受弯构件斜截面承载力计算
《混凝土结构设计原理》第4章 受弯构件斜截面承载力计算

计算剪力值的确定
《公路桥规》规定:取离支点中心线梁高一半处的剪力 设计值 V ;其中不少于60%由混凝土和箍筋共同承担; 不超过40%由弯起钢筋(按45º弯起)承担,并且用水平 线将剪力设计值包络图分割;
箍筋设计 假设箍筋直径和种类,箍筋间距为
箍筋可减小斜裂缝宽度,从而提高斜截面上的骨料咬力。
箍筋限制了纵向钢筋的竖向位移,阻止混凝土沿纵向 钢筋的撕裂,提高了纵向钢筋的销栓作用。
可见,箍筋对提高斜截面受剪承载力的作用是多方面的和 综合性的。
2、剪力传递机理(见下图)——桁架-拱模型:
拱I: 相当于上弦压杆 拱Ⅱ、拱Ⅲ: 相当于受压腹杆
否
是否通过 是
计算结束
§4.3 受弯构件的斜截面抗剪承载力
计算依据:以剪压破坏为基础 一般是采用限制截面最小尺寸防止发生斜压破坏; 限制箍筋最大间距和最小配箍率防止发生斜拉破坏
一、基本公式及适用条件 计算图式:
基本公式:(半经验半理论)
Vu Vc Vsv Vsb Vcs Vsb
抗剪能力:
斜截面受剪承载力主要取决于构件截面尺寸和混凝土抗 压强度,受剪承载力比剪压破坏高。
破坏性质:属脆性破坏
除上述三种主要破坏形态外,有时还可能发生局部挤压 或纵向钢筋锚固等破坏。
四、有腹筋简支梁斜裂缝出现后的受力状态
无腹筋梁斜截面受剪承载力很低,且破坏时呈脆性。 故《公桥规》规定,一般的梁内都需设置腹筋。配置腹筋是 提高梁斜截面受剪承载力的有效方法。在配置腹筋时,一般 首先配置一定数量的箍筋,当箍筋用量较大时,则可同时配 置弯起钢筋。
V fcbh00
0. 0. 0. 0. 0.1
受弯构件斜截面承载力计算

240
解: 取 as = 35mm,h0 = h – as = 500 – 35 = 465mm 一、计算剪力设计值 支座边缘处
1 V1 ( G g K G qK )ln 2 1 (1.2 25 1.4 42) 3.66 2
=162.50kN
二、复核梁截面尺寸 hw = h0 = 465mm
βc——混凝土强度影响系数,见P67
hw的取值:
hf hw h0 h0 hf hw (b) hw = h0 – hf 图4-7
h
hf
hw
(a) hw = h0
(c) hw = h– hf – hf
下限值:
限值sv,min,Smax
箍筋最大间距Smax 箍筋最小直径dmin ––– 防止斜拉破坏 P68表5-1、5-2
剪跨比λ 反映梁中弯矩和剪力的组合情况, 与破坏形态有关 λ :实际反映梁内正应力与剪应力的比值,而它们的 大小决定了主拉应力的大小和方向,从而影响截面破 坏形态。
•2. 破坏形态-无腹筋梁
斜拉破坏:
>3,一裂,即裂缝迅速向集中荷载作 用点延伸,一般形成一条斜裂缝将弯剪 段拉坏。承载力与开裂荷载接近。
工程中不允许出现。除发生以上三种破坏形
态外,还可能发生纵筋锚固破坏或局部受压
破坏。
3.影响无腹筋梁受剪承载力的因素
,抗剪承载力 1.剪跨比入,在一定范围内,
Hale Waihona Puke 2.混凝土强度等级 3.纵筋配筋率 4.配箍率及箍筋强度
c ,抗剪承载力 ,抗剪承载力
sv f yv 抗剪承载力
4.无腹筋梁斜截面受剪承载力计算 均布荷载作用下: Vc=0. 7 βh ftbh0
受弯构件斜截面承载力计算

第一排弯起钢筋截面面积Asb
Asb≥(V1-Vcs)/(0.8fysinαs)= 472.91mm2 将纵向钢筋中间部位一根弯起(1 25), Asb=490.9mm2>472.91mm2,故满足要求。
【例4.10】钢筋混凝土矩形截面简支梁,两端支承在砖墙 上,净跨度ln=4660mm(图4.41);截面尺寸b×h=250mm ×550mm。该梁承受均布荷载,其中恒荷载标准值 gk=25kN/m(包括自重),荷载分项系数γG=1.2,活荷 载标准值qk=42kN/m,荷载分项系数γQ=1.4;混凝土强 度等级为C20(fc=9.6N/mm2, ft=1.1N/mm2),箍筋采用 HPB235级钢筋(fyv=210N/mm2),按正截面承载力已 配HRB335级钢筋4 25为纵向受力钢筋(fy=300N/mm2)。 试求腹筋数量。 【解】(1) 计算剪力设计值。支座边缘处剪力设计值为 V1=1/2(γGgk+γQqk)ln=206.9kN
对于承受以集中荷载为主的矩形截面独立梁,应改用
V Vcs 0.8 f y Asb Sin s Asv 1.75 ft bh0 1.25 f yv h0 0.8 f y Asb Sin s 1 s
图4.38
抗剪计算模式
(a) 仅配有箍筋;(b) 同时配置箍筋和弯起筋
4.4.3.2 公式适用条件
应按公式(4.38)复核,得 0.25βcfcbh0=223200N>V=200000N 截面尺寸满足要求。 (3) 确定是否需要按计算配置腹筋。 由公式(4.41) 0.7ftbh0=71610N<V=200000N 需进行斜截面受剪承载力计算,按计算配置腹筋。 (4) 箍筋计算。由公式(4.34)得 Asv/s≥(V-0.7ftbh0)/(1.25fyvh0) =1.05mm2/mm
受弯构件斜截面承载力的计算

对称集中荷载作用下简支梁的主应力轨迹线(图中,实线为主拉应力轨迹线;虚线为主压应力轨迹线。
)My VS tp 2σσ=cp 2σσ=梁内任一点的应力主应力剪跨比P aP202lh ββ⋅lβl()22222qll ql M l q l βββββ=⋅−=−()1222ql ql V q l ββ=−=−x tp 12σσ=+xcp 2σσ=−1arctan 2α=στ斜截面破坏形态◆斜压破坏为受压脆性破坏;◆剪压破坏界于受拉和受压脆◆斜拉破坏为受拉脆性破坏,无腹筋梁的受剪破坏都是脆性的无腹筋梁的弯剪承载力有限,若不足以抵抗荷载产生的1. 剪跨比¾集中荷载作用下2. 腹筋的数量在一定的范围内,腹筋配筋率增大,抗剪承载力提高。
3. 混凝土强度斜截面破坏是因土强度对梁的抗剪承载力影响很大。
当剪跨比一定时,梁的抗剪承载力随混凝土强度提高而增大4. 纵筋配筋率随着纵筋的配筋率的提高,梁的抗剪承载力也增大。
1、直接作用:纵筋截面承受一定剪力(2、纵筋抑制斜裂缝的发展,增大斜裂缝间交互面的剪力传递,增加纵筋量能加大混凝土剪压区高度,从而间接提高梁的抗剪能力。
纵筋的销栓力ρ大于1.5%时,纵向受拉钢筋的配筋率()ρ0.720βρ=+5. 其他因素(1)截面形状这主要是指斜截面抗剪承载力有一定作用。
适当增加翼缘宽度,可提高抗剪承载力,但翼缘过大,增大作用逐渐减小。
另外,增大梁的宽度也可提高抗剪承载力。
与矩形截面梁相比,形截面梁的斜截面承载力一般要高我国《混凝土结构设计规范》钢筋混凝土梁斜截面抗u c ix d s sbV V V V V V =++++sb b V V =⋅为简化计算,主要考虑未开裂混凝土的抗剪作用和腹筋V u ——梁斜截面破坏时所承受的总剪力V c ——V s ——与斜裂缝相交的箍筋所承受的剪力V sb ——与斜裂缝相交的弯起钢筋所承受的剪力如令Vcs 为箍筋和混凝土共同承受的剪力,则无腹筋梁有腹筋梁若腹筋既有箍筋又有弯起钢筋,则对于有腹筋梁,由于箍筋的存在抑制了斜裂缝的开展,使得梁剪压区面积增大,致使强度和配箍率有关。
05受弯构件斜截面受剪承载力计算

Asi M ui M u As
图5-13
2、纵向钢筋的弯起(如图5-23) (1)钢筋理论充分利用点 图中1、2、3点:是③、②、①号钢筋充分利用 点(图5-23); (2)钢筋理论不需要点 图中的2、3、a点是③、②、①号钢筋不需要点 (图5-23); ; (3) 以③号纵向钢筋弯起为例(图5-23) : 将③号钢筋在E、F点弯起,在G、H点穿过中 和轴进入受压区,对正截面抗弯消失。 分别以E、F点作垂线与③号钢筋交于e、f点。以 G、H点作垂线与②号钢筋交于g、h点,Mu图变成 aigefhb,Mu图>M图,此称之包络图或称材料图
若不满足,则按计算配箍筋 ②最小配箍率(按计算配箍筋)
nAsv1 ft sv sv ,min 0.24 bs f yv
(3)按计算配置腹筋(限制剪压破坏)
当不满足上述(1)、(2) 按计算配制箍筋Asv和弯起筋Asb
三、计算截面位置与剪力设计值的取值
1、计算截面位置:斜截面受剪承载力薄弱部位 截面的抗剪能力沿梁长也是变化的。在剪力或抗剪
hw— 截面的腹板高度,矩形截面取有效高度h0, T形截面取有 效高度减去翼缘高度,工形截面取腹板净高;
βc— 混凝土强度影响系数, (见表5-1)
hf h0 h0 h0 hf
hw
(b) hw = h0 – hf
h
hw hf
(a) hw = h0
(c) hw = h0 – hf – hf
图5-13 hw 取值示意图
临界斜裂缝。梁破坏时与斜裂缝相交的腹筋达
到屈服强度,剪压区的混凝土的面积越来越小,
达到混凝土压应力和剪应力的共同作用下的复
受弯构件斜截面受剪承载力计算

梁的斜截面承载力包括斜截面受剪承载力和斜截面受弯承载力。在实
际工程中,斜截面受剪承载力通过计算配置腹筋来保证,而斜截面受弯
承载力则通过构造措施来保证。
有腹筋梁斜截面破坏工程试验
1
剪跨比λ的定义
影响梁斜截面破坏形态有很多因素,其中最主要的两项是剪跨
比λ的大小和配置箍筋的多少
对于承受集中荷载的梁:第一个集中荷载作用点到支座边缘之
距a(剪跨跨长)与截面的有效高度ℎ0 之比称为剪跨比λ,即
λ=a/ℎ0 。
广义剪跨比λ=M/Vℎ0 (如果λ表示剪跨比,集中荷载作用下的
梁某一截面的剪跨比等于该截面的弯矩值与截面的剪力值和有效
高度乘积之比)。
有腹筋梁斜截面破坏工程试验
2
箍筋配筋率
箍筋配箍率是指箍筋截面面积与截面宽度和箍筋间距乘积的比值,
计算公式为:
1 =Βιβλιοθήκη =式中 ——配置在同一截面内箍筋各肢的全部截面面积(2 );
=1 ;
n——同一截面内箍筋肢数;
1 ——单支箍筋的截面面积(2 );
b——矩形截面宽度,T形、I字形截面的腹板宽度(mm);
1.75
≤ =
ℎ0 +
ℎ0
+1
式中 V——梁的剪力设计值(N/2 )
剪跨比λ<1.5时,取λ=1.5;当λ>3时,取λ=3.
谢 谢 观 看
s——箍筋间距;
仅配箍筋时梁的斜截面受剪承载力计算基本公式
对于矩形、T型、I字形截面的一般受弯构件:
≤ = 0.7 ℎ0 +
ℎ0
对承受集中荷载作用为主的独立梁或对集中荷载作用下(包括作用
受弯构件斜截面承载力计算

《规范》公式是以剪压破坏的受力特征作为建立计算公式的基础:
Vcs=Vc+Vsv 式中: Vsv ––– 配有箍筋梁的抗剪承载力的提高部分。
在均布荷载作用下: 在集中荷载作用下:
Vc=0. 7ftbh0
Vsv
1.25 fyv
Asv s
h0
Vc
1.75
1.0
f t bh0
Vsv
fyv
Asv s
h0
VVcs =Vc+Vsv
V
1.75
1.0
ftbh0
Asv s
f yvh0
同时配箍筋和弯筋:
V Vcs+Vsb = Vc+Vsv+
V
1.75
1.0
ftbh0
Asv s
fyvh0 0.8Asb fysin
4.4.2 截面承载力公式的应用
一般由正截面承载力确定截面尺寸bh,纵筋数量As,然后由斜截面受 剪承载力确定箍筋或弯筋的数量。
四、腹筋计算
配置腹筋有两种办法:一是只配箍筋;一是配置箍筋兼配弯起钢筋; 一般都是优先选择箍筋。下面分述两种方法。
(一) 仅配箍筋
由V
0.7
ftbh0
1.25
fyv
Asv s
h0
得
nAsv1 162500 71600 0.745 s 1.25 210 465
选用双肢箍筋 8@130,则
nAsv1 2 50.3 0.774 0.745
一般情况
同时配箍筋和弯起钢筋
特殊情况
受弯构件斜截面的受弯承载力应符合下列规定(如图4-13所示):
M f A Z ≤ y s +
fy Asb Zsb + ffy Asv Zsv
混凝土结构及砌体结构-第五章受弯构件斜截面承载力计算

Asv 1.75 V Vcs f t bh0 f yv h0 1.0 s
注意:
1.5 3
17
2.公式的适用范围 (1)、上限值--最小截面尺寸和最大配箍率:
hw 当 4 时,V 0.25 c f cbh0 b hw 当 6 时,V 0.2 c f c bh0 b hw 当4 6 时,按线性内插法取用 b
250 300 350 500
150 200
24
3.弯起钢筋的要求
1.画出弯矩图和正截面受弯承载力图; 2.根据各根钢筋面积大小按比例分配受弯承载力图,
弯起的钢筋画在外面; 3.找出要弯起钢筋的充分利用点和不需要点; 4.从充分利用点向外延伸0.5h0,作为弯起点,并 找出弯起钢筋与中和轴的交点。如该点在不需要点 的外面,可以,否则再向外延伸; 5.验算是否满足斜截面受剪承载力要求和其它构造 要求。
las≥15d(光面)
37
(2)中间支座直线锚固:
0.7la ≥l a
l ≥0.a7la
38
(3)中间支座的弯折锚固:
≥0.4la ≥0.4la
15d
39
(4)节点或支座范围外的搭接:
ll
40
5.4.5
箍筋的构造要求
单肢箍n=1
双肢箍n=2
四肢箍n=4
41
梁受扭或承受动荷载时,不得使用开口箍筋
45
46
19
-斜截面上弯起钢筋与构件纵向轴线的夹角。
2. 斜截面承载力计算步骤
⑴ 确定计算截面及其剪力设计值; ⑵ 验算截面尺寸是否足够; ⑶ 验算是否可以按构造配筋;
⑷ 当不能按构造配箍筋时,计算腹筋用量;
⑸ 验算箍筋间距、直径和最小配箍率是否 满足要求。
受弯构件斜截面受剪承载力计算

受弯构件斜截面受剪承载力计算一、有腹筋梁受剪承载力计算基本公式1.矩形、T形和Ⅰ形截面的一般受弯构件,斜截面受剪承载力计算公式为:VVc0.7ftbh01.25fyvAvh0(5-6)式中ft一混凝土抗拉强度设计值;b一构件的截面宽度,T形和Ⅰ形截面取腹板宽度;h0一截面的有效高度;fyv一箍筋的抗拉强度设计值;Av一配置在同一截面内箍筋各肢的全部截面面积,AvnAv1;n一在同一截面内箍筋的肢数;Av1一单肢箍筋的截面面积;一箍筋的间距。
2.集中荷载作用下的独立梁(包括作用多种荷载,且其中集中荷载对支座截面或节点边缘所产生的剪力值占总剪力值的75%以上的情况),斜截面受剪承载力按下式计算:VVcA1.75ftbh0fyvvh01.0(5-7)式中一剪跨比,可取a/h0,a为计算截面至支座截面或节点边缘的距离,计算截面取集中荷载作用点处的截面。
当小于1.5时,取1.5;当大于3.0时,取3.0。
独立梁是指不与楼板整浇的梁。
构件中箍筋的数量可以用箍筋配箍率v表示:vAvb(5-8)3.当梁内还配置弯起钢筋时,公式(5-4)中Vb0.8fyAbin式中(5-9)fy一纵筋抗拉强度设计值;Ab一同一弯起平面内弯起钢筋的截面面积;一斜截面上弯起钢筋的切线与构件纵向轴线的夹角,一般取45o,当梁较高时,可取60。
剪压破坏时,与斜裂缝相交的箍筋和弯起钢筋的拉应力一般都能达到屈服强度,但是拉应力可能不均匀。
为此,在弯起钢筋中考虑了应力不均匀系数,取为0.8。
另外,虽然纵筋的销栓作用对斜截面受剪承载力有一定的影响,但其在抵抗受剪破坏中所起的作用较小,所以斜截面受剪承载力计算中没有考虑纵筋的作用。
二、混凝土的受剪承载力可以抵抗斜截面的破坏,可不进行斜截面承载力计算,仅需按构造要求配置箍筋的条件oV0.7ftbh0或(5-10)V1.75ftbh01.0(5-11)三、计算公式的适用范围(上限和下限)l.截面限制条件当配箍特征值过大时,箍筋的抗拉强度不能发挥,梁的斜截面破坏将由剪压破坏转为斜压破坏,此时,梁沿斜截面的抗剪能力主要由混凝土的截面尺寸及混凝土的强度等级决定,而与配筋率无关。
第4章 受弯构件斜截面承载力计算

V 0.2 c f cbh0
(2)下限值—箍筋最小含量 为了避免发生斜拉破坏,《规范》规定,箍筋最 小配筋率为
nAsv1 ft s v s v,min 0.24 bs f yv
3
斜截面受剪承载力计算方法和步骤 (1)计算截面的位置
下列各个斜截面都应分别计算受剪承载力: ◆支座边缘的斜截面(见下图的截面1-1);
◆箍筋直径或间距改变处的斜截面(见下图的截面44);
◆弯起钢筋弯起点处的斜截面(见下图截面2-2、3-3);
◆腹板宽度或截面高度改变处的斜截面(如下图 的截面5-5)。 Ⅰ Ⅱ
Ⅰ
Ⅱ
Ⅰ-Ⅰ Ⅱ - Ⅱ
以上这些斜截面都是受剪承载力较薄弱之处, 计算时应取这些斜截面范围内的最大剪力,即取斜 截面起始端处的剪力作为计算的外剪力。
斜拉破坏
2)斜压破坏:当剪跨比较小(λ<1)时,或箍筋配置过 多时易出现。此破坏系由梁中主压应力所致,类似于正 截面承载力中的超筋破坏,表现为混凝土压碎,也呈明 显脆性,但不如斜拉破坏明显。这种破坏多数发生在剪 力大而弯矩小的区段,以及梁腹板很薄的T形截面或工 字形截面梁内。破坏时,混凝土被腹剪斜裂缝分割成若 干个斜向短柱而被压坏,破坏是突然发生。
斜压破坏
3)剪压破坏:当剪跨比一般(1<λ<3)时,箍筋配置适中时出现 。此破坏系由梁中剪压区压应力和剪应力联合作用所致,类似于 正截面承载力中的适筋破坏,也属脆性破坏,但脆性不如前两种 破坏明显。其破坏的特征通常是,在剪弯区段的受拉区边缘先出 现一些垂直裂缝,它们沿竖向延伸一小段长度后,就斜向延伸形 成一些斜裂缝,而后又产生一条贯穿的较宽的主要斜裂缝,称为 临界斜裂缝,临界斜裂缝出现后迅速延伸,使斜截面剪压区的高 度缩小,最后导致剪压区的混凝土破坏,使斜截面丧失承载力。
受弯构件斜截面承载力计算公式是依据

受弯构件斜截面承载力计算公式是依据斜截面构件是指构件角度轴线和主轴线之间形成的夹角,这种构件在很多场合下都有着广泛的使用,但是在受力分析中,很多结构设计中都会涉及到斜截面构件的受力分析。
因此,计算斜截面构件的承载力非常重要,在这里我们将介绍受弯构件斜截面承载力计算公式。
一般来讲,受弯构件斜截面承载力的计算,要考虑力学要求,假设受弯构件的斜截面的宽度为w,厚度为h,内轴线半径为r,外轴线半径为R,轴向反力作用下,轴向应力计算公式为σ=F/A,A为断面截面积,其计算公式为:A = (R- r)h +wr。
根据Gao&Yang(2005)的研究,斜截面受弯构件的承载力由以下公式计算:F=FoC%Fo=∫-1/r~1/Rf(x)dx其中:Fo=πWh(R-r)/2f(x)= (R2-r2-2x2)/2(R2-x2)(r2-x2)以上是受弯构件斜截面承载力计算公式。
取极限值后,可以得到有限的载荷力值,其计算结果取决于斜截面构件的尺寸以及各个参数的值。
本文简要介绍了受弯构件斜截面承载力计算的方法,进行计算前有必要确定各个参数值,只有这样才能得到合理的结果,从而更好地为结构设计提供支持。
受弯构件斜截面承载力计算是一项复杂而又艰巨的工作,需要综合多个方面的因素进行参数分析,全面考虑结构的构造、受力情况和材料性能等因素,以确定计算结果的合理性。
一般情况下,斜截面构件的受弯设计不仅仅考虑此受力分析,还要考虑其他因素,比如尺寸变形等。
此外,多次实际应用表明,为了确保斜截面构件的安全性能,应当在斜截面构件承载力分析时考虑相关变形影响及材料疲劳寿命。
尤其是对于极端条件下的受力分析,更应当加以考虑,以提高受弯构件斜截面承载力的计算精度。
总之,受弯构件斜截面承载力的计算是一项重要的工作,必须仔细分析,全面考虑各个因素,以达到计算精度较高的要求,确保结构的安全可靠性。
经过以上的介绍,受弯构件斜截面承载力计算公式已经有了一定的了解,熟悉这种计算方法可以更好地满足结构设计的需求,为可靠和安全的结构设计提供必要的理论支撑和技术保障。
[工学]4-钢筋混凝土受弯构件斜截面抗剪承载力计算
![[工学]4-钢筋混凝土受弯构件斜截面抗剪承载力计算](https://img.taocdn.com/s3/m/c2811922964bcf84b8d57b02.png)
一.基本假定 前已述及,受弯构件沿斜截面可能发生斜拉、斜压及剪压三
种剪截破坏形态,而斜拉、斜压破坏将通过构造要求来予以 避免,剪压破坏则通过计算来避免。因此,下面的计算公式 是用来计算剪压破坏时斜截面承载能力的。 影响受剪承载力的因素很多,很难综合考虑,而且受剪破 坏都是脆性的。《规范》是根据大量的试验结果,取具有一 定可靠度(95%)的偏下限经验公式来计算受弯构件抗剪承 载力。
桥梁工程系-杨 剑
Vc ft bh0
¼ô ¿ç ±È
(a) ¼¯ ÖÐ ºÉ ÔØ
桥梁工程系-杨 剑
Vc ft bh0
0.7
ô¼ ¿ç ± È =L0/(4h)
(b) ¾ù ²¼ ºÉ ÔØ
桥梁工程系-杨 剑
三.混凝土强度等级 ◆ 剪切破坏是由于剪压区应力达到复合应力(剪压)状态下 强度而发生的,故混凝土强度对受剪承载力有很大影响。 ◆ 试验表明,随着混凝土强度的提高,Vu与 ft 近似成正比。 ◆ 事实上,斜拉破坏取决于ft ,剪压破坏也基本取决于ft,只 有在剪跨比很小时的斜压破坏取决于fc。 ◆ 而斜压破坏可认为是受剪承载力的上限。
桥梁工程系-杨 剑
Vc/bh0(MPa)
fcu(Mpa)
桥梁工程系-杨 剑
三. 纵筋配筋率 纵筋配筋率越大,受压区面积越大,受剪面积也越大, 并使纵筋的销栓作用也增加。同时,增大纵筋面积还可限 制斜裂缝的开展,增加斜裂缝间的骨料咬合力作用。
Vc f c¢
s
桥梁工程系-杨 剑
四. 箍筋的配筋强度 sv fsv
P
斜拉破坏
f
桥梁工程系-杨 剑
无腹筋斜拉破坏试验录像
桥梁工程系-杨 剑
二. 剪压破坏
4受弯构件斜截面承载力计算(精)

4 受弯构件斜截面承载力计算1 当仅配有箍筋时,对矩形、T 形和I 形截面的一般受弯构件斜截面受剪承载力计算采用下列公式:0025.17.0h s A f bh f V V sv yv t cs +=≤ (4-1)式中 V ——构件斜截面上的最大剪力设计值;V cs ——构件斜截面上混凝土和箍筋的受剪承载力设计值;A sv ——配置在同一截面内箍筋各肢的全部截面面积,A sv =nA sv1;n ——在同一截面内箍筋肢数;A sv1——单肢箍筋的截面面积;s ——沿构件长度方向的箍筋间距;f t ——混凝土轴心抗拉强度设计值;f yv ——箍筋抗拉强度设计值。
b ——矩形截面的宽度或T 形截面和工形截面的腹板宽度。
2 对集中荷载作用下(包括作用有多种荷载,其中集中荷载对支座截面或节点边缘所产生的剪力值占总剪力值的 75%以上的情况)的矩形、T 形和I 形截面的独立梁,斜截面受剪承载力计算按下列公式计算:00175.1h s A f bh f V V sv yv t cs ++=≤λ (4-2)式中λ——计算截面的计算剪跨比,可取λ= a /h 0, a 为集中荷载作用点至支座截面或节点边缘的距离;当λ<l.5时,取入= 1.5;当λ>3时,取λ=3,此时,在集中荷载作用点与支座之间的箍筋应均匀配置。
3 对于配有箍筋和弯起钢筋的矩形、T 形和I 形截面的受弯构件,其受剪承载力按下列公式计算:V ≤sb cs u V V V +==V cs +0.8f y A sb sina s (4-3)式中 V ——在配置弯起钢筋处的剪力设计值;V cs ——构件斜截面上混凝土和箍筋的受剪承载力设计值;f y ——弯起钢筋的抗拉强度设计值;A sb ——同一弯起平面内弯起钢筋的截面面积;αs ——弯起钢筋与构件纵轴线之间的夹角一般情况αs =45o ,梁截面高度较大时,()mm h 800≥取αs =60o 。
受弯构件斜截面抗剪承载力计算公式、适用条件

0Vd 0.51103 fcu,k bh0 (kN )
Vd——验算截面处由荷载产生的剪力组合设计值 b ——剪力组合设计值处的截面宽度
2 适用条件
(2)最小配箍率要求:下限
HPB300钢筋时 ( ) sv min 0.18% HRB335钢筋时 ( ) sv min 0.12%
1 计算公式
Vu 123 (0.45103 )bh0 (2 0.6 p) fcu,k sv fsv
+(0.75103)fsd Asb sins
1
异号弯矩影响系数,计算简支梁和连续梁近边支点梁段 的抗剪承载力时,取为1.0;计算连续梁和悬臂梁近中间
支点梁段的抗剪承载力时,取为0.9;
2 预应力提高系数,对普通钢筋混凝土受弯构件,取为1.0;
集中荷载作用点附近,箍筋间距≤100mm; 4 有受压纵筋时为封闭箍筋;
箍筋可用双肢箍、4肢箍(剪力大、一排纵筋多于5 根、梁宽较大时用), 5 近梁端第一道箍筋在距端面一个C。
THE END
适用于矩形、T形、工形、箱形截面的等高度钢筋混凝 土简支梁及连续梁(包括悬臂梁)的斜截面抗剪承载 力计算(注:没考虑剪跨比、荷载类型)
Vu 123 (0.45103 )bh0 (2 0.6 p) fcu,k sv fsv
+(0.75103)fsd Asb sins
如不配弯起筋或斜筋:
Vu 123 (0.45103 )bh0 (2 0.6 p) fcu,k sv fsv
3 受压翼缘的影响系数,对具有受压翼缘的T形、工形截面, 取为1.1。
1 计算公式
Vu 123 (0.45103 )bh0 (2 0.6 p) fcu,k sv fsv
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
受弯构件斜截面承载力计算4 受弯构件斜截面承载力计算4.1 概述受弯构件在荷载作用下,截面除产生弯矩M外,常常还产生剪力V,在剪力和弯矩共同作用的剪弯区段,产生斜裂缝,如果斜截面承载力不足,可能沿斜裂缝发生斜截面受剪破坏或斜截面受弯破坏。
因此,还要保证受弯构件斜截面承载力,即斜截面受剪承载力和斜截面受弯承载力。
工程设计中,斜截面受剪承载力是由抗剪计算来满足的,斜截面受弯承载力则是通过构造要求来满足的。
4.1.1 斜截面开裂前的应力分析如图4-1所示为一承受集中荷载P作用的钢筋混凝土简支梁,当荷载较小时,混凝土尚未开裂,钢筋混凝土梁基本上处于弹性工作阶段,故可按材料力学公式来分析其应力。
但钢筋混凝土构件是由钢筋和混凝土两种材料组成,因此应先将两种材料换算为同一种材料,通常将钢筋换算成“等效混凝土”,钢筋按重心重合、面积扩大 Ec倍化为等效混凝土面积,将两种材料组成的截面视为单一材料(混凝土)的截面,即可直接应用材料力学公式。
Es图4-1 无腹筋梁在开裂前的应力状态及裂缝示意图(a)(a)主应力轨迹线(实线为主拉应力,虚线为主压应力)(b)内力图 (c) 截面及换算截面(d)正应力和剪应力梁的剪弯区段截面上的任一点正应力?和剪应力?可按下列公式计算:??正应力My0I0 (4-1)剪应力式中I0――换算截面的惯性矩;y0――所求应力点到换算截面形心轴的距离;S0――所求应力点的一侧对换算截面形心轴的面积矩;b――梁的宽度;M――截面的弯矩值;V――截面的剪力值。
在正应力σ和剪应力τ共同作用下,产生的主拉应力和主压应力,可按下式求得:?1?tp???2?4?222主拉应力 (4-3)2主压应力 (4-4)主应力的作用方向与梁纵轴的夹角α可按下式求得:??VS0I0b (4-2)?cp???12?2?4?2??arctan(?122?? (4-5)) 求出每一点的主应力方向后,可以画出主应力轨迹线,如图4-1(a)所示。
4.1.2 斜裂缝的形成由于混凝土抗拉强度很低,随着荷载的增加,当主拉应力超过混凝土复合受力下的抗拉强度时,就会出现与主拉应力轨迹线大致垂直的裂缝(如图4-1(d))。
除纯弯段的裂缝与梁纵轴垂直以外,M 、V共同作用下的截面主应力轨迹线都与梁纵轴有一倾角,其裂缝与梁的纵轴是倾斜的,故称为斜裂缝。
当荷载继续增加,斜裂缝不断延伸和加宽(如图4-1(d)),当截面的抗弯强度得到保证时,梁最后可能由于斜截面的抗剪强度不足而破坏。
为了防止斜截面破坏,理论上应在梁中设置与主拉应力方向平行的钢筋最合理(如图4―2),可以有效地限制斜裂缝的发展。
但为了施工方便,一般采用梁中设置与梁轴垂直的箍筋(如图4-2所示)。
弯起钢筋一般利用梁内的纵筋弯起而形成,虽然弯起钢筋的方向与主拉应力方向一致(如图4-2所示),但由于其传力较集中,受力不均匀,且可能在弯起处引起混凝土的霹雳裂缝(如图4-3所示),同时增加了施工难度,一般仅在箍筋略有不足时采用。
箍筋和弯起钢筋称为腹筋。
4-2 箍筋和弯起钢筋和斜裂缝图4-3霹雳裂缝4.2 无腹筋梁的斜截面受剪性能4.2.1斜裂缝的类型当梁的主拉应力达到混凝土抗拉强度时无腹筋梁可能出现两种斜裂缝:(1)弯剪斜裂缝如图4-4(a):由于弯矩较大即正应力较大,先在梁底出现垂直裂缝,然后向上逐渐发展变弯,其方向大致垂直主拉应力轨迹线。
随着荷载的增加,斜裂缝向上发展到受压区。
特点为裂缝宽度下宽上窄。
(2)腹剪斜裂缝如图4-4(b):当梁腹部剪应力较大时,如梁的腹板很薄或集中荷载到支座距离很小时,因梁腹主拉应力达到抗拉强度而先在中和轴附近出现大致与中和轴成45o倾角的斜裂缝,其方向大致垂直主拉应力迹线,随着荷载的曾加,斜裂缝分别向支座和集中(a)弯剪斜裂缝 (b)腹剪斜裂缝荷载作用点延伸,特点为裂缝中间宽两头细。
图 4-4 斜裂缝4.2.2 剪跨比λ的定义由斜裂缝出现后的应力分析可知,无腹筋梁的斜裂缝的出现和最终斜截面破坏形态,与截面的正应力σ和剪应力?的比值σ/τ有很大关系。
σ/τ的比值可用一个无量纲参数?――剪跨比来反映,因截面正应力σ与M/bh20成正比,截面剪应力?与V/bh0成正比,定义广义剪跨比:??MVh0 (4-6) 对于集中荷载的简支梁(图4-5),计算截面1-1和2-2的剪跨比分别为:?M11??VAa1?a1VAh0VAh0h0 (4-7a) ??M2Vaa2Vh?B2?2B0VBh0h0 (4-7b)式中 a1、a2分别为集中力P 1、P2作用点到支座的距离,称为“剪跨”。
因此,对于集中荷载作用下的简支梁,荷载作用点处的计算剪跨比为;??ah0 (4- 8)式中? ――计算剪跨比a――为集中荷载作用点到支座或节点边缘的距离。
h0――截面有效高度4. 2. 3斜裂缝形成后的应力状态及破坏分析当梁的主拉应力达到混凝土抗拉强度时,在剪弯区段将出现斜裂缝如图4-6所示。
出现斜裂缝后,引起剪弯段内的应力重分布,这时已不可能将梁视为均质弹性体,截面上的应力不能用一般的材料力学公式计算。
为了分析出现斜裂缝后的应力状态,可沿斜裂缝将梁切开,隔离体如图4-6所示。
,图4--5 集中荷载(a) 剪力的传递 (b)骨料的咬合作用 (c) 销栓作用 (d)纵筋的剪力变化图 4-6斜裂缝出现后受力状态的变化从图中可知,斜截面上的受剪承载力有以下几部分承担:(1)(1)斜裂缝顶部混凝土截面承担的剪力VC;(2)(2)斜裂缝两侧混凝土发生相对位移和错动时产生的摩擦力,称为骨料咬合作用,其垂直分力为Vay ;(3)(3)由于斜裂缝两侧的上下错动,从而使纵筋受到一定剪力,如销栓一样,将斜裂缝两侧的混凝土联系起来,称为钢筋销栓作用Vd;cayd (4-9) 即:由于斜裂缝的出现,梁在剪弯段内的应力状态发生很大变化,主要表现有:(l)在斜裂缝出现前,剪力主要由梁全截面承担,开裂后则主要由剪压区承担,受剪面积的减小,使剪应力和压应力明显增大。
(2)与斜裂缝相交处的纵向钢筋应力,由于斜裂缝的出现而突然增大。
因为该处的纵向钢筋拉力在斜裂缝出现前是由弯矩Ma决定的(见图4-6),而在斜裂缝出现后,根据力矩平衡的概念,纵向钢筋的拉力Tb则是由斜裂缝端点处截面b-b的弯矩Mb所决定,Mb比Ma要大很多。
随着荷载的继续增加,靠近支座的一条斜裂缝很快发展延伸到加载点,形成临界斜裂缝。
斜裂缝不断开展,使骨料咬合作用和纵筋的销栓作用减小。
此时,无腹筋梁如同拉杆―V?V?V?V―拱结构,纵向钢筋成为拱的拉杆如图4-7。
最终,斜裂缝顶上混凝土在剪应力τ和正应力σc作用下,达到复合应力下混凝土的极限强度时,梁即沿斜截面发生破坏。
图4-7 无腹筋梁的拉杆――拱体受力机4.2.4无腹筋梁斜截面受剪破坏的主要形态影响无腹筋梁斜截面受剪破坏形态的主要因素为:剪跨比a/h(集中荷载)或跨高比l0/h00(均布荷载),主要破坏形态有斜拉、剪压和斜压三种(如图4-8)。
图4-8 斜截面的破坏形态(1)斜拉破坏一般发生在剪跨比较大的情况(集中荷载时??a/h0>3)(均布荷载为l0/h0>8时)如图4-8(a)。
在荷载作用下,首先在梁的底部出现垂直的弯曲裂缝;随即,其中一条弯曲裂缝很快地斜向(垂直主拉应力)伸展到梁顶的集中荷载作用点处,形成所谓的临界斜裂缝,将梁劈裂为两部分而破坏,同时,沿纵筋往往伴随产生水平撕裂裂缝,即斜拉破坏。
斜拉破坏荷载与开裂时荷载接近,这种破坏是拱体混凝土被拉坏,这种梁的抗剪强度取决于混凝土抗拉强度,承载力较低如图4-9所示。
(2)剪压破坏一般发生在剪跨比适中的情况(集中荷载时1≤??a/h0≤3(均布荷载时为3≤l0/h0≤8))如图4-8(b)。
在荷载的作用下,首先在剪跨区出现数条短的弯剪斜裂缝;随着荷载的增加,其中一条延伸最长、开展较宽称为主要斜裂缝,即临界斜裂缝;随着荷载继续增大,临界斜裂缝将不断向荷载作用点延伸,使混凝土受压区高度不断减小,导致剪压区混凝土在正应力σ和剪应力τ和荷载引起的局部竖向压应力的共同作用下达到复合应力状态下的极限强度而破坏,这种破坏称为剪压破坏。
破坏时荷载一般明显地大于斜裂缝出现时的荷载。
这是斜截面破坏最典型的一种。
(3)斜压破坏这种破坏一般发生在剪力较大而弯矩较小时,即剪跨比很小(集中荷载时??a/h0<1,均布荷载时为l0/h0<3)如图4-8(C))。
加载后,在梁腹中垂直于主拉应力方向,先后出现若干条大致相互平行的腹剪斜裂缝,梁的腹部被分割成若干斜向的受压短柱。
随着荷载的增大,混凝土短柱沿斜向最终被压酥破坏,即斜压破坏。
这种破坏是拱体混凝土被压坏。
由图4-9可知,不同剪跨比梁的破坏形态和承载力不同,斜压破图4-9 斜截面破坏的P-f 曲线坏最大,剪压次之,斜拉最小。
而在荷载达到峰值时的跨中挠度均不大,且破坏后荷载均迅速下降,这与弯曲破坏的延性性质不同,均属于脆性破坏,其中斜拉破坏最明显,斜压破坏次之,剪压破坏稍好。
除上述三种破坏外,在不同的条件下,还可能出现其它的破坏形态如:荷载离支座很近时的纯剪切破坏以及局部受压破坏和纵筋的锚固破坏,这些都不属于正常的弯剪破坏形态,在工程中应采取构造措施加以避免。
4.2.5 影响无腹筋梁斜截面受剪承载力的主要因素(1)剪跨比感谢您的阅读,祝您生活愉快。