智能控制习题答案解析

合集下载

智能控制答案(最终版3题全做)

智能控制答案(最终版3题全做)

智能控制作业1.已知某一炉温控制系统,要求温度保持着600℃恒定。

针对该控制系统有以下控制经验。

(1)若炉温低于600℃,则升压;低得越多升压越高。

(2)若炉温高于600℃,则降压;高得越多降压越低。

(3)若炉温等于600℃,则保持电压不变。

设模糊控制器为一维控制器,输入语言变量为误差,输出为控制电压。

输入、输出变量的量化等级为7级,取5个模糊集。

试设计隶属度函数误差变化划分表,控制电压变化划分表和模糊控制规则表。

解:(1) 确定变量定义理想温度为600℃,实际炉温为T,则温度差为:e=600-T将温度差e作为输入变量。

(2)输入量和输出量的模糊化将偏差e分成5个模糊集:负大(NB),负小(NS),零(ZO),正小(PS),正大(PB)。

将偏差e的变化分成7个等级:-3,-2,-1,0,+1,+2,+3,从而得到温度变化模糊表如表1所示:控制电压u也分成5个模糊集:负大(NB),负小(NS),零(ZO),正小(PS),正大(PB)。

将偏差u的变化分成7个等级:-3,-2,-1,0,+1,+2,+3,而得到电压变化模糊表如表2示:MATLAB仿真程序如下:%Fuzzy Control for water tankclear all;close all;a=newfis('fuzz_tank');a=addvar(a,'input','e',[-3,3]); %Parameter ea=addmf(a,'input',1,'NB','zmf',[-3,-1]);a=addmf(a,'input',1,'NS','trimf',[-3,-1,1]);a=addmf(a,'input',1,'Z','trimf',[-2,0,2]);a=addmf(a,'input',1,'PS','trimf',[-1,1,3]);a=addmf(a,'input',1,'PB','smf',[1,3]);a=addvar(a,'output','u',[-4,4]); %Parameter ua=addmf(a,'output',1,'NB','zmf',[-4,-1]);a=addmf(a,'output',1,'NS','trimf',[-4,-2,1]);a=addmf(a,'output',1,'Z','trimf',[-2,0,2]);a=addmf(a,'output',1,'PS','trimf',[-1,2,4]);a=addmf(a,'output',1,'PB','smf',[1,4]);rulelist=[1 1 1 1; %Edit rule base2 2 1 1;3 3 1 1;4 4 1 1;5 5 1 1];a=addrule(a,rulelist);a1=setfis(a,'DefuzzMethod','mom'); %Defuzzywritefis(a1,'tank'); %Save to fuzzy file "tank.fis" a2=readfis('tank');figure(1);plotfis(a2);figure(2);plotmf(a,'input',1);figure(3);plotmf(a,'output',1);flag=1;if flag==1showrule(a) %Show fuzzy rule baseruleview('tank'); %Dynamic Simulationenddisp('-------------------------------------------------------');disp(' fuzzy controller table:e=[-3,+3],u=[-4,+4] ');disp('-------------------------------------------------------');for i=1:1:7 e(i)=i-4;Ulist(i)=evalfis([e(i)],a2); endUlist=round(Ulist)e=-3; % Erroru=evalfis([e],a2) %Using fuzzy inference2.用高级语言(C 、VC++、MATLAB 等)编程实现用BP 神经网络实现下列函数的非线性映射:101()log ,110f x x x x=≤≤ 分析误差曲线及网络的泛化能力。

智能控制技术复习题课后答案-图文

智能控制技术复习题课后答案-图文

智能控制技术复习题课后答案-图文一、填空题1.智能控制是一门新兴的学科,它具有非常广泛的应用领域,例如、、和1、交叉学科在机器人控制中的应用在过程控制中的应用飞行器控制2.传统控制包括和2、经典反馈控制现代理论控制3.一个理想的智能控制系统应具备的基本功能是、、和3、学习功能适应功能自组织功能优化能力4.智能控制中的三元论指的是:、和4、运筹学,人工智能,自动控制5.近年来,进化论、、和等各门学科的发展给智能控制注入了巨大的活力,并由此产生了各种智能控制方法。

5、神经网络模糊数学专家系统6.智能控制方法比传统的控制方法更能适应对象的、和6、时变性非线性不确定性7.傅京逊首次提出智能控制的概念,并归纳出的3种类型智能控制系统是、和7、人作为控制器的控制系统、人机结合作为控制器的控制系统、无人参与的自主控制系统8、智能控制主要解决传统控制难以解决的复杂系统的控制问题,其研究的对象具备的3个特点为、和8、不确定性、高度的非线性、复杂的任务要求9.智能控制系统的主要类型有、、、、和9、分级递阶控制系统,专家控制系统,神经控制系统,模糊控制系统,学习控制系统,集成或者(复合)混合控制系统10.智能控制的不确定性的模型包括两类:(1);(2)10、(1)模型未知或知之甚少;(2)模型的结构和参数可能在很大范围内变化。

11.控制论的三要素是:信息、反馈和控制12.建立一个实用的专家系统的步骤包括三个方面的设计,它们分别是、和知识库的设计推理机的设计人机接口的设计13.专家系统的核心组成部分为和知识库、推理机14.专家系统中的知识库包括了3类知识,它们分别为、、和判断性规则控制性规则数据15.专家系统的推理机可采用的3种推理方式为推理、和推理。

15、正向推理、反向推理和双向推理16.根据专家控制器在控制系统中的功能,其可分为和16、直接型专家控制器、间接型专家控制器17.普通集合可用函数表示,模糊集合可用函数表示。

(完整版)智能控制题目及解答

(完整版)智能控制题目及解答

智能控制题目及解答第一章绪论作业作业内容1.什么是智能、智能系统、智能控制?2.智能控制系统有哪几种类型,各自的特点是什么?3.比较智能控制与传统控制的特点.4.把智能控制看作是AI(人工智能)、OR(运筹学)、AC(自动控制)和IT(信息论)的交集,其根据和内涵是什么?5.智能控制有哪些应用领域?试举出一个应用实例,并说明其工作原理和控制性能.1 答:智能:能够自主的或者交互的执行通常与人类智能有关的智能行为,如判断、推理、证明、识别、感知、理解、通信、设计、思考、规划、学习等一系列活动的能力,即像人类那样工作和思维。

智能系统:是指具有一定智能行为的系统,对于一定的输入,它能产生合适的问题求解相应。

智能控制:智能控制是控制理论、计算机科学、心理学、生物学和运筹学等多方面综合而成的交叉学科,它具有模仿人进行诸如规划、学习、逻辑推理和自适应的能力。

是将传统的控制理论与神经网络、模糊逻辑、人工智能和遗传算法等实现手段融合而成的一种新的控制方法。

2 答:(1)人作为控制器的控制系统:人作为控制器的控制系统具有自学习、自适应和自组织的功能。

(2)人—机结合作为作为控制器的控制系统:机器完成需要连续进行的并需快速计算的常规控制任务,人则完成任务分配、决策、监控等任务。

(3)无人参与的自组控制系统:为多层的智能控制系统,需要完成问题求解和规划、环境建模、传感器信息分析和低层的反馈控制任务.3 答:在应用领域方面,传统控制着重解决不太复杂的过程控制和大系统的控制问题;而智能控制主要解决高度非线性、不确定性和复杂系统控制问题。

在理论方法上,传统控制理论通常采用定量方法进行处理,而智能控制系统大多采用符号加工的方法;传统控制通常捕获精确知识来满足控制指标,而智能控制通常是学习积累非精确知识;传统控制通常是用数学模型来描述系统,而智能控制系统则是通过经验、规则用符号来描述系统。

在性能指标方面,传统控制有着严格的性能指标要求,智能控制没有统一的性能指标,而主要关注其目的和行为是否达到。

最新《智能控制》课程考试试题C及答案

最新《智能控制》课程考试试题C及答案

智能控制》课程考试试题C《智能控制》课程考试试题C参考答案一、填空题(1) 符号主义 (2) 联接主义 (3) 行为主义 (4) 期望 (5) 期望(6) 知识库 (7) 推理机 (8) 傅京孙 (9) 萨里迪斯 (10) 蔡自兴(11) 组织级 (12) 协调级 (13) 执行级 (14) 专家控制(15) 递阶控制 (16) 模型控制 (17) 遗传算法(18) 传统反馈 (19) 前馈神经网络 (20) 反馈神经网络二、选择题1、D2、A3、B4、A5、D6、B7、C8、A9、C 10、D三、问答题1、答:长期以来,自动控制科学已对整个科学技术的理论和实践做出重要贡献,并为人类的生产、经济、社会、工作和生活带来巨大利益。

然而,现代科学技术的迅速发展和重大进步,已对控制和系统科学提出新的更高的要求,自动控制理论和工程正面临新的发展机遇和严峻挑战。

传统控制理论,包括经典反馈控制、近代控制和大系统理论等,在应用中遇到不少难题。

多年来,自动控制一直在寻找新的出路。

现在看来,出路之一就是实现控制系统的智能化,以期解决面临的难题。

人工智能(artificial intelligence, AI )的产生和发展正在为自动控制系统的智能化提供有力支持。

人工智能影响了许多具有不同背景的学科,它的发展已促进自动控制向着更高的水平)── 智能控制(intelligent control,IC)发展。

自动控制既面临严峻挑战,又存在良好发展机遇。

为了解决面临的难题,一方面要推进控制硬件、软件和智能的结合,实现控制系统的智能化;另一方面要实现自动控制科学与计算机科学、信息科学、系统科学以及人工智能的结合,为自动控制提供新思想,新方法和新技术,创立边缘交叉新学科,推动智能控制的发展。

智能控制是人工智能和自动控制的重要部分和研究领域,并被认为是通向自主机器递阶道路上自动控制的顶层。

人工智能的发展促进自动控制向智能控制发展。

智能控制技术复习题课后答案讲解

智能控制技术复习题课后答案讲解
10.智能控制的不确定性的模型包括两类:(1);
(2)。
10、(1)模型未知或知之甚少;(2)模型的结构和参数可能在很大范围内变化。
立一个实用的专家系统的步骤包括三个方面的设计,它们分别是、
和。知识库的设计推理机的设计人机接口的设计
13.专家系统的核心组成部分为和。知识库、推理机
一、填空题
1.智能控制是一门新兴的学科,它具有非常广泛的应用领域,例如、、和。
1、交叉学科在机器人控制中的应用在过程控制中的应用飞行器控制
2.传统控制包括和。2、经典反馈控制现代理论控制
3.一个理想的智能控制系统应具备的基本功能是、、和。
3、学习功能适应功能自组织功能优化能力
4.智能控制中的三元论指的是:、和。
•(6)具有获取知识的能力;
•(7)知识与推理机构相互独立。专家系统一般把推理机构与知识分开,使其独立,使系统具有良好的可扩充性和维护性。
2、简述专家系统设计的基本结构。
答:基本知识描述---系统体系结构---工具选择----知识表示方法----推理方式----对话模型.P20
4、什么是专家控制系统?专家控制系统分为哪几类?
46、二进制编码
47.遗传算法的3种基本遗传算子、和。
47、比例选择算子单点交叉算子变异算子
48.遗传算法中,适配度大的个体有被复制到下一代。更多机会
49.遗传算法中常用的3种遗传算子(基本操作)为、、和。
49、复制、交叉和变异
第一章
1
答:(1)在无人干预的情况下能自主地驱动智能机器实现控制目标的自动控制技术。
(3)神经控制系统(1分)
神经网络具有某些智能和仿人控制功能。学习算法是神经网络的主要特征。
(4)遗传算法(2分)

智能控制考试题及答案

智能控制考试题及答案

智能控制技术考试题及答案《智能控制技术》考试试题A《智能控制》课程考试试题A参考答案一、填空题(1) OPEN (2) 最有希望 (3) 置换 (4) 互补文字 (5) 知识库(6) 推理机 (7) 硬件 (8) 软件 (9) 智能 (10) 傅京孙(11) 萨里迪斯 (12) 蔡自兴 (13) 组织级 (14) 协调级(15) 执行级 (16) 递阶控制系统 (17) 专家控制系统(18) 模糊控制系统 (19) 神经控制系统 (20) 学习控制系统二、选择题1、D2、A3、C4、B5、D6、B7、A8、D9、A 10、D三、问答题1、答:传统控制理论在应用中面临的难题包括:(1) 传统控制系统的设计与分析是建立在精确的系统数学模型基础上的,而实际系统由于存在复杂性、非线性、时变性、不确定性和不完全性等,一般无法获得精确的数学模型。

(2) 研究这类系统时,必须提出并遵循一些比较苛刻的假设,而这些假设在应用中往往与实际不相吻合。

(3) 对于某些复杂的和包含不确定性的对象,根本无法以传统数学模型来表示,即无法解决建模问题。

(4) 为了提高性能,传统控制系统可能变得很复杂,从而增加了设备的初投资和维修费用,降低系统的可靠性。

传统控制理论在应用中面临的难题的解决,不仅需要发展控制理论与方法,而且需要开发与应用计算机科学与工程的最新成果。

人工智能的产生和发展正在为自动控制系统的智能化提供有力支持。

人工智能影响了许多具有不同背景的学科,它的发展已促进自动控制向着更高的水平──智能控制发展。

智能控制具有下列特点:(1) 同时具有以知识表示的非数学广义模型和以数学模型(含计算智能模型与算法)表示的混合控制过程,也往往是那些含有复杂性、不完全性、模糊性或不确定性以及不存在已知算法的过程,并以知识进行推理,以启发式策略和智能算法来引导求解过程。

(2) 智能控制的核心在高层控制,即组织级。

高层控制的任务在于对实际环境或过程进行组织,即决策和规划,实现广义问题求解。

智能控制考试题及答案

智能控制考试题及答案

智能控制技术考试题及答案《智能控制技术》考试试题 A《智能控制》课程考试试题 A 参考答案(1) OPEN (2) 最有希翼(3) 置换(4) 互补文字(5) 知识库(6) 推理机(7) 硬件(8) 软件(9) 智能(10) 傅京孙(11) 萨里迪斯(12) 蔡自兴(13) 组织级(14) 协调级(15) 执行级(16) 递阶控制系统(17) 专家控制系统(18) 含糊控制系统(19) 神经控制系统(20) 学习控制系统1 、D2 、A3 、C4 、B5 、D6、B7、A8、D9、A 10、D1、答:传统控制理论在应用中面临的难题包括:(1) 传统控制系统的设计与分析是建立在精确的系统数学模型基础上的,而实际系统由于存在复杂性、非线性、时变性、不确定性和不彻底性等,普通无法获得精确的数学模型。

(2) 研究这种系统时,必须提出并遵循一些比较苛刻的假设,而这些假设在应用中往往与实际不相吻合。

(3) 对于某些复杂的和包含不确定性的对象,根本无法以传统数学模型来表示,即无法解决建模问题。

(4) 为了提高性能,传统控制系统可能变得很复杂,从而增加了设备的初投资和维修费用,降低系统的可靠性。

传统控制理论在应用中面临的难题的解决,不仅需要发展控制理论与方法,而且需要开辟与应用计算机科学与工程的最新成果。

人工智能的产生和发展正在为自动控制系统的智能化提供有力支持。

人工智能影响了许多具有不同背景的学科,它的发展已促进自动控制向着更高的水平——智能控制发展。

智能控制具有下列特点:(1) 同时具有以知识表示的非数学广义模型和以数学模型(含计算智能模型与算法)表示的混合控制过程,也往往是那些含有复杂性、不彻底性、含糊性或者不确定性以及不存在已知算法的过程,并以知识进行推理, 以启示式策略和智能算法来引导求解过程。

(2) 智能控制的核心在高层控制, 即组织级。

高层控制的任务在于对实际环境或者过程进行组织, 即决策和规划,实现广义问题求解。

智能控制技术参考答案

智能控制技术参考答案

智能控制技术参考答案智能控制技术参考答案智能控制技术是指通过计算机、传感器、执行器等设备,对目标系统进行感知、分析和决策,从而实现对系统的智能化控制。

随着科技的不断发展,智能控制技术在各个领域得到了广泛的应用,如工业自动化、智能家居、无人驾驶等。

智能控制技术的核心是人工智能算法。

人工智能算法是一种模拟人类智能行为的计算机算法,能够通过学习和优化来实现智能决策。

常见的人工智能算法有神经网络、遗传算法、模糊逻辑等。

这些算法能够根据输入的数据和规则,自动调整参数和权重,从而实现对目标系统的智能控制。

在工业自动化领域,智能控制技术能够提高生产效率和产品质量。

例如,智能机器人可以代替人工完成繁重、危险的工作,如焊接、搬运等。

智能控制技术还可以实现生产线的自动调度和优化,提高生产线的运行效率。

此外,智能控制技术还可以实现对工业设备的远程监控和故障诊断,及时发现并修复设备故障,提高设备的可靠性和稳定性。

在智能家居领域,智能控制技术能够提高居住环境的舒适度和安全性。

通过智能传感器和执行器,智能控制系统能够实时感知和调节室内温度、湿度、光线等环境参数,使居住环境更加舒适。

智能控制系统还可以实现对家电设备的远程控制和管理,如远程开关灯、调节空调温度等。

此外,智能控制系统还可以实现对家庭安防系统的监控和报警,保护家庭成员的安全。

在无人驾驶领域,智能控制技术是实现无人驾驶的关键。

通过激光雷达、摄像头等传感器,智能控制系统能够实时感知道路、车辆和行人等信息,从而实现自动驾驶。

智能控制系统还可以根据交通规则和驾驶习惯,自动决策和调整行驶速度、转向角度等参数,保证行驶的安全和顺畅。

此外,智能控制系统还可以通过云端数据分析和学习,不断优化驾驶策略,提高驾驶的效率和安全性。

智能控制技术的发展还面临一些挑战。

首先,智能控制技术需要大量的数据进行训练和学习,而获取和处理大量的数据是一项复杂而耗时的任务。

其次,智能控制技术需要高性能的计算设备来支持算法的运行和优化,而高性能计算设备的成本和能耗较高。

CQU《智能控制基础》第二章课外习题+答案

CQU《智能控制基础》第二章课外习题+答案
故模糊关系为:
1 0.5 0.1 0 0
0 0.36 0.36 0.36 0. B ) ( AC C ) 0 0.3 0.8 1 0 0.5 0.5 0.5 0.5 0.5 0.9 0.9 0.9 0.36 0.1 1 0.91 0.36 0 1 1 0.91 0.36 0 1
C ' ( A ' and B ') R 0.5 0.5 0.5 0.6 1.0 0.6 0.5 0.5 0.5
1.0 0.6 0.2 0.5 0.5 0.2 0 0 0
0.4 0.4 0.2 0.4 0.4 0.4 0.2 0.4 0.4
0 0 0 0.2 0.5 0.5 0.4 0.5 0.5 0.2 0.6 1.0
B' 0.6 1.0 0.6 b1 b2 b3
0.5 1.0 0.5 a1 a2 a3
解:(1) 求每条规则的蕴含关系,对于 R1,有
1.0 1.0 0.6 0.2 A1 and B1 A1 B1 A B1 0.5 1.0 0.6 0.2 0.5 0.5 0.2 0 0 0 0
0.0 0.0 0.3 0.3 (A C C) 0.6 1.0 0.96 0.75 0.36 0.0 0.6 0.9 0.9 1 . 0 1.0
0.0 0.0 0.0 0.0 0.3 0.3 0.3 0.0 0.6 0.6 0.36 0.0 0.9 0.75 0.36 0.0 0.96 0.75 0.36 0.0
A* [偏低] [A]1/ 2 1.0 0.84 0.63 0.32 0.0

智能控制习题答案解析

智能控制习题答案解析

3.,第一章 绪论1. 什么是智能、智能系统、智能控制?答:“智能”在美国 Heritage 词典定义为“获取和应用知识的能力”。

“智能系统”指具有一定智能行为的系统,是模拟和执行人类、动物或生物的某些功能的系统。

“智能控制”指在传统的控制理论中引入诸如逻辑、推理和启发式规则等因素,使之具有某种智能性;也是基于认知 工程系统和现代计算机的强大功能,对不确定环境中的复杂对象进行的拟人化管理。

2.智能控制系统有哪几种类型,各自的特点是什么?答:智能控制系统的类型:集散控制系统、模糊控制系统、多级递阶控制系统、专家控制系统、人工神经网络控制系 统、学习控制系统等。

各自的特点有:集散控制系统:以微处理器为基础,对生产过程进行集中监视、操作、管理和分散控制的集中分散控制系统。

该系统 将若干台微机分散应用于过程控制,全部信息通过通信网络由上位管理计算机监控,实现最优化控制,整个装置继承 了常规仪表分散控制和计算机集中控制的优点,克服了常规仪表功能单一,人机联系差以及单台微型计算机控制系统 危险性高度集中的缺点,既实现了在管理、操作和显示三方面集中,又实现了在功能、负荷和危险性三方面的分散。

人工神经网络:它是一种模动物神经网络行为特征,进行分布式并行信息处理的算法数学模型。

这种网络依靠系统的 复杂程度,通过调整部大量节点之间相互连接的关系,从而达到处理信息的目的。

专家控制系统:是一个智能计算机程序系统,其部含有大量的某个领域专家水平的知识与经验,能够利用人类专家的 知识和解决问题的经验方法来处理该领域的高水平难题。

可以说是一种模拟人类专家解决领域问题的计算机程序系统。

多级递阶控制系统是将组成大系统的各子系统及其控制器按递阶的方式分级排列而形成的层次结构系统。

这种结构的 特点是:1.上、下级是隶属关系,上级对下级有协调权,它的决策直接影响下级控制器的动作。

2.信息在上下级间垂直 方向传递,向下的信息有优先权。

(完整版)智能控制习题参考答案

(完整版)智能控制习题参考答案

1.递阶智能控制系统的主要结构特点有哪些。

答:递阶智能控制是在研究早期学习控制系统的基础上,从工程控制论角度总结人工智能与自适应控制、自学习控制和自组织控制的关系后逐渐形成的。

递阶智能控制系统是由三个基本控制级(组织级、协调级、执行级)构成的。

如下所示:1. 组织级组织级代表控制系统的主导思想,并由人工智能起控制作用。

根据贮存在长期存储交换单元内的本原数据集合,组织器能够组织绝对动作、一般任务和规则的序列。

其结构如下:2.协调级协调级是组织级和执行级间的接口,承上启下,并由人工智能和运筹学共同作用。

协调级借助于产生一个适当的子任务序列来执行原指令,处理实时信息。

它是由不同的协调器组成,每个协调器由计算机来实现。

下图是一个协调级结构的候选框图。

该结构在横向上能够通过分配器实现各协调器之间的数据共享。

3. 执行级执行级是递阶智能控制的最底层,要求具有较高的精度但较低的智能;它按控制论进行控制,对相关过程执行适当的控制作用。

其结构模型如下:2.信息特征,获取方式,分层方式有哪些?答:一、信息的特征1,空间性:空间星系的主要特征是确定和不确定的(模糊)、全空间和子空间、同步和非同步、同类型和不同类型、数字的和非数字的信息,比传统系统更为复杂的多源多维信息。

2,复杂性:复杂生产制造过程的信息往往是一类具有大滞后、多模态、时变性、强干扰性等特性的复杂被控对象,要求系统具有下层的实时性和上层的多因素综合判断决策能力,以保证现场设备局部的稳定运行和在复杂多变的各种不确定因素存在的动态环境下,获得整个系统的综合指标最优。

3,污染性:复杂生产制造过程的信息都会受到污染,但在不同层次的信息受干扰程度不同,层次较低的信号受污染程度较大。

二、获取方式信息主要是通过传感器获得,但经过传感器后要经过一定的处理来得到有效的信息,具体处理方法如下:1,选取特征变量可分为选择特征变量和抽取特征变量。

选择特征变量直接从采集样本的全体原始工艺参数中选择一部分作为特征变量。

智能控制技术复习题课后答案.

智能控制技术复习题课后答案.
4
智能控制研究的数学工具为:(1)符号推理与数值计算的结合;(2)离散事件与连续时间系统得结合;(3)模糊集理论;(4)神经网络理论;(5)优化理论
第二章
1、何谓专家系统?它有哪些基本特征?
答:所谓专家系统就是利用存储在计算机内的某一特定领域内人类专家的知识,来解决过去需要人类专家才能解决的现实问题的计算机系统。
42.神经元模型、神经网络结构、神经网络学习算法
43.神经网络的学习过程主要由正向传播和反向传播两个阶段组成。
44.神经网络控制是将和相结合而发展起来的智能控制方法。神经网络,控制理论
45. 遗传算法的主要用途是。45、寻优(优化计算)
46.常用的遗传算法的染色体编码方法有二种,它们分别为实数编码和。
演绎推理又可以分为正向演绎推理、反向演绎推理、正向与反向相结合的联合演绎推理(也称双向推理)3种形式。其中,正向演绎推理是一种条件驱动的推理方式;反向演绎推理是一种结论驱动的推理方式;若将两种演绎推理方式相结合,可发挥它们的各自优点而克服其局限性,这就形成了双向联合的演绎推理。
答:专家控制系统的任务是:(1).能提供一个熟练工或专家对受控对象操作所能达到的性能指标;(2).监督对象和控制器的运行情况;(3).检测系统元件可能发生的故障或失误;
(4).对特殊情况,要选择合适的控制算法以适应系统参数的变化。
6、比较专家系统和专家控制系统的区别和联系。
答:专家控制系统是将人工智能领域的专家系统理论和技术与控制理论方法和技术相结合,仿效专家智能,实现对较为复杂问题的控制。
2).知识的特性
相对正确性;不确定性;可表示性;关联性。
8、简述知识获取的概念和分类方法。
答:4).知识获取的概念
知识获取就是把用于求解专门领域问题的知识从拥有这些知识的知识源中抽取出来,并转换为一特定的计算机表示。知识源包括专家、教科书、数据库及人本身的经验。计算机表示有状态空间表示法、谓词逻辑表示法、与/ /或图表示法、语义网络表示、产生式表示法、框架表示法等。

智能控制技术课后答案全攻略

智能控制技术课后答案全攻略

3
3-1 模糊逻辑控制器由哪几部分组成?各完成什么功能? 答:模糊控制系统的主要部件是模糊化过程、知识库(数据库和规则库) 、推理决策和精确 化计算。 1、模糊化过程 模糊化过程主要完成: 测量输入变量的值, 并将数字表示形式的输入量转化为通常用语 言值表示的某一限定码的序数。 2、知识库 知识库包括数据库和规则库。 1) 、数据库 数据库提供必要的定义, 包含了语言控制规则论域的离散化、 量化和正规化以及输入空 间的分区、隶属度函数的定义等。 2) 、规则库 规则库根据控制目的和控制策略给出了一套由语言变量描述的并由专家或自学习产生 的控制规则的集合。它包括:过程状态输入变量和控制输出变量的选择,模糊控制系统的建 立。 3、推理决策逻辑 推理决策逻辑是利用知识库的信息模拟人类的推理决策过程,给出适合的控制量。 (它 是模糊控制的核心) 。 4、精确化过程 在推理得到的模糊集合中取一个能最佳代表这个模糊推理结果可能性的精确值的过程 称为精确化过程。 {模糊控制器采用数字计算机。它具有三个重要功能: 1) 把系统的偏差从数字量转化为模糊量(模糊化过程、数据库两块) ; 2) 对模糊量由给定的规则进行模糊推理(规则库、推理决策完成) ; 3) 把推理结果的模糊输出量转化为实际系统能够接受的精确数字量或模拟量 (精确化 接口) 。}
∑ v m (v )
k =1 m
∑ m (v )
k =1 v k
采用离散重心法:
v0 =
离散:
∑ v m (v )
k =1 m k v k
m
∑ m (v )
k =1 v k
0.3 × (-1) + 0.8 × (-2) + 1× (-3) + 0.5 × (-4) + 0.1× (-5) 0.3 + 0.8 + 1 + 0.5 + 0.1 0.3 × (-1) + 0.8 × (-2) + 1× (-3) + 0.5 × (-4) + 0.1× (-5) = 2.7 =-2.7407 =

智能控制习题解

智能控制习题解

0 a 25 25 a 200
求:“很年轻W”、“不年老也不年轻 个模糊集的隶属函数。
V”两
2解
(1)语气算子“很” λ=2,即μw(a) =μr(a) ² “很年轻”模糊集隶属度函数为
(2):“不老也不年轻” V=/OI/Y

3、设误差的离散论域为【-30,-20,10,0,10,20,30】,且已知误差为零(ZE)和误差为 正小(PS)的隶属函数为
4解
(1)P。Q=

POQOR=
(2) PUQ=
PUQOS=
(3) (POQ)U(QOS)=(PUQ)O S=
5、考虑如下条件语句: 如果 转角误差远远大于15○ 那么快速减小方向角 其隶属度函数定义为 A=转角误差远远大于15○=0/15 + 0.2/17.5 + 0.5/20 + 0.8/22.5 + 1.0/25 B=那么快速减小方向角=1/-20 + 0.8/-15 + 0.4/-10 + 0.1/-5 + 0/0 问:当A„=转角误差大约在20○时方向角应该怎样 变化? 设A„=转角误差大约在20○的隶属函数=0.1/15 + 0.6/17.5 + 1/20 + 0.6/22.5 + 0.1/25。(用 Mamdani推理算法计算)
试确定模糊条件语句“如果x轻,则y 重,否则y不非常重”所决定的模糊关系 矩阵R,并计算出当x为非常轻、重条件下 所对应的模糊集合y。
6
解 B′= 非常重=
B″=不非常重=B =
关系矩阵R=(A×B)U
A×B=
1、已知语言变量x,y,z。 X的论域为{1,2,3},定义有两个语言值: “大”={0, 0.5, 1}; “小”={1, 0.5, 0}。 Y的论域为{10,20,30,40,50},语言值为: “高”={0, 0, 0, 0.5, 1}; “中”={0, 0.5, 1, 0.5, 0}; “ 低”={1, 0.5, 0, 0, 0}。 Z的论域为{0.1,0.2,0.3},语言值为: “长”={0, 0.5, 1};“短”={1, 0.5, 0} 则1)试求规则: 如果 x 是 “大” 并且 y 是“高” 那么 z是“长”; 否则,如果 x 是“小” 并且 y 是 “中” 那么 z是“短”。 所蕴涵的x,y,z之间的模糊关系R。 2)假设在某时刻,x是“略小”={0.7, 0.25, 0}, y是“略高”={0, 0, 0.3, 0.7, 1} 试根据R通过Zadeh法模糊推理求出此时输出z的语言取值。

智能控制课后答案

智能控制课后答案

1、 神经元的种类有哪些?它们的函数关系如何?一、神经元模型神经元模型是生物神经元的抽象和模拟。

它是模拟生物神经元的结构和功能、并从数学角度抽象出来的一个基本单元。

它是神经网络的最基本的组成部分。

神经元一般是多输入-单输出的非线性器件。

模型可以描述为i ij j i i jNet w x s θ=+-∑()i i u f Net =()()i i i y g u h Net ==假设()i i g u u =,即()i i y f Net =i u 为神经元的内部状态;i θ为阀值;i x 为输入信号,1,...,j n =;ij w 为表示从j u 单元到i u 单元的连接权系数;i s 为外部输入信号。

常用的神经元非线性特性有以下四种(1) 阀值型10()00i i i Net f Net Net ⎧>⎪=⎨≤⎪⎩(2) 分段线性型00max 0()i i i i i i il i ilNet Net f Net kNet Net Net Net f Net Net ⎧≤⎪=≤≤⎨⎪≥⎩(3) Sigmoid 函数型1()1i i Net T f Net e -=+(4) Tan 函数型()i i i i Net Net T T i Net Net T T ee f Net ee ---=+2、 为什么由简单的神经元连接而成的神经网络具有非常强大的功能?神经系统是一个高度复杂的非线性动力学系统,虽然每一个神经元的结构和功能十分简单,但由大量神经元构成的网络系统的行为却是丰富多彩和十分复杂的。

从神经元模型角度来看,有线性处理单元和非线性处理单元。

从网络结构方面来看,有:前向网络、反馈网络和自组织网络。

3、神经网络按连接方式分有哪几类,按功能分有哪几类、按学习方式分又有哪几类? 神经网络按连接方式?神经网络按连接方式分神经网络是由通过神经元的互连而达到的。

根据神经元的连接方式的不同,神经网络可分为以下四种形式:(1) 前向网络 由输入层、隐含层和输出层组成。

(完整版)智能控制-考试题(附答案)

(完整版)智能控制-考试题(附答案)

《智能控制》考试试题试题1:针对某工业过程被控对象:0.520()(101)(21)s G s e s s -=++,试分别设计常规PID 算法控制器、模糊控制器、模糊自适应PID 控制器,计算模糊控制的决策表,并进行如下仿真研究及分析:1. 比较当被控对象参数变化、结构变化时,四者的性能;2. 研究改善Fuzzy 控制器动、静态性能的方法。

解:常规PID 、模糊控制、Fuzzy 自适应PID 控制、混合型FuzzyPID 控制器设计 错误!未找到引用源。

. 常规PID 调节器PID 控制器也就是比例、积分、微分控制器,是一种最基本的控制方式。

它是根据给定值()r t 与实际输出值()y t 构成控制偏差()e t ,从而针对控制偏差进行比例、积分、微分调节的一种方法,其连续形式为:01()()[()()]t p d i de t u t K e t e t dt T T dt=++⎰ (1.1) 式中,p K 为比例系数,i T 为积分时间常数,d T 为微分时间常数。

PID 控制器三个校正环节中p K ,i T 和d T 这三个参数直接影响控制效果的好坏,所以要取得较好的控制效果,就必须合理地选择控制器的参数。

Ziegler 和Nichols 提出的临界比例度法是一种非常著名的工程整定方法。

通过实验由经验公式得到控制器的近似最优整定参数,用来确定被控对象的动态特性的两个参数:临界增益u K 和临界振荡周期u T 。

用临界比例度法整定PID 参数如下:表1.1 临界比例度法参数整定公式51015202530354000.20.40.60.811.21.41.61.8Time(s)y (t )051015202530354000.511.5Time(s)y (t )PID 0.6u K 0.5u T 0.125u T据以上分析,通过多次整定,当 1.168p K =时系统出现等幅振荡,从而临界增益 1.168u K =,再从等幅振荡曲线中近似的测量出临界振荡周期 5.384u T =,最后再根据表1.1中的PID 参数整定公式求出:0.701, 2.692,0.673p i d K T T ===,从而求得:比例系数0.701p K =,积分系数/0.260i p i K K T ==,微分系数0.472d p d K K T ==。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第一章绪论1. 什么是智能、智能系统、智能控制?答:“智能”在美国Heritage词典定义为“获取和应用知识的能力”。

“智能系统”指具有一定智能行为的系统,是模拟和执行人类、动物或生物的某些功能的系统。

“智能控制”指在传统的控制理论中引入诸如逻辑、推理和启发式规则等因素,使之具有某种智能性;也是基于认知工程系统和现代计算机的强大功能,对不确定环境中的复杂对象进行的拟人化管理。

2.智能控制系统有哪几种类型,各自的特点是什么?答:智能控制系统的类型:集散控制系统、模糊控制系统、多级递阶控制系统、专家控制系统、人工神经网络控制系统、学习控制系统等。

各自的特点有:集散控制系统:以微处理器为基础,对生产过程进行集中监视、操作、管理和分散控制的集中分散控制系统。

该系统将若干台微机分散应用于过程控制,全部信息通过通信网络由上位管理计算机监控,实现最优化控制,整个装置继承了常规仪表分散控制和计算机集中控制的优点,克服了常规仪表功能单一,人机联系差以及单台微型计算机控制系统危险性高度集中的缺点,既实现了在管理、操作和显示三方面集中,又实现了在功能、负荷和危险性三方面的分散。

人工神经网络:它是一种模动物神经网络行为特征,进行分布式并行信息处理的算法数学模型。

这种网络依靠系统的复杂程度,通过调整部大量节点之间相互连接的关系,从而达到处理信息的目的。

专家控制系统:是一个智能计算机程序系统,其部含有大量的某个领域专家水平的知识与经验,能够利用人类专家的知识和解决问题的经验方法来处理该领域的高水平难题。

可以说是一种模拟人类专家解决领域问题的计算机程序系统。

多级递阶控制系统是将组成大系统的各子系统及其控制器按递阶的方式分级排列而形成的层次结构系统。

这种结构的特点是:1.上、下级是隶属关系,上级对下级有协调权,它的决策直接影响下级控制器的动作。

2.信息在上下级间垂直方向传递,向下的信息有优先权。

同级控制器并行工作,也可以有信息交换,但不是命令。

3.上级控制决策的功能水平高于下级,解决的问题涉及面更广,影响更大,时间更长,作用更重要。

级别越往上,其决策周期越长,更关心系统的长期目标。

4.级别越往上,涉及的问题不确定性越多,越难作出确切的定量描述和决策。

学习控制系统:靠自身的学习功能来认识控制对象和外界环境的特性,并相应地改变自身特性以改善控制性能的系统。

这种系统具有一定的识别、判断、记忆和自行调整的能力。

3.比较智能控制与传统控制的特点。

答:智能控制与传统控制的比较:它们有密切的关系,而不是相互排斥。

常规控制往往包含在智能控制之中,智能控制也利用常规控制的方法来解决“低级”的控制问题,力图扩充常规控制方法并建立一系列新的理论与方法来解决更具有挑战性的复杂控制问题。

1.传统的自动控制是建立在确定的模型基础上的,而智能控制的研究对象则存在模型严重的不确定性,即模型未知或知之甚少者模型的结构和参数在很大的围变动,这些问题对基于模型的传统自动控制来说很难解决。

2.传统的自动控制系统的输入或输出设备与人及外界环境的信息交换很不方便,希望制造出能接受印刷体、图形甚至手写体和口头命令等形式的信息输入装置,能够更加深入而灵活地和系统进行信息交流,同时还要扩大输出装置的能力,能够用文字、图纸、立体形象、语言等形式输出信息. 另外,通常的自动装置不能接受、分析和感知各种看得见、听得着的形象、声音的组合以及外界其它的情况. 为扩大信息通道,就必须给自动装置安上能够以机械方式模拟各种感觉的精确的送音器,即文字、声音、物体识别装置。

3.传统的自动控制系统对控制任务的要求要么使输出量为定值(调节系统),要么使输出量跟随期望的运动轨迹(跟随系统),因此具有控制任务单一性的特点,而智能控制系统的控制任务可比较复杂。

4. 传统的控制理论对线性问题有较成熟的理论,而对高度非线性的控制对象虽然有一些非线性方法可以利用,但不尽人意. 而智能控制为解决这类复杂的非线性问题找到了一个出路,成为解决这类问题行之有效的途径。

5.与传统自动控制系统相比,智能控制系统具有足够的关于人的控制策略、被控对象及环境的有关知识以及运用这些知识的能力。

6.与传统自动控制系统相比,智能控制系统能以知识表示的非数学广义模型和以数学表示的混合控制过程,采用开闭环控制和定性及定量控制结合的多模态控制方式。

7.与传统自动控制系统相比,智能控制系统具有变结构特点,能总体自寻优,具有自适应、自组织、自学习和自协调能力。

8.与传统自动控制系统相比,智能控制系统有补偿及自修复能力和判断决策能力。

4.把智能控制看作是AI(人工智能)、OR(运筹学)、AC(自动控制)和IT(信息论)的交集,其根据和涵是什么?答:智能控制具有明显的跨学科特点,在最早傅金提出的二元论中,智能控制系统被认为是自动控制与人工智能的交互作用,随着认识的深入,萨瑞迪斯提出运筹学融入智能控制而提出三元结构,蔡自兴教授提出将信息论引入智能控制,其依据在于:信息论是解释知识和智能的一种手段;控制论、信息论和系统论是紧密相连的;信息论已经成为控制智能机器的工具;信息论参与智能控制的全过程并对执行级起到核心作用,因此最终确定了智能控制的四元结构。

5.智能控制有哪些应用领域?试举出一个应用实例,并说明其工作原理和控制性能。

答:智能控制应用于机器人、汽车、制造业、水下和陆地自助式车辆、家用电器、过程控制、电子商务、医疗诊断、飞行器、印刷、城市铁路、电力系统等领域。

例如焊接机器人其基本工作原理是示教再现,即由用户导引机器人,一步步按实际任务操作一遍,机器人在导引过程中自动记忆示教的每个动作的位置、姿态、运动参数、焊接参数等,并自动生成一个连续执行全部操作的程序。

完成示教后,只需给机器人一个起动命令,机器人将精确地按示教动作,一步步完成全部操作,实际示教与再现。

控制性能为:弧焊机器人通常有五个自由度以上,具有六个自由度的弧焊机器人可以保证焊枪的任意空间轨迹和姿态。

点至点方式移动速度可达60m/min 以上,其轨迹重复精度可达到±0.2mm 。

这种弧焊机器人应具有直线的及环形插法摆动的功能,共六种摆动方式,以满足焊接工艺要求,机器人的负荷为5kg 。

第二章 模糊控制的理论基础1. 举例说明模糊性的客观性和主观性。

答:模糊性起源于事物的发展变化性,变化性就是不确定定性;模糊性是客观世界的普遍现象,世界上许多的事物都具有模糊非电量的特点。

例如:年龄分段的问题;如果一个人的年龄大于60岁算老年,45-59岁之间的岁中年,小于44岁的就算青年;如果一个人的年龄是59岁零11个月零28天,那么他是属于中年还是老年呢?理论上从客观的角度说他是中年人,但是与60岁只有两天区别,这区别我们是分辨不出来的。

从主观上我们认为他又是老年人。

这就是模糊性的主观性和客观性的体现。

2. 模糊性与随机性有哪些异同?答:模糊性处于过渡阶段的事物的基本特征,是性态的不确定性,类属的不清晰性,是一种在的不确定性;而随机性是在事件是否发生的不确定性中表现出来的不确定性,而事件本身的性态和类属是确定的,是一种外在的不确定性。

相同点是:模糊性是由于事物类属划分的不分明而引起的判断上的不确定性;而随机性是由于天剑不充分而导致的结果的不确定性。

但是他们都共同表现出不确定性。

异同点是:模糊性反映的是排中的破缺,而随机性反映的是因果律的破缺;模糊性现象则需要运用模糊数学,随机性现象可用概率论的数学方法加以处理。

3. 比较模糊集合与普通集合的异同。

答:模糊集合用隶属函数作定量描述,普通集合用特征函数来刻划。

两者相同点:都属于集合,同时具有集合的基本性质。

两者异同点:模糊集合就是指具有某个模糊还年所描述的属性的对象的全体,由于概念本身不是很清晰,界限分明的,因而对象对集合的隶属关系也不是明确的;普通集合是指具有某种属性的对象的全体,这种属性所表达的概念应该是清晰的,界限分明的,因而每个对象对于集合的隶属关系也就是明确的。

4.考虑语言变量:“Old ”,如果变量定义为:[]⎩⎨⎧<≤-+<≤=--10050 )5/50(15000)(12x x x x old μ 确定“NOT So Old ”,“Very Old ”,“MORE Or LESS Old ”的隶属函数。

解:1 o old 220 050()1(50/5) 50100NOT S x x x x μ--≤<⎧⎪=⎨⎡⎤+-≤<⎪⎣⎦⎩ 2ery old 20 050()1(50/5) 50100V x x x x μ--≤<⎧⎪=⎨⎡⎤+-≤<⎪⎣⎦⎩ 1 or less old 240 050()1(50/5) 50100MORE x x x x μ--≤<⎧⎪=⎨⎡⎤+-≤<⎪⎣⎦⎩5.已知存在模糊向量A 和模糊矩阵R 如下:()⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡==3.06.03.001.004.06.02.01.08.05.04.01.07.0R A 计算R A B =。

6.令论域{}4321=U ,给定语言变量“Small ”=1/1+0.7/2+0.3/3+0.1/4和模糊关系R=“Almost 相等”定义如下:⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=16.01.006.016.01.01.06.016.001.06.01R 利用max-min 复合运算,试计算:相等)是Almost Small X y R ()()( =。

解:10.60.100.610.60.1y (10.70.30.1)0.10.610.600.10.61R⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎣⎦() [](11)(0.70.6)(0.30.1)(0.10)(10.6)(0.71)(0.30.6)(0.10.1)10.70.60.3(10.1)(0.70.6)(0.31)(0.10.6)(10)(0.70.1)(0.30.6)(0.11)T∧∨∧∨∧∨∧⎡⎤⎢⎥∧∨∧∨∧∨∧⎢⎥==⎢⎥∧∨∧∨∧∨∧⎢⎥∧∨∧∨∧∨∧⎣⎦7.已知模糊关系矩阵:⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡=15.05.01009.002.01.00014.009.004.018.02.01.008.01R 计算R 的二至四次幂。

解:210.800.10.210.800.10.20.810.400.90.810.400.900.410000.41000.10010.50.10010.50.20.900.510.20.900.51R R R ⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥=•=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦10.80.40.20.80.810.40.50.90.40.4100.40.20.5010.50.80.90.40.51⎡⎤⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎣⎦3210.80.40.50.80.810.40.50.90.40.410.40.40.50.50.410.50.80.90.40.51R R R ⎡⎤⎢⎥⎢⎥⎢⎥=•=⎢⎥⎢⎥⎢⎥⎣⎦42210.80.40.50.80.810.40.50.90.40.410.40.40.50.50.410.50.80.90.40.51R R R ⎡⎤⎢⎥⎢⎥⎢⎥=•=⎢⎥⎢⎥⎢⎥⎣⎦8.设有论域},{ },,,{ },,,{21321321z z Z y y y Y x x x X ===,二维模糊条件语句为“若A 且B 则C ”,其中)(C , 14.0)( , 6.011.0)( , 1.015.021321321Z F z z C Y F B y y y B X F A x x x A ∈+=∈++=∈++=已知 )(B , 15.01.0)( , 1.05.01*321**321*Y F y y y B X F A x x x A ∈++=∈++=由关系合成推理法,求得推理结论*C 。

相关文档
最新文档