AM调制与解调电路设计
AM调制与解调电路设计
AM 调制与解调电路设计一.设计要求:设计AM 调制和解调电路调制信号为:()1S 3cos 272103cos164t V tV ππ=⨯+=⎡⎤⎣⎦ 载波信号:()2S 6 cos 2107210 6 cos1640t V tV ππ=⨯⨯+=⎡⎤⎣⎦二.设计内容:本题采用普通调幅方式,解调电路采用包络检波方法;调幅电路采用丙类功放电路,集电极调制;检波电路采用改进后的二极管峰值包络检波器。
1.AM 调幅电路设计: (1).参数计算:()6cos1640c u t tVπ=载波为,()3cos164t tVπΩ=调制信号为u则普通调幅信号为am cm U U [1cos164]cos1640a M t t ππ=+其中调幅指数0.5a M =最终调幅信号为am U 6[10.5cos164]cos1640t tππ=+为了让三极管处在过压状态cc U 的取值不能过大,本题设为6v 其中选频网络参数为21LC c ω=c 1640ωπ= L 200H,C 188F 1BB Vμμ===另U(2).调幅电路如下图所示:调幅波形如下:可知调幅信号与包络线基本匹配2.检波电路设计:参数计算:取10L R k =Ω 1.电容C对载频信号近似短路,故应有1cRCω,取()510/10/0.00194c c RCωω==2.为避免惰性失真,有max 10.00336a a RCM M -Ω=,取0.0022,1RC R k C F μ==Ω=,则3.设11212250.2,,330, 1.6566R R R R R R R k R ====Ω=Ω则。
因此, 4.c C 的取值应使低频调制信号能有效地耦合到L R 上,即满足min1cL C R Ω,取4.7c C F μ=3.调制解调电路如下图所示:o am U U 与波形为:o L U U 与解调信号的波形为:下面的波形为解调信号波形,基本正确,没有出现惰性失真和底部切割失真。
基于Multisim的AM调制解调电路设计与研究
0引言信息化飞速发展的今天,无线电传输信号已经广泛的应用。
其原理是通过天线,将有用信号转换成便于传输的电信号。
由于受天线尺寸的影响,又考虑信息传输的有效性,需要在天线的发送端和接收端之间,选用高频振荡信号为载体,对信号进行调制解调,这样可以实现信号的传输。
AM 调制解调电路简单,便于接收,而且占用频带窄,广泛应用于中波无线电广播中,为我们的生活带来了便利。
但AM 调制解调系统在部分电路设计和参数的选择方面等方面,还可以继续研究完善。
1调幅基本原理普通调幅波也叫标准调幅波,用AM 表示,调制信号以单频信号作例,设单频信号为m(t),载波信号为正弦信号,要求载波信号远大于调制信号频率,由振幅调制的定义,已调信号的振幅随调制信号线性变化。
要使已调波不失真,调制度m 应小于或等于1。
当m 大于1时为过调(应当避免)。
2AM 调制与解调电路要实现AM 调制,核心是实现调制信号与载波相乘;AM 号解调是把调制在高频调幅信号中的原调制信号取出来的过程,又称检波[2]。
包络检波又分为峰值包络检波和平均包络检波[3]。
这里主要研究峰值包络检波。
2.1振幅调制电路按实现调幅电平的高低可分为高电平调幅电路和低电平调幅电路。
高电平调幅是直接产生满足发射机输出功率要求的已调波,它的优点是整机效率高,设计时必须兼顾输出功率、效率和调制线性的要求,通常高电平调幅只能产生普通调幅波,低电平调幅电路是先在低功率电平级进行振幅调制,然后再经过高频功率放大放大到所需要的发射功率,DSB,SSB 均采用这种方式[4]。
设计调制器主要要求是调制效率高,调制线性范围大,失真小等,但对低电平调制而言,由于低电平调幅电路的功率较小,对调幅电路来说,输出功率和效率不是主要指标,重点是调制线性的提高。
2.2二极管峰值包络检波器RC 回路有两个作用:一是产生高频电压,并做作检波器的负载,;二是作为高频电流的旁路作用。
图1检波原理图原理说明:检波过程,输入信号是等幅高频电压(载波状态),加电压前C 上的电荷为零,当输入电压从零开始增大时,C 的高频阻抗很小,电压几乎都加在二极管VD 上,当二极管导通C 被充电,因二极管电阻小,充电电流很大。
AM调制与解调系统的设计
AM调制与解调系统的设计AM调制与解调系统是现代通信系统的关键组成部分,广泛应用于无线电通信、广播电视以及音频设备中。
本文将从AM调制与解调的原理、系统设计以及应用等方面进行探讨,旨在深入了解AM调制与解调系统的设计原理与实践。
一、AM调制与解调的原理AM调制是一种模拟调制方式,根据信息信号的幅度变化来调制载频信号的幅度。
它的基本原理是将要传输的信号信息通过线性调制器产生调制信号,然后直接与高频载波通过线性混频器进行混频操作,从而得到被调制后的载波信号。
这样产生的AM信号经过放大、滤波等处理后,就可以进行传输。
AM解调则是将调制信号恢复为原始信号的过程。
一般而言,AM解调的主要任务是将调制信号与收到的AM信号相乘,然后通过低通滤波器将高频成分滤除,从而得到原始信号。
根据调制信号与AM信号的相对幅度,可以得到不同幅度的载波信号,实现信息的解调。
1.调制器设计:调制器是AM调制与解调系统的关键组成部分。
其设计要点是选择合适的调制方式(DSB-SC、SSB、VSB等)、调制频率范围、调制度等参数,并根据需求选择合适的调制器IC,如AD633、AD537等。
2.混频器设计:混频器是将调制信号与载波信号进行混频的关键部件,需要选择合适的混频器IC并根据系统需求确定其工作频率范围和增益。
一般常用的混频器有单/双平衡混频器、高/中/低频混频器等。
3. 低通滤波器设计:低通滤波器的设计用于去除混频后的高频干扰,只保留原始信号的基带部分。
根据系统需求选择合适的滤波器类型(如RC、LC、Bessel、Butterworth等),并设计滤波器的截止频率、通带/阻带衰减等参数。
4.放大器设计:在AM调制与解调系统中,放大器的作用是将调制后的信号放大到合适的幅度,以提高信号质量。
根据系统需求选择合适的放大器型号,如运算放大器、功率放大器等,并确定放大器的放大倍数、带宽等参数。
5.误码率检测与纠错:在AM调制与解调系统中,为了提高信号的可靠性,可以通过引入差错控制技术进行误码率检测与纠错,如使用CRC校验、海明码等方案。
am调制解调课程设计
am调制解调 课程设计一、课程目标知识目标:1. 理解AM调制的基本概念、原理及数学表达式;2. 掌握AM调制信号的波形特点及其调制过程;3. 了解AM解调的原理,掌握两种主要的AM解调方法;4. 能够运用所学知识分析简单的AM调制解调电路。
技能目标:1. 培养学生运用数学工具分析电磁波调制解调过程的能力;2. 培养学生通过实验、观察、数据分析等方法探究AM调制解调规律的能力;3. 提高学生运用所学知识解决实际问题的能力。
情感态度价值观目标:1. 培养学生对电磁波调制解调技术的好奇心和探究欲;2. 培养学生严谨的科学态度和团队合作精神;3. 引导学生认识到AM调制解调技术在通信领域的重要地位和价值;4. 培养学生的创新意识和实践能力。
本课程针对高中年级学生,结合电磁学、数学等相关知识,以实用性为导向,旨在帮助学生掌握AM调制解调的基本原理和实际应用。
课程目标具体、可衡量,便于学生和教师在教学过程中明确预期成果,为后续教学设计和评估提供依据。
二、教学内容1. AM调制基本原理- 电磁波传播基础- 调制的概念与分类- AM调制原理及数学表达式2. AM调制信号波形特点- 调制指数与波形关系- 包络线与相位关系的分析- 调制信号频谱特点3. AM调制过程- 调制器电路原理与设计- 调制过程实验演示与观察- 调制参数对信号质量的影响4. AM解调原理与方法- 解调的概念与分类- 二极管检波原理- 同步检波原理5. AM调制解调应用案例分析- 模拟广播通信- 无线电干扰分析- 现代通信系统中AM技术的改进教学内容依据课程目标,紧密结合教材,确保科学性和系统性。
教学大纲明确,包括五个主要部分,分别对应教材的相应章节。
教学内容安排合理,注重理论与实践相结合,旨在帮助学生全面掌握AM调制解调的相关知识。
三、教学方法1. 讲授法:- 对于AM调制解调的基本原理、数学表达式等理论知识,采用讲授法进行教学,教师通过清晰的讲解、生动的比喻,使学生易于理解和接受。
am调制解调实验报告
am调制解调实验报告AM调制解调实验报告引言:AM调制解调是无线通信领域中常用的一种调制解调技术。
本实验旨在通过实际操作和实验数据的分析,深入了解AM调制解调的原理和实现方式。
一、实验目的本实验的目的是通过搭建AM调制解调电路,实现信号的调制和解调,并对实验数据进行分析和讨论。
通过本实验,可以加深对AM调制解调技术的理解和掌握。
二、实验原理AM调制是将音频信号和载波信号进行线性叠加,形成调制后的信号。
调制后的信号的频谱包含了音频信号的频谱和载波信号的频谱。
解调则是从调制后的信号中恢复出原始的音频信号。
三、实验过程1. 搭建AM调制电路:将音频信号和载波信号输入至调制电路中,通过电容耦合和放大电路的作用,实现调制。
2. 测量调制后的信号:使用示波器对调制后的信号进行测量和观察,分析其频谱和波形。
3. 搭建AM解调电路:将调制后的信号输入至解调电路中,通过整流和滤波电路的作用,恢复出原始的音频信号。
4. 测量解调后的信号:使用示波器对解调后的信号进行测量和观察,分析其频谱和波形。
四、实验数据分析1. 调制后的信号:通过示波器观察到的调制后的信号,可以看到其频谱包含了音频信号的频谱和载波信号的频谱。
通过测量调制后的信号的幅度和频率,可以计算出调制度和调制指数等参数。
2. 解调后的信号:通过示波器观察到的解调后的信号,可以看到其频谱和波形与原始音频信号基本一致。
通过测量解调后的信号的幅度和频率,可以验证解调电路的性能和准确性。
五、实验结果讨论通过对实验数据的分析和讨论,可以得出以下结论:1. AM调制后的信号频谱宽度较大,占用了较宽的频带。
2. AM解调后的信号能够准确地恢复出原始的音频信号。
3. 调制度和调制指数是衡量调制效果的重要参数,对于不同的应用场景和需求,可以根据调制度和调制指数的要求进行调整。
六、实验总结通过本次实验,我对AM调制解调技术有了更深入的了解。
通过实际操作和数据分析,我掌握了AM调制解调的原理和实现方式,并对实验结果进行了讨论和总结。
AM调制及解调
课程设计线路班级:姓名:学号:指导教师:成绩:电子与信息工程学院信息与通信工程系摘要振幅调制信号的解调过程称为同步检波。
有载波振幅调制信号的包络直接反应调制信号的变化规律,可以用二极管包络检波的方法进行检波。
而抑制载波的双边带或单边带振幅调制信号的包络不能直接反应调制信号的变化规律,无法用包络检波进行解调,所以要采用同步检波方法。
同步检波器主要适用于对DSB和SSB信号进行解调,也可以用于AM,但是一般AM调制信号都用包络检波来进行检波。
同步检波法是加一个与载波同频同相的恢复载波信号。
外加载波信号电压加入同步检波器的方法有两种。
利用模拟乘法器的相乘原理,将已调信号频谱从载波频率附近搬移到原来位置,并通过低通滤波器提取多需要的调制(基带)信号,滤除无用的高频分量,从而实现双边带信号的解调。
本文详细介绍了根据模拟乘法器MC1496的AM调制系统和同步检波器的详细方案和各种参数。
给出了基于Multisim软件的解调和解调仿真结果。
关键字:同步检波;AM;Multisim;调制目录1 MC1496芯片设计21.1MC1496部结构及基本性能22 信号调制的一般方法4 2.1模拟调制42.2数字调制42.3脉冲调制43 振幅调制53.1基本原理53.2AM调制与仿真实现53.3DSB调制与仿真实现74解调84.1同步检波器原理框图84.2同步检波解调电路图104.3分析解调过程104.4解调仿真结果114.4.1 AM解调与仿真实现114.4.2 DSB解调与仿真实现125 小结与体会126附录:总电路图131 MC1496芯片设计1.1 MC1496部结构及基本性能在高频电子线路,振幅调制、同步检波、混频、倍频、鉴频等调制与解调的过程均可视为两个信号相乘的过程,而集成模拟乘法器正式实现两个模拟量电压或电流相乘的电子器件。
采用集成模拟乘法器实现上述功能比用分立器件要简单得多,而且性能优越,因此集成模拟乘法器在无线通信、广播电视等方面应用较为广泛。
AM调制解调电路的设计仿真与实现
AM调制解调电路的设计仿真与实现一、AM调制原理AM调制(Amplitude Modulation)是一种将调制信号的振幅变化嵌入到载波信号中的调制方式。
调制信号通常是低频信号,而载波信号则是高频信号。
通过调制,把载波信号的振幅按照调制信号的幅度变化,实现信号的传输。
AM调制过程中,调制指数的大小决定了调制信号对载波信号的影响程度。
二、AM调制电路的设计AM调制电路需要实现信号的调制以及解调两个部分。
1.调制部分设计调制部分的主要任务是将调制信号与载波信号相乘,实现调制效果。
设计需要考虑的要点有:(1)调制器:调制器使用运算放大器作为基本构建单元,将调制信号与载波信号相乘,输出调制波形。
(2)输出滤波器:调制后的信号带有高频成分和调制信号的频率分量,通过使用一个带通滤波器,滤除非关注的频率成分。
2.解调部分设计解调部分的主要任务是从调制后的信号中恢复出原始的调制信号。
设计需要考虑的要点有:(1)检波器:解调电路中最重要的组成部分是检波器。
检波器用于从调制信号中提取出被调制信号,通常使用整流器或鉴频器实现。
(2)滤波器:在解调信号之后,需要通过滤波器去除高频噪声和杂散信号,从而得到原始的调制信号。
三、AM调制解调电路的仿真实验为了验证设计的正确性和有效性,可以使用电子电路仿真软件进行AM调制解调电路的仿真实验。
常用的仿真软件有Multisim、PSPICE等。
在设计好AM调制解调电路模型之后,可以进行以下仿真实验:1.调制效果验证:输入一个调制信号和一个载波信号,观察输出调制波形的振幅变化情况。
可以调整调制指数或载波频率,观察调制效果的变化。
2.解调效果验证:输入一个调制信号和一个载波信号的混合信号,通过滤波器和检波器,恢复出原始的调制信号。
观察解调效果的清晰度和准确性。
通过仿真实验,可以对设计的AM调制解调电路进行参数优化和性能评估,进一步提高电路的可靠性和效率。
四、AM调制解调电路的实际实现在进行仿真实验验证通过后,可以将AM调制解调电路进行实际实现,制作出实际的电路板和元件。
AM调制解调电路的设计与仿真报告
AM调制解调电路的设计与仿真报告课程设计任务书学生姓名:张媛专业班级:电信0905班指导教师:黄晓放工作单位:信息工程学院题目: AM调制解调电路的设计仿真与实现初始条件:可选元件:运算放大器,三极管,电阻、电位器、电容、二极管若干,直流电源Vcc=+12V,V EE= -12V,或自选元器件。
可用仪器:示波器,万用表,直流稳压源,毫伏表等。
要求完成的主要任务:(1)设计任务根据要求,完成对AM调制解调电路的设计、装配与调试。
(2)设计要求①载波信号:频率,100 Hz~1KHz;幅度,1V左右;调制信号频率:1K~50KHz;幅度,10V以下。
②选择电路方案,完成对确定方案电路的设计。
计算电路元件参数与元件选择、并画出总体电路原理图,阐述基本原理。
(用Proteus画电路原理图并实现仿真)③安装调试并按规范要求格式完成课程设计报告书。
时间安排:1、2010 年1月3日至2010年1月7日,完成仿真设计、制作与调试;撰写课程设计报告。
2、2010 年1月8日提交课程设计报告,进行课程设计验收和答辩。
参考文献:1)2)3)指导教师签名:年月日系主任(或责任教师)签名:年月日目录1.Proteus软件简介 (3)2.AM调制解调电路基本原理 (4)2.1 振幅调制电路 (4)2.1.1 振幅调制2.2 振幅解调电路3.各组成部分的工作原理3.1调制电路的工作原理 (5)3.2 解调电路的工作原理 (6)4.Proteus原理图绘制4.1 准备画图4.2放置元件及排版4.3模拟及仿真5 .Proteus电路的仿真6.仿真结果与分析7.1计算元件参数7.2电路7.3电路7.设计过程中发现的问题8.设计总结9.心得体会10.仪器仪表清单11.参考文献12.附件:本科生课程设计成绩评定表1.Proteus软件简介Proteus软件是英国LABCENTERELECTRONICS公司出版的EDA工具软件。
它不仅具有其它EDA工具软件的仿真功能,还能仿真单片机及外围器件。
AM调制与解调的设计与实现
Simulink模块库简介
Continuous(连续模块)库 Discrete(离散模块)库 函数与表格模块库 Math(数学模块)库 Sinks(信号输出模块)库:常用模块为Scope(示波器 模块)、XYGraph(二维信号显示模块)、Display(显 示模块) Sources(信号源模块)库,常见模块有:Constant(输 入常数模块)、Signal Generator(信号源发生器模块)。 Signal Generator用于产生不同的信号波形,其中包括: 正弦波、方波、锯齿波信号。Sources(信号源模块)还 包括其它常用模块: Ramp(斜坡输入信号)、Sine Wave(正弦波输入信 号)、Step(阶跃输入信号)、Clock(时间信号)、 Pulse(脉冲信号)等。
2.4调幅波的解调
调幅波的解调即是从调幅信号中取出调制信号的过程,通常称 为检波。 调幅波解调方法有二极管包络检波器、同步检波器。不论哪种 振幅调制信号,都可采用相乘器和低通滤波器组成的同步检波电路进 行解调。但是,对于普通调幅信号来说,它的载波分量未被抑制掉, 可以直接利用非线性器件实现相乘作用,得到所需的解调电压,而不 必另加同步信号,通常将这种振幅检波器称为包络检波器。目前应用 最广的是二极管包络检波器,而在集成电路中,主要采用三极管射极 包络检波器。 同步检波,又称相干检波,主要用来解调双边带和单边带调制 信号,它有两种实现电路。一种由相乘器和低通滤波器组成,另一种 直接采用二极管包络检波。
设计举例: 1、通带频率调制的系统的参考仿真框图
图 2-7 通带频率调制的仿真系统中示波器的波形图
图2-8 通带频率调制后信号的频谱图
2、通带相位调制的系统的参考仿真框图
《信号与系统》课程设计-AM调制、解调
《信号与系统》课程设计——AM 调制、解调【设计题目】AM 调制、解调【设计要求】(1) 了解AM 调制、解调原理。
(2) 设计AM 调制系统。
(3) 设计AM 解调系统。
【设计工具】MATLAB【设计原理】在离散时间中,用正弦载波的幅度调制是)cos(][][n w n x n y c =式中假设消息信号的带宽小于c w 。
已调信号有一个DTFT ,它是分别已c w w ±=为中心的)(jw e X 的重复。
如果人们总想让在一条通信信道上同时传送最大的用户数,这个重复的部分是不希望的。
一种天真的解决办法是用复指数载波n jw c e 来替代正弦载波。
然而所得到的已调信号n jw ce n x ][有一个虚部分量,而这个是无法在一个真实的信道上传送。
单边带(SSB )是一种合适的解决办法,它等效于在传输之前用截至频率为c w 的理想低通滤波器对y [n ]滤波,这个滤波后的信号占有和x [n ]相同的频带宽度,而且x [n ]能完全从已发送的信号中恢复出来。
可以利用希尔伯特变换构成(SSB )信号。
一个理想的希尔伯特变换的频率响应是⎩⎨⎧<≤-<≤-=0,0,)(w j w j e H jw ππ由相位关系,希尔伯特也称作90°相移器。
在接收机端,通过一种称为同步AM 解调的技术可以将消息信号x [n ]恢复,这可经由])2cos[1]([][cos ][2]cos[][2][2n w n x n w n x n w n y n w c c c +===为了恢复x [n ],可以将w [n ]通过低通滤波消除以c w 2为中心的频谱分量。
这里一个关键的问题,也是一个潜在的困难是接收机必须要有一个与发射机同步的本地振荡器。
首先设计一个信号x [n ]的SSB 的调制系统。
假设载波频率2/π=c w ,⎪⎩⎪⎨⎧≤≤--=n n n n n x 其余,....0640,. (4)/)32()4/)32(sin(][ππ 求已调信号y [n ]。
AM调制与解调
, 本地解调载波
,则两信号相乘后的输出为
= 式中,k 为乘法器的相乘系数。令 滤波器后的输出信号为
,且低通滤波器的传输系数为 1,则经低通
当恢复的本地载波与发射端的调制载波同步(同频,同相),即 即表明同步检波器能无失真地将调制信号恢复出来。
,
时,有
源程序:
clear;%将工作空间数据清空 ma=0.3;%调制系数 omega_c=2*pi*8000; omega=2*pi*400; t=0:5/400/1000:5/400; u_cm=1;fam=1;fcm=1;
摘要
AM 调制与解调
解调是调制的逆过程,它的作用是从已调波信号中取出原来的调制信号。对于幅度调制来说, 解调是从它的幅度变化提取调制信号的过程。对于频率调制来说,解调是从它的频率变化提 取调制信号的过程。而在在实际应用当中大型、复杂的系统直接实验是十分昂贵的,而采用 仿真实验,可以大大降低实验成本。在实际通信中,很多信道都不能直接传送基带信号,必 须用基带信号对载波波形的某些参量进行控制,使载波的这些参量随基带信号的变化而变 化,即所谓正弦载波调制。利用仿真软件对系统进行仿真可以弥补真实的实验设备所不能满 足的条件,减少实验成本。
非线性电路 图1
低通滤波器
包络检波器的输入信号为振幅调制信号
,其频谱由载频 和边
频
,
组成,载频与上下边频之差就是 。因而它含有调制信号的信息。
DSB 调制与解调
AM 调制与解调
在 AM 调制过程中,如果将载波分量抑制掉,就可形成抑制载波双边带信号。双边带信 号可以用载波和调制信号直接相乘得到,即
式中,常数 k 为相乘电路的相乘系数。
仿真及分析
AM 调制与解调
通信课程设计AM和OOK的调制与解调电路设计
计算机与信息工程系《通信原理》课程设计报告专业通信工程班级 ****学号 ******姓名 *****报告完成日期 2011-12-24指导教师 ***** 评语:成绩:批阅教师签名:批阅时间:摘要通信按照传统的理解就是信息的传输,信息的传输离不开它的传输工具,通信系统应运而生,我们此次课程设计的目的就是要对调制解调的通信系统进行仿真研究。
当然,在通信系统的设计研发过程中,通信系统的软件仿真已成为必不可少的一部分。
目前,电子设计自动化EDA(Electronic Design Automatic)已成为通信系统设计的主潮流。
为了使复杂的设计过程更加便捷高效,使得分析与设计所需的时间和费用降低。
美国Elanix公司推出的基于PC机Windows平台的SystemView动态系统仿真软件,是一个比较流行的,优秀的仿真软件。
它是一个信号级的系统仿真软件,主要用于电路与通信系统的设计、仿真、能满足从信号处理、滤波器设计,到复杂的通信系统等要求。
通常,调制分为模拟调制和数字调制,模拟调制。
模拟调制常用的方法有AM 调制、DSB调制、SSB调制;数字调制常用的方法有BFSK调制等。
经过调制不仅可以进行频谱搬移,把调制信号的频谱搬移到所希望的位置上,从而将调制信号转换成适合于信道传输或便于信道多路复用的已调信号,而且它对系统的传输有效性和传输的可靠性有着很大的影响。
调制方式往往决定着一个通信系统的性能。
本文利用SystemView软件设计AM和OOK的调制和解调电路,并通过分析其输人输出波形验证所设计电路的正确性。
关键词:SystemView软件,AM,OOKAbstractAccording to the traditional communication understanding is the information transmission, information transmission is inseparable from its transmission tools, communication system emerge as the times require, we have designed this course is aim to modem communication system simulation. Of course, in communication system design and development process, the communication system software simulation has become an essential part of it. At present, the electronic design automation EDA (Electronic Design Automatic) has become the main trend of communication system design. In order to make the complex design process more efficient and convenient, making the analysis and design of the time and costs is required. U.S. Elanix company introduced PC-based Windows platform SystemView dynamic system simulation software, is a more popular, excellent simulation software.It is a signal-level system simulation software, and communication systems primarily for circuit, design, simulation, to meet from the signal processing, filter design, to complex communication system and other requirements.Typically, the modulation is divided into analog modulation and digital modulation, analog modulation. Analog modulation methods are commonly used AM modulation, DSB modulation, SSB modulation; digital modulation methods are commonly used BFSK modulation. Spectrum can be modulated used not only move, move the modulated signal spectrum to the desired position, which will convert the modulated signal suitable for transmission or to facilitated the channel multiplexed channels modulated signal, the transmission on system and has a great impact. Modulation often determines the performance of a communication system.This paper uses the SystemView software to design AM and OOK modulation and demodulation circuit, and through the analysis of the input and output waveforms verify the correctness of the design circuit.关键词:SystemView软件,AM,OOK目录摘要 (2)A BSTRACT (3)第1章系统概述 (3)1.1设计题目 (3)1.2设计目的和内容 (3)1.2.1 设计目的 (3)1.2.2设计要求 (3)1.2.3设计内容 (3)第2章软件开发 (3)2.1S YSTEMVIEW软件简介 (3)2.2设计原理 (4)2.2.1模拟调制系统原理 (4)2.2.2数字调制系统 (5)2.3调制解调仿真电路图 (6)2.3.1 AM调制解调仿真电路 (6)2.3.2 ASK(OOK)调制解调仿真电路 (7)第3章系统调试及分析 (9)3.1仿真波形图 (9)3.1.1 AM调制解调仿真仿真后的波形 (9)3.1.2 ASK(OOK)调制解调仿真仿真后的波形 (9)3.2调制系统仿真结果分析 (10)3.2.1 AM调制系统仿真结果分析 (10)3.2.2 ASK(OOK) 调制系统仿真结果分析 (10)结论 (11)谢辞 (12)参考文献 (13)前言通信按照传统的理解就是信息的传输。
AM信号的调制与解调(带仿真图)
AM信号的调制与解调(带仿真图)
AM调制(Amplitude Modulation)是指将一个较低频率的信息信号,如语音、音乐等,通过调制将其变成一个载波的振幅随时间变化的信号,使之能够通过远距离传输,同时也可通过解调还原出原始信号。
AM信号的调制过程:
首先,我们需要一个高频载波信号(通常为数十kHz至数百kHz范围内的正弦波信号),用于携带信息信号。
将载波信号的振幅、频率、相位等参数保持不变,称为“未调制”的载波信号。
接着,将需要传输的信息信号(如语音、音乐等)与未调制的载波信号进行线性加和,得到调制信号。
调制信号的振幅随着信息信号的变化而变化,从而实现了信息的传输。
AM信号的解调过程:
当调制信号到达接收端时,需要通过解调还原出原始信号。
解调方法有多种,这里介绍AM信号的一个简单解调方法——幅度解调(AM Detector)。
幅度解调的基本原理是利用二极管的阻抗特性,将入射信号的高频载波部分“切掉”,只保留信息信号的部分,从而实现解调。
具体操作过程为:
首先,将接收到的调制信号通过一个带通滤波器(Bandpass Filter)滤掉不需要的高频信号,保留低频信息信号。
接着,将滤波后的信号通过一个二极管(Detector)进行整流(Rectify),从而将信号全部变为正半波。
最后,将整流后的信号再通过一个低通滤波器(Lowpass Filter)滤掉高频噪声,从而还原出原始信息信号。
AM调制与解调的设计与实现
AM调制与解调的设计与实现首先,AM调制的设计与实现。
AM调制即将模拟信号与载波进行幅度调制,其原理是根据调制信号的幅度变化来改变载波的幅度。
设计和实现AM调制需要进行以下步骤:1.选择合适的载波频率:根据传输信号的带宽和频谱要求,选择适当的载波频率。
一般可以选择AM广播中使用的550kHz至1.6MHz的频率范围。
2.生成载波信号:使用信号发生器或振荡器产生制定频率的正弦波作为载波信号。
3.调制信号处理:将模拟信号经过适当的增益控制、滤波等处理,使其适合用于调制。
4.幅度调制:将调制信号与载波信号相乘,即可完成幅度调制。
可以采用电路或数字信号处理器等设备进行计算和运算。
5.输出调制信号:信号调制后,需要经过功率放大等处理,以增加信号的传输距离和稳定性,并输出到信号发送设备或模拟调制器。
接下来,是AM解调的设计与实现。
AM解调是将调制信号还原为原始信号的过程,其中常用的解调方法有包络检波和同步检波。
1.包络检波:包络检波是一种简单有效的AM解调方法。
将AM调制信号经过一个非线性元件(如二极管、晶体管等)进行整流,得到信号的包络。
然后再通过一个低通滤波器将高频成分滤除,得到原始信号的波形。
2. 同步检波:同步检波是一种高级的AM解调方法。
通过与载波频率相同的Local Oscillator(LO)产生一路相干的参考信号,并与接收到的调制信号进行乘法运算。
得到的乘积信号经过低通滤波器后,即可得到原始信号。
无论是包络检波还是同步检波,解调后得到的信号仍然可能存在一定的噪声和失真。
因此,在实际的设计与实现中,还需要对解调信号进行进一步的处理,如增益控制、滤波、抗干扰处理等,以获得清晰、稳定的原始信号。
总结起来,AM调制与解调的设计与实现需要进行载波频率选择、信号处理、幅度调制、解调方法选择等步骤。
在实际应用中,还需要对调制和解调信号进行进一步的合理处理,以提高信号的质量和稳定性。
AM的调制与解调试验实验报告
实验报告学号:0961120102 姓名:李欣彦专业:电子信息工程实验题目:AM的调制与解调实验幅度调制的一般模型幅度调制是用调制信号去控制高频正弦载波的幅度,使其按调制信号的规律变化的过程。
幅度调制器的一般模型如图3-1所示。
图3-1 幅度调制器的一般模型图中,为调制信号,为已调信号,为滤波器的冲激响应,则已调信号的时域和频域一般表达式分别为(3-1)(3-2)式中,为调制信号的频谱,为载波角频率。
由以上表达式可见,对于幅度调制信号,在波形上,它的幅度随基带信号规律而变化;在频谱结构上,它的频谱完全是基带信号频谱在频域内的简单搬移。
由于这种搬移是线性的,因此幅度调制通常又称为线性调制,相应地,幅度调制系统也称为线性调制系统。
在图3-1的一般模型中,适当选择滤波器的特性,便可得到各种幅度调制信号,例如:常规双边带调幅(AM)、抑制载波双边带调幅(DSB-SC)、单边带调制(SSB)和残留边带调制(VSB)信号等。
3.1.2 常规双边带调幅(AM)1. AM信号的表达式、频谱及带宽在图3-1中,若假设滤波器为全通网络(=1),调制信号叠加直流后再与载波相乘,则输出的信号就是常规双边带调幅(AM)信号。
AM调制器模型如图3-2所示。
图3-2 AM调制器模型AM信号的时域和频域表示式分别为(3-3)(3-4)式中,为外加的直流分量;可以是确知信号也可以是随机信号,但通常认为其平均值为0,即。
点此观看AM调制的Flash;AM信号的典型波形和频谱分别如图3-3(a)、(b)所示,图中假定调制信号的上限频率为。
显然,调制信号的带宽为。
由图3-3(a)可见,AM信号波形的包络与输入基带信号成正比,故用包络检波的方法很容易恢复原始调制信号。
但为了保证包络检波时不发生失真,必须满足,否则将出现过调幅现象而带来失真。
由Flash的频谱图可知,AM信号的频谱是由载频分量和上、下两个边带组成(通常称频谱中画斜线的部分为上边带,不画斜线的部分为下边带)。
通信原理实验08 模拟调制解调实验(AM)
实验八模拟调制解调实验(AM)实验内容1.模拟调制(AM,DSB,SSB)实验2.模拟解调(AM)实验一. 实验目的1.掌握用集成模拟乘法器实现全载波调幅、抑止载波双边带调幅和单边带调幅的方法。
2.研究已调波与调制信号以及载波信号的关系。
3.通过实验对比全载波调幅、抑止载波双边带调幅和单边带调幅的波形。
4.掌握二极管峰值包络检波的原理。
二.实验电路工作原理(一) 调制实验幅度调制就是载波的振幅(包络)随调制信号的参数变化而变化。
本实验中载波是需外加455KHz高频信号,1KHz的低频信号为调制信号。
振幅调制器即为产生调幅信号的装置。
用MC1496集成电路构成的调幅器电路图如图7-2所示。
图中WB01用来调节引出脚1、4之间的平衡,器件采用双电源方式供电(+12V,-8V),所以5脚偏置电阻RB08接地。
电阻RB03、RB11、RB12、R02、R09为器件提供静态偏置电压,保证器件内部的各个晶体管工作在放大状态。
载波信号加在V1-V4的输入端,即引脚8、10之间;载波信号Vc经高频耦合电容CB01从10脚输入,CB02为高频旁路电容,使8脚交流接地。
调制信号加在差动放大器V5、V6的输入端,即引脚1、4之间,调制信号VΩ经低频偶合电容EB01从1脚输入。
2、3脚外接1KΩ电阻,以扩大调制信号动态范围。
当电阻增大,线性范围增大,但乘法器的增益随之减小。
已调制信号取自双差动放大器的两集电极(即引出脚6、12之间)输出。
(二) 解调实验检波过程是一个解调过程,它与调制过程正好相反。
检波器的作用是从振幅受调制的高频信号中还原出原调制的信号。
还原所得的信号,与高频调幅信号的包络变化规律一致,故又称为包络检波器。
假如输入信号是高频等幅信号,则输出就是直流电压。
这是检波器的一种特殊情况,在测量仪器中应用比较多。
例如某些高频伏特计的探头,就是采用这种检波原理。
若输入信号是调幅波,则输出就是原调制信号。
这种情况应用最广泛,如各种连续波工作的调幅接收机的检波器即属此类。
AM调制与解调
振荡级:产生频率为4MHz的载波信号。
缓冲级:将晶体振荡级与调制级隔离,减小调制级对晶体振荡级的影响。
放大级:增大载波输出功率。
AM调制级:将话音信号调制到载波上,产生已调波。
输出网络及天线:对前级送来的信号进行功率放大,通过天线将已调高频载波电流以电磁波的形式发射到空间。
输出波形如图:
图12.发射机输出波形
输出频谱:
图13.发射机输出频谱
超外差式调幅接收机
一、系统设计
接收机从天线回路接受到高频信号先经过小信号放大器进行放大,让后送至混频器与本地震荡器相混合,所得到的包络形状不变,仍与原信号的波形相似,但频率为两个信号之差,生成中频信号。中频信号经过中频放大器,送入检波器得出调制信号,再经过低频放大器放大,送到扬声器转变为声音信号。
高频小信号放大器电路如图:
图6.高频小信号放大器电路
图7.输出波形
4、AM调幅:
AM调制采用集电极调幅,所谓的集电极调幅就是用调制信号来改变高频功率放大器的集电极直流电压电源,以实现调幅。由图可知,低频调制信号 与直流电源Vcc相串联,因此放大器的有效集电极电源电压等于上述两个电压之和。他随着调制信号波形而变化,在过压状态下,集电极电流的基波分量Icm1随集电极电源电压成正比变化。因此,集电极的回路输出高频电压振幅将随调制信号的波形而变化,于是得到调幅波输出。
海 南 大 学
高频电子线路课程合计报告
小功率调幅发射机及超外差式调幅接收机设计
专业班级:
姓名:
学号:
学号
姓名
班级
小功率调幅发射机
一、系统设计
发射机的主要作用是完成有用的低频信号对高频信号的调制,将其变为在某一个中心频率上具有一定带宽、适合通过天线发射出去的电磁波。调幅发射机通常由主振级、缓冲级、中间放大级、振幅调制、音频输入和输出网络组成。根据设计要求,载波频率f=4MHz,主振级采用西勒振荡电路,输出的载波的频率可以直接满足要求,不需要倍频器。系统原理图如下图所示:
AM波调制解调电路设计
目录摘要 (2)方案论证 (3)单元电路设计 (3)问题及解决方案 (13)元器件清单 (13)心得体会 (13)参考文献 (15)摘要:本次课程设计,我组以AM波调制解调电路设计为课题,借助Multisim仿真软件,运用调幅方式达到信号的调制、解调的要求。
设计思路即运用电容三端式反馈振荡器产生高频交流电信号作为载波,通过基极调幅电路将调制信号附加在高频载波上调制,得到已调信号发送出去,然后经过包络检波电路解调和LC式集中选择性滤波器滤波,输出低频调制信号,最后通过三极管放大,输出最终信号。
每个通信系统都必须有发送设备,传输媒质,接收设备,本次设计主要完成其中主要的调制解调过程。
一、方案论证1、高频振荡器方案一:采用互感耦合振荡器产生高频振荡,互感耦合振荡器有三种形式,调集电路,调基电路和调发电路,这是根据振荡回路在集电极电路、基极电路和发射极电路来区分的。
优点是在调整反馈时,基本上不影响振荡频率。
但是,它们的工作频率不宜过高,一般用于中、短波波段。
方案二:采用电感反馈式三端振荡器产生高频振荡,优点容易起振,改变回路电容时,基本不影响电路的反馈系数。
工作频率较高时,波形失真较大。
方案三:采用电容反馈式三端振荡器产生高频振荡,优点是输出波形较好,适用于较高的工作频率。
由于设计指标采用1MHz的载波,属于高频范围,因此经过比较,振荡器部分选用方案三。
2、调幅电路方案一:采用平方律调幅,主要利用电子器件的非线性特性进行调制,这种方法得到的调幅度不大。
方案二:采用残留边带调幅,优点是节约频带和发射功率,但是调制与解调都比较复杂。
方案三:采用基极调幅,就是用调制信号电压来改变高频功率放大器的基极偏压,以实现调幅。
优点是所需的调制功率很小,但平均集电极效率不高。
综合实用性、实现难易程度等多方面因素,调幅电路选择方案三。
3、解调电路方案一:采用同步检波,它的特点是必须加一个频率和相位都与被拟制的载波相同的电压。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
AM 调制与解调电路设计
一.设计要求:设计AM 调制和解调电路
调制信号为:()1S 3cos 272103cos164t V tV ππ=⨯+=⎡⎤⎣⎦ 载波信号:()2S 6 cos 2107210 6 cos1640t V tV ππ=⨯⨯+=⎡⎤⎣⎦
二.设计内容:本题采用普通调幅方式,解调电路采用包络检波方法;
调幅电路采用丙类功放电路,集电极调制;
检波电路采用改进后的二极管峰值包络检波器。
1.AM 调幅电路设计: (1).参数计算:
()6cos1640c u t tV
π=载波为,
()3cos164t tV
πΩ=调制信号为u
则普通调幅信号为am cm U U [1cos164]cos1640a M t t ππ=+
其中调幅指数
0.5a M =
最终调幅信号为
am U 6[10.5cos164]cos1640t t ππ=+
为了让三极管处在过压状态cc U 的取值不能过大,本题设为6v 其中选频网络参数为
21
LC c ω=
c 1640ωπ= L 200H,C 188F 1BB V
μμ===另U
(2).调幅电路如下图所示:
调幅波形如下:
可知调幅信号与包络线基本匹配
2.检波电路设计:
参数计算:
取10L R k =Ω 1.电容
C
对载频信号近似短路,故应有1
c
RC ω
,取
()510/10/0.00194c c RC ωω==
2.为避免惰性失真,有m a x
/0.00336
a RC M Ω=
,取0.0022,1RC R k C F μ==Ω=,则
3.设
11212250.2,,330, 1.6566
R R R R R R R k R ====Ω=Ω则。
因此, 4.c C 的取值应使低频调制信号能有效地耦合到L R 上,即满足min
1
c L C R Ω
,取
4.7c C F μ=
3.调制解调电路如下图所示:
o am U U 与波形为:
o L U U 与解调信号的波形为:
下面的波形为解调信号波形,基本正确,没有出现惰性失真和底部切割失真。