与圆有关的最值问题

合集下载

与圆有关的最值问题

与圆有关的最值问题

高中数学:与圆有关的最值问题角度1 借助几何性质求最值的问题已知实数x ,y 满足方程x 2+y 2-4x +1=0,则①y x 的最大值为3 ;②y -x③x 2+y 2的最大值和最小值分别为解析:原方程可化为(x -2)2+y 2=3,表示以(2,0)为圆心,3为半径的圆.①y x 的几何意义是圆上一点与原点连线的斜率,所以设y x =k ,即y =kx .当直线y =kx 与圆相切时(如图),斜率k 取最大值或最小值,此时|2k -0|k 2+1=3,解得k =± 3.所以y x 的最大值为 3.②y -x 可看作是直线y =x +b 在y 轴上的截距.如图所示,当直线y =x +b 与圆相切时,纵截距b 取得最大值或最小值,此时|2-0+b |2=3,解得b =-2±6, 所以y -x 的最大值为-2+6,最小值为-2- 6.③方法一:x 2+y 2表示圆上的一点与原点距离的平方,由平面几何知识知,在原点和圆心连线与圆的两个交点处取得最大值和最小值.又圆心到原点的距离为2.所以x 2+y 2的最大值是(2+3)2=7+43,x 2+y 2的最小值是(2-3)2=7-4 3.方法二:由x 2+y 2-4x +1=0,得(x -2)2+y 2=3.设⎩⎪⎨⎪⎧x =2+3cos θ,y =3sin θ(θ为参数), 则x 2+y 2=(2+3cos θ)2+(3sin θ)2=7+43cos θ.所以当cos θ=-1时,(x 2+y 2)min =7-43,当cos θ=1时,(x 2+y 2)max =7+4 3.角度2 建立函数关系求最值的问题(2019·厦门模拟)设点P (x ,y )是圆:x 2+(y -3)2=1上的动点,定点A (2,0),B (-2,0),则P A →·PB→的最大值为12__. 解析:由题意,知P A →=(2-x ,-y ),PB →=(-2-x ,-y ),所以P A →·PB→=x 2+y 2-4,由于点P (x ,y )是圆上的点,故其坐标满足方程x 2+(y -3)2=1,故x 2=-(y -3)2+1,所以P A →·PB→=-(y -3)2+1+y 2-4=6y -12. 易知2≤y ≤4,所以,当y =4时,P A →·PB →的值最大,最大值为6×4-12=12.求解与圆有关的最值问题的方法(1)借助几何性质求与圆有关的最值问题,根据代数式的几何意义,借助数形结合思想求解.①形如μ=y -b x -a形式的最值问题,可转化为动直线斜率的最值问题或转化为线性规划问题;②形如t =ax +by 形式的最值问题,可转化为动直线截距的最值问题或转化为线性规划问题;③形如(x -a )2+(y -b )2形式的最值问题,可转化为动点到定点的距离的平方的最值问题.(2)建立函数关系式求最值根据题中条件列出相关的函数关系式,再根据函数知识或基本不等式求最值.(1)已知圆C 1:(x -2)2+(y -3)2=1,圆C 2:(x -3)2+(y -4)2=9,M ,N 分别是圆C 1,C 2上的动点,P 为x 轴上的动点,则|PM |+|PN |的最小值为( A )A .52-4 B.17-1 C .6-2 2 D.17解析:圆C 1:(x -2)2+(y -3)2=1的圆心为C 1(2,3),半径r 1=1;圆C 2:(x -3)2+(y -4)2=9的圆心为C 2(3,4),半径r 2=3.设圆心C 1关于x 轴的对称点为A (2,-3),连接AC 2与x 轴交于点P ,则|PC 1|+|PC 2|=|P A |+|PC 2|=(3-2)2+(4+3)2=52,此时x 轴上的动点P 到两圆心的距离之和最小,∴|PM |+|PN |的最小值为|P A |+|PC 2|-r 1-r 2=52-4.(2)设点P (x ,y )是圆:(x -3)2+y 2=4上的动点,定点A (0,2),B (0,-2),则|P A →+PB→|的最大值为10__. 解析:由题意,知P A →=(-x,2-y ),PB →=(-x ,-2-y ),所以P A→+PB →=(-2x ,-2y ),由于点P (x ,y )是圆上的点,故其坐标满足方程(x -3)2+y 2=4, 故y 2=-(x -3)2+4,所以|P A →+P B →|=4x 2+4y 2=26x -5. 易知1≤x ≤5,所以,当x =5时,|P A →+PB →|的值最大,最大值为26×5-5=10.。

与圆有关的最值(范围)问题

与圆有关的最值(范围)问题

xx与圆有关的最值(范围)问题圆是数学中优美的图形,具有丰富的性质.由于其图形的对称性和完美性,很多与圆有关的最值问题都可以运用圆的图形性质,利用数形结合求解.当然,根据《教学要求》的说明,“平面解析几何的重要内容,教学重点是让学生从中感受运用代数方法处理几何问题的思想”,因此在此类问题的求解中,有时也会用到函数思想和基本不等式思想等.本文将就与圆的最值问题有关的题目进行归纳总结,希望能为学生在处理此类问题时提供帮助. 类型一:圆上一点到直线距离的最值问题应转化为圆心到直线的距离加半径,减半径例1 已知P 为直线y=x +1上任一点,Q 为圆C :22(3)1x y -+=上任一点,则PQ 的最小值为 。

【分析】:这是求解“圆上一动点到直线距离”的常见考题,可以通过平面几何的知识得“圆心到直线的距离减半径”即为最短距离,这一结论在解题时可直接应用.解:如图1,圆心C到直线y=x +1的距离d =圆半径1r =,故1PQ PC r ≥-=变题1:已知A (0,1),B (2,3),Q 为圆C 22(3)1x y -+=上任一点,则QABS的最小值为 。

【分析】本题要求QABS的最大值,因为线段AB 为定长,由三角形面积公式可知,只需求“Q 到AB l 的最小值",因此问题转化为“圆上一动点到直线的最小距离”,即例1. 解:如图2,设Q h 为Q 到AB l 的距离,则11)42QABQ Q SAB h =⋅===+图1 图2变题2:由直线y=x +1上一点向圆C :22(3)1x y -+=引切线,则切线长的最小值为 【分析】一般地,当直线和圆相切时,应连接圆心和切点,构造直销三角形进行求解.因为222PA PC r =-,故即求PC 的最小值,即例1.解:如图3,22221PA PC r PC =-=-,∵min PC=∴min PA变题3:已知P 为直线y=x +1上一动点,过P 作圆C :22(3)1x y -+=的切线PA ,PB ,A 、B 为切点,则当PC= 时,APB ∠最大.【分析】APB APC ∠=∠,故即求角APC ∠的最大值,利用其正弦值即可转化为求PC 的最小值,即例1.解:如图4,∵APB APC ∠=∠,1sin APC PC∠=,∵min PC =,∴PC =APC ∠最大,即APB ∠最大.图3 图4变题4:已知P 为直线y=x +1上一动点,过P 作圆C :22(3)1x y -+=的切线PA ,PB,A 、B 为切点,则四边形PACB 面积的最小值为 .【分析】将四边形面积转化为两个全等的三角形的面积,从而转化为PA 的最小值,问题又转化为求切线段的最小值问题.解:如图4,1222PAC PAB PAB S S S S PA AC PA ∆∆∆=+==⨯⋅⋅=四边形PACB ,由变式2可知,min PA =PACB【解题回顾】在上面例1及几个变试题的解题过程中,我们可以总结一句“万变不离其宗”,一般地,求“圆上一动点到直线距离”的常见考题,可以通过平面几何的知识得“圆心到直线的距离减半径”即为最短距离,“圆心到直线的距离加半径”即为最大距离,这一结论在解题时可直接应用.另:和切线段有关的问题常利用“连接圆心和切点,构造直销三角形“进行求解.也即将“ 两个动点的问题转化为一个动点的问题”.如下例.例2已知圆C:222430x y x y ++-+=,从圆C 外一点11(,)P x y 向该圆引一条切线,切点为M ,O 为坐标原点,且有PM=PO ,求使得PM 取得最小值的点P 坐标.【分析】本题中,由于点P 和点M 均在动,故直接做很难求解.联系到PM 是切线段,因此可利用222PM PC r =-将条件PM=PO 转化为只含有一个变量P 的式子即可求解.解:由题意,令(,)P x y ,∵222PM PC =-,∴222PC PO -=,即2222(1)(2)2x y x y ++--=+,化简得:2430x y -+=.∵PM=PO ,∴即求直线2430x y -+=到原点O (0,0)的最小距离.d==PMx类型二:利用圆的参数方程转化为三角函数求最值例3若实数x 、y 满足22240x y x y ++-=,求x-2y 的最大值.【分析】本题是典型的用圆的参数方程解决的题型,利用圆的参数方程将所求式转化为三角函数求最值,利用辅助角公式即得最大值.解:22(1)(2)5x y ++-=,令1()2x R y θθθ⎧=-+⎪∈⎨=+⎪⎩,则255cos()5x y θθθϕ-=-+-=+-(其中cos ϕϕ==) ∴当cos()1θϕ+=时,max (2)550x y -=-=,故x —2y 的最大值为0.【解题回顾】和圆有关的一次式的求解,利用圆的参数方程可以比较方便的求到最值.类型三:抓住所求式的几何意义转化为线性规划问题求最值若所求式子具有较明显的几何意义,值.比如例2,除了用圆的参数方程求解,这类题通常转化为直线方程的纵截距求解. 解法二:令2x y z -=,则1122y x z =-,由题意,当直线的纵截距最小时,z 最大,此时直线和圆相切,故圆心到直线的距离d ==故010z =-或,由题意,max 0z =,即x-2y 的最大值为0.除了转化为直线的截距求解,还有一些式子具有明显的几何意义,比如斜率、两点间距离、点到直线的距离等.比如在上例中,改为求12y x --,22(2)(1)x y -+-,1x y --的取值范围,则可以分别用如下方法求解: 对12y x --,转化为圆上任意一点P 到点(2,1)A 连线斜率的最大值,可设过点(2,1)A 的直线为1(2)y k x -=-,直线和圆相切时,即圆心到直线的距离d ==,可得122k =-或,故1[2,)(,2k ∈+∞⋃-∞-.对22(2)(1)x y -+-,转化为圆上任意一点P 到点(2,1)A 距离的平方的取值范围,由例1易得[PA CA CA ∈+,即222(2)(1)[50PA x y =-+-∈-+对1x y --,联想到点到直线的距离公式中有类似的元素.可将问题转化为圆上任意一点P 到直线10x y --=的距离的问题,易得,圆心到直线的距离为P (x ,y)到直线10x y--=,即1[4x y--∈.【解题回顾】当所求式子含有明显的几何意义时,注意联系线性规划,用线性规划的思路求解可将问题简单化和直观化.类型四:向函数问题转化平面解析几何的重要内容,教学重点是让学生从中感受运用代数方法处理几何问题的思想.有些问题,单纯利用圆的几何性质无法求解.此时应考虑如何利用代数思想将问题转化为函数问题.例4(2010年高考全国卷I理科11)已知圆O:221x y+=,P A、PB为该圆的两条切线,A、B为两切点,则PA PB⋅的最小值为【分析】本题中,由于A、B都是动点,故将PA PB⋅转化为坐标形式较难求解.此时考虑到向量数量积的定义,令2APBα∠=,cos2PA PB PA PBα⋅=,而切线段PA=PB也可用α表示,故所求式可转化为关于α的三角函数求解.解:令2((0,))2APBπαα∠=∈,cos2PA PB PA PBα⋅=,1tanPA PBα==,∴222222cos2cos cos2(1sin)(12sin)tan sin sinPA PBαααααααα⋅--⋅===,令2sin(0)t tα=>,则(1)(12)1233t tPA PB tt t--⋅==+-≥(当且仅当2t=2sin2α=时取等号)【解题回顾】本题以向量定义为载体,巧妙地利用了设角为变量,将与圆有关的问题转化为三角函数的问题求解.将几何问题代数化,利用函数思想求解.同时运用了换元思想,基本不等式思想等解题方法,是一道综合题.类型五:向基本不等式问题转化例5已知圆C:22+24x y+=(),过点(1,0)A-做两条互相垂直的直线12l l、,1l交圆C 与E、F两点,2l交圆C与G、H两点,(1)EF+GH的最大值.(2)求四边形EGFH面积的最大值.【分析】由于EF和GH都是圆的弦长,因此可利用222=+半径半弦长弦心距将EF+GH转化,用基本不等式的相关知识点.解:(1)令圆心C 到弦EF 的距离为1d ,到弦GH 的距离为2d ,则EF +GH =,又222121d d CA +==,2≤==(当且仅当122d d ==取等号)故EF +GH ≤=(2)∵EF GH ⊥,∴22128()12722d d S EF GH -+=⋅=≤⋅=四边形EFGH(当且仅当122d d ==取等号)【解题回顾】本题(1)是利用2a b +≤(2)2a b +.基本不等式是求最值的基本方法.在利用基本不等式求最值时应注意如何构造“定量”.由于圆的对称性,在与圆有关的最值问题中,应把握两个“思想":几何思想和代数思想.所谓几何思想,即利用圆心,将最值问题转化为与圆心有关的问题.所谓代数思想,即利用圆的参数方程.同时,由于最值问题从代数意义上讲和函数的最值联系紧密,因此在解题过程中灵活的应用函数、不等式等代数思想使问题代数化、简单化也是需要注意的.。

与圆有关的最值问题

与圆有关的最值问题
( (0, )) 令 2 2 PA PB PA PB cos 2 PA COS 2 APB 2

O B
2
P
r 2 po r (1 2sin ) po 1 1 2( ) po 2 2 2 设po t (t 1) 则PAPB (t 1)(1 t ) t t 3 2 2 3
C O x
3 5. 易得 PM 的最小值为 10
二、利用所求式的几何意义转化为线 性规划问题求最值
例2:若实数x、y满足 x y 2x 4 y 0 求(1)x-2y的最大值.
2 2
y 1 ( 2) x 2
的取值范围。 2 2 ( x 2) ( y 1) 的取值范围。 ( 3) (4) x y 1 的取值范围。
2 2 ( x 2) ( y 1) (3)
表示为圆上任意一点P到点A(2,1)距离的平方
P
因为 所以
PA [CA 5, CA 5]
. C
A(2,1)
PA2 ( x 2)2 ( y 1)2 [50 10 2,50 10 2]
(4) 因为圆上任一点P(x,y)到直线 x y 1 0 的距离
E M A N G C F H O x
解(1)令圆心C到弦EF的距离为 EF+GH 2( 4 d12 4 d 2 2 )
d1,到弦GH的距离为 d2,则
又 d12 d22 CA2 1
4 d12 4 d22 4 d12 4 d22 2 2
(当且仅当 d1 d 2
2 取等号) 2 故EF+GH 2 8 1 14 2

与圆有关的最值问题

与圆有关的最值问题

与圆有关的最值问题圆是自然界中优美的图形之一,也是数学中的重要研究对象.由于其图形的对称性和完美性,很多与圆有关的最值问题都可以运用圆的图形特点,利用数形结合来求解.当然,我们也会用到函数思想和基本不等式来处理与圆有关的最值问题.在处理与圆有关的最值问题时,应把握两个“思想”:几何思想和代数思想.所谓几何思想,即利用圆心,将最值问题转化为与圆心有关的问题.所谓代数思想,即利用圆的参数方程.【与圆有关的最值类型】①一定点与定圆上动点间距离的最大与最小值.处理方法:利用定点到圆心的距离加(减)圆的半径. ①定直线与定圆上动点间距离的最大与最小值. 处理方法:定点到圆心的距离加(减)圆的半径. ①分别在两定圆上的两动点间距离的最大与最小值. 处理方法:圆心距加(减)两圆的半径.例1.(1)圆x 2+y 2=1上点到直线l :3x +4y -25=0距离的最大和最小值分别是( ).A.6;3.B.6;4.C.5;3.D.5;4.(2)已知点P (a ,b )在圆x 2+y 2-2x +4y -20=0上,则a 2+b 2的最小值是_____. 解:(1)法1.圆心O 到直线的距离为d=25√32+42=5,而圆的半径为1,① 圆x 2+y 2=1上点到直线l :3x +4y -25=0距离的最大和最小值分别是5+1=6和5-1=4.故应选B.法2.设圆x 2+y 2=1上的点P(cos θ,sinθ),点P 到直线l :3x +4y -25=0距离d ′, 则 d ′=|3cosθ+4sinθ−25|5=|sin (θ+φ)−5|,① −1≤sin (θ+φ)≤1,① 圆x 2+y 2=1上点到直线l :3x +4y -25=0距离的最大和最小值分别是6和4.故应选B.(2)法1. ① 圆x 2+y 2-2x +4y -20=0的圆心和半径分别为(1,-2),r=5.而圆心到原点的距离d=√5,① 5−√5≤√a 2+b 2≤5+√5,⇒30−10√5≤a 2+b 2≤30+10√5. 因此,a 2+b 2的最小值是30-10 5.法2. ① 点P (a ,b )在圆x 2+y 2-2x +4y -20=0上,可设P(1+5cos θ,-2+5sin θ), ① a 2+b 2=(1+5cos θ)2+(-2+5sin θ)2=30+10√5sin (θ+φ),① −1≤sin (θ+φ)≤1, ① a 2+b 2的最小值是30-10 5.例2.在圆x 2+y 2=4上且与直线4x+3y -12=0距离最小的点的坐标是( ). A.(85,65). B.( 85,−65). C.( −85,65) D.( −85,−65). 解:法1.过原点且与直线4x+3y -12=0垂直的直线为3x -4y=0, 联立{x 2+y 2=4,3x −4y =0,⇒{x =85y =65或{x =−85y =−65.结合图4.7—1知选A. xyO 4x+3y -12=0CAE FGHxOM N y 图3.7—2法2.由圆的几何性质可知,所求点为与直线4x+3y -12=0平行且与圆x 2+y 2=4相切的切点.设切线方程为4x+3y+c=0,由|c|5=2,⇒c =∓10.结合图3.7—1 知,c=10.联立{4x +3y −10=0,x 2+y 2=4,⇒{x =85y =65, 故应选A. 法3.对于选择题,可结合图形知所求点应在第一象限内,再看选择支,极易确定选A.想一想①:1.圆x 2+y 2=1上与直线4x -3y -12=0距离最短的点坐标是 .2.已知A (0,1),B (2,3).Q 为圆C:(x -3)2+y 2=1上任一点,则S ΔOAB 的最小值为 .3.若实数x 、y 满足x 2+y 2+2x -4y=0,求x -2y 的最大值.例2.(1)已知a 、b 是单位向量且a ①b.若向量c 满足|c -a -b |=1,则|c |的取值范围是 .(2)已知点A(-1,1)和圆C :(x -5)2+(y -7)2=4.一束光线从A 点经过x 轴反射到圆周C 的最短路程是( ).A.10.B.2√6.C.4√6.D.8. 解:(1) ① a 、b 是单位向量且a ①b ,可设a=(1,0),b=(0,1),c=(x ,y),又① |c -a -b |=1,① (x -1)2+(y -1)2=1. ① 原点O 到圆心(1,1)的距离为√2.① |c | =√x 2+y 2∈[√2−1,√2+1].(2)由光学原理知,点A 关于x 轴的对称点A ′(-1,-1)在反射线上,① 光线从A 点经过x 轴反射到圆周C 的最短路程是过A ′且与圆相切的切线段长|A ′T|=√(−1−5)2+(−1−7)2−4= 4√6.应选C.例3.已知圆C :(x+2)2+y 2=4,过点A(-1,0)作两条互相垂直的直线l 1,l 2,l 1交圆C 与E 、F两点,l 2交圆C 与G 、H 两点.(1)EF+GH解:(1)令圆心C 到弦EF 的距离为d 1,到弦GH 则EF +GH =2(√4−d 12+√4−d 22),又d 12+d 22=CA 2=1由:√4−d 12+√4−d 222≤√8−(d 12+d 22)2=√8−12= √142,(当且仅当d 1=d 2= √22取等号).故EF +GH ≤√14. (2)① EF ⊥GH ,① S 四边形EFGH =12EF ×GH =2(√4−d 12√4−d 22 ≤2×8−(d 12+d 22)2=7.(当且仅当d 1=d 2= √22取等号).例4(1)如图3.7—3(1).点A 的坐标为(3,0),点B 为y 轴正半轴上的一点,点C 是第一象限内一点,且AC=2.设tan①BOC=m ,则m 的取值范围是_________.(2)如图3.7—3(2).在边长为1的等边①OAB 中,以边AB 为直径作①D , C 为半圆弧AB 上的一个动点(不与A 、B 两点重合).BC=a ,AC=b ,求a+b 的最大值.(3)如图3.7—3(3).线段AB=4,C 为线段AB 上的一个动点,以AC 、BC 为边作等边①ACD 和等边①BCE ,①O 外接于①CDE ,则①O 半径的最小值为( ). A.4. B. 2√33. C. √33. D.2._ B_y_ COED解:(1)由已知,点C 是第一象限内在圆(x -3)2+y 2=4点,结合图2.8—4(1)知,tan①AOC ∈(0,2√55],∵①AOC 与①BOC 互余,① m ≥√52. (2)① AC 2+BC 2=AB 2,即a 2+b 2=1 由柯西不等式得,(12+12)(a 2+b 2)≥(a+b)2, ① (a+b)≤√2,故 a +b 的最大值为√2.(3)设外接圆的半径为R ,由已知可得∠DOE =600.再由正弦定理知DE=2Rsin600,① R=√33DE .在∆DCE 内由余弦定理可得DE 2=DC 2+CE 2-DC ∙CE =(DC+CE)2-3DC ∙CE =16-3DC ∙CE ≥16-3(DC+CE 2)2=4,即DE ≥2. ① R=√33DE ≥2√33.应选B.想一想①:1.如图3.7—4.①M ,①N 的半径分别为2cm ,4cm ,圆心距MN=10cm .P 为①M 上的任意一点,Q 为①N 上的任意一点,直线PQ 与连心线所夹的锐角度数为α,当P 、Q 在两圆上任意运动时,tan α的最大值为( ).A.√612B.43.C.√33.D.34.2.如图3.7—5.①BAC=600,半径长为1的圆O 与①BAC 的两边相切, P 为圆O 上一动点,以P 为圆心,PA 长为半径的圆P 交射线AB 、AC 于D 、E 两点,连接DE ,则线段DE 长度的最大值为( ). A.3. B.6. C. .3√32.D. 3√3.例5.(1)过点M(−2,,0)的直线l 与曲线y=√4−x 2相交于A ,B 两点,当∆ABO (O 为坐标原点)的面积最大时,直线l 的斜率为 . (2)两个圆C 1:x 2+y 2+2ax+a 2-4=0(a ∈R )与圆C 2:x 2+y 2-2by+b 2-1=0(b ∈R )恰有三条公切线,则a+2b 的取值范围为 . 解:(1) ① 曲线y=√4−x 2的方程可变形为x 2+y 2=4(y ≥0),① 此曲线表示以原点为圆心,2为半径,在x 轴及其上方的半圆,如图3.7—6.① S ∆ABO =12OA ×OB ×sin∠AOB =2sin∠AOB , 当∆ABO 的面积最大时,∠AOB =900,此时∆ABO为等腰直角三角形,① 点O 到直线AB 的距离为√2. 设直线AB 的方程为 y=k(x+2√2),即kx -y+2√2k =0, ①2√2k √1+k 2=√2,解得k=±√33,又由已知k>0,① k= √33.(2) ① 圆C 1的圆心为C 1(-a ,0),半径为2;圆C 2的圆心为C 2(0,b),半径为1.l xy MABO 图3.7—6图3.7—4P QMNA D E BCP. . O图3.7—5由已知两圆外切,① | C 1 C 2|=2+1=3,即a 2+b 2=9.令a+2b=m ,则 √1+4≤3,解得 −3√5≤m ≤3√5,① a+2b 的取值范围为[−3√5,3√5].习题3.71.已知A 、B 两点的坐标分别为(-2,0)、(0,1),①C 的圆心坐标为(0,-1),半径为1,D 是①C 上的一个动点,射线AD 与y 轴交于点E ,则①ABE 面积的最大值是( ).A.3.B. 103. C.103. D.4. 2.圆x 2+y 2-2x -2y+1=0上的点到直线2x y -=距离的最大值是( ).A.2.B.1+√2.C.2+√22. D.1+2√2.3.由直线y=x +1上一点向圆C :(x -3)2+y 2=1引切线,则切线长的最小值为 .4.已知P 为直线y=x +1上一动点,过P 作圆C :(x -3)2+y 2=1的切线PA ,PB(A 、B 为切点),则四边形PACB 面积的最小值为 .5.求过直线2x+y+4=0和圆x 2+y 2+2x -4y+1=0的交点,且满足下列条件之一的圆的方程.①过原点;①有最小面积.6.求圆(x -2)2+(y+3)2=4上的点到直线x -y +2=0最远和最近的距离.7.已知圆M 过两点C(1,-1),D(-1,1),且圆心M 在x+y -2=0上. (1)求圆M 的方程. (2)设P 是直线3x+4y+8=0上的动点,PA ,PB 是圆M 的两条切线,A ,B 为切点.求四边形PAMB 面积的最小值.8.在平面直角坐标系中,M(3,4),P 是以M 为圆心,2为半径的①M 上一动点,A(-1,0)、B(1,0),连接PA 、PB ,求PA 2+PB 2最大值.9.过定点M 的直线l 1:ax+y -1=0与过定点N 的直线l 2:x - ay +2a -1=0交于点P.求|PM|∙|PN|的最大值.【参考答案】想一想①:1. (45,−35). 2.4+√2. 3.10.想一想①:1.D.考虑PQ 为两圆的内公切线时的情形.2.在△ADE 中,由正弦定理得|DE|=2Rsin600,其中R 为△ADE 的外接圆半径.如图2.8—4(3)知,AP 的最大值为|OP|+1=3,① |DE|max =3√3. 故应选D.习题3.71. A.2. B.3. √7.4. √7.5.(1)设圆的方程为x 2+y 2+2x -4y+1+λ(2x +y +4)=0,① 所求圆过原点,得λ=−14. ①x 2+y 2+32x+74y =0为所求.(2)设圆的方程为x 2+y 2+2x -4y+1+λ(2x +y +4)=0,① R 2=D 2+E 2−4F 4=5λ2−16λ+164,① 当 λ=85时R 2最小. ① x 2+y 2+265x −125y +375=0为所求6.7√2−42;7√2+42. 7.(1)设圆M 的方程为:(x -a)2+(y -b)2=r 2(r >0).根据题意得, {(1−a)2+(1+b)2=r 2,(−1−a)2+(1−b)2=r 2,a +b −2=0. 解得a=b=1,r=2.故所求圆M 的方程为(x -1)2+(y -1)2=4.(2)① 四边形PAMB 的面积S=S ①PAM +S ①PBM =|AM|·|PA|+|BM|·|PB|,又|AM|=|BM|=2,|PA|=|PB|,① S=2|PA|,而|PA|=√|PM|2−|AM|2=√|PM|2−4, 即S=2√|PM|2−4.因此要求S 的最小值,只需求|PM|的最小值即可, 即在直线3x+4y+8=0上找一点P,使得|PM|的值最小, ① |PM|min =√32+42=3.因此,四边形PAMB 面积的最小值为S=2√|PM|2−4=2√5.8.设P(3+2cos θ,4+2sin θ),则PA 2+PB 2=60+24cos θ+32sin θ=60+40sin(θ+φ)≤100. ① PA 2+PB 2最大值为100.9. 1. 由已知有,直线l 1过定点M(0,1),直线l 2过定点N(1,2),且|MN|=√2,l 1⊥l 2.由平面几何的知识知,点P 在以MN 为直径的圆上运动.设点P 到MN 的距离为PD ,则有|PM|∙|PN|=|MN||∙|PD| =√2∙|PD|,∴ 当|PD|取最大值√22 时,(|PM|∙|PN|)max =√2∙√22=1.。

高中数学 数形结合_巧解“与圆有关的最值问题” 知识点+例题

高中数学 数形结合_巧解“与圆有关的最值问题” 知识点+例题

数形结合,巧解“与圆有关的最值问题”例1 平面上有两点A (1-,0),B (1,0),P 为圆x y x y 2268210+--+=上的一点,试求S AP BP =+||||22最小值.解析:把已知圆的一般方程化为标准方程得()()x y -+-=34422,设点P 的坐标为(,)x y 00,则2222220000||||(1)(1)S AP BP x y x y =+=+++-+222002(1)2(1)x y OP =++=+ 要使22||||BP AP S +=最小,需||OP 最小,即使圆上的点到原点的距离最小.结合图形,容易知道325||min =-=-=r OC OP ,所以20)13(22min =+=S .点评:设 P (x ,y ),使要求的式子转化为求圆上的点到原点的距离问题,利用数形结合法求最值,实质上是利用初中学过的“连结两点的线段中,直线段最短”这一性质.例2 点A 在圆()()x y -+-=53922上,则点A 到直线3420x y +-=的最短距离为( )A. 9B. 8C. 5D. 2解析:过C 作CD ⊥直线3420x y +-=于D ,交圆C 于A , 则AD CD r =-为所求 .∴AD例3 )0,3(P 在圆0122822=+--+y x y x 内一点.求(1)过P 的圆的最短弦所在直线方程(2)过P 的圆的最长弦所在直线方程解析:圆方程可以化成5)1()4(22=-+-y x ,圆心)1,4(O 1=OP k∴ 短l :)3(--=x y 即 03=-+y x ; 长l :)3(-=x y 即03=--y x . 点评:最长弦当然是直径了,而最短弦是与直径垂直的弦.例4 已知实数x ,y 满足方程22(2)3x y -+=.(1) 求y x的最大值与最小值; (2) 求y x -的最大值与最小值; (3) 求22x y +的最大值和最小值.分析:22(2)3x y -+=为圆的方程,(,)P x y 是圆心为(2,0)点.y x的几何意义是圆上一点与原点连线的斜率,y x -的几何意义是直线y x b =+在轴上的截距,22x y +的几何意义是圆上一点到原点距离的平方.解:(1)设y k x=,即y kx =.当直线y kx =与圆相切时,斜率k 取最大值与最小值,=k =.所以y xk = (2)设y x b -=,当直线y x b -=与圆相切时,纵截距b 取得最大值与最小值,=解得2b =-所以y x -的最大值为2-,最小值2-.(3表示圆上一点到原点距离,由平面几何知识知,其最大值为圆心到原点的距离加上圆的半径,其最小值为圆心到原点的距离减去圆的半径,分别是2与222x y +的最大值和最小值分别为7+7-.例5 过直线1y =上一点P (x ,y )作圆22(1)(1)1x y +++=的切线,求切线长的最小值.解析:如图所示,切线长2221PM PC CM PC =-=-,所以要求PM 的最小值,只需求PC 的最小值.PC 是直线上一点到圆心的距离,由于经直线外一点所引直线的垂线段的长度是该点到直线的距离的最小值,所以当PC 垂直于直线时,min 2PC =,此时,切线长最小,为3.小结与提升:圆的知识在初中与高中都要学习,是一典型的知识交汇点.现在的数学高考非常重视初高中知识的衔接问题,所以同学们在处理与圆有关的小题时,一定要数形结合,多联想一下与之有关的平面几何知识,以免“小题大作”.。

2.5.3 与圆有关的最值问题专项

2.5.3 与圆有关的最值问题专项

m1 13
4
| AC | 5 最短弦长为2 52 ( 5)2 4 5
4.有几何意义的代数式的最值 [例4]已知实数x, y满足y 9 x2 ,则 y 3的取值范围为_(___,_23_]__[_43_,__.)
x 1
解: y 9 x2化为x2 y2 9( y 0),表示圆心为(0,0),半径为3的上半圆周.
(1)求切线长|PA|的最小值.
(1) PA m in
|
PC
|2
m in
2
(2
2)2 2
6.
(2)求四边形PAOB面积的最小值.
(2)S四
2SPAC
2
1 2
PA
2
2 PA 2 3
(3)求两切线的夹角的最大值;
(3)sin APC 2 | PC | 2
2 1 22
APC 30
APB 60
(弦长为2 r2 d 2 )
[例3]已知圆C:(x-1)2+(y-2)2=25,直线l:(2m+1)x+(m+1)y-7m-4=0,求 直线l被圆C截得的弦长最短时m的值及最短弦长.
析 : 直线可化为(x y 4) m(2x y 7) 0 直线过定点A(3,1).
当AC l时,弦长最短, 即( 2m 1) 2 1 1,得m 3 . l : 2x y 5 0
PQOP (x x0 )x0 ( y y0 ) y0 x0x y0 y x02 y02 0, x0 x y0 y r 2. 当P,Q重合时,Q(x0, y0 )亦满足上式. 2. 过圆(x-a)2 + (y-b)2 = r2上一点P(x0, y0)的切线方程为 (x0 a)( x a) ( y0 b)( y b) r 2

有关圆的最值问题几种类型及方法

有关圆的最值问题几种类型及方法

圆的最值问题一圆心到定直线的距离的最值问题例1 设P 是直线043:=-y x l 上的动点,PA,PB 是圆012222=+--+y x y x 的两条切线,C 是圆心,那么四边形PACB 的最小值是_____________.变式:已知)(y x P ,是直线)0(04>=++k y kx 上一动点,PA,PB 是圆:0222=-+y y x 的两条切线,A,B 是切点,若四边形PACB 最小面积是2,则k=_____________。

二圆上动点到定直线的距离的最值问题例2 圆012222=+--+y x y x上的点到直线2=-y x 距离的最大值是_______________。

变式:已知P 是圆122=+y x上的一点,Q 是直线052:=-+y x l 上的一点,求PQ 最小值。

三圆的切线长最值问题例3 从点P(m,3)向圆C:()()12222=+++y x 引切线,则切线长的最小值为_____________。

变式:由直线2+=x y 上的点向圆()()12y 422=++-x 引切线,怎切线的最小值为____________。

四与圆的弦长有关的最值问题例4 在圆06222=--+y x y x 内,过点E(0,1)的最长弦和最短弦分别是AC 和BD ,则四边形ABCD 的面积为_______________。

变式:已知圆O 的方程是01028y 22=+--+y x x,过点M(3,0)的最短弦所在的直线方程是_____。

五圆中“斜率”最值问题例3 在平面直角坐标系xOy 中,圆C 的方程为0158y 22=+-+x x 。

若直线2y -=kx 上至少存在一点,使得以改点为圆心,1为半径的圆与圆有公共点,则k 的最大值是_________________。

变式:如果实数x,y 满足等式(),1222=+-y x 那么13y -+x 的取值范围________________。

与圆有关的最值(取值范围)问题

与圆有关的最值(取值范围)问题

B yC x A OD B O C A 与圆有关的最值(取值范围)问题引例1:在坐标系中,点A 的坐标为(3,0),点B 为y 轴正半轴上的一点,点C 是第一象限内一点,且AC=2.设tan ∠BOC=m ,则m 的取值范围是_________.引例2:如图,在边长为1的等边△OAB 中,以边AB 为直径作⊙D ,以O 为圆心OA 长为半径作⊙O ,C 为半圆弧AB 上的一个动点(不与A 、B 两点重合),射线AC 交⊙O 于点E ,BC=a ,AC=b ,求a b 的最大值.引例3:如图,∠BAC=60°,半径长为1的圆O 与∠BAC 的两边相切,P 为圆O 上一动点,以P 为圆心,PA 长为半径的圆P 交射线AB 、AC 于D 、E 两点,连接DE ,则线段DE 长度的最大值为( ).A .3B .6C .332D .33一、题目分析:此题是一个圆中的动点问题,也是圆中的最值问题,主要考察了圆内的基础知识、基本技能和基本思维方法,注重了初、高中知识的衔接1.引例1:通过隐藏圆(高中轨迹的定义),寻找动点C 与两个定点O 、A 构成夹角的变化规律,转化为特殊位置(相切)进行线段、角度有关计算,同时对三角函数值的变化(增减性)进行了延伸考查,其实质是高中“直线斜率”的直接运用;2.引例2:通过圆的基本性质,寻找动点C 与两个定点A 、B 构成三角形的不变条件,结合不等式的性质进行转化,其实质是高中“柯西不等式”的直接运用;3.引例3:本例动点的个数由引例1、引例2中的一个动点,增加为三个动点,从性质运用、构图形式、动点关联上增加了题目的难度,解答中还是注意动点D 、E 与一个定点A 构成三角形的不变条件(∠DAE=60°),构造弦DE 、直径所在的直角三角形,从而转化为弦DE 与半径AP 之间的数量关系,其实质是高中“正弦定理”的直接运用;综合比较、回顾这三个问题,知识本身的难度并不大,但其难点在于学生不知道转化的套路,只能凭直观感觉去寻找、猜想关键位置来求解,但对其真正的几何原理却无法通透.二、解题策略1.直观感觉,画出图形;2.特殊位置,比较结果;3.理性分析动点过程中所维系的不变条件,通过几何构建,寻找动量与定量(常量)之间的关系,建立等式,进行转化.A M D D O C BA三、中考展望与题型训练例一、斜率运用1.如图,A 点的坐标为(﹣2,1),以A 为圆心的⊙A 切x 轴于点B ,P (m ,n )为⊙A 上的一个动点,请探索n+m 的最大值.例二、圆外一点与圆的最近点、最远点1.如图,在Rt △ABC 中,∠ACB=90°,AC=4,BC=3,点D 是平面内的一个动点,且AD=2,M 为BD 的中点,在D 点运动过程中,线段CM 长度的取值范围是 .2.如图,⊙O 的直径为4,C 为⊙O 上一个定点,∠ABC=30°,动点P 从A 点出发沿半圆弧AB 向B 点运动(点P 与点C 在直径AB 的异侧),当P 点到达B 点时运动停止,在运动过程中,过点C 作CP 的垂线CD 交PB 的延长线于D 点.(1)在点P 的运动过程中,线段CD 长度的取值范围为 ; (2)在点P 的运动过程中,线段AD 长度的最大值为 .例三、正弦定理 1.如图,△ABC 中,∠BAC=60°,∠ABC=45°,AB=22D 是线段BC 上的一个动点,以AD 为直径作⊙O 分别交AB ,AC 于E ,F 两点,连接EF ,则线段EF 长度的最小值为 .2. 如图,定长弦CD 在以AB 为直径的⊙O 上滑动(点C 、D 与点A 、B 不重合),M 是CD 的中点,过点C 作CP ⊥AB 于点P ,若CD=3,AB=8,则PM 长度的最大值是 .O A B C E B AC OD O D CE A B例四、柯西不等式、配方法1.如图,已知半径为2的⊙O 与直线l 相切于点A ,点P 是直径AB 左侧半圆上的动点,过点P 作直线l 的垂线,垂足为C ,PC 与⊙O 交于点D ,连接PA 、PB ,设PC 的长为x (2<x <4),则当x= 时,PD•CD 的值最大,且最大值是为 .2.如图,线段AB=4,C 为线段AB 上的一个动点,以AC 、BC 为边作等边△ACD 和等边△BCE ,⊙O 外接于△CDE ,则⊙O 半径的最小值为( ).23322 D. 23.在平面直角坐标系中,以坐标原点O 为圆心,2为半径画⊙O ,P 是⊙O 上一动点,且P 在第一象限内,过点P 作⊙O 的切线与x 轴相交于点A ,与y 轴相交于点B ,线段AB 长度的最小值是 .例四、相切的应用(有公共点、最大或最小夹角)1.如图,在Rt △ABC 中,∠C=90°,AC=6,BC=8,D 为AB 边上一点,过点D 作CD 的垂线交直线BC 于点E ,则线段CE 长度的最小值是 .2.如图,Rt△ABC 中,∠C=90°,∠A=30°,AB=4,以AC 上的一点O 为圆心OA 为半径作⊙O ,若⊙O 与边BC 始终有交点(包括B 、C 两点),则线段AO 的取值范围是 .3.如图,⊙O的半径为2,点O到直线l的距离为3,点P是直线l上的一个动点,PQ切⊙O于点Q,则PQ的最小值为()A.B.C.3 D.2例五、其他知识的综合运用1.(2015•济南)抛物线y=ax2+bx+4(a≠0)过点A(1,﹣1),B(5,﹣1),与y轴交于点C.(1)求抛物线的函数表达式;(2)如图1,连接CB,以CB为边作▱CBPQ,若点P在直线BC上方的抛物线上,Q为坐标平面内的一点,且▱CBPQ的面积为30,求点P的坐标;(3)如图2,⊙O1过点A、B、C三点,AE为直径,点M为上的一动点(不与点A,E 重合),∠MBN为直角,边BN与ME的延长线交于N,求线段BN长度的最大值.2.(2013秋•相城区校级期末)如图,已知A、B是⊙O与x轴的两个交点,⊙O的半径为1,P是该圆上第一象限内的一个动点,直线PA、PB分别交直线x=2于C、D两点,E为线段CD的中点.(1)判断直线PE与⊙O的位置关系并说明理由;(2)求线段CD长的最小值;(3)若E点的纵坐标为m,则m的范围为.l Q P N M O A D BC E F C AD B Q P O A B D CP 【题型训练】1.如图,已知直线l 与⊙O 相离,OA ⊥l 于点A ,OA=5,OA 与⊙O 相交于点P ,AB 与⊙O 相切于点B ,BP 的延长线交直线l 于点C ,若在⊙O 上存在点Q ,使△QAC 是以AC 为底边的等腰三角形,则⊙O 的半径r 的取值范围为 .2.已知:如图,Rt ΔABC 中,∠B=90º,∠A=30º,BC=6cm ,点O 从A 点出发,沿AB 以每秒3cm 的速度向B 点方向运动,当点O 运动了t 秒(t >0)时,以O 点为圆心的圆与边AC 相切于点D ,与边AB 相交于E 、F 两点,过E 作EG ⊥DE 交射线BC 于G.(1)若点G 在线段BC 上,则t 的取值范围是 ;(2)若点G 在线段BC 的延长线上,则t 的取值范围是 .3.如图,⊙M ,⊙N 的半径分别为2cm ,4cm ,圆心距MN=10cm .P 为⊙M 上的任意一点,Q 为⊙N 上的任意一点,直线PQ 与连心线l 所夹的锐角度数为α,当P 、Q 在两圆上任意运动时,tan α∠的最大值为( ).(A)6; (B)43; (C)3; (D)344.如图,在矩形ABCD 中,AB=3,BC=4,O 为矩形ABCD 的中心,以D 为圆心1为半径作⊙D ,P 为⊙D 上的一个动点,连接AP 、OP ,则△AOP 面积的最大值为( ).(A)4 (B)215 (C)358 (D)1745.如图,在Rt △ABC 中,∠C=90°,AC=8,BC=6,经过点C 且与边AB 相切的动圆与CA 、CB 分别相交于点P 、Q ,则线段PQ 长度的最小值是( ).A .194B .245C .5D .426.如图,在等腰Rt △ABC 中,∠C=90°,AC=BC=4,D 是AB 的中点,点E 在AB 边上运动(点E 不与点A 重合),过A 、D 、E 三点作⊙O ,⊙O 交AC 于另一点F ,在此运动变化的过程中,线段EF 长度的最小值为 .7.如图,A 、B 两点的坐标分别为(2,0)、(0,2),⊙C 的圆心的坐标为(-1,0),半径为1,若D 是⊙C 上的一个动点,线段DA 与y 轴交于点E ,则△ABE 面积的最小值是( ).A .2B .1 C.22- D.22AQC PBO ABxyPO A xyP8.如图,已知A、B两点的坐标分别为(-2,0)、(0,1),⊙C的圆心坐标为(0,-1),半径为1,D是⊙C上的一个动点,射线AD与y轴交于点E,则△ABE面积的最大值是( ).A.3 B.113C.103D.49.如图,等腰Rt△ABC中,∠ACB=90°,AC=BC=4,⊙C的半径为1,点P在斜边AB上,PQ切⊙O于点Q,则切线长PQ长度的最小值为( ).7 B.2210.如图∠BAC=60°,半径长1的⊙O与∠BAC的两边相切,P为⊙O上一动点,以P为圆心,PA长为半径的⊙P交射线AB、AC于D、E两点,连接DE,则线段DE长度的范围为 .11.在直角坐标系中,点A的坐标为(3,0),点P(m n,)是第一象限内一点,且AB=2,则m n-的范围为 .12.在坐标系中,点A的坐标为(3,0),点P是y轴右侧一点,且AP=2,点B上直线y=x+1上一动点,且PB⊥AP于点P,则tan ABP m∠=,则m的取值范围是 .13.在平面直角坐标系中,M(3,4),P是以M为圆心,2为半径的⊙M上一动点,A(-1,0)、B(1,0),连接PA、PB,则PA2+PB2最大值是 .。

圆的最值问题归纳-与圆有关的最值问题

圆的最值问题归纳-与圆有关的最值问题

圆的问题探究高中数学中,研究最多一种曲线是圆。

在研究圆相关问题时,最值问题又是研究的重点和热点,现把常见的与圆相关的最值问题,总结如下。

希望对读者有些启发。

类型一、“圆上一点到直线距离的最值”问题分析:求圆上一点到直线距离的最值问题,总是转化成求圆心到定直线的距离问题来解决。

1、求圆C: (x-2)2+(y+3)2=4上的点到直线l :x-y+2=0的最大、最小距离. 解析:作CH l ⊥交于H ,与圆C 交于A ,反向延长与圆交于点B 。

所以max min 2; 2.222CH BH AH d d d d d ===+==-2、求圆C: (x-1)2+(y+1)2=2上的点与直线l : x-y+4=0距离的最大值和最小值. 解析:方法同第一题, max min BH d d d ==== 3、圆222=+y x 上的点到直0254=+y 的距离的最小值为________________.解析:方法同第一题, min 5d =类型二、“圆上一点到定点距离的最值”问题分析:本质是两点间距离。

涉及与圆相关的两点的距离,总是转化为圆心与定点距离问题来解决。

1.已知点P (x,y )是圆C : x 2+y 2-2x-4y+4=0上一点,求P 到原点的最大最小距离.解析:连接OC 与圆交于A ,延长OC 交于B.max min 1;1.OC OC d d r d d r =+==-=2.已知圆C :04514422=+--+y x y x 及点()3,2-Q ,若M 是圆C 上任一点,求MQ 最大值和最小值. 解析:方法同第一题,max Q min Q C C d d r d d r =+===-==3 .已知x,y 满足条件 x 2+y 2-2x-4y+4=0,求22y x +范围.解析:方程看作是圆C ,表达式几何意义是圆C 上点(,)x y 与(0,0)距离范围,求max min ,d d 即可,与第一题答案相同.4.已知x,y 满足圆C : x 2+y 2-2x-4y+4=0,求22)2()2(+++y x 范围. 解析: 表达式几何意义是圆C 上点(,)x y 与P (-2,-2)距离的最值平方.max min 22maxmin5,6, 4.36,16.[16,36].CP d d dd=====所以范围是5.已知x,y 满足圆C : x 2+y 2-2x-4y+4=0,求z=x 2+y 2+2x+2y 范围.解析: 22(1)(1)2z x y =+++-表达式几何意义是圆C 上点(,)x y 与P (-1,-1)距离的最值的平方减去2.max min 22max min 2121)212[12CP d d z z ====-=+=-=--+所以范围是 6.已知圆()()143:22=-+-y x C ,点A (-1,0),B (1,0),点P 为圆上一动点,求22PB PA d +=的最大值和最小值及对应的P 点坐标. 解析:222222max min 2()2,.2(51)274;2(51)234.[34,74].d PA PB x y d d =+=++=++==-+=几何意义是点P 与原点O 距离的平方2倍加2|OC|=5,所以答案类型三、“过定点的弦长”问题1:已知直线:2830l mx y m ---=和圆22:612200C x y x y +-++=;(1)m R ∈时,证明l 与C 总相交。

圆中最值问题10种求法(供参考)

圆中最值问题10种求法(供参考)

圆中最值的十种求法在圆中求最值是中考的常见题型,也是中考中的热点、难点问题,有的学生对求最值问题感到束手无策,主要原因就是对求最值的方法了解不多,思路不够灵活.现对在圆中求最值的方法,归纳如下:一、利用对称求最值1.如图:⊙O的半径为2,点A、B、C在⊙O上,OA⊥OB,∠AOC=60°,P是OB上一动点,求PA+PC的最小值.[分析]:延长AO交⊙O于D,连接CD交⊙O于P,即此时PA+PC最小,且PA+PC的最小值就等于弦CD的长.解:延长AO交⊙O于D,连接CD交OB于P连接PA,过O作OE⊥CD,垂足为E在△OCD中,因为∠AOC=60°所以∠D=∠C=30°在Rt△ODE中cos30°=即DE=2×cos30°= 所以CD=2DE=2即PA+PC的最小值为2.二、利用垂线段最短求最值2.如图:在直角坐标系中,点A的坐标为(-3, -2),⊙A的半径为1,P为x轴上一动点,PQ切⊙A于点Q,则PQ长度的最小值为.[分析]:连接AQ、PA,可知AQ⊥PQ. 在Rt△PQA中,PQ=,求PQ的最小值转化为求PA的最小值,根据垂线段最短易求PA的最小值为2.解:连接PA、QA因为PQ切⊙A于点Q 所以PQ⊥AQ在Rt△APQ中,PQ2=PA2-AQ2即PQ=又因为A(-3,-2) ,根据垂线段最短。

所以PA的最小值为2所以PQ的最小值=三、利用两点之间线段最短求最值3.如图:圆锥的底面半径为2,母线PB的长为6,D为PB的中点,一只蚂蚁从点A 出发,沿着圆锥的侧面爬行到点D,则蚂蚁爬行的最短路程为( )A.B.2C.3D.3[分析]:因为圆锥的侧面是曲面蚂蚁从A爬行到点D,不好求爬行的最小值,要把立体图形展开为平面图形,再利用两点之间线段最短来解决问题.解:圆锥的侧面展开图如图2,连接AB根据题意得:弧AC的长为2πr=2π·2=4π,PA=6因为4π= 所以n=120°即∠APB=60°又因为PA=PB所以△PAB是等边三角形因为D为PB中点所以AD⊥PB PD=DB=3在Rt△PAD中,AD=,故选C.四、利用直径是圆中最长的弦求最值4.如图:半径为2.5的⊙O中,直径AB的两侧有定点C和动点P,已知BC:CA=4:3,点P在劣弧AB上运动,过点C作CP的垂线,与PB的延长线交于点Q,(1)求∠P的正切值;(2)当CP⊥AB时,求CD和CQ的长;当点P运动到什么位置时,CQ取得最大值,并求出此时CQ的长.[分析]:易证明△ACB∽△PCQ,所以,即CQ=PC. 当PC最大时,CQ最大,而PC是⊙O 的动弦,当PC是⊙O的直径时最大.五、利用弧的中点到弦的距离最大求最值5.如图:已知⊙O的半径为2,弦BC的长为2,点A为弦BC所对优弧上任意一点,(B、C两点除外),求△ABC面积的最大值.[分析]:设BC边上的高为h因为S△ABC=BC h=×2h=h当h最大时S△ABC最大,当点A在优弧的中点时h最大.解:当点A为优弧的中点时,作AD⊥BC于D连接BO 即BD=CD=在Rt△BDO中,OD2=OB2-BD2=22-()2=1所以OD=1 所以AD=2+1=3所以S△ABC=×BC·AD=×2×3=3即△ABC面积的最大值为3六、利用周长一定时,圆的面积最大求最值6.用48米长的篱笆材料,在空地上围成一个绿化场地,现有两种方案:一种是围成正方形的场地,另一种是围成圆形场地,试问选用哪一种方案,围成的场地面积较大?并说明理由.[分析]:周长一定的几何图形,圆的面积最大.解:围成圆形场地的面积较大设S1、S2分别表示围成的正方形场地、圆形场地的面积则S1=()2=144 S2=π·()2=因为π<4 所以>所以>=144 所以S2>S1 所以应选用围成圆形场地的方案面积较大七、利用判别式求最值7.如图:在半径为1的⊙O中,AB是弦,OM⊥AB,垂足为M,求OM+AB的最大值.[分析]:可设AM=x,把OM用x的代数式表示出来,构造关于x的一元二次方程,然后利用判别式来求最值.解:设AM=x,在Rt△OAM中OM=所以OM+AB=+2x=a整理得:5x2-4ax+(a2-1)=0因为△=(-4a)2-4×5×(a2-1)≥0即a2≤5 所以a≤所以OM+AB的最大值为八、利用一条弧所对的圆周角大于圆外角求最值8.如图:海边立有两座灯塔A、B,暗礁分布在经过A、B两点的弓形(弓形的弧是⊙O的一部分)区域内,∠AOB=80°,为避免触礁,轮船P与A、B的张角∠APB的最大值为.[分析]:连接AC,易知∠ACB=∠AOB=40°,又因为∠ACB≥∠P,所以∠P的最大值为40°.解:如图:连接AC,根据圆周角定理可知∠ACB=∠AOB=×80°=40°又因为∠ACB≥∠P 即∠APB≤40°所以∠APB的最大值为40°九、利用经过⊙O内一定点P的所有弦中,与OP垂直的弦最短来求最值9.如图:⊙O的半径为5cm,点P为⊙O内一点,且OP=3cm,则过点P的弦AB长度的最小值为cm.[分析]:过P作AB⊥OP,交⊙O于A、B,则AB的长最小.解:在Rt△OAP中,AP=所以AB=2AP=2×4=8所以AB的最小值为8十、利用经过圆外一点与圆心的直线与⊙O的两个交点与点P的距离最大或最小求最值10.如图:点P为⊙O外一点,PQ切⊙O于点Q,⊙O的半径为3cm,切线PQ的长为4cm,则点P与⊙O上各点的连线长度的最大值为,最小值为.[分析]:过P、O两点作直线交⊙O于A、B,则PA的长度最大,PB的长度最小.解:连接OQ 因为PQ切⊙O于Q所以OQ⊥PQ在Rt△PQO中PQ2+OQ2=OP2即42+32=OP2 所以OP=5所以PB=5-3=2 PA=6+2=8所以点P与⊙O上各点连线长度的最大为8cm,最小值为2cm.。

直线与圆:与圆有关的最值问题

直线与圆:与圆有关的最值问题

与圆有关的最值问题在某些题目中,已知所求代数式的结构特征具有明显的几何意义,可以和直线方程、圆的方程相联系,我们可以利用直线与圆的方程及解析几何的有关知识并结合图形的直观性来分析解决问题.一、定点到圆上动点距离例1(1)已知x,y∈R,且圆C:(x-1)2+(y+2)2=4,求(x+2)2+(y-2)2的最大值与最小值.解因为(x-1)2+(y+2)2=4表示以C(1,-2)为圆心,半径r=2的圆,所以(x+2)2+(y-2)2表示圆上的动点M(x,y)与定点A(-2,2)的距离(如图).连接AC,直线AC与圆C交于A1,A2.则当M位于A2位置时,(x+2)2+(y-2)2取得最大值,为|AC|+r=(1+2)2+(-2-2)2+2=7.当M位于A1位置时,(x+2)2+(y-2)2取得最小值,为|AC|-r=(1+2)2+(-2-2)2-2=3.即(x+2)2+(y-2)2的最大值为49,最小值为9.(2) 已知圆C:(x-3)2+(y-4)2=1,点A(0,-1),B(0,1),设P是圆C上的动点,令d=|P A|2+|PB|2,求d的最大值及最小值.解设P(x,y),则d=|P A|2+|PB|2=2(x2+y2)+2.∵|CO|2=32+42=25,∴(5-1)2≤x2+y2≤(5+1)2.即16≤x2+y2≤36.∴d的最小值为2×16+2=34.最大值为2×36+2=74.反思感悟(1)形如(x-a)2+(y-b)2形式的最值问题,可转化为动点(x,y)到定点(a,b)的距离的平方的最值问题.(2)定点到圆上动点距离的最值可以先计算定点到圆心的距离,然后利用数形结合确定距离的最值.二、可转化为点到直线的距离问题例2 (1)已知x ,y 满足x +2y -5=0,则(x -1)2+(y -1)2的最小值为________.答案 45 解析 (x -1)2+(y -1)2表示点P (x ,y )到点Q (1,1)的距离的平方.由已知可得点P 在直线l :x +2y -5=0上,所以|PQ |的最小值为点Q 到直线l 的距离,即d =|1+2×1-5|1+22=255,所以(x -1)2+(y -1)2的最小值为d 2=45. (2)已知点P (x ,y )是圆(x +2)2+y 2=1上任意一点,求点P 到直线3x +4y +12=0的距离的最大值和最小值.解 圆心C (-2,0)到直线3x +4y +12=0的距离d =|-6+0+12|9+16=65,大于半径r =1, 故P 点到直线3x +4y +12=0的距离的最大值为d +r =115,最小值为d -r =15. 反思感悟 圆上动点到定直线距离的最值可以先计算圆心到直线的距离,然后利用数形结合确定距离的最值.三、与斜率、截距有关的最值问题例3 已知圆C :(x +2)2+y 2=1,P (x ,y )为圆C 上任一点.(1)求y -2x -1的最大值与最小值; (2)求x -2y 的最大值与最小值.解 (1)显然y -2x -1可以看作是点P (x ,y )与点Q (1,2)连线的斜率,令y -2x -1=k ,如图所示,则其最大、最小值分别是过点Q (1,2)的圆C 的两条切线的斜率.对上式整理得kx -y -k +2=0,∴|-2k +2-k |1+k 2=1, ∴k =3±34. 故y -2x -1的最大值是3+34,最小值是3-34. (2)令u =x -2y ,则u =x -2y 可视为一组平行线,当直线和圆C 有公共点时,u 的范围即可确定,且最值在直线与圆相切时取得.依题意,得|-2-u |5=1,解得u =-2±5, 故x -2y 的最大值是-2+5,最小值是-2- 5.反思感悟 (1)形如u =y -b x -a形式的最值问题,可转化为过点(x ,y )和(a ,b )的动直线斜率的最值问题.(2)形如l =ax +by 形式的最值问题,可转化为动直线y =-a b x +l b 的截距的最值问题.。

与圆有关的最值问题

与圆有关的最值问题

1 AC BD 1 2 3 1 2 3 30
2
2
2
2. 【湖北省黄石市 2017 届高三年级九月份调研,10】圆 x2 y2 2ax a2 4 0 和圆
x2

y2
4by 1 4b2

0
恰有三条公切线,若
a

R,
b

R
,且
ab

0
,则
1 a2

1 b2

1 [5 9
a2 b2

4b2 a2
]

1 [5 2 9
a2 b2

4b2 a2
]1
,当且仅当
a2 b2
=
4b2 a2
时取等
号,所以最小值为 1.[来源:Z#xx#]
考点:两圆位置关系,基本不等式求最值
【易错点睛】在利用基本不等式求最值时,要特别注意“拆、拼、凑”等技巧,使其满足基本不等式中“正
2.2 建立函数关系求最值 根据题目条件列出关于所求目标函数的关系式,然后根据关系的特点选用参数法、配方法、判别式法等
进行求解.
例 7 设 P, Q 分 别 为 x2 y 62 2 和 椭 圆 x2 y2 1 上 的 点 , 则 P, Q 两 点 间 的 最 大 距 离 是
10
一、与圆相关的最值问题的联系点
k
O

1.1 与直线的倾斜角或斜率的最值问题
利用公式 k = tan ( ≠90°)将直线的斜率与倾斜角紧密联系到一起,通过正切函数的图象可以解决已知
斜率的范围探求倾斜角的最值,或者已经倾斜角的范围探求斜率的最值.
处理方法:利用在正切函数

圆的最值问题归纳-与圆有关的最值问题

圆的最值问题归纳-与圆有关的最值问题

圆的问题探究安阳市龙安高级中学 段可贺高中数学中,研究最多的一种曲线是圆。

在研究圆的相关问题时,最值问题又是研究的重点和热点,现把常见的与圆相关的最值问题,总结如下。

希望对读者有些启发。

类型一、“圆上一点到直线距离的最值”问题分析:求圆上一点到直线距离的最值问题,总是转化成求圆心到定直线的距离问题来解决。

1、求圆C: (x-2)2+(y+3)2=4上的点到直线l :x-y+2=0的最大、最小距离. 解析:作CH l ⊥交于H ,与圆C 交于A ,反向延长与圆交于点B 。

所以max min 2; 2.CH BH AH d d d d d =====-2、求圆C: (x-1)2+(y+1)2=2上的点与直线l : x-y+4=0距离的最大值和最小值. 解析:方法同第一题, max min BH d d d ===== 3、圆222=+y x 上的点到直线l :02543=++y x 的距离的最小值为________________.解析:方法同第一题, min 5d =类型二、“圆上一点到定点距离的最值”问题分析:本质是两点间距离。

涉及与圆相关的两点的距离,总是转化为圆心与定点距离问题来解决。

1.已知点P (x,y )是圆C : x 2+y 2-2x-4y+4=0上一点,求P 到原点的最大最小距离.解析:连接OC 与圆交于A ,延长OC 交于B.max min 1;1.OC OC d d r d d r =+==-=2.已知圆C :04514422=+--+y x y x 及点()3,2-Q ,若M 是圆C 上任一点,求MQ 最大值和最小值. 解析:方法同第一题,max Q min Q C C d d r d d r =+===-==3 .已知x,y 满足条件 x 2+y 2-2x-4y+4=0,求22y x +范围.解析:方程看作是圆C ,表达式几何意义是圆C 上点(,)x y 与(0,0)距离的范围,求max min ,d d 即可,与第一题答案相同.4.已知x,y 满足圆C : x 2+y 2-2x-4y+4=0,求22)2()2(+++y x 范围. 解析: 表达式几何意义是圆C 上点(,)x y 与P (-2,-2)距离的最值的平方.max min 22maxmin5,6, 4.36,16.[16,36].CP d d dd=====所以范围是5.已知x,y 满足圆C : x 2+y 2-2x-4y+4=0,求z=x 2+y 2+2x+2y 范围.解析: 22(1)(1)2z x y =+++-表达式几何意义是圆C 上点(,)x y 与P (-1,-1)距离的最值的平方减去2.max min 22max min 2121)212[12CP d d z z ====-=+=-=--+所以范围是 6.已知圆()()143:22=-+-y x C ,点A (-1,0),B (1,0),点P 为圆上一动点,求22PB PA d +=的最大值和最小值及对应的P 点坐标. 解析:222222max min 2()2,.2(51)274;2(51)234.[34,74].d PA PB x y d d =+=++=++==-+=几何意义是点P 与原点O 距离的平方2倍加2|OC|=5,所以答案类型三、“过定点的弦长”问题1:已知直线:2830l mx y m ---=和圆22:612200C x y x y +-++=;(1)m R ∈时,证明l 与C 总相交。

与圆有关的最值问题-高三数学备考练习

与圆有关的最值问题-高三数学备考练习

与圆有关的最值问题-高三数学备考练习近几年高考试题分析发现,与圆有关的最值问题是高考热点问题之一。

这类问题既能与平面几何相联系,又能与圆锥曲线相结合,命题方式比较灵活。

解决这类问题的主要思路是利用圆的几何性质将问题转化。

常见类型包括与圆有关的长度或距离的最值问题和与圆上点(x,y)有关代数式的最值问题。

对于长度或距离的最值问题,一般根据长度或距离的几何意义,利用圆的几何性质数形结合求解。

对于与圆上点(x,y)有关代数式的最值问题,常见类型包括形如u=x-a型、t=ax+by型和(x-a)2+(y-b)2型。

这些问题可以转化为斜率的最值问题、动直线的截距的最值问题和动点到定点(a,b)的距离平方的最值问题。

与圆有关的最值问题主要表现在求几何图形的长度、面积的最值,求点到直线的距离的最值,求相关参数的最值等方面。

知识拓展包括圆外一点P到圆C上点的距离距离的最大值等于,最小值等于PC-r,圆C上的动点P到直线l距离的最大值等于点C到直线l距离的最大值加上半径,最小值等于点C到直线l距离的最小值减去半径,以及圆C内一点M的弦长的最大值为直径,最小的弦长为圆心角对应的弧长。

解决与圆相关的最值问题的主要思路是利用圆的几何性质将问题转化。

例如,与直线的倾斜角或斜率的最值问题可以利用公式k=tan(≠90°)将直线的斜率与倾斜角紧密联系到一起,通过正切函数的图象可以解决已知斜率的范围探求倾斜角的最值,或者已经倾斜角的范围探求斜率的最值。

处理方法包括分别讨论斜率的范围和倾斜角的范围。

例6】已知实数x,y满足方程$x^2+y^2-4x+1=0$,求:1) $x$ 的最大值和最小值;2) $y-x$ 的最大值和最小值。

解析】1) 将方程化为标准形式:$(x-2)^2+y^2=3$,得到一个以点 $(2,0)$ 为圆心,半径为 $\sqrt{3}$ 的圆。

由于 $x$ 的取值范围为 $[2-\sqrt{3},2+\sqrt{3}]$,所以$x$ 的最大值为 $2+\sqrt{3}$,最小值为 $2-\sqrt{3}$。

压轴题:与圆有关的最值(取值范围)问题

压轴题:与圆有关的最值(取值范围)问题

B yC x A OD B OC A压轴题:与圆有关的最值(取值范围)问题(含答案)年级 初三 辅导科目 数学页数6学员姓名学情分析成绩基础不错,巩固提高教学目标1、对圆学得较好的学生巩固提高。

2、以专题形式系统讲解圆部分知。

教学内容例题讲解引例1:在坐标系中,点A 的坐标为(3,0),点B 为y 轴正半轴上的一点,点C 是第一象限内一点,且AC=2.设tan∠BOC=m ,则m 的取值范围是_________.引例2:如图,在边长为1的等边△OAB 中,以边AB 为直径作⊙D ,以O 为圆心OA 长为半径作⊙O ,C 为半圆弧AB 上的一个动点(不与A 、B 两点重合),射线AC 交⊙O 于点E ,BC=a ,AC=b ,求a b 的最大值.引例3:如图,∠BAC=60°,半径长为1的圆O 与∠BAC 的两边相切,P 为圆O 上一动点,以P 为圆心,PA 长为半径的圆P 交射线AB 、AC 于D 、E 两点,连接DE ,则线段DE 长度的最大值为( ).A .3B .6C .332D .33一、题目分析:此题是一个圆中的动点问题,也是圆中的最值问题,主要考察了圆内的基础知识、基本技能和基本思维方法,注重了初、高中知识的衔接1.引例1:通过隐藏圆(高中轨迹的定义),寻找动点C 与两个定点O 、A 构成夹角的变化规律,转化为特殊位置(相切)进行线段、角度有关计算,同时对三角函数值的变化(增减性)进行了延伸考查,其实质是高中“直线斜率”的直接运用;2.引例2:通过圆的基本性质,寻找动点C 与两个定点A 、B 构成三角形的不变条件,结合不等式的性质进行转化,其实质是高中“柯西不等式”的直接运用;3.引例3:本例动点的个数由引例1、引例2中的一个动点,增加为三个动点,从性质运用、构图形式、动点关联上增加了题目的难度,解答中还是注意动点D 、E 与一个定点A 构成三角形的不变条件(∠DAE=60°),构造弦DE 、直径所在的直角三角形,从而转化为弦DE 与半径AP 之间的数量关系,其实质是高中“正弦定理”的直接运用;综合比较、回顾这三个问题,知识本身的难度并不大,但其难点在于学生不知道转化的套路,只能凭直观感觉去寻找、猜想关键位置来求解,但对其真正的几何原理却无法通透.二、解题策略1.直观感觉,画出图形; 2.特殊位置,比较结果;3.理性分析动点过程中所维系的不变条件,通过几何构建,寻找动量与定量(常量)之间的关系,建立等式,进行转化.B AC MD DO P CB A 三、中考展望与题型训练 例一、斜率运用1.如图,A 点的坐标为(﹣2,1),以A 为圆心的⊙A 切x 轴于点B ,P (m ,n )为⊙A 上的一个动点,请探索n+m 的最大值.例二、圆外一点与圆的最近点、最远点1.如图,在Rt △ABC 中,∠ACB=90°,AC=4,BC=3,点D 是平面内的一个动点,且AD=2,M 为BD 的中点,在D 点运动过程中,线段CM 长度的取值范围是 .2.如图,⊙O 的直径为4,C 为⊙O 上一个定点,∠ABC=30°,动点P 从A 点出发沿半圆弧AB 向B 点运动(点P 与点C 在直径AB 的异侧),当P 点到达B 点时运动停止,在运动过程中,过点C 作CP 的垂线CD 交PB 的延长线于D 点.(1)在点P 的运动过程中,线段CD 长度的取值范围为 ; (2)在点P 的运动过程中,线段AD 长度的最大值为 .例三、正弦定理 1.如图,△ABC 中,∠BAC=60°,∠ABC=45°,AB=22,D 是线段BC 上的一个动点,以AD 为直径作⊙O 分别交AB ,AC 于E ,F 两点,连接EF ,则线段EF 长度的最小值为 .2. 如图,定长弦CD 在以AB 为直径的⊙O 上滑动(点C 、D 与点A 、B 不重合),M 是CD 的中点,过点C 作CP ⊥AB 于点P ,若CD=3,AB=8,则PM 长度的最大值是 .例四、柯西不等式、配方法O A B CE B AC OD O D C EA B1.如图,已知半径为2的⊙O 与直线l 相切于点A ,点P 是直径AB 左侧半圆上的动点,过点P 作直线l 的垂线,垂足为C ,PC 与⊙O 交于点D ,连接PA 、PB ,设PC 的长为x (2<x <4),则当x= 时,PD•CD 的值最大,且最大值是为 .2.如图,线段AB=4,C 为线段AB 上的一个动点,以AC 、BC 为边作等边△ACD 和等边△BCE ,⊙O 外接于△CDE ,则⊙O 半径的最小值为( ). A.4 B.233 C.322D. 23.在平面直角坐标系中,以坐标原点O 为圆心,2为半径画⊙O ,P 是⊙O 上一动点,且P 在第一象限内,过点P 作⊙O 的切线与x 轴相交于点A ,与y 轴相交于点B ,线段AB 长度的最小值是 .例四、相切的应用(有公共点、最大或最小夹角)1.如图,在Rt △ABC 中,∠C=90°,AC=6,BC=8,D 为AB 边上一点,过点D 作CD 的垂线交直线BC 于点E ,则线段CE 长度的最小值是 .2.如图,Rt△ABC 中,∠C=90°,∠A=30°,AB=4,以AC 上的一点O 为圆心OA 为半径作⊙O ,若⊙O 与边BC 始终有交点(包括B 、C 两点),则线段AO 的取值范围是 .3.如图,⊙O 的半径为2,点O 到直线l 的距离为3,点P 是直线l 上的一个动点,PQ 切⊙O 于点Q ,则PQ 的最小值为()A.B.C.3 D.2例五、其他知识的综合运用1.(2015•济南)抛物线y=ax2+bx+4(a≠0)过点A(1,﹣1),B(5,﹣1),与y轴交于点C.(1)求抛物线的函数表达式;(2)如图1,连接CB,以CB为边作▱CBPQ,若点P在直线BC上方的抛物线上,Q为坐标平面内的一点,且▱CBPQ 的面积为30,求点P的坐标;(3)如图2,⊙O1过点A、B、C三点,AE为直径,点M为上的一动点(不与点A,E重合),∠MBN为直角,边BN与ME的延长线交于N,求线段BN长度的最大值.2.(2013秋•相城区校级期末)如图,已知A、B是⊙O与x轴的两个交点,⊙O的半径为1,P是该圆上第一象限内的一个动点,直线PA、PB分别交直线x=2于C、D两点,E为线段CD的中点.(1)判断直线PE与⊙O的位置关系并说明理由;(2)求线段CD长的最小值;(3)若E点的纵坐标为m,则m的范围为.【题型训练】1.如图,已知直线l与⊙O相离,OA⊥l于点A,OA=5,OA与⊙O相交于点P,AB与⊙O相切于点B,BP的延长线交直线l于点C,若在⊙O上存在点Q,使△QAC是以AC为底边的等腰三角形,则⊙O的半径r的取值范围为 .2.已知:如图,RtΔABC中,∠B=90º,∠A=30º,BC=6cm,点O从A点出发,沿AB以每秒3cm的速度向B点方向l Q P NM O A D BC E F C AD B Q PO A B DCP 运动,当点O 运动了t 秒(t >0)时,以O 点为圆心的圆与边AC 相切于点D ,与边AB 相交于E 、F 两点,过E 作EG ⊥DE 交射线BC 于G.(1)若点G 在线段BC 上,则t 的取值范围是 ;(2)若点G 在线段BC 的延长线上,则t 的取值范围是 .3.如图,⊙M ,⊙N 的半径分别为2cm ,4cm ,圆心距MN=10cm .P 为⊙M 上的任意一点,Q 为⊙N 上的任意一点,直线PQ 与连心线l 所夹的锐角度数为α,当P 、Q 在两圆上任意运动时,tan α∠的最大值为( ).(A)612; (B)43; (C)33; (D)344.如图,在矩形ABCD 中,AB=3,BC=4,O 为矩形ABCD 的中心,以D 为圆心1为半径作⊙D ,P 为⊙D 上的一个动点,连接AP 、OP ,则△AOP 面积的最大值为( ).(A)4 (B)215 (C)358 (D)1745.如图,在Rt △ABC 中,∠C=90°,AC=8,BC=6,经过点C 且与边AB 相切的动圆与CA 、CB 分别相交于点P 、Q ,则线段PQ 长度的最小值是( ).A .194B .245C .5D .426.如图,在等腰Rt △ABC 中,∠C=90°,AC=BC=4,D 是AB 的中点,点E 在AB 边上运动(点E 不与点A 重合),过A 、D 、E 三点作⊙O ,⊙O 交AC 于另一点F ,在此运动变化的过程中,线段EF 长度的最小值为 .7.如图,A 、B 两点的坐标分别为(2,0)、(0,2),⊙C 的圆心的坐标为(-1,0),半径为1,若D 是⊙C 上的一个动点,线段DA 与y 轴交于点E ,则△ABE 面积的最小值是( ). A .2 B .1 C.222-D.22-8.如图,已知A 、B 两点的坐标分别为(-2,0)、(0,1),⊙C 的圆心坐标为(0,-1),半径为1,D 是⊙C 上的一个动点,射线AD 与y 轴交于点E ,则△ABE 面积的最大值是( ).A .3B .113C .103 D .49.如图,等腰Rt △ABC 中,∠ACB=90°,AC=BC=4,⊙C 的半径为1,点P 在斜边AB 上,PQ 切⊙O 于点Q ,则切线长PQ 长度的最小值为( ).A.7B.22C. 3D.410.如图∠BAC =60°,半径长1的⊙O 与∠BAC 的两边相切,P 为⊙O 上一动点,以P 为圆心,PA 长为半径的⊙P 交射线AB 、AC 于D 、E 两点,连接DE ,则线段DE 长度的范围为 .A Q C P BO A B x yPO A x yP11.在直角坐标系中,点A 的坐标为(3,0),点P (m n ,)是第一象限内一点,且AB=2,则m n -的范围为 . 12.在坐标系中,点A 的坐标为(3,0),点P 是y 轴右侧一点,且AP=2,点B 上直线y=x+1上一动点,且PB ⊥AP 于点P ,则tan ABP m ∠=,则m 的取值范围是 .13.在平面直角坐标系中,M (3,4),P 是以M 为圆心,2为半径的⊙M 上一动点,A (-1,0)、B (1,0),连接PA 、PB ,则PA 2+PB 2最大值是 . 点评点评:与圆有关的最值问题,看着无从下手,但只要仔细观察,分析图形,寻找动点与定点之间不变的维系条件,构建关系,将研究的问题转化为变量与常量之间的关系,就能找到解决问题的突破口!几何中的定值问题,是指变动的图形中某些几何元素的几何量保持不变,或几何元素间的某些几何性质或位置关系不变的一类问题,解几何定值问题的基本方法是:分清问题的定量及变量,运用特殊位置、极端位置,直接计算等方法,先探求出定值,再给出证明. 几何中的最值问题是指在一定的条件下,求平面几何图形中某个确定的量(如线段长度、角度大小、图形面积)等的最大值或最小值,求几何最值问题的基本方法有:1.特殊位置与极端位置法;2.几何定理(公理)法;3.数形结合法等.注:几何中的定值与最值近年广泛出现于中考试题中,由冷点变为热点.这是由于这类问题具有很强的探索性(目标不明确),解题时需要运用动态思维、数形结合、特殊与一般相结合、逻辑推理与合情想象相结合等思想方法. 答案参考答案:引例1. 解:C 在以A 为圆心,以2为半径作圆周上,只有当OC 与圆A 相切(即到C 点)时,∠BOC 最小,AC=2,OA=3,由勾股定理得:OC=,∵∠BOA=∠ACO=90°, ∴∠BOC+∠AOC=90°,∠CAO+∠AOC=90°,∴∠BOC=∠OAC ,tan ∠BOC=tan ∠OAC==,随着C 的移动,∠BOC 越来越大,∵C 在第一象限,∴C 不到x 轴点,即∠BOC <90°, ∴tan ∠BOC≥,故答案为:m≥.引例1图引例2图引例2.2a b +≤;原题:(2013•武汉模拟)如图,在边长为1的等边△OAB 中,以边AB 为直径作⊙D ,以O 为圆心OA 长为半径作圆O ,C 为半圆AB 上不与A 、B 重合的一动点,射线AC 交⊙O 于点E ,BC=a ,AC=b . (1)求证:AE=b+a ; (2)求a+b 的最大值;(3)若m 是关于x 的方程:x 2+ax=b 2+ab 的一个根,求m 的取值范围.【考点】圆的综合题. 【分析】(1)首先连接BE ,由△OAB 为等边三角形,可得∠AOB=60°,又由圆周角定理,可求得∠E 的度数,又由AB 为⊙D 的直径,可求得CE 的长,继而求得AE=b+a ;(2)首先过点C 作CH ⊥AB 于H ,在Rt △ABC 中,BC=a ,AC=b ,AB=1,可得(a+b ) 2= a 2+b 2+2ab=1+2ab =1+2CH•AB=1+2CH≤1+2AD=1+AB=2,即可求得答案; (3)由x 2+ax=b 2+ab ,可得(x ﹣b )(x+b+a )=0,则可求得x 的值,继而可求得m 的取值范围. 【解答】解:(1)连接BE ,∵△OAB 为等边三角形,∴∠AOB=60°,∴∠AEB=30°, ∵AB 为直径,∴∠ACB=∠BCE=90°,∵BC=a ,∴BE=2a ,CE=a ,∵AC=b ,∴AE=b+a ; (2)过点C 作CH ⊥AB 于H ,在Rt △ABC 中,BC=a ,AC=b ,AB=1,∴a 2+b 2=1, ∵S △ABC =A C•BC=AB•CH ,∴AC•BC=AB•CH ,∴(a+b ) 2=a 2+b 2+2ab=1+2ab=1+2CH•AB=1+2CH≤1+2AD=1+AB=2,∴a+b≤,故a+b 的最大值为,(3)∵x 2+ax=b 2+ab ,∴x 2﹣b 2+ax ﹣ab=0,∴(x+b )(x ﹣b )+a (x ﹣b )=0,∴(x﹣b)(x+b+a)=0,∴x=b或x=﹣(b+a),当m=b时,m=b=AC<AB=1,∴0<m<1,当m=﹣(b+a)时,由(1)知AE=﹣m,又∵AB<AE≤2AO=2,∴1<﹣m≤2,∴﹣2≤m<﹣1,∴m的取值范围为0<m<1或﹣2≤m<﹣1.【点评】此题考查了圆周角定理、等边三角形的性质、完全平方公式的应用以及一元二次方程的解法.此题难度较大,注意掌握数形结合思想与分类讨论思想的应用.引例3.解:连接EP,DP,过P点作PM垂直DE于点M,过O做OF⊥AC与F,连接AO,如图,∵∠BAC=60°,∴∠DPE=120°.∵PE=PD,PM⊥DE,∴∠EPM=60°,∴ED=2EM=2EP•sin60°=EP=PA.当P与A、O共线时,且在O点右侧时,⊙P直径最大.∵⊙O与∠BAC两边均相切,且∠BAC=60°,∴∠OAF=30°,OF=1,∴AO==2,AP=2+1=3,∴DE=PA=3.故答案为:D。

与圆有关的最值问题

与圆有关的最值问题

建议5min1.如图,Rt△ABC中,∠C=90°,∠ABC=30°,AB=6,点D在AB边上,点E是BC边上一点(不与点B、C重合),且DA=DE,则AD的取值范围是。

2.如图,在边长为23的等边△ABC中,动点D、E分别在BC、AC 边上,且保持AE=CD,连接BE、AD,相交于点P,则CP的最小值为____.圆的基本性质定理(公式)内容垂径定理1.垂径定理的逆定理1:平分弦()的直径垂直于弦,并且平分2.垂径定理的逆定理2:平分弧的直径3.垂径定理:垂直于弦的直径,并且平分圆心角定理1.圆心角定理:在同圆或等圆中,相等的圆心角所对的,所对的2.圆心角定理的逆定理:在同圆或等圆中,如果两个圆心角、两条弧、两条弦、两个弦心距中有一对量相等,那么都相等。

圆周角定理1.圆周角定理:一条弧所对的圆周角等于它所对的2.圆周角定理推论1:半圆(或直径)所对的圆周角是;90°的圆周角所对的弦是3.圆周角定理推论2:在同圆或等圆中,所对的圆周角相等;相等的圆周角所对的也相等圆内接四边形定理1.圆内接四边形的对角2.圆内接四边形的一个外角等于它的内对角扇形的弧长和面积 1.弧长公式:180rn l π=2.扇形的面积公式:lr rn 213602=π知识点:与圆有关的最小值问题例:如图,点P (3,4),⊙P 半径为2,A (2.8,0),B (5.6,0),点M 是⊙P 上的动点,点C 是MB 的中点,则AC 的最小值是()A.1.4B.C.D.2.6变式:如图,⊙M的半径为2,圆心M的坐标为(3,4),点P是⊙M 上的任意一点,PA⊥PB,且PA、PB与x轴分别交于A、B两点,若点A、点B关于原点O对称,则AB的最小值为()A.3B.4C.6D.8知识点:折叠问题例:如图,已知点A是以MN为直径的半圆上一个三等分点,点B是的中点,点P是半径ON上的点.若⊙O的半径为l,则AP+BP的最小值为()A.2B.C.D.1变式:如图,AB,BC是⊙O的弦,∠B=60°,点O在∠B内,点D为上的动点,点M,N,P分别是AD,DC,CB的中点.若⊙O的半径为2,则PN+MN的长度的最大值是()A.B.C.D.例:如图,Rt△ABC中,AB⊥BC,AB=6,BC=4,P是△ABC内部的一个动点,且满足∠PAB+∠PBA=90°,则线段CP长的最小值为.变式:如图,△ABC为等边三角形,AB=2.若P为△ABC内一动点,且满足∠PAB=∠ACP,则线段PB长度的最小值为.1.如图,在Rt△ABC中,∠C=90°,AC=4,AB=5,在线段AC上有一动点P(P不与C重合),以PC为直径作⊙O交PB于Q点,连AQ,则AQ的最小值为.2.如图,在Rt△ABC中,∠ACB=90°,AC=BC=2,以BC为直径的半圆交AB于D,P是上的一个动点,连接AP,求AP的最小值.3.如图,在⊙O中,直径AB=6,BC是弦,∠ABC=30°,点P在BC上,点Q在⊙O上,且OP⊥PQ,当点P在BC上移动时,则PQ长的最大值为.4.如图,在矩形ABCD中,AB=6,AD=8,P、E分别是线段AC、BC 上的点,四边形PEFD为矩形,若AP=2,求CF的长。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
“=”当且仅当a b时成立,此时d min
a 2 1 2b2 a 1 a 1 或 r 2 b 1 b 1 a b 2 2 所求圆方程: x 1 y 1 2或( x 1)2 ( y 1)2 2
一、到圆心距离的最值问题; 二、到圆上一点距离的最值问题;
三、与圆上一点的坐标有关的最值问题; 四、与圆半径有关的最值问题.
一、到圆心距离的最值问题:
例1:已知P是直线3x 4 y 8 0上的动点,PA, PB
2 2
是圆x y 2 x 2 y 1 0的两条切线,A, B是切点, C是圆心,求四边形PACB面积的最小值。
2 2
9 12 2 2 易求得P , 时,x y 最小为20 5 5 21 28 2 2 求得P , 时,x y 最大为100 5 5
练习1:求实数x, y满足x ( y 1) 1,
2 2
求下列各式的最值: () 1 3x 4 y
法二:x 2 y 2 ( x 2 y 2 )2 可看作圆 x ( y 1) 1上的点到坐标原点距离
2 2
y
1
的平方的最值,亦可求解
o
x
练习1:求实数x, y满足x ( y 1) 1,
2 2
求下列各式的最值: () 1 3x 4 y (2)x y
2 2
解:(3)法一:由()知 1 : 3 sin k , 得 sin k cos k 3 1 cos
点评:在线性规划中,求形如 x a y b 的
2 2
最值问题,总是转化为求圆 x a y b r
2 2
2
半径平方的最值问题。
练习2:已知圆C:x y 2 x 4 y 3 0
2 2
1 .若圆C的切线在x轴和y轴上截距相等,
1 1 2 2 a b 3 .SAOB ab 2 2 1 a b a 2 b 2 3
3 2
a 2 b 2 3 2
2
SAOB的最小值为3 2 2
练习3:已知ABC三个顶点坐标A 0, 0 , 求以PA, PB, PC为直径的三个圆面积之和 的最大值和最小值。
3 x 2y 2
3 PM PO x y 2 y y 2 2
2 2 2
9 5y 6y 4
2
6 3 当y 时, PM 最小, 10 5 3 3 3 3 3 x 2 P , 5 2 10 10 5
1 1 a 1或a 3
切线方程为x y 1 0或x y 3 0 总之,所求切线方程为y 2 6 x,


x y 1 0或x y 3 0
2 .连结MC, 则 PM
2
2
PC MC
2 2
2
2
PM PO PC MC PO 2 2 2 2 即k x 1 y 2 2 x y
5 5
由解法二同样可得
sin 2 令 k cos 0 k可看成单位圆x 2 y 2 1上动点P(cos ,sin )
与定点Q(0, 2)连线的斜率 3 或 时,PQ与单位圆相切, | k | 取到最小
4
5 sin 2 d 5 cos
O
X 4x+3y=12
由图观察知,当圆与直线4 x 3 y 12 0 相切是,半径r最小,即r 2最小。
由圆心到直线的距离等于半径,得: 4 3 1 2 r 25 1 2 2 x 1 y 3 的最小值 25
2 2
d
4 9 12
1 r 5
2
2 .设AB中点为M x, y
则由中点坐标公式得
a x 2 a 2 x y b b 2 y 2
代入 1的结论: 2 x 2 2 y 2 2 1 x 1 y 解:圆心C 0, 0 ,半径r 1, 作 CH l 与H
求圆上一点P到Q的距离可以转化为 圆心C到Q的距离 CQ ,而 CQ 的最小 值就是圆心到直线的距离 CH .
PQ CQ 1 CH 1 005 1 2
2 2
1 5 1
PQ 的最小值为 5-1
例5:已知与曲线C:x y 2 x 2 y 1 0
2 2
相切的直线l交x轴,y轴于A, B两点,O为原点, OA a, OB b a 2, b 2 .
1 .求证曲线C与直线l相切的条件是 a 2 b 2 2; 2 .求线段AB中点的轨迹方程; 3 .求AOB的面积的最小值。
解:已知圆可化为: x 1 y 1 1
2 2
圆心C 1,1 , 半径r 1
SPACB 2SPAC PA AC PC r r
2 2
PC 1
2
求S PACB的最小值就是求 PC 的最小值, 而 PC 的最小值就是圆心到直线的距离.
求切线的方程;
2 .从圆C外一点P x, y 向圆引切线PM ,
求使 PM 最小的点P的坐标。
M 为切点,O为坐标原点,且 PM PO ,
解: 1 .圆C可化为: x 1 y 2 2
2 2
圆心C 1, 2 , 半径r 2 设圆C的切线在x轴和y轴上的截距分别为a、b 当a b 0时,切线方程可设为y kx
d
3 48
2 2
3 4 所求面积的最小值为 S 9 1 2 2
3
点评:求切线长时总是转化为 到圆心的距离和半径来求解。
二、到圆上一点距离的最值问题:
例2:已知P是圆x y 1上一点,Q是直线
2 2
l : x 2 y 5 0上一点,求 PQ 的最小值。
练习4:设圆满足: (1)截y轴所得弦长为2; (2)被x轴分成两圆弧,其弧长比为3 :1。 在满足条件(1)(2)的所有圆中,求圆心到 直线l : x 2 y 0的距离最小的圆的方程。
5d | a 2b | a 4ab 4b
2 2 2 2 2 2 2 2 2 2
a 4b 2(a b ) 2b a 1
即kx y 0 由点到直线的距离公式得:
2 k 2 k 1
2 2
k 2 6
切线方程为y 2 6 x


x y 当a b 0时,切线方程可设为 1 a b 即x y a 0 由点到直线的距离公式得:
2
1 2 a
2 2
y
1
o
P ( 1,2 )
x
四、与圆半径有关的最值问题:
x0 2 2 例4:设x,y满足 y x 求 x 1 y 3 的最小值。 Y 4 x 3 y 12 Y=X
解:设 x 1 y 3 r
2 2 2
则圆心C 1,3 ,半径为r.
2 2
S 4 2
2 2 2 2 2 2 x y x 4 y x y 3

PA 4
PB PC


0 x 2

11 x 当x 0时,S
max
11 9 ;当x 2时,S min 2 2
练习4:设圆满足: (1)截y轴所得弦长为2; (2)被x轴分成两圆弧,其弧长比为3 :1。 在满足条件(1)(2)的所有圆中,求圆心到 直线l : x 2 y 0的距离最小的圆的方程。
x y 1 .证明:直线l的方程为 1 a b 即bx ay ab 0 曲线C的方程为 x 1 y 1 1
2 2
圆心 1,1 到直线的距离等于1的 a b a 2 b 2 2
2
充要条件是1
a b ab
2 2 2 2 2 2
2
2
2 x y 1
2 2
上式中x y 相当于在 x 3 y 4 4
2 2 2 2
上的点P到原点O的距离的平方。
作图不难知道,当O 0,0 , P x, y , 3, 4 共线时, x y 有最值。
d min
所求圆方程: x 1 y 1 2或( x 1)2 ( y 1)2 2
由已知应有圆C 截x轴所得劣弧的圆心角为 2 2 故 | b | r即2b 2 r 2 2
解法一:设圆心C(a, b),半径r, 则C到x轴,y轴距离分别为 | b |,| a | .

截y轴所得弦长为2 得a 1 r 得a 1 2b
2 2
2
2
| a 2b | 圆心C到直线l : x 2 y 0的距离 d 5
y2 (3) x 1
即 1 k 2 sin( ) k 3 k 3 k 3 4 sin( ) ,则 1, k 3 1 k 2 1 k 2 y2 4 有最小值为 ,无最大值 x 1 3
y 2 y (2) 法二: 可看作圆 x 1 x (1) x 2 ( y 1) 2 1上的点与P(1, 2)两点的 连线的斜率最值,结合图形可求解
练习1:求实数x, y满足x ( y 1) 1,
2 2
求下列各式的最值: () 1 3x 4 y (2)x y
2 2
解:(2)法一:由()知 1 :
2 2
相关文档
最新文档