。

10. 若直线y = 2x + b与曲线y = x² - 3x相切,则b = _______。

11. 圆的方程为x² + y² = 25,圆上一点P(4,3)到圆心的距离是_______。

三、解答题(每题25分,共50分)12. 已知直线l₁:2x - 3y + 6 = 0与直线l₂:x + y - 2 = 0相交于点M,求点M的坐标。

13. 已知函数f(x) = x³ - 3x + 2,求证:对于任意的x > 0,都有f(x) > x。

高一数学竞赛试题及答案

高一数学竞赛试题及答案

高一数学竞赛试题及答案一、选择题(每题5分,共20分)1. 下列哪个数是无理数?A. 3.1415926B. πC. √2D. 0.33333(无限循环小数)答案:B2. 已知函数f(x) = 2x^2 + 3x - 5,求f(-2)的值。

A. -15B. -7C. -3D. 1答案:B3. 一个圆的半径为r,圆心到直线的距离为d,如果d < r,那么该直线与圆的位置关系是:A. 相切B. 相交C. 相离D. 内含答案:B4. 如果一个等差数列的前三项和为9,第四项为5,求该数列的首项a1。

A. 1B. 2C. 3D. 4答案:B二、填空题(每题4分,共12分)5. 一个长方体的长、宽、高分别是a、b、c,其体积的公式是______。

答案:abc6. 若sinθ = 1/3,且θ在第一象限,求cosθ的值。

答案:2√2/37. 已知等比数列的前n项和公式为S_n = a1(1 - r^n) / (1 - r),其中a1是首项,r是公比。

如果S_5 = 31,a1 = 1,求r的值。

答案:2三、解答题(每题18分,共54分)8. 证明:对于任意正整数n,n^5 - n 能被30整除。

证明:由题意,我们需要证明n^5 - n 能被30整除。

首先,我们知道任何正整数n都能被1、2、3、5中的至少一个整除。

设n = 2a + b,其中a和b是整数,且b属于{0, 1, 2, 3, 4}。

则n^5 - n = (2a + b)^5 - (2a + b) = 32a^5 + 20a^4b + 5a^3b^2 + a^2b^3 + 2ab^4 - 2a - b。

可以看到,除了最后两项,其他项都能被2整除。

对于最后两项,我们有2a - b = 2(a - b/2),当b为偶数时,2a - b能被2整除;当b为奇数时,a - b/2为整数,所以2a - b也能被2整除。

同理,b - 1能被3整除,因为b属于{0, 1, 2, 3, 4}。

山西省康杰中学09年高一化学竞赛选拔试题

山西省康杰中学09年高一化学竞赛选拔试题

2009年康杰中学高一化学竞赛选拔试题2009.10说明:1.全卷共6页。

考试时间90分钟,满分100分。

2.答题前,务必将自己班次、姓名写在答题卷左侧的密封线内。

3.请将选择题的答案和其它题目的答案写在答题卷相应的位置上,试题不用交回。

相对原子质量: H-1 C-12 O-16 Na-23 Mg-24 Si-28 S-32 Cl-35.5 Al-27 K-39 Fe-56 Cu-64 Zn-65 Br-80 Ag-108一.选择题(每一小题都只有一个符合题意的选项,请选出后把相应的选项填在答题卡上。

每一小题2分,共40分)1.某气体在近地面空气中浓度稍大时是一种污染物,而在高空却对人类有保护作用, 该气体是A .NOB .O 3C .COD .CO 22.分类法是一种行之有效、简单易行的科学方法。

某同学用下表所示形式对所学知识进行分类,其中甲与乙、丙、丁是包含关系。

下列各组中,有错误..的组合是( )3.2008年诺贝尔化学奖授予钱永健等发明的绿色荧光蛋白标记技术,这项发明为细 胞生物学和神经生物学的发展带来一场革命,对我们理解绿色荧光蛋白如何发光 作出了贡献。

绿色荧光蛋白分子中含有氨基(一NH 2,具有碱的性质)和羧基(一COOH ,具有酸的性质)。

该分子具有的性质是( )A .只能与硫酸反应,不能与氢氧化钾反应B .只能与氢氧化钾反应,不能与硫酸反应C .既能与硫酸反应,又能与氢氧化钾反应D 。

既不能与硫酸反应,又不能与氢氧化钾反应4.相同质量的SO 2和SO 3它们之间的关系是A .所含硫原子的物质的量之比为1:1B .氧原子的物质的量之比为3:2C .氧元素的质量比为2:3D .硫元素的质量比为5:45.在两个容积相同的容器中,一个盛有HCl 气体,另一个盛有H 2和Cl 2的混合气体。

在同温同压下,两容器内的气体一定具有相同的A .原子数B . 密度C . 质量D . 质子数6.在同温度、同体积和同质量的下列气体中,气体压强最小的是A .CO 2B .CH 4C .H 2D .CO7.依照阿佛加德罗定律,下列叙述正确的是A .同温同压下两种气体的体积之比等于摩尔质量之比B .同温同压下两种气体的物质的量之比等于密度之比C .同温同压下两种气体的摩尔质量之比等于密度之比D .同温同体积下两种气体的物质的量之比等于质量之比8.在反应A+B==== C+2D 中,已知C 和D 的摩尔质量之比为22:9,当1.6gA 与B完全反应后,生成4.4gC ,则此反应中B 和D 的质量比为A .16:9 B. 23:9 C. 32:9 D. 46:99.随着科技的飞速发展,出现了许多新型无机材料,如植入生物体内的生物陶瓷材料HAP[化学式为Cam(PO 4)n(OH)2],已被医疗上用于修补人的骨骼和牙组织,HAP 的化学式中m 等于A .322n +B .322n -C .222n -D .n+110.已知土壤胶体中的粒子带负电荷,又有很大的表面积,因而具有选择吸附能力。

山西省康杰中学08-09学年高一下学期期末考试(数学).pdf

山西省康杰中学08-09学年高一下学期期末考试(数学).pdf

2008—2009学年普通高中新课程模块结业考试试题(卷) 数学(必修4·人教A版) 说明: 1. 答卷前考生务必将自己所在的县\区、学校、班级、姓名、准考证号等信息填写在密封线内的相应位置。

2.答卷时考生务必用蓝、黑墨水或圆珠笔作答。

3. 本试卷共8页,答题时间90分钟,满分100分。

一、选择题(本题包括10个小题,每小题3分,共30分)在每小题列出的四个选项中,只有一项是最符合题目要求的,请将正确选项的字母填在下列表格中。

题号12345678910答案1.=A、 B、 C、 D、1 2. 已知向量,且,则=A、2 B、 C、 D、 3. 的定义域是 A、 B、 C、 D、 4. 函数是奇函数,则的一个取值是 A、 B、 C、 D、 5. 已知,且,则的取值范围是 A、 B、 C、 C、 6. 下列命题正确的是 A、若是平面内的三点,则 B、若是两个单位向量,则 C、若是任意两个向量,则 D、向量可以作为平面内所有向量的一组基底 7.给下列三个式子 ①;②;③ 其运算结果是的有A、0个B、1个C、2个D、3个 8. 要得到函数的图像,只需将的图像A、向右平行移动个单位B、向左平行移动个单位C、向左平行移动个单位D、向右平行移动个单位 9.函数的最小值是 A、 B、 C、 D、1 10. 质点在平面内做匀速直线运动,速度向量(即点的运动方向与相同,且每秒移动的距离为个单位),若开始时质点所在的位置是,则经过10秒质点所在的位置是 A、 B、 C、 D、 二、填空题(本题包括8个小时,每小题3分,共24分)请答案填在横线上。

11. 的符号是 (填正、负或零)。

12. 化简:= 。

13. 如图所示,用两条绳提一个物体,每条绳用力5,且两条绳的夹 角是120°,则物体的重量是 。

14. 已知,则向量在向量上的投影是 。

15.= 。

16. 若是夹角为60°的两个单位向量,且,则向量与的数量积是 。

山西省康杰中学高一下学期月考试题数学.pdf

山西省康杰中学高一下学期月考试题数学.pdf

4.2 二元一次方程组 【教学目标】 1 了解二元一次方程组的概念。

2 理解二元一次方程组的解的概念。

3 会用列表尝试的方法求二元一次方程组的解。

【教学重点 难点】 重点:归纳二元一次方程组及其解的概念。

难点:本节范例的问题情境比较复杂、并用列表的方法求出方程组的解。

【教学过程】 一 复习前课教学中的有关存在问题 二 引入课前预习: 1 在方程2x+3y=5中,如果x=y,则x=_____, y=_________. 2 如果x=2a,y=3a.则2x+3y=__________. 3 设第一个数是第二个数的2倍,第一个数与第二个数的2倍之和为20,求这个数? (设第一个数为x,第二个数为y,则有,所以) 三 利用投影:一个苹果和一个梨的质量合计200克(如图4—1)这个苹果的质量加上一个10克砝码恰好与这个梨的质量相等(如图4-2)问苹果和梨的质量各为多少克? 教师评语:在这个问题中如果设苹果和梨的质量分别为x克和y克,同学们能列出几个方程,请同学们把它们写出来(x+y=200 y=x+10) 教师然后解释:方程x+y=200和方程y=x+10中,x ,y都分别表示同一个未知数,也就是说,X,y的值必须同时满足上述两个方程,因此可以把这两个方程合起来,写成 教师归纳:像这样由两个一次方程组成,并且含有两个未知数的方程组叫作二元一次方程组。

课堂练习P90练习1 (1)(2)(3)让学生填表格,然后教师将表中答案说明 2 分四个小组将①②③④个二元一次方程组的结果填入相应的位置 教师归纳:同时满足二元一次方程组中各个方程的解叫作二元一次方程组的解。

例如就是这个二元一次方程组的解。

例:小聪全家外出旅游,估计需要胶卷底片120张,商店里有两种型号的胶卷:A型每卷36张底片,B型每卷12张底片。

小聪一共买了4卷胶卷,刚好有120张底片,如果两种胶卷分别买x卷和y卷,请根据问题中的条件列出关于x,y的方程组,并且列表尝试的方法求两种胶卷的数量。

高一数学竞赛试题及答案

高一数学竞赛试题及答案

高一数学竞赛试题及答案一、选择题(每题4分,共20分)1. 若一个等差数列的首项为3,公差为5,那么它的第n项可以表示为:A. 3 + 5(n-1)B. 3 + 5nC. 5 + 3(n-1)D. 5 + 3n2. 下列哪个分数可以化简为1/2?A. 3/6B. 5/10C. 7/14D. 9/183. 已知函数f(x) = x^2 - 6x + 9,求f(x)的最小值。

A. -36B. -9C. 0D. 94. 若a, b, c是等比数列,且a + b + c = 0,那么b^2的值是:A. a^2 + c^2B. -a^2 - c^2C. acD. -ac5. 一个圆的半径是5cm,求这个圆的面积(圆周率取3.14)。

A. 78.5平方厘米B. 157平方厘米C. 200平方厘米D. 314平方厘米二、填空题(每题5分,共20分)6. 一个等比数列的前三项分别是2, 6, 18,那么它的第四项是_______。

7. 函数g(x) = |2x - 3| + |x + 1|的最小值是_______。

8. 已知一个直角三角形的两条直角边长分别为3cm和4cm,那么它的斜边长(根据勾股定理)是_______。

9. 一个圆的周长是12π,那么这个圆的直径是_______。

三、解答题(每题10分,共60分)10. 已知等差数列的前n项和为S_n = n^2 + 2n,求这个等差数列的前三项。

11. 求解方程:\(\frac{1}{x-1} + \frac{2}{x-2} = 3\)。

12. 一个圆与直线y = 2x + 3相交于点P,圆心坐标为(1, 0),且半径为2。

求点P的坐标。

13. 证明:若a, b, c, d是正整数,且满足a^2 + b^2 = c^2 + d^2,则a + b = c + d。

14. 一个等差数列的前10项和为110,且第10项是第2项的3倍,求这个等差数列的公差和首项。

高一数学竞赛答案一、选择题答案1. A2. D3. D4. B5. B二、填空题答案6. 547. 28. 59. 6三、解答题答案10. 首项为2,公差为4,前三项为2,6,10。

山西省康杰中学2009届高三第一次月考(数学理)

山西省康杰中学2009届高三第一次月考(数学理)

康杰中学2008—2009学年度高三第一次月考数学(理科)试题2008.9注:答案一律写在答案页上一、选择题(本大题共12小题,每小题5分,共60分,每小题所给的四个选项中只有一项符合题目要求)1.设随机变量ζ~N (0,1),已知Φ(-1.96)=0.025,则(||1.96)P ξ<= ( )(A )0.025(B )0.050(C )0.950(D )0.9752.()f x 是定义在(0,)+∞上的非负可导函数,且满足()()0xf x f x '+≤对任意正数,a b ,若a b <,则必有 ( )(A )()()af a f b < (B )()()bf b f a ≤ (C )()()af b bf a ≤(D )()()bf a af b ≤3.(,)x B n p ,若12,4Ex Dx ==,则,n p 的值分别为 ( )(A )18和23(B )16和12 (C )20和13 (D )15和144.甲校有3600名学生,乙校有5400名学生,丙校有1800名学生,为统计三校学生某方面的情况,计划采用分层抽样法,抽取一个容量为90人的样本,应在这三校分别抽取学生 ( )(A )30人、30人、30人 (B )30人、45人、15人 (C )20人、30人、10人(D )30人、50人、10人5.设随机变量ξ的分布列为()(1,2)k P k k ξλ===,则λ的值为( )(A )1(B )12(C )13(D )146.设函数()f x 的定义域为R ,导函数()f x '的图象如图所示,则函数()f x ( )(A )无极大值点,有四个极小值点(B )有三个极大值点,两个极小值点 (C )有两个极大值点,两个极小值点(D )有四个极大值点,无极小值点7.在应用数学归纳法证明命题“求证凸n 边形的对角线的函数(3)()2n n f n -=”时,第一步应该证n ( )(A )1(B )2(C )3 (D )48.把21(1)(1)(1)ux x x +++++++展成关于x 的多项式其各项系数和为n a ,则:21lim1n x na a →∞-+=( ) (A )14(B )12(C )1(D )29.若函数3()3f x x x a =--在[0,3]上的最大值,最小值分别为M 、N ,则M N -的值为( )(A )2(B )4(C )18 (D )20 10.下列命题不正确的是( )(A )0.91∙=(B )()f x 在0x 处有极值,则0()f x '=0(C )在(,)a b 内连续的函数()f x 不一定有最大值与最小值 (D )函数()f x 在极值点0x 处一定可导 11.2320091i i i ++++的值为( )(A )i(B )i -(C )0(D )112.设离散型随机变量ξ可能的取值为1、2、3、4,()(1234)p k ak b k ξ==+=、、、又E ξ=3,则a b +等于 ( )(A )110(B )0(C )110-(D )15二、填空题(本大题共4小题,每小题5分,共20分)13.若函数321()(1)53f x x f x x '=-++,则(1)f '值为__________.14. {}n a 是等比数列,且121lim()3n x a a a →∞+++=,则1a 的取值范围是_____.15.100811i i -⎛⎫⎪+⎝⎭的值为_________.16.证凸四边形内角和为()f k ,则凸1k +边形的内角和(1)()f k f k +=+______. 三、解答题(本大题共6小题,共74分)17.(本小题10分)甲乙两人参加奥运知识竞赛,假设甲、乙两人答对每题的概率分别为23与35,且答对一题得1分,答不对得0分,甲、乙两人各答一题。

山西省运城市康杰中学高一数学理联考试题含解析

山西省运城市康杰中学高一数学理联考试题含解析

山西省运城市康杰中学高一数学理联考试题含解析一、选择题:本大题共10小题,每小题5分,共50分。

在每小题给出的四个选项中,只有是一个符合题目要求的1. 已知点(﹣4,3)是角α终边上的一点,则sin(π﹣α)=()A.B.C.D.参考答案:A【考点】G9:任意角的三角函数的定义.【分析】由条件利用任意角的三角函数的定义,诱导公式,求得sin(π﹣α)的值.【解答】解:∵点(﹣4,3)是角α终边上的一点,∴x=﹣4,y=3,r=|OP|=5,∴sinα==,则sin(π﹣α)=sinα=,故选:A.【点评】本题主要考查任意角的三角函数的定义,诱导公式,属于基础题.2. 已知函数在是单调递减的,则实数的取值范围为()A、 B、 C、 D、参考答案:A3. 函数的部分图像如图所示,点是该图像的一个最高点,点是该图像与x轴交点,则()A.B.C. D.参考答案:C根据题中所给的条件,以及所给的部分图像,可以求得,所以,从而得到,求得,因为P是最高点,所以有,解得,又因为,所以,所以,故选C.4. 下列判断正确的是 ( ▲ )A. 函数是奇函数B. 函数是偶函数C. 函数是偶函数D.函数既是奇函数又是偶函数参考答案:C5. 设,且,则( )A B 10 C 20 D 100参考答案:A略6. 点O为△ABC所在平面内一点,则△ABC的形状为()A. 直角三角形B. 等腰三角形C. 等腰直角三角形D. 等边三角形参考答案:B【分析】由得OA和BC垂直,由得到OA是∠BAC的角平分线,综合即可判断△ABC的形状.【详解】,所以.AO在∠BAC的角平分线上,所以AO既在BC边的高上,也是∠BAC的平分线,所以△ABC是等腰三角形.故选:B【点睛】本题主要考查平面向量的加法法则和减法法则的几何应用,意在考查学生对这些知识的理解掌握水平和分析推理能力.7. 化简得()A.6 B. C.6或 D.6或或参考答案:C8. 下面一段程序执行后的结果是()A. 6B. 4C. 8D. 10参考答案:A【分析】根据题中的程序语句,直接按照顺序结构的功能即可求出。

高一数学竞赛山西省试题

高一数学竞赛山西省试题

高一数学竞赛山西省试题一、选择题(每题5分,共30分)1. 已知函数\( f(x) = x^2 - 2x + 3 \),求\( f(-1) \)的值。

A. 1B. 2C. 4D. 52. 以下哪个选项是\( \sqrt{2} \)的小数部分?A. 0.41B. 0.14C. 0.71D. 0.913. 一个圆的半径为5,求其面积。

A. 25πB. 50πC. 75πD. 100π4. 已知\( a \),\( b \)是方程\( x^2 + 3x - 4 = 0 \)的根,求\( a^2 + 3a \)的值。

A. -4B. 4C. 7D. 105. 一个等差数列的首项为2,公差为3,求第5项的值。

A. 17B. 14C. 11D. 86. 一个三角形的三边长分别为3,4,5,判断这个三角形是否为直角三角形。

A. 是B. 不是二、填空题(每题5分,共20分)1. 若\( a \),\( b \),\( c \)是三角形的三边,且满足\( a^2 + b^2 = c^2 \),那么这个三角形是_________三角形。

2. 已知等比数列的首项为1,公比为2,求第10项的值。

3. 一个圆的周长为44cm,求这个圆的直径。

4. 将\( \frac{1}{2} \),\( \frac{1}{3} \),\( \frac{1}{4} \)这三个分数写成一个连分数的和。

三、解答题(每题10分,共50分)1. 解不等式\( |x - 2| + |x + 3| \geq 5 \)。

2. 证明:对于任意实数\( a \)和\( b \),不等式\( a^3 + b^3\geq a^2b + ab^2 \)成立。

3. 已知\( \triangle ABC \)的内角\( A \),\( B \),\( C \)的对边分别为\( a \),\( b \),\( c \),且\( \cos A = \frac{1}{2} \),求证\( b^2 + c^2 - a^2 = bc \)。

山西山西省运城市康杰中学数列多选题试题含答案

山西山西省运城市康杰中学数列多选题试题含答案

山西山西省运城市康杰中学数列多选题试题含答案一、数列多选题1.各项均为正数的等比数列{}n a 的前n 项积为n T ,若11a >,公比1q ≠,则下列命题正确的是( )A .若59T T =,则必有141T =B .若59T T =,则必有7T 是n T 中最大的项C .若67T T >,则必有78T T >D .若67T T >,则必有56T T >【答案】ABC 【分析】根据题意,结合等比数列的通项公式、等差数列的前n 项和公式,以及等比数列的性质,逐项分析,即可求解. 【详解】由等比数列{}n a 可知11n n a a q -=⋅,由等比数列{}n a 的前n 项积结合等差数列性质可知:()1211212111111123n n n n n n n n a a q a q a qa a T a a a q a q--+++-=⋅⋅⋅==⋅=对于A ,若59T T =,可得51093611a q a q =,即42611a q =,()71491426211141a q q T a ∴===,故A 正确;对于B ,若59T T =,可得42611a q =,即13211a q=,又11a >,故1q <,又59T T =,可知67891a a a a =,利用等比数列性质知78691a a a a ==,可知67891,1,1,1a a a a >><<,故7T 是n T 中最大的项,故B 正确;对于C ,若67T T >,则61572111a q a q >,即611a q <,又10a >,则1q <,可得76811871T T a a q a q <=<=,故78T T >,故C 正确; 对于D ,若67T T >,则611a q <,56651T a T a q ==,无法判断其与“1”的大小关系,故D 错误. 故选:ABC 【点睛】关键点点睛:本题主要考查了等比数列的通项公式及等差数列前n 项和公式,以及等比数列的性质的应用,其中解答中熟记等比数列的通项公式和性质及等差数列的求和公式,准确运算是解答的关键,着重考查了学生的推理与运算能力,属于较难题.2.已知数列{}n a 的首项1a m =且满足()()14751221nn a a n n a a +⎡⎤=-⋅-⋅+-⋅-⎣⎦,其中n *∈N ,则下列说法中正确的是( )A .当1m =时,有3n n a a +=恒成立B .当21m =时,有47n n a a ++=恒成立C .当27m =时,有108111n n a a ++=恒成立D .当()2km k N *=∈时,有2n kn k aa +++=恒成立【答案】AC 【分析】题设中的递推关系等价为1,231,nn n n n a a a a a +⎧⎪=⎨⎪+⎩为偶数为奇数,根据首项可找到{}n a 的局部周期性,从而可得正确的选项. 【详解】因为()()14751221n n a a n n a a +⎡⎤=-⋅-⋅+-⋅-⎣⎦,故1,231,nn n n n a a a a a +⎧⎪=⎨⎪+⎩为偶数为奇数, 当1m =即11a =时,24a =,32a =,41a =,故{}n a 为周期数列且3n n a a +=,故A 正确.当21m =即121a =时,264a =,同理416a =,58a =,64a =,72a =,81a =,故58a a ≠,故B 错误.当2km =即12ka =时,根据等比数列的通项公式可有11222k kk a -⎛⎫= ⎪⎝⎭=,+1+21,4k k a a ==,+32k a =, +1+3k k a a ≠,故D 错误.对于C ,当27m =时,数列{}n a 的前108项依次为:27,82,42,124,62,31,94,47,142,71,214,107,322,161,484242,121,364,182,91,274,, 137,412,206,103,310,155,466,233,700,350,175,526,263,790,395,1186,593,1780, 890,445,1336,668,334,167,502,251,754,377,1132,566,283,850,425,1276,638,319,958,479,1438,719,2158,1079,3238,1619,4858,2429,7288,3644,1822,911,2734, 1367,4102,2051,6154,3077,9232,4616,2308,1154,577,1732,866,433,1300,650, 325,976,488,244,122,61,184,92,46,23,70,35,106,53,160,80,40,20,10,5,16,故1098a =,1104a =,1112a =,1121a =,1134a =, 所以109112n n a a ++=对任意1n ≥总成立.(备注:因为本题为多选题,因此根据A 正确,BD 错误可判断出C 必定正确,可无需罗列出前108项) 故选:AC. 【点睛】方法点睛:对于复杂的递推关系,我们应该将其化简为相对简单的递推关系,对于数列局部周期性的研究,应该从特殊情况中总结出一般规律,另外,对于多选题,可以用排除法来确定可选项.3.两个等差数列{}n a 和{}n b ,其公差分别为1d 和2d ,其前n 项和分别为n S 和n T ,则下列命题中正确的是( )A .若为等差数列,则112da =B .若{}n n S T +为等差数列,则120d d +=C .若{}n n a b 为等差数列,则120d d ==D .若*n b N ∈,则{}n b a 也为等差数列,且公差为12d d +【答案】AB 【分析】对于A ,利用=对于B ,利用()2211332S T S T S T +=+++化简可得答案; 对于C ,利用2211332a b a b a b =+化简可得答案; 对于D ,根据112n n b b a a d d +-=可得答案. 【详解】对于A ,因为为等差数列,所以=即== 化简得()21120d a -=,所以112d a =,故A 正确;对于B ,因为{}n n S T +为等差数列,所以()2211332S T S T S T +=+++, 所以()11121111122223333a d b d a b a d b d +++=+++++, 所以120d d +=,故B 正确;对于C ,因为{}n n a b 为等差数列,所以2211332a b a b a b =+, 所以11121111122()()(2)(2)a d b d a b a d b d ++=+++, 化简得120d d =,所以10d =或20d =,故C 不正确;对于D ,因为11(1)n a a n d =+-,且*n b N ∈,所以11(1)n b n a a b d =+-()112111a b n d d =++--⎡⎤⎣⎦,所以()()1111211n b a a b d n d d =+-+-,所以()()()11111211112111n n b b a a a b d nd d a b d n d d +-=+-+-----12d d =, 所以{}n b a 也为等差数列,且公差为12d d ,故D 不正确. 故选:AB【点睛】关键点点睛:利用等差数列的定义以及等差中项求解是解题关键.4.设数列{}{},n n a b 的前n 项和分别为,n n S T ,1121,n n n S S S n++==,且212n n n n a b a a ++=,则下列结论正确的是( ) A .20202020a = B .()12n n n S += C .()112n b n n =-+D .1334n T n ≤-< 【答案】ABD 【分析】可由累乘法求得n S 的通项公式,再由()12n n n S +=得出n a n =,代入212n n n n a b a a ++=中可得()112n b n n =++.由裂项相消法求出n T ,利用数列的单调性证明1334n T n ≤-<.【详解】由题意得,12n n S n S n++=, ∴当2n ≥时,121121112n n n n n S S S n n S S S S S n n ---+=⋅⋅⋅⋅⋅=⋅⋅⋅⋅--()13112n n +⋅=,且当1n =时也成立, ∴ ()12n n n S +=,易得n a n =,∴ 20202020a =,故,A B 正确; ∴ ()()()211111112222n n b n n n n n n +⎛⎫==+=+- ⎪+++⎝⎭,∴11111111111111112324351122212n T n n n n n n n n ⎛⎫⎛⎫=+-+-+-++-+-=++-- ⎪ ⎪-++++⎝⎭⎝⎭3111342124n n n n ⎛⎫=+-+<+ ⎪++⎝⎭, 又n T n -随着n 的增加而增加, ∴1113n T n T -≥-=,∴1334n T n ≤-<,C 错误,D 正确, 故选:ABD. 【点睛】使用裂项法求和时,要注意正负项相消时消去了哪些项,保留了哪些项,切不可漏写未被消去的项,未被消去的项有前后对称的特点,实质上造成正负相消是此法的根源与目的.5.已知数列{}n a 的前n 项和为2n 33S n n =-,则下列说法正确的是( )A .342n a n =-B .16S 为n S 的最小值C .1216272a a a +++=D .1230450a a a +++=【答案】AC 【分析】利用和与项的关系,分1n =和2n ≥分别求得数列的通项公式,检验合并即可判定A; 根据数列的项的正负情况可以否定B;根据前16项都是正值可计算判定C;注意到121617193300()a a a S a a a +++=+----16302S S =-可计算后否定D.【详解】1133132a S ==-=,()()()2213333113422n n n a S S n n n n n n -=-=---+-=-≥,对于1n =也成立,所以342n a n =-,故A 正确;当17n <时,0n a >,当n=17时n a 0=,当17n >时,n a 0<,n S ∴只有最大值,没有最小值,故B 错误;因为当17n <时,0n a >,∴21216163316161716272a a a S +++==⨯-=⨯=,故C 正确;121617193300()a a a S a a a +++=+----2163022272(333030S S =-=⨯-⨯-)54490454=-=, 故D 错误. 故选:AC. 【点睛】本题考查数列的和与项的关系,数列的和的最值性质,绝对值数列的求和问题,属小综合题.和与项的关系()()1112n nn S n a S S n -⎧=⎪=⎨-≥⎪⎩,若数列{}n a 的前 k 项为正值,往后都是小于等于零,则当n k ≥时有122n k n a a a S S ++⋯+=-,若数列{}n a 的前 k 项为负值,往后都是大于或等于零,则当n k ≥时有122n k n a a a S S ++⋯+=-+.若数列的前面一些项是非负,后面的项为负值,则前n 项和只有最大值,没有最小值,若数列的前面一些项是非正,后面的项为正值,则前n 项和只有最小值,没有最大值.6.下列说法中正确的是( )A .数列{}n a 成等差数列的充要条件是对于任意的正整数n ,都有122n n n a a a ++=+B .数列{}n a 成等比数列的充要条件是对于任意的正整数n ,都有212n n n a a a ++=C .若数列{}n a 是等差数列,则n S 、2n n S S -、32n n S S -也是等差数列D .若数列{}n a 是等比数列,则n S 、2n n S S -、32n n S S -也是等比数列 【答案】AC 【分析】利用等差中项法可判断A 选项的正误;取0n a =可判断B 选项的正误;利用等差数列求和公式以及等差中项法可判断C 选项的正误;取1q =-,n 为偶数可判断D 选项的正误. 【详解】对于A 选项,充分性:若数列{}n a 成等差数列,则对任意的正整数n ,n a 、1n a +、2n a +成等差数列,则121n n n n a a a a +++-=-,即122n n n a a a ++=+,充分性成立; 必要性:对任意的正整数n ,都有122n n n a a a ++=+,则121n n n n a a a a +++-=-, 可得出2132431n n a a a a a a a a +-=-=-==-=,所以,数列{}n a 成等差数列,必要性成立.所以,数列{}n a 成等差数列的充要条件是对于任意的正整数n ,都有122n n n a a a ++=+,A 选项正确;对于B 选项,当数列{}n a 满足0n a =时,有212n n n a a a ++=,但数列{}n a 不是等比数列,B选项错误;对于C 选项,设等差数列{}n a 的公差为d ,则()112n n n dS na -=+,()2122122n n n d S na -=+,()3133132n n n dS na -=+, 所以,()()()22111322112222n n n n d n n d n n d S S na na na ---⎡⎤⎡⎤-=+-+=+⎢⎥⎢⎥⎣⎦⎣⎦, ()()()232111533122132222n n n n d n n d n n d S S na na na ---⎡⎤⎡⎤-=+-+=+⎢⎥⎢⎥⎣⎦⎣⎦, 所以,()()()()22232111532222n n n n n d n n d n n d S S S na na na ⎡⎤⎡⎤⎡⎤---⎢⎥⎢⎥⎢⎥-+=+++=+⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦()22n n S S =-,所以,n S 、2n n S S -、32n n S S -是等差数列,C 选项正确;对于D 选项,当公比1q =-,且n 是偶数时,n S 、2n n S S -、32n n S S -都为0, 故n S 、2n n S S -、32n n S S -不是等比数列,所以D 选项错误. 故选:AC. 【点睛】 方法点睛;1.判断等差数列有如下方法:(1)定义法:1n n a a d +-=(d 为常数,n *∈N ); (2)等差中项法:()122n n n a a a n N*++=+∈;(3)通项法:n a p n q =⋅+(p 、q 常数);(4)前n 项和法:2n S p n q n =⋅+⋅(p 、q 常数).2.判断等比数列有如下方法:(1)定义法:1n na q a +=(q 为非零常数,n *∈N ); (2)等比中项法:212n n n a a a ++=⋅,n *∈N ,0n a ≠; (3)通项公式法:nn a p q =⋅(p 、q 为非零常数); (4)前n 项和法:nn S p q p =⋅-,p 、q 为非零常数且1q ≠.7.首项为正数,公差不为0的等差数列{}n a ,其前n 项和为n S ,则下列4个命题中正确的有( )A .若100S =,则50a >,60a <;B .若412S S =,则使0n S >的最大的n 为15;C .若150S >,160S <,则{}n S 中7S 最大;D .若89S S <,则78S S <. 【答案】ABD 【分析】利用等差数列的求和公式及等差数列的性质,逐一检验选项,即可得答案. 【详解】对于A :因为正数,公差不为0,且100S =,所以公差0d <, 所以1101010()02a a S +==,即1100a a +=, 根据等差数列的性质可得561100a a a a +=+=,又0d <, 所以50a >,60a <,故A 正确; 对于B :因为412S S =,则1240S S -=,所以561112894()0a a a a a a ++⋅⋅⋅++=+=,又10a >,所以890,0a a ><, 所以115815815()15215022a a a S a +⨯===>,116891616()16()022a a a a S ++===, 所以使0n S >的最大的n 为15,故B 正确; 对于C :因为115815815()15215022a a a S a +⨯===>,则80a >, 116891616()16()022a a a a S ++===,则890a a +=,即90a <, 所以则{}n S 中8S 最大,故C 错误;对于D :因为89S S <,则9980S a S =->,又10a >, 所以8870a S S =->,即87S S >,故D 正确, 故选:ABD 【点睛】解题的关键是先判断d 的正负,再根据等差数列的性质,对求和公式进行变形,求得项的正负,再分析和判断,考查等差数列性质的灵活应用,属中档题.8.已知数列{}n a ,下列结论正确的有( ) A .若12a =,11n n a a n +++=,则20211a =.B .若11132n n a a a ++=,=,则71457a =C .若12nn S =3+,则数列{}n a 是等比数列 D .若11212n n n a a a a ++=,=()*n N ∈,则15215a = 【答案】AB 【分析】直接利用叠加法可判断选项A ,从而判断,利用构造新数列可求出B,D 中数列的通项公式,可判断,选项C 求出数列的前3项从而可判断. 【详解】选项A. 由11n n a a n +=++,即11n n a a n +-=+ 则()()()()19191818120207121a a a a a a a a a a =-+-+-++-+20191822211=+++++=故A 正确.选项B. 由132n n a a +=+,得()1311n n a a +=++,所以数列{}1n a +是以112a +=为首项,3为公比的等比数列.则1123n n a -+=⨯,即1231n n a -=⨯-,所以672311457a =⨯-=,故B 正确.选项C. 由12nn S =3+,可得当1n =时,11722a =+=3 当2n =时,得2211193622a S S ⎛⎫⎛⎫=-=+-+= ⎪ ⎪⎝⎭⎝⎭,当3n =时,得332112791822a S S ⎛⎫⎛⎫=-=+-+= ⎪ ⎪⎝⎭⎝⎭, 显然2213a a a ≠,所以数列{}n a 不是等比数列,故C 错误. 选项D. 由122nn n a a a +=+,可得11112n n a a +-= 所以数列1n a ⎧⎫⎨⎬⎩⎭是以1为首项,12为公差的等差数列.所以()1111122n n n a +=+-=,则1511826a ==,即1518a =,故D 错误. 故选:AB 【点睛】关键点睛:本题考查利用递推关系求数列的通项公式,解答的关键是掌握求数列通项公式的常见方法,由叠加法可得()()()()19191818120207121a a a a a a a a a a =-+-+-++-+,利用构造新数列()1311n n a a +=++,11112n n a a +-=解决问题,属于中档题.二、平面向量多选题9.已知集合()(){}=,M x y y f x =,若对于()11,x y M ∀∈,()22,x y M ∃∈,使得12120x x y y +=成立,则称集合M 是“互垂点集”.给出下列四个集合:(){}21,1M x y y x ==+;(){2,M x y y ==;(){}3,xM x y y e ==;(){}4,sin 1M x y y x ==+.其中是“互垂点集”集合的为( )A .1MB .2MC .3MD .4M【答案】BD 【分析】根据题意知,对于集合M 表示的函数图象上的任意点()11,P x y ,在图象上存在另一个点P ',使得OP OP '⊥,结合函数图象即可判断.【详解】由题意知,对于集合M 表示的函数图象上的任意点()11,P x y ,在图象上存在另一个点P ',使得OP OP '⊥.在21y x =+的图象上,当P 点坐标为(0,1)时,不存在对应的点P ', 所以1M 不是“互垂点集”集合; 对1y x =+的图象,将两坐标轴绕原点进行任意旋转,均与函数图象有交点,所以在2M 中的任意点()11,P x y ,在2M 中存在另一个P ',使得OP OP '⊥, 所以2M 是“互垂点集”集合;在xy e =的图象上,当P 点坐标为(0,1)时,不存在对应的点P ', 所以3M 不是“互垂点集”集合;对sin 1y x =+的图象,将两坐标轴绕原点进行任意旋转,均与函数图象有交点, 所以所以4M 是“互垂点集”集合, 故选:BD . 【点睛】本题主要考查命题的真假的判断,以及对新定义的理解与应用,意在考查学生的数学建模能力和数学抽象能力,属于较难题.10.正方形ABCD 的边长为1,记AB a =,BC b =,AC c =,则下列结论正确的是( )A .()0a b c -⋅= B .()0a b c a +-⋅= C .()0a c b a --⋅=D .2a b c ++=【答案】ABC 【分析】作出图形,利用平面向量加、减法法则与正方形的性质可判断A 、B 选项的正误;利用平面向量的减法法则与向量的数乘运算可判断C 选项的正误;利用平面向量的加法法则可判断D 选项的正误. 【详解】 如下图所示:对于A 选项,四边形ABCD 为正方形,则BD AC ⊥,a b AB BC AB AD DB -=-=-=,()0a b c DB AC ∴-⋅=⋅=,A 选项正确;对于B 选项,0a b c AB BC AC AC AC +-=+-=-=,则()00a b c a a +-⋅=⋅=,B 选项正确;对于C 选项,a c AB AC CB -=-=,则0a c b CB BC --=-=,则()0a c b a --⋅=,C 选项正确;对于D 选项,2a b c c ++=,222a b c c ∴++==,D 选项错误.故选:ABC.【点睛】本题考查平面向量相关命题正误的判断,同时也考查了平面向量加、减法法则以及平面向量数量积的应用,考查计算能力,属于中等题.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2009年康杰中学高一数学竞赛选拔试题
2009.10
一、选择题(每小题5分)
1.f 是集合{}d c b a M ,,,=到{}2,1,0=N 的映射,且4)()()()(=+++d f c f b f a f 则不同的映射有( )个
A .13
B .19
C .21
D .23
2.已知函数)(x f 满足:对任意R y x ∈、都有,0)1()(2)()(22≠+=+f y f x f y x f 且 )2007(f 则的值为( )
A .1002.5
B .1003
C .1003.5
D .1004 3.函数)1,(2)(2-∞+-=在区间a ax x x f 上有最小值,则函数在区x
x f x g )()(=间 ),(∞+1上一定( )
A .有最小值
B .有最大值
C .是减函数
D .是增函数 4.满足方程11610145=+-++
+-+x x x x 的实数解x 的个数是( ) A .1 B .2 C .4 D .无数多
5.将2008表示为)(+∈N k k 个互异的平方数之和,则K 的最小值是( )
A .2
B .3
C .4
D .5
6.给出函数⎪⎩⎪⎨⎧<+≥=4)
1(4)21()(x x f x x f x 则)(log 32f 等于( ) A .823- B .111 C .191 D .24
1 7.已知9
99999⋅⋅⋅+⋅⋅⋅++=n 则n 的十进位制表示中,数码1有( )个 99个
A .50
B .99
C .90
D .100 8.已知1009921)(,*-+-+⋅⋅⋅+-+-=∈x x x x x f N x 的最小值等于( )
A .2500
B .4950
C .5050
D .5150
9.如图:已知在ABC Rt ∆中,35=AB ,一个边长为12的正方
形CDEF 内接于ABC ∆,则ABC ∆的周长为( )
A .35
B .40
C .81
D .84
10.已知b a 、是方程34log log 32733-
=+x x 的两个根,则b a +=( ) A .2710 B .814 C .8110 D .81
28
11.2ln --=x e y x 的图象大致是图( )
A B C D
12.满足20073+++=x x y 的正整数对)(y x 、( )
A .只有一对
B .恰有两对
C .至少有三对
D .不存在 二、填空题,每小题4分
13.1)12()12)(12)(12(3242+++⋅⋅⋅++++=___________.
14.右以O 为圆心的两个同心圆中,MN 的大圆的直径,交
小圆于点P 、Q ,大圆的弦MC 交小圆于点A 、B ,
若BC AB MA OP OM ====,1,2,则MBQ ∆的
面积为__________.
15.已知1)2()()(≥-==x x f x f x f y 且满足时,=<=)(1,2)(x f x x f x 的则_______
16.六位数81ab 93是99的倍数,则整数a 、b 为___________.
三、解答题
17.(10分)设S 为满足下列两个条件所构成的集合
(i )s ∉1 (ii )s a s a ∈-∈11则
证明:(1)当s a s a ∈-∈11则
(2)若s ∈2,则在S 中必含有两个其他的数并写出这两个数。

18.(12分)如图4,自ABC ∆的外接圆 上的任一点M ,作BC MC ⊥于D ,P 是AM 上的一点,作,,,BC PG AB PF AC PE ⊥⊥⊥E 、F 、G 分别在AC 、AB 、AD 上,证明:E 、F 、G
三点共线
19.(10分)求]1,0[,1
11522∈+++=x x x x y 的值域。

20.(14分)对集合{
}2004,3,2,1⋅⋅⋅=A 及其每一个非空子集,定义一个唯一确定的“交替和”如下:按照递减的次序重新排列该子集,然后从最大的数开始,交替的减或加后继的数所得
的结果,例如,集合{}10,7,4,2,1的“交替和”是10-7+4-2+1=6,集合{}10,7的“交替和”是10-7=3,集合{}5的“交替和”是5
试求:A 的所有子集的“交替和”的总和
21.(12分)定义在]1,1[- 上的奇函数)(x f 满足1)1(=f ,且当a 、b ]1,1[-∈,0≠+b a 时,有0)()(>++b
a b f a f (Ⅰ)证明:)(x f 是]1,1[-上的增函数 (Ⅱ)证明:当13
1≤≤x 时x x f 3)(≤ (Ⅲ)若12)(2++≤am m x f 对所有的m ,a x 求恒成立]1,1[],1,1[-∈-∈的取值范围。

22.(14分)过年时,祖母给三个孙子压岁钱,总额400元,共有50元,20元,10元三种面额的纸币各若干张,供三个孙子选择,其中一个人拿钱的张数恰好等于另两人拿钱的张数之积,问各有多少种选择面额及张数的方式?。

相关文档
最新文档