不等式与不等式组的解法

合集下载

不等式的解法

不等式的解法

x
4
0
3x 5 x 4
x
x
x
5 3 4 1 2
x4,
4. x23x10 x4
解:
x2 3x10 0 x4 0
x 5或 x 2
x
4
x2 3x 10 (x 4)2
x
26 5
x
5,
26 5
不等式解法的两个极其重要的思想:
⒈转化:即将绝对值不等式即其他不等式向代数 不等式或代数不等式组转化,再对其求解.
一.一次不等式和不等式组的解法 二.二次不等式的解法 三.高次不等式的解法 四.分式不等式的解法 五.绝对值不等式的解法 六.无理不等式的解法
一元一次不等式和不等式组的解法
一元一次不等式即为形如ax>b的不等式。
当a>0 则x> b a
当a<0 则x< b a
当a=0 且b 0 则为
当a=0 且b<0 则为R
解:1.当a=0时,不等式为:-x>0,解集为:{x|x<0}
2. 当a≠0时,不等式为:(ax-1)(x-a)>0, (1)当a>0时,不等式为:(x-1/a)(x-a)>0,
①a>1,a>1/a,解集为:{x|x<1/a或x>a}, ② 0<a<1,a<1/a,解集为:{x|x<a或x>}, ③ a=1,a=1/a=1,解集为:{x|x∈R且x≠1}; (2)当a<0时,(x-1/a)(x-a)<0, ①-1<a<0,a>1/a,解集为:{x|1/a<x<a} ②a<-1,a<1/a,解集为:{x|a<x<1/a}, ③a=-1,a=1/a=-1,解集为:x∈Φ。
列表法: f(x)的根把实数集分成若干个区间,

不等式组的解法与不等式优化

不等式组的解法与不等式优化

不等式组的解法与不等式优化不等式是数学中重要的概念,广泛应用于各个领域。

在代数学中,不等式组的解法及不等式优化是一项重要的研究内容。

本文将介绍不等式组的解法和不等式优化的方法和技巧。

一、不等式组的解法不等式组是由一组不等式组成的方程组。

解决不等式组的关键是确定不等式组的可行解集,即满足所有不等式的解的集合。

下面将介绍两种常见的不等式组解法。

1. 图像法图像法是通过图像的方法来解决不等式组的问题。

首先,将每个不等式表示为一条直线或曲线,并标记出不等式的方向。

然后,通过几何方法确定满足所有不等式的解的区域。

最后,确定可行解集。

例如,考虑以下不等式组:① 2x + 3y ≤ 12② 4x - 5y ≥ 10将不等式①表示为直线2x + 3y = 12,并在直线下方标记不等式的方向;将不等式②表示为直线4x - 5y = 10,并在直线上方标记不等式的方向。

通过观察交集区域,找到满足两个不等式的解的区域,确定可行解集。

2. 代入法代入法是通过代入变量的具体值来解决不等式组的问题。

首先,选取一个不等式,将其他不等式的变量表示为该不等式变量的函数。

然后,将该函数代入其他不等式中,得到只含有一个变量的不等式。

最后,解决这个只含有一个变量的不等式,得到解。

例如,考虑以下不等式组:① x + y ≤ 5② 2x - y ≥ 1选取不等式①,将不等式②的y表示为x的函数,得到y = 2x - 1。

将该函数代入不等式①中,得到x + (2x - 1) ≤ 5。

解决这个只含有一个变量x的不等式,得到x ≤ 2。

将x的解代入y = 2x - 1,得到y ≤ 3。

因此,可行解集为x ≤ 2,y ≤ 3。

二、不等式优化不等式优化是在一定的约束条件下,寻找不等式的最优解的过程。

在数学建模、最优化等领域中有广泛应用。

下面将介绍两种常见的不等式优化方法。

1. 拉格朗日乘子法拉格朗日乘子法是优化问题中常用的方法之一,基于拉格朗日函数的构造。

不等式组的解法与绝对值不等式

不等式组的解法与绝对值不等式

不等式组的解法与绝对值不等式不等式是数学中常见的一种表示数值大小关系的关系式,对于求解不等式组以及绝对值不等式,我们需要掌握一些解法的方法和技巧。

本文将介绍不等式组的解法和绝对值不等式的求解方法,帮助读者更好地理解和应用不等式的解法。

一、不等式组的解法不等式组是指一组由不等式关系组成的方程组。

解不等式组需要满足所有不等式的约束条件。

下面分别介绍常见的不等式组的解法。

1. 图像法图像法是解不等式组时常用的一种方法。

首先,我们将每个不等式关系转化为直线或曲线在坐标系中的图像。

然后,通过观察图像的交点和区域来确定解的范围。

2. 代入法代入法是一种直接将不等式约束条件代入到其他方程中的方法。

通过将一个不等式的约束条件代入到另一个不等式中,可以简化方程组,使得求解更加容易。

3. 分区间讨论法对于包含多个不等式的不等式组,可以通过分区间讨论法逐个讨论每个不等式的解的范围。

这种方法在处理复杂的不等式组时非常有效。

二、绝对值不等式的解法绝对值不等式是一种特殊的不等式,其解法相对简单。

绝对值不等式通常包含一个或多个绝对值表达式,下面介绍两种常见的绝对值不等式的解法。

1. 分类讨论法对于形如|ax + b| < c的绝对值不等式,我们可以通过分类讨论解出不等式的范围。

具体的做法是将绝对值中的表达式分为正负两种情况,然后分别解出不等式,最后得到整体的解的范围。

2. 移项和平方法对于形如|ax + b| > c的绝对值不等式,我们可以通过移项和平方的方式将绝对值不等式转化为普通的二次方程不等式。

然后再通过求解二次方程不等式得到绝对值不等式的解。

绝对值不等式的解法还有其他的方法和技巧,例如绝对值的性质和不等式的性质等,读者可以根据具体问题选择合适的解法。

总结:本文介绍了不等式组的解法和绝对值不等式的求解方法。

对于不等式组,可以通过图像法、代入法和分区间讨论法等方法来求解;对于绝对值不等式,可以通过分类讨论法和移项和平方法等方法来求解。

含字母的不等式与不等式组的解法 含答案

含字母的不等式与不等式组的解法 含答案

4--2.关于 x 的不等式(2a-b)x>a-2b 的解集是 x< 5 ,则关于 x 的不等式 ax+b<0 的解集为 2
。x<-8
解:当不等式中 x 前的系数为字母参数时,我们在除以系数前必须对含字母参数的系数进行讨论。分为大于 0 和小于
0 两种情况讨论,如果大于 0,不等式不变号,如果小于 0,除以系数后不等式要反号。则(2a-b)x>a-2b 的解集为
等号的方向改变了,即是运用了不等式的基本性质 3,因此应有 a 1 0 ,解得 a 1 .故选 D.
评注:当一元一次不等式的解集给出时,可以通过对比不等式的性质和解集法则,求出有关参数的取值范围或值.
4--1.已知关于 x 的不等式(3a-2)x<2-3a 的解集是 x>-1,求 a 的取值范围.
不等式的基本性质 3,因此应有 2a-1<0,解得 a < 1 .故选 B. 2
评注:当一元一次不等式的解集给出时,可以通过对比不等式的性质和解集法则,求出有关参数的取值范围或值.
2--2.若不等式(a-1)x>1-a 的解集是 x<-1,则 a 的取值范围是 。a<1
解析:当不等式中 x 前的系数为字母参数时,我们在除以系数前必须对含字母参数的系数进行讨论。分为大于 0 和小
含有字母的不等式与不等式组的解法
一、含有字母的不等式 注:含字母系数的不等式的标准形式为 ax>b, ax<b, ax≥b, ax≤b,四种形式。其中的 a,b 都可以代表一个字母 a,b, 也可代表含字母的多项式如 2a,5b,2a+3,b-2,等。 因为未知数的系数含字母,它的值可以为正数,也可以为负数,也可以为 0;所以必须分三种情况讨论,以 ax>b 为 例:
评注:当一元一次不等式的解集给出时,可以通过对比不等式的性质和解集法则,求出有关参数的取值范围或值.

不等式与不等式组

不等式与不等式组

不等式与不等式组在数学中,不等式是描述数之间关系的一种表达方式。

不等式可以用于求解线性方程组、判断函数的增减性以及解决许多实际问题。

本文将介绍不等式及不等式组的概念、性质和解法。

1. 不等式的定义和性质不等式是用符号>、<、≥或≤表示数值之间相对大小关系的数学表达式。

其中,>表示大于,<表示小于,≥表示大于等于,≤表示小于等于。

例如,对于两个实数a和b,若a>b,则称a大于b,记作a>b。

不等式满足如下的性质:(1)传递性:如果a>b,b>c,那么a>c。

(2)反对称性:如果a>b且b>a,那么a=b。

(3)加法性:如果a>b,那么a+c>b+c,其中c为任意实数。

(4)乘法性:如果a>b且c>0,那么ac>bc。

2. 不等式的解法要求解一个不等式,需要确定不等式的解集。

解集是满足不等式条件的所有的实数集合。

(1)一元一次不等式的解法一元一次不等式是指只含有一个未知数的一次方程。

解一元一次不等式的方法与解一元一次方程相类似。

例如,对于不等式2x+3<7,我们可以按照如下步骤解题:2x+3<72x<4x<2因此,解集为x<2。

(2)一元二次不等式的解法一元二次不等式是指含有一个未知数的二次方程。

解一元二次不等式的方法与解一元二次方程相类似。

例如,对于不等式x^2-5x+6>0,我们可以按照如下步骤解题:(x-2)(x-3)>0根据零点的性质,我们可以得出两个解为x<2或x>3。

(3)不等式组的解法不等式组是由多个不等式组成的方程组。

解不等式组的方法与解方程组类似,需要找到所有满足所有不等式条件的解。

例如,考虑以下不等式组:x+y>32x-y<2我们可以通过图像法或代入法求解不等式组。

最终我们得到解集为x>1,y>2。

3. 不等式的应用不等式在实际问题中有着广泛的应用。

不等式与不等式组知识点归纳

不等式与不等式组知识点归纳

第九章 不等式与不等式组一、知识结构图二、知识要点(一、)不等式的概念1、不等式:一般地,用不等符号(“<”“>”“≤”“≥”)表示大小关系的式子,叫做不等式,用“≠”表示不等关系的式子也是不等式。

不等号主要包括: > 、 < 、 ≥ 、 ≤ 、 ≠ 。

2、不等式的解:使不等式左右两边成立的未知数的值,叫做不等式的解。

3、不等式的解集:一个含有未知数的不等式的所有解,组成这个不等式的解集(即未知数的取值范围)。

4、解不等式:求不等式的解集的过程,叫做解不等式。

⎪⎪⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎪⎪⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧⎪⎪⎩⎪⎪⎨⎧与实际问题组一元一次不等式法一元一次不等式组的解不等式组一元一次不等式组性质性质性质不等式的性质一元一次不等式不等式的解集不等式的解不等式不等式相关概念不等式与不等式组)(3215、不等式的解集可以在数轴上表示,分三步进行:①画数轴②定界点③定方向。

规律:用数轴表示不等式的解集,应记住下面的规律:大于向右画,小于向左画,等于用实心圆点,不等于用空心圆圈。

(二、)不等式的基本性质不等式性质1:不等式的两边同时加上(或减去)同一个数(或式子),不等号的方向 不变 。

用字母表示为:如果b a >,那么c b c a ±>±;如果b a <,那么c b c a ±<± ; 不等式的性质2:不等式的两边同时乘以(或除以)同一个 正数 ,不等号的方向 不变 。

用字母表示为: 如果0,>>c b a ,那么bc ac >(或cb c a >);如果0,><c b a ,不等号那么bc ac <(或cb c a <); 不等式的性质3:不等式的两边同时乘以(或除以)同一个 负数 ,的方向 改变 。

用字母表示为: 如果0,<>c b a ,那么bc ac <(或cb c a <);如果0,<<c b a ,那么bc ac >(或cb c a >); 解不等式思想——就是要将不等式逐步转化为x a 或x <a 的形式。

初二不等式基本知识点总结

初二不等式基本知识点总结

初二不等式基本知识点总结一、一元一次不等式1. 不等式的定义不等式是使用大于号(>)、小于号(<)、大于等于号(≥)、小于等于号(≤)等符号来表示两个数量的大小关系。

例如:a < b、c > d。

2. 不等式的解法对于一元一次不等式ax + b > c,其中a、b、c为已知数,x为未知数,解不等式的步骤如下:(1) 将不等式化为等价不等式,即去掉绝对值号,并根据a的正负情况变号;(2) 通过化简和移项找出不等式的解集。

3. 不等式组的解法对于一元一次不等式组{ax + b > c, dx + e < f},其中a、b、c、d、e、f为已知数,x为未知数,解不等式组的步骤如下:(1) 分别解出每个不等式的解集;(2) 将每个不等式解集进行交并运算,得到不等式组的解集。

4. 不等式的图像表示使用数轴可以方便地表示一元一次不等式的解集。

对于不等式ax + b > c,首先画出表示常数c的点,然后根据a的正负情况,确定画出的区域是大于还是小于c的区域。

二、一元二次不等式1. 不等式的定义一元二次不等式是形如ax² + bx + c > 0的不等式,其中a、b、c为已知数,x为未知数。

2. 不等式的解法对于一元二次不等式ax² + bx + c > 0,其中a、b、c为已知数,x为未知数,解不等式的步骤如下:(1) 求出二次函数的零点,即ax² + bx + c = 0的解;(2) 根据二次函数的图像,确定不等式的解集。

3. 不等式的图像表示一元二次不等式和二次函数的图像表示是相互联系的。

通过画出二次函数的图像,并确定大于0的区域,可以得到不等式的解集。

三、一元一次不等式组1. 不等式组的定义一元一次不等式组是多个一元一次不等式的组合,其中每个不等式都是以相同的未知数为变量。

2. 不等式组的解法对于一元一次不等式组{ax + b > c, dx + e < f},其中a、b、c、d、e、f为已知数,x为未知数,解不等式组的步骤如下:(1) 分别解出每个不等式的解集;(2) 将每个不等式解集进行交并运算,得到不等式组的解集。

高中数学一元二次不等式与二元一次不等式组的解法.doc

高中数学一元二次不等式与二元一次不等式组的解法.doc

高中数学一元二次不等式与二元一次不等式组的解法一、一元二次不等式与分式不等式1、一元二次不等式的解集端点→一元二次方程的解→二次函数的零点。

2、解一元二次不等式的步骤:二次项系数化为正→因式分解(求根)→判断符号(大于0,两根之外,小于0,两根之外)3、分式不等式:转化成整式不等式求解二、二元一次不等式解法1、可行域的判断依据:y 的系数by 与不等号,同号,直线上方;异号,直线下方。

2、目标函数平移规律:y 的系数b 为正,往上平移变大;y 的系数b 为负,往上平移变小三、典型例题1、解含参一元二次不等式与分式不等式例题1:已知0 a 1,则关于x 的不等式(x - a)(x - 1/a)0 的解集为?解:根据不等式的性质可得故而可得解集为变式:解析:将不等式因式分解可得例题2:若a 0,则不等式解析:将不等式化简可得2、不等式中的参数求解例题3:函数的定义域为R,则实数k 的取值范围为( )解析:函数的定义域为R,故而可得故而变式:若不等式则实数m的取值范围为________。

解析:化简可得例题4:设不等式mx -2x-m+1<0 对于满足|m| ≤ 2的一切m 的值都成立,求x 的取值范围。

解析:将不等式化简可得故而将m 当作自变量,这是一个一次函数,故而可得3、二元一次不等式组的基础解法例题5:(2017年课标1卷13题)设x,y 满足约束条件则z = 3x - 2y 的最小值为________。

解析:根据约束条件可画出可行域如图所示,y 的系数为负,故而可得当初始函数平移经过点A 时函数取最小值,联立4、含参二元一次不等式组的解法例题6:已知x , y 满足约束条件目标函数z = 2x - 3y 的最大值是2,则实数a = (A )解析:根据约束条件可以发现,可行域必然在直线x - y - 2 = 0 的上方和直线x - 2y + 3 = 0 的下方,直线y = 4 - ax 是恒过点(0 , 4)的一条直线。

不等式与方程组的解法

不等式与方程组的解法

不等式与方程组的解法不等式与方程组是数学中重要的概念和问题,通过解不等式与方程组可以找到数学方程和不等式的解集,寻求满足特定条件的数值。

本文将介绍不等式和方程组的解法,并提供相应的例子以便读者更好地理解。

一、不等式的解法不等式是数学中常见的表示关系的方法,我们可以通过解不等式来找到一系列满足不等关系的数值。

以下是几种常见的不等式解法方法。

1. 图像法图像法是解不等式的一种直观方法,通过将不等式转化为相应的函数图像,找到函数图像与坐标轴交点的区域,确定不等式的解集。

例如,解不等式2x + 3 ≥ 7可以通过绘制函数y = 2x + 3的图像,然后找到y ≥ 7对应的x的区间来求解。

2. 代入法代入法是解不等式的一种常用方法,它通过代入特定的数值来验证不等式的成立情况,从而找到满足不等式的解集。

例如,对于不等式x² - 5 ≤ 0,我们可以选取不同的数值代入x,如0、1和-1,验证不等式在这些数值下是否成立,从而确定解集。

3. 区间法区间法是解不等式的一种有效方法,通过确定不等式中变量所在的区间,找到满足不等式的解集。

例如,对于不等式3x - 2 < 5,我们可以通过将不等式转化为3x < 7,并求解不等式左侧x的取值范围,从而得到解集。

二、方程组的解法方程组是多个方程的集合,它们共同约束着数值的取值范围,通过解方程组可以找到满足这些方程的变量值。

以下是一些常见的方程组解法方法。

1. 代入法代入法是解方程组的常用方法,它通过选取一个方程,将其他方程的变量用该方程中的变量表示,然后代入到其他方程中,从而将方程组转化为单一方程。

通过解这个单一方程,可以求得某个变量的值,再将其代入到其他方程中,继续求解其他变量的值。

例如,对于方程组2x + y = 5x - y = 1我们可以将第二个方程中的x用第一个方程中的变量表示,得到x = 1 + y。

将其代入到第一个方程中,得到2(1 + y) + y = 5,然后解这个方程来求解y的值,再将y的值代入到x = 1 + y中求解x的值。

不等式与不等式组

不等式与不等式组

不等式与不等式组引言:不等式是数学中一种重要的表达式,它可以描述数值之间的大小关系。

而不等式组则是多个不等式的集合,通过不等式组可以更准确地描述多个数值之间的关系。

本文将介绍不等式的基本概念、解不等式的方法以及解不等式组的方法,并通过实例进行详细说明。

一、不等式的基本概念1.1 不等式的定义不等式是数学中一种比较两个数值大小关系的表达式。

常见的不等式符号包括大于(>)、小于(<)、大于等于(≥)、小于等于(≤)等。

1.2 不等式的性质不等式有以下基本性质:(1)任意数与自身的不等关系是等式关系,即a = a;(2)如果a > b,那么b < a;(3)如果a > b,且b > c,则a > c(传递性质);(4)两个不等式可以通过加法、减法、乘法和除法进行运算,运算的结果仍然是不等式。

二、解不等式的方法解不等式的方法主要有图解法、试值法和换元法。

下面将对这三种方法进行详细介绍。

2.1 图解法图解法是通过将不等式转化为图形进行分析和求解的方法。

以一元不等式为例,画出数轴并标出关键点,再根据不等式的符号来判断解的范围,从而得到不等式的解集。

2.2 试值法试值法是通过选择一些特定的数值,代入不等式进行验证,找出满足不等式的数值范围,进而得到不等式的解集。

2.3 换元法换元法是通过引入新的变量,将原不等式转化为一个更简单的形式进行求解。

常用的换元方法有代换法、平方取非负法等。

三、解不等式组的方法不等式组是由多个不等式组成的集合,解不等式组需要判断每一个不等式的解集并进行求交集的操作。

下面介绍两种解不等式组的方法。

3.1 图解法图解法也适用于解不等式组。

以二元不等式组为例,将每个不等式转化为平面直角坐标系上的图形,并找出所有满足条件的交集区域,便得到了整个不等式组的解集。

3.2 代入法代入法是通过将不等式组的某个解代入原不等式组进行验证,从而找出满足全部不等式的解集。

七年级数学第9章不等式与不等式组(整章知识详解)

七年级数学第9章不等式与不等式组(整章知识详解)

X>-3
2、不等式组
X<2 X<5
的非负整数解是__0_,1____
方法:先求不等式(组)的解集,再确定整数解问题
七年级数学第9章不等式与不等式组
考点三:不等式(组)的特殊解
3.(烟台)不等式4-3x≥2x-6的非负整数
解是___0_,1__,2.
x 3≥0,
4.
(苏州)不等式组

x
2
考点四:求字母的取值范围
1. 如- -果- -不- - 等- - -式- -xxm5 有解,那么m的取值范围是
_m__<_5___.若 无解 , 则m的 取值 范 围是_m__≥_5___.
2.如




组xx
m m

1的 2


是x
-
1,
则m的 取 值 范 围 是______.
.
不等式组的解集是x>m+2,有因解集是x>-1
所以 m+2= -1,即 m = -3
(较小)
(1)若不等式组
xm1 (较大无) 解,则
x 2 m 1
m的取值范围为___m_____3_______
2m 2 m 1
(2)若不等式组
xБайду номын сангаас(1 较小的)解集为x>3,
x3 (较大)

3
的所有整数
解有( B )个
A、2

B、3
C、4
D、5
方法:先求不等式(组)的解集,再确定整数解的问题
(2 x-6)<3-x

求不等式组

七年级数学下册不等式与不等式组教案人教新课标版

七年级数学下册不等式与不等式组教案人教新课标版

七年级数学下册不等式与不等式组教案人教新课标版一、教学目标:知识与技能:使学生掌握不等式的概念、性质和基本运算;学会解一元一次不等式及不等式组。

过程与方法:通过观察、实验、探究等活动,培养学生的逻辑思维能力和解决问题的能力。

情感态度与价值观:激发学生学习数学的兴趣,培养学生克服困难、自主学习的品质。

二、教学内容:第一课时:不等式的概念与性质1. 不等式的定义2. 不等式的性质第二课时:不等式的基本运算1. 不等式的加减法2. 不等式的乘除法第三课时:解一元一次不等式1. 一元一次不等式的解法2. 解不等式组的策略第四课时:不等式应用举例1. 应用不等式解决实际问题2. 不等式组在实际问题中的应用第五课时:复习与拓展1. 复习不等式、不等式组的解法及应用2. 拓展练习三、教学重点与难点:重点:不等式的概念、性质,解一元一次不等式及不等式组的方法。

难点:不等式的性质,解一元一次不等式,不等式组在实际问题中的应用。

四、教学方法:采用问题驱动法、案例分析法、小组合作学习法等,引导学生主动探究、合作交流,培养学生的数学素养。

五、教学过程:第一课时:1. 导入新课:通过生活中的实例引入不等式概念。

2. 讲解不等式的性质。

3. 练习不等式的基本运算。

第二课时:1. 讲解不等式的加减法运算。

2. 讲解不等式的乘除法运算。

3. 练习不等式的基本运算。

第三课时:1. 讲解一元一次不等式的解法。

2. 讲解解不等式组的策略。

3. 练习解一元一次不等式及不等式组。

第四课时:1. 举例讲解应用不等式解决实际问题。

2. 举例讲解不等式组在实际问题中的应用。

3. 练习不等式及不等式组在实际问题中的应用。

第五课时:1. 复习不等式、不等式组的解法及应用。

2. 拓展练习。

六、教学评价:采用课堂练习、课后作业、小组讨论、个人总结等方式进行教学评价。

重点关注学生对不等式及不等式组的掌握程度,以及在实际问题中的应用能力。

七、教学策略:1. 采用多媒体课件辅助教学,直观展示不等式的性质和运算过程。

不等式的解法

不等式的解法

2 x 10 0 2 解这个不等式组,得 x 3 x 4 2 x 10
3 1 不 等 式 中 所 含 的 以为 底 的 对 数 函 数 是 减 数 函, 3 2 x 3x 4 0 原 不 等 式 可 化 为
x | x 1或x 4 x | x 5 x | 2 x 7 x | 2 x 1或4 x 7
2.|ax+b|≤c(c>0)和|ax+b|≥c(c>0)型不等式的解法.
-c≤ax+b≤c (1)|ax+b|≤c⇔____________.
-c (2)|ax+b|≥c⇔ax+b≥c或ax+b≤ __________________.
2.|ax+b|≤c和|ax+b|≥c(c>0)型不等式的解法:
1.移项,通分把不等式的左边化为0. 2.由积商同号,把分式不等式转化为整式不 等式. 3.若分母大于0可直接去分母. f ( x) 0( 0) f ( x) g ( x) 0( 0) g ( x) f ( x) 0( 0) f ( x) g ( x) 0( 0)且g(x) 0 g ( x)
x | 2 x 1或4 x 7 所以原不等式的解集为
例3.解 不 等 式 4 x
3 2 x1 16 0
解:原不等式可以化为
(2 x )2 6 2 x 16 0
分解因式得 (2 8)(2 2) 0
x x
∵ ∴
2 220
x
∴ 解这个不等式,得 x
类型 一简单绝对值不等式的解法
1 答案: [2,6] 1.不等式 | x-2 | 1的解集是_____. 2

初中数学中的不等式与解法

初中数学中的不等式与解法

初中数学中的不等式与解法不等式是数学中常见的一种关系表达式,其使用范围广泛,并且在解决实际问题中起着重要作用。

本文将介绍初中数学中的不等式及其解法。

一、不等式的基本概念不等式是描述两个数之间大小关系的数学表达式。

常见的不等式符号有大于(>)、小于(<)、大于等于(≥)、小于等于(≤)等。

例如,对于两个数x和y,我们可以表示不等式x>y,表示x大于y。

二、不等式的解集表示方法不等式的解是使不等式成立的所有实数的集合。

解集可以用数轴上的图示或集合的形式表示。

例如,对于不等式3x+1>7,我们可以通过求解得到解集{x|x>2},表示一切大于2的实数。

三、一元一次不等式的求解一元一次不等式是形如ax+b>0(或≥0、<0、≤0)的不等式,其中a 和b为已知实数。

解一元一次不等式的基本步骤如下:1. 化简不等式,使其形式为ax>c(或≥c、<c、≤c);2. 根据a的正负情况,分析不等式解集的情况;a) 当a>0时,解集为x>c/a(或≥c/a、<c/a、≤c/a);b) 当a<0时,解集为x<c/a(或≤c/a、>c/a、≥c/a)。

四、一元二次不等式的求解一元二次不等式是形如ax^2+bx+c>0(或≥0、<0、≤0)的不等式,其中a、b、c为已知实数,且a≠0。

解一元二次不等式的步骤如下:1. 将不等式化简为二次函数的形式;2. 找到二次函数的顶点(极值点);3. 根据二次函数的凹凸性质,判断不等式的解集情况;a) 当a>0时,解集为x在顶点两侧的区域;b) 当a<0时,解集为x在顶点两侧和顶点上的区域。

五、不等式的加减乘除性质不等式具有一些特有的性质,使得我们可以利用这些性质快速求解不等式。

主要的加减乘除性质如下:1. 加减性质:若a>b,则a+c>b+c,其中c为任意实数;2. 乘除性质:若a>b且c>0,则ac>bc,若a>b且c<0,则ac<bc。

《不等式与不等式组》教案3:学习三元一次不等式组的求解技巧

《不等式与不等式组》教案3:学习三元一次不等式组的求解技巧

本文主要介绍的是关于《不等式与不等式组》教案3:学习三元一次不等式组的求解技巧的相关知识内容。

在数学学科中,不等式是一个非常重要的概念和技巧,可以用来描述各种各样的数学问题。

而不等式组则更加复杂,需要运用一些特殊的方法和技巧来进行求解。

下面,我们来详细地分析一下如何学习三元一次不等式组的求解技巧。

一、三元一次不等式组的定义三元一次不等式组是由三个一次不等式组成的集合,其中每个不等式都是一元一次式(包括常数项)与 0 的大小关系。

举个例子,我们可以看一下下面这个三元一次不等式组:$ \begin{cases} 2x+y+z\le 5 \\ x+2y+z\le 6 \\ x+y+3z\le 7 \end{cases} $这个不等式组的意思是,当且仅当 $(x,y,z)$ 满足上述三个不等式时,这个不等式组才会成立。

二、三元一次不等式组的解法(一)图形法三元一次不等式组可以看做是三维的几何图形,我们可以通过图形的方法来求解。

具体步骤如下:1、将三个不等式都转化为等式,得到三个平面。

2、确定这三个平面的交点,求解出这个三元一次不等式组的解。

举个例子,我们可以看一下下面这个三元一次不等式组的图形:$ \begin{cases} x+y+z\le 4 \\ x+2y+3z\le 9 \\ y+2z\le 3 \end{cases} $通过画出这三个平面的交点,我们得到这个不等式组的解为 $(0,0,0)$。

(二)代数法代数法是解决不等式组最常用的方法,其步骤如下:1、将每个不等式都转化为等式,得到一个线性方程组。

2、通过这个方程组来求解出每个变量的取值范围。

举个例子,我们可以看一下下面这个三元一次不等式组的代数解法:$ \begin{cases} 2x+y+z\le 5 \\ x+2y+z\le 6 \\ x+y+3z\le 7 \end{cases} $将每个不等式都转化为等式,得到如下线性方程组:$ \begin{cases} 2x+y+z=5 \\ x+2y+z=6 \\ x+y+3z=7 \end{cases} $通过这个方程组,我们可以得到 $x,y,z$ 的取值范围为:$ -\infty<x\le2,\ -\infty<y\le2,\ -\infty<z\le\frac{4}{3} $故此不等式组的解为:$ \{ (x,y,z)|-\infty<x\le2,\ -\infty<y\le2,\ -\infty<z\le\frac{4}{3} \} $(三)消元法消元法是解决不等式组的方法之一,其实际上就是将一个未知量消去,得到一个只含两个未知量的不等式组。

专题05 不等式与不等式组专题详解(解析版)

专题05 不等式与不等式组专题详解(解析版)

专题05 不等式与不等式组专题详解专题05 不等式与不等式组专题详解 (1)9.1 不等式 (3)知识框架 (3)一、基础知识点 (3)知识点1 不等式及其解集 (3)知识点2 不等式的基本性质 (4)二、典型题型 (5)题型1 不等式的概念 (5)题型2 根据数量关系列不等式 (5)题型3不等式的解(集) (6)题型4 不等式性质的运用 (6)题型5 实际问题与不等式 (7)三、难点题型 (8)题型1 不等式性质的综合应用 (8)题型2 用作差法比较大小 (9)9.2 一元一次不等式 (10)知识框架 (10)一、基础知识点 (10)知识点1 一元一次不等式的解法 (10)知识点2 列不等式解应用题 (11)二、典型题型 (13)题型1 一元一次不等式的判定 (13)题型2 解一元一次不等式 (13)题型3 列不等式,求取值范围 (14)题型4 一元一次不等式的应用 (14)三、难点题型 (16)题型1 含参数的不等式 (16)题型2 不等式的整数解 (16)题型3 方程与不等式 (17)题型4 含绝对值的不等式 (18)9.3 一元一次不等式组 (19)知识框架 (19)一、基础知识点 (19)知识点1 一元一次不等式组及解集的定义 (19)知识点2 一元一次不等式组解集的确定及解法 (19)知识点3 双向不等式及解法 (21)二、典型题型 (23)题型1 一元一次不等式组的判定 (23)题型2 一元一次不等式组的解集 (23)题型3 解一元一次不等式组 (24)题型4 一元一次不等式组的应用 (25)一、用不等式组解决实际问题 (25)二、方案设计 (26)三、最值问题 (27)三、难点题型 (29)题型1 由不等式组确定字母的取值 (29)题型2 不等式组中的数学思想 (30)一、整体思想 (30)二、数形结合 (31)三、分类讨论 (31)题型3 不等式的应用 (32)题型4 不等式的综合 (33)9.1 不等式知识框架{基础知识点{不等式及其解集不等式的基本性质典型题型{ 不等式的概念根据数量关系列不等式不等式的解(集)不等式性质的运用实际问题与不等式难点题型{不等式性质的综合应用作差法比较大小 一、基础知识点知识点1 不等式及其解集1)不等式:用不等符号表示不等关系的式子。

第九章不等式与不等式组一元一次不等式的概念及解法(2)人教版七下数学

第九章不等式与不等式组一元一次不等式的概念及解法(2)人教版七下数学

移项,得4x-5x<5+2. 合并同类项,得-x<7.
例1题答图
系数化为1,x>-7. 不等式的解集在数轴上的表示如答图所示.
训练 1.解不等式2x4-1 ≥3x+ 2 2 -1,并在数轴上表示解集.
解:去分母,得 2x-1≥2(3x+2)-4. 去括号,得 2x-1≥6x+4-4. 移项,得 2x-6x≥4-4+1. 合并同类项,得-4x≥1. 系数化为 1,得 x≤-14 . 不等式的解集在数轴上表示如答图所示.
案不唯一)
解不等式:x+2 5 -1≤3x3+2 . 解:3(x+5)-6≤2(3x+2)第一步 3x+15-6≤6x+4 第二步 3x-6x≤4-15+6 第三步 -3x≤-5 第四步
x≤53 第五步
(1) 任 务 一 : 填 空 : ① 以 上 解 题 过 程 中 , 第 一 步 是 依 据 ___不__等__式__的__性__质_____进行变形的;
系数化为1,得____x_=__8_____. 系数化为1,得___x_≤__8______.
(思考:解一元一次方程与解一元一次不等式有什么异同?)
知识点 1 解一元一次不等式(去分母) 例 1 解不等式2x5-1 <x+2 1 ,并在数轴上表示解集.
解:去分母,得2(2x-1)<5(x+1).
去括号,得4x-2<5x+5.
基础过关
1.学习了一元一次不等式的解法后,四位同学解不等式
1-x 6
-1+3 x
≥1
时第一步“去分母”的解答过程都不同,其中正确的是( D )
A.(1-x)-2(1+x)≥1
B.2(1-x)-(1+x)≥6
C.3(1-x)-6(1+x)≥1
D.(1-x)-2(1+x)≥6
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1、教材分析课程名称:不等式与不等式组的解法教学内容和地位:学习不等式与不等式组的解法对于培养学生分析问题、解决问题的能力,体会数学的应用价值,以及学生的后续学习都具有重要意义。

教学重点:解一元一次不等式或一元一次不等式组教学难点:选择恰当的方法解一元一次不等式或一元一次不等式组2、课时规划课时:3课时3、教学目标分析1、掌握一元一次不等式或一元一次不等式组的解法,会用数轴确定一元一次不等式组的解集。

2、让学生经历知识的拓展过程,会应用数轴确定一元一次不等式组的解集,感受并掌握数形结合思想。

4、教学思路一:复习上次课重点知识。

二:梳理本节重要知识点。

三:例题精讲。

四:练习。

五:重难点,易错点,常见题型和方法。

六:课堂总结。

5、教学过程设计必讲知识点一:复习上次课重点知识。

二:梳理本节重要知识点。

知识点一:不等式的概念1、不等式:一般地,用符号“<”(或“≤”),“>”(或“≥”)连接的式子叫做不等式。

2、不等式的解集:对于一个含有未知数的不等式,任何一个适合这个不等式的未知数的值,都叫做这个不等式的解。

3、对于一个含有未知数的不等式,它的所有解的集合叫做这个不等式的解的集合,简称这个不等式的解集。

4、求不等式的解集的过程,叫做解不等式。

5、用数轴表示不等式的方法.知识点二、不等式基本性质1、不等式两边都加上(或减去)同一个数或同一个整式,不等号的方向不变。

2、不等式两边都乘以(或除以)同一个正数,不等号的方向不变。

3、不等式两边都乘以(或除以)同一个负数,不等号的方向改变。

4、说明:①在一元一次不等式中,不像等式那样,等号是不变的,是随着加或乘的运算改变。

②如果不等式乘以0,那么不等号改为等号所以在题目中,要求出乘以的数,那么就要看看题中是否出现一元一次不等式,如果出现了,那么不等式乘以的数就不等为0,否则不等式不成立;知识点三、一元一次不等式1、一元一次不等式的概念:一般地,不等式中只含有一个未知数,未知数的次数是1,且不等式的两边都是整式,这样的不等式叫做一元一次不等式。

2、解一元一次不等式的一般步骤:(1)去分母(2)去括号(3)移项(4)合并同类项(5)将x项的系数化为1知识点四、一元一次不等式组1、一元一次不等式组的概念:几个一元一次不等式合在一起,就组成了一个一元一次不等式组。

2、几个一元一次不等式的解集的公共部分,叫做它们所组成的一元一次不等式组的解集。

3、求不等式组的解集的过程,叫做解不等式组。

4、当任何数x都不能使不等式同时成立,我们就说这个不等式组无解或其解为空集。

5、一元一次不等式组的解法(1)分别求出不等式组中各个不等式的解集(2)利用数轴求出这些不等式的解集的公共部分,即这个不等式组的解集。

6、不等式与不等式组不等式:①用符号〉,=,〈号连接的式子叫不等式。

②不等式的两边都加上或减去同一个整式,不等号的方向不变。

③不等式的两边都乘以或者除以一个正数,不等号方向不变。

④不等式的两边都乘以或除以同一个负数,不等号方向相反。

7、不等式的解集:①能使不等式成立的未知数的值,叫做不等式的解。

②一个含有未知数的不等式的所有解,组成这个不等式的解集。

③求不等式解集的过程叫做解不等式。

8、一元一次不等式组的基本类型(以两个不等式组成的不等式组为例)类型(设a>b)不等式组的解集数轴表示1.(同大型,同大取大)x>a2.(同小型,同小取小) x<b3.(一大一小型,小大之间) b<x<a4.(比大的大,比小的小空集)无解三:例题精讲。

例1.解不等式组,并将解集标在数轴上分析:解不等式组的基本思路是求组成这个不等式组的各个不等式的解集的公共部分,在解的过程中各个不等式彼此之间无关系,是独立的,在每一个不等式的解集都求出之后,才从“组”的角度去求“组”的解集,在此可借助于数轴用数形结合的思想去分析和解决问题。

解:解不等式(1)得x>解不等式(2)得x≤4∴(利用数轴确定不等式组的解集)∴原不等式组的解集为<x≤4∴步骤:(1)分别解不等式组的每一个不等式(2)求组的解集。

(借助数轴找公共部分)(3)写出不等式组解集(4)将解集标在数轴上例2.解不等式组解:解不等式(1)得x>-1,解不等式(2)得x≤1,解不等式(3)得x<2,∴ ∵在数轴上表示出各个解为:∴原不等式组解集为-1<x≤1注意:借助数轴找公共解时,应选图中阴影部分,解集应用小于号连接,由小到大排列,解集不包括-1而包括1在内,找公共解的图为图(1),若标出解集应按图(2)来画。

例3.解不等式组解:解不等式(1)得x>-1,解不等式(2), ∵|x|≤5, ∴-5≤x≤5,∴将(3)(4)解在数轴上表示出来如图,∴ 原不等式组解集为-1<x≤5。

∴例4.求不等式组的正整数解。

步骤:解:解不等式3x-2>4x-5得:x<3, 解不等式≤1得x≤2, ∴∴原不等式组解集为x≤2,∴这个不等式组的正整数解为x=1或x=21、先求出不等式组的解集。

2、在解集中找出它所要求的特殊解,正整数解。

例5,m 为何整数时,方程组的解是非负数?分析:本题综合性较强,注意审题,理解方程组解为非负数概念,即。

先解方程组用m 的代数式表示x, y, 再运用“转化思想”,依据方程组的解集为非负数的条件列出不等式组寻求m 的取值范围,最后切勿忘记确定m 的整数值。

解:解方程组得∵方程组的解是非负数,∴即解不等式组∴此不等式组解集为≤m≤,又∵m为整数,∴m=3或m=4。

例6,解不等式<0。

分析:由“”这部分可看成二个数的“商”此题转化为求商为负数的问题。

两个数的商为负数这两个数异号,进行分类讨论,可有两种情况。

(1)或(2)因此,本题可转化为解两个不等式组。

解:∵<0, ∴(1) 或(2)由(1)∴无解,由(2)∴-<x<, ∴原不等式的解为-<x<。

例7.解不等式-3≤3x-1<5。

解法(1):原不等式相当于不等式组解不等式组得-≤x<2,∴原不等式解集为-≤x<2。

解法(2):将原不等式的两边和中间都加上1,得-2≤3x<6,将这个不等式的两边和中间都除以3得,-≤x<2,∴原不等式解集为-≤x<2。

例8.x取哪些整数时,代数式与代数式的差不小于6而小于8。

分析:(1)“不小于6”即≥6, (2) 由题意转化成不等式问题解决,解:由题意可得,6≤-<8,将不等式转化为不等式组,∴∴解不等式(1)得x≤6,解不等式(2)得x>-,∴ ∴原不等式组解集为-<x≤6,∴-<x≤6的整数解为x=±3, ±2, ±1, 0, 4, 5, 6。

∴当x取±3,±2,±1,0,4,5,6时两个代数式差不小于6而小于8。

四:练习。

五:重难点,易错点,常见题型和方法。

等式不等式两边都加上(或减去)同一个数或同一个整式,所得结果仍是等式。

两边都加上(或减去)同一个数或同一个整式,不等号的方向不变。

两边都乘以(或除以)同一个数(除数不能是0),所得结果仍是等式。

两边都乘以(或除以)同一个正数,不等号的方向不变。

两边都乘以(或除以)同一个负数,不等号的方向改变。

解一元一次方程:解一元一次不等式:解法步骤(1)去分母;(2)去括号;(3)移项;(4)合并同类项;(5)系数化成1。

(1)去分母;(2)去括号;(3)移项;(4)合并同类项;(5)系数化成1。

在上面的步骤(1)和步骤(5)中,如果乘数或除数是负数,要把不等号改变方向。

解的情况一元一次方程只有一个解。

一元一次不等式的解集含有无限多个数。

一次不等式(组)中参数取值范围求解技巧(提高部分)已知一次不等式(组)的解集(特解),求其中参数的取值范围,以及解含方程与不等式的混合组中参变量(参数)取值范围,近年在各地中考卷中都有出现。

求解这类问题综合性强,灵活性大,蕴含着不少的技能技巧。

下面举例介绍常用的五种技巧方法。

(一)、化简不等式(组),比较列式求解例1.若不等式的解集为,求k值。

解:化简不等式,得x≤5k,比较已知解集,得,∴。

例2.(2001年山东威海市中考题)若不等式组的解集是x>3,则m的取值范围是()。

A、m≥3B、m=3C、m<3D、m≤3解:化简不等式组,得,比较已知解集x>3,得3≥m, ∴选D。

例3.(2001年重庆市中考题)若不等式组的解集是-1<x<1,那么(a+1)(b-1)的值等于_____。

解:化简不等式组,得∵它的解集是-1<x<1,∴也为其解集,比较得∴(a+1)(b-1)=-6.评述:当一次不等式(组)化简后未知数系数不含参数(字母数)时,比较已知解集列不等式(组)或列方程组来确定参数范围是一种常用的基本技巧。

(二)、结合性质、对照求解例4.已知关于x的不等式(1-a)x>2的解集为,则a的取值范围是()。

A、a>0B、a>1C、a<0D、a<1解:对照已知解集,结合不等式性质3得:1-a<0, 即a>1,选B。

例5.若不等式组的解集是x>a,则a的取值范围是()。

A、a<3B、a=3C、a>3D、a≥3解:根确定不等式组解集法则:“大大取较大”,对照已知解集x>a,得a≥3, ∴选D。

变式:关于x的不等式(2a-b)x>a-2b的解集是,则关于x的不等式ax+b<0的解集为______。

(三)、利用性质,分类求解例6.已知不等式的解集是,求a的取值范围。

解:由解集得x-2<0,脱去绝对值号,得。

当a-1>0时,得解集与已知解集矛盾;当a-1=0时,化为0·x>0无解;当a-1<0时,得解集与解集等价。

∴例7.若不等式组有解,且每一个解x均不在-1≤x≤4范围内,求a的取值范围。

解:化简不等式组,得∵它有解,∴ 5a-6<3a a<3;利用解集性质,题意转化为:其每一解在x<-1或x>4内。

于是分类求解,当x<-1时,得,当x>4时,得4<5a-6a>2。

故或2<a<3为所求。

评述:(1)未知数系数含参数的一次不等式,当不明确未知数系数正负情况下,须得分正、零、负讨论求解;对解集不在a≤x<b 范围内的不等式(组),也可分x<a 或x ≥b 求解。

(2)要细心体验所列不等式中是否能取等号,必要时画数轴表示解集分析等号。

(四)、借助数轴,分析求解例8.已知关于x 的不等式组的整数解共5个,则a 的取值范围是________。

相关文档
最新文档