1-2 有理数(基础训练)(解析版)
第一章 有理数单元检测卷(解析版)
第1章《有理数》一、选择题(共36分)1.2023的相反数是( )A .12023B .2023-C .2023D .12023-【答案】B【分析】根据只有符号不同的两个数互为相反数进行解答即可得.【详解】解:2023的相反数是2023-,故选:B .【点睛】本题考查了相反数的定义,熟练掌握相反数的定义是解题的关键.2.中国是最早采用正负数表示相反意义的量、并进行负数运算的国家.若收入500元记作500+元,则支出237元记作( )A .237+元B .237-元C .0元D .474-元【答案】B【分析】根据相反意义的量的意义解答即可.【详解】∵收入500元记作500+元,∴支出237元记作237-元,故选B .【点睛】本题考查了相反意义的量,正确理解定义是解题的关键.3.2022年河南省凭借6.13万亿元的经济总量占据全国各省份第五位,占全国的5.0%,将数据“6.13万亿”用科学记数法表示为( )A .86.1310´B .106.1310´C .126.1310´D .146.1310´【答案】C【分析】科学记数法的表示形式为10n a ´的形式,其110a £<,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.【详解】解:将数据“6.13万亿”用科学记数法表示为126.1310´.故选:C .【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为10n a ´的形式,其中110a £<,n 为整数,表示时关键要正确确定a 的值以及n 的值.4.下列说法正确的是( )A .0既是正数又是负数B .0是最小的正数C .0既不是正数也不是负数D .0是最大的负数【答案】C【分析】根据有理数的分类判断即可.【详解】∵0既不是正数也不是负数,故选C.【点睛】本题考查了零的属性,熟练掌握0既不是正数也不是负数是解题的关键.5.点A 为数轴上表示3的点,将点A 向左移动9个单位长度到B ,点B 表示的数是( )A .2B .−6C .2或−6D .以上都不对【答案】B【分析】根据数轴上的平移规律即可解答【详解】解:∵点A 是数轴上表示3的点,将点A 向左移9个单位长度到B ,∴点B 表示的数是:396-=-,故选B .【点睛】本题主要考查了数轴及有理数减法法则,掌握数轴上的点左移减,右移加是解题关键.6.哈尔滨市2023年元旦的最高气温为2℃,最低气温为8-℃,那么这天的最高气温比最低气温高( )A .10-℃B .6-℃C .6℃D .10℃【答案】D【分析】用最高温度减去最低温度,然后根据减去一个数等于加上这个数的相反数进行计算即可.【详解】解:根据题意,得:()282810--=+=,\这天的最高气温比最低气温高10℃,故选:D .【点睛】本题考查了有理数的减法的应用,是基础题,熟记减去一个数等于加上这个数的相反数是解题的关键.7.把()()()()8452--++---写成省略加号的形式是( )A .8452-+-+B .8452---+C .8452--++D .8452--+【答案】B 【分析】观察所给的式子,要写成省略加号的形式,即是将式子中的括号去掉即可.【详解】解:根据有理数的加减混合运算的符号省略法则化简,得,()()()()28452845---+---=--++.故选:B .【点睛】本题考查有理数的加减混合运算,熟练掌握去括号的法则:括号前是正号,去括号时,括号里面的各项都不改变符号;括号前是负号,去括号时,括号里面的各项都要改变符号是解题的关键.8.下列各对数中,不相等的一对数是( )A .()33-与33-B .33-与33C .()43-与43-D .()23-与23【答案】C【分析】根据有理数的乘方和绝对值的概念,逐一计算即可.【详解】解:()3327-=-,3327-=-,2727-=-,故A 不符合题意;3327-=,3327=,2727=,故B 不符合题意;()4381-=,4381-=-,8181¹-,故C 符合题意;()239-=,239=,99=,故D 不符合题意,故选:C .【点睛】本题考查了有理数的乘方和绝对值的概念,熟练掌握计算法则是解题的关键.9.用四舍五入法按要求对0.30628分别取近似值,其中错误的是( )A .0.3(精确到0.1)B .0.31(精确到0.01)C .0.307(精确到0.001)D .0.3063(精确到0.0001)【答案】C【分析】根据近似数的精确度对各选项进行判断即可.【详解】解:0.30628精确到0.1是0.3,A 选项正确,不符合题意;0.30628精确到0.01是0.31,B 选项正确,不符合题意;0.30628精确到0.001是0.306,C 选项错误,符合题意;0.30628精确到0.0001是0.3063,D 选项正确,不符合题意.【点睛】本题考查了近似数的精确度,熟练掌握四舍五入法及精确度的概念是解题的关键.10.若计算式子1(27)()3-W V 的结果为最大,则应分别在 ,△中填入下列选项中的( )A .+,-B .´,-C .¸,-D .-,¸【答案】D【分析】将四个选项中的运算符号分别代入式子中进行运算,通过比较结果即可得出结论.【详解】解:当选取A 选项的符号时,111(27)()99333+--=+=;当选取B 选项的符号时,111(27)()1414333´--=+=;当选取C 选项的符号时,12113(27)()37321¸--=+=;当选取D 选项的符号时,1(27)()5(3)153-¸-=-´-=,∵1113151493321>>>,当选取D 选项的符号时,计算式子1(27)(3-W V 的结果最大,故选:D .【点睛】本题主要考查了有理数的混合运算,熟练掌握有理数的混合运算法则是解题的关键.11.如图,点A 、B 均在数轴上,且点,A B 所对应的实数分别为a 、b ,若0a b +>,则下列结论一定正确的是( )A .0ab >B .0a b ->C .0a b >D .0b >【答案】B【分析】根据0a b +>,可知,a b 可能同号,也可能异号,而a b >恒成立,即可求解.【详解】∵0a b +>,∴a b >-,即在数轴上,b -在a 的左侧,∴0b b a <<-<或0b b a -<<<,∴,a b 可能同号,也可能异号,而a b >恒成立,∴0a b ->一定正确,【点睛】本题考查了数轴上点的位置及其大小关系,熟练掌握数轴上右边的数总比左边的数大是解题的关键.12.若a 、b 互为相反数,c 、d 互为倒数,m 的倒数是它本身,则232cd m a b m+++的值为A .5B .5或2C .5或1-D .不确定【答案】C 【分析】根据相反数,倒数的性质,可得0,1a b cd +== ,1m =± ,再代入,即可求解.【详解】解:∵a 、b 互为相反数,c 、d 互为倒数,∴0,1a b cd +== ,∵m 的倒数是它本身,∴1m =± ,∴21m = ,当1m = 时,2331221051cd m a b m ´+++=´++=,当1m =- 时,2331221011cd m a b m ´+++=´++=--,∴232cd m a b m+++的值为5或1-.故选:C【点睛】本题主要考查了相反数,倒数的性质,熟练掌握一对互为相反数的和等于0,互为倒数的两个数的乘积为1是解题的关键.二、填空题(共18分)13.6-等于_____.【答案】6【分析】根据绝对值的定义进行求解即可.【详解】解:66-=,故答案为:6.【点睛】本题主要考查了求一个数的绝对值,熟知正数和0的绝对值是它本身,负数的绝对值是它的相反数是解题的关键.14.某种试剂的说明书上标明保存温度是(102)±℃,请你写出一个适合该试剂保存的温度:___________℃.【答案】10(答案不唯一)【分析】根据正数和负数的定义即可解答.【详解】解:由题意,可知适合该试剂的保存温度为8~12℃,在此温度范围内均满足条件.故答案为10(答案不唯一).【点睛】本题考查正负数在实际生活中的应用,解题关键是理解“正”和“负”的相对性,确定一对具有相反意义的量.15.把2.674精确到百分位约等于______.【答案】2.67【分析】把千分位上的数字进行四舍五入即可.【详解】解:2.674 2.67».故答案为:2.67.【点睛】本题主要考查了近似数,解题的关键是熟练掌握定义,经过四舍五入得到的数叫近似数.16.计算:()14877-¸´=_____________.【答案】4849-【分析】根据有理数的乘除运算法则,从左往右依次计算即可.【详解】解:()111484874877749-¸´=-´´=-,故答案为:4849-.【点睛】本题考查了有理数的乘除运算.解题的关键在于明确运算顺序.易错点是先计算乘法然后计算除法.17.已知实数m ,n 在数轴上的对应点的位置如图所示,则m _______n .(填“<”、“>”或“=”)【答案】<【分析】根据在数轴上右边的数据大于左边的数据即可得出答案.【详解】解: m Q 在n 的左边,m n \<,故答案为:<.【点睛】此题考查了实数与数轴,正确掌握数轴上数据大小关系是解题关键.18.若()2180x y ++-=,则x y -的值为______.【答案】9-【分析】利用非负数的性质得出x y ,的值,代入计算得出答案.【详解】解:()2180x y ++-=Q ,1080x y \+=-=,,解得:18x y =-=,,189x y \-=--=-,故答案为:9-.【点睛】本题考查了非负数的性质,掌握非负数的意义和性质是正确解答的关键.三、解答题(共66分)19.(6分)计算:(1)23(22)(21)+---;(2)(3)(2)16(8)-´-+¸-.【答案】(1)22(2)4【分析】(1)利用加法的运算律进行求解即可;(2)先计算乘除,再计算加减即可求解.【详解】(1)解:23(22)(21)+---232221=-+22=;(2)解:(3)(2)16(8)-´-+¸-()62=+-4=.【点睛】本题考查了有理数的混合运算,解题的关键是掌握相应的运算法则.20.(6分)将下列各数在数轴上表示出来,并用“<”连接.2153,|3|,2,0,,(222----+【答案】详见解析,25312()0|3|222-<-<-+<<<-【分析】由绝对值,相反数,有理数的乘方的概念,找到各数在数轴上对应点的位置即可.【详解】解:25312(0|3|222-<-<-+<<<-.【点睛】本题考查数轴的概念,相反数,绝对值,有理数的乘方的概念,关键是准确确定各数在数轴上对应点的位置.21.(6分)计算:()()21125|2|953--´--+-¸.【答案】26-【分析】原式先算乘方及绝对值,再算乘除,最后算加减即可得到结果.【详解】解:()()21125|2|953--´--+-¸41227=---26=-.【点睛】此题考查了有理数的混合运算,其运算顺序为:先乘方,再乘除,最后加减,有括号先算括号里边的,同级运算从左到右依次进行,熟练掌握运算法则是解题关键.22.(6分)数学老师布置了一道思考题:115626æöæö-¸-ç÷ç÷èøèø,小明仔细思考了一番,用了一种不同方法解决了这个问题,小明解法如下:原式的倒数为()151156226626æöæöæö-¸-=-´-=ç÷ç÷ç÷èøèøèø,所以11516262æöæö-¸-=ç÷ç÷èøèø.(1)请你判断小明的解答是否正确(2)请你运用小明的解法解答下面的问题计算:111112346æöæö-¸-+ç÷ç÷èøèø【答案】(1)小明的解答正确(2)13-【分析】(1)正确,利用倒数的定义判断即可;(2)求出原式的倒数,即可确定出原式的值.【详解】(1)解:小明的解答正确,理由为:一个数的倒数的倒数等于原数;(2)解:111134612æöæö-+¸-ç÷ç÷èøèø()11112346æö=-+´-ç÷èø()()()111121212346=´--´-+´-432=-+-3=-,∴11111123463æöæö-¸-+=-ç÷ç÷èøèø.【点睛】本题主要考查了有理数乘法和除法计算,熟练掌握相关计算法则是解题的关键.23.(6分)如果a ,b ,c 是非零有理数,求式子222||||||||a b c abc a b c abc -+++的所有可能的值.【答案】3±或5±【分析】根据绝对值的性质和有理数的除法法则分情况讨论即可.【详解】解:根据题意,当000a b c >>>,,时,22222215||||||||a b c abc a b c abc -+++=++-=;当000a b c >><,,时,22222213||||||||a b c abc a b c abc -+++=+-+=;当000a b c ><>,,时,22222213||||||||a b c abc a b c abc -+++=-++=;当000a b c <>>,,时,22222213||||||||a b c abc a b c abc -+++=-+++=;当000a b c <<>,,时,22222213||||||||a b c abc a b c abc -+++=--+-=-;当000a b c ><<,,时,22222213||||||||a b c abc a b c abc -+++=---=-;当000a b c <><,,时,22222213||||||||a b c abc a b c abc -+++=-+--=-;当000a b c <<<,,时,22222215||||||||a b c abc a b c abc -+++=---+=-;综上所述,式子222||||||||a b c abc a b c abc -+++的所有可能的值为3±或5±.【点睛】本题考查了有理数的乘法和绝对值的性质,熟练掌握绝对值的性质以及有理数的除法法则是解题的关键.24.(8分)某工厂一周内,计划每天生产自行车100辆,实际每天生产量如下表(以计划量为标准,增加的车辆记为正数,减少的车辆记为负数):星期周一周二周三周四周五周六周日增减(辆)1-+32-+4+75-10-(1)生产量最多的一天比最少的一天多生产多少辆?(2)本周一共生产了多少辆自行车?【答案】(1)17辆;(2)696辆.【分析】(1)由表可知,生产最多的一天为()1007+辆,最少的一天为()10010-,两者相减即可;(2)先用100乘以7,再将多生产或少生产的数量相加,两者相加即可.【详解】(1)()()10071001071017+--=+=(辆)∴生产量最多的一天比最少的一天多生产17辆;(2)()100713247510´+-+-++--7004=-696=(辆)∴本周一共生产了696辆自行车.【点睛】本题考查了正数和负数、有理数的四则运算在实际问题中的应用,根据表中数据正确列式,是解题的关键.25.(8分)如图,在数轴上有A、B、C三个点,请回答下列问题.(1)A、B两点间距离是,B、C两点间距离是,A、C两点间距离是.(2)若将点A向右移动5个单位到点D,B、C、D这三点所表示的数哪个最大?最大数比最小数大多少?【答案】(1)3 ;4;7(2)C点表示的数最大,最大数比最小数大4【分析】(1)根据数轴上两点之间的距离公式进行解答即可;(2)求出点D表示的数,然后再进行比较即可.【详解】(1)解:点A表示的数为4-,点B表示的数为1-,点C表示是数为3,则()AB=---=-+=,14143()31314BC=--=+=,()AC=--=+=,34347故答案为:3;4;7.-+=,点B表示的数为1-,点C表示(2)解:将点A向右移动5个单位到点D,则点D表示是数为451是数为3,>>-,∵311∴表示最大数的是点C,表示最小数的是点B()--=+=,31314∴最大数比最小数大4.【点睛】本题主要考查了用数轴上点表示有理数,数轴上两点之间的距离,解题的关键是数形结合找出点A、B、C在数轴上所表示的有理数.26.(10分)数学实验室:点A、B在数轴上分别表示有理数a、b,A、B两点之间的距离表示为AB,在数轴上A、B两点之间的距离=-.AB a b利用数形结合思想回答下列问题:(1)数轴上表示2和6两点之间的距离是 ,数轴上表示1和4-的两点之间的距离是 .(2)数轴上表示x 和3-的两点之间的距离表示为 .数轴上表示x 和6的两点之间的距离表示为 .(3)若x 表示一个有理数,则14x x -++的最小值= .(4)若x 表示一个有理数,且134x x ++-=,则满足条件的所有整数x 的是 .(5)若x 表示一个有理数,当x 为 ,式子234x x x ++-+-有最小值为 .【答案】(1)4,5(2)3x +,6x -(3)5(4)1-或0或1或2或3(5)3,6【分析】(1)根据数轴上A 、B 两点之间的距离AB a b =-列式计算即可;(2)根据数轴上A 、B 两点之间的距离AB a b =-列式计算即可;(3)根据数轴上两点之间的距离的意义可知x 在4-与1之间时,14x x -++有最小值5;(4)根据数轴上两点之间的距离的意义可知当x 在1-与3之间时(包含1-和3),134x x ++-=,然后可得满足条件的所有整数x 的值;(5)根据数轴上两点之间的距离的意义可知当3x =时,234x x x ++-+-有最小值,最小值为2-到4的距离,然后可得答案.【详解】(1)解:数轴上表示2和6两点之间的距离是264-=,数轴上表示1和4-的两点之间的距离是()145--=,故答案为:4,5;(2)解:数轴上表示x 和3-的两点之间的距离表示为()33x x --=+,数轴上表示x 和6的两点之间的距离表示为6x -;故答案为:3x +,6x -;(3)解:根据数轴上两点之间的距离的意义可知:14x x -++可表示为点x 到1与4-两点距离之和,∴当x 在4-与1之间时,14x x -++有最小值5,故答案为:5;(4)解:根据数轴上两点之间的距离的意义可知:134x x ++-=表示为点x 到1-与3两点距离之和为4,∴当x 在1-与3之间时(包含1-和3),134x x ++-=,∴满足条件的所有整数x 的是1-或0或1或2或3;故答案为:1-或0或1或2或3;(5)解:根据数轴上两点之间的距离的意义可知:234x x x ++-+-可看作是数轴上表示x 的点到2-、3、4三点的距离之和,∴当3x =时,234x x x ++-+-有最小值,最小值为2-到4的距离,即246--=,故答案为:3,6.【点睛】本题考查了数轴上两点之间的距离公式,绝对值的几何意义,正确理解数轴上两点之间的距离以及绝对值的几何意义是解题的关键.27.(10分)【概念学习】规定:求若干个相同的有理数(均不等0)的除法运算叫做除方,如333¸¸,()()()()2222-¸-¸-¸-等.类比有理数的乘方,我们把333¸¸记作3③,读作“3的圈3次方”,()()()()2222-¸-¸-¸-记作()2-④,读作“2-的圈4次方”.一般地,把()0n aa a a a ¸¸¸××׸¹1442443个记作,读作“a 的圈n 次方”.【初步探究】(1)直接写出计算结果:4=③______,412æö-=ç÷èø______.【深入思考】我们知道,有理数的减法运算可以转化为加法运算,除法运算可以转化为乘法运算,有理数的除方运算如何转化为乘方运算呢?(此处不用作答)(2)试一试:仿照上面的算式,将下列运算结果直接写成乘方幂的形式()3-=④______;5=⑥______;12æö=ç÷èø⑤______.(3)想一想:将一个非零有理数a 的圈n 次方写成乘方幂的形式等于______.(4)比较:()9-⑤______()3-⑦(填“>”“<”或“=”)【灵活应用】(5)算一算:211334æöæö-¸-´-ç÷ç÷èøèø⑤④.【答案】(1)14,4;(2)213æö-ç÷èø,415æöç÷èø,32;(3)21n a -æöç÷èø;(4)>;(5)163【分析】(1)根据题目给出的定义,进行计算即可;(2)将有理数除法转化为乘法,再写成幂的形式即可;(3)从(2)中总结归纳相关规律即可;(4)将两数变形,求出具体值,再比较大小即可;(5)先将除方转化为乘方,再运用有理数混合运算的方法进行计算即可.【详解】解:(1)144444=¸¸=③,411111422222æöæöæöæöæö-=-¸-¸-¸-=ç÷ç÷ç÷ç÷ç÷èøèøèøèøèø,故答案为:14,4;(2)()()()()()21333333æö--¸-¸-¸-=-è=ç÷ø④;4155555555æö=¸¸¸¸¸=ç÷èø⑥31111112222222æö=¸¸¸¸=ç÷èø⑤;故答案为:213æö-ç÷èø,415æöç÷èø,32;(3)a 的圈n 次方为:21...n n a a a a a a -æö¸¸¸¸=ç÷èø1442443个;(4)()31172999æö-=-=-ç÷èø⑤,()51124333æö-=-=-ç÷èø⑦,∵729243>,∴11729243->-,∴()9-⑤>()3-⑦,故答案为:>;(5)211334æöæö-¸-´-ç÷ç÷èøèø⑤④()232334=-¸-´()92716=-¸-´163=.【点睛】本题考查了有理数的除法运算,乘方运算,以及有理数混合运算,正确理解相关运算法则是解题的关键.。
部编数学七年级上册必刷基础练【1.11.2正数和负数及有理数】(解析版)考点必刷精编讲义含答案
2022-2023学年七年级数学上册考点必刷练精编讲义(人教版)基础第一章《有理数》1.1-1.2 正数和负数及有理数知识点1:正数和负数【典例分析01】(2021秋•望城区期末)若盈余60万元记作+60万元,则﹣60万元表示( )A .盈余60万元B .亏损60万元C .亏损﹣60万元D .不盈余也不亏损解:若盈余60万元记作+60万元,则﹣60万元表示亏损60万元,故选:B .【变式训练1-1】(2022•青县二模)热爱运动的琪琪坚持每天晚上健步走半小时并记录步数,他每天以3000步为标准,超过的记作正数,不足的记作负数.下表是本周内琪琪健步走步数情况的记录:星期一二三四五六日步数/半小时+221+260﹣50﹣105﹣115+104(1)本周内琪琪健步走步数最多的一天比最少的一天多走了 375 步;(2)本周内琪琪平均每天健步走的速度约为 102 步/分钟(结果保留整数).解:(1)∵﹣115<﹣105<﹣50<0<104<221<260,∴260﹣(﹣115)=375(步),故答案为:375;(2)×(3000+)=×(3000+45)=×3045≈102(步/分钟),故答案为:102.【变式训练1-2】(2021秋•义乌市期末)小明原有生活费50元,现靠勤工俭学的收入支付生活费,下面是小明一周内每天生活费的增减情况表(增加为正,减少为负,单位:元):星期一二三四五六日增减+7﹣2+12﹣60﹣1+6(1)求星期二结束时,小明有生活费多少元?(2)在这一周内,小明的生活费最多的一天比最少的一天多多少元?解:(1)50+7﹣2=55(元);答:星期二结束时,小明有生活费55元;(2)∵50+7=57(元),57﹣2=55(元),55+12=67(元),67﹣6=61(元),61+0=61(元),61﹣1=60(元),60+6=66(元),且55<57<60<61<66<67,∴67﹣55=12(元),答:在这一周内,小明的生活费最多的一天比最少的一天多12元.【变式训练1-3】(2021秋•和平县期末)某出租车沿南北方向行驶,从A地出发,晚上到达B地.规定向北为正方向.行驶记录如下(单位:km):+18、﹣9、+7、﹣14、﹣6、+13、﹣6,①B地在A地的什么位置?②若出租车每行驶1km耗油1升,求该天共耗油多少升?③若出租车起步价为7元,起步里程为3千米(包括3千米),超过部分每千米1.2元,则该天车费多少元?解:(1)(+18)+(﹣9)+(+7)+(﹣14)+(﹣6)+(+13)+(﹣6)=18﹣9+7﹣14﹣6+13﹣6=3(千米),∵规定向北为正方向,∴B地在A地的北边3km处,答:B地在A地的北边3km处;(2)|+18|+|﹣9|+|+7|+|﹣14|+|+6|+|+13|+|﹣6|=18+9+7+14+6+13+6=73(千米),∵出租车每行驶1km耗油1升,∴该天共耗油73×1=73(升),答:该天共耗油73升;(3)∵这七次每次的行驶路程都大于3km,∴每次的计费方式都是起步价+超过3km的费用,∴则该天车费=7×7+(73﹣3×7)×1.2=111.4(元),答:该天车费为111.4元.知识点2:有理数【典型分析02】(2021秋•新田县期末)下列各数中属于负整数的是( )A.0B.3C.﹣5D.﹣1.2解:A、0为整数,故选项不符合题意;B、3为负正整数,故选项不符合题意;C、﹣5为负整数,故选项符合题意;D、﹣1.2为负分数,故选项不符合题意.故选:C.【变式训练2-1】(2021秋•鼓楼区校级月考)下列说法中:①0是最小的整数;②有理数不是正数就是负数;③正整数、负整数、正分数、负分数统称为有理数;④非负数就是正数;⑤﹣不仅是有理数,而且是分数;⑥是无限不循环小数,所以不是有理数.其中错误的说法的个数为( )A.6个B.5个C.4个D.3个解:①根据有理数的大小关系,﹣1<0,故0不是最小的整数,那么①错误.②0是有理数,但0既不是正数,也不是负数,那么②错误.③正整数、负整数、正分数、负分数、0统称为有理数,那么③错误.④非负数包括0和正数,那么④错误.⑤根据无理数的定义,是无理数,那么⑤错误.⑥根据有理数的定义,是有理数,那么⑥错误.综上:错误的有①②③④⑤⑥,共6个.故选:A.【变式训练2-2】(2021秋•怀宁县期中)三个互不相等的有理数,既可以表示为1,a+b,a,也可以表示为0,,b,则b= 1 .解:(1)∵三个互不相等的有理数,既表示为1,a+b,a的形式,又可以表示为0,,b的形式,∴这两个数组的数分别对应相等.∴a+b与a中有一个是0,与b中有一个是1,但若a=0,会使无意义,∴a≠0,只能a+b=0,即a=﹣b,于是=﹣1.只能是b=1,于是a=﹣1,故答案为:1.【变式训练2-3】(2021秋•洛江区期中)把下列各数填在相应的大括号内:﹣5,﹣,﹣12,0,0.3,﹣3.14,+1.99,+6,.(1)正数集合:{ 0.3,+1.99,+6, …};(2)分数集合:{ ﹣,0.3,﹣3.14,+1.99, …}.解(1)正数集合:{ 0.3,+1.99,+6,…};(2)分数集合:{﹣,0.3,﹣3.14,+1.99,…}.故答案为:0.3,+1.99,+6,;﹣,﹣3.14,+1.99,.【变式训练2-4】(2020秋•宁波期末)我们知道,有理数包括整数、有限小数和无限循环小数,事实上,所有的有理数都可以化为分数形式(整数可看作分母为1的分数),那么无限循环小数如何表示为分数形式呢?请看以下示例:例:将0.化为分数形式,由于0.=0.7777…,设x=0.7777…①则10x=7.777…②②﹣①得9x=7,解得x=,于是得0.=.同理可得0.==,7.=7+0.=7+=.根据以上阅读,回答下列问题:(以下计算结果均用最简分数表示)基础训练(1)0.= ,8.= ;(2)将0.化为分数形式,写出推导过程.迁移应用(3)0.5= ;(注:0.5=0.153153…)探索发现(4)若已知0.1428=,则2.8571= .解:(1)0.==,8.=8+0.=8+=,故答案为:,;(2)将0.化为分数形式,由于0.=0.646464…,设x=0.646464…①,则100x=64.6464…②,②﹣①得99x=64,解得x=,于是得0.=;(3)类比(1)(2)的方法可得,0.==,故答案为:;(4)∵0.1428=,∴714.8571=×1000,∴0.8571=×1000﹣714=,∴2.8571=+2=,故答案为:.知识点3:数轴【典型分析03】(2022•丰县二模)数轴上的点A、B分别表示﹣2、3,则点 A 离原点的距离较近(填“A”或“B”).解:∵|﹣2|=2,|3|=3,∴点A离原点的距离较近,故答案为:A.【变式训练3-1】(2022•东明县二模)数轴上的点B到原点的距离是6,则点B表示的数为( )A.12或﹣12B.6C.﹣6D.6或﹣6解:∵点B到原点的距离是6,∴点B表示的是±6,故选:D.【变式训练3-2】(2021秋•绵阳期末)如图,数轴上从左至右依次排列的三个点A,B,C,其中A、C两点到原点的距离相等,且AC=8,BC=2AB,则点B表示的数为( )A.﹣1B.1C.D.解:∵A、C两点到原点的距离相等,且AC=8,∴A表示﹣4,C表示4,∵AC=8,BC=2AB,∴AB=,∴点B表示的数为﹣4+.故选:D.【变式训练3-3】(2021秋•镇江期末)如图,在一条可以折叠的数轴上,A、B两点表示的数分别是﹣7,3,以点C为折点,将此数轴向右对折,若点A折叠后在点B的右边,且AB=2,则C点表示的数是 ﹣1 .解:设点C表示的数为x,则AC=x﹣(﹣7)=x+7,BC=3﹣x.∵以点C为折点,将此数轴向右对折,若点A在点B的右边,且AB=2,∴AC﹣BC=2.即:x+7﹣(3﹣x)=2.解得:x=﹣1.故答案为:﹣1.【变式训练3-4】(2021秋•望城区期末)为体现社会对教师的尊重,教师节这天上午,出租车司机小王在东西走向的公路上免费接送老师.如果规定向东为正,向西为负,出租车的行程如下:(单位:千米)+3,﹣8,+13,+15,﹣10,﹣12,﹣13,﹣17(1)当最后一名老师到达目的地时,小王距离开始接送第一位老师之前的地点的距离是多少?(2)若出租车的耗油量为0.4升/千米,这天上午出租车共耗油多少升?解:(1)∵+3﹣8+13+15﹣10﹣12﹣13﹣17=﹣29,∴当最后一名老师到达目的地时,小王距离开始接送第一位老师之前的地点的距离是29千米;(2)出租车司机小王这天上午行驶的路程是:|+3|+|﹣8|+|+13|+|+15|+|﹣10|+|﹣12|+|﹣13|+|﹣17|=91,∴耗油为91×0.4=36.4(升),答:这天上午出租车共耗油36.4升.【变式训练3-5】(2021秋•长汀县校级月考)解决问题:一辆货车从超市出发,向东走了3千米到达小彬家,继续走2.5千米到达小颖家,然后向西走了10千米到达小明家,最后回到超市.(1)以超市为原点,以向东的方向为正方向,用1个单位长度表示1千米,在数轴上表示出小明家,小彬家,小颖家的位置.(2)小明家距小彬家 7.5 千米?(3)货车每千米耗油0.08升,这次共耗油多少升?解:(1)如图:(2)从数轴上可看出,小明家距小彬家有7.5个单位,所以是7.5千米;(3)一共行驶的路程为:|+3|+|+2.5|+|﹣10|+|4.5|=20(千米),所以共耗油20×0.08=1.6(升).知识点4:相反数【典型分析04】(2021秋•临江市期末)若a+2的相反数是﹣5,则a= 3 .解:由题意得:a+2=5,a=3,故答案为:3.【变式训练4-1】(2021秋•毕节市期末)下列各对数中,互为相反数的是( )A.﹣(+1)和+(﹣1)B.﹣(﹣1)和+(﹣1)C.﹣(+1)和﹣1D.+(﹣1)和﹣1解:A、﹣(+1)=﹣1,+(﹣1)=﹣1,不是相反数,故此选项不符合题意;B、﹣(﹣1)=1,+(﹣1)=﹣1,是相反数,故此选项符合题意;C、﹣(+1)=﹣1,不是相反数,故此选项不符合题意;D、+(﹣1)=﹣1,不是相反数,故此选项不符合题意;故选:B.【变式训练4-2】(2021秋•渌口区期末)下列两个数互为相反数的是( )A.(﹣)和﹣(﹣)B.﹣0.5和C.π和﹣3.14D.+20和﹣(﹣20)解:A、﹣(﹣)=,因为﹣+≠0,所以﹣与﹣(﹣)不是互为相反数,故此选项不符合题意;B、因为﹣0.5+=0,所以﹣0.5与是互为相反数,故此选项符合题意;C、因为π+(﹣3.14)=0.0015926……,故此选项不符合题意;D、﹣(﹣20)=20,因为+20+20=40,因此+20和﹣(﹣20)不是互为相反数,故此选项不符合题意;故选:B.【变式训练4-3】(2021秋•播州区期中)已知m与n互为相反数,且m与n之间的距离为6,且m<n,则m= ﹣3 ,n= 3 .解:∵m与n互为相反数,∴n=﹣m,∵m<n,且m与n之间的距离为6,∴n﹣m=6,∴﹣m﹣m=6,∴﹣2m=6,解得m=﹣3,∴n=3.故答案为:﹣3,3.知识点5:绝对值【典型分析05】(2022•广东)|﹣2|=( )A.﹣2B.2C.D.解:根据绝对值的意义:|﹣2|=2,故选:B.【变式训练5-1】(2022•二道区模拟)下列各组数中,互为相反数的是( )A.|+1|与|﹣1|B.﹣(﹣1)与1C.|﹣(﹣3)|与﹣|﹣3|D.﹣|+2|与+(﹣2)解:A选项,1与1不是相反数,故该选项不符合题意;B选项,1与1不是相反数,故该选项不符合题意;C选项,3与﹣3是相反数,故该选项符合题意;D选项,﹣2与﹣2不是相反数,故该选项不符合题意;故选:C.【变式训练5-2】(2022•泰州)若x=﹣3,则|x|的值为 3 .解:∵x=﹣3,∴|x|=|﹣3|=3.故答案为:3.【变式训练5-3】(2019秋•海淀区校级期中)观察下面的等式:3﹣1=﹣|﹣1+2|+31﹣1=﹣|1+2|+3(﹣2)﹣1=﹣|4+2|+3回答下列问题:(1)填空: ﹣4 ﹣1=﹣|6+2|+3;(2)已知2﹣1=﹣|x+2|+3,则x的值是 0或﹣4 ;(3)设满足上面特征的等式最左边的数为y,则y的最大值是 4 ,此时的等式为 4﹣1=﹣|﹣2+2|+3 .解:(1)∵﹣|6+2|+3=﹣5,﹣4﹣1=﹣5,故答案为﹣4;(2)由所给式子可知,|x+2|=2,∴x=0或﹣4,故答案为0或﹣4;(3)∵y﹣1=﹣|2﹣y+2|+3,∴y=﹣|y﹣4|+4,当y≥4时,y=﹣y+8,∴y=4;当y<4时,式子恒成立,∴y=4时最大,此时4﹣1=﹣|﹣2+2|+3,故答案为4,4﹣1=﹣|﹣2+2|+3.【变式训练5-4】(2019秋•新抚区校级期中)已知m、n为整数,且|m﹣2|+|m﹣n|=1,求m+n的值.解:分两种情况:①当|m﹣2|=0时,|m﹣n|=1,∴m=2,n=1或n=3,∴m+n=3或5.②当|m﹣2|=1时,|m﹣n|=0,∴m=3或m=1,n=m,∴m+n=6或2.综上,m+n的值为2或3或5或6.知识点6:非负数的性质:绝对值【典型分析06】(2021秋•黔南州月考)若|x﹣1|+|y+3|=0,则y﹣x+的值是( )A.B.C.D.解:∵|x﹣1|≥0,|y+3|≥0,∴x﹣1=0,y+3=0,∴x=1,y=﹣3,∴y﹣x+=﹣3﹣1+=﹣3,故选:A.【变式训练6-1】(2021秋•长汀县校级月考)若|x﹣3|+|y+3|=0,则x﹣y= 6 .解:∵|x﹣3|+|y+3|=0,而|x﹣3|≥0,|y+3|≥0,∴x﹣3=0,y+3=0,则x=3,y=﹣3,x﹣y=3+3=6.故答案为:6.【变式训练6-2】(2019秋•崇川区校级月考)已知|3x﹣2|+|y﹣4|=0,求|6x﹣y|的值.解:由题意得,3x﹣2=0,y﹣4=0,解得x=,y=4,所以,|6x﹣y|=|6×﹣4|=|4﹣4|=0,即|6x﹣y|的值是0.【变式训练6-3】(2018秋•石鼓区校级月考)已知|a﹣3|与|2b﹣4|互为相反数.(1)求a与b的值;(2)若|x|=2a+4b,求x的相反数.解:(1)∵|a﹣3|与|2b﹣4|互为相反数,∴|a﹣3|+|2b﹣4|=0,∴a﹣3=0,2b﹣4=0,解得a=3,b=2;(2)∵a=3,b=2,∴|x|=2a+4b=2×3+4×2=14,∴x=±14,∴x的相反数为﹣14或14.知识点7:有理数大小比较【典型分析07】(2021秋•翠屏区校级期中)将下列各数在数轴上表示出来,并把这些数按从小到大顺序进行排列,用“<”连接.4,﹣1.5,0,3,﹣2,解:如图所示:故.【变式训练7-1】(2022•仁怀市校级模拟)在2,0,﹣1,﹣2四个数中最大的数是( )A.2B.0C.﹣1D.﹣2解:∵﹣2<﹣1<0<2,∴在2,0,﹣1,﹣2四个数中最大的数是2.故选:A.【变式训练7-2】(2021秋•闽侯县期末)在﹣1,0,3,﹣5这四个数中,最大的数是( )A.﹣1B.0C.3D.﹣5解:∵﹣5<﹣1<0<3,∴在﹣1,0,3,﹣5这四个数中,最大的数是3.故选:C.【变式训练7-3】(2021秋•阳东区期末)下列四个数中:①0;②﹣;③5;④﹣1.最小的数是 ④ .(填序号)解:∵﹣1<﹣<0<5,∴所给的四个数中:①0;②﹣;③5;④﹣1,最小的数是④.故答案为:④.【变式训练7-4】(2021秋•六盘水期中)画出数轴,并解决下列问题:(1)把4,﹣3.5,,,0,2.5表示在数轴上.(2)请将上面的数用“<”连接起来;(3)观察数轴,写出绝对值不大于4的所有整数.解:(1)如图所示:(2)由(1)可得:;(3)由(1)可得,绝对值不大于4的整数有﹣4、﹣3、﹣2、﹣1、0、1、2、3、4。
人教版七年级上册《1.2_有理数》2024年同步练习卷(2)+答案解析
人教版七年级上册《1.2有理数》2024年同步练习卷(2)一、选择题:本题共11小题,每小题3分,共33分。
在每小题给出的选项中,只有一项是符合题目要求的。
1.下列各数中,是负分数的是()A. B. C. D.02.在下列数,,,,中,属于分数的有()A.2个B.3个C.4个D.5个3.下列各数中:、、、2、、、0、负有理数有()A.2个B.3个C.4个D.5个4.在,3,,0,,中,正有理数有()A.2个B.3个C.4个D.5个5.给出一个数,下列说法正确的是()A.这个数不是分数,但是有理数B.这个数是负数,也是分数C.这个数不是有理数D.这个数是一个负小数,不是有理数6.关于“0”的说法,正确的是()A.是整数,也是正数B.是整数,但不是正数C.不是整数,是正数D.是整数,但不是有理数7.下列说法正确的是()A.整数就是正整数和负整数B.分数包括正分数、负分数C.有理数包括正有理数和负有理数D.一个数不是正数就是负数8.一定是()A.正数B.负数C.正数或负数D.正数或零或负数9.下列说法正确的个数为()①0是整数;②是负分数;③不是正数;④自然数一定是正数.A.1B.2C.3D.410.在有理数,0,23,,中,属于非负数的个数有()A.4个B.3个C.2个D.1个11.在下列有理数中,是负数但不是分数的数是()A.1B.0C.D.二、填空题:本题共4小题,每小题3分,共12分。
12.请把下列各数填入相应的集合中:4,,,0,,正数集合:______…;负数集合:______…;整数集合:______…;分数集合:______…13.在数,,,,29,0,,中,非负数有______个.14.在,,0,,,2,,这些数中,有理数有m个,自然数有n个,分数有k个,则的值为______.15.观察下面按一定规律排列的数:第5行最右边的数是______,第6行最左边的数是______;这个数在第______行的第______列从左往右数;在前100个数中,正数有______个,负数有______个.三、解答题:本题共1小题,共8分。
有理数(基础篇)(Word版 含解析)
一、初一数学有理数解答题压轴题精选(难)1.如图,数轴的单位长度为1,点,,,是数轴上的四个点,其中点,表示的数是互为相反数.(1)请在数轴上确定原点“O”的位置,并用点表示;(2)点表示的数是________,点表示的数是________,,两点间的距离是________;(3)将点先向右移动4个单位长度,再向左移动2个单位长度到达点,点表示的数是________,在数轴上距离点3个单位长度的点表示的数是________.【答案】(1)解:距离A点和B点的距离相等的点即AB的中点,点 .如图所示,点即为所求.(2);5;9(3);或1【解析】【解答】解:(2)点表示的数是,点表示的数是5,所以,两点间的距离是 .故答案为9.( 3 )如图,将点先向右移动4个单位长度是0,再向左移动2个单位长度到达点,得点表示的数是 .到点距离3个单位长度的点表示的数是-2-3= 或-2+3=1.故答案为,或1.【分析】(1)由点A和点B表示的数互为相反数,因此原点到点A和点B的距离相等,可得到原点的位置。
(2)先再数轴上标出数,可得到点M和点N表示的数,再求出点M,N之间的距离。
(3)利用数轴上点的平移规律:左减右加,可得到点C表示的数,与点C距离3个单位长度表示的数为-2±3,计算可求解。
2.如图,为原点,数轴上两点所对应的数分别为,且满足关于的整式与之和是是单项式,动点以每秒个单位长度的速度从点向终点运动.(1)求的值.(2)当时,求点的运动时间的值.(3)当点开始运动时,点也同时以每秒个单位长度的速度从点向终点运动,若,求的长.【答案】(1)解:因为m、n满足关于x、y的整式-x41+m y n+60与2xy3n之和是单项式所以所以m=-40,n=30.(2)解:因为A、B所对应的数分别为-40和30,所以AB=70,AO=40,BO=30,当点P在O的左侧时:则PA+PO=AO=40,因为PB-(PA+PO)=10, PB=AB-AP=70-4t所以70-4t-40=10所以t=5.当点P在O的右侧时:因为PB<PA所以PB-(PA+PO)<0,不合题意,舍去(3)解:①如图1,当点P在点Q左侧时,因为AP=4t,BQ=2t,AB=70所以PQ=AB-(AP+BQ)=70-6t又因为PQ= AB=35所以70-6t=35所以t= ,AP= = ,②如图2,当点P在点Q右侧时,因为AP=4t,BQ=2t,AB=70,所以PQ=(AP+BQ)-AB=6t-70,又因为PQ= AB=35所以6t-70=35所以t=所以AP= =70.【解析】【分析】(1)根据单项式的次数相同,列方程即可得到答案;(2)分情况讨论:当点P在O的左侧时:当点P在O的右侧时.即可得到答案.(3)结合题意分别计算:①如图1,当点P在点Q左侧时,如图2,当点P在点Q右侧时.3.已知,数轴上点A和点B所对应的数分别为,点P为数轴上一动点,其对应的数为.(1)填空: ________ , ________ .(2)若点 P到点 A、点 B 的距离相等,求点 P 对应的数.(3)现在点 A、点 B分别以 2 个单位长度/秒和 0.5 个单位长度/秒的速度同时向右运动,点 P以 3 个单位长度/秒的速度同时从原点向左运动.当点 A与点 B之间的距离为2个单位长度时,求点 P所对应的数是多少?【答案】(1)-1;3(2)解:依题可得:PA=|x+1|,PB=|3-x|,∵点P到点A、点B的距离相等,∴PA=PB,即|x+1|=|3-x|,解得:x=1,∴点P对应的数为1.(3)解:∵点A、点B 速度分别以 2 个单位长度/秒、 0.5 个单位长度/秒的速度同时向右运动,∴A点对应的数为2t-1,点B对应的数为3+0.5t,①当点A在点B左边时,∵AB=2,∴(3+0.5t)-(2t-1)=2,解得:t=,∵点P以 3 个单位长度/秒的速度同时从原点向左运动,∴×3=4,∴P点对应的数为:-4.②当点A在点B右边时,∵AB=2,∴(2t-1)-(3+0.5t)=2,解得:t=4,∵点P以 3 个单位长度/秒的速度同时从原点向左运动,∴4×3=12,∴P点对应的数为:-12.【解析】【解答】解:(1)∵(a+1)2+|b-3|=0,∴,解得:.故答案为:-2;3.【分析】(1)根据平方和绝对值的非负性列出方程,解之即可得出答案.(2)根据题意可得PA=|x+1|,PB=|3-x|,再由PA=PB得|x+1|=|3-x|,解之即可得出点P对应的数.(3)根据题意可得A点对应的数为2t-1,点B对应的数为3+0.5t,分情况讨论:①当点A 在点B左边时,②当点A在点B右边时,由AB=2分别列出方程,解之得出t值,再由P 点的速度得出点P对应的数.4.已知 a、b、c 在数轴上的位置如图:(1)用“<”或“>”填空:a+1________0;c-b________0;b-1________0;(2)化简:;(3)若a+b+c=0,且b与-1的距离和c与-1的距离相等,求下列式子的值:2b -c - (a - 4c - b).【答案】(1)>;<;<(2)解:∵a+1>0,c-b<0,b-1<0,∴原式=a+1-(b-c)-(1-b)=a+1-b+c-1+b=a+c(3)解:由已知得:b+1=-1-c,即b+c=-2,∵a+b+c=0,即-2+a=0,∴a=2,则2b -c - (a - 4c - b).=2b -c - a + 4c + b=3(b+c)-2=【解析】【解答】解:(1)根据题意得:c<0<b<1<a∴a+1>0;c-b<0;b-1<0【分析】(1)根据数轴上点的位置进行计算比较大小即可;(2)利用数轴上点的位置判断出绝对值里边式子的正负,利用绝对值的代数意义化简,去括号合并即可得到结果(3)根据题意列出关系式,求出a与b+c的值,原式去括号合并得到最简结果,将a与b+c的值代入计算即可求出值.5.数轴上点A对应的数为a,点B对应的数为b,且多项式6x3y-2xy+5的二次项系数为a,常数项为b(1)直接写出:a=________,b=________(2)数轴上点P对应的数为x,若PA+PB=20,求x的值(3)若点M从点A出发,以每秒1个单位长度的速度沿数轴向右移动;同时点N从点B 出发,以每秒2个单位长度的速度沿数轴向左移动,到达A点后立即返回并向右继续移动,求经过多少秒后,M、N两点相距1个单位长度【答案】(1)﹣2;5(2)解:①当点P在点A左边,由PA+PB=20得: (﹣2 ﹣x )+(5﹣x)=20, ∴②当点P在点A右边,在点B左边,由PA+PB=20得: x ﹣(﹣2 )+(5﹣x)=20,∴,不成立③当点P在点B右边,由PA+PB=20得:x ﹣(﹣2 )+(x﹣5), ∴ .∴或11.5(3)解:设经过t秒后,M、N两点相距1个单位长度,由运动知,AM=t,BN=2t,① 当点N到达点A之前时,Ⅰ、当M,N相遇前,M、N两点相距1个单位长度,t+1+2t=5+2,所以,t=2秒,Ⅱ、当M,N相遇后,M、N两点相距1个单位长度,t+2t﹣1=5+2,所以,t=秒,② 当点N到达点A之后时,Ⅰ、当N未追上M时,M、N两点相距1个单位长度,t﹣[2t﹣(5+2)]=1,所以,t=6秒;Ⅱ、当N追上M后时,M、N两点相距1个单位长度,[2t﹣(5+2)]﹣t=1,所以,t=8秒;即:经过2秒或秒或6秒或8秒后,M、N两点相距1个单位长度.【解析】【解答】(1)∵多项式6x3y-2xy+5的二次项系数为a,常数项为b,∴a=-2,b=5,故答案为:-2,5;【分析】(1)根据多项式的相关概念即可得出a,b的值;(2)分①当点P在点A左边,②当点P在点A右边,③当点P在点B右边,三种情况,根据 PA+PB=20 列出方程,求解并检验即可;(3)设经过t秒后,M、N两点相距1个单位长度,故AM=t,BN=2t,分① 当点N 到达点A之前时,Ⅰ、当M,N相遇前,M、N两点相距1个单位长度,Ⅱ、当M,N相遇后,M、N两点相距1个单位长度,② 当点N到达点A之后时,Ⅰ、当N未追上M 时,M、N两点相距1个单位长度,Ⅱ、当N追上M后时,M、N两点相距1个单位长度,几种情况,分别列出方程,求解即可.6.如图,已知数轴上点A表示的数为8,B是数轴上位于点A左侧一点,且AB=20,(1)写出数轴上点B表示的数________;(2)|5-3|表示5与3之差的绝对值,实际上也可理解为5与3两数在数轴上所对的两点之间的距离.如的几何意义是数轴上表示有理数的点与表示有理数3的点之间的距离.试探索:①:若,则=________.②:的最小值为________.(3)动点P从O点出发,以每秒2个单位长度的速度沿数轴向右匀速运动,设运动时间为(>0)秒.①:当 =1时,A,P两点之间的距离为________;②:当 =________时,A,P之间的距离为2.(4)动点P,Q分别从O,B两点,同时出发,点P以每秒4个单位长度沿数轴向右匀速运动,Q点以P点速度的两倍,沿数轴向右匀速运动,设运动时间为t(t>0)秒.当t=________,P,Q之间的距离为4.【答案】(1)-12(2)6或10;20(3)6;3或5(4)2或4【解析】【解答】解:(1)∵AB=20,点A表示的数是8,B是数轴上位于点A左侧一点,∴点B表示的数是8-20=-12.故答案为:-12.(2)∵|x-8|=2∴x-8=±2解之:x=10或x=6;|x-(-12)|+|x-8|的最小值为8-(-12)=20.故答案为:6或10;20.(3)动点P从O点出发,以每秒2个单位长度的速度沿数轴向右匀速运动,∴OP=2t∴AP=8-2t当t=1时,AP=8-2×1=6;当AP=2时,则|8-2t|=2,解之:t=5或t=3.故答案为:6;3或5.(4)∵点P以每秒4个单位长度沿数轴向右匀速运动,Q点以P点速度的两倍,沿数轴向右匀速运动,∴点Q的速度为每秒8个单位长度,设运动时间为t(t>0)秒时,P,Q之间的距离为4.∴8t-4t-12=4或12+4t-8t=4解之:t=4或t=2故答案为:2或4.【分析】(1)根据点A表示的数和点B的位置关系,就可得到点B所表示的数。
专题 有理数的加减运算计算题(50题)(4大题型提分练)(解析版)
七年级上册数学《第2章有理数及其运算》专题有理数加减运算计算题◎有理数的加减混合运算(1)有理数加减混合运算的方法:有理数加减法统一成加法.(2)方法指引:①在一个式子里,有加法也有减法,根据有理数减法法则,把减法都转化成加法,并写成省略括号的和的形式.①转化成省略括号的代数和的形式,就可以应用加法的运算律,使计算简化.◎有理数的加减混合运算常用的方法技★1、互为相反数的两数相结合★2、符号相同的数相结合★3、同分母的分数相结合★4、相加减得整数的相结合-- -凑整法★5、按加数的类型灵活结合★6、先把分数分离整数后再分组相结合-- -拆项法题型一 有理数的加法计算1.(2023秋•河东区校级月考)计算:(1)27+(﹣13);(2)(﹣19)+(﹣91);(3)(﹣2.4)+2.4;(4)53+(−23). 【分析】根据有理数的加法法则进行解题即可.【解答】解:(1)27+(﹣13)=14;(2)(﹣19)+(﹣91)=﹣110;(3)(﹣2.4)+2.4=0;(4)53+(−23)=1. 【点评】本题考查有理数的加法,掌握加法法则是解题的关键.2.计算:(1)(﹣3)+(﹣9);(2)6+(﹣9);(3)15+(﹣22);(4)0+(−25);(5)12+(﹣4);(6)﹣4.5+(﹣3.5).【分析】根据有理数加法的计算法则逐个进行计算即可.【解答】解:(1)(﹣3)+(﹣9)=﹣(3+9)=﹣12;(2)6+(﹣9)=﹣(9﹣6)=﹣3;(3)15+(﹣22)=﹣(22﹣15)=﹣7;(4)0+(−25)=−25;(5)12+(﹣4)=12﹣4=8;(6)﹣4.5+(﹣3.5)=﹣(4.5+3.5)=﹣8.【点评】本题考查有理数加法,掌握有理数加法的计算法则是正确计算的前提.3.(2023秋•南郑区校级月考)计算:(1)(+7)+(﹣6)+(﹣7);(2)(−32)+(−512)+52+(−712). 【分析】根据有理数的加减计算法则求解即可.【解答】解:(1)原式=7﹣6﹣7=﹣6;(2)原式=(−32)−512+52−712=(−32+52)−(512+712)=1﹣1=0.【点评】本题主要考查了有理数的加减混合计算,熟知相关计算法则是解题的关键.4.计算:(1)15+(﹣19)+18+(﹣12)+(﹣14);(2)2.75+(﹣234)+(+118)+(﹣1457)+(﹣5.125). 【分析】(1)去括号利用,再利用加法的交换律与结合律进行计算即可.(2)去括号利用,再利用加法的交换律与结合律进行计算即可.【解答】解:(1)原式=15﹣19+18﹣12﹣14=(15+18)+(﹣19﹣12﹣14)=33+(﹣45)=﹣12;(2)原式=234−234+118−1457−518 =(234−234)+(118−518)﹣1457 =﹣1857. 【点评】本题主要考查了有理数的加法,掌握运算法则,利用加法的交换律与结合律进行计算是解题关键.5.用合理的方法计算下列各题:(1)103+(−114)+56+(−712);(2)(−12)+(−25)+(+32)+185+395. 【分析】(1)把原式写成去掉括号的形式,分别计算正数和负数的和,即可得到答案;(2)应用加法的交换,结合律,即可计算.【解答】解:(1)103+(−114)+56+(−712) =103+56−114−712=256−206 =56;(2)(−12)+(−25)+(+32)+185+395 =(−12+32)+(−25+185+395)=1+11=12.【点评】本题考查有理数的加法,关键是掌握有理数的加法法则.6.(2023秋•桐柏县校级月考)提升计算:(1)(﹣2.4)+(﹣3.7)+(﹣4.6)+5.7;(2)23+(﹣17)+6+(﹣22);(3)(+14)+(+18)+6+(−38)+(−38)+(−6).【分析】(1)根据有理数的加法法则计算即可;(2)根据有理数的加法法则计算即可;(3)根据有理数的加法法则计算即可.【解答】解:(1)(﹣2.4)+(﹣3.7)+(﹣4.6)+5.7=[(﹣2.4)+(﹣4.6)]+[(﹣3.7)+5.7]=﹣7+2=﹣5;(2)23+(﹣17)+6+(﹣22)=(23+6)+[(﹣17)+(﹣22)]=29+(﹣39)=﹣10;(3)(+14)+(+18)+6+(−38)+(−38)+(−6)=[(+14)+(+18)+(−38)]+(−38)+[6+(−6)]=0+(−38)+0=−38.【点评】本题考查了有理数的加法,熟练掌握有理数的加法法则是解题的关键. 题型二 有理数的减法计算7.计算:(1)(﹣73)﹣41;(2)37﹣(﹣14);(3)(−13)−190; (4)37−12. 【分析】根据有理数减法法则进行计算即可.【解答】解:(1)原式=﹣73﹣41=﹣114;(2)原式=37+14=51;(3)原式=−3090−190=−3190; (4)原式=614−714=−114.【点评】本题考查有理数的减法,掌握有理数减法法则是解题的关键.8.计算:(1)(﹣14)﹣(+15);(2)(﹣14)﹣(﹣16);(3)(+12)﹣(﹣9);(4)12﹣(+17);(5)0﹣(+52);(6)108﹣(﹣11).【分析】根据有理数的减法法则进行计算即可.【解答】解:(1)原式=﹣14﹣15=﹣29;(2)原式=﹣14+16=2;(3)原式=12+9=21;(4)原式=12﹣17=﹣5;(5)原式=0﹣52=﹣52;(6)原式=108+11=119.【点评】本题考查有理数的减法,掌握有理数的减法法则是解题的关键.9.计算:(1)(﹣34)﹣(+56)﹣(﹣28);(2)(+25)﹣(−293)﹣(+472).【分析】根据有理数的减法法则,把减法化成加法,写成省略加号和的形式,再利用加法运算律进行简便计算即可.【解答】解:(1)原式=(﹣34)+(﹣56)+(+28)=﹣34﹣56+28=﹣90+28=﹣62;(2)原式=(+25)+(+293)+(−472)=25+293−472=25+586−1416=2086−1416=676.【点评】本题主要考查了有理数的减法,解题关键是熟练掌握有理数的加减法则.10.计算下列各题.(1)(5﹣8)﹣2;(2)(3﹣7)﹣(2﹣9);(3)(﹣3)﹣12﹣(﹣4);(4)0﹣(﹣7)﹣4.【分析】根据有理数的减法法则计算即可,有理数减法法则:减去一个数,等于加上这个数的相反数.【解答】解:(1)(5﹣8)﹣2=﹣3+(﹣2)=﹣5;(2)(3﹣7)﹣(2﹣9)=(﹣4)﹣(﹣7)=﹣4+7=3;(3)(﹣3)﹣12﹣(﹣4)=﹣15+4=﹣11;(4)0﹣(﹣7)﹣4=0+7﹣4=3.【点评】本题考查了有理数的减法,熟记减去一个数等于加上这个数的相反数是解题的关键.11.计算:(1)﹣30﹣(﹣85);(2)﹣3﹣6﹣(﹣15)﹣(﹣10);(3)23−(−23)−34. 【分析】(1)根据有理数的减法法则计算即可;(2)根据有理数的减法法则计算即可;(3)根据有理数的减法法则计算即可.【解答】解:(1)﹣30﹣(﹣85)=﹣30+85=55;(2)﹣3﹣6﹣(﹣15)﹣(﹣10)=﹣3﹣6+15+10=16;(3)23−(−23)−34 =23+23−34=712.【点评】本题考查了有理数的减法,熟练掌握有理数的减法法则是解题的关键.12.(2023秋•新城区校级月考)计算:0.47﹣4﹣(﹣1.53).【分析】原式根据有理数加减法法则进行计算即可得到答案.【解答】解:0.47﹣4﹣(﹣1.53)=0.47﹣4+1.53=(0.47+1.57)﹣4=2﹣4=﹣2.【点评】本题主要考查了有理数的加减,熟练掌握有理数加减法法则是解答本题的关键.13.(2023秋•皇姑区校级期中)计算:16﹣(﹣12)﹣24﹣(﹣18).【分析】将减法统一成加法,然后再计算.【解答】解:原式=16+12+(﹣24)+18=28+(﹣24)+18=4+18=22.【点评】本题考查有理数加减混合运算,掌握有理数加减法运算法则是解题关键.14.(2023秋•射洪市校级月考)计算:(﹣7)﹣(﹣10)﹣(﹣8)﹣(﹣2).【分析】减去一个数,等于加上这个数的相反数,由此计算即可.【解答】解:(﹣7)﹣(﹣10)﹣(﹣8)﹣(﹣2)=﹣7+10+8+2=13.【点评】本题考查了有理数的减法,熟记其运算法则是解题的关键.15.(2024春•闵行区期中)计算:0.125−(−234)−(318−0.25).【分析】按照有理数的减法法则,把减法化成加法,写成省略加号和的形式,然后进行简便计算即可.【解答】解:原式=18+234−318+14=234+14+18−318=3﹣3=0. 【点评】本题主要考查了有理数的减法运算,解题关键是熟练掌握有理数的加减法则.16.计算:4.73−[223−(145−2.63)]−13.【分析】根据有理数的减法法则进行求解即可,先算小括号,再算中括号,能用简便方法的用简便方法.【解答】解:原式=4.73﹣[223−(﹣0.83)]−13 =4.73﹣(83+0.83)−13 =4.73−83−0.83−13=0.9.【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解题的基础. 题型三 运用加法运算律进行简便计算17.计算:16+(﹣25)+24+(﹣35).【分析】把括号去掉,用加法的交换律和结合律计算.【解答】解:16+(﹣25)+24+(﹣35),=16﹣25+24﹣35=(16+24)+(﹣25﹣35)=40+(﹣60)=﹣20.【点评】本题考查了有理数加法,掌握有理数加法法则,加法的交换律和结合律的熟练应用是解题关键.18.计算:(﹣34)+(+8)+(+5)+(﹣23)【分析】此题可以运用加法的交换律交换加数的位置,原式可变为[(﹣34)+(﹣23)]+(8+5),然后利用加法的结合律将两个加数相加.【解答】解:(﹣34)+(+8)+(+5)+(﹣23),=[(﹣34)+(﹣23)]+(8+5),=﹣57+13,=﹣44.【点评】本题考查了有理数的加法.解题关键是综合应用加法交换律和结合律,简化计算.19.计算:213+635+(−213)+(−525).【分析】原式1、3项结合,2、4项结合,计算即可得到结果.【解答】解:原式=(213−213)+(635−525)=115. 【点评】此题考查了有理数的加法,熟练掌握运算法则是解本题的关键.20.计算:(﹣1.8)+(+0.7)+(﹣0.9)+1.3+(﹣0.2).【分析】利用有理数的加法法则及加法的运算律进行计算即可.【解答】解:原式=[﹣1.8+(﹣0.2)]+(0.7+1.3)+(﹣0.9)=﹣2+2+(﹣0.9)=﹣0.9.【点评】本题考查有理数的加法运算,熟练掌握相关运算法则是解题的关键.21.(2023秋•合江县校级期末)计算:(−312)+(+67)+(−0.5)+(+117).【分析】先把加法写成省略加号、括号和的形式,再利用加法的交换律、结合律求解.【解答】解:原式=﹣312+67−12+117 =(﹣312−12)+(67+117) =﹣4+2=﹣2.【点评】本题考查了有理数的加法,掌握加法的运算法则、运算律是解决本题的关键.22.计算:−0.5+(−314)+(−2.75)+(+712).【分析】先用加法的交换律和结合律,再根据有理数加法法则进行计算.【解答】解:原式=[﹣0.5+(+712)]+[(﹣3.25)+(﹣2.75)] =7+(﹣6)=1.【点评】本题考查了有理数加法,掌握加法法则,用加法的交换律和结合律是解题关键.23.(2023秋•合江县校级期末)计算:(−312)+(+67)+(−0.5)+(+117).【分析】先把加法写成省略加号、括号和的形式,再利用加法的交换律、结合律求解.【解答】解:原式=﹣312+67−12+117 =(﹣312−12)+(67+117) =﹣4+2=﹣2.【点评】本题考查了有理数的加法,掌握加法的运算法则、运算律是解决本题的关键.24.(2023秋•汉中期末)计算:12+(−23)+47+(−12)+(−13). 【分析】利用加法结合律变形后,相加即可得到结果.【解答】解:原式=[12+(−12)]+[(−23)+(−13)]+47 =0﹣1+47=−37.【点评】此题考查了有理数的加法,熟练掌握运算法则是解本题的关键.25.(2023春•普陀区期中)计算:(−357)+(+15.5)+(−1627)+(−512).【分析】先按照同分母结合,再算加法.【解答】解:原式=(﹣357−1627)+(15.5﹣5.5)=﹣20+10=﹣10. 【点评】本题考查了有理数的加法,掌握加法运算律是解题的关键.26.(2024春•普陀区期中)计算:−3.19+21921+(−6.81)−(−2221).【分析】将小数与小数结合,分数与分数结合后再运算即可.【解答】解:−3.19+21921+(−6.81)−(−2221) =(﹣3.19﹣6.81)+(21921+2221)=﹣10+5=﹣5. 【点评】本题考查了有理数加减混合运算,分组计算是关键.27.(2023春•浦东新区校级期中)(−2513)+(+15.5)+(−7813)+(−512). 【分析】先将小数化分数,利用加法交换律将分母相同的放一起进行计算.【解答】解:原式=(−2513)+(+1512)+(−7813)+(−512)=[1512+(−512)]+[(−2513)+(−7813)] =10﹣10=0.【点评】本题考查有理数的加法运算,利用加法交换律将分母相同的数放一起进行计算是解题的关键.28.(2023秋•惠城区月考)用适当的方法计算:(1)0.36+(﹣7.4)+0.5+(﹣0.6)+0.14;(2)(﹣51)+(+12)+(﹣7)+(﹣11)+(+36).【分析】(1)利用加法的交换律和结合律,将正数结合在一起,负数结合在一起计算即可;(2)利用加法的交换律和结合律,将正数结合在一起,负数结合在一起计算即可;【解答】解:(1)0.36+(﹣7.4)+0.5+(﹣0.6)+0.14=(0.36+0.14+0.5)+[(﹣7.4)+(﹣0.6)]=1+(﹣8)=﹣7;(2)(﹣51)+(+12)+(﹣7)+(﹣11)+(+36)=[(﹣51)+(﹣7)+(﹣11)]+[(+12)+(+36)]=(﹣69)+48=﹣21.【点评】本题考查有理数的加法,利用运算定律可使计算简便.29.计算:(1)137+(﹣213)+247+(﹣123); (2)(﹣1.25)+2.25+7.75+(﹣8.75).【分析】根据有理数加法法则与运算律进行计算便可.【解答】解:(1)137+(﹣213)+247+(﹣123) =(137+247)+[(﹣213)+(﹣123)]=4+(﹣4)=0;(2)(﹣1.25)+2.25+7.75+(﹣8.75)=[(﹣1.25)+(﹣8.75)]+(2.25+7.75)=(﹣10)+10=0.【点评】本题考查有理数加法,加法运算律,关键是熟记有理数加法运算法则与运算律.30.(2023秋•齐河县校级月考)计算题.(1)5.6+4.4+(﹣8.1);(2)(﹣7)+(﹣4)+(+9)+(﹣5);(3)14+(−23)+56+(−14)+(−13); (4)(﹣9512)+1534+(﹣314)+(﹣22.5)+(﹣15712).【分析】(1)运用加法结合律简便计算即可求解;(2)运用加法交换律和结合律简便计算即可求解;(3)运用加法交换律和结合律简便计算即可求解;(4)运用加法交换律和结合律简便计算即可求解.【解答】解:(1)原式=10﹣8.1=1.9;(2)原式=(﹣7)+[(﹣4)+(﹣5)+(+9)]=﹣7+0=﹣7;(3)原式=[14+(−14)]+[(−23)+(−13)]+56=0+(﹣1)+56=−16;(4)原式=[(﹣9512)+(﹣15712)]+[1534+(﹣314)]+(﹣22.5) =﹣25+1212+(﹣2212) =﹣25+(﹣10)=﹣35.【点评】本题主要考查了有理数的加法,灵活运用加法交换律和结合律进行简便计算是解题的关键. 题型四 有理数的加减混合运算31.(2024春•浦东新区校级期中)计算:(−2513)−(−15.5)+(−7813)+(−512).【分析】根据加法交换律、加法结合律,求出算式的值即可.【解答】解:(−2513)−(−15.5)+(−7813)+(−512)=﹣2513+15.5﹣7813−512 =(﹣2513−7813)+(15.5﹣512)=﹣10+10=0.【点评】此题主要考查了有理数的加减混合运算,解答此题的关键是要明确:(1)在一个式子里,有加法也有减法,根据有理数减法法则,把减法都转化成加法,并写成省略括号的和的形式.(2)转化成省略括号的代数和的形式,就可以应用加法的运算律,使计算简化.32.(2024春•崇明区期中)计算:414−1.5+(512)−(﹣2.75). 【分析】根据有理数加减混合运算法则运算即可.【解答】解:原式=4.25﹣1.5+5.5+2.75=(4.25+2.75)+(5.5﹣1.5)=7+4=11.【点评】本题考查了有理数加减混合运算,分数转化为小数后分组运算是关键.33.(2024春•黄浦区期中)计算:(−7.7)+(−656)+(−3.3)−(−116).【分析】根据有理数的加减混合运算法则进行计算.【解答】解:原式=﹣7.7−416−3.3+76=﹣11−346=−503.【点评】本题考查了有理数的加减混合运算,掌握有理数的加减混合运算法则是关键.34.(2022•南京模拟)计算:(﹣478)﹣(﹣512)+(﹣414)﹣318. 【分析】原式利用减法法则变形,结合后相加即可得到结果.【解答】解:(﹣478)﹣(﹣512)+(﹣414)﹣318 =−478−318+512−414=−8+114=−634.【点评】此题考查了有理数的加减混合运算,熟练掌握运算法则是解本题的关键.灵活运用加法结合律进行凑整运算可以简化计算.35.(2023秋•万柏林区校级月考)计算:−|−113|−(−225)−|−313|+(−125).【分析】利用绝对值的意义,加法交换律和有理数加减法运算法则计算即可.【解答】解:−|−113|−(−225)−|−313|+(−125)=−113+225−313−125=−113−313+225−125=−423+1=−323.【点评】本题考查有理数的加减运算,解答时涉及绝对值的意义,加法交换律,掌握有理数加减法运算法则是解题的关键,36.(2023秋•万柏林区校级月考)计算:(1)6﹣(﹣2)+(﹣3)﹣1;(2)−1.2+(−34)−(−1.75)−14.【分析】(1)(2)两个小题均按照有理数的减法法则,把减法化成加法,写成省略加号和括号的形式,进行简便计算即可.【解答】解:(1)原式=6+2﹣3﹣1=8﹣4=4;(2)原式=−1.2−34+1.75−14=−1.2+1.75−34−14=0.55﹣1=﹣0.45.【点评】本题主要考查了有理数的加减运算,解题关键是熟练掌握有理数的加减法则.37.(2023秋•泰兴市期末)计算:(1)(−49)+(−59)﹣(﹣9);(2)(56−12−712)+(−124). 【分析】(1)根据有理数的加减运算法则计算即可;(2)先算括号里面的,然后根据有理数的加法法则计算即可.【解答】解:(1)(−49)+(−59)﹣(﹣9)=−49+(−59)+9=﹣1+9=8;(2)(56−12−712)+(−124) =(1012−612−712)+(−124) =−14+(−124)=−724.【点评】本题考查了有理数的加减运算,熟练掌握有理数的加减运算法则是解题的关键.38.(2023秋•管城区校级月考)计算:(1)20+(﹣13)﹣|﹣9|+15;(2)﹣61﹣|﹣71|﹣9﹣(﹣3).【分析】(1)先根据绝对值的性质进行化简,再写成省略加号和的形式进行简便计算即可;(2)先根据绝对值的性质进行化简,然后进行简便计算即可.【解答】解:(1)原式=20+(﹣13)﹣9+15=20﹣13﹣9+15=20+15﹣13﹣9=35﹣22=13;(2)原式=﹣61﹣71﹣9+3=﹣141+3=﹣138.【点评】本题主要考查了有理数的加减混合运算,解题关键是熟练掌握有理数的加减法则.39.(2023秋•珠海校级月考)计算:(1)4.1﹣(﹣8.9)﹣7.4+(﹣6.6);(2)(−710)+(+23)+(−0.1)+(−2.2)+(+710)+(+3.5).【分析】根据有理数加减运算法则计算即可.【解答】解:(1)4.1﹣(﹣8.9)﹣7.4+(﹣6.6)=4.1+8.9﹣7.4﹣6.6=13﹣14=﹣1;(2)(−710)+(+23)+(﹣0.1)+(﹣2.2)+(+710)+(+3.5)=−710+23﹣0.1﹣2.2+710+3.5=24.2.【点评】本题主要考查了有理数加减运算,掌握有理数加减运算法则是解决问题的关键.40.(2023秋•碑林区校级月考)计算:(1)(﹣2)+3+1+(﹣13)+2;(2)−(−2.5)−(+2.4)+(−312)−1.6.【分析】(1)从左向右依次计算即可;(2)根据加法交换律、加法结合律计算即可.【解答】解:(1)(﹣2)+3+1+(﹣13)+2=1+1﹣13+2=﹣9.(2)−(−2.5)−(+2.4)+(−312)−1.6=2.5﹣2.4﹣3.5﹣1.6=(2.5﹣3.5)+(﹣2.4﹣1.6)=﹣1+(﹣4)=﹣5.【点评】此题主要考查了有理数的加减混合运算,解答此题的关键是要明确:(1)在一个式子里,有加法也有减法,根据有理数减法法则,把减法都转化成加法,并写成省略括号的和的形式.(2)转化成省略括号的代数和的形式,就可以应用加法的运算律,使计算简化.41.(2023秋•乌鲁木齐期末)计算:(1)﹣313+(−12)−(−13)+112; (2)(﹣5.3)+|﹣2.5|+(﹣3.2)﹣(+4.8).【分析】先分别变有理数加减混合运算为有理数加法,再运用加法交换结合律进行求解.【解答】解:(1)−313+(−12)−(−13)+112=(﹣313+13)+(−12+112) =﹣3+1=﹣2;(2)(﹣5.3)+|﹣2.5|+(﹣3.2)﹣(+4.8)=﹣5.3+2.5﹣3.2﹣4.8=2.5﹣(5.3+3.2+4.8)=2.5﹣13.3=﹣10.8.【点评】此题考查了有理数的混合运算能力,关键是能准确确定运算顺序和方法,并进行正确地计算.42.(2023秋•顺德区校级月考)计算:(1)(+13)﹣(+12)﹣(−34)+(−23).(2)(+478)﹣(﹣514)+(﹣414)﹣(+318). 【分析】利用有理数的加减法则计算各题即可.【解答】解:(1)原式=13−12+34−23=4−6+9−812=−112; (2)原式=478+514−414−318=(478−318)+(514−414) =134+1 =234.【点评】本题考查有理数的加减运算,熟练掌握相关运算法则是解题的关键.43.(2023秋•谯城区校级月考)计算题:(1)6﹣(+3)﹣(﹣7)+(﹣2);(2)103+(−114)﹣(−56)+(−712). 【分析】各个小题均把减法写成加法,然后省略加号和括号,进行简便计算即可.【解答】解:(1)原式=6+(﹣3)+7﹣2=6﹣3+7﹣2=6+7﹣3﹣2=13﹣5=8;(2)原式=103−114+56−712 =4012−3312+1012−712 =4012+1012−3312−712 =5012−4012=1012=56.【点评】本题主要考查了有理数的加减混合运算,解题关键是熟练掌握有理数的加减运算法则.44.(2023秋•禅城区校级月考)计算:(1)(+4.3)﹣(﹣4)+(﹣2.3)﹣(+4);(2)0−12−(−3.25)+234−|−712|.【分析】(1)根据有理数加减混合运算法则运算即可;(2)去绝对值后,根据有理数加减混合运算法则运算即可.【解答】解:(1)(+4.3)﹣(﹣4)+(﹣2.3)﹣(+4)=4.3+4﹣2.3﹣4=2;(2)0−12−(−3.25)+234−|−712|=0−12+3.25+234−712 =﹣8+3.25+2.75=﹣8+6=﹣2.【点评】本题考查了有理数加减混合运算,熟练掌握运算法则是解答本题的关键.45.(2023秋•天桥区校级月考)简便运算:(1)31+(﹣28)+28+69;(2)﹣414+8.4﹣(﹣4.75)+335. 【分析】(1)根据有理数的加法交换律和结合律计算即可;(2)据有理数的加法交换律和结合律计算即可.【解答】解:(1)31+(﹣28)+28+69=(31+69)+[(﹣28)+28]=100+0=100;(2)﹣414+8.4﹣(﹣4.75)+335 =(﹣4.25+4.75)+(8.4+3.6)=0.5+12=12.5.【点评】本题考查了有理数的加减混合运算,掌握相关运算法则是解答本题的关键.46.(2023秋•宁阳县期中)计算:(1)13+(﹣24)﹣25﹣(﹣20);(2)(−13)+(−52)+(−23)+(+12);(3)−20.75−3.25+14+1934;(4)−|−23−(+32)|−|−15+(−25)|.【分析】(1)利用有理数的加减法则计算即可;(2)利用有理数的加减法则计算即可;(3)利用有理数的加减法则计算即可;(4)先算绝对值,再算加减即可.【解答】解:(1)原式=﹣11﹣25+20=﹣36+20=﹣16;(2)原式=(−13−23)+(12−52) =﹣1﹣2=﹣3;(3)原式=(﹣20.75+1934)+(14−3.25) =﹣1﹣3=﹣4;(4)原式=﹣|−4+96|﹣|−35| =−136−35=−65+1830 =−8330. 【点评】本题考查有理数的运算,熟练掌握相关运算法则是解题的关键.47.(2023秋•台儿庄区月考)计算题:(1)﹣32﹣(﹣17)﹣23+(﹣15);(2)(−323)−(−2.4)+(−13)−(+425);(3)(−13)﹣(﹣316)﹣(+223)+(﹣616); (4)(﹣45)﹣(+9)﹣(﹣45)+(+9).【分析】(1)先把算式写成省略加号、括号和的形式,再把负数与正数分别相加;(2)(3)先把算式写成省略加号、括号和的形式,再把分母相同的相加;(3)先把算式写成省略加号、括号和的形式,再把互为相反数的两数相加.【解答】解:(1)﹣32﹣(﹣17)﹣23+(﹣15)=﹣32+17﹣23﹣15=﹣70+17=﹣53;(2)(−323)−(−2.4)+(−13)−(+425)=﹣323+2.4−13−4.4 =﹣323−13+2.4﹣4.4=﹣4﹣2=﹣6; (3)(−13)﹣(﹣316)﹣(+223)+(﹣616) =−13+316−223−616 =−13−223+316−616=﹣3﹣3=﹣6;(4)(﹣45)﹣(+9)﹣(﹣45)+(+9)=﹣45﹣9+45+9=(45﹣45)+(9﹣9)=0.【点评】本题考查了有理数的加减法,掌握有理数的加减法法则、加法的交换律和结合律是解决本题的关键.48.(2023秋•临河区月考)(1)(﹣4.3)﹣(+5.8)+(﹣3.2)﹣3.5+(﹣2.7);(2)−|−15|−(+45)−|−37|−|−47|;(3)513+(−423)+(−613);(4)−12+(−13)−(−14)+(−15)−(−16).【分析】(1)利用有理数的加减法则计算即可;(2)利用绝对值的性质及有理数的加减法则计算即可;(3)利用有理数的加减法则计算即可;(4)利用有理数的加减法则计算即可.【解答】解:(1)原式=﹣4.3﹣5.8﹣3.2﹣3.5﹣2.7=﹣(4.3+5.8+3.2+3.5+2.7)=﹣19.5;(2)原式=−15−45−37−47=﹣1﹣1=﹣2;(3)原式=513−613−423 =﹣1﹣423 =﹣523; (4)原式=−12−13+14−15+16=−56+14−15+16=−56+16+14−15=−23+14−15=−40+15−1260=−3760.【点评】本题考查有理数的加减运算,熟练掌握相关运算法则是解题的关键.49.(2023秋•越秀区校级期中)阅读下面的解题方法.计算:﹣556+(﹣923)+1734+(﹣312). 解:原式=[(﹣5)+(−56)]+[(﹣9)+(−23)]+(17+34)+[(﹣3)+(−12)]=[(﹣5)+(﹣9)+17+(﹣3)]+[(−56)+(−23)+34+(−12)]=0+(−54)=−54.上述解题方法叫做拆项法,按此方法计算:(﹣202156)+404323+(﹣202223)+156. 【分析】根据拆项法,可把整数结合在一起,分数结合在一起,再根据有理数的加法,可得答案.【解答】解:原式=[(﹣2021)+(−56)+4043+23+(﹣2022)+(−23)]+(1+56)=[(﹣2011)+4043+(﹣2022)+1]+[(−56)+(−23)+23+(56)] =11+0=11.【点评】本题考查了有理数的加法,拆项法是解题关键.仿照上面的方法,请你计算:(−2022724)+(−202158)+(−116)+4044. 【分析】仿照上述拆项法解题即可.【解答】解:(−2022724)+(−202158)+(−116)+4044=[(﹣2022)+(−724)]+[(﹣2021)+(−58)]+[(﹣1)+(−16)]+4044 =[(﹣2022)+(﹣2021)+(﹣1)+4044]+[(−724)+(−58)+(−16)] 50.(2023秋•襄汾县期中)阅读下面的计算过程,体会“拆项法”计算:﹣556+(﹣923)+1734+(﹣312) 解:原式=[(﹣5)+(−56)]+[(﹣9)+(−23)]+(17+34)+[(﹣3)+(−12)]=[(﹣5)+(﹣9)+17+(﹣3)]+[(−56)+(−23)+34+(−12)]=0+(﹣114)=﹣114 启发应用用上面的方法完成下列计算:(1)(﹣3310)+(﹣112)+235−(﹣212); (2)(﹣200056)+(﹣199923)+400023+(﹣112).【分析】原式根据阅读材料中的方法变形,计算即可得到结果.【解答】解:(1)(﹣3310)+(﹣112)+235−(﹣212) =(﹣3−310)+(﹣1−12)+(2+35)+(2+12)=(﹣3﹣1+2+2)+(−310−12+35+12)=0+310=310;(2)(﹣200056)+(﹣199923)+400023+(﹣112) =(﹣2000−56)+(﹣1999−23)+(4000+23)+(﹣1−12)=(﹣2000﹣1999+4000﹣1)+(−56−23+23−12)=0﹣113 =﹣113. 【点评】此题考查了有理数的加减混合运算,熟练掌握运算法则是解本题的关键.。
有理数(归纳与讲解)(解析版)
专题01 有理数【专题目录】技巧1绝对值的八种常见应用技巧2 有理数中的六种易错类型【题型】一、有理数概念理解【题型】二、用数轴上的点表示有理数【题型】三、求一个数的相反数【题型】四、求一个数的绝对值【题型】五、有理数的加减乘除混合运算【题型】六、科学记数法【考纲要求】1、了解有理数的概念,知道有理数与数轴上的点一一对应.2、借助数轴理解相反数和绝对值的意义,会求一个数的相反数、倒数与绝对值.【考点总结】一、有理数【注意】数轴1、数轴的三要素:原点、正方向、单位长度(重点)2、任何有理数都可以用数轴上的点表示,有理数与数轴上的点是一一对应的。
3、数轴上的点表示的数从左到右依次增大;原点左边的数是负数,原点右边的数是正数.【考点总结】二、有理数四则运算【注意】1、有理数的加减混合运算规则:运用减法法则将加减混合运算统一为加法进行运算步骤:(1)减法化加法;(2)省略括号和加号;(3)运用加法运算律使计算简便; (4)运用有理数加法法则进行计算。
注:运用加法运算律时,可按如下几点进行: (1)同号的先结合;(2)同分母的分数或者比较容易通分的分数相结合; (3)互为相反数的两数相结合; (4)能凑成整数的两数相结合;(5)带分数一般化为假分数或者分为整数和分数两部分,再分别相加。
2、多个有理数相乘的法则及规律:(1) 几个不是0的数相乘,负因数的个数是奇数时,积是负数;负因数的个数是偶数时,积是正数。
确定符号后,把各个因数的绝对值相乘。
(2)几个数相乘,有一个因数为0,积为0;反之,如果积为0,那么至少有一个因数是0. 注:带分数与分数相乘时,通常把带分数化成假分数,再与分数相乘。
【技巧归纳】技巧1:绝对值的六种常见应用【类型】一、已知一个数求这个数的绝对值 1.化简:(1)|-(+7)|; (2)-|-8|;【类型】二、已知一个数的绝对值求这个数 2.若|a|=2,则a =________.3.若|x|=|y|,且x =-3,则y =________. 【类型】三、 绝对值在求字母的取值范围中的应用 4.若|x|=-x ,则x 的取值范围是________. 5.若|x -2|=2-x ,则x 的取值范围是________. 【类型】四、绝对值在比较大小中的应用6.把-(-1),-23,-⎪⎪⎪⎪-45,0,用“>”连接正确的是( ) A .0>-(-1)>-⎪⎪⎪⎪-45>-23 B .0>-(-1)>-23>-⎪⎪⎪⎪-45 C .-(-1)>0>-23>-⎪⎪⎪⎪-45 D .-(-1)>0>-⎪⎪⎪⎪-45>-23【类型】五、绝对值的非负性在求字母值中的运用 7.若⎪⎪⎪⎪a -12+⎪⎪⎪⎪b -13+⎪⎪⎪⎪c -14=0,求a +b -c 的值. 【类型】六、绝对值的非负性在求最值中的应用 8.根据|a|≥0这条性质,解答下列问题:(1)当a =________时,|a -4|有最小值,此时最小值为________; 参考答案1.解:(1)原式=7. (2)原式=-8. 2.±2 3.±3 4.x≤0 5.x≤2 6.C7.解:由题意知a =12,b =13,c =14,所以a +b -c =12+13-14=712.8.解:(1)4;0(2)因为a ,b 互为相反数,所以b =-a.又因为a <0,b >0. 所以|a -b|+2a +|b|=|2a|+2a +|b|=-2a +2a +b =b. 技巧2: 有理数中的六种易错类型【类型】一、对有理数有关概念理解不清造成错误 1.下列说法正确的是( ) A .最小的正整数是0 B .-a 是负数C .符号不同的两个数互为相反数D .-a 的相反数是a【类型】二、 误认为|a|=a ,忽略对字母a 分情况讨论 2.如果一个数的绝对值等于它本身,那么这个数一定是( ) A .负数 B .负数或零 C .正数或零D .正数【类型】三、对括号使用不当导致错误 3.计算:2-⎝⎛⎭⎫-15+14-12. 【类型】四、忽略或不清楚运算顺序4.计算:-5-(-5)×110÷110×(-5).【类型】五、乘法运算中确定符号与加法运算中的符号规律相混淆5.计算:-36×⎝⎛⎭⎫712-56-1. 【类型】六、除法没有分配律6.计算:24÷⎝⎛⎭⎫13-18-16. 参考答案 1.D 2.C3.解:原式=2+15-14+12=2920.4.解:原式=-5-(-5)×110×10×(-5)=-30.5.解:原式=-36×712-(-36)×56-(-36)×1=-21+30+36 =45.6.解:原式=24÷⎝⎛⎭⎫824-324-424 =24÷124=576.方法指导:解本题时往往会出现将乘法分配律运用到除法运算中的错误,从而出现“原式=24÷13-24÷18-24÷16=72-192-144=-264”这样的错误.【题型讲解】【题型】一、有理数概念理解例1、在下列实数:2π227、﹣0.0010001中,有理数有( )A .1个B .2个C .3个D .4个【答案】D【提示】由题意根据有理数的定义:整数与分数统称有理数,进行提示即可判断. 【详解】解:34,227,﹣0.0010001是有理数,其它的是无理数.有理数有4个. 故选:D .【题型】二、用数轴上的点表示有理数例2、如图,数轴上两点,M N 所对应的实数分别为,m n ,则m n -的结果可能是( )A .1-B .1C .2D .3【答案】C【提示】根据数轴确定m 和n 的范围,再根据有理数的加减法即可做出选择. 【详解】解:根据数轴可得0<m <1,2-<n <1-,则1<m n -<3。
最新初中数学有理数的运算基础测试题含解析(1)
最新初中数学有理数的运算基础测试题含解析(1)一、选择题1.下列运算,错误的是( ).A .236()a a =B .222()x y x y +=+C .01)1=D .61200 = 6.12×10 4 【答案】B【解析】【分析】【详解】A. ()326a a =正确,故此选项不合题意;B.()222 x y x 2y xy +=++,故此选项符合题意;C. )011=正确,故此选项不合题意; D. 61200 = 6.12×104正确,故此选项不合题意;故选B.2.据央视网报道,2019年1~4月份我国社会物流总额为88.9万亿元人民币,“88.9万亿”用科学记数法表示为( )A .138.8910⨯B .128.8910⨯C .1288.910⨯D .118.8910⨯【答案】A【解析】【分析】利用科学记数法的表示形式进行解答即可【详解】3.电影《流浪地球》中有一个名词“洛希极限”,它是指两大星体之间可以保持平稳运行的最小距离,其中地球与木星之间的洛希极限约为10.9万公里,数据“10.9万”用科学记数法表示正确的是( )A .10.9×104B .1.09×104C .10.9×105D .1.09×105【答案】D【解析】【分析】科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>10时,n 是正数;当原数的绝对值<1时,n 是负数.【详解】将10.9万用科学记数法表示为:1.09×105.故选D .【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.计算﹣6+1的结果为()A.﹣5 B.5 C.﹣7 D.7【答案】A【解析】【分析】根据有理数的加法法则,|﹣6|>|1|,所以结果为负号,并把它们的绝对值相减即可.【详解】解:﹣6+1=﹣(6﹣1)=﹣5故选:A.【点睛】本题考查了有理数的加法,注意区别同号相加与异号相加,把握运算法则是关键.5.23+23+23+23=2n,则n=()A.3 B.4 C.5 D.6【答案】C【解析】【分析】原式可化为:23+23+23+23=4×23235=⨯=,之后按照有理数乘方运算进一步求解即可.222【详解】∵23+23+23+23=4×23235=⨯=222n=,∴5所以答案为C选项.【点睛】本题主要考查了有理数的乘方运算,熟练掌握相关概念是解题关键.6.如图是张小亮的答卷,他的得分应是()A.40分B.60分C.80分D.100分【答案】A【解析】【分析】根据绝对值、倒数、相反数、立方以及平均数进行计算即可.【详解】解:①若ab=1,则a与b互为倒数,②(-1)3=-1,③-12=-1,④|-1|=-1,⑤若a+b=0,则a与b互为相反数,故选A.【点睛】本题考查了实数,掌握绝对值、倒数、相反数、立方根以及平均数的定义是解题的关键.7.温州市2019年一季度生产总值(GDP)为129 800 000 000元.将129 800 000 000用科学记数法表示应为()A.1298×108B.1.298×108C.1.298×1011D.1.298×1012【答案】C【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.【详解】129 800 000 000=1.298×1011,故选C.【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.8.x是最大的负整数,y是最小的正整数,则x-y的值为( )A.0 B.2 C.-2 D.±2【答案】C【解析】【分析】根据有理数的概念求出x、y,再根据减去一个数等于加上这个数的相反数进行计算即可得解.【详解】∵x是最大的负整数,y是最小的正整数,∴x=-1,y=1,∴x-y=-1-1=-2.故选C.【点睛】本题考查了有理数的减法,熟记有理数的概念求出a、b的值是解题的关键.9.已知:||2||3||a b b c c amc a b+++=++,且abc>0,a+b+c=0.则m共有x个不同的值,若在这些不同的m值中,最大的值为y,则x+y=()A.4 B.3 C.2 D.1【答案】B【解析】【分析】根据绝对值的意义分情况说明即可求解.【详解】∵abc>0,a+b+c=0,∴a、b、c为两个负数,一个正数,a+b=﹣c,b+c=﹣a,c+a=﹣b,m23c a bc a b---=++,∴分三种情况讨论:当a<0,b<0,c>0时,m=1﹣2﹣3=﹣4,当a<0,c<0,b>0时,m=﹣1﹣2+3=0,当a>0,b<0,c<0时,m=﹣1+2﹣3=﹣2,∴x=3,y=0,∴x+y=3.故选:B.【点睛】本题考查了有理数的混合运算和绝对值,解答本题的关键是分类讨论.10.据资料显示,地球的海洋面积约为36000万平方千米,请用科学记数法表示地球海洋面积约为多少平方千米( ).A .73610⨯B .83.610⨯C .90.3610⨯D .43.610⨯ 【答案】B【解析】【分析】先将36000万平方千米化为360000000平方千米,再根据科学计数法的概念进行表示,即可得到答案.【详解】36000万平方千米=360000000平方千米,将360000000用科学记数法表示为83.610⨯,则用科学记数法表示地球海洋面积约为83.610⨯平方千米,故选:B .【点睛】本题考查科学计数法.科学记数法的形式为:10n a ⨯,其中110a ≤≤,n 为整数.11.2019年3月5日,第十三届全国人民代表大会第二次会议的《政府工作报告》中指出,我国经济运行保持在合理区间.城镇新增就业13610000、调查失业率稳定在5%左右的较低水平,数字13610000科学记数法表示为( )A .1.361×104B .1.361×105C .1.361×106D .1.361×107【答案】D【解析】【分析】科学记数法的表示形式为a ×10n 的形式,其中1≤|a |<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n 是负数.【详解】解:13610000用科学记数法表示为1.361×107,故选D .【点睛】考查科学记数法的表示方法.科学记数法的表示形式为a ×10n 的形式,其中1≤|a |<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.12.将数47300000用科学记数法表示为( )A .547310⨯B .647.310⨯C .74.7310⨯D .54.7310⨯【答案】C【解析】【分析】科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n 是负数.【详解】解:将47300000用科学记数法表示为74.7310⨯,故选:C .【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.13.6万亿=296000000000000=2.96×1013.故选B .【点睛】本题考查了科学记数法的表示方法.科学记数法的表示形式为a ×10n 的形式,其中1≤|a |<10,n 为整数,表示的关键是要正确确定a 的值以及n 的值.14.双十一是阿里巴巴打造的年中购物狂欢,从2009年到2018年十年时间,双十一就像一个符号一样,融入到人们的日常生活当中.2018年京东在双十一期间(11月1日﹣11月11日)累计下单金额达1598亿元人民币.用科学记数法表示数1598亿是( )A .1.598×1110B .15.98×1010C .1.598×1010D .1.598×810【答案】A【解析】【分析】科学记数法的表示形式为a ×10n 的形式,其中1≤|a |<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值≥1时,n 是正数;当原数的绝对值<1时,n 是负数.【详解】用科学记数法表示数1598亿是1.598×1011.故选A .【点睛】本题考查了科学记数法的表示方法.科学记数法的表示形式为a ×10n 的形式,其中1≤|a |<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.15.2019年4月10日,天文学家召开全球新闻发布会,发布首次直接拍摄到的黑洞照片,这颗黑洞位于代号为M87的星系当中,距离地球5500万光年,质量相当于65亿颗太阳,太阳质量大约是2.1×1030千克,那么这颗黑洞的质量约是()A.130×1030千克B.1.3×1030千克C.1.3×1040千克D.1.3×1041千克【答案】C【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.【详解】16.“山西八分钟,惊艳全世界”.2019年2月25日下午,在外交部蓝厅隆重举行山西全球推介活动.山西经济结构从“一煤独大”向多元支撑转变,三年累计退出煤炭过剩产能8800余万吨,煤层气产量突破56亿立方米.数据56亿用科学记数法可表示为()A.56×108B.5.6×108C.5.6×109D.0.56×1010【答案】C【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值是易错点,由于56亿有10位,所以可以确定n=10﹣1=9.【详解】56亿=56×108=5.6×109,故选C.【点睛】此题考查科学记数法表示较大的数的方法,准确确定a与n值是关键.17.按如图所示的运算程序,能使输出y的值为1的是()A.a=3,b=2 B.a=﹣3,b=﹣1 C.a=1,b=3 D.a=4,b=2【答案】A【解析】【分析】根据题意,每个选项进行计算,即可判断.【详解】解:A、当a=3,b=2时,y=12a-=132-=1,符合题意;B、当a=﹣3,b=﹣1时,y=b2﹣3=1﹣3=﹣2,不符合题意;C、当a=1,b=3时,y=b2﹣3=9﹣3=6,不符合题意;D、当a=4,b=2时,y=12a-=142-=12,不符合题意.故选:A.【点睛】本题考查有理数的混合运算,代数式求值等知识,解题的关键是理解题意,属于中考常考题型.18.预计到2025年,中国5G用户将超过460 000 000,将460 000 000用科学计数法表示为()A.94.610⨯B.74610⨯C.84.610⨯D.90.4610⨯【答案】C【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值大于10时,n是正数;当原数的绝对值小于1时,n是负数.【详解】460 000 000=4.6×108.故选C.【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.19.下列用科学记数法表示正确的是()A.10.000567 5.6710-=-⨯B.40.0012312.310=⨯C.20.0808.010-=⨯D.5696000 6.9610--=⨯【答案】C【解析】分析: 绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.详解: A. 40.000567 5.6710--=-⨯,故错误;B. 30.0012312.310,-=⨯故错误;C. 20.0808.010-=⨯,正确;D. 5696000 6.9610-=⨯,故错误.故选:C.点睛: 本题考查用科学记数法表示较小的数,一般形式为a×10-n ,其中1≤|a|<10,n 为由原数左边起第一个不为零的数字前面的0的个数所决定.20.我国古代《易经》一书中记载,远古时期,人们通过在绳子上打结来记录数量,即“结绳计数”.如图,一位母亲在从右到左依次排列的绳子上打结,满七进一,用来记录孩子自出生后的天数,由图可知,孩子自出生后的天数是( )A .81B .508C .928D .1324【答案】B【解析】【分析】类比于现在我们的十进制“满十进一”,可以表示满七进一的数为:千位上的数×73+百位上的数×72+十位上的数×7+个位上的数.【详解】解:孩子自出生后的天数是:1×73+3×72+2×7+4=508,故选:B .【点睛】本题是以古代“结绳计数”为背景,按满七进一计算自孩子出生后的天数,运用了类比的方法,根据图中的数字列式计算;本题题型新颖,一方面让学生了解了古代的数学知识,另一方面也考查了学生的思维能力.。
必刷提高练2【第1章《有理数》章节达标检测】(原卷版+解析版)(人教版)
2022-2023学年七年级数学上册考点必刷练精编讲义(人教版)提高第一章《有理数》 章节达标检测考试时间:120分钟 试卷满分:100分姓名:__________ 班级:__________考号:__________第Ⅰ卷(共10题;每题2分,共20分)1.(2分)(2022七上·汇川期末)已知代数式8x ﹣7与6﹣2x 的值互为相反数,那么x 的值等于( ) A .16B .﹣16C .1310D .﹣13102.(2分)(2020七上·仁寿期末)点A 表示数轴上的一个点,将点A 向右移动6个单位,再向左移动4个单位,终点恰好是原点,则点A 表示的数是( ) A .2-B .3-C .0D .1-3.(2分)(2021七上·丽水期末)|-4|的相反数是( ) A .4B .14C .-4D .14-4.(2分)(2021七上·宜宾期末)如图,点A ,B ,C ,D 四个点在数轴上表示的数分别为a ,b ,c ,d ,则下列结论中,错误的是( )A .0a c +<B .0b a ->C .0ac >D .0bd< 5.(2分)(2021七上·南京期末)目前全球新型冠状病毒肺炎疫情防控形势依旧严峻,我们应该坚持“勤洗手,戴口罩,常通风”.一双没有洗过的手,带有各种细菌约75 000万个,将数据75 000用科学记数法表示是( ) A .7.5×103B .75×103C .7.5×104D .7.5×1056.(2分)(2022七上·遵义期末)在数轴上,点M 、N 分别表示数m ,n.则点M 、N 之间的距离为m n - .已知点A ,B ,C ,D 在数轴上分别表示的数为a ,b ,c ,d.且22,1()5a cbcd a a b -=-=-=≠ ,则线段 BD 的长度为( ) A .4.5B .1.5C .6.5或1.5D .4.5或1.57.(2分)(2021七上·长兴期末)如图,已知正方形的边长为24厘米,甲,乙两动点分别从正方形ABCD 的顶点D ,B 同时沿正方形的边开始移动,甲点按顺时针方向环行,乙点按逆时针方向环行,若乙的速度为9厘米/秒,甲的速度为3厘米/秒,当它们运动了2022秒时,它们在正方形边上相遇了( )A .252 次B .253次C .254次D .255次8.(2分)(2021七上·平阳期中)将1,2,3,4...,60这60个自然数,任意分成30组,每组两个数,将每组的两个数中的任意一个数记做a ,另一个数记做b ,代入代数式(|a-b|+a+b)中进行计算,求出结果,30组分别代入后可求出30个结果,则这30个值的和的最大值是( ) A .1365B .1565C .1735D .18309.(2分)(2021七上·江津期中)a ,b ,c 大小关系如图,下列各式①0a b c --<②1b ca ab c++=③0ac b ->④a c a b c b --+=+ ,其中错误的个数为( ).A .1个B .2个C .3个D .4个10.(2分)(2021七上·苏州月考)若a 表示一个有理数,且有|﹣3﹣a|=3+|a|,则a 应该是( ) A .任意一个有理数 B .任意一个正数 C .任意一个负数D .任意一个非负数(共10题;每题2分,共20分)11.(2分)(2021七上·紫金期末)若|a ﹣2020|+|b +2021|=0,则|a +b|= .12.(2分)(2021七上·宜宾期末)有理数a ,b 在数轴上的位置如图所示,化简 a b b a +-- 的结果是 .13.(2分)(2021七上·衡阳期末)比较两数大小: - 67 - 76(用“<”,或“>”,或“=”填空)14.(2分)(2021七上·普陀期末)设a ,b ,c 为不为零的实数,且 0abc > ,那么b a cx a b c=++ ,则x 的值为 . 15.(2分)(2021七上·余姚期末)计算: 34ππ-+-= .16.(2分)(2021七上·云梦期末)一只昆虫从点A 处出发,以每分钟2米的速度在一条直线上运动,它先前进1米,再后退2米,又前进3米,再后退4米,…依此规律继续走下去,则运动1小时时这只昆虫与A 点相距 米.17.(2分)(2021七上·青岛期中)若 0x y z ++= ,且x ,y ,z 均不为零,则 y x zx y z++ 的值为 .18.(2分)(2021七上·苏州期中)如图1,在一条可以折叠的数轴上有点A ,B ,C ,其中点A ,点B 表示的数分别为﹣16和9,现以点C 为折点,将数轴向右对折,点A 对应的点A 1落在B 的右边;如图2,再以点B 为折点,将数轴向左折叠,点A 1对应的点A 2落在B 的左边.若A 2、B 之间的距离为3,则点C 表示的数为 .19.(2分)(2021七上·黔西南期中)若a ,b ,c 为整数,且|a -b|+|c -a|=1,则|c -a|+|a -b|+|b -c|的值为20.(2分)(2020七上·龙山期末)我们知道: 52- 表示5与2的差的绝对值,也可理解为5与2两数在数轴上所对应的两点之间的距离; 52+ 也可以看成 5(2)-- ,表示5与 2- 之差的绝对值,也可理解为数轴上表示5与 2- 两数在数轴上所对应的两点之间的距离事实上,数轴上表示有理数 ,a b 的点 ,A B 的距离均可以用 a b - 来计算.根据以上材料,则使 347x x ++-= 的所有整数x 的和是 .第Ⅱ卷 主观题(共8题;共61分)21.(9分)(2022七上·句容期末)计算: (1)(3分)10(5)(9)--+-(2)(3分)1251631248⎛⎫⎛⎫-+-÷- ⎪ ⎪⎝⎭⎝⎭(3)(3分)20211113269⎛⎫--÷-⨯+- ⎪⎝⎭22.(4分)(2021七上·孝义期中)把以下各数填入表示它所在的数集的集合里:2, 0.3⋅- ,0.1,32-,-100,0, 13- .-,23.(10分)(2021七上·韶关期末)如图,点A,B是数轴上两点,点A表示的数为16AB=.动点P,Q分别从A,B出发,点P以每秒2个单位长度的速度沿数轴向右匀速运动,点Q 20t t>秒.以每秒1个单位长度的速度沿数轴向左匀速运动,设运动时间为()0(1)(1分)数轴上点B表示的数是.(2)(3分)求数轴上点P,Q表示的数(用含t的式子表示).(3)(3分)若点P和Q同时出发,t为何值时,这两点相遇?(4)(3分)若点Q比点P迟2秒钟出发,则点Q出发几秒时,点P和点Q刚好相距5个单位长度?24.(9分)(2021七上·黄埔期末)数轴上两点A、B,A在B左边,原点O是线段AB上的一点,已知AB=4,且OB=3OA.A、B对应的数分别是a、b,点P为数轴上的一动点,其对应的数为x.(1)(1分)a= ,b= ,并在数轴上面标出A、B两点;(2)(3分)若PA=2PB,求x的值;(3)(4分)若点P以每秒2个单位长度的速度从原点O向右运动,同时点A以每秒1个单位长度的速度向左运动,点B以每秒3个单位长度的速度向右运动,设运动时间为t秒.请问在运动过程中,3PB-PA 的值是否随着时间t的变化而改变?若变化,请说明理由若不变,请求其值.25.(6分)如图,数轴上A点表示的数是﹣2,B点表示的数是5,C点表示的数是10.(1)(1分)若要使A、C两点所表示的数是一对相反数,则“原点”表示的数是:.(2)(5分)若此时恰有一只老鼠在B点,一只小猫在C点,老鼠发现小猫后立即以每秒一个单位的速度向点A方向逃跑,小猫随即以每秒两个单位的速度追击.①在小猫未抓住老鼠前,用时间t(秒)的代数式表示老鼠和小猫在移动过程中分别与点A之间的距离;26.(7分)(2021七上·海珠期末)某食品厂从生产的食品中抽出样品20袋,检测每袋的质量是否符合标准,超过的部分用正数表示,不足的部分用负数表示,记录如表:(1)(3分)若每袋标准质量为350克,则这批抽样检测的样品的总质量是多少克?(2)(4分)若该食品的包装袋上标有产品合格要求为“净重350±2克”,则这批样品的合格率为多少?27.(7分)(2020七上·仁寿期末)2020年12月8日,中尼两国共同宣布珠穆朗玛峰的最新测定高度为8848.86米.今有某登山队5名队员在一次登山活动中,以二号高地为基地,开始向海拔距二号高地500米的顶峰冲刺,设他们向上走为正,行程单位:记录如下:180+,33-,75+,25-,40+,55+,42-,150+.(1)(3分)他们最终有没有登上顶峰?如果没有,那么他们离顶峰还差多少米?(2)(4分)登山时,5名队员在登山全程中都使用了氧气瓶,且每人向下行走每米要消耗氧气m 升,向上行走每米还要多消耗0.01升,求他们共消耗了氧气多少升?(用含m 的代数式表示)28.(9分)(2022七上·句容期末)某快递公司规定每件体积不超标的普通小件物品的收费标准如表:例如:寄往省内一件1.6千克的物品,运费总额为: 85(0.50.5)13+⨯+= 元. 寄往省外一件2.3千克的物品,运费总额为: 126(10.5)21+⨯+= 元. (下面问题涉及的寄件按上表收费标准计费)(1)(4分)小明同时寄往省内一件3千克的物品和省外一件2.8千克的物品,各需付运费多少元? (2)(1分)小明寄往省内一件重 ()m n + 千克,其中m 是大于1的正整数,n 为大于0且不超过0.5的小数(即 00.5n <≤ ),则用含字母m 的代数式表示小明这次寄件的运费为 ; (3)(4分)小明一次向省外寄了一件物品,用了36元,你能知道小明这次寄件物品的重量范围吗?2022-2023学年七年级数学上册考点必刷练精编讲义(人教版)提高第一章《有理数》 章节达标检测考试时间:120分钟 试卷满分:100分(共10题;每题2分,共20分)8x ﹣7与6﹣2x 的值互为相反数,那么x 的值等于( ) A .16B .﹣16C .1310D .﹣1310【答案】A【完整解答】根据题意得:(8x ﹣7)+(6﹣2x )=0, 解得:x=16. 故答案为:A.【思路引导】根据互为相反数的两个数的和为0,据此解答即可.2.(2分)(2020七上·仁寿期末)点A 表示数轴上的一个点,将点A 向右移动6个单位,再向左移动4个单位,终点恰好是原点,则点A 表示的数是( ) A .2- B .3-C .0D .1-【答案】A【完整解答】解:设点A 表示的数是x. 依题意,有640x +-=, 解得2x =-, 即点A 表示的数是2-. 故答案为:A.【思路引导】 设点A 表示的数是x ,根据向右移动用加法,向左移动用减法,列方程求解即可.3.(2分)(2021七上·丽水期末)|-4|的相反数是( )A .4B .14C .-4D .14- 【答案】C 【完整解答】解:|-4|=4∴|-4|的相反数为-4.故答案为:C.【思路引导】利用负数的绝对值等于它的相反数,再求出|-4|的相反数.4.(2分)(2021七上·宜宾期末)如图,点A ,B ,C ,D 四个点在数轴上表示的数分别为a ,b ,c ,d ,则下列结论中,错误的是( )A .0a c +<B .0b a ->C .0ac >D .0b d < 【答案】C【完整解答】解:由数轴上点的位置可知: 0a b c d <<<< ,因为 0a c << 且 a c > ,所以 0a c +< ,故 A 正确,不符合题意;因为 0a b << ,所以 0b a -> ,故 B 正确,不符合题意;因为 0a < , 0c > ,所以 0ac < ,故 C 错误,符合题意,因为 0b < , 0d > ,所以0b d < ,故 D 正确,不符合题意. 故答案为:C.【思路引导】根据数轴可得a<b<0<c<d ,且|a|>|c|,据此判断A 、B ;根据有理数的乘法法则可判断C ;根据有理数的除法法则可判断D.5.(2分)(2021七上·南京期末)目前全球新型冠状病毒肺炎疫情防控形势依旧严峻,我们应该坚持“勤洗手,戴口罩,常通风”.一双没有洗过的手,带有各种细菌约75 000万个,将数据75 000用科学记数法表示是( )A .7.5×103B .75×103C .7.5×104D .7.5×105 【答案】C【完整解答】解:将数据75000用科学记数法表示为7.5×104.故答案为:C.【思路引导】科学记数法的表示形式为a ×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值大于10时,n 是正数;当原数的绝对值小于1时,n 是负数.6.(2分)(2022七上·遵义期末)在数轴上,点M 、N 分别表示数m ,n.则点M 、N 之间的距离为 m n - .已知点A ,B ,C ,D 在数轴上分别表示的数为a ,b ,c ,d.且22,1()5a c b c d a a b -=-=-=≠ ,则线段 BD 的长度为( ) A .4.5B .1.5C .6.5或1.5D .4.5或1.5【答案】C 【完整解答】解:①如图,当 D 在 A 点的右侧时,22,1()5a cbcd a a b -=-=-=≠ 224AB AC a c ∴==-= , 2.5AD =∴4 2.5 1.5BD AB AD =-=-=②如图,当 D 在 A 点的左侧时,22,1()5a cbcd a a b -=-=-=≠ 224AB AC a c ∴==-= , 2.5AD =∴4 2.5 6.5BD AB AD =+=+=综上所述,线段 BD 的长度为6.5或1.5故答案为:C【思路引导】分两种情况:①如图,当 D 在 A 点的右侧时,②如图,当 D 在 A 点的左侧时,据此分别解答即可.7.(2分)(2021七上·长兴期末)如图,已知正方形的边长为24厘米,甲,乙两动点分别从正方形ABCD 的顶点D ,B 同时沿正方形的边开始移动,甲点按顺时针方向环行,乙点按逆时针方向环行,若乙的速度为9厘米/秒,甲的速度为3厘米/秒,当它们运动了2022秒时,它们在正方形边上相遇了( )A .252 次B .253次C .254次D .255次【答案】B【完整解答】解:根据题意可得:第一次相遇所需时间为:2424934+÷+=()()(秒) 从第2此相遇起,相遇路程变成了正方形的周长,也就是24×4=96(厘米)因此,之后每次相遇所需时间为:96938÷+=()(秒)2022-4=2018(秒)20188252......2÷=所以,在第一次相遇后还有252此相遇因此,总共相遇了252+1=253(次)故答案为:B.【思路引导】根据相遇问题的公式求出第一次和第二次之后的相遇时间,再根据周期规律,求解出相遇次数。
2-2 有理数与无理数(基础训练)(解析版)
2.2 有理数与无理数【基础训练】一、单选题1.下列四个数中,无理数是( )A .13B .0.5757CD .π【答案】D【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.【详解】解:A 、13是有理数,此选项不符合; B 、0.5757是有理数,此选项不符合;C 2=,是有理数,此选项不符合;D 、π是无理数,此选项符合;故选D .【点睛】此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.2.下列实数中是无理数的是( )A .-2B C D .4【答案】B【分析】直接根据无理数的定义即可判断出答案.【详解】解:根据有理数及无理数的定义对选项进行判断;A ,2-是有理数,故不符合题意;BC 2=是有理数,故不符合题意;D ,4是有理数,故不符合题意;故选:B .【点睛】本题考查了无理数的定义,解题的关键是:要理解且能区分实数中有理数和无理数.3117、0.57527522752227、2π中,无理数是( )A B .117 C .0.57527522752227 D .2π 【答案】D【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.【详解】解:A ,是整数,属于有理数,故本选项不合题意;B 、117是分数,属于有理数,故本选项不合题意; C 、0.57527522752227是有限小数,属于有理数,故本选项不合题意;D 、2π是无理数,故本选项符合题意. 故选:D .【点睛】此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.4.在实数11,,0,27π- )个. A .1个B .2个C .3个D .4个【答案】B【分析】分别根据无理数、有理数的定义即可判定选择项.【详解】解:2=-,∴无理数有:2π2个, 故选B .【点睛】此题主要考查了无理数的定义,注意带根号的要开不尽方才是无理数,无限不循环小数为无理数. 5.下列各数中,为无理数的是( )A .0.3B .227CD 【答案】C【分析】根据无理数的三种形式:∴开方开不尽的数,∴无限不循环小数,∴含有π的数,结合选项进行判断即可.【详解】解:A 、0.3是有理数,故本选项不符合题意;B 、227是有理数,故本选项不符合题意;CD 3=,是有理数,故本选项不符合题意;故选C .【点睛】本题考查了无理数的定义,属于基础题,掌握无理数的三种形式是解答本题的关键.6 )A .负数B .无理数C .有理数D .整数【答案】B【分析】根据无理数的定义即可求解.【详解】故选:B .本题考查了实数的分类,解题的关键是掌握无理数的定义.7.下列各数中,是无理数的是( )A .227B .3πC .0.3010010001D 【答案】B【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.【详解】解:A 、227是分数,属于有理数,故本选项不合题意; B 、3π是无理数,故本选项符合题意;C 、0.3010010001是有限小数,属于有理数,故本选项不合题意;D 3=,是整数,属于有理数,故本选项不合题意;故选B .【点睛】此题考查了无理数的定义.解题的关键是掌握无理数的定义,注意初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.8.约公元前5世纪的古希腊时期,由于“他”第一次数学危机,这个“他”指的是( )A .毕达哥拉斯B .希帕索斯C .笛卡儿D .苏格拉底【答案】B【分析】根据无理数的起源、发现和证明的数学常识解答.【详解】希帕索斯考虑了一个问题:边长为1的正方形其对角线长度是多少呢?他发现这一长度既不能用整数表示,也不能用分数表示,而只能用一个新数来表示.希帕索斯的发现导致了数学史上第一个无理数的诞生. 故选:B .本题考查了无理数的起源、发现和证明.掌握无理数的起源、发现和证明等数学常识是解题的关键. 9.下列各数中是有理数的是( )A B C .13- D .π 【答案】C【分析】π是无限不循环小数,是无理数,得到答案. 【详解】解:AB C 、13-是负分数,是有理数,符合题意; D 、π是无限不循环小数,是无理数,不符合题意;故选:C .【点睛】本题考查了根据有理数和无理数的定义进行判断,关键在于判断π是无理数.10.在17-,2π,0,3.14,0.326,,133-中,无理数的个数有( ) A .1个B .2个C .3个D .4个 【答案】B【分析】根据无理数的定义(无理数是指无限不循环小数)判断即可.【详解】解:7=-,∴无理数有2π,2个, 故选:B .本题考查了对无理数的应用,注意:无理数就是无限不循环小数.初中常见的无理数有三类:∴π类;∴开∴有规律但无限不循环的数,如0.8080080008…(每两个8之间依次多1个0). 11.在下列各数中是无理数的是( )A .0.12B .13CD 【答案】D【分析】根据无理数的定义,无理数是无限不循环小数,进行判断即可.【详解】解:0.12是有限的,13是无限循环的,都是有理数;故答案为:D .【点睛】此题主要考查了无理数的定义,注意带根号的要开不尽方才是无理数,无限不循环小数为无理数,如π0.8080080008……(每两个8之间依次多1个0)等形式.12.下列实数是无理数的是( )A B .13 C .3.1415 D .﹣5 【答案】A【分析】根据无理数的定义,逐一判断选项,即可.【详解】A.B. 13是有理数,不符合题意, C. 3.1415是有理数,不符合题意,D. ﹣5是有理数,不符合题意,故选A .本题主要考查无理数的定义,掌握“无限不循环小数是无理数”,是解题的关键.13.在实数:3.14159,1.010010001…(相邻两个1之间依次多一个0),0,5π,449中,无理数有( )A .1个B .2个C .3个D .4个 【答案】C【分析】分别根据无理数、有理数的定义即可判定选择项.【详解】=4,∴无理数有:1.010010001…(相邻两个1之间依次多一个0),5π,共3个, 故选C .【点睛】此题主要考查了无理数的定义,注意带根号的要开不尽方才是无理数,无限不循环小数为无理数.如π0.8080080008…(每两个8之间依次多1个0)等形式.14.在311-,0.223,2π,0.243456中,无理数有( )个. A .2B .3C .4D .5 【答案】A【分析】根据无理数是无限不循环小数即可选出答案.【详解】2π两个,故选A .【点睛】本题考查了无理数的定义,熟练掌握无理数定义是解决本题的关键.15.下列四个数中,无理数是( )A .237B .0C .0.12D .π【分析】根据有理数、无理数的定义逐项判断即可求解.【详解】解:A.237是分数,属于有理数,故本选项不合题意;B.0是整数,属于有理数,故本选项不合题意;C.0.12是有限小数,属于有理数,故本选项不合题意;D.π是无限不循环小数,是无理数,故本选项符合题意.故选:D.【点睛】本题考查了无理数的定义,理解“无理数是无限不循环小数”是解题关键.16.下列各数无理数有()0,-3.14227,0.101001……,π,2.35858⋅⋅A.1个B.2个C.3个D.4个【答案】C【分析】无理数就是无限不循环小数,依据定义即可判断.【详解】解:根据无理数的定义可知:0.101001……,π,共3个,故选:C.【点睛】此题主要考查了无理数的定义,注意带根号的要开不尽方才是无理数,无限不循环小数为无理数.如π0.8080080008…(每两个8之间依次多1个0)等形式.17.零一定是()A.整数B.负数C.正数D.奇数【答案】A【分析】0是介于-1和1之间的整数,既不是正数也不是负数,0可以被2整除,所以0是一个特殊的偶数.【详解】0是介于-1和1之间的整数,既不是正数也不是负数,0可以被2整除,所以0是一个特殊的偶数,只有A 选项符合.故选:A.【点睛】本题考查了零的相关知识,熟记并理解是解决本题的关键.18.下列各数中,属于正有理数的是()A.-0.1B.0C.-1D.2【答案】D【分析】根据正有理数的定义即可得出答案.【详解】解:A. -0.1为负有理数,此选项不符合题意;B. 0即不是正数也不是负数,此选项不符合题意;C. -1为负有理数,此选项不符合题意;D. 2为正有理数,此选项符合题意.故选D.【点睛】本题考查了正有理数的定义,正确理解正有理数的概念是解答本题的关键.19.在下列各数中,正数的个数有______个.()-6,0.1234,152-,0.3,0,19,15A.2B.3C.4D.5【答案】C【分析】根据大于0的数是正数可得结果.【详解】解:在-6,0.1234,152-,0.3,0,19,15中,正数有:0.1234,0.3,19,15共4个, 故选C .【点睛】 本题考查了正数的定义,熟记概念是解题的关键,要注意0既不是正数也不是负数. 20.下列各数中,既不是正数又不是负数的是( )A .2B .1C .3-D .0 【答案】D【分析】根据正数与负数的定义即可求出答案.【详解】解:0既不是正数又不是负数,故选:D .【点睛】本题考查正数与负数,解题的关键是正确理解正数与负数,本题属于基础题型. 21.在22-,115,0,19,6-,3这五个数中,正数的个数是( ) A .1B .2C .3D .4 【答案】C【分析】根据正数的定义,即可得到答案.【详解】在22-,115,0,19,6-,3这五个数,正数有:115,19,3∴一共有3个正数, 故选C .【点睛】本题主要考查正数的定义,熟练掌握正数的定义,是解题的关键.22.下列各数属于负整数的是( ).A .2B .2-C .12-D .0 【答案】B【分析】根据小于0的整数即为负整数进行判断即可;【详解】A、2是正整数,故A不符合题意;B、-2是负整数,故B符合题意;C、12-是负分数,故C不符合题意;D、0既不是正数也不是负数,故D不符合题意;故选:B.【点睛】本题考查了有理数,小于0的整数即为负整数,注意0既不是正数也不是负数.23.下列四个数中,属于无理数的是()A.B C D.0.1717717771【答案】A【分析】根据有理数和无理数的概念进行逐项分析即可.【详解】A、是无理数,符合题意;B2,是有理数,不符合题意;C43=,是有理数,不符合题意;D、0.1717717771是有限小数,是有理数,不符合题意;故选:A.【点睛】本题考查无理数的概念,理解基本概念并准确辨析是解题关键.24.在6+,13, 3.1415-,0中,表示正数的有().A.1个B.2个C.3个D.4个【答案】B【分析】根据正数与负数的定义即可求出答案.【详解】在+6,13,-3.1415,0中, +6,13是正数,共2个, 故选:B .【点睛】本题考查了有理数的分类,解题的关键是正确理解正数与负数的定义,本题属于基础题型.25.下列各数中,为无理数的是( )A B C .14 D 【答案】D【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.据此解答即可.【详解】解:A ,2是整数,属于有理数,故此选项不符合题意;B ,2是整数,属于有理数,故此选项不符合题意;C 、14是分数,属于有理数,故此选项不符合题意;D 属于无理数,故此选项符合题意.故选:D .【点睛】本题考查了无理数的知识,解答本题的关键是掌握无理数的三种形式:∴开方开不尽的数,∴无限不循环小数,∴含有π的数.26.下列各数是无理数的是( )A .3π- B C .52- D .6-【答案】A【分析】无理数是指无限不循环小数,据此分析即可.【详解】A 、3π-是无理数,符合题意;B 5=,是有理数,不符合题意;C 、52-是分数,是有理数,不符合题意; D 、6-是有理数,不符合题意;故选:A .【点睛】本题考查无理数的识别,熟练掌握无理数的概念是解题关键.27.|1|-的相反数是( )A .1-B .1C .0D .2 【答案】A【分析】先去绝对值,再求相反数.【详解】∴|-1|=1,∴1的相反数是-1,故选A .【点睛】本题考查了绝对值的化简和相反数的定义,熟练化简有理数的绝对值,熟记相反数的定义是解题的关键. 28.在-5,-12,-1,0这四个数中,最小的数是( ). A .-5B .-12C .-1D .0【答案】A【分析】根据有理数大小比较的性质分析,即可得到答案.【详解】在-5,-12,-1,0这四个数中,最小的数是:-5 故选:A .【点睛】本题考查了有理数的知识;解题的关键是熟练掌握有理数大小比较的性质,从而完成求解.29.下列选项是无理数的为( )A .13-BC .3.1415926D .π-【答案】D【分析】无理数是指无限不循环小数,据此分析即可.【详解】A 、是无限循环小数,是有理数,不符合题意;B 2=,是整数,是有理数,不符合题意;C 、3.1415926是有限小数,是有理数,不符合题意;D 、π-是无理数,符合题意;故选:D .【点睛】本题考查无理数的识别,理解无理数的概念是解题关键.30.下列实数中,是无理数的是( )AB .C .16D .0.060060006 【答案】B【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.【详解】A 3=-整数,是有理数,故A 不符合题意;B 、B 符合题意;C 、16分数,是有理数,故C 不符合题意;D 、0.060060006有限小数,是有理数,故D 不符合题意;故选:B .【点睛】本题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.31.下列各数中,是无理数的为( )A .0B .3.14C .-πD .711 【答案】C【分析】理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.【详解】A 、0是整数,属于有理数,故本选项不合题意;B 、3.14是有限小数,属于有理数,故本选项不合题意;C 、-π是无理数,故本选项符合题意;D 、711是分数,属于有理数,故本选项不合题意. 故选:C .【点睛】本题主要考查了无理数.解题的关键是掌握无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.32.在实数13-,0,7 )A .13- B .0 C .7 D 【答案】D【分析】整数和分数统称为有理数,无限不循环小数是无理数,据此解题.【详解】在实数13-,0,71-是负分数,是有理数;30是整数,是有理数;7是正整数,是有理数;故选:D.【点睛】本题考查无理数,是基础考点,难度较易,掌握相关知识是解题关键.33.在实数﹣2、﹣1、0、1中,最小的实数是()A.﹣2B.﹣1C.0D.1【答案】A【分析】根据有理数大小比较的法则:正数绝对值大的数大,负数绝对值大的数反而小,负数小于正数,比较即可.【详解】->->∴21,10,∴﹣2<﹣1<0<1,∴在实数﹣2,﹣1,0,1中,最小的实数是﹣2.故选A.【点睛】本题考查了有理数的大小比较法则的应用,注意:正数都大于0,负数都小于0,正数都大于一切负数,两个负数比较大小,其绝对值大的反而小.34.在0,1,-1,2这四个数中,是负数的是()A.0B.1C.-1D.2【答案】C【分析】根据有理数的分类解答即可【详解】解:0既不是正数也不是负数;1,2是正数;-1是负数;故选C.【点睛】本题考查了有理数的分类,熟练掌握有理数的两种分类方式是解答本题的关键.有理数可分为整数和分数,整数分正整数,零和负整数;分数分正分数和负分数.有理数也可分为正有理数,零和负有理数,正有理数分为正整数和正分数,负有理数分为负整数和负分数.35.下列各数中3,7-,23-,5.6,0,π-,15,19,非正整数有()A.1个B.2个C.3个D.4个【答案】B【分析】根据非正整数的概念逐一判断即可.【详解】非正整数有:-7,0故选B.【点睛】本题考查了非正整数的概念,正确理解概念是解题的关键.36.在一组数-2,0.4,0,π,227-,1.3,3.2121121112…(相邻的两个2之间依次多一个1)中,有理数的个数是()A.3B.4C.5D.6【答案】C【分析】根据有理数的意义进行判断即可.【详解】在-2,0.4,0,π,227-,1.3,3.2121121112…(相邻的两个2之间依次多一个1)中,有理数有:-2,0.4,0,227-,1.3,共5个,故选:C.【点睛】本题考查了有理数的意义,掌握有理数的意义是正确判断的前提.关键是熟悉有理数是有限小数或无限循环小数.37.下列几种说法中不正确的个数有( )∴正整数和负整数的全体组成整数集合 ∴带“-”的数是负数∴0是最小的自然数 ∴10.555.5-⋯是有理数 ∴0.26-是负分数A .2个B .3个C .4个D .5个【答案】A【分析】∴整数的定义判定即可,∴带“-”的数是负数,-a 是带“-”的数可为正数,也可为0,也可为负数,不正确,∴用自然数的概念即可判断,∴利用分数的定义判断即可,∴利用分数的定义判断即可.【详解】∴正整数和负整数的全体组成整数集合缺0不正确,∴带“-”的数是负数,-a 是带“-”的数可为正数,也可为0,也可为负数,不正确,∴0是最小的自然数正确,∴10.555.5-⋯是有理数正确,∴0.26-是负分数正确.故选择:A .【点睛】本题考查有理数的分类问题,掌握有理数的分类标准,会用分类标准判断或选数是解题关键.38.下列关于“0”的说法中,正确的是( )A .0是最小的数B .0是最小的非负数C .0的倒数是0D .0除以任何数都得0 【答案】B【分析】根据“0”的意义可直接进行排除选项.【详解】A 、0不是最小的数,还有负数,故错误;B 、0是最小的非负数,故正确;C 、0没有倒数,故错误;D 、0除以任何数(除了0以外)都得0,故错误;故选B .【点睛】本题主要考查“0”的意义,正确理解“0”是解题的关键.39 1.212212221…,227,π, ) A .1个B .2个C .3个D .4个 【答案】A【分析】根据有理数的概念直接进行排除即可.【详解】1.212212221…,227,π,227,共1个. 故选:A .【点睛】本题主要考查有理数的概念,正确理解概念是解题的关键.40.下面四个选项中,根据阴影部分与整个图形所反映出的部分与整体的数量关系来看,和下图一致的是( )A .B .C .D .【答案】B【分析】根据题意,把圆分成12份,阴影部分占了8份,则82=123,然后分别判断每个选项,即可得到答案.【详解】解:根据题意,把圆分成12份,阴影部分占了8份,∴阴影部分所占为:82= 123,∴B选项中,阴影部分所占为:23,ACD阴影部分所占不是23;故选择:B.【点睛】此题是考查分数的意义.把单位“1”平均分成若干份,用分数表示,分母是分成的份数,分子是要表示的份数.二、填空题41.在数0、π、﹣0.1010010001,5.6,227中,无理数有_____个.【答案】1【分析】根据无理数的概念求解即可.【详解】解:在所列实数中,无理数的是π,故答案为:1.【点睛】本题主要考查无理数,解题的关键是掌握无理数的定义:无限不循环小数叫做无理数.42.在数3.16,﹣10,2π,227-,1.3,1.2121121112…(每两个2之间依次多1个1)中有__个无理数.【答案】2【分析】根据无理数的定义求解即可.【详解】解:在数3.16,﹣10,2π,22 7-,1.3,1.2121121112…(每两个2之间依次多1个1)中有2π,1.2121121112…(每两个2之间依次多1个1)是无理数,一共2个无理数.故答案为:2.本题考查了无理数的定义,解题关键是熟练掌握无理数的定义,注意无理数常见形式.43.给出下列各数:32,﹣(+6),﹣1.5,0,﹣|﹣3|,4,π,在这些数中,整数是_______________,非负数是_______________,互为相反数的是_______________,绝对值最小的数是__________,分数是_________,无理数是_________.【答案】﹣(+6),0,﹣|﹣3|,4 32,0,4,π32,﹣1.5 032,﹣1.5 π【分析】根据分母为1的是整数,可得整数集合;根据大于或等于零的数是非负数,可得非负数集合;根据只有符号不同的两个数互为相反数,可得一个数的相反数;根据绝对值的意义,可得答案;根据分母不为1的数是分数,可得分数集合;根据无理数是无限不循环小数,可得答案.【详解】解:整数是﹣(+6),0,﹣|﹣3|,4,非负数是32,0,4,π,互为相反数的是32,﹣1.5,绝对值最小的数是0,无理数是π.故答案为:﹣(+6),0,﹣|﹣3|,4;32,0,4,π;32,﹣1.5;0;π.【点睛】本题考查了实数的分类,利用了整数的意义,非负数的意义,相反数的意义.44.请把下列各数填入相应的集合中1 2,5.2,0,2π,227,﹣22,53-,2005,﹣0.030030003…正数集合:{________________…};分数集合:{________________…};非负整数集合:{________________…};有理数集合:{________________…}.【答案】12,5.2,2π,227,200512,5.2,227,53-0,2005 12,5.2,0,227,﹣22,53-,2005根据正数的意义,分数包括分数、有限小数、无限循环小数,非负整数包括正整数和0,有理数是整数和分数的统称,根据以上内容判断即可.【详解】正数集合:{12,5.2,2π,227,2005,…}分数集合:{12,5.2,227,53-,…}非负整数集合:{0,2005,…}有理数集合{12,5.2,0,227,﹣22,53-,2005,…},故答案为:12,5.2,2π,227,2005;12,5.2,227,53-;0,2005;12,5.2,0,227,﹣22,53-,2005.【点睛】本题考查了对分数,非负数,有理数,正数等知识点的应用,主要考查学生的理解能力和辨析能力,题目比较典型,但是一道比较容易出错的题目.45.比较大小:34-________-0.8(填“>”、“=”或“<”)【答案】>【分析】根据负数的绝对值越大,这个数越小进行大小比较.【详解】∴3344-=,0.80.8-=,∴34<0.8,∴34->-0.8 ,故答案为:>.【点睛】本题考查了有理数大小比较.注意:正数大于0,负数小于0;负数的绝对值越大,这个数越小.三、解答题46.把下列各数填入它所属的括号内:15,−19,-5,512,0,-5.32,37%(1)分数集合{…};(2)整数集合{…}.【答案】(1)分数集合{−19,512,-5.32,37%…};(2)整数集合{15,-5,0,…}.【分析】(1)按照有理数的分类找出分数即可;(2)按照有理数的分类找出整数即可.【详解】解:(1)分数集合{−19,512,-5.32,37%…};(2)整数集合{15,-5,0,…}.【点睛】本题考查了有理数的分类,解题关键是明确分数和整数的定义,准确进行分类.47.把下列个数分别填入相应集合内:-10,6,-173,0,3101,-2.25,10%,-18整数集合:;负分数集合:;正分数集合;;非负数集合:;【答案】见解析【分析】根据整数、负分数、正分数、非负数的定义即可得出答案;【详解】解:整数集合:-10,6,0,-18;负分数集合:-173,-2.25;正分数集合;3101,10%,;非负数集合:6,0,3101,10%;【点睛】本题考查了有理数的分类,熟练掌握相关的知识是解题的关键.48.请把下列各数填入相应的集合中:8,﹣2,5.6﹣,0,﹣910,5,﹣712,31.25,﹣3%.负分数集合:{…};正整数集合:{…}.【答案】负分数集合:5.6﹣,﹣910,﹣712,﹣3%;正整数集合:8,5【分析】根据有理数的分类填空即可.分数包括正分数和负分数;整数包括正整数,零和负整数.【详解】解:负分数集合:{5.6﹣,﹣910,﹣712,﹣3%};正整数集合:{8,5}.故答案为:5.6﹣,﹣910,﹣712,﹣3%;8,5.【点睛】本题主要考查了有理数的分类.认真掌握正数、整数、负有理数、负分数的定义与特点.特别注意整数和正数的区别,注意0是整数,但不是正数.49.把下列各数填入相应的大括号内23-、12、0.01-、125、1、(4)--、(1)+-、279、0正数集合{ …};负数集合{ …}.分数集合{ …};正整数集合{ …}.【答案】答案见详解.【分析】根据正数,负数,分数,正整数的意义直接解答即可求解.【详解】解:∴(4)4--=,∴正数集合{12、125、1、(4)--、279、…};负数集合{23-、0.01-、(1)+-、…}.分数集合{23-、12、0.01-、125、279、…};正整数集合{1、(4)--、…}.本题考查了有理数的分类,熟练掌握正数,负数,分数,正整数的概念是解题关键,注意0既不是正数,也不是负数,在有理数分类时,能化简的要化简.50.把下列各数填入相应的括号内:-2.5,10,0.22,0,1213-,-20,+9.78,+68,0.45,47+,2π,0.33… 正整数{ ……}负整数{ ……}正分数{ ……}负分数{ ……}【答案】见解析【分析】根据有理数的分类,逐个数进行判断即可.【详解】解:正整数{10,68}+⋯⋯负整数{20}-⋯⋯正分数{0.22,9.78+,0.45,47+,0.33}⋯⋯⋯ 负分数{ 2.5-,12}13-⋯⋯. 【点睛】本题考查有理数的分类,理解有理数的意义是正确判断的前提.51.把下列各数的序号填在相应的大括号里:∴0;∴3.1415926;∴200%;∴2020-;∴π;∴ 6.143-;∴108+;∴227-;∴111 整数:{ …};正数:{ …};正分数:{ …};负有理数:{ …}【答案】∴,∴,∴,∴;∴,∴,∴,∴,∴,∴;∴,∴;∴,∴,∴【分析】根据有理数的分类填写即可.解:整数:{∴,∴,∴,∴,…}正数:{∴,∴,∴,∴,∴,∴,…}正分数:{∴,∴,…}负有理数:{∴,∴,∴,…}故答案为:∴,∴,∴,∴;∴,∴,∴,∴,∴,∴;∴,∴;∴,∴,∴.【点睛】此题考查了有理数的分类,用到的知识点是整数、正数、正分数、负有理数的定义,关键是熟练掌握有关定义,不要漏数.52.把下列各数填在表示集合的相应大括号中:+6,-8,-0.4,25,0,-23,9.15,145正整数集合﹛﹜负分数集合﹛﹜非负数集合﹛﹜【答案】见解析【分析】按照有理数的分类填写.【详解】解:正整数集合{+6,25,...}负分数集合{-0.4,-23,...}非负数集合{+6,25,0,9.15,145,...}【点睛】本题考查了有理数的分类.认真掌握正整数、负分数、非负数的定义与特点.注意整数和正数的区别,注意0是整数,但不是正数.53.如图,每个椭圆表示一个数集,请在每个椭圆内填上6个数,其中三个写在重叠部分,【答案】见解析【分析】根据负数与整数集合重叠部分为负整数,列举出几个即可;根据正数与分数集合重叠部分为正分数,列举出几个即可.【详解】解:如图所示:【点睛】此题考查了有理数,熟练掌握整数,分数与正、负数的定义是解本题的关键.54.把下列各数分别填在相应的横线上:-0.2,135,-(-5),-7,0,13-,0.618,200%,-2π,-0.1010010001….分数有:__________________________________________________;自然数有:________________________________________________;负有理数有:______________________________________________.【答案】-0.2,135,13-,0.618;-(-5),0,200%;-0.2,-7,13-【分析】按照有理数的分类正确分类求解.【详解】解:-(-5)=5,200%=2分数有:-0.2,135,13-,0.618;自然数有:-(-5),0,200%;负有理数有:-0.2,-7,1 3 -【点睛】本题考查有理数的分类,正确理解概念是解题关键.55.请把下列各数填入相应的集合中:﹣(+4),|﹣3.5|,0,3π,10%,2018,+(﹣5),﹣2.030030003…(每两个3之间逐次加一个0).正分数集合:{ …};负有理数集合:{ …};非负整数集合:{ …};无理数集合:{ …}.【答案】|﹣3.5|,10%;﹣(+4),+(-5);0,2018;3π,﹣2.030030003… 【分析】根据实数的分类判断即可;【详解】正分数集合:{ |﹣3.5|,10% …};负有理数集合:{ ﹣(+4),+(-5) …};非负整数集合:{ 0,2018 …};无理数集合:{3π,﹣2.030030003… …}. 【点睛】本题主要考查了实数的分类,准确分析判断是解题的关键.。
专题123 有理数的混合运算(基础检测)(解析版)
专题1.23 有理数的混合运算(基础检测)一、单选题1.下列计算正确的是( )A .﹣2+(+7)=﹣5B .3÷(﹣4)=-43C .5×54=55D ±3【答案】C 【分析】A 、根据有理数加法法则计算判断即可;B 、根据有理数除法法则计算判断即可;C 、根据同底数幂的乘法运算法则计算判断即可;D 、根据算术平方根的概念判断即可.【详解】解:A 、原式=-2+7=5,计算不正确;B 、原式=34-,计算不正确; C 、原式=5×54=55,计算正确;D 、原式=3,计算不正确.故选:C .【点睛】此题考查了有理数加法、同底数幂的运算法则、算术平方根的运算,掌握其运算法则是解决此题关键.2.8888888888888888+++++++=( )A .864B .648C .98D .4【答案】C【分析】根据同底数幂的乘法可以解答本题.【详解】解:8888888888888888+++++++=888⨯=98故选:C .【点睛】本题考查有理数的混合运算,解答本题的关键是明确有理数混合运算的计算方法. 3.下列计算中,错误的是( )A .(2)(3)236-⨯-=⨯=B .|3|3--=C .363(6)9--=-+-=-D .144(2)82⎛⎫÷-=⨯-=- ⎪⎝⎭ 【答案】B【分析】根据有理数的四则运算法则以及绝对值的意义,逐一判断选项,即可.【详解】A. (2)(3)236-⨯-=⨯=,原式正确,不符合题意,B. |3|3--=-,原式错误,符合题意,C. 363(6)9--=-+-=-,原式正确,不符合题意,D. 144(2)82⎛⎫÷-=⨯-=- ⎪⎝⎭,原式正确,不符合题意. 故选B .【点睛】本题主要考查有理数的四则运算以及绝对值的意义,熟练掌握有理数的四则运算法则,是解题的关键.4.在计算11132⎛⎫÷- ⎪⎝⎭时,下列四个过程:①原式116=÷;②原式111132=÷-÷;③原式()623=÷-;④原式()132=⨯-,其中正确的是( )A .①B .②C .③D .④【答案】C【分析】先做括号内的加法,再算括号外的除法求出结果,然后分别计算四个过程的结果,同原式结果比较即可. 【详解】解:111116326⎛⎫⎛⎫÷-=÷-=- ⎪ ⎪⎝⎭⎝⎭ ①原式116=÷=6;不符合题意;②原式111132=÷-÷=3-2=1;不符合题意; ③原式()623=÷-=-6,同原式结果相同;符合题意;④原式()132=⨯-=1,不符合题意;故选:C .【点睛】本题考查了有理数的混合运算,熟练掌握有理数的混合运算法则是解题的关键.5.已知m 是最小的正整数,n 是最大的负整数,a ,b 互为相反数,x ,y 互为倒数,则23m n a b xy +++-的值是( )A .2-B .1-C .0D .1【答案】B【分析】根据题意,分别求出各字母的值或关系,再整体代入求值即可.【详解】由题可得:1101m n a b xy ==-+==,,,,则原式=()3211011+-+-=-故选:B .【点睛】本题考查有理数,相反数的定义,倒数的定义,准确求出各字母的值或关系是解题关键. 6.一部手机原价4000元,价格先上调10%,再下调10%出售,现价和原价相比,结论正确的是( ) A .现价比原价高40元B .原价比现价高40元C .价格相同D .无法比较【答案】B【分析】根据题意,可以计算出现价,然后和原价比较大小,即可解答本题.【详解】解:4000×(1+10%)×(1-10%)=3960元,4000-3960=40元,即原价比现价高40元,故选B .【点睛】本题考查有理数的混合运算,解答本题的关键是明确有理数混合运算的计算方法.二、填空题7.计算:﹣22+(﹣2)2﹣(﹣1)3=_____.【答案】1【分析】根据有理数的乘方和有理数的加减法可以解答本题.【详解】解:()()232221-+---=﹣4+4﹣(﹣1)=﹣4+4+1=1,故答案为:1.【点睛】本题考查有理数的乘方运算,熟练掌握运算法则是解题的关键.8.定义一种新运算:2&2a b a b =-,则(1)3 &-=_______.【答案】1-【分析】根据定义的运算列式求解,注意运算顺序,先算乘方,然后算乘除,最后算加减.【详解】解:2(1)&32(1)3231 -=⨯--=-=-故答案为:-1.【点睛】本题考查有理数的运算,掌握有理数混合运算顺序和计算法则正确计算是解题关键.9.按照如下图所示的操作步骤,若输出的值为4,则输入x 的值为______.【答案】1或-5【分析】根据输出结果,按有理数运算法则,逆向计算即可. 【详解】输出的结果为4,∴按操作步骤逆向计算,第一步:4+5=9,第二步:()293=±,第三步:32x ±=+,第四步:解得1x =或5x =-,故答案为:1或-5.【点睛】本题考查了有理数运算求值,弄清题中的运算程序是解题关键.10.一件商品原售价为2000元,销售时先提价10%;再降价10%,现在的售价是____元.【答案】1980【分析】根据题意列出算式,计算即可求出值.【详解】解:根据题意得:2000×(1+10%)×(1-10%)=2000×1.1×0.9=1980,则现在的售价是1980元.故答案为:1980.【点睛】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.11.现在定义两种运算:“☑”,“☒”,对于任意两个整数a 、b ,a ☑b=a+b-1,a ☒b=a×b-1,求(6☒8)☑(-2)=_______.【答案】44【分析】根据题意列出有理数混合运算的式子,再计算即可.【详解】解:∵a ☑b=a+b-1,a ☒b=a×b-1, ∴(6☒8)☑(-2)=(6×8-1)☑(-2)=47☑(-2)=47-2-1=44故答案为:44.【点睛】本题考查的是有理数的混合运算,熟知有理数混合运算的法则是解答此题的关键.12.已知4个有理数:﹣1、﹣2、﹣3、﹣4,在这4个有理数之间用“+、﹣、×、÷”连接进行四则运算,每个数只用一次,使其结果等于24,你的算法是_____.【答案】()()()()1234-+-+-⨯-⎡⎤⎣⎦.【分析】根据题意可以写出相应的式子,本题得以解决.【详解】解:由题意可得,()()()()()()12346424,-+-+-⨯-=-⨯-=⎡⎤⎣⎦故答案为:()()()()1234-+-+-⨯-⎡⎤⎣⎦.【点睛】本题考查的是有理数的加减乘除的混合运算,掌握运算方法与运算的顺序是解题的关键. 13.已知|a 4=,5b =,且a b <, 则a-b a+b的值为__________. 【答案】19-或-9 【分析】根据题意求出a 与b 的值,即可确定出a b a b-+的值. 【详解】∵|a|=4,|b|=5,且a <b ,∴a =4,b =5或a =−4,b =5, 则a b a b -+=451459-=-+或45945a b a b ---==-+-+ 故答案为:19-或-9. 【点睛】此题考查了有理数的混合运算,熟练掌握绝对值的定义及有理数运算法则是解本题的关键. 14.某高山上的温度从山脚处开始每升高100米,降低0.6 ℃.若山脚处温度是28 ℃,则山上500米处的温度是______________℃.【答案】25【分析】根据题意得从山脚开始每上升100米温度就会下降0。
专题 有理数的混合运算计算题(50题提分练)(解析版)
七年级上册数学《第2章有理数及其运算》专题 有理数的混合运算计算题(50题)一、有理数的混合运算(1)有理数混合运算顺序:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.(2)进行有理数的混合运算时,注意各个运算律的运用,使运算过程得到简化.二、有理数混合运算的四种运算技巧:1.转化法:一是将除法转化为乘法,二是将乘方转化为乘法,三是在乘除混合运算中,通常将小数转化为分数进行约分计算.2.凑整法:在加减混合运算中,通常将和为零的两个数,分母相同的两个数,和为整数的两个数,乘积为整数的两个数分别结合为一组求解.3.分拆法:先将带分数分拆成一个整数与一个真分数的和的形式,然后进行计算.4.巧用运算律:在计算中巧妙运用加法运算律或乘法运算律往往使计算更简便.1.(2023秋•易县期末)计算:(1)25÷23−25×(−12);(2)(﹣3)2×(12−56)+|﹣4|. 【分析】(1)先把除法转化为乘法,再逆用乘法的分配律进行求解即可;(2)先算乘方,括号里的减法,绝对值,再算乘法,最后算加法即可.【解答】解:(1)25÷23−25×(−12)=25×32+25×12=25×(32+12) =25×2=50;(2)(﹣3)2×(12−56)+|﹣4| =9×(−13)+4=﹣3+4=1.【点评】本题主要考查有理数的混合运算,解答的关键是对相应的运算法则的掌握.2.(2023秋•广宗县期末)计算(1)(14−13−1)×(﹣12) (2)﹣22×14+(﹣3)3×(−827) 【分析】(1)利用乘法分配律展开,再计算乘法,最后计算加减可得;(2)先计算乘方,再计算乘法,最后计算加减可得.【解答】解:(1)原式=14×(﹣12)−13×(﹣12)﹣1×(﹣12) =﹣3+4+12=13;(2)原式=﹣4×14+(﹣27)×(−827) =﹣1+8=7.【点评】本题主要考查有理数的混合运算,解题的关键是掌握有理数的混合运算顺序和运算法则.3.(2022秋•黄石港区期末)计算与化简:(1)﹣22+|﹣18﹣(﹣3)×2|÷4;(2)(14−49)×(﹣6)2+7÷(−12). 【分析】(1)根据有理数的乘除法和加法可以解答本题;(2)根据乘法分配律、有理数的乘除法和加法可以解答本题.【解答】解:(1)﹣22+|﹣18﹣(﹣3)×2|÷4=﹣4+|﹣18+6|÷4=﹣4+12÷4=﹣4+3=﹣1;(2)(14−49)×(﹣6)2+7÷(−12) =(14−49)×36+7×(﹣2) =9+(﹣16)+(﹣14)=﹣21.【点评】本题考查有理数的混合运算,解答本题的关键是明确有理数混合运算的计算方法.4.(2024•昭平县三模)计算:5÷[(﹣1)3﹣4]+32×(﹣1).【分析】原式先计算乘方运算,再计算乘除运算,最后算加减运算即可求出值.【解答】解:原式=5÷(﹣1﹣4)+9×(﹣1)=5÷(﹣5)+(﹣9)=﹣1+(﹣9)=﹣10.【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.5.(2024•仙居县二模)计算:(−18)×[23−(−12)]−22.【分析】先算乘方,再算乘法,然后算减法即可.【解答】解:(−18)×[23−(−12)]−22=(﹣18)×23−(﹣18)×(−12)﹣4=(﹣12)﹣9﹣4=﹣25.【点评】本题考查有理数的混合运算,熟练掌握运算法则是解答本题的关键.6.(2024•西乡塘区校级三模)计算:2×(﹣5+3)﹣42÷(﹣8).【分析】先算括号内的式子和乘方,再算括号外的乘除法,然后算减法即可.【解答】解:2×(﹣5+3)﹣42÷(﹣8)=2×(﹣2)﹣16÷(﹣8)=﹣4+2=﹣2.【点评】本题考查有理数的混合运算,熟练掌握运算法则是解答本题的关键.7.(2024春•秀屿区校级月考)计算:(−3)2÷[2−(−7)]+6×(−12 ).【分析】按照先计算乘方,再计算乘除法,最后计算加减法,有括号先计算括号的运算顺序求解即可.【解答】解:(−3)2÷[2−(−7)]+6×(−1 2 )=9÷(2+7)+6×(−12)=9÷9+(﹣3)=1+(﹣3)=﹣2.【点评】本题主要考查了含乘方的有理数混合计算,注意先计算乘方,再计算乘除法是关键.8.(2024•前郭县三模)计算:−14÷(−3)2×(−92)−|12−2|.【分析】先算乘方,再算乘除,后算加减,即可解答.【解答】解:−14÷(−3)2×(−92)−|12−2|=﹣1÷9×(−92)−32=−19×(−92)−32=12−32=﹣1.【点评】本题考查了有理数的混合运算,准确熟练地进行计算是解题的关键.9.(2024春•长宁区期中)计算:−52÷1916−(118)×(−23)2.【分析】先算乘方,再算乘除法,然后算减法即可.【解答】解:−52÷1916−(118)×(−23)2=﹣25×1625−98×49=﹣16−1 2=−332. 【点评】本题考查有理数的混合运算,熟练掌握运算法则是解答本题的关键.10.(2024春•长宁区期中)计算:(−1112+34)×(−42)+(213)÷(−312);【分析】先算乘方和括号内的式子,再算括号外的乘除法,然后计算加法即可.【解答】解:(−1112+34)×(−42)+(213)÷(−312)=(−1112+912)×(﹣16)+73×(−27)=(−212)×(﹣16)+(−23) =83+(−23) =2.【点评】本题考查有理数的混合运算,熟练掌握运算法则是解答本题的关键.11.(2023春•闵行区期中)计算:2×(−12)3−3×(−12)2+3×(−12)−1.【分析】先算乘方,再算乘法,最后算加减;同级运算,应按从左到右的顺序进行计算.【解答】解:原式=2×(−18)﹣3×14−32−1=−14−34−32−1=﹣312. 【点评】本题考查了有理数的混合运算,有理数混合运算顺序:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.进行有理数的混合运算时,注意各个运算律的运用,使运算过程得到简化.12.(2023秋•安次区期末)计算:(1)(﹣20)﹣(﹣8)﹣7+(﹣2);(2)(﹣1)4×|3﹣7|÷(−3)×34.【分析】(1)减法转化为加法,再进一步计算即可;(2)先计算乘方和绝对值,并将除法转化为乘法,再约分即可得出答案.【解答】解:(1)原式=﹣20+8﹣7﹣2=﹣21;(2)原式=1×4×(−13)×34=﹣1.【点评】本题主要考查有理数的混合运算,解题的关键是掌握有理数混合运算顺序和运算法则.13.(2023秋•永善县期末)计算:(1)1356+34−56−(−14);(2)(−2)3+13×(−3)−|(﹣9)÷3|.【分析】(1)利用加法交换律和结合律进行计算,即可解答;(2)先算乘方,再算乘除,后算加减,即可解答.【解答】解:(1)1356+34−56−(−14)=1356+34−56+14 =(1356−56)+(34+14)=13+1=14;(2)(−2)3+13×(−3)−|(﹣9)÷3|=﹣8+(﹣1)﹣3=﹣9﹣3=﹣12.【点评】本题考查了有理数的混合运算,准确熟练地进行计算是解题的关键.14.(2023秋•安州区期末)计算:(1)24+(﹣14)+(﹣16)+8;(2)(﹣81)÷94×49÷(﹣8).【分析】(1)把正数和负数分别相加,再求和;(2)把除法转化为乘法,运用乘法法则求积即可.【解答】解:(1)24+(﹣14)+(﹣16)+8=24﹣14﹣16+8=32﹣30=2;(2)(﹣81)÷94×49÷(﹣8)=81×49×49×18=2.【点评】本题考查了有理数的混合运算,掌握有理数的运算法则和运算律是解决本题的关键.15.(2023春•香坊区校级期中)计算:(1)(−23)﹣(+13)﹣|−34|﹣(−14);(2)﹣12−15×[2﹣(﹣3)2].【分析】(1)根据有理数的加减法可以解答本题;(2)根据有理数的乘法和加减法可以解答本题.【解答】解:(1)(−23)﹣(+13)﹣|−34|﹣(−14)=(−23)+(−13)−34+14=−32;(2)﹣12−15×[2﹣(﹣3)2]=﹣1−15×(﹣7)=﹣1+7 5=25.【点评】本题考查有理数的混合运算,解答本题的关键是明确有理数混合运算的计算方法.16.(2023秋•高碑店市期末)计算:(1)−24×(13−34+58);(2)−22÷[2+(−6)]−4×(−12)2.【分析】(1)利用乘法分配律进行计算,即可解答;(2)先算乘方,再算乘除,后算加减,有括号先算括号里,即可解答.【解答】解:(1)−24×(13−34+58)=﹣24×13+24×34−24×58=﹣8+18﹣15=10﹣15=﹣5;(2)−22÷[2+(−6)]−4×(−1 2 )2=﹣4÷(﹣4)﹣4×1 4=1﹣1=0.【点评】本题考查了有理数的混合运算,准确熟练地进行计算是解题的关键.17.计算:(1)(﹣7)×5﹣(﹣36)÷4;(2)﹣14﹣(1﹣0.4)×13×(2﹣32).【分析】(1)首先计算乘法、除法,然后计算减法即可.(2)首先计算乘方和小括号里面的运算,然后计算小括号外面的乘法和减法即可.【解答】解:(1)(﹣7)×5﹣(﹣36)÷4=﹣35﹣(﹣9)=﹣35+9=﹣26.(2)﹣14﹣(1﹣0.4)×13×(2﹣32)=﹣1﹣0.6×13×(2﹣9)=﹣1﹣0.2×(﹣7)=﹣1+1.4=0.4.【点评】此题主要考查了有理数的混合运算,注意明确有理数混合运算顺序:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.18.(2023秋•连山区期末)计算:(1)﹣23÷8−14×(﹣2)2;(2)(−112−116+34−16)×(﹣48).【分析】(1)先算乘方,再算乘除法,最后算减法即可;(2)根据乘法分配律计算即可.【解答】解:(1)﹣23÷8−14×(﹣2)2=﹣8÷8−14×4=﹣1﹣1=﹣2;(2)(−112−116+34−16)×(﹣48)=−112×(﹣48)−116×(﹣48)+34×(﹣48)−16×(﹣48) =4+3+(﹣36)+8=﹣21.【点评】本题考查有理数的混合运算,熟练掌握运算法则是解答本题的关键,注意乘法分配律的应用.19.(2023秋•西丰县期末)计算:(1)(56−14+13)÷(−112); (2)(﹣2)3×(−12)﹣|﹣1﹣5|.【分析】(1)先把有理数的除法转化为乘法,然后再利用乘法分配律进行计算,即可解答;(2)先算乘方,再算乘法,后算加减,即可解答.【解答】解:(1)(56−14+13)÷(−112) =(56−14+13)×(﹣12) =﹣12×56+12×14−12×13=﹣10+3﹣4=﹣11;(2)(﹣2)3×(−12)﹣|﹣1﹣5|=﹣8×(−12)﹣6=4﹣6=﹣2.【点评】本题考查了有理数的混合运算,准确熟练地进行计算是解题的关键.20.(2023秋•忻州期末)计算:(1)3÷(−12)﹣(25−13)×15;(2)(﹣3)2﹣(﹣2)3×(−14)﹣(﹣1+6);【分析】(1)先将除法转化为乘法、计算括号内的运算,再计算乘法,最后计算减法即可;(2)先计算乘方和括号内的运算,再计算乘法,最后计算减法即可.【解答】解:(1)原式=3×(﹣2)−115×15=﹣6﹣1=﹣7;(2)原式=9﹣(﹣8)×(−14)﹣5=9﹣2﹣5=2.【点评】本题主要考查有理数的运算,解题的关键是掌握有理数的混合运算顺序和运算法则.21.(2023秋•成武县期末)计算:(1)﹣32+|5﹣8|+24÷(−3)×1 3;(2)(﹣10)2﹣5×(﹣3×2)2+22×10.【分析】(1)先算乘方及绝对值,再算乘除,最后算加法即可;(2)先算乘方及括号里面的,再算乘法,最后算加减即可.【解答】解:(1)原式=﹣9+|﹣3|+24×(−13)×13=﹣9+3−8 3=−263;(2)原式=100﹣5×(﹣6)2+4×10=100﹣5×36+40=100﹣180+40=﹣40.【点评】本题考查有理数的混合运算,熟练掌握相关运算法则是解题的关键.22.(2024春•东坡区期末)(1)计算:(−34−59+712)÷(−136).(2)计算:−12022−|12−1|÷3×[2−(−3)2].【分析】(1)把除法变乘法后用乘法分配律进行求解即可;(2)根据有理数混合运算的顺序和法则进行计算即可.【解答】解:(1)原式=(−34)×(−36)−59×(−36)+712×(−36)=27+20﹣21=26;(2)原式=−1−12×13×(2−9)=−1+76=16.【点评】本题考查了含乘方的有理数的混合运算,掌握有理数的运算法则和运算律是解题的关键.23.(2023秋•满城区期末)计算题:(1)−2+(−65)×(−23)+(−65)×173;(2)﹣14﹣5×[2﹣(﹣3)2].【分析】(1)先计算乘法运算,再计算加减运算即可;(2)先计算乘方运算,再计算乘法运算,最后算加减运算即可.【解答】解:(1)−2+(−65)×(−23)+(−65)×173=−2+45−345=﹣8;(2)﹣14﹣5×[2﹣(﹣3)2]=﹣1﹣5×(2﹣9)=﹣1﹣5×(﹣7)=﹣1+35=34.【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.24.(2023秋•綦江区期末)计算:(1)(−13+12)×6÷|−15|;(2)(−1)2024+(−10)÷12×2−[(−3)3−2].【分析】(1)根据有理数的四则混合运算法则进行计算即可;(2)根据有理数的四则混合运算法则进行计算即可.【解答】解:(1)(−13+12)×6÷|−15|=(−26+36)×6÷15 =16×6×5=5;(2)(−1)2024+(−10)÷12×2−[(−3)3−2]=1+(﹣10)×2×2﹣(﹣27﹣2)=1﹣40+29=﹣10.【点评】本题考查了有理数的混合运算,熟练掌握运算法则与运算顺序是解此题的关键.25.(2023秋•青山区期末)计算:(1)(﹣11)﹣7+(﹣8)﹣(﹣6);(2)﹣16﹣(1−23)÷13×[﹣2﹣(﹣3)2].【分析】(1)直接利用有理数的加减的法则进行运算即可;(2)先算乘方,除法转化为乘法以及括号里的运算,最后算加减即可.【解答】解:(1)(﹣11)﹣7+(﹣8)﹣(﹣6)=﹣11﹣7﹣8+6=﹣18﹣8+6=﹣26+6=﹣20;(2)﹣16﹣(1−23)÷13×[﹣2﹣(﹣3)2]=﹣1−13×3×(﹣2﹣9)=﹣1−13×3×(﹣11)=﹣1+11=10.【点评】本题主要考查有理数的混合运算,解答的关键是对相应的运算法则的掌握.26.(2023秋•关岭县期末)计算:(1)(﹣3)2﹣|﹣2|+(﹣1)2024×(﹣4);(2)(79+56−34)÷(−136).【分析】(1)先算乘方,去绝对值,再算乘法,最后算加减;(2)把除化为乘,用乘法分配律计算即可.【解答】解:(1)原式=9﹣2+1×(﹣4)=9﹣2﹣4=3;(2)原式=79×(﹣36)+56×(﹣36)−34×(﹣36)=﹣28﹣30+27=﹣31.【点评】本题考查有理数混合运算,解题的关键是掌握有理数相关运算的法则.27.(2024春•南岗区校级月考)计算:(1)﹣12÷2﹣2×(﹣3)+(﹣1)2024(2)(﹣3)2×5﹣(﹣2)3÷8【分析】(1)先运算有理数的乘方,然后运算有理数的乘除,最后运算加减计算即可;(2)先运算有理数的乘方,然后运算有理数的乘除,最后运算加减计算即可.【解答】解:(1)﹣12÷2﹣2×(﹣3)+(﹣1)2024=﹣6﹣(﹣6)+1=﹣6+6+1=1;(2)(﹣3)2×5﹣(﹣2)3÷8=9×5﹣(﹣8)÷8=45﹣(﹣1)=46.【点评】本题考查有理数的混合运算,熟练掌握有理数混合运算法则是关键.28.(2023秋•游仙区期末)计算:(1)4+(﹣2)3×5﹣(﹣0.28)÷4;(2)−14−16×[2−(−3)2].【分析】(1)先算乘方,再算乘除法,然后计算加减法即可;(2)先算乘方和括号内的式子,再算乘法,然后计算减法即可.【解答】解:(1)4+(﹣2)3×5﹣(﹣0.28)÷4=4+(﹣8)×5+0.07=4+(﹣40)+0.07=﹣35.93;(2)−14−16×[2−(−3)2]=﹣1−16×(2﹣9)=﹣1−16×(﹣7)=﹣1+76=16.【点评】本题考查有理数的混合运算,熟练掌握运算法则是解答本题的关键.29.(2023秋•太康县期末)计算:(1)(14+38−712)÷124; (2)﹣14﹣(1−12)2×15×[2+(﹣3)3].【分析】(1)先把除法转化为乘法,再根据乘法分配律计算即可;(2)先计算乘方,再计算乘除,后计算加减法,有括号的先计算括号内的.【解答】解:(1)原式=(14+38−712)×24=14×24+38×24−712×24=6+9﹣14=1;(2)原式=﹣1−(12)2×15×(2﹣27)=﹣1−14×15×(−25)=﹣1+5 4=14.【点评】本题考查了有理数的混合运算,掌握相关运算法则是解答本题的关键.30.(2023秋•河东区期末)计算:(1)(﹣1)2023×|﹣3|−(−2)3+4÷(−23)2;(2)−32×(−13)2+(34+16+38)×(−24).【分析】各个小题均按照混合运算法则,先算乘方,再算乘除,最后算加减即可.【解答】解:(1)原式=−1×3−(−8)+4÷4 9=−1×3+8+4×94=﹣3+8+9=9+8﹣3=17﹣3=14;(2)原式=−9×19−24×34−24×16−24×38=﹣1﹣18﹣4﹣9=﹣32.【点评】本题主要考查了有理数的混合运算,解题关键是熟练掌握有理数的加减乘除法则.31.(2023秋•江西期末)计算:(1)|−2|+(−1)2019−(−12)2;(2)16÷(−2)3−(−18)×(−4).【分析】(1)先算乘方,去绝对值符号,再算加减即可;(2)先算乘方,再算乘除,最后算加减即可.【解答】解:(1)|−2|+(−1)2019−(−1 2 )2=2−1−14 =34;(2)16÷(−2)3−(−18)×(−4)=16÷(−8)−12=−2−12=−52.【点评】本题主要考查了有理数的混合运算,熟知有理数混合运算的法则是解题的关键.32.计算:(1)−22÷15×5−(−10)2−|−3|;(2)(−1)2023+(−5)×[(−2)3+2]−(−4)2÷(−12 ).【分析】(1)先算乘方,乘除法和绝对值,再算加减;(2)先算括号里面的运算及乘方,乘除法,后算加减即可.【解答】解:(1)−22÷15×5−(−10)2−|−3|=﹣4×5×5﹣100﹣3=﹣100﹣100﹣3=﹣203;(2)(−1)2023+(−5)×[(−2)3+2]−(−4)2÷(−1 2 )=−1+(−5)×(−8+2)−16÷(−12)=﹣1+(﹣5)×(﹣6)+32=﹣1+30+32=61.【点评】本题考查了有理数的混合运算,熟练掌握混合运算的顺序是解答本题的关键.33.(2024春•南岗区校级月考)计算:(1)﹣12÷2﹣2×(﹣3)+(﹣1)2024(2)(﹣3)2×5﹣(﹣2)3÷8【分析】(1)先运算有理数的乘方,然后运算有理数的乘除,最后运算加减计算即可;(2)先运算有理数的乘方,然后运算有理数的乘除,最后运算加减计算即可.【解答】解:(1)﹣12÷2﹣2×(﹣3)+(﹣1)2024=﹣6﹣(﹣6)+1=﹣6+6+1=1;(2)(﹣3)2×5﹣(﹣2)3÷8=9×5﹣(﹣8)÷8=45﹣(﹣1)=46.【点评】本题考查有理数的混合运算,熟练掌握有理数混合运算法则是关键.34.(2023秋•邹平市期末)计算:(1)2023+(﹣5)3×8﹣|﹣2024|÷(﹣4);(2)−156−(−13)2×[(−2)3+(−6)2−1].【分析】(1)先算乘方和去绝对值,然后算乘除法,再算加减法即可;(2)先算乘方和括号内的式子,再算括号外的乘法,最后算减法即可.【解答】解:(1)2023+(﹣5)3×8﹣|﹣2024|÷(﹣4)=2023+(﹣125)×8﹣2024÷(﹣4)=2023+(﹣1000)+506=1529;(2)−156−(−13)2×[(−2)3+(−6)2−1]=﹣1−19×(﹣8+36﹣1)=﹣1−19×27=﹣1﹣3=﹣4.【点评】本题考查有理数的混合运算,熟练掌握运算法则是解答本题的关键.35.(2024春•阿荣旗校级月考)计算:(1)(−48)×(−12−58+712); (2)﹣14+9÷(﹣3)2×|﹣3﹣1|.【分析】(1)利用乘法运算律计算求解即可;(2)先计算有理数的乘方,绝对值,然后进行乘除运算,最后进行加减运算即可.【解答】解:(1)(−48)×(−12−58+712)=(−48)×(−12)+(−48)×(−58)+(−48)×712 =24+30﹣28=26;(2)﹣14+9÷(﹣3)2×|﹣3﹣1|=﹣1+9÷9×4=﹣1+4=3.【点评】本题考查了乘法分配律,有理数的乘方,绝对值,有理数的混合运算,熟练掌握以上运算法则是解题的关键.36.(2023秋•长寿区期末)计算:(1)﹣22﹣|﹣7|+3﹣2×(−12);(2)﹣14+[4﹣(38+16−34)×24]÷5. 【分析】(1)原式先计算乘方及绝对值运算,再计算乘法运算,最后算加减运算即可得到结果;(2)原式先计算乘方运算,再计算乘除运算,最后算加减运算即可得到结果.【解答】解:(1)原式=﹣4﹣7+3+1=﹣7;(2)原式=﹣1+(4﹣9﹣4+18)÷5=﹣1+95=45.【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.37.(2023秋•杜尔伯特县期末)计算:(1)﹣22﹣(﹣2)2﹣8+(﹣2)3﹣42+|﹣4|;(2)(−4)×(−57)÷(−47)−(12)2.【分析】(1)先算乘方和化简绝对值,再算有理数的加减混合运算:(2)先算乘方,再算有理数的乘除,最后运算有理数的加减混合运算.【解答】解:(1)﹣22﹣(﹣2)2﹣8+(﹣2)3﹣42+|﹣4|=﹣4﹣4﹣8﹣8﹣16+4=﹣36;(2)(−4)×(−57)÷(−47)−(12)2=−4×(−57)×(−74)−14=−5−14=−514.【点评】本题考查了含有理数的混合运算、化简绝对值,熟练掌握运算法则是关键.38.(2023秋•台儿庄区期末)计算:(1)−24÷(−4)3−(−12)3×|﹣4|;(2)−6÷(−13)2−52+2×(−4)2.【分析】(1)先算乘方,再算乘除,后算加减,即可解答;(2)先算乘方,再算乘除,后算加减,即可解答.【解答】解:(1)−24÷(−4)3−(−12)3×|−4|=−16÷(−64)−(−18)×4 =14−(−12)=14+12=34;(2)−6÷(−13)2−52+2×(−4)2=﹣6÷19−25+2×16=﹣6×9﹣25+32=﹣54﹣25+32=﹣79+32=﹣47.【点评】本题考查了有理数的混合运算,准确熟练地进行计算是解题的关键.39.(2023秋•浚县期末)计算:(1)−8×(−16+34−112)÷16;(2)−12022−[2−(−2)3]÷(−25)×52.【分析】(1)先将除法转化为乘法,再利用乘法运算律进行简便计算即可;(2)先算乘方,再算乘除,最后算加减;如果有括号,要先做括号内的运算.【解答】解:(1)−8×(−16+34−112)÷16=﹣8×(−16+34−112)×6=﹣48×(−16+34−112)=﹣48×(−16)﹣48×34−48×(−112)=8﹣36+4=﹣24;(2)−12022−[2−(−2)3]÷(−25)×52=﹣1﹣[2﹣(﹣8)]×(−52)×52=﹣1﹣10×(−52)×52=﹣1+125 2=1232.【点评】此题主要考查了有理数的混合运算,要熟练掌握,注意明确有理数混合运算顺序:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.进行有理数的混合运算时,注意各个运算律的运用,使运算过程得到简化.40.(2023秋•海南期末)计算:(1)(12−13)×6÷|−15|;(2)−12022+(−10)÷12×2−[2−(−3)3].【分析】(1)先将除法转化为乘法,然后根据有理数的乘法进行计算即可求解;(2)先计算括号内的,有理数的乘方,然后计算乘除,最后计算加减即可求解.【解答】解:(1)原式=(36−26)×6×5=16×6×5=5;(2)原式=﹣1+(﹣10)×2×2﹣(2+27)=﹣1﹣20×2﹣29=﹣1﹣40﹣29=﹣41﹣29=﹣70.【点评】本题考查了有理数的混合运算,掌握有理数的运算法则以及运算顺序是解题的关键.41.(2023秋•文峰区期末)计算:(1)(﹣1)2÷12+(7﹣3)×34−|﹣2|;(2)﹣14﹣0.5÷14×[1+(﹣2)2].【分析】(1)先算乘方,除法转化为乘法,括号里的减法运算,绝对值,再算乘法,最后算加减即可;(2)先算乘方,除法转化为乘法,再算括号里的运算,接着算乘法,最后最加减即可.【解答】解:(1)(﹣1)2÷12+(7﹣3)×34−|﹣2|=1×2+4×34−2=2+3﹣2=5﹣2=3;(2)﹣14﹣0.5÷14×[1+(﹣2)2]=﹣1﹣0.5×4×(1+4)=﹣1﹣0.5×4×5=﹣1﹣10=﹣11.【点评】本题主要考查有理数的混合运算,解答的关键是对相应的运算法则的掌握.42.(2023秋•陇县期末)计算:(1)﹣9+(﹣32)﹣(﹣27)﹣(﹣4);(2)(−1.5)×(−2)÷(−23)÷(−15);(3)−32÷(−2)2×|−1−13|−(−2)3.【分析】(1)根据减去一个数,等于加上这个数的相反数,即可求得结果;(2)根据除以一个数等于乘以这个数的倒数,两个负数相乘结果为正,即可得到结果;(3)先将含有乘方的化简,然后求出数的绝对值,然后进行计算.【解答】解:(1)﹣9+(﹣32)﹣(﹣27)﹣(﹣4)=﹣9﹣32+27+4=﹣41+27+4=﹣10;(2)(−1.5)×(−2)÷(−23)÷(−15)=3×(−32)×(−5) =452;(3)−32÷(−2)2×|−1−13|−(−2)3=−9÷4×|−43|−(−8)=−9×14×43−(−8)=﹣3﹣(﹣8)=﹣3+8=5.【点评】本题考查了含有乘方的有理数混合运算、求一个数的绝对值,正确计算是解题的关键.43.(2023秋•仁怀市期中)计算:(1)(﹣23)﹣59+(﹣41)﹣(﹣59);(2)−5×2+3÷13−(−1);(3)−12+(3−5)2−|−14|÷(−12)3;(4)(−48)×(18−13+14)+(−2)2÷12.【分析】(1)先把减法转化为加法,然后根据加法法则计算即可;(2)先算乘除法,再算加减法即可;(3)先算乘方和括号内的式子,然后计算括号外的除法,最后算加减法即可;(4)先算乘方,再算乘除法,最后算加减法即可.【解答】解:(1)(﹣23)﹣59+(﹣41)﹣(﹣59)=(﹣23)+(﹣59)+(﹣41)+59=﹣64;(2)−5×2+3÷13−(−1)=﹣10+3×3+1=﹣10+9+1=0;(3)−12+(3−5)2−|−14|÷(−12)3=﹣1+(﹣2)2−14÷(−18)=﹣1+4−14×(﹣8)=﹣1+4+2=5;(4)(−48)×(18−13+14)+(−2)2÷12=﹣48×18+48×13−48×14+4×2=﹣6+16﹣12+8=6.【点评】本题考查有理数的混合运算,熟练掌握运算法则和运算顺序是解答本题的关键.44.(2024春•香坊区校级月考)计算:(1)15+(﹣27)+(﹣5)+27;(2)−14−16×[3−(−3)2];(3)7×34−(−7)×12+7×(−14);(4)(−2557)÷5.【分析】(1)根据有理数的加法计算法则求解即可;(2)按照先计算乘方,再计算乘除法,最后计算加减法,有括号先计算括号的运算顺序求解即可;(3)先去括号,然后利用乘法分配律的逆运算法则求解即可;(4)把原式变形为(−25−57)÷5,进一步变形得到−25÷5−57÷5,据此计算求解即可.【解答】解:(1)15+(﹣27)+(﹣5)+27=15﹣27﹣5+27=10;(2)−14−16×[3−(−3)2]=−1−16×(3−9) =−1−16×(−6)=﹣1+1=0;(3)7×34−(−7)×12+7×(−14)=7×34+7×12−7×14 =7×(34+12−14)=7×1=7;(4)(−2557)÷5=(−25−57)÷5 =−25÷5−57÷5 =−25÷5−57÷5 =−5−17=−517.【点评】本题主要考查了有理数的混合计算,熟练掌握有理数混合运算法则是关键.45.计算:(1)3+(﹣6)﹣(﹣7);(2)(﹣22)×(﹣114)÷13; (3)(34−13−56)×(﹣12); (4)﹣12021﹣(−13)×(﹣22+3)+12×|3﹣1|.【分析】(1)先把减法转化为加法,然后根据有理数加法法则计算即可;(2)先算乘方、再算乘除法即可;(3)根据乘法分配律可以解答本题;(4)先算乘方和括号内的式子,再算括号外的乘法和加减法即可.【解答】解:(1)3+(﹣6)﹣(﹣7)=3+(﹣6)+7=4;(2)(﹣22)×(﹣114)÷13 =(﹣4)×(−54)×3=15;(3)(34−13−56)×(﹣12) =34×(﹣12)−13×(﹣12)−56×(﹣12)=(﹣9)+4+10=5;(4)﹣12021﹣(−13)×(﹣22+3)+12×|3﹣1|=﹣1﹣(−13)×(﹣4+3)+12×2=﹣1+13×(﹣1)+1=﹣1+(−13)+1=−13.【点评】本题考查有理数的混合运算,解答本题的关键是明确有理数混合运算的运算法则和运算顺序.46.计算:(1)(﹣5)+(﹣4)﹣(+101)﹣(﹣9);(2)−12021×[4−(−3)2]+3÷(−34 );(3)(512−79+23)÷136;(4)−316×7−316×(−9)+(−196)×(−8).【分析】(1)先把减法转化为加法,然后根据有理数的加法法则计算即可;(2)先算乘方和括号内的式子,然后计算括号外的乘除法、最后算加法即可;(3)先把除法转化为乘法、然后根据乘法分配律计算即可;(4)先将带分数化为假分数,然后根据乘法分配律计算即可.【解答】解:(1)(﹣5)+(﹣4)﹣(+101)﹣(﹣9)=(﹣5)+(﹣4)+(﹣101)+9=﹣101;(2)−12021×[4−(−3)2]+3÷(−3 4 )=﹣1×(4﹣9)+3×(−4 3)=﹣1×(﹣5)+(﹣4)=5+(﹣4)=1;(3)(512−79+23)÷136=(512−79+23)×36=512×36−79×36+23×36=15﹣28+24=11;(4)−316×7−316×(−9)+(−196)×(−8)=−196×7−196×(﹣9)−196×(﹣8)=−196×[7+(﹣9)+(﹣8)] =−196×(﹣10)=953.【点评】本题考查有理数的混合运算,解答本题的关键是明确有理数混合运算的运算法则和运算顺序,注意乘法分配律的应用.47.(2024春•南岗区校级月考)计算:(1)﹣4.2+5.7﹣8.4+10;(2)76×(16−13)×314÷35; (3)﹣22×5﹣(﹣2)3÷4;(4)(﹣10)3+[(﹣4)2﹣(1﹣3)2×2].【分析】(1)根据有理数的加减混合运算法则求解即可;(2)根据有理数的混合运算法则求解即可;(3)先计算乘方,然后计算乘除,最后计算加减;(4)先计算乘方,然后计算乘除,最后计算加减.【解答】解:(1)﹣4.2+5.7﹣8.4+10=1.5+1.6=3.1;(2)76×(16−13)×314÷35 =76×(−16)×314×53=−736×514=−572;(3)﹣22×5﹣(﹣2)3÷4=﹣4×5﹣(﹣8)÷4=﹣20﹣(﹣2)=﹣18;(4)(﹣10)3+[(﹣4)2﹣(1﹣3)2×2]=﹣1000+(16﹣4×2)=﹣1000+8=﹣992.【点评】本题考查了有理数的混合运算,解题的关键是掌握运算法则和运算顺序.48.(2024春•海陵区校级月考)计算:(1)[3−(−2)2]×|−6|÷2 3;(2)(56−12−712)÷(−124).【分析】(1)先算乘方和绝对值,最后算除法即可求解;(2)先通分算括号内的,最后算除法即可求解.【解答】解:(1)[3−(−2)2]×|−6|÷2 3=(3−4)×6÷23 =−1×6×32=﹣9.(2)(56−12−712)÷(−124)=(1012−612−712)÷(−124)=(−14)÷(−124)=14×24=6.【点评】本题考查了有理数的混合运算,正确掌握有理数的混合运算顺序是解题的关键.49.(2024春•南岗区校级月考)计算:(1)8+(−14)−5−(−0.25);(2)−24×(−12+34−13);(3)25×34+(−25)×12−25×(−14);(4)−22+8÷(−2)3−2×(18−12).【分析】(1)原式利用减法法则变形,然后利用加法交换律和结合律计算即可得到结果;(2)原式利用乘法分配律解题即可得到结果;(3)原式利用乘法分配律的逆运算即可得到结果;(4)原式先运算乘方和括号,然后乘除,最后加减计算即可得到结果.【解答】解:(1)8+(−14)−5−(−0.25)=(8−5)+[(−14)−(−0.25)]=3;(2)−24×(−12+34−13)=−24×(−12)−24×34−24×(−13)=12﹣18+8=2;(3)25×34+(−25)×12−25×(−14)=25×(34−12+14)=25×12=252;(4)−22+8÷(−2)3−2×(18−12)=−4+8÷(−8)−2×(−38)=−4−1+34=−414.【点评】本题考查有理数的混合运算,掌握运算顺序和运算法则是解题的关键.50.计算:(1)2﹣5+4﹣(﹣7)+(﹣6)(2)(﹣2467)÷6 (3)(﹣18)÷214×49÷(﹣16)(4)43−{(−3)4−[(−1)÷2.5+214×(−4)]÷(24815−27815)}.【分析】(1)原式利用减法法则变形,计算即可得到结果;(2)原式变形后,利用乘法分配律计算即可得到结果;(3)原式利用除法法则变形,约分即可得到结果;(4)原式先计算乘方运算,再计算乘除运算,最后算加减运算即可得到结果.【解答】解:(1)原式=2﹣5+4+7﹣6=2;(2)原式=(﹣24−67)×16=−4−17=−417; (3)原式=﹣18×49×49×(−116)=29; (4)原式=64﹣81+(﹣925)÷(﹣3)=64﹣81+4715=−131315.【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.。
七年级数学上册1.2.1 有理数-有理数的概念及分类-解答题专项练习一(人教版,含解析)
2021-2022学年度人教版七年级数学上册练习一1.2.1 有理数-有理数的概念及分类1.把下列各数按要求分类:①4-,②25%-,③1-,④12,⑤10.2--,⑥2,⑦1.5,⑧0,⑨ 0.123,⑩ 4.1010010001...(填序号)整数集合:{}.分数集合:{}.正数集合:{}.非负有理数集合:{}.2.把下列各数分别填入相应的集合里.-5,34--,0,-3.14,3π-,227,2014,+1.99,-(-6),-2.101001000….(1)正数集合:{________________________…};(2)负数集合:{_______________________________…};(3)非负整数集合:{________________________…};(4)负分数集合:{_______________________…}.3.把下列各数分别填入相应的大括号内:13147,3.5, 3.1415,0,,0.03,3,10,1722----自然数集合{…};整数集合{…};正分数集合{…};非正数集合{…};4.把下列各数分别填人相应的集合里.﹣4,﹣43-,0,227,﹣3.14,2006,﹣(+5),+1.88.(1)正有理数集合:_____…};(2)负有理数集合:_____…};(3)非负整数集合:_____…};(4)正分数集合:_____…}. 5.把下列各数分别填入相应的集合里. 3,23,0,207,-2.14,(5)--,( 4.2)-+,9π (1)正数集合{ }⋅⋅⋅; (2)负数集合{ }⋅⋅⋅; (3)非负整数集合{ }⋅⋅⋅; (4)分数集合{ }⋅⋅⋅.6.把下列各数分别填在它所属于的集合的括号内()()7338,, 6.2,0.9,2,15%,0,1,24-+-----负整数集合 ···} 正分数集合 ··} 非负整数集合 ···} 7.把下列各数填入相应集合的括号内8.5+, 0, -3.4, 12, -9, 143, 3.1415, -1.2, -0.79, 3π(1)正数集合 } (2)整数集合 } (3)负分数集合 } (4)非正整数集合 } 8.把下列各数分别填在它所在的集合里:5-,45-,2004,(4)--,217,()2π+-,|13|--,-36% ,0,6.2 (1)正数集合 } (2)负数集合 } (3)分数集合 }(4)非负整数集合 } 9.把下列各数填在相应的括号内:+5,+13,0.31,0,-1.3,76,62.6,-8.3,172-,7,100 (1)正整数:( ) (2)分数:( )10.把下列各数填在相应的大括号内15,12-,0.81,-3,14,-3.1,-4,171,0,3.14正数集合…} 负数集合…}正整数集合…} 负整数集合…}非负数集合…} 11.把下列各数写在相应的集合里﹣5,10,﹣412, 0,+212,﹣2.15,0.01,+66,﹣25, 15%,3102, 2003,﹣16正整数集合:________ ;负整数集合:________ ;正分数集合:________;负分数集合:________;整数集合:________ ;负数集合:________ ;正数集合:________ .12.把下列各数填入它所在的集合里:-2,7,23-,0,2 015,0.618,3.14,-1.732,-5,+3①正数集合:___________________________________…}②负数集合:___________________________________…}③整数集合:___________________________________…}④非正数集合:_________________________________…}⑤非负整数集合:_______________________________…}⑥有理数集合:_________________________________…} 13.把下列各数填入它所属的集合内:5.2,0,π2,227,()4+-,324-,()3--,0.2555,0.0300003-(1)分数集合:…}(3)有理数集合:…}14.把下列各数序号..分别填在表示它所在的集合的大括号里①-(-1),②-227,③+3.2,④0,⑤13,⑥-|+45|,⑦|-9|,⑧-22 ,⑨-6正有理数:____,…};非负整数:____,…};负分数:____,…}.15.将下列各数填入适当的大括号内:-4,32,0,-0.5,2.5,12-,426正有理数集合……};负分数集合……};非负整数集合……}. 16.把下列各数的序号填在相应的横线上:①227-;②3.14;③5%;④0;⑤4--;⑥23+;⑦2π-;⑧5+分数:___________________________________________;负数:___________________________________________;自然数:_________________________________________.17.将下列有理数分类:11,1,12,0, 3.01,0.62,15,8,180,15% 72-----.(1)整数集合:…}(2)分数集合:…}(3)非负数集合:…}18.把下列各数填到相应的括号内:8-,227,|2|--,0.9-,5.4,0, 3.6-非负数: };负有理数: };整数: };分数: }.19.把下列各数填在相应的大括号内:53,,0,6.21,100,1,|4|,0.010010001,( 1.2),17%+----+8正数集合…} 整数集合…}负分数集合…} 非负有理数…}.20.把下列各数填在相应的括号里:171-+----5,,0.62,4,0, 1.1,, 6.4,7,7,7363(1)分数:{};(2)负有理数:{};(3)非负整数:{}.参考答案1.整数集合:①③⑥⑧;分数集合:②④⑤⑦⑨;正数集合:③④⑥⑦⑨⑩;非负有理数集合:③④⑥⑦⑧⑨⑩.解析:根据整数、分数和有理数的定义逐一判断即可.详解:由题意得:整数集合:①③⑥⑧;分数集合:②④⑤⑦⑨;正数集合:③④⑥⑦⑨⑩;非负有理数集合:③④⑥⑦⑧⑨⑩.点睛:本题考查了有理数的分类,题目较为基础,关键是掌握有理数的两种分类方式:按定义分类和按正负分类.2.227,2014,+1.99,-(-6);-5,34--,-3.14;0,2014,-(-6);34--,;解析:正数集合:227,2014,+1.99,-(-6),负数集合:-5,34--,-3.14,-2.101001000…,3π-非负整数集合:0,2014,-(-6),负分数集合:34 --故答案是: (1). 227,2014,+1.99,-(-6) (2). -5,34--,-3.14 ,3π- ,-2.101001000… (3). 0,2014,-(-6) (4).34--.点睛:本题主要考查了有理数的分类,解题时注意:如果一个数是小数,它是否属于有理数,就看它是否能化成分数的形式,所有的有限小数和无限循环小数都可以化成分数的形式,因而属于有理数,而无限不循环小数,不能化成分数形式,因而不属于有理数.3.0,10;-7,0,10,42 -;3.5,1317,0.03;-7,-3.1415,0,132-,42-.解析:先化简,再根据自然数,整数,正分数,非正数的定义可得出答案.详解:自然数集合:0,10;整数集合:-7,0,10,42 -;正分数集合:3.5,1317,0.03;非正数集合:-7,-3.1415,0,132-,42-.故答案为0,10;-7,0,10,42 -;3.5,1317,0.03;-7,-3.1415,0,132-,42-.点睛:本题考查了有理数的分类,认真掌握正数、自然数、整数、分数、正数、负数、非正数的定义与特点,注意整数和自然数的区别,注意0是整数,但不是正数.4.见解析解析:根据正有理数的定义,负有理数的定义,非负整数的定义,正分数的定义即可求解.详解:解:(1)正有理数集合:227,2006,+1.88…};(2)负有理数集合:﹣4,﹣43-,﹣3.14,﹣(+5)…};(3)非负整数集合: 0,2006…}; (4)正分数集合:227,+1.88…}. 点睛:本题考查了有理数的分类,认真掌握正数、负数、整数、分数、正有理数、负有理数、非负数的定义与特点.注意整数和正数的区别,注意0是整数,但不是正数.5.(1)见解析;(2)见解析;(3)见解析;(4)见解析. 解析:根据有理数的分类方法解答即可. 详解:解:(1)正数集合203,,(5),79π⎧⎫--⋅⋅⋅⎨⎬⎩⎭;(2)负数集合2, 2.14,( 4.2)3⎧⎫----+⋅⋅⋅⎨⎬⎩⎭; (3)非负整数集合{}3,0,(5)--⋅⋅⋅; (4)分数集合220,, 2.14,( 4.2)37⎧⎫----+⋅⋅⋅⎨⎬⎩⎭点睛:本题考查了有理数的分类,熟练掌握有理数的两种分类方式是解答本题的关键. 有理数可分为整数和分数,整数分正整数,零和负整数;分数分正分数和负分数.有理数也可分为正有理数,零和负有理数,正有理数分为正整数和正分数,负有理数分为负整数和负分数.6.()71-,32- ,; 6.2+ ,0.9- ,15% ,;8,()2--,0,解析:根据有理数的分类填写即可,整数包括:正整数、0、负整数;分数包括正分数和负分数. 详解:∵0.90.9-=,()22--=,()711-=-,328-=-,负整数集合()71- ,32- ,}正分数集合 6.2+ ,0.9- ,15% ,}非负整数集合8,()2--,0,}故答案为:()71- ,32- ,; 6.2+ ,0.9- ,15% ,;8,()2--,0,点睛:本题考查了有理数的分类,解决本题的关键是掌握正数、负数、整数、分数、正有理数、负有理数、非负数的定义与特点.注意整数和正数的区别,注意0是整数,但不是正数.7.8.5+,12,143,3.1415,3π;0,12,9-; 3.4-, 1.2-,0.79-;0,9- 解析:根据有理数的分类填空即可. 详解:解:(1)正数集合{8.5+,12,143,3.1415,3π,...} (2)整数集合{0,12,9-,...} (3)负分数集合{3.4-, 1.2-,0.79-,...} (4)非正整数集合{0,9-,...},故答案为:8.5+,12,143,3.1415,3π;0,12,9-; 3.4-, 1.2-,0.79-;0,9-. 点睛:本题考查了有理数的分类,解题的关键是正确掌握分类的标准以及注意0既不是正数也不是负数.8.2004,(4)--,217,6.2;5-,45-,2π⎛⎫+- ⎪⎝⎭,13--,36%-;45-,217,36%-,6.2;2004,(4)--,0.解析:根据正数是大于0的数,可得正数集合,根据负数是小于0的数,可得负数集合,根据整数是分母为1的数,可得整数集合,去掉其中的负数可得非负整数集合,根据分数是分母不为1 的数,可得分数集合. 详解:解:(1)正数集合{2004,(4)--,217,6.2,}⋯; (2)负数集合{5-,45-,2π⎛⎫+- ⎪⎝⎭,13--,36%}-⋯;(3)分数集合4{5-,217,36%-,6.2}⋯.(4)非负整数集合{2004,(4)--,0}⋯; 故答案为:2004,(4)--,217,6.2;5-,45-,2π⎛⎫+- ⎪⎝⎭,13--,36%-;45-,217,36%-,6.2;2004,(4)--,0. 点睛:本题考查了有理数,注意带负号的数不一定是负数,-2π不是分数.9.(1)正整数:( +5, 7,100);(2)分数:( +13,0.31, -1.3,76,62.6,-8.3,172- );(3)非负数:(+5,+13,0.31,0, 76,62.6, 7,100)解析:根据正整数,分数和非负数的意义进行判断即可,注意0既不是正数也不是负数,有限小数属于分数,非负数即正数和0. 详解:解:(1)正整数:( +5, 7,100)(2)分数:( +13,0.31, -1.3,76,62.6,-8.3,172- ) (3)非负数:(+5,+13,0.31,0, 76,62.6, 7,100) 点睛:本题考查有理数的分类,掌握0既不是正数也不是负数,有限小数属于分数,非负数即正数和0是本题的解题关键.10.正数集合 15,0.81,14,171,3.14 …}负数集合12-,-3,-3.1,-4 …} 正整数集合15,171 …} 负整数集合 -3 , -4 …}非负数集合 15,0.81,14,171,0, 3.14 …} 解析:根据有理数的分类直接进行解答. 详解:解:正数集合 15,0.81,14,171,3.14 …}负数集合12-,-3,-3.1,-4 …}正整数集合15,171 …}负整数集合 -3 , -4 …}非负数集合 15,0.81,14,171,0,3.14 …}.点睛:本题主要考查有理数的分类,熟练掌握有理数的概念是解题的关键.11.10,66,2003 ﹣5,﹣16 +212, 0.01,15%,3102-412,﹣2.15,﹣25﹣5,10,0,+66,2003,﹣16 ﹣5,﹣412,﹣2.15,﹣25,﹣16 10,+212,0.01,+66,15%,3102, 2003解析:试题分析:按有理数的分类标准进行分类即可得. 试题解析:正整数集合:10,66,2003;负整数集合:﹣5,﹣16;正分数集合:+212, 0.01,15%,3102;负分数集合:-412,﹣2.15,﹣25;整数集合:﹣5,10,0,+66,2003,﹣16;负数集合:﹣5,﹣412,﹣2.15,﹣25,﹣16 ;正数集合:10,+212, 0.01,+66,15%,3102, 2003.点睛:本题考查了有理数的分类,掌握有理数的分类标准是解决此类问题的关键.12.①正数集合:7,2 015,0.618,3.14,+3…};②负数集合:-2,23-,-1.732,-5,…};③整数集合:-2,7,0,2 015,-5,+3…};④非正数集合:-2,23-,0,-1.732,-5,…};⑤非负整数集合:7,0,2 015,+3…};⑥有理数集合:-2,7,23-,0,2 015,0.618,3.14,-1.732,-5,+3…}解析:根据有理数的分类即可得出答案.详解:解:①正数集合:7,2 015,0.618,3.14,+3…}②负数集合:-2,23-,-1.732,-5,…}③整数集合:-2,7,0,2 015,-5,+3…}④非正数集合:-2,23-,0,-1.732,-5,…}⑤非负整数集合:7,0,2 015,+3…}⑥有理数集合:-2,7,23-,0,2 015,0.618,3.14,-1.732,-5,+3…}点睛:本题考查了有理数的分类,解题的关键是熟练掌握它们之间的区别,注意0是整数,但不是正数.13.见解析解析:按照实有理数的分类,⎧⎧⎪⎪⎨⎪⎪⎪⎨⎩⎪⎧⎪⎨⎪⎩⎩正整数整数负整数有理数正分数分数负分数求解即可.详解:解:分数集合:5.2、227、324-、0.2555}非负整数集合:0、()3--}有理数集合:5.2、0、227、()4+-、324-、()3--、0.2555}点睛:本题考查了有理数,认真掌握正数、负数、整数、分数、正有理数、负有理数、非负数的定义与特点,注意整数和正数的区别,注意0是整数,但不是正数是解决本题的关键.14.见解析解析:根据有理数的分类即可写出. 详解:-(-1)=1,-|+45|=-45,|-9|=9,-22=-4∴正有理数:①-(-1),③+3.2,⑤13,⑦|-9|,…};非负整数:①-(-1),④0,⑦|-9|,…};负分数:②-227,⑥-|+45|,…}.点睛:此题主要考查有理数的分类,解题的关键是先进行化简再进行分类.15.正有理数集合:32,2.5,426负分数集合: -0.5,1 2 -非负整数集合:0,426解析:按照有理数的分类进行填写即可详解:正有理数是指大于0的有理数,所以正有理数集合为:32,2.5,426负分数是指小于0的分数,其中有限小数也是分数,所以负分数集合为: -0.5,1 2 -非负整数是指不小于0的整数,所以非负整数集合为:0,426 点睛:本题主要考查了有理数的分类,熟练掌握相关概念是解题关键16.①②③⑥;①⑤⑦;④⑧.解析:根据分数、负数、自然数的定义即可得.详解:解:44--=-所以:分数:①②③⑥;负数:①⑤⑦; 自然数:④⑧. 点睛:本题考查了有理数的分类,熟记并理解各定义是解题关键.17.见解析.解析:整数和分数统称为有理数;整数分为正整数、负整数和0;分数分为正分数和负分数;据此将题目中所给出的数分别写到对应的集合里即可. 详解:(1)整数集合:-1,12,0,-15,180 …} (2)分数集合:17,-3.01,0.62,182-,-15% …} (3)非负数集合:17,12,0,0.62,180 …} 点睛:本题考查了有理数的分类和定义.熟练掌握正数、负数、整数、分数、正有理数、负有理数、非负数的定义与特点是解题关键.18.见解析解析:根据非负数的定义、负有理数的定义、整数的定义和分数的定义分类即可. 详解: 解:非负数:227,5.4,0 }; 负有理数:8-,|2|--,0.9-, 3.6-}; 整数:8-,|2|--, 0 }; 分数:227,0.9-,5.4, 3.6-}. 点睛:此题考查的是有理数的分类,掌握非负数的定义、负有理数的定义、整数的定义和分数的定义是解决此题的关键.19.见解析解析:按照有理数的分类以及意义直接填空即可. 详解:解:|4|4-=,( 1.2) 1.2-+=-,正数集合3,6.21,100,|4|,0.010010001,17%+-,...} 整数集合3,0,100,1,|4|+--,...} 负分数集合5,( 1.2)8--+,...}非负有理数3,0,6.21,100,|4|,0.010010001,17%+-,...} 点睛:此题考查有理数的分类.解题的关键是掌握有理数的分类,并注意:非正包括负数和0;分数包括小数.20.见解析解析:按照有理数的分类填写. 详解:解:(1)分数集合:1{3+,0.62, 1.1-,76, 6.4-,17,}3-⋯; (2)负有理数集合:{5-, 1.1-, 6.4-,7-,17,}3-⋯; (3)非负整数集合:{4,0,7,}⋯. 点睛:本题考查了有理数的有关定义,认真掌握正数、负数、整数、分数、正有理数、负有理数、非负数的定义与特点.注意整数和正数的区别,0是整数,但不是正数,也不是负数.。
浙教版2024-2025学年数学七年级上册2.1有理数的加法同步练习(基础版)(附答案解析)
浙教版2024-2025学年数学七年级上册2.1 有理数的加法同步练习(基础版)班级:姓名:亲爱的同学们:练习开始了,希望你认真审题,细致做题,不断探索数学知识,领略数学的美妙风景。
运用所学知识解决本练习,祝你学习进步!一、选择题1.计算-2+1的结果是()A.-1 B.1 C.-3 D.32.计算(−20)+40的结果等于()A.-20 B.60 C.-60 D.203.计算:(−2)+6=()A.8 B.4 C.−8D.−44.计算(﹣3)+(﹣2)的结果等于()A.﹣5 B.﹣1 C.5 D.15.计算(−3)+8的结果等于()A.11 B.5 C.-5 D.-116.比-2大1的数()A.-3 B.-1 C.−12D.27.巴中市某一天早晨的气温是−3∘C,中午上升了8∘C,则中午的气温是()A.−5∘C B.5∘C C.3∘C D.−3∘C8.下面算式中的“5”和“2”可以直接相加的是()A.78.2+15B.263+51C.58+23D.6.58+3.29.下列运算正确的是()A.﹣2+(﹣5)=﹣(5﹣2)=﹣3B.(+3)+(﹣8)=﹣(8﹣3)=﹣5C.(﹣9)﹣(﹣2)=﹣(9+2)=﹣11D.(+6)+(﹣4)=+(6+4)=+1010.若两个有理数的和为负数,那么这两个数()A.一定都是负数B.一个为零,另一个为负数C.一正一负D.至少有一个为负数二、填空题11.计算:-6+5= .12.比-32大2的数是.13.若|a|=4,–b=3,则a+b= .14.比−23大14的数是.15.在一条东西向的跑道上,小明先向东走6米,记作+6米,又向西走10米,此时他的位置可记作米16.绝对值小于6的所有整数的和为.三、计算题17.计算:(1)(﹣5)+(﹣15);(2)(+26)+(﹣18)+5+(﹣26).18.计算:(−3)+12+(−17)+(+8)19.16+(-25)+24+(-35)20.计算:18+(−17)+7+(−8).21.计算:(−17)+59+(−27) 22.12+29+(−13)1.【答案】A【解析】【解答】解:-2+1=-1.故答案为:A【分析】利用有理数的加法法则进行计算.2.【答案】D【解析】【解答】解:(−20)+40=20,故答案为:D.【分析】根据有理数的加法法则计算即可。
人教版七年级上数学:1.2.1《有理数》学案(附模拟试卷含答案)
数学:1.2.1《有理数》学案(人教版七年级上)【学习目标】:1、掌握有理数的概念,会对有理数按一定标准进行分类,培养分类能力;2、了解分类的标准与集合的含义;3、体验分类是数学上常用的处理问题方法;【学习重点】:正确理解有理数的概念【学习难点】:正确理解分类的标准和按照一定标准分类【导学指导】一、温故知新1、通过两节课的学习,,那么你能写出3个不同类的数吗?.(4名学生板书)__________________________________________二、自主探究问题1:观察黑板上的12个数,我们将这4位同学所写的数做一下分类;该分为几类,又该怎样分呢?先分组讨论交流,再写出来分为类,分别是:引导归纳:统称为整数,统称为有理数。
问题2:我们是否可以把上述数分为两类?如果可以,应分为哪两类?师生共同交流、归纳2、正数集合与负数集合所有的正数组成集合,所有的负数组成集合【课堂练习】1、P8练习(做在课本上)2.把下列各数填入它所属于的集合的圈内:15, -1, -5,2,813, 0.1, -5.32, -80, 123, 2.333;正整数集合 负整数集合正分数集合 负分数集合【要点归纳】: 有理数分类⎪⎪⎪⎩⎪⎪⎪⎨⎧⎩⎨⎧⎩⎨⎧负分数负整数负有理数零正分数正整数正有理数有理数 或者 ⎧⎧⎪⎪⎨⎪⎪⎪⎨⎩⎪⎧⎪⎨⎪⎩⎩正整数整数零负整数有理数正分数分数负分数【拓展训练】1、下列说法中不正确的是……………………………………………( ) A .-3.14既是负数,分数,也是有理数 B .0既不是正数,也不是负数,但是整数c .-2000既是负数,也是整数,但不是有理数 D .O 是正数和负数的分界2、在下表适当的空格里画上“√”号【总结反思】:2019-2020学年七年级数学上学期期末模拟试卷一、选择题1.如图,C,D 是线段 AB 上两点,若 CB=4cm,DB=7cm,且 D 是 AC 的中点,则 AB 的长等于()A.6cmB.7cmC.10cmD.11cm2.如图,点C、D是线段AB上的两点,点D是线段AC的中点.若AB=10cm,BC=4cm,则线段DB的长等于()A.2cmB.3cmC.6cmD.7cm3.在同一平面上,若∠BOA=60.3°,∠BOC=20°30′,则∠AOC的度数是( )A.80.6°B.40°C.80.8°或39.8°D.80.6°或40°4.按下面的程序计算,若开始输入的值x为正数,最后输出的结果为283,则满足条件的x不同值最多有( )A.6个B.5个C.4个D.3个5.在如图的2017年11月份的月历表中,任意框出表中竖列上三个相邻的数,下面列出的这三个数的和①24,②35,③51,④72,其中不可能的是( )A.①②B.②④C.②③D.②③④6.在一次革命传统教育活动中,有n位师生乘坐m辆客车.若每辆客车乘60人,则还有10人不能上车,若每辆客车乘62人,则最后一辆车空了8个座位.在下列四个方程6010628m m+=-①;6010628m m+=+②;1086062n n-+=③;1086062n n+-=④中,其中正确的有()A.①③B.②④C.①④D.②③7.下列运算中正确的是()A.x+x=2x2B.(x4)2= x8C.x3.x2=x6D.(-2x) 2=-4x28.下列图形都是由同样大小的黑、白圆按照一定规律组成的,其中第①个图形中一共有2个白色圆,第②个图形中一共有8个白色圆,第③个图形中一共有16个白色圆,按此规律排列下去,第⑦个图形中白色圆的个数是()A .96B .86C .68D .529.把正方形按如图所示的规律拼图案,其中第①个图案中有1个正方形,第②个图案中有5个正方形,第③个图案中有9个正方形…按此规律排列下去,则第⑧个图案中正方形的个数为( )A .25B .29C .33D .3710.等边△ABC 在数轴上的位置如图所示,点A 、C 对应的数分别为0和-1,若△ABC 绕顶点沿顺时针方向在数轴上连续翻转,翻转1次后,点B 所对应的数为1,则连续翻转2009次后,点B ( )A .不对应任何数B .对应的数是2007C .对应的数是2008D .对应的数是2009 11.小明做了以下4道计算题:①(-1)2010=2010;②0-(-1)=-l ;③-+=-;④÷(-)=-1. 其中做对的共有A .1道B .2道C .3道D .4道 12.计算:534--⨯的结果是( ) A.17- B.7-C.8-D.32-二、填空题13.一个人从A 点出发向北偏东30°方向走到B 点,再从B 点出发向南偏东15°方向走到C 点,此时C 点正好在A 点的北偏东70°的方向上,那么∠ACB 的度数是___________. 14.计算:12°20'×4=______________.15.如图,小红将一个正方形纸片剪去一个宽为4cm 的长条后,再从剩下的长方形纸片上剪去一个宽为5cm 的长条,且剪下的两个长条的面积相等.问这个正方形的边长应为多少厘米?设正方形边长为xcm ,则可列方程为_____.16.当x=__________时,代数式6x+l 与-2x-13的值互为相反数.17.去括号合并:(3)3(3)a b a b --+=_________.18.观察下列等式①223415-⨯=,②225429-⨯=,③2274313-⨯=,…根据上述规律,第n 个等式是________________.(用含有n 的式子表示)19.小明在做解方程的作业时,不小心将方程中的一个常数污染得看不清楚,方程是:122y y +=--¤ .小明翻看了书后的答案,此方程的解是y= 12- ,则这个常数是_______. 20.比较大小,4-______3(用“>”,“<”或“=”填空). 三、解答题21.如图1,O 为直线AB 上一点,过点O 作射线OC ,∠AOC=30°,将一直角三角板(∠M=30°)的直角顶点放在点O 处,一边ON 在射线OA 上,另一边OM 与OC 都在直线AB 的上方.(1)将图1中的三角板绕点O 以每秒3°的速度沿顺时针方向旋转一周.如图2,经过t 秒后OM 恰好平分∠BOC ,则t= (直接写结果)(2)在(1)问的基础上,若三角板在转动的同时,射线OC 也绕O 点以每秒6°的速度沿顺时针方向旋转一周,如图3,那么经过多少秒后OC 平分∠MON ?请说明理由; (3)在(2)问的基础上,那么经过多少秒∠MOC=36°?请说明理由.22.一个角的补角比它的余角的3倍少20︒,求这个角的度数.23.如图在长方形ABCD 中,AB=12cm ,BC=8cm ,点P 从A 点出发,沿A→B→C→D 路线运动,到D 点停止;点Q 从D 点出发,沿D→C→B→A 运动,到A 点停止.若点P 、点Q 同时出发,点P 的速度为每秒1cm ,点Q 的速度为每秒2cm ,用x (秒)表示运动时间. (1)求点P 和点Q 相遇时的x 值.(2)连接PQ ,当PQ 平分矩形ABCD 的面积时,求运动时间x 值.(3)若点P 、点Q 运动到6秒时同时改变速度,点P 的速度变为每秒3cm ,点Q 的速度为每秒1cm ,求在整个运动过程中,点P 、点Q 在运动路线上相距路程为20cm 时运动时间x 值.24.小李读一本名著,星期六读了36页,第二天读了剩余部分的14,这两天共读了整本书的38,这本名著共有多少页?25.已知代数式A=2x 2+5xy ﹣7y ﹣3,B=x 2﹣xy+2.(1)求3A ﹣(2A+3B )的值;(2)若A ﹣2B 的值与x 的取值无关,求y 的值. 26.已知A=22x +3xy-2x-l ,B= -2x +xy-l . (1)求3A+6B ;(2)若3A+6B 的值与x 无关,求y 的值. 27.计算:(1)(3)74--+-- (2) 211()(6)5()32-⨯-+÷-28.计算:(1) 16÷(﹣2)3﹣(18-)×(﹣4) (2) 221211()[2(3)]233---÷⨯-+-【参考答案】*** 一、选择题 1.C 2.D 3.C 4.B 5.B 6.A 7.B 8.C 9.B 10.C 11.B 12.A 二、填空题 13.95˚ 14.49°20' 15.4x=5(x-4) 16.17.-10 SKIPIF 1 < 0 解析:-10b18.(2n+1) SKIPIF 1 < 0 −4×n SKIPIF 1 < 0 =4n+1. 解析:(2n+1) 2−4×n 2=4n+1.19.120.<;三、解答题21.(1)5;(2)5秒时OC平分∠MON,理由详见解析;(3)详见解析. 22.35°23.(1)x=323;(2)4 或20;(3)4或14.524.这本名著共有216页.25.(1)﹣x2+8xy﹣7y﹣9;(2)y=026.(1) 15xy-6x-9 ;(2)25.27.(1)6;(2)22.28.(1)﹣212;(2)52.2019-2020学年七年级数学上学期期末模拟试卷一、选择题1.在一些商场、饭店或写字楼中,常常能看到一种三翼式旋转门在圆柱体的空间內旋转.旋转门的三片旋转翼把空间等分成三个部分,如图是从上面俯视旋转门的平面图,两片旋转翼之间的角度是( )A.100°B.120°C.135°D.150°2.如图所示,两个直角∠AOB ,∠COD 有公共顶点O ,下列结论:(1)∠AOC =∠BOD ;(2)∠AOC +∠BOD =90°;(3)若OC 平分∠AOB ,则OB 平分∠COD ;(4)∠AOD 的平分线与∠COB 的平分线是同一条射线.其中正确的个数是( )A.1B.2C.3D.43.如图是某年的日历表,在此日历表上可以用一个矩形圈出3×3个位置的9个数(如3,4,5,10,11,12,17,18,19).若用这样的矩形圈圈这张日历表的9个数,则圈出的9个数的和不可能为下列数中的( )A .81B .90C .108D .2164.我国古代数学著作《孙子算经》中有“多人共车”问题:今有三人共车,二车空;二人共车,九人步.问人与车各几何?其大意是:每车坐3人,两车空出来;每车坐2人,多出9人无车坐. 问人数和车数各多少?设车x 辆,根据题意,可列出的方程是 ( ). A.3229x x -=+ B.3(2)29x x -=+ C.2932x x+=- D.3(2)2(9)x x -=+5.如图,点O (0,0),A (0,1)是正方形OAA 1B 的两个顶点,以OA 1对角线为边作正方形OA 1A 2B 1,再以正方形的对角线OA 2作正方形OA 1A 2B 1,…,依此规律,则点A 2017的坐标是( )A .(0,21008)B .(21008,21008)C .(21009,0)D .(21009,-21009)6.当x 分别取-2019、-2018、-2017、…、-2、-1、0、1、12、13、…、12017、12018、12019时,分别计算分式2211x x -+的值,再将所得结果相加,其和等于( )A .-1B .1C .0D .20197.下列根据等式的性质变形正确的是( ) A.若3x+2=2x ﹣2,则x =0 B.若12x =2,则x =1 C.若x =3,则x 2=3x D.若213x +﹣1=x ,则2x+1﹣1=3x 8.如图,下列各图形中的三个数之间均具有相同的规律.根据此规律,“?”的值为( )A .55B .56C .63D .649.在数﹣(﹣3),0,(﹣3)2,|﹣9|,﹣14中,正数的有( )个. A .2 B .3 C .4 D .510.阿里巴巴数据显示,2017年天猫商城“双11”全球狂欢交易额超957亿元,数据957亿用科学记数法表示为( ) A.895710⨯B.995.710⨯C.109.5710⨯D.100.95710⨯11.国庆长假期间,以生态休闲为特色的德阳市近郊游备受青睐.假期各主要景点人气爆棚,据市旅游局统计,本次长假共实现旅游收入5610万元.将这一数据用科学记数法表示为( ) A.75.6110⨯B.80.56110⨯C.656.110⨯D.85.6110⨯12.甲从点A 出发沿北偏东35°方向走到点B ,乙从点A 出发沿南偏西20°方向走到点C ,则∠BAC 等于 ( ) A.15°B.55°C.125°D.165°二、填空题13.如图,将一副三角板叠放在一起,使直角顶点重合于O ,则∠AOC+∠DOB =_____.14.已知∠AOB=3∠BOC,射线0D 平分∠AOC,若∠BOD=30°,则∠BOC 的度数为________.15.某通信公司的移动电话计费标准每分钟降低a 元后,再下调了20%,现在收费标准是每分钟b 元,则原来收费标准每分钟是_____元.16.一件夹克衫先按成本提高20%标价,再以9折出售,售价为270元,这件夹克衫的成本是_____.17.如图,将一个正三角形纸片剪成四个全等的小正三角形,再将其中的一个按同样的方法剪成四个更小的正三角形,……如此继续下去,结果如下表:则a n =__________(用含n 的代数式表示).所剪次数1 2 3 4 … n 正三角形个数 4 7 10 13 … a n18.已知1mn m n =--,则()()11m n ++的值为________.19.计算2﹣(﹣3)的结果为_____.20.如果,那么____.三、解答题21.如图,C ,D 为线段AB 上的两点,M ,N 分别是线段AC ,BD 的中点.(1)如果CD=5cm ,MN=8cm ,求AB 的长;(2)如果AB=a ,MN=b ,求CD 的长.22.已知:点C ,D 是直线AB 上的两动点,且点C 在点D 左侧,点M ,N 分别是线段AC 、BD 的中点.(1)如图,点C 、D 在线段AB 上.①若AC=10,CD=4,DB=6,求线段MN 的长;②若AB=20,CD=4,求线段MN 的长;(2)点C 、D 在直线AB 上,AB=m ,CD=n ,且m >n ,请直接写出线段MN 的长(用含有m ,n 的代数式表示).23.中国现行的个人所得税法自2011年9月1日起施行,其中规定个人所得税纳税办法如下:一、以个人每月工资收入额减去3500元后的余额作为其每月应纳税所得额;二、个人所得税纳税税率如下表所示:(1)若甲、乙两人的每月工资收入额分别为4500元和6000元,请分别求出甲、乙两人的每月应缴纳的个人所得税;(2)若丙每月缴纳的个人所得税为85元,则丙每月的工资收入额应为多少?24.昆曲高速公路全长128千米,甲、乙两车同时从昆明、曲靖两地高速路收费站相向匀速开出,经过40分钟相遇,甲车比乙车每小时多行驶20千米.求甲、乙两车的速度.25.先化简,再求值:4a 2b+ab 2-4(ab 2+a 2b ),其中|a+1|+(b-2)2=026.计算:(1)()()()332122-⨯-+-÷(2)201813121234⎛⎫-+-+-⨯ ⎪⎝⎭(3)先化简,再求值:221131a 2a b a b 4323⎛⎫⎛⎫--+-+ ⎪ ⎪⎝⎭⎝⎭,其中3a 2=,1b 2=-. 27.已知|x+1|+(y+2)2=0,求x+y 的值.28.712311263-+【参考答案】***一、选择题1.B2.C3.D4.B5.B6.A7.C8.C9.B10.C11.A12.D二、填空题13.180°14.15°或30°.15.(a+ SKIPIF 1 < 0 b ).解析:(a+54b ). 16.17.3n+1.18.2;19.520.-13或-3三、解答题21.(1)线段AB 的长为11cm ;(2)2b ﹣a .22.(1)①12;②12;(2)2m n +. 23.(1)甲每月应缴纳的个人所得税为30元;乙每月应缴纳的个人所得税145元;(2)丙每月的工资收入额应为5400元.24.甲车速度为106千米/时,乙车速度为86千米/时.25.26.() 12-;()24-;(3)54-. 27.﹣3.28.1312。
第一章 有理数单元综合检测(解析版)
第一章有理数单元综合检测满分:100分时间:60分钟一、选择题(共10小题,满分30分)1.2023的相反数是( )A.2023B.2023-C.12023D.2023±【分析】根据互为相反数的两数之和为0和只有符号不同的两个数是相反数进行判断即可.【解析】2023的相反数是2023-;故选:B.2.下列说法正确的是( )A.有理数分为正数、负数和零B.分数包括正分数、负分数和零C.一个有理数不是整数就是分数D.整数包括正整数和负整数【分析】直接利用有理数的有关定义分析判断即可.【解析】A、有理数包括正有理数、负有理数和零,故此选项错误;B、分数包括正分数、负分数,故此选项错误;C、一个有理数不是整数就是分数,故此选项正确;D、整数包括正整数、负整数0和零,故此选项错误.故选:C.3.下列各组数中互为相反数的是( )A.12-与2-B.1-与(1)-+C.(3)--与3-D.2与|2|-【分析】符号不同,绝对值相等的两个数互为相反数,据此即可得出答案.【解析】12-与2-不是相反数,则A不符合题意;(1)1-+=-,则B不符合题意;(3)3--=,它与3-互为相反数,则C符合题意;|2|2-=,则D不符合题意;故选:C.4.北京与巴黎的时差为7小时,例如:北京时间13:00,同一时刻的巴黎时间是早上6:00.笑笑和霏霏分别在北京和巴黎,她们相约在各自当地时间13:00~22:00之间选择一个时刻开始通话,这个时刻可以是北京时间( )A.14:00B.16:00C.21:00D.23:00【分析】根据巴黎时间比北京时间早7小时解答即可.【解析】由题意得,巴黎时间比北京时间早7小时,当巴黎时间为13:00,则北京时间为20:00;当北京时间为22:00,则巴黎时间为15:00;所以这个时间可以是北京时间的20:00到22:00之间,故选:C.5.下列各组数中,互为倒数的有( )①12和(2)-;②115-和56-;③|4|--和14-;④0和0;⑤1和1-;⑥3.2和516.A.1组B.2组C.3组D.4组【分析】对于①,11(2)(2)1122´-=-´=-¹,据此即可作出判断;接下来利用同样的方法,判断其它几个.注意:0没有倒数.【解析】对于①,11(2)(2)1122´-=-´=-¹,故①不互为倒数,对于②,1565(1)(15656-´-=´=,故②互为倒数,对于③,111(|4|)()(4)()41444--´-=-´-=´=,故③互为倒数,对于④,0没有倒数,故④不互为倒数,对于⑤1,1(1)11´-=-¹,故⑤不互为倒数,对于⑥,51653.2116516´=´=,故⑥互为倒数,故互为倒数的两个数有3组.故选:C.6.下列等式成立的是( )A .235222´=B .236222´=C .238222´=D .239222´=【分析】将2322´进行运算后判断即可.【解析】232352222+´==,故选:A .6. 计算20212022(2)(2)-+-的结果是( )A .2-B .2C .20212D .20212-【分析】根据乘法分配律计算即可求解.【解析】20212022(2)(2)-+-20212021(2)(2)(2)=-+-´-2021(12)(2)=-´-20211(2)=-´-20212=.故选:C .7. 下列说法不正确的是( )A .0.5-不是分数B .0是整数C .12不是整数D .2-是既是负数又是整数【分析】利用有理数的分类对各选项进行分析,即可得出结果.【解析】A 、0.5-是负分数,也是分数,故A 说法错误,符合题意;B 、0是整数,正确,故B 说法正确,不符合题意;C 、12是分数,不是整数,故C 说法正确,不符合题意;D 、2-是负数,也是负整数,故D 说法正确,不符合题意.故选:A .8. 袁隆平院士被誉为“杂交水稻之父”,经过他带领的团队多年艰苦努力,目前我国杂交水稻种植面积达2.4亿亩,每年增产的粮食可以养活8000万人,将数据8000万用科学记数法表示为810n ´,则n 的值为( )A .7B .8C .9D .10【分析】科学记数法的表示形式为10n a ´的形式,其中1||10a <…,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值10…时,n 是正数;当原数的绝对值1<时,n 是负数.【解析】8000Q 万780000000810==´,7n \=,故选:A .9. 定义一种正整数n 的“T ”运算:①当n 为奇数时,结果为31n +;②当n 为偶数时,用n 连续除以2,直到结果为奇数停止,并且运算重复进行.例如,当18n =时,运算过程如下:若21n =,则第2021次“T ”运算的结果是( )A .1B .2C .3D .4【分析】根据题意,可以写出前几次输出的结果,然后即可发现数字的变化规律,从而可以得到2021次“T ”运算的结果.【解析】由题意可得,当21n =时,第1次输出的结果为64,第2次输出的结果为1,第3次输出的结果为4,第4次输出的结果为1,第5次输出的结果为4,¼,\从第2次开始,这列数以1,4不断循环出现,(20211)2202021010-¸=¸=Q ,2021\次“T ”运算的结果4,故选:D .二.填空题(共6小题,满分16分)11.(3分) 一次数学测试,如果96分为优秀,以96分为基准简记,例如106分记为10+分,那么85分应记为 11- 分.【分析】高于96分记作正数,那么低于96分记作负数,85比96低11分,故记作11-.【解析】859611-=-,故答案为:11-.10. (3分)写出所有比 3.5-大的负整数: 3-,2-,1- .【分析】根据负整数的意义写出即可.【解析】比 3.5-大的负整数有3-,2-,1-.故答案为:3-,2-,1-.13.(3分)计算:21(0.4)3-¸-= 256 .【分析】直接利用有理数的除法运算法则计算得出答案.【解析】原式5235=¸5532=´256=.故答案为:256.14.(3分)若a 、b 互为相反数,c 、d 互为倒数,m 的绝对值为3,则235a b m cd ++-= 26. .【分析】直接利用互为相反数以及倒数、绝对值的性质分别化简得出答案.【解析】a Q 、b 互为相反数,c 、d 互为倒数,m 的绝对值为3,0a b \+=,1cd =,3m =±,29m =,则235a b m cd ++-0391=+´-271=-26=.故答案为:26.15. (3分)近似数1.25万是精确到 百 位.【分析】近似数精确到哪一位,应当看末位数字实际在哪一位.【解析】1.25万中,5在百位上,则精确到了百位.故答案为:百.16. (3分)如图,数轴上A ,B 两点所表示的数分别为a ,b ,有下列各式:①(1)(1)0a b -->;②(1)(1)0a b -+>;③(1)(1)0a b ++>.其中,正确式子的序号是 ①②? .【分析】因为数轴上右边的数总比左边的大,大数减小数差为正,小数减大数差为负.再根据乘法运算同号得正,异号得负.【解析】1a <Q ,10a \-<.1b <Q ,10b \-<.(1)(1)0a b \-->.\①正确,故①符合题意.1b <-Q ,(1)0b \--<.即10b +<,(1)(1)0a b \-+>.\②正确,故②符合题意.0a >Q ,10a \+>,又1b <-Q ,10b \+<,(1)(1)0a b \++<.\③错误.故③不合题意.故答案为:①②?.三.解答题(共8小题,满分42分)17.(4分) 计算:221(3)[2(6)(4)]4-+´´---.【分析】先算乘方,再算乘法,最后算加减;如果有括号,要先做括号内的运算.【解析】221(3)[2(6)(4)]4-+´´---19(1216)4=+´--19(28)4=+´-97=-2=.18.(8分)计算:(1)626172((()5353-+-´-+-´;(2)20232241(1)(3)||4(2)9-+-´--¸-.【分析】(1)先算乘法,再算加减即可;(2)先算乘方,再算乘除,最后算加减即可.【解析】(1)原式434255=-+-10434555=-+-63455=--405=-8=-;(2)原式11916169=-+´-¸111=-+-1=-.19.(8分)计算:(1)7531()(96436+-¸-;(2)22222(3)()4|4|3-+-´--¸-.【分析】(1)先把除法转化为乘法,然后根据乘法分配律计算即可;(2)先算乘方和去绝对值,然后算乘除法、最后算加减法.【解析】(1)7531()()96436+-¸-753()(36)964=+-´-753(36)(36)(36)964=´-+´--´-28(30)27=-+-+31=-;(2)22222(3)()4|4|3-+-´--¸-249(1643=-+´--¸4(6)4=-+--14=-.20. (6分)兴趣小组遇到这样一个问题:任意选取一个数,用这个数乘以2后加8,然后除以4,再减去一开始选取的数的12,则结果为多少?小组内4位成员分别令这个数为5-、3、4-、2发现结果一样.(1)请从上述4个数中任取一个数计算结果.(2)有一个成员猜想:无论这个数是几,其计算结果都一样,这个猜想对吗?请说明理由.如果你觉得这个猜想不对,请你提出一个新的猜想.【分析】(1)令这个数为3,根据已知条件列式计算即可;(2)设取的有理数为a ,根据已知条件列式计算,发现结果是定值,所以猜想正确.【解析】(1)令这个数为3,则1(328)43144 1.522´+¸-´=¸-=;(2)猜想正确,理由是:设取的有理数为a ,则:1111(28)224222a a a a +-=+-=,所以猜想是正确的.21. (8分)3-,2.5,0,4+,32-.(1)画数轴并在数轴上标出上面各数;(2)把上面各数用“>”连接起来.【分析】(1)在数轴上表示各数即可;(2)根据在数轴上右边的点表示的数大于左边的点表示的数从大到小的顺序用“>”连接起来即可.【解析】(1)如图所示:(2)根据在数轴上右边的点表示的数大于左边的点表示的数,可得34 2.5032+>>>->-.22. (6分)已知有理数a 、b 、c 在数轴上的位置.(1)a b + < 0;a c + 0;b c - 0;(用“>,<,=”填空)(2)试化简||2||||a b a c b c +-+--.【分析】(1)根据数轴确定a ,b ,c 的范围,即可解答;(2)根据绝对值的性质,即可解答.【解析】(1)由数轴可得:0c a b <<<,且||||a b >,0a b \+<,0a c +<,0b c ->,故答案为:<;<;>;(2)0a b +<Q ,0a c +<,0b c ->,||2||||a b a c b c \+-+--2()()a b a c b c =--++--22a b a c b c=--++-+23a b c =-+.23.(6分)有10袋小麦,每袋以90kg 为标准,超过的千克数记作正数,不足的千克数记作负数,称后的记录如表:袋号12345678910重量()kg 1+1+ 1.5+1- 1.2+ 1.3+ 1.3- 1.2- 1.8+ 1.1+(1)请通过计算说明这10袋小麦总计超过多少kg 或不足多少kg ?(2)若每千克小麦2.5元,求10袋小麦一共可以卖多少元?【分析】(1)“正”和“负”相对,超过的千克数记为正数,不足的千克数记为负数,把称重记录的数据相加,和为正说明超过了,和为负说明不足;(2)先求10袋小麦的总重量,即乘单价即可求解.【解析】(1)11 1.51 1.2 1.3 1.3 1.2 1.8 1.1 5.4()kg +++-++--++=.故这10袋小麦总计超过5.4kg ;(2)(9010 5.4) 2.52263.5´+´=(元).故10袋小麦一共可以卖2263.5元.24.(6分)阅读理解:观察等式1122133-=´+,2255133-=´+¼发现,一对有理数a ,b 满足1a b ab -=+,那么我们把这对有理数a ,b 叫做“共生有理数对”,记为[a ,]b .如:有理数对[1,1]3和[5,2]3都是“共生有理数对”.(1)下列四对有理数中,不是“共生有理数对”的是 D .A .[3,12B .[3-,2]C .1[5,2]3-D .[2-,13-(2)若[4,1]m -是“共生有理数对”,请你求出该“共生有理数对”.(3)若[x ,1]x -是“共生有理数对”,请你判断[1x -,]x -是不是“共生有理数对”,并说明理由.【分析】(1)根据“共生有理数对”的定义即可判断;(2)根据“共生有理数对”的定义,构建方程即可解决问题;(3)根据“共生有理数对”的定义即可解决问题.【解析】(1)A .113222-=Q ,11131112222´+=+=,[3\,12是“共生有理数对”;B .325--=-Q ,321615-´+=-+=,[3\-,2]是“共生有理数对”,C .Q 1213()5315--=,12213()11531515´-+=-+=,1[5\,2]3-是“共生有理数对”;D.212(133 ---=-Q,1222()111333-´-+=+=,[2 \-,1]3-不是“共生有理数对”.故答案为:D;(2)[4Q,1]m-是“共生有理数对”,4(1)4(1)1m m\--=-+,解得85m=,则831155m-=-=.\该“共生有理数对”是[4,35;(3)[1x-,]x-是“共生有理数对”,理由:[xQ,1]x-是“共生有理数对”,(1)(1)1x x x x\--=-+,(1)0x x\-=,1()1x x---=Q,(1)1(1)1011x x x x--+=-+=+=,1()(1)1x x x x\---=--+,[1x\-,]x-是“共生有理数对”.。
第二章 有理数及其运算单元测试卷(解析版)
第二章 有理数及其运算单元测试卷一.选择题(共10小题)1.(2023•路桥区二模)2023年第一季度,浙江省全省创造了约1900000000000元的生产总值,排名哲时排名全国第四位.数据1900000000000用科学记数法表示为( )A .111.910´B .121.910´C .111910´D .130.1910´【分析】科学记数法的表示形式为10n a ´的形式,其中1||10a <…,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值10…时,n 是正整数;当原数的绝对值1<时,n 是负整数.【解答】解:数据1900000000000用科学记数法可以表示为121.910´.故选:B .2.(2023•抚松县模拟)下列各数中,最小的数是( )A .3-B .1-C .0D .3【分析】根据正数大于0,0大于负数,以及两个负数比较大小方法判断即可.【解答】解:3103-<-<<Q ,\最小的数为3-.故选:A .3.(2023•滨城区二模)2(2)3--的结果是( )A .7-B .1C .2-D .6【分析】先算乘方,再算减法.【解答】解:2(2)3--43=-1=.故选:B .4.(2023•新昌县模拟)|2023|(-= )A .2023B .2023-C .12023-D .12023【分析】根据负数的绝对值等于它的相反数,即可求解.【解答】解:|2023|(2023)2023-=--=.故选:A.5.(2023•乾县三模)如图,数轴上两点A,B表示的数互为相反数,则点B表示的数为( )A.6B.6-C.0D.1 6【分析】根据数轴表示和相反数的定义进行求解.【解答】解:6-Q的相反数是6,\点B表示的数为6,故选:A.6.(2023•兰溪市模拟)一条数轴上有点A、B,点C在线段AB上,其中点A、B表示的数分别是8-,6,现以点C为折点,将数轴向右对折,若点A¢落在射线CB上,并且4A B¢=,则C点表示的数是( )A.1B.1-C.1或2-D.1或3-【分析】设点C表示的数为x,分两种情况:A¢在线段CB的延长线上或线段CB上分别计算即可.【解答】解:设点C表示的数为x,当A¢在线段CB的延长线上时,4A B¢=Q,\点A¢表示的数为6410+=,AC A C=¢Q,(8)10x x\--=-,解得:1x=;当A¢在线段CB上时,4A B¢=Q,\点A¢表示的数为642-=,AC A C=¢Q,(8)2x x\--=-,解得:3x=-;故选:D.7.(2023•河北模拟)将122135222555´´´´´´´{{L L 个个的计算结果用科学记数法可表示为( )A .12510´B .13110´C .12210´D .13210´【分析】先计算出结果,再根据科学记数法的表示形式进行解答即可.【解答】解:Q 1212213512251522255525255510´´´´´´´´=´´¼´´´=´{{{{L L 个个个个,故选:A .8.(2023•南关区校级四模)中国是最早采用正负数来表示相反意义的量的国家,如果盈利50元,记作“50+元”,那么亏损30元,记作( )A .30+元B .20-元C .30-元D .20+元【分析】根据正负数来表示相反意义,盈利50元,记作“50+元”,亏损30元,则记作“30-元”即可求解.【解答】解:Q 盈利50元,记作“50+元”,\亏损30元,记作“30-元”.故选:C .9.(2023•河东区二模)如图,数轴上A ,C 位于B 的两侧,且2AB BC =,若点B 表示的数是1,点C 表示的数是3,则点A 表示的数是( )A .0B .2-C .3-D .1-【分析】求出AB 线段的长度,因为点A 表示的数小于点B ,点B 表示1,推理出点A 表示的数.【解答】解:Q 点B 表示的数是1,点C 表示的数是3,2BC \=,2AB BC =Q ,4AB \=,有数轴可知:点A 表示的数小于点B 表示的数,143\-=-,即点A 表示的数为3-,故选:C .10.(2023春•武昌区期末)将1,2,3,4,5,6,7,8,9,10这个10个自然数填到图中的10个格子里,每个格子中只填一个数,使得田字形的4个格子中所填数字之和都等于m .则m 的最大值是( )A .23B .24C .25D .26【分析】图形中有3个“田”字形,其中重叠的有两个小格,设对应的数为a ,b ,则与a 与b 均被加了两次,根据“田“字形的4个格子中所填数字之和都等于m ,其总和为3m 根据3个“田”字形所填数的总和为1234567891055a h a b +++++++++++=++,列出不等式,求整数解即可.【解答】解:设每个“田”字格四个数的和为m ,共12个数的和为3m ,有两数重复,设这两数分别为a ,b ,所以3个“田”字形所填数的总和为:1234567891055a b a b +++++++++++=++.则有355m a b =++,要m 最大,必须a 、b 最大,而a b +最大值为91019+=,则355910m ++…,则2243m <,则m 最大整数值为24,故选:B .二.填空题(共6小题)11.(2023春•芝罘区期中)如图,数轴上有A 、B 、C 三点,A 、B 两点表示的有理数是分别是2-和8,若将该数轴从点C 处折叠后,点A 和点B 恰好重合,那么点C 表示的有理数是 3 .??【分析】由题意得点C 是线段AB 的中点,再进行求解.【解答】解:由题意得点C 是线段AB 的中点,\点C 表示的有理数是:(28)2-+¸62=¸3=,故答案为:3.12.(2023春•秦淮区期中)若44222a +=,5553333b ++=,则a b -的值为 1- .【分析】根据乘方的定义(求几个相同因数或因式的积的一种运算)解决此题.【解答】解:44222a +=Q ,5553333b ++=,452222a \=´=,563333b =´=.5a \=,6b =.561a b \-=-=-.故答案为:1-.13.(2023春•平谷区期末)某校要举办秋季运动会,初一(2)班有四名同学分别想参与100m ,200m ,400m ,和800m 的比赛,其中甲同学擅长跑100m 和200m ,乙同学擅长跑400m 和800m ,丙同学擅长跑100m 、200m 和400m ,丁同学最擅长跑100m .为了让班级取得好成绩,也让他们每个人都可以参加比赛,并且每人只能参加一项比赛,那么只能派 丙 参加400m 比赛.【分析】根据四名同学最擅长的项目分析即可得出答案.【解答】解:Q 甲同学擅长跑100m 和200m ,丁同学最擅长跑100m ,\让丁同学跑100m ,甲同学跑200m ,Q 乙同学擅长跑400m 和800m ,丙同学擅长跑100m 、200m 和400m ,\让乙同学跑800m ,丙同学跑400m ,故答案为:丙.14.(2023•甘州区校级模拟)ABC D 的三边长a ,b ,c 满足2|4|(2)0a b c +-+-=,则ABC D 的周长为 6 .【分析】直接利用非负数的性质得出a b +,c 的值,进而得出答案.【解答】解:2|4|(2)0a b c +-+-=Q ,40a b \+-=,20c -=,解得:4a b +=,2c =,ABC \D 的周长为:426a b c ++=+=.故答案为:6.15.(2023春•浦东新区期末)若|1|1a a -=-,则a 的取值范围是 1a … .【分析】根据||a a =-时,0a …,因此|3|3a a -=-,则30a -…,即可求得a 的取值范围.【解答】解:|1|1a a -=-Q ,10a \-…,解得:1a ….故答案为:1a ….16.(2023•随州)计算:2(2)(2)2-+-´= 0 .【分析】根据有理数的混合运算顺序,先计算乘方,再计算乘法,后计算加法即可.【解答】解:2(2)(2)2-+-´4(4)=+-0=.故答案为:0.三.解答题(共8小题)17.(2022秋•宝山区校级期末)计算:212.75136++.【分析】首先把小数化为分数,然后再通分,计算即可.【解答】解:原式32121436=++,98221121212=++,7412=.18.(2022秋•和平区校级期末)计算①111()24386-+´;②42211(2)(25(0.25326-¸-+´--.【分析】①根据乘法分配律计算即可;②先算乘方,再算乘除法,最后算加减法即可.【解答】解:①111(24386-+´111242424386=´-´+´834=-+9=;②42211(2)(25(0.25326-¸-+´--64111116()9264=¸+´--911116(64124=´+--27113()121212=+--1312=.19.(2023春•明水县期末)计算下面各题,能简便运算的要用简便方法算(1);(2);(3).【分析】(1)先算括号里的除法,然后括号外的乘法即可;(2)先变形,然后根据乘法分配律计算即可;(3)根据乘法分配律计算即可.【解答】解:(1)=×()=×=1×=;(2)=×88+×88=()×88=1×88=88;(3)=(27×+27×)×39=(+5)×39=×39+5×39=54+195=249.20.(2023春•海沧区期末)对有序数对(,)x y 定义“f 运算”: 11(,)(,)22f x y x a y b =-+,其中a ,b 为常数.(1)若(2f ,4)(1-=-,3),求a ,b 的值;(2)当4a =,3b =-时,有序数对(,)m n 经过“f 运算”后结果是(,)n c .若4m n …,求c 的最大值.【分析】(1)根据新定义“f 运算”,将(2f ,4)(1-=-,3)代入,解一元一次方程即可;(2)当4a =,3b =-,序数对(,)m n 代入“f 运算”得28m n =+,4m n …得c 的取值范围,进而作答.【解答】解:(1)Q 11(,)(,)22f x y x a y b =-+,(2f ,4)(1-=-,3),(2f \,14)(22a -=´-,14)2b -´+,11a \-=-,23b -+=,解得:2a =,5b =;(2)当4a =,3b =-时,(,)1(42x y f x =-,11)2y -,(,)1(42m n f m \=-,11)2n -,\142132m n n c ì-=ïïíï-=ïî①②,由①得:28m n =+,4m n Q …,284n n \+…,解得:4n …,\1312n --…,1c \-…,c \的最大值为1-.21.(2022秋•寻乌县期末)卓越中学为提高中学生身体素质,积极倡导“阳光体育”运动,开展一分钟跳绳比赛.七年级某班10名参赛代表成绩以160次为标准,超过的次数记为正数,不足的次数记为负数,成绩记录如下(单位:次):18+,1-,22+,2-,5-,12+,8-,1,8+,15+.(1)求该班参赛代表最好成绩与最差成绩相差多少?(2)求该班参赛代表一分钟平均每人跳绳多少次?(3)规定:每分钟跳绳次数为标准数量,不加分;超过标准数量,每多跳1个加1分;未达到标准数量,每少跳1个,扣0.5分,若班级跳绳总积分超过60分,便可得到学校的奖励,请通过计算说明该班能否得到学校奖励?【分析】(1)用记录中的最大数减去最小数即可;(2)根据平均数的意义,可得答案;(3)根据题意列式计算求出该班的总积分,再与60比较即可.【解答】解:(1)22(8)22830+--=+=(次),答:该班参赛代表最好成绩与最差成绩相差30次;(2)160(18122251281815)10+-+--+-+++¸1606010=+¸1606=+166=(次),答:该班参赛代表一分钟平均每人跳绳166次;(3)(1822121815)1(1258)0.5+++++´-+++´768=-68=(分),6860>,答:该班能得到学校奖励.22.(2022秋•徐闻县期末)为体现社会对老师的尊重,教师节这一天上午,出租车司机小王在东西向的公路上免费接送老师,如果规定向东为正,向西为负,出租车的行程如下(单位:千米):5+,4-,3+,10-,3+,9-.(1)最后一名老师送到目的时,小王距出租车出发点的距离是多少千米;(2)若汽车耗油量为0.4升/千米,则这天上午小王的汽车共耗油多少升?【分析】(1)把记录的数字相加得到结果,即可做出判断;(2)求出各数绝对值之和,乘以0.4即可得到结果.【解答】解:(1)根据题意得:543103912+-+-+-=-(千米),则后一名老师送到目的时,小王距出租车出发点的距离是12千米;(2)根据题意得:0.4(5431039)13.6´+++++=(升),则这天上午小王的汽车共耗油13.6升.23.(2023春•长宁区期末)小明表演魔术,从一副除去大小王的扑克中请观众随机选择了4张牌,并让观众每次取其中三张牌,将牌面数字相加,牌面数字之和分别为18,24,25,26.小明立刻说出了观众随机选择的4张扑克牌面的数字.这4张牌牌面的数字都是几呢?你能尝试用数学原理去揭秘这个魔术吗?(A 表示1,J表示11,Q表示12,K表示13)【分析】设这4张牌牌面的数字分别为a,b,c,d,根据题意可得:18a b c++=,24a b d++=,25a c d++=,26b c d++=,从而可得333318242526a b c d+++=+++,进而可得31a b c d+++=,然后分别进行计算,即可解答.【解答】解:设这4张牌牌面的数字分别为a,b,c,d,由题意得:18a b c++=,24a b d++=,25a c d++=,26b c d++=,333318242526a b c d\+++=+++,31a b c d\+++=,31()311813d a b c\=-++=-=,31()31247c a b d=-++=-=,31()31256b ac d=-++=-=,31()31265a b c d=-++=-=,\这4张牌牌面的数字分别为5,6,7,13.24.(2023春•南岗区期中)阅读下面材料,然后回答问题.计算12112 ()() 3031065 -¸-+-解法一:原式12111112 ()()()(3033010306305 =-¸--¸+-¸--¸1111203512 =-+-+16=.解法二:原式12112 ()[()()]3036105 =-¸-+-113()()30210 =-¸-1530=-´16=-.解法三:原式的倒数为21121 ()() 3106530-+-¸-2112()(30)31065=-+-´-2112(30)(30(30)(30) 31065=´--´-+´--´-203512=-+-+10=-故原式110=-.(1)上述得出的结果各不同,肯定有错误的解法,但是三种解法中有一种解法是正确的,请问:正确的解法是解法 解法三 ;(2)根据材料所给的正确方法,计算:11322 ((4261437-¸-+-.【分析】(1)上述得出的结果不同,肯定有错误的解法,我认为解法一和解法二是错误的.在正确的解法中,我认为解法三最简捷;(2)利用乘法分配律求出原式倒数的值,即可求出原式的值.【解答】解:(1)根据除法没有分配律可知解法一错误;根据加法的交换律可知,交换加数的位置时应连同符号一起交换,故解法二也错误;(2)Q13221 (() 6143742-+-¸-1322()(42)61437=-+-´-1322(42)(42)(42)(42) 61437=´--´-+´--´-792812 =-+-+14=-,\113221 ((426143714-¸-+-=-.。
2022-2023学年浙江七年级数学上学期拔尖题精练1-2 从自然数到有理数(拓展提高)(解析版)
专题1.2 从自然数到有理数(拓展提高)一、单选题1.在数0,117-,π3,0.13,0.01010101,2.3%中,有理数有()A.5个B.4个C.3个D.2个【答案】A【分析】分别根据实数的分类及有理数的概念进行解答.【详解】解:有理数有0,117-,0.13,0.01010101,2.3%,共5个,故选:A.【点睛】此题考查有理数,解答此题要明确有理数概念和分类.有理数包括正整数,负整数,正分数,负分数和0.2.下列各数中,不是分数的是()A.12B.30%-C.63-D.0.1015【答案】C【分析】根据把“1”平均分成若干份,其中的一份或几份,可得答案.【详解】A、12是分数,故A不符合题意;B、−30%=−310,是分数,故B不符合题意;C、63-=−2,是整数,不是分数,故C符合题意;D、0.1015=2032000,是分数,故D不符合题意;故选:C.【点睛】本题考查了有理数,利用分数的定义是解题关键.3.下列说法中:①0是最小的整数;②有理数不是正数就是负数;③非负数就是正数;④整数和分数统称有理数,其中正确的是()A.①B.②C.③D.④【答案】D【分析】根据有理数的分类依此作出判断,即可得出答案.【详解】解:①、0是最小的整数,说法错误,因为整数有正、负、0之分;②、一个有理数不是正数就是负数,说法错误,0既不是正数也不是负数;③、非负数指的是正数和0,说法错误;④、整数和分数统称有理数,说法正确;故选:D.【点睛】本题考查了有理数的分类以及正数负数的有关概念,正确理解有理数的分类是解题的关键.4.纽约、悉尼与北京的时差如下表(正数表示同一时刻比北京时间早的时数,负数表示同一时刻比北京晚的时数):当北京10月1日23时,悉尼、纽约的时间分别是()A.9月30日21时;9月30日10时B.10月1日10时;10月2日10时C.10月2日1时;10月1日10时D.9月30日21时;10月2日12时【答案】C【分析】由统计表得出:悉尼时间比北京时间早2小时,也就是10月2日1时.纽约比北京时间要晚13个小时,也就是10月1日10时.【详解】悉尼的时间是:10月1日23时+2小时,即10月2日1时,纽约时间是:10月1日23时-13小时,即10月1日10时.故选:C.【点睛】本题考查了正数和负数.解决本题的关键是根据图表得出正确信息,再结合题意计算.5.在﹣4,227,0,3.14159,﹣5.2,2中正有理数的个数有()A.1个B.2个C.3个D.4个【答案】C【分析】根据正有理数的定义即可得.【详解】223.1428577小数点后的142857是无限循环的,则在这些数中,正有理数为22,3.14159,27,共3个,故选:C.【点睛】本题考查了正有理数,熟记定义是解题关键.6.将7张扑克牌,全部背面朝上,每次翻三张且必须翻三张,最少翻多少次可翻成全部背面朝下()A.3 B.4 C.5 D.6【答案】A【分析】根据每次翻三张进行实验,得出结论即可.【详解】解:第一次翻:下,下,下,上,上,上,上;第二次翻:下,下,上,下,下,上,上;第三次翻:下,下,下,下,下,下,下;即这7张扑克牌,全部背面朝下.故选A.【点睛】本题考查了扑克牌的翻转问题,明确每次翻三张进行实验是解题关键.二、填空题7.《九章算术》中注有“今两算得失相反,要令正负以名之”,意思是今有两数若其意义相反,则分别叫做正数与负数.若气温零上5℃记做5+℃,若气温零下3℃,则记作_________℃.【答案】-3【分析】根据零上为正,则零下为负,若气温零上5℃记做5+℃,若气温零下3℃,记作-3℃.【详解】解:∵气温零上5℃记做5+℃,∴气温是零下3℃记作-3℃.故答案为3-.【点睛】本题考查正了数和负数,解题的关键是明确正数和负数在题中表示的含义.8.把下列各数分别填在相应的集合内:-11,4.8,73,-2.7,16,3.1415926,-34,73,0.正数集合:{ …};负分数集合:{ …};整数集合:{ …};非负整数集合:{ …}.【答案】4.8,73,16,3.1415926,73;-2.7,3-4;-11,73,0;73,0.【分析】整正数包括正整数和正分数;整数包括正整数、负整数和零;非负整数包括正整数和零,由此解答即可.【详解】解:正数集合:{ 4.8,73,16,3.1415926,73…};负分数集合:{ -2.7,3-4…}; 整数集合:{-11,73,0 …}; 非负整数集合:{73,0 …}. 故答案为:4.8,73,16,3.1415926,73;-2.7,3-4; -11,73,0;73,0.【点睛】本题考查了有理数,弄清有理数的分类是解题的关键正数集合.9.在4-,112-,0,3.2-,0.5-,5,1-,2.4中,若负数共有M 个,正数共有N 个,则M N -=______. 【答案】3【分析】根据大于0的数是正数,小于零的数是负数,可得答案.【详解】解:在4-,112-,0, 3.2-,0.5-,5,1-,2.4中,正数有5,2.4共2个,负数有4-,112-,3.2-,0.5-,1-共5个,M 5∴=,N 2=, M N 523∴-=-=.故答案为:3.【点睛】本题考查了正数和负数,小于0的数是负数,注意带负号的数不一定是负数,注意,0不是正数,也不是负数.10.6-, 3.14-,π-,13,0.307,4,0.2这些数中,有理数有________个. 【答案】6【分析】先根据有理数概念判断出有理数,再计算个数即可. 【详解】∵整数和分数统称有理数, ∴有理数有:6-, 3.14-,13,0.307,4,0.2,共6个. 故答案为:6.【点睛】要掌握:整数和分数统称有理数,其中π不是有理数.能准确的判断出什么是有理数,知道π是无限不循环小数,是无理数.11.下列说法中:①0是最小的整数;②有理数不是正数就是负数;③非负数就是正数;④2π-不仅是有理数,而且是分数;⑤237是无限不循环小数,所以不是有理数;⑥无限小数不都是有理数;⑦正数中没有最小的数,负数中没有最大的数.其中错误的说法的个数为_________个. 【答案】5【分析】根据有理数的分类作出判断,即可得出答案. 【详解】解:①没有最小的整数,故该项说法错误; ②有理数包括正数、0和负数,故该项说法错误; ③非负数就是正数和0,故该项说法错误;④2π-是无理数,故该项说法错误; ⑤237是无限循环小数,所以是有理数,故该项说法错误;⑥无限小数不都是有理数,故该项说法正确;⑦正数中没有最小的数,负数中没有最大的数,,故该项说法正确; 所以其中错误的说法的个数为5个, 故答案为:5.【点睛】本题考查了有理数的分类,掌握正数、负数、整数、分数、正有理数、负有理数、非负数的定义与特点是解题的关键.注意整数和正数的区别,注意0是整数,但不是正数. 12.已知下列8个数:—3.14, 24, +17, 17,2- 5,16—0.01, 0,—12,其中整数有 ______________,负分数有_________________, 非负数有_______________ . 【答案】24,17,0,12+- 13.14,7,0.012--- 24,17,5,016+ 【分析】根据整数、负分数、非负数的定义即可得. 【详解】整数有:24,17,0,12+-,负分数有:13.14,7,0.012---, 非负数有:24,17,5,016+,故答案为:24,17,0,12+-;13.14,7,0.012---;24,17,5,016+. 【点睛】本题考查了整数、负分数、非负数,熟记各定义是解题关键. 13.在227,5π,0,3.14%,-4.733…,100,1823-,7151551…中,正数是_____,分数是_____. 【答案】22,,3.14%,71100,7551551π⋯ 4.2273,3.318214%,,37-⋯- 【分析】根据正数、分数的定义即可得. 【详解】正数是22,,3.14%,71100,7551551π⋯,因为分数都是有理数,所以分数是4.2273,3.318214%,,37-⋯-, 故答案为:22,,3.14%,71100,7551551π⋯; 4.2273,3.318214%,,37-⋯-. 【点睛】本题考查了正数、分数,掌握理解定义是解题关键. 14.把下列各数分别填在相应的横线上:1,-0.20,135,325,-789,0,-23.13,0.618,-2014,π,0.1010010001…. 正数有:______________________________________________________;分数有:______________________________________________________; 负数有:______________________________________________________; 正整数有:____________________________________________________; 非正数有:_____________________________________________________; 负整数有:_____________________________________________________; 非负数有:_____________________________________________________; 负分数有:_____________________________________________________; 非负整数有:___________________________________________________.【答案】1,135,325,0.618,π,0.1010010001…; -0.20,135,-23.13,0.618; -0.20,-789,-23.13,-2014; 1,325; -0.20,-789,0,-23.13,-2014; -789,-2014; 1,135,325,0,0.618,π,0.1010010001…; -0.20,-23.13; 1,325,0.【详解】按照本题中给出的分类,结合各类型数的定义依次分析各个数的特征,得 (1) 1是正数;1是正整数;1是非负数;1是非负整数.(2) -0.20是分数;-0.20是负数;-0.20是非正数;-0.20是负分数. (3) 135是正数;135是分数;135是非负数. (4) 325是正数;325是正整数;325是非负数;325是非负整数. (5) -789是负数;-789是非正数;-789是负整数. (6) 0是非正数;0是非负数;0是非负整数.(7) -23.13是分数;-23.13是负数;-23.13是非正数;-23.13是负分数. (8) 0.618是正数;0.618是分数;0.618是非负数. (9) -2014是负数;-2014是非正数;-2014是负整数.(10) π是正数;π是非负数.(11) 0.1010010001…是正数;0.1010010001…是非负数. 故本题应进行如下填写:(正数) 1,135,325,0.618,π,0.1010010001…;(分数) -0.20,135,-23.13,0.618;(负数) -0.20,-789,-23.13,-2014;(正整数) 1,325;(非正数) -0.20,-789,0,-23.13,-2014;(负整数) -789,-2014;(非负数) 1,135,325,0,0.618,π,0.1010010001…;(负分数) -0.20,-23.13;(非负整数) 1,325,0.三、解答题15.在下列空格里打“√”,表示该数属于哪种类型的数:【答案】见解析【分析】依据有理数的分类,按整数、分数的关系分类可得:有理数包含正整数、0、负整数,正分数、负分数;按正数、负数与0的关系分类可得:有理数包含正整数、正分数、0、负整数、负分数.【详解】解:+3属于有理数,正整数,非负数;﹣113属于有理数,负分数;0属于有理数,非负数;0.5属于有理数,正分数,非负数;﹣6属于有理数,负整数.16.有一批袋装食品,标准质量为每袋505克,现抽取样品10袋,测得它们的实际质量(单位:克)如下:505,504,505,498,505,502,507,505,503,506;若把超过标准质量的克数用正数表示,不足的用负数表示,列出这10袋食品与标准质量的差值表为:(1)将以上表格补充完整;(2)这10袋食品的总质量是多少?【答案】(1)0 ,-7,+2;(2)5040克【分析】(1)每袋的实际质量减505克就是表格中填的数;(2)法一;首先求出表格中10个数据的平均数,再加上505克,即可求得平均每袋食品的质量,再乘总袋数10即可求解或10袋食品质量相加;法二:将10个数据的实际质量直接相加即可.【详解】解:(1)505-505=0,498-505=-7,507-505=2,故答案为:0,-7,2.(2)法一:这10袋食品与标准量差值的和为0+(-1)+0+(-7)+0+(-3)+(+2)+0+(-2)+(+1)=-10(克)因此,这10袋食品的总质量为505 10+(-10)=5040(克)答:这10袋食品的总质量是5040克.法二:这10袋食品的总质量为505+504+505+498+505+502+507+505+503+506=5040(克)答:这10袋食品的总质量是5040克.【点睛】本题主要考查正负数在实际生活中的应用,有理数的加法运算,解题的关键是理解“正”和“负”的相对性.17.某检修小组从A地出发,在东西走向的马路上检修线路.如果规定向东行驶为正,向西行驶为负,一天中7次行驶的情况记录如下(单位:千米):(1)这一天检修小组行驶的路程是多少.(2)求收工时距A地多远?在A地的正东方向还是正西方向?说明理由.【答案】(1)41km;(2)收工时距A地1km,方向在正东方向.【分析】(1)求出七次检修记录的绝对值的和即可;(2)计算每一次行检修记录的和,即可确定距A地的距离和方向.【详解】解:(1)|-4|+|+7|+|-9|+|+8|+|+6|+|-5|+|-2|=4+7+9+8+6+5+2=41km;答:这一天检修小组行驶的路程是41km;(2)-4+7-9+8+6-5-2=1则收工时距A地1km,方向在正东方向.答:收工时距A地1km,方向在正东方向.【点睛】本题考查了有理数的加减法在生活中的应用,掌握绝对值的意义和正负数的意义是解答本题的关键.18.某检修小组从A地出发,在东西向的马路上检修线路,如果规定向东行驶为正,向西行驶为负.一天中七次行驶记录如下.(单位:km)-4,+7,-9,+8,+6,-5,-2(1)求收工时距A地多远?在A地的什么方向?(2)在第几次记录时离A地最远,并求出最远距离.(3)若每千米耗油0.3升.问共耗油多少升?【答案】(1)收工时距A地1km,在A地东边;(2)第五次记录时离A地最远,距离A地8km;(3)耗油12.3升【分析】(1)收工时距A地的距离等于所有记录数字的和的绝对值;(2)分别计算每次距A地的距离,进行比较即可;(3)所有记录数的绝对值的和×0.3升,就是共耗油数.【详解】解:(1)-4+7-9+8+6-5-2=1(k m)答:收工时距A地1km,在A地东边.(2)第一次:|-4|=4(k m)第二次:|-4+7|=3(k m)第三次:|-4+7-9|=6(k m)第四次:|-4+7-9+8|=2(k m)第五次:|-4+7-9+8+6|=8(k m)第六次:|-4+7-9+8+6-5|=3(k m)第七次:|-4+7-9+8+6-5-2|=1(k m)答:第五次记录时离A地最远,距离A地8km.-++-+++-+-⨯=(升)(3)(|4|7|9|86|5||2|)0.312.3答:耗油12.3升.【点睛】此题考查正数和负数,解题关键在于掌握有理数的混合运算.19.某检修小组甲队乘一辆汽车沿公路检修线路,约定向东为正,某天从A地出发到收工时,行走记录为(单位:千米):+15,﹣2,+5,﹣1,+10,﹣3,﹣2,+12,+4,﹣5,+6;另一小组乙队也从A地出发,在南北方向检修,约定向北为正,行走记录为:﹣17,+9,﹣2,+8,+6,+9,﹣5,﹣1,+4,﹣7,﹣8.(1)分别计算收工时,两组在A地的哪一边,距A地多远?(2)若每千米汽车耗油量为0.06升,求出发到收工甲队耗油多少升?【答案】(1)甲队在A地的正东方向39米,乙队在A地的正南方向4米;(2)6.9升.【分析】(1)分别将两组记录的数据相加,分别求出两组距离A地的距离即可;(2)将甲队行走记录的绝对值相加即为总路程,然后根据每千米的耗油量列式计算即可.【详解】解:(1)甲队离A地为:+15-2+5-1+10-3-2+12+4-5+6=39,即甲队在A地的正东方向,距离A地39千米;乙队离A地为:-17+9-2+8+6+9-5-1+4-7-8=-4,即乙队在A地的正南方向,距离A地4千米;(2)队走总路程为:15+2+5+1+10+3+2+12+4+5+6=65千米所以甲队出发到收工共耗油:65×0.06=3.9升.答:从出发到收工甲队耗油6.9升.【点睛】本题主要考查了正负数的应用和意义,理解绝对值的意义并根据题意列出算式是解答本题的关键.20.某中学为提高学生的身体素质,经常在课间开展学生跳绳比赛,下表为该校七年级(1)班50名学生参加某次跳绳比赛的情况,规定标准数量为每人每分钟100个.(1)求七年级(1)班50人中跳绳最多的同学一分钟跳的次数是多少个,跳绳最少的同学一分钟跳的次数是多少个?(2)跳绳比赛的计分方式如下:①若每分钟跳绳个数是规定标准数量,不计分;②若每分钟跳绳个数超过规定标准数量,每多跳1个绳加2分③若每分钟跳绳个数没有达到规定标准数量,每少跳1个绳扣1分如果班级跳绳总积分超过200分,便可得到学校的奖励,请你通过计算说明七年级(1)班能否得到学校奖励?【答案】(1)七年级(1)班50人中跳绳最多的同学一分钟跳的次数是106个,跳绳最少的同学一分钟跳的次数是98个;(2)七年级(1)班能得到学校奖励【分析】(1)根据正负数意义计算即可;(2)根据评分标准计算总计分,然后与200比较大小,即可确定是否得到奖励.【详解】解:(1)七(1)班50人中跳绳最多的同学一分钟跳的次数是:100+6=106(个);跳绳最少的同学一分钟跳的次数是:100-2=98(个)答:6(1)班50人中跳绳最多的同学一分钟跳的次数是106个,跳绳最少的同学一分钟跳的次数是98个;(2)依题意得:(4×6+5×11+6×8)×2-(-2×6-1×12)×(-1)=230>200所以6(1)班能得到学校奖励【点睛】本题主要考查正负数在实际生活中的应用。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.2 有理数【基础训练】一、单选题1.-2021的相反数是()A.2021B.-2021C.12020D.12020-【答案】A【分析】直接利用相反数的定义得出答案.【详解】解:-2021的相反数是:2021.故选:A.【点睛】本题主要考查了相反数,正确掌握相关定义是解题关键.2.-2的相反数是()A.-2B.-12C.12D.2【答案】D【分析】根据相反数的意义,只有符号不同的两个数互为相反数.【详解】解:根据相反数的定义,-2的相反数是2.故选:D.【点睛】本题考查了相反数的意义.注意掌握只有符号不同的两个数互为相反数,0的相反数是0.3.﹣2的相反数是()A.12-B.12C.2D.﹣2【答案】C【分析】根据只有符号不同的两个数互为相反数,可得一个数的相反数.解:﹣2的相反数是2,故选:C .【点睛】本题主要考查的是相反数的定义,掌握相反数的定义是解题的关键.4.2021年1月8日,安徽多地气温创20年来最低,其中最低气温合肥-11℃、安庆-8.5℃、蚌埠-11.5℃、池州-8.9℃,在以上四个城市中最低气温中最高的是( )A .合肥B .蚌埠C .安庆D .池州【答案】C【分析】根据有理数大小比较的法则得出-11.5<-11<-8.9<-8.5,求出即可.【详解】解:℃-11.5<-11<-8.9<-8.5,℃以上四个城市中最低气温中最高的是安庆.故选:C .【点睛】本题考查了有理数大小比较法则的应用,注意:正数都大于0,负数都小于0,正数都大于负数,两个负数比较大小,其绝对值大的反而小. 5.12021-的倒数的相反数是( ) A .2021- B .12021 C .2021 D .12021- 【答案】C【分析】 利用倒数和相反数的定义分析得出答案.乘积为1的两个数互为倒数;只是符号不同的两个数叫做互为相反数。
规定0的相反数为0.【详解】 ℃12021-的倒数是2021-, 又℃2021-的相反数是2021, ℃12021-的倒数的相反数是2021 .【点睛】本题主要考查了倒数和相反数,正确把握倒数和相反数的定义是解题的关键.6.若123a=-,则实数a在数轴上对应的点的位置是().A.B.C.D.【答案】A【分析】首先根据a的值确定a的范围,再根据a的范围确定a在数轴上的位置.【详解】解:℃123 a=-℃ 2.3a≈,℃ 2.52a,℃点A在数轴上的可能位置是:,故选:A.【点睛】本题考查有理数与数轴,解题关键是确定负数的大致范围.7.12-的绝对值是()A.2B.2-C.12D.12-【答案】C【分析】直接利用绝对值的定义分析得出答案.【详解】解:-12的绝对值是12.故选:C.此题主要考查了绝对值,正确把握定义是解题关键.8.下列数中值最小的是()A.12B.12-C.2-D.2【答案】C【分析】根据有理数比较大小的方法即可得出答案.【详解】解:112222-<-<<∴最小的数是2-故选C.【点睛】此题主要考查了有理数大小比较的方法,要熟练掌握,解答此题的关键是要明确:℃正数都大于0;℃负数都小于0;℃正数大于一切负数;℃两个负数,绝对值大的其值反而小.9.2-等于()A.2B.﹣2C.12D.0【答案】A【分析】根据绝对值的意义求解即可.【详解】解:|-2|=2,故选:A.【点睛】本题考查了求一个数的绝对值,理解绝对值的意义是关键.10.5的绝对值是()A.15B.15-C.5D.-5【答案】C根据绝对值的性质即可得.【详解】解:因为正数的绝对值是它本身,所以5的绝对值是5,故选:C.【点睛】本题考查了绝对值,熟练掌握绝对值的性质是解题关键.11.某天,有四个城市的平长气温分别具0℃,20℃,-5℃,10℃,其中最低气温是()A.0℃B.20℃C.-5℃D.10℃【答案】C【分析】根据有理数的大小比较,即可作出判断.【详解】解:℃-5<0<10<20,℃温度最低的是-5℃故选:C.【点睛】本题考查了有理数的大小比较的知识,解答本题的关键是掌握有理数的大小比较法则.12.100的相反数是().A.100B.100-C.1100D.1100-【答案】B【分析】只有符号相反的两个数,互为相反数.所以100的相反数是-100.【详解】解:100的相反数是-100.故选:B.【点睛】本题考查了相反数的定义,解题时注意相反数与倒数,绝对值定义的区别.13.14-的相反数是()A.14-B.14C.4-D.4【答案】B【分析】根据相反数的定义判断即可.【详解】解:14-的相反数是14;故选:B.【点睛】本题考查了相反数的定义,即只有符号不同的两个数互为相反数;解决本题的关键是牢记概念即可,本题考查了学生对概念的理解与应用.14.-6的相反数是()A.-6B.6C.6±D.1 6【答案】B【分析】根据相反数的代数意义℃只有符号不同的两个数,互为相反数,即可得出结论.【详解】-6的相反数是6.故选B.【点睛】本题考查了相反数的意义,理解相反数意义是解题的关键.15.下列数轴表示正确的是()A.B.C.D.【分析】数轴的三要素:原点、正方向、单位长度,据此判断.【详解】解:A、不符合数轴右边的数总比左边的数大的特点,故表示错误;B、不符合数轴右边的数总比左边的数大的特点,故表示错误;C、没有原点,故表示错误;D、符合数轴的定定义,故表示正确;故选D.【点睛】本题考查了数轴的概念:规定了原点、正方向和单位长度的直线叫做数轴,注意数轴的三要素缺一不可.16.下列各数中,比-2小的数是().A.-3B.-1C.0D.1【答案】A【分析】根据有理数的大小比较法则即可得.【详解】解:有理数的大小比较法则:正数大于0,负数小于0,负数绝对值大的反而小,-<-<-<<,则32101故选:A.【点睛】本题考查了有理数的大小比较法则,熟练掌握有理数的大小比较法则是解题关键.17.3-的相反数是()A.3-B.0C.3D.π【答案】C【分析】根据相反数的概念求解即可.【详解】-(-3)=3,即-3的相反数是3,【点睛】本题主要考查相反数.只有符号不同的两个数叫做互为相反数,在任意一个数的前面填上“-”号,新的数就表示原数的相反数.18.6的相反数是()A.16-B.16C.6-D.6【答案】C【分析】根据相反数的定义即可解答。
【详解】解:6的相反数为:6-;故选:C.【点睛】本题主要考查相反数的定义.只有符号不同的两个数是相反数,互为相反数的两个数相加得零,熟知相反数的定义是解题关键.19.8的相反数是()A.8-B.8C.18-D.8±【答案】A【分析】根据相反数的定义即可直接选择.【详解】8的相反数为-8.故选A.【点睛】本题考查求一个数的相反数.掌握相反数的定义是解答本题的关键.20.在3-,1-,0,2这四个数中,比1大的数是()A.2B.0C.1-D.3-【答案】A略21.若实数a的相反数是4,则实数a等于()A.-4B.4±C.14-D.14【答案】A【分析】互为相反数的两个数和为0,据此解题.【详解】解:实数a的相反数是4,则实数a等于-4,故选:A.【点睛】本题考查相反数,是基础考点,难度较易,掌握相关知识是解题关键.22.数轴上表示数5的点和原点的距离是()A.15B.5C.5-D.15-【答案】B【分析】根据数轴上点的表示及几何意义可直接进行排除选项.【详解】解:数轴上表示数5的点和原点的距离是5;故选B.【点睛】本题主要考查数轴上点的表示及几何意义,熟练掌握数轴上点的表示及几何意义是解题的关键.23.15-的相反数为()A.15B.15-C.115D.115-【答案】A【分析】根据只有符号不同的两个数互为相反数,可得一个数的相反数.【详解】解:-15的相反数是15,故选:A.【点睛】本题考查了相反数,在一个数的前面加上负号就是这个数的相反数.24.14的相反数是()A.14B.14-C.4D.4-【答案】B 【详解】略25.13-的相反数可以表示为()A.1||3--B.1±3C.3-D.13⎛⎫--⎪⎝⎭【答案】D 【详解】略26.比较12-和13-的大小时,可以比较它们的绝对值的大小,从而得到它们之间的关系是()A.1123->-B.1123-≥-C.1123-<-D.1123-≤-【答案】C【详解】略27.2的相反数是()A.2B.12C.2-D.12-【答案】C【分析】根据相反数的定义计算判断即可【详解】℃2的相反数是-2,【点睛】本题考查了求一个数的相反数,准确理解相反数的定义是解题的关键.28.下列实数中,最小的是()A.0B.12021-C.2021D.-2021【答案】D【分析】根据实数的大小比较方法即可解答.【详解】℃-2021<12021-<0<2021,℃四个数中最小的数为-2021.故选D.【点睛】本题考查了实数的大小比较方法,熟知实数的大小比较方法是解决问题的关键.29.3的相反数的是()A.3B.-3C D.1 3【答案】B【分析】根据只有符号不同的两个数互为相反数,可得答案.【详解】解:3的相反数是3-,故选B.【点睛】本题主要考查相反数的定义,这是中考的必考点,必须熟练掌握.30.在数轴上,点A,B在原点O的两侧,分别表示数a,2,将点A向右平移3个单位长度得到点C.若CO BO=,则a的值为()A.5-B.1-C.5-或1-D.3-【答案】C根据CO=BO可得点C表示的数为±2,据此可得求得a的数值.【详解】】解:℃CO=BO,B点表示2,℃点C表示的数为±2,℃a=-2-3=-5或a=2-3=-1,故选:C.【点睛】本题考查的是数轴,熟知数轴上两点间的距离公式是解答此题的关键.31.如图.数轴上点A对应的数是2,将点A沿数轴向左移动3个单位至点B,则点B对应的数是()A.-1B.0C.3D.5【答案】A【分析】根据数轴上点对应的数的表示方法解答即可.【详解】解:℃数轴上点A对应的数是2,将点A沿数轴向左移动3个单位,℃2﹣3=﹣1,℃点B对应的数是﹣1,故选:A.【点睛】本题考查用数轴上点表示有理数,熟练掌握数轴上点对应的数的表示方法是解答的关键.32.下列各数中比﹣3小的数是()A.3B.0C.﹣2D.﹣4【答案】D【分析】根据有理数的大小比较可直接进行求解.【详解】解:由正数大于负数和0,0大于负数,两个负数比较绝对值越大的反而小,可得:30234>>->->-;℃比-3小的数是-4;故选D.【点睛】本题主要考查有理数的大小比较,熟练掌握有理数的大小比较是解题的关键.33.12021-的值为()A.2021B.-2021C.12021D.12021-【答案】C【分析】负数的绝对值等于它的相反数.【详解】解:11 20212021 -=,故选:C.【点睛】本题考查绝对值,是基础考点,难度较易,掌握相关知识是解题关键.34.下面四个数中,绝对值最大的数是()A.﹣2B.0C.1.5D.3【答案】D【分析】先求出每个数的绝对值,再比较即可.【详解】解:|-2|=2,|0|=0,|1.5|=1.5,|3|=3,℃3>2>1.5>0,℃在-2,0,1.5,3四个数中,绝对值最大的数是3.故选:D.【点睛】本题主要考查了绝对值的含义和求法,以及有理数大小比较的方法,要熟练掌握,解答此题的关键是要明确:℃正数都大于0;℃负数都小于0;℃正数大于一切负数;℃两个负数,绝对值大的其值反而小.35.在﹣3,3,0,﹣1四个数中,最小的数是()A.﹣3B.3C.0D.﹣1【答案】A【分析】有理数大小比较的法则:℃正数都大于0;℃负数都小于0;℃正数大于一切负数;℃两个负数,绝对值大的其值反而小,据此判断即可.【详解】解:℃﹣3<﹣1<0<3,℃在﹣3,3,0,﹣1四个数中,最小的数是﹣3.故选:A.【点睛】本题考查了有理数大小的比较,熟练掌握有理数大小比较的基本原则是解题的关键.36.在−3、0、2、12-这四个数中,最小的数是()A.−3B.0C.2D.1 2 -【答案】A【分析】根据正数大于0,0大于负数,两个负数比较大小,绝对值大的数反而小,可得答案.【详解】解:1 32 ->-132∴-<-13022∴-<-<<∴在−3、0、2、12-这四个数中,最小的数是3-故选A.【点睛】本题考查有理数的大小比较,是基础考点,难度较易,掌握相关知识是解题关键.37.绝对值为15的数是()A.5B.15C.15-D.15±【答案】D 【分析】根据绝对值的含义和求法,判断出绝对值是15的数是多少即可.【详解】解:绝对值是15的数是15±.故选:D.【点睛】此题主要考查了绝对值的含义和应用,要熟练掌握,解答此题的关键是要明确:℃当a是正有理数时,a的绝对值是它本身a;℃当a是负有理数时,a的绝对值是它的相反数-a;℃当a是零时,a的绝对值是零.38.数1,0,﹣23,﹣2中,绝对值最小的是()A.1B.0C.﹣23D.﹣2【答案】B【分析】首先求出每个数的绝对值;然后根据有理数大小比较的方法,判断出绝对值最小的数即可.【详解】解:|1|=1,|0|=0,|23-|=23,|﹣2|=2,℃20123<<<,℃绝对值最小的是0.故选:B.【点睛】本题考查求一个数的绝对值,比较绝对值的大小,掌握求一个数的绝对值,比较绝对值的大小的方法是解题关键.39.在有理数12-,1-,0,2中,最小的数是()A.0B.12-C.1-D.2【答案】C【分析】有理数大小比较的法则:℃正数都大于0;℃负数都小于0;℃正数大于一切负数;℃两个负数,绝对值大的其值反而小,据此判断即可.【详解】解:根据有理数比较大小的方法,可得-1<12-<0<2,故最小的数是-1.故选:C.【点睛】此题主要考查了有理数大小比较的方法,要熟练掌握,解答此题的关键是要明确:℃正数都大于0;℃负数都小于0;℃正数大于一切负数;℃两个负数,绝对值大的其值反而小.二、解答题40.2020年,新冠肺炎疫情突如其来,各大中小幼学校延期开学,实行“停课不停教不停学”,网络直播教学成为其中最常见的教学方式,某区为了解九年级老师使用线上授课软件情况,在4月份某天随机抽查了若干名老师进行调查,其中A表示“一起中学”,B表示“腾讯会议”,C表示“腾讯课堂”,D表示“QQ群课堂”,E表示“钉钉”,现将调查结果绘制成两种不完整的统计图表:请根据图表中的信息解答下列问题:(1)b=,并将频数分布直方图补充完整;(2)已知该区共有九年级老师500人,请你估计该区使用“QQ群课堂”有多少人?(3)该区计划在A组随机抽取两人了解使用情况,已知A组有理科老师2人,文科老师1人,请用列举法求出抽取两名老师都是理科老师的概率.【答案】(1)9,图见解析;(2)125人;(3)13.【分析】(1)先根据A组别的使用人数和百分率可得调查的总人数,再利用“使用人数=百分率⨯调查总人数”分别求出,a b的值,然后将频数分布直方图补充完整即可;(2)先求出c的值,再利用500乘以c即可得;(3)先画出树状图,从而可得在A组随机抽取两人的所有可能结果,再找出抽取两名老师都是理科老师的结果,然后利用概率公式即可得.【详解】解:(1)调查的总人数为35%60÷=(人),则6035%21a=⨯=(人),6015%9b=⨯=(人),将频数分布直方图补充完整如下:(2)15100%25%60c =⨯=, 50025%125⨯=(人),答:估计该区使用“QQ 群课堂”有125人;(3)将两名理科老师分别记为12,A A ,一名文科老师记为3A ,画树状图如下:由此可知,在A 组随机抽取两人的所有可能结果有6种,它们每一种出现的可能性都相等;其中,抽取两名老师都是理科老师的结果有2种, 则所求的概率为2163P ==, 答:抽取两名老师都是理科老师的概率为13. 【点睛】本题考查了频数分布直方图、利用列举法求概率,正确画出树状图是解题关键.41.计算:011(2021)1()2cos 453π--+-+-︒.【答案】3【分析】 直接利用绝对值的性质以及零指数幂的性质和特殊角的三角函数值、负整数指数幂的性质分别化简得出答案.【详解】解:原式=1132+-113=+=3.【点睛】本题考查零指数幂与负整指数幂、化简绝对值、余弦等知识,是重要考点,难度较易,掌握相关知识是解题关键.42.把下列各数填入表示它所在的数集的大括号:﹣2.5,3,﹣2020,﹣103,0.1010010001, 2.3-,0,﹣(﹣30%),3π,﹣|﹣4| (1)正数集合:{ …};(2)无理数集合:{ …};(3)分数集合:{ …};(4)非正整数集合:{ …}.【答案】(1)3,0.1010010001,﹣(﹣30%),3π;(2)3π;(3)﹣2.5,﹣103,0.1010010001, 2.3-,﹣(﹣30%);(4)﹣2020,0,﹣|﹣4|【分析】根据正数、无理数、分数、非正整数的定义分别填空即可.【详解】解:(1)正数集合:{3,0.1010010001,﹣(﹣30%),3π…}; (2)无理数集合:{3π…};(3)分数集合:{﹣2.5,﹣103,0.1010010001, 2.3-,﹣(﹣30%)…}; (4)非正整数集合:{﹣2020,0,﹣|﹣4|…}.故答案为:3,0.1010010001,﹣(﹣30%),3π;3π;﹣2.5,﹣103,0.1010010001, 2.3-,﹣(﹣30%);﹣2020,0,﹣|﹣4|.【点睛】本题主要考查有理数的分类,掌握有理数的分类是解题的关键.43.计算:1211)|13-⎛⎫--- ⎪⎝⎭【答案】2-【分析】根据完全平方公式、负整数指数幂运算法则以及绝对值的代数意义化简各项,最后进行合并即可.【详解】解: )121113-⎛⎫--- ⎪⎝⎭3131=--+-2=-【点睛】本题考查了二次根式的混合运算,解答本题的关键是明确二次根式混合运算的计算方法. 44.如果|a |=3,|b |=2,且a <b ,求a +b 的值.【答案】-1或-5【分析】根据绝对值的性质分别解出a ,b ,然后根据a <b ,解出a ,b 的值,然后相加计算即可.【详解】解:℃|a |=3,|b |=2,℃a=±3, b=±2℃a <b ,℃a =-3,b =2或a =-3,b =-2,℃a +b =-3+2=-1,或者a +b =-3+(-2)=-5.【点睛】本题考查了绝对值的定义,以及求一个数的绝对值,解题的关键是理解题意,并且选取合适的值. 45.将下列各数在数轴上表示出来,并用“<”连接起来.2,-1.5,-2,3,0,4.5-<-<<<<【答案】数轴见解析,2 1.5023 4.5【分析】首先根据在数轴上表示数的方法,在数轴上表示出所给的各数,然后根据当数轴方向朝右时,右边的数总比左边的数大,把这些数由小到大用“<”连接起来即可;【详解】解:如图所示:-2<-1.5<0<2<3<4.5 .【点睛】本题考查了有理数大小的比较,还考查了在数轴上表示数的方法,要熟练掌握;46.如图.在一条不完整的数轴上一动点A向左移动5个单位长度到达点B,再向右移动9个单位长度到达点C℃(1)若点A表示的数为0,求点B、点C表示的数;(2)若点C表示的数为6,求点B、点A表示的数;(3)如果点A、C表示的数互为相反数,求点B表示的数.【答案】(1)﹣5,4;(2)﹣3,2;(3)-7.【分析】(1)依据点A表示的数为0,利用两点间距离公式,可得点B、点C表示的数;(2)依据点C表示的数为6,利用两点间距离公式,可得点B、点A表示的数;(3)依据点A、C表示的数互为相反数,利用两点间距离公式,可得点B表示的数.【详解】解:(1)若点A表示的数为0,℃0﹣5=﹣5,℃点B表示的数为﹣5,℃﹣5+9=4,℃点C表示的数为4;(2)若点C表示的数为6,℃6﹣9=﹣3,℃点B表示的数为﹣3,℃﹣3+5=2,℃点A表示的数为2;(3)若点A、C表示的数互为相反数,℃AC=9﹣5=4,℃点A表示的数为﹣2,℃﹣2﹣5=﹣7,℃点B表示的数为﹣7.【点睛】本题考查了数轴和有理数的运算、数轴上两点间距离等,解题的关键是能根据题意列出算式.47.在数轴上表示下列各数:3,0,12,–314,112,–3,-1.5,并用“>”把这些数连接起来.【答案】作图见解析,111 3101533 224.>>>>->->-【分析】首先根据在数轴上表示数的方法,在数轴上表示出所给的各数,然后根据当数轴方向朝右时,右边的数总比左边的数大,把这些数由大到小用“>”号连接起来即可.【详解】如图所示:从大到小依次为:111 3101533224.>>>>->->-.【点睛】本题考查了利用数轴比较有理数的大小,由于引进了数轴,我们把数和点对应起来,也就是把“数”和“形”结合起来,二者互相补充,相辅相成,把很多复杂的问题转化为简单的问题,在学习中要注意培养数形结合的数学思想.48.比较下列各数的大小,再在数轴上表示出来,并按照由小到大的顺序用“<”把它们连起来:﹣3.5,2,﹣|﹣4|,0,﹣(﹣1.5).【答案】数轴见解析,﹣|﹣4|<﹣3.5<0<﹣(﹣1.5)<2【分析】把各个数在数轴上画出表示出来,根据数轴上的数右边的数总是大于左边的数,即可把各个数按由大到小的顺序“<”连接起来.【详解】解:如图:用<”连接起来为:﹣|﹣4|<﹣3.5<0<﹣(﹣1.5)<2.【点睛】本题考查了有理数在数轴上的表示和比较大小,解题关键是树立数形结合思想,准确画出各数,并能通过数轴比较大小.49.在数轴上画出表示下列各数的点,并用“<”连接:2,-3,4.5,0,-1,3,-2【答案】数轴见解析,-3<-2<-1<0<2<3<4.5【分析】将各数表示在数轴上,按照从大到小顺序排列即可.【详解】解:如图所示:用“<”连接为:-3<-2<-1<0<2<3<4.5.【点睛】此题考查了有理数的大小比较,数轴,以及绝对值,熟练掌握运算法则是解本题的关键.50.已知数轴上有A,B两个点,分别表示有理数6 ,4.(℃)数轴上点A 到点B 的距离为______;数轴上到点A ,B 的距离相等的点的位置表示的有理数为______;(℃)若有动点P 从点A 出发,以每秒1个单位的速度向右移动,设移动时间为t 秒.用含t 的式子分别表示P 点到点A 和点B 的距离.【答案】(℃)10;1-;(℃)当10t ≤时,AP t =,10BP t =-;当10t >时,AP t =,10BP t . 【分析】(℃)数轴上两点间的距离为数字大的减去数字小的差,数轴上到两点间的距离相等的点是这两个点的中点,根据中点坐标解题;(℃)根据题意,点P 在点A 的右侧,据此可解得AP 的长,分两种情况讨论,当点P 在点B 的左侧,或当点P 在点B 的右侧时,分别根据数轴上两点间的距离解题即可.【详解】(℃)数轴上点A 到点B 的距离为:4(6)4610--=+=;数轴上到点A ,B 的距离相等的点的位置表示的有理数为:4+(6)2=122--=-, 故答案为:10;-1; (℃)根据题意,点P 表示的数是:6t -+,因为点P 在点A 的右侧,故点P 到点A 的距离为:6(6)t t -+--=, 当点P 在点B 的左侧,即6410t t -+≤≤,时,P 点到点B 的距离为:4(6)10t t --+=-;当点P 在点B 的右侧,即6410t t -+>>,时,P 点到点B 的距离为:6410t t -+-=-;综上所述,当10t ≤时,AP t =,10BP t =-;当10t >时,AP t =,10BP t . 【点睛】本题考查数轴上两点间的距离,数轴上的动点等知识,是重要考点,难度较易,掌握相关知识是解题关键. 51.把下列各数填在相应的集合内:100,﹣99%,π,0,﹣2008,﹣2,5.2,116,6,53-,﹣0.3,1.020020002…【答案】见解析.【分析】根据有理数的分类,可得答案.【详解】如图.【点睛】本题考查了有理数,熟记有理数的分类是解题关键.52.探究题:化简下列各数前的符号:(1)﹣[﹣(﹣9)](2)﹣[+(﹣75)]【答案】(1)﹣9;(2)75.【分析】根据相反数的定义,可得答案.【详解】(1)原式=﹣[+9]=﹣9;(2)原式=﹣[﹣75]=75.【点睛】本题考查了相反数的意义,一个数的相反数就是在这个数前面添上“-”号;一个正数的相反数是负数,一个负数的相反数是正数,0的相反数是0.53.请写四句话,说明数“零”(0)的数学特性.(例:0是绝对值最小的数.例句除外)【答案】见解析【分析】根据题意可以写出零的数学特性,本题得以解决.【详解】解:℃零既不是正数也不是负数;℃零小于正数,大于负数;℃零不能做分母;℃零是最小的非负数;℃零的相反数是零;℃任何不为零的数的零次幂为1;℃零乘以任何数都是零等.【点睛】本题考查有理数,解题的关键是明确题意,可以仿照例句写出关于零的别的数学特性.54.整数a、b在数轴上的位置如图,已知|a|=2,|b|=5,求a+b的值【答案】3【分析】根据数轴可得b>0,a<0,从而可确定a,b的值,即可解答.【详解】由数轴可得:b>0,a<0,℃|a|=2,|b|=5,℃a=−2,b=5,℃a+b=−2+5=3.【点睛】本题考查了绝对值与数轴,解决本题的关键是熟记绝对值的性质.55.请把下列各数填入相应的集合中:713,,7,0,5,15, 1.25---32正数集合{…};分数集合{…};负整数集合{…}【答案】7,7,153;71,5, 1.2532--;3-【分析】根据正数、分数、负整数的定义进行判断填空即可.【详解】解,正数有:7,7,15 3;分数有:71,5, 1.25 32--负整数有:3-.【点睛】本题考查正数、分数、负整数的定义,理解定义是解答的关键.56.已知一组数据:142-、12、4、1-、0、4.5.(1)把它们在数轴上表示出来;(2)用“<”号将这些数连接起来;(3)把符合条件的数填入相应的集合中.【答案】解:(1)数轴见详解;(2)114104 4.522-<-<<<<;(3)见详解;【分析】(1)画出数轴,找到各点即可;(2)数轴上的数右边的总比左边的大,根据(1)画的数轴从左往右用小于号连接即可;(3)根据定义找出正有理数和整数,即可得出结论.【详解】解:(1)(2)114104 4.5.22-<-<<<< (3)【点睛】本题考查有理数大小比较、有理数的分类,以及数轴上表示数等知识点,熟练掌握相关知识点是解题的关键.57.有理数 a , b 在数轴上如图表示,化简:(1)|||||2|a b a ++-;(2)||||2|1|a b a b b +----.【答案】(1)2b -;(2)222a b -+-.【分析】(1)根据数轴可以得到a 、b 、2-a 的正负情况,从而可以化简题目中的式子;(2)根据数轴可以得到a+b 、a -b 、b -1的正负情况,从而可以化简题目中的式子,本题得以解决.【详解】(1)由数轴知:0a >,||a a ∴= 0b <,||b b ∴=- 20a ->,|2|2a a ∴-=- ∴|||||2|a b a ++-22a b a b =-+-=-,(2)由数轴知:0a b +<,||a b a b ∴+=-- 0a b ->,||a b a b ∴-=- 10b -<,|1|1b b ∴-=-∴||||2|1|a b a b b +----()2(1)22222a b a b b a b a b b a b =------=---+-+=-+-.【点睛】本题考查数轴、绝对值,解答本题的关键是明确数轴的特点,会将绝对值符号去掉,利用数形结合的思想解答.58.阅读下面的例题:我们知道|x |=2,则x =±2请你那么运用“类比”的数学思想尝试着解决下面两个问题.(1)|x +3|=2,则x = ;(2)5﹣|x ﹣4|=2,则x = .【答案】(1)﹣5或﹣1;(2)1或7.【分析】(1)根据绝对值的性质解答即可得出答案;(2)先把5﹣|x ﹣4|=2变形为|x ﹣4|=3,再根据绝对值的性质解答即可得出答案.【详解】解:(1)℃|x+3|=2℃x+3=2或x+3=-2则x =﹣1或﹣5;(2)℃5﹣|x ﹣4|=2可得:|x ﹣4|=3℃x -4=3或x -4=-3解得:x =1或7;故答案为(1)﹣5或﹣1;(2)1或7.【点睛】本题考查的是绝对值的性质,注意一个正数的绝对值有两个,它们互为相反数.59.已知|a |=5,|b |=3,且|a ﹣b |=b ﹣a ,求a +b 的值.【答案】﹣2或﹣8【分析】根据绝对值的性质求出a 、b ,再判断出a 、b 的对应情况,然后相加即可得解.【详解】℃|a|=5,|b|=3,℃a=±5,b=±3,℃|a﹣b|=b﹣a,℃a=﹣5时,b=3或﹣3,℃a+b=﹣5+3=﹣2,或a+b=﹣5+(﹣3)=﹣8,所以,a+b的值是﹣2或﹣8.【点睛】此题主要考查绝对值的性质,熟练掌握,即可解题.60.(1)如图,有一根木棒MN放置在数轴上,它的两端M、N分别落在点A、B.将木棒在数轴上水平移动,当点M移动到点B时,点N所对应的数为20,当点N移动到点A时,点M所对应的数为5.(单位:cm)则木棒MN长为__________cm.(2)一天,小民去问爷爷的年龄,爷爷说:“我若是你现在这么大,你还要40年才出生呢,你若是我现在这么大,我已经是老寿星了,125岁了,哈哈!”请你借助上述方法,写出小民爷爷到底是_________岁.【答案】(1)5(2)70【分析】(1)利用数轴的概念进行解题即可,(2)在求爷爷年龄时,借助数轴,把小民与爷爷的年龄差看做木棒MN,类似爷爷像小民一样大时看做当N点移动到A点时,此时M点所对应的数为-40,小民像爷爷一样大时看做当M点移动到B点时,此时N 点所对应的数为125,通过列式即可求出MN长度,进一步即可求得爷爷和小民现在的年龄.【详解】解:(1)由数轴可知,三根木棒的长度是20-5=15cm,℃一根木棒MN=5cm,(2)根据题意作出下图,把小民与爷爷的年龄差看做木棒MN,类似爷爷像小民一样大时看做当N点移动到A点时,此时M点所对应的数为-40,小民像爷爷一样大时看做当M点移动到B点时,此时N点所对应的数为125,℃MN=13[125-(-40)]=55,55-40=15,15+55=70, ℃爷爷的年龄是70岁.【点睛】本题考查了数轴的概念与实际应用,中等难度,理清题意,建立等量关系是解题关键.61.在数轴上表示下列各数:+5,–3.5,12,112-,4-,2.5,并用“<”把这些数连接起来. 【答案】(1)见解析;(2)-3.5<112-<12<2.5<4-<+5. 【分析】首先根据在数轴上表示数的方法,在数轴上表示出所给的各数;然后根据当数轴方向朝右时,右边的数总比左边的数大,把这些数由大到小用“<”号连接起来即可.【详解】-3.5<112-<12<2.5<4-<+5. 【点睛】℃℃℃℃℃℃℃℃℃℃℃℃℃℃℃℃℃℃℃℃℃℃℃℃℃℃℃℃℃℃℃℃℃℃℃℃℃℃℃℃℃“℃”℃“℃”℃℃℃℃℃℃℃℃℃℃℃℃℃℃℃℃,℃℃℃℃℃℃℃℃℃℃℃℃℃℃℃℃℃℃℃℃℃℃℃℃℃℃℃℃℃℃℃℃℃℃℃.62.将 2.5-℃12℃22℃2--℃()3--℃0在数轴上表示出来,并用“<”号把它们连接起来. 【答案】答案见解析;【分析】先把各数在数轴上表示出来,再从左到右用“<”连接起来即可.【详解】各数在数轴上表示如下:℃所以℃()212.52|0322---<<<--<℃。