基于Sprink2000软件的自动喷水系统水力计算
浅谈自动喷淋灭火系统的水力计算方法
浅谈自动喷淋灭火系统的水力计算方法作者:撖玲来源:《房地产导刊》2015年第03期摘要:为克服目前自动喷水灭火系统水力计算方法存在的缺陷,根据水力学原理分析了自动喷水灭火系统配水支管上各喷头流量之间的比例关系和水压平衡方程,提出了适于管路自动喷水灭火系统的水力计算方法,可精确计算自动喷水灭火系统的设计流量。
关键词:自动喷淋;灭火系统;水力计算自动喷水灭火系统的水量、水力计算是自动喷水灭火系统的灵魂,涉及系统的安全可靠性、经济性。
自动喷水灭火系统同时具备了防火、控火和灭火的功能,是目前最为有效的自动灭火设施,是现代建筑防火技术的重要组成部分。
自动喷水灭火系统应在人员密集、不易疏散、外部增援灭火与救生较困难的性质重要或火灾危险性较大的场所中设置。
正确进行自动喷水灭火系统的水力计算,对于合理选择加压水泵、保证灭火时的流量及喷水均匀性有重要意义。
一、“矩形面积—逐点法”“矩形面积—逐点法”,即面积节点法。
首先确定最不利作用面积在管网中的位置,作用面积的形状宜采用正方形或长方形。
若采用长方形布置时,其长方形的长边应平行配水支管,边长宜为作用面积平方根的1.2倍,仅在作用面积内的喷头才计算喷水量,并且每个喷头的喷水量至少满足规定的喷水强度,作用面积后的管段流量不再增加,仅计算管道的水头损失。
对轻、中危险等级建筑的计算时,可假定作用面积内喷头的喷水量相等;对严重危险级,应该按照喷头处的实际水压计算喷水量。
二、逐点法逐点法计算是从系统最不利点喷头开始,计算沿程各喷头的水压力、流量和管段的累计流量、水头损失,直到管段累计流量满足设计流量为止。
在此后的管段中流量不再增加,仅计算沿程和局部阻力损失。
在以上计算中,每个喷头流量按特性系数法计算,其流量随喷头处压力变化而变化。
此计算的特点是在系统中除最不利点喷头以外的任一喷头的喷水量或任意4个喷头的平均喷水量均超过了“喷规”第4.1.1条规定,系统设计偏于安全。
三、“矩形面积—逐点法”计算方法1、矩形面积的确定火灾发生时,一般都是火源呈辐射状向四周扩大蔓延,只有失火区上方的喷头才会开启。
自动喷水灭火系统水力计算及配水管径分析
自动喷水灭火系统水力计算及配水管径分析现如今,自动喷水灭火系统越来越广泛的被用于各种大型建筑中。
而对于自动喷水灭火系统水力计算的方法和步聚及配水管径的确定是走关系到整个系统能否有效运行的关键环节,本文我们将结合《自动喷水灭火系统设计规范》和《给水排水设计手册》,并通过实例对中危Ⅱ级管网水力计算进行对比,就自动喷水灭火系统水力计算的原则和管网配水管径的确定方法展开分析。
标签自动喷水灭火系统;水力计算;配水管径自动喷水灭火系统,是当今世界上公认的最为有效的自救灭火设施,是应用最广泛、用量最大的自动灭火系统。
国内外应用实践证明:该系统具有安全可靠、经济实用、灭火成功率高等优点。
在自动喷水灭火系统设计中,力求遵循系统基本原理和技术特点,使系统充分发挥自动扑救初期火灾的作用。
自动喷水灭火系统的水力计算和配水管径的确定是自喷系统设计的灵魂,是关系到系统可靠性、合理性和经济性的一项重要设计内容。
一、系统水量、水力计算设计人员针对系统设计流量的计算,通常做法:依据《喷规》首先判定设置场所火灾危险等级,根据系统设计的基本参数,即喷水强度(L/min·m2)×作用面积(m2)确定喷淋系统设计流量,该设计流量是假定作用面积内所有喷头的工作压力和流量等于最不利点喷头的工作压力和流量,忽略管道阻力损失对喷头工作压力的影响,导致系统设计流量小于实际流量。
在系统设计流量计算时,为了确保喷头的计算出水量与实际水力条件相符,《给水排水设计手册》第 2 册《建筑给水排水》第2.3.5 节,详细介绍了自动喷水灭火系统水力计算方法:根据设置场所火灾危险等级,作用面积、喷水强度和最不利点处喷头工作压力,首先选定最不利作用面积在管网中的位置,此作用面积的形状宜采用正方形或长方形,当采用长方形布置时,其长边应平行于配水支管,边长宜为作用面积平方根的1.2倍,从系统最不利作用面积内最不利点喷头开始,沿程计算各喷头的水压力、流量和管段的累计流量、水头损失,直到管段累计流量达到设计流量为止;在此后的管段中流量不再增加,仅计算沿程和局部水头损失。
喷淋水力计算
喷淋水力计算水力计算自动喷水灭火系统的水力计算主要是按照逐点计算法进行计算;这于原规范有很大区别。
原规范是采用估算法进行计算的。
计算方法:1、确定喷头间距规范中给出了如下面所示的间距。
这个间距是最大间距,也就是在0.1Mpa下的间距。
喷水强度(L/min·m2)正方形布置的边长(m)矩形或平行四边形布置的长边边长(m)一只喷头的最大保护面积(m2)喷头与端墙的最大距离(m)4 4.4 4.520.0 2.26 3.6 4.012.5 1.88 3.4 3.611.5 1.712~20 3.0 3.69.0 1.5注:1 仅在走道设置单排喷头的闭式系统,其喷头间距应按走道地面不留漏喷空白点确定;2 货架内喷头的间距不应小于2m,并不应大于3m。
很多设计者对这一点不是很了解,往往不论建筑物的实际尺寸,都一律套用这个距离,造成很多错误。
对于一个建筑物,我们在确定了危险等级后,要根据建筑物的实际尺寸来确定喷头间距,如我们确定了一个建筑物为中危险Ⅱ级,也既喷水强度为8 L/min·m2由下图可知由上述图纸可以明白系统最不利点四个喷头ABCD围成的面积正方形ABCD的面积为S,只要保证S内的喷水强度不小于8 L/min·m2就满足规范要求;从图上看,在每个喷头的洒水量中有1/4的水量洒在S中,也就是S内的洒水量为一个喷头的洒水量;由喷头的流量公式喷头的流量应按下式计算:(9.1.l)式中 q——喷头流量(L/min);按照上述规定,则该作用面积的实际长边长度应大于或等于15.17m;按照图所示应该在第5个与第6个喷头的中间位置偏向第6个喷头0.17m,如果不把第6个喷头划进来则小于规定;所以将第6个喷头划进来;这样实际的作用面积长边边长为18m;那么按照作用面积160m2 则作用面积的短边至少应为160/18=8.89m。
按照图纸看,8.89m的位置在第2行与第3行之间,现在我们取第2行与第三行中间,那么,短边为6m长;这样作用面积为6*18=108平方米;小于160平方米。
解析建筑消防中自动喷水灭火系统与水力计算
解析建筑消防中自动喷水灭火系统与水力计算随着现代建筑技术的不断发展,消防安全机制也日益完善。
在建筑消防系统的设计中,自动喷水灭火系统是一个非常重要的组成部分,它能够在火灾发生时自动释放水源,快速灭火。
同时,为了确保自动喷水灭火系统能够有效运作,水力计算也是不可或缺的环节。
一、自动喷水灭火系统1.1 概述自动喷水灭火系统是一种建筑火灾自动灭火系统,它是由喷水控制器、自动火灾报警装置、喷头等组成。
当火灾发生时,自动喷水灭火系统可以自动启动,并释放具有足够威力的水流压力,将火灾扑灭。
它广泛应用于各类公共场所、商业建筑、工业厂房及住宅区等。
1.2 自动喷水灭火系统的优点自动喷水灭火系统具有以下几个优点:(1)自动启动:当火灾发生时,它能够自动启动,不需要人为干预。
(2)快速反应:使火灾迅速被扑灭,降低火灾造成的损失。
(3)可靠性高:自动喷水灭火系统采用高品质的材料制造,能够在长时间的使用中保证其稳定性和可靠性。
1.3 自动喷水灭火系统的分类根据其使用的水源和喷头类型,自动喷水灭火系统可以分为以下几类:(1)干式喷水灭火系统:使用气体储存罐作为压力源,释放气体驱动水流进入灭火区域。
(2)湿式喷水灭火系统:使用公共供水系统作为压力源,喷头在火灾时释放水流进行灭火。
(3)预动式喷水灭火系统:介于干式和湿式之间,是一种在火情出现之前泵入少量水的消防系统。
1.4 自动喷水灭火系统的喷头种类自动喷水灭火系统的喷头是非常重要的部分,常见的喷头种类有:(1)遮盖型喷头:适用于半开放的空间或固定物体,它可以把水流喷出很远并散开。
(2)喷洒型喷头:适用于固定的、能够承受喷头施加的压力的物体上,如大型机器等。
(3)喷雾型喷头:适用于容易燃烧的物品上,能够将水分散成雾状,增加水分的覆盖面积。
二、水力计算水力计算是自动喷水灭火系统中非常重要的环节,它是确保系统正常工作的基础。
水力计算主要包括两个方面:水流计算和压力计算。
2.1 水流计算水流计算是指计算自动喷水灭火系统中所需的水流量。
自喷系统水力计算
自喷系统水力计算应注意的几个问题蓝为平摘要:对自动喷水灭火系统水力计算过程中最不利点喷头工作压力、管径等几个问题进行探讨,并提出一些建议,以便确定合理的计算结果。
关键词:自动喷水灭火系统水力计算工作压力在自动喷水灭火系统工程设计中,设计人员对火灾危险级别选定、喷头布置、报警阀控制喷头数量等很重视,但往往忽视了水力计算,主要有以下几个问题:一是没有根据规范的流量公式计算,而是以旧规范的作用面积乘以喷水强度来估算系统设计流量;二是系统压力仅根据建筑高度加上估计的水头损失,而不是根据喷头进行逐点计算;三是认为最不利点喷头压力应为0.05MPa(规范要求的最小压力);四是一味强调配水支管压力不能超过0.4MPa。
但笔者在工作中发现,根据现行规范公式进行计算得出的压力、流量数值与经验估算或老规范计算方法均相差较大,最不利点喷头压力也不应简单定为0.05MPa,配水管压力并非不能超过0.4MPa。
现对自喷系统水力计算进行举例说明,因出现分歧的地方主要是作用面积内的计算结果,所以本文仅比较作用面积内的计算过程。
首先按理论间距布置喷头,再根据计算结果对管径、喷头压力进行比较、调整,最后以实际工程进行核算,以期找出合理的管径、压力。
根据不同建筑类型,自喷系统分为6个危险级别,民用建筑设计中经常遇到的有轻危险级、中危险级Ⅰ级、Ⅱ级。
现以中危险级Ⅱ级为例,其设计参数为:喷水强度8L/(min.m2),计算作用面积160 m2,最不利点喷头工作压力不小于0.05MPa,正方形布置喷头间距不大于3.4m。
先按标准间距布置喷头,且以规范建议的喷头数采用管径,喷头布置如下图(配水管两边喷头对称布置,实际作用面积为173m2):1、最不利点喷头工作压力的确定规范要求不得小于0.05MPa,且需经水力计算确定。
本例先取0.05MPa,用水力计算软件计算结果见下表:前编号后编号流量(l/s)调整q(l/s)管径(DN)流速(m/s)坡度(MPa/m)管长(m)流量系数管件当量(m)计算管长(m)水损(MPa)前压(MPa)后压(MPa)1 2 0.94 25 1.78 0.00388 3.40 80 0.60 4.00 0.0155 0.0500 0.06552 3 2.02 32 2.13 0.00383 3.40 80 2.00 5.40 0.0207 0.0655 0.08623 4 3.26 40 2.59 0.00473 3.40 80 2.70 6.10 0.0288 0.0862 0.11514 5 4.69 40 3.73 0.00979 3.40 80 2.40 5.80 0.0568 0.1151 0.17185 6 6.44 50 3.03 0.00459 1.70 80 3.40 5.10 0.0234 0.1718 0.19536 7 6.44 65 1.83 0.00120 3.40 80 4.20 7.60 0.0091 0.1953 0.20447 8 13.02 80 2.62 0.00198 3.40 80 5.20 8.60 0.0170 0.2044 0.22148 9 19.88 80 4.00 0.00461 3.40 80 4.60 8.00 0.0369 0.2214 0.2583A1 A2 0.94 25 1.78 0.00388 3.40 80 0.60 4.00 0.0155 0.0500 0.0655 A2 A3 2.02 32 2.13 0.00383 3.40 80 2.00 5.40 0.0207 0.0655 0.0862 A3 A4 3.26 40 2.59 0.00473 3.40 80 2.70 6.10 0.0288 0.0862 0.1151 A4 A5 4.69 40 3.73 0.00979 3.40 80 2.40 5.80 0.0568 0.1151 0.1718 A5 7 6.44 6.59 50 3.03 0.00459 1.70 80 3.40 5.10 0.0234 0.1718 0.1953B1 B2 0.94 25 1.78 0.00388 3.40 80 0.60 4.00 0.0155 0.0500 0.0655 B2 B3 2.02 32 2.13 0.00383 3.40 80 2.00 5.40 0.0207 0.0655 0.0862 B3 B4 3.26 40 2.59 0.00473 3.40 80 2.70 6.10 0.0288 0.0862 0.1151 B4 B5 4.69 40 3.73 0.00979 3.40 80 2.40 5.80 0.0568 0.1151 0.1718 B5 8 6.44 6.86 50 3.03 0.00459 1.70 80 3.40 5.10 0.0234 0.1718 0.1953 根据规范,中危险级Ⅱ级最不利作用面积内任意4个喷头围合范围内平均喷水强度不小于85%的设计强度,即6.8 L/min.m2。
自动喷水灭火系统支管特性系数水力计算法
自动喷水灭火系统支管特性系数水力计算法摘要鉴于目前常用的自动喷水灭火系统特性系数水力计算法所存在的缺陷,在理论推导了配水支管起端水压与同支管末端喷头出流量关系的基础上,提出了支管特性系数水力计算法,并介绍了利用EXCEL软件简化计算的方法。
关键词自动喷水灭火系统;支管特性系数水力计算法;EXCELHydraulic Calculation Method on Range Pipe Characteristic Coefficient for Fire Protection SprinklerSystemAbstract:Due to a defect in the common hydraulic calculation method of fire protection sprinkler system on characteristic coefficient,hydrauliccalculation method on range pipe characteristic coefficient is put forward basedon theoretical deduction on relationship between pressure at starting point of arange pipe and nozzle flow at the end of the pipe,also by using software ofEXCEL ways are introduced to simplify calculation.Key words:Fire Protection Sprinkler System;Hydraulic Calculation Method on Range Pipe Characteristic Coefficient;EXCEL1 问题的提出便捷准确、便于设计人员应用的自动喷水灭火系统的水力计算方法,对于提高设计质量、保证系统在火灾时有效运行具有重要意义。
建筑消防系统:自动喷水灭火系统的水力计算
在火灾报警后,先注入一小量水,然后再启动 喷头的建筑消防系统。
湿管系统
使用充满水的管道连接到喷头的建筑消防系统。
雨淋系统
适用于火灾可能造成严重损失的危险场所,如 计算机房、电力仪表室等。
自动喷水灭火系统的需求
1 自动喷水灭火系统的作用
自动检测并启动灭火装置,控制火势蔓延。
2 建筑消防系统中的自动喷水灭火系统的重要性
建筑消防系统:自动喷水灭火 系统的水力计算
欢迎来到本次分享!了解建筑消防系统和自动喷水灭火系统的水力计算是确 保建筑安全的重要一环。
什么是建筑消防系统
建筑消防系统是一系列用于预防和应对火灾的设备和措施。它包括消火栓系 统、自动喷水灭火系统、火灾报警系统等。
不同类型的建筑消防系统
干管系统
使用干管直接连接到喷头的建筑消防系统。
为火灾扑灭提供关键的灭火手段。
水力计算的基本原理
1 水力计算的定义和目的
通过计算水流速度和压力,确保喷头能提供足够的水量来灭火。
2 水力计算的基本参数
包括消火栓系统的供水压力、管道直径、喷头的喷水角度和距离等。
自动喷水灭火系统的水力计算方法
1
水流速度和压力的计算
2
根据建筑平面图和系统参数计算出水流
速度和压力。
3实践Βιβλιοθήκη 的挑战4水力计算需要考虑各种因素,如管道阻 力、材料摩擦等,需要经验和专业知识。
常用的水力计算方法
根据具体的建筑要求和消防设计规范选 择适当的计算方法。
实际案例分析
通过分析实际案例,了解水力计算在消 防系统设计中的应用。
自动喷水灭火系统的水力计算研究
自动喷水灭火系统的水力计算研究摘要:根据国外自动喷水灭火系统水力计算的发展,国内普遍采用“矩形面积-逐点法”进行水力计算。
但是,在大量的实际工程项目中,最不利作用面积内的喷头布置呈不规则形状。
针对此,笔者采用“精确计算法”,研究最不利作用面积呈不规则形状时,以验证“矩形面积-逐点法”进行水力计算能否满足设计要求。
关键词:自动喷水灭火系统水力计算不规则形状The hydraulic calculation of the sprinkler systemWang Zong-wei(Jiangsu province architectural design and research institute co., LTD,Nanjing, 210019)Abstract: According to the development of the automatic sprinkler system hydraulic calculation abroad, domestic widely used the "rectangular area-point by point" for hydraulic calculation. But, the nozzle arrangement of the most unfavorable effect area had showed irregular shape in a lot of practical engineering project. For this, the author studies the irregular shape of the most unfavorable effect area by "precise calculation method", to verify that the "rectangular area-point by point" in the hydraulic calculation can meet the design requirements.Keywords: automatic sprinkler system;hydraulic calculation;irregular shape《自动喷水灭火系统设计规范》GB 50084-2001中8.0.5条规定:管道的管径应经水力计算确定。
建筑消防系统:自动喷水灭火系统的水力计算
2、特性系数法:严重、仓库危险级 (1)确定作用面积的位置,计算作用面积的边长 矩形(长边//支管)
(2)计算作用面积内的喷头数 (3)确定第一个喷头出流量
精品文档
(4)计算管段流量
精品文档
(5)确定DN 同作用面积法 (6)计算水头损失,确定H 同作用面积法 3、减压措施 (1)减压孔板:87页图3.4.1( a ) (2)节流管: 87页图3.4.1( b ) (3)减压阀:报警阀组入口前;过滤器
相邻配水支管之间距离 4、作用面积与设计喷水保护的最大面积 矩形(长边//支管)
例
5、设计喷水强度(L/min.m2)
3.4.2 管网水力计算
目的: 1)确定DN 2)确定H 3)选择升压贮水设备 前提: 1)完成平面布置;绘制系统草图 2)确定设计参数
精品文档
1、作用面积法:轻、中危险级 (1)确定作用面积的位置,计算作用面积的边长 矩形(长边//支管)
例
(2)计算作用面积内的喷头数 (3)确定喷头出流量
精品文档
(4)计算作用面积内的设计秒流量
(5)校核喷水强度
a)平均喷水强度
规定值
b)作用面积内任意4个喷头平均喷水强度 轻、中 ≥85%规定值
(6)计算管段流量,确定DN 初步设计时估算:90页表3.4.4 水力计算:q→DN,i(经济流速;v≤10m/s) (7)计算水头损失,确定H 沿程
3.6
4.0
12.5
1.8
8
3.4
3.6
11.5
1.7
≥12
3.0
3.6
9.0
1.5
民用建筑和工业厂房的系统设计基本参数
自动喷水灭火系统完整水力计算的方法
自动喷水灭火系统完整水力计算的方法Chapter 1: Introduction- Background information about automatic sprinkler systems and their importance in fire protection- Objective of the paper: presenting a complete hydraulic calculation method for automatic sprinkler systemsChapter 2: Water supply calculations- Determination of the water demand for the system based on the occupancy classification, hazard classification, and area to be protected- Estimation of the required fire flow based on the hazard classification and fire department requirements- Calculation of the available water supply including the available pressure and flow rateChapter 3: Pipe sizing calculations- Selection of the appropriate pipe material for the system based on the type of hazard, water quality, and available pressure- Calculation of the required pipe size based on the water demand, flow rate, and pressure loss criteria- Design of the piping layout including pipe fittings, valves, and other accessoriesChapter 4: Sprinkler head layout and calculations- Layout of the sprinkler heads based on the occupancy classification and hazard classification- Calculation of the spacing and density of the sprinkler heads based on the area to be protected and the type of hazard- Selection of the appropriate type of sprinkler head based on thetemperature rating, response time, and other factorsChapter 5: System testing and approval- Field testing of the system including pressure testing, flow testing, and functional testing of the sprinkler heads- Submission of the hydraulic calculations to the relevant authorities for approval- Conclusion and recommendations for future research in the field of hydraulic calculations for automatic sprinklersystems.Automatic sprinkler systems are an integral part of fire protection systems in buildings, warehouses, and industrial facilities. These systems are designed to detect and extinguish fires, protecting people, property, and assets from potential damage. Hydraulic calculations ensure that these systems are designed optimally to provide adequate water supply to all sprinkler heads in case of a fire.The objective of this paper is to provide a comprehensive overview of hydraulic calculations for automatic sprinkler systems. The paper will cover the principles and methodologies used to determine the water supply requirements, pipe sizing, sprinkler head layout, and system testing.The importance of automatic sprinkler systems cannot be overstated. They have been proven to significantly reduce the incidence of injuries, deaths, and property damage in fires. The National Fire Protection Association (NFPA) reports that buildings with sprinkler systems experience 60% fewer injuries, and 80% less property damage compared to buildings without sprinkler systems. These systems can also reduce the risk of fire spread,minimizing the impact of a fire on neighboring buildings and surrounding communities.The key to effective fire protection is the right design of the automatic sprinkler systems. This calls for hydraulic calculationsto determine the water supply requirements, pipe sizing, sprinkler head layout, and system testing. These calculations take into account the occupancy classification, hazard classification, and area to be protected. The determination of the water demand is based on the type of occupancy and the potential hazards associated with it.The water supply calculations also include the estimation of the required fire flow, which is the amount of water needed to control a fire until the fire department can respond. This is determined based on the hazard classification and fire department requirements. The calculation of the available water supply involves the assessment of the available pressure and flow rate, taking into account factors such as friction loss and elevation difference.Pipe sizing calculations are crucial to ensure that the water supply system can deliver adequate water to all sprinkler heads in case of a fire. The pipe size is calculated based on the water demand, flow rate, and pressure loss criteria. The selection of the appropriate pipe material is also important, taking into consideration factors such as the type of hazard, water quality, and available pressure. The layout of the sprinkler heads is an essential aspect of designing automatic sprinkler systems. The sprinkler head layout is determined based on the occupancy classification and hazardclassification. The spacing and density of the sprinkler heads are calculated according to the area to be protected and the type of hazard. The selection of the appropriate type of sprinkler head takes into consideration factors such as the temperature rating, response time, and other factors.System testing and approval are essential to ensure that the automatic sprinkler system is functional and meets the relevant standards and regulations. This includes field testing of the system, submission of the hydraulic calculations to the relevant authorities for approval, and ongoing maintenance of the system.In conclusion, automatic sprinkler systems are a critical aspect of fire protection. Their effectiveness, however, is directly tied to their design. Hydraulic calculations are essential in ensuring an optimal design of the system, taking into consideration the water supply requirements, pipe sizing, sprinkler head layout, and system testing. Continued research in this field will help to further improve the design of these systems, ultimately saving lives and property.Chapter 2: Principles and Methodologies of Hydraulic CalculationsHydraulic calculations are critical in designing an automatic sprinkler system that is effective and meets the relevant standards and regulations. This chapter provides an overview of the principles and methodologies of hydraulic calculations for automatic sprinkler systems, including water supply calculations, pipe sizing calculations, sprinkler head layout, and system testing. Water Supply CalculationsThe determination of the water supply requirements for an automatic sprinkler system is crucial in ensuring that the system is capable of delivering the required amount of water to all sprinkler heads in case of a fire. The water supply calculations take into account the occupancy classification, hazard classification, and the area to be protected.The water supply calculations involve the estimation of the required fire flow, which is the amount of water needed to control a fire until the fire department can respond. The required fire flow is determined based on the hazard classification and the fire department requirements. For example, a high-hazard occupancy such as a chemical storage facility may require a higher fire flow than a low-hazard occupancy such as an office building.The calculation of the available water supply involves the assessment of the available pressure and flow rate, taking into account factors such as friction loss and elevation difference. The available water supply is the maximum water supply that the system can draw from the water source.Pipe Sizing CalculationsPipe sizing calculations are essential in ensuring that the water supply system can deliver adequate water to all sprinkler heads in case of a fire. The pipe size is calculated based on the water demand, flow rate, and pressure loss criteria. The pipe sizing calculations take into account the type of pipe material, its capacity, and its friction loss.The selection of the appropriate pipe material is essential, taking into consideration factors such as the type of hazard, water quality, and available pressure. Common pipe materials used in automatic sprinkler systems include steel, PVC, and CPVC.The pipe sizing calculation involves the determination of the maximum allowable velocity, which is the maximum velocity at which water can flow through the pipe without causing damage to the pipe or impairing its effectiveness. The maximum allowable velocity is typically around 10 feet per second (fps) for steel pipes and 8 fps for plastic pipes.Sprinkler Head LayoutThe layout of the sprinkler heads is an essential aspect of designing an automatic sprinkler system. The sprinkler head layout is determined based on the occupancy classification and hazard classification. The spacing and density of the sprinkler heads are calculated according to the area to be protected and the type of hazard.The selection of the appropriate type of sprinkler head takes into consideration factors such as the temperature rating, response time, and other factors. Common types of sprinkler heads used in automatic sprinkler systems include pendent sprinklers, upright sprinklers, and sidewall sprinklers.System Testing and ApprovalSystem testing and approval are critical in ensuring that the automatic sprinkler system is functional and meets the relevant standards and regulations. System testing involves field testing of the system, including flow tests, pressure tests, and other functional tests.System approval involves the submission of the hydraulic calculations to the relevant authorities for approval. The hydraulic calculations need to meet the relevant standards and regulations, including those set by the National Fire Protection Association (NFPA). Ongoing maintenance of the system is essential in ensuring that the system remains functional and effective in case of a fire.In conclusion, hydraulic calculations are an essential aspect of designing an automatic sprinkler system that is effective and meets the relevant standards and regulations. The principles and methodologies of hydraulic calculations involve water supply calculations, pipe sizing calculations, sprinkler head layout, and system testing. Continued research in this field will help to further improve the design of these systems, ultimately saving lives and property.Chapter 3: Software for Hydraulic CalculationsHydraulic calculations for automatic sprinkler systems can be complex and time-consuming. Fortunately, there are many software programs available today that can simplify the process and help designers and engineers to perform these calculations quickly and accurately.This chapter discusses the software programs available forhydraulic calculations, their benefits, and limitations.Benefits of Software ProgramsThe use of software programs for hydraulic calculations offers numerous benefits, including:1. Efficiency: Software programs can perform complex calculations in a matter of seconds, saving designers and engineers time and effort.2. Accuracy: Software programs eliminate human error and ensure accurate calculation results. There is no possibility of miscalculations or mistakes during data entry.3. Flexibility: Software programs allow for easy modification of system parameters, such as the water supply or hazard classification, without having to recalculate the entire system.4. Collaboration: Software programs allow for easy sharing and collaboration between team members, enabling real-time design changes and feedback.5. Compliance: Software programs are often designed to meet relevant regulatory standards, ensuring that calculations are compliant with the National Fire Protection Association (NFPA) and other regulatory bodies.Limitations of Software ProgramsAlthough there are numerous benefits to using software programs for hydraulic calculations, there are also some limitations, including:1. Cost: Many software programs can be expensive, which may make them less accessible to smaller design firms or freelance designers.2. Learning Curve: There may be a learning curve associated with using new software programs, which may require additional training or support.3. Input Requirements: Software programs require accurate input data for proper calculations. If input data is inaccurate or incomplete, the results produced by the software may also be inaccurate.4. Simplification: Some software programs may simplify or reduce the complexity of hydraulic calculations, which can lead to oversights or mistakes in the design of the system.Popular Software ProgramsThere are many software programs available today for hydraulic calculations for automatic sprinkler systems. Some of the most popular software programs include:1. AutoSPRINK: AutoSPRINK is a comprehensive fire sprinkler design software used for hydraulics, 3D modeling, and fabrication. It is designed for engineers, contractors, and designers and featuresadvanced hydraulic calculations tools.2. HydraCAD: HydraCAD is a software program used for hydraulic calculations, 2D schematics, and fabrication. The software offers an intuitive interface, comprehensive libraries, and powerful calculation tools.3. SprinkCAD: SprinkCAD is a software program used for hydraulic calculations, design, and fabrication. It is designed for engineers, contractors, and designers and offers fast and accurate calculations.4. Elite Software Sprinkler Design: Elite Software Sprinkler Design is a software program used for hydraulic calculations, design, and fabrication. It is designed for engineers, contractors, and designers and offers an easy-to-use interface and advanced calculation tools.In conclusion, the use of software programs for hydraulic calculations for automatic sprinkler systems offers many benefits, including efficiency, accuracy, flexibility, collaboration, and compliance. However, designers and engineers should be aware of the potential limitations of using these software programs, such as cost, the learning curve, input requirements, and simplification of calculations. Ultimately, the selection of the appropriate software program will depend on the needs of the designer or engineer and the complexity of the project.Chapter 4: Factors to Consider When Selecting a Software Program for Hydraulic CalculationsWhen selecting a software program for hydraulic calculations forautomatic sprinkler systems, there are several factors to consider. This chapter discusses these factors and their importance in selecting the appropriate software program.1. Project Size and ComplexityThe size and complexity of the project can determine the type of software program needed. Some programs are designed for simple systems, while others are better suited for more complex systems. If the project involves multiple zones, complex pipe networks, or special hazard classifications, a more advanced software program may be necessary.2. Input Data RequirementsThe accuracy of the hydraulic calculations depends on the input data provided. Some software programs require specific details, such as pipe length, fittings, and flow rates. It is important to ensure that the input data is accurate and complete to achieve accurate results.3. Regulatory ComplianceHydraulic calculations for automatic sprinkler systems must comply with relevant regulatory standards, such as the National Fire Protection Association (NFPA) standards. It is important to select a software program that is designed to meet these regulatory standards to ensure compliance with local regulations and avoid potential penalties or legal issues.4. User InterfaceThe user interface of a software program can impact its usability and ease of use. It is important to select a program with an intuitive interface that provides clear and concise instructions, making it easy for the user to enter input data, select parameters, and interpret the results.5. PriceThe cost of the software program is an important factor to consider. Some programs can be expensive, while others are more affordable. It is important to select a program that fits within the budget, while still meeting the project's requirements.6. Technical SupportTechnical support is critical in ensuring that the software program operates effectively and efficiently. Select a software program that offers reliable technical support, including timely responses to inquiries, and easy-to-access resources such as user manuals or video tutorials.7. CompatibilityCompatibility with other software programs or systems can impact the ease of data transfer, which is important in collaborating with other team members or transferring data to other programs. Ensure that the software program is compatible with other software programs or systems used in the project.8. Additional FeaturesSome software programs offer additional features, such as 3D modeling or fabrication tools, that can enhance the design process. Consider whether additional features would be beneficial for the project, and whether the cost of the program justifies these additional features.In conclusion, selecting the appropriate software program for hydraulic calculations for automatic sprinkler systems requires careful consideration of several factors, including the size and complexity of the project, input data requirements, regulatory compliance, user interface, price, technical support, compatibility, and additional features. By evaluating these factors, designers and engineers can select a software program that meets their needs, increases efficiency, and ensures compliance with relevant regulatory standards.Chapter 5: Common Software Programs for Hydraulic CalculationsThere are many software programs available for hydraulic calculations for automatic sprinkler systems, each with its own advantages and disadvantages. This chapter discusses some of the most commonly used software programs and their features.1. HydratecHydratec is a widely used software program for hydraulic calculations for automatic sprinkler systems. It is known for its accuracy and reliability, and is compliant with relevant regulatorystandards, such as NFPA 13. Hydratec allows users to create and analyze complex hydraulic systems quickly and easily, and includes features such as pipe sizing, water demand calculations, and automatic pressure calculations. Hydratec also offers technical support and training resources.2. SprinkCADSprinkCAD is another popular software program for hydraulic calculations for automatic sprinkler systems. It features an intuitive interface and a range of design and analysis tools, including automatic pipe sizing, hydraulic balancing, and pressure drop calculations. SprinkCAD is also compliant with relevant regulatory standards, such as NFPA 13, and offers technical support and training resources.3. Elite FireElite Fire is a comprehensive software program for hydraulic calculations for automatic sprinkler systems. It includes advanced features such as hydraulic analysis, pipe size optimization, and pressure loss calculations, as well as 3D modeling and fabrication tools. Elite Fire is also compliant with relevant regulatory standards and offers technical support and training resources.4. Autodesk RevitAutodesk Revit is a 3D modeling software program that can be used for hydraulic calculations for automatic sprinkler systems. It allows users to create and analyze complex hydraulic systemswithin a 3D model of the building. Revit includes features such as automatic pipe sizing, hydraulic analysis, and pressure drop calculations. It is also compatible with other Autodesk software programs, such as AutoCAD and Navisworks.5. PipeDesigner 3DPipeDesigner 3D is a comprehensive software program that includes design tools for a range of mechanical systems, including automatic sprinkler systems. It features an intuitive interface, advanced modeling capabilities, and comprehensive calculations for pipe sizing, pressure drop, and water demand. PipeDesigner 3D is compliant with relevant regulatory standards and offers technical support and training resources.In conclusion, selecting the appropriate software program for hydraulic calculations for automatic sprinkler systems requires careful consideration of features, compatibility, ease of use, and regulatory compliance. It is important to select a program that meets the needs of the project and provides accurate and reliable results. By evaluating the features and benefits of software programs such as Hydratec, SprinkCAD, Elite Fire, Autodesk Revit, and PipeDesigner 3D, designers and engineers can select a program that suits their requirements, enhances the design process, and ensures regulatory compliance.。
自动喷水灭火系统管道水力常见的计算方法有
自动喷水灭火系统(Automatic Sprinkler System,简称ASS)是一种常见的火灾防护自动喷水灭火系统(Automatic Sprinkler System,简称ASS)是一种常见的火灾防护设备,其工作原理是通过管道系统将水均匀地喷洒到火源上,以达到灭火的目的。
在设计和安装自动喷水灭火系统时,需要对管道的水力进行计算,以确保系统的有效性和安全性。
以下是一些常见的管道水力计算方法:1. 流量计算:流量是衡量水流速度的物理量,通常用立方米/小时(m³/h)表示。
在自动喷水灭火系统中,流量的计算需要考虑火灾的类型、火源的大小、管道的长度和直径等因素。
一般来说,流量的计算公式为Q=AV,其中Q是流量,A是管道的横截面积,V是水流速度。
2. 压力损失计算:在水流通过管道时,由于摩擦力和局部阻力的作用,水流的速度会减小,这就是压力损失。
在自动喷水灭火系统中,压力损失的计算需要考虑管道的长度、直径、材料和水流速度等因素。
一般来说,压力损失的计算公式为ΔP=fL/D,其中ΔP是压力损失,f 是摩擦因子,L是管道的长度,D是管道的直径。
3. 扬程计算:扬程是衡量水流能量的物理量,通常用米(m)表示。
在自动喷水灭火系统中,扬程的计算需要考虑水源的高度、管道的长度和直径、流量和压力损失等因素。
一般来说,扬程的计算公式为H=ΔP+ρgh+v²/2g,其中H是扬程,ΔP是压力损失,ρ是水的密度,g是重力加速度,h是水源的高度,v是水流速度。
4. 水泵选择:在自动喷水灭火系统中,水泵的选择需要考虑流量、扬程、效率和功率等因素。
一般来说,水泵的流量应大于系统的最大流量,扬程应大于系统的最大扬程,效率应尽可能高,功率应满足系统的需求。
5. 管道布局设计:在自动喷水灭火系统中,管道的布局设计需要考虑火源的位置、水源的位置、管道的长度和直径、流量和压力损失等因素。
一般来说,管道应尽可能短,直径应尽可能大,流量和压力损失应尽可能小。
自动喷水灭火系统水力计算-应用试算法
示。为满足 工程设计 的实际需要 , 有必要寻求一种准确 、 适用
【 作 者简介】 刘晓辉( 1 9 8 1 一 ) , 男, 宁夏中宁人 , 工程师 , 从事给排
水设 计与研究 , ( 电子信 箱) l x i a o h u i 8 2 @1 6 3 . c o mo
8 6
式中, q为喷 头流量 , L / s ; P为喷 头工作压 力 , m a z O; K为喷 头
【 中图分类号1 T U9 9 8 . 1 3 ' 2 【 文献标志码】 A 【 文章编号】 1 0 0 7 . 9 4 6 7 ( 2 0 1 3 ) 0 3 . 0 0 8 6 . 0 3
基于Sprink2000软件的自动喷水系统水力计算
基于Sprink2000软件的自动喷水系统水力计算
郭天翔
【期刊名称】《城镇供水》
【年(卷),期】2015(000)005
【摘要】自动喷水系统的水力计算是对系统设计的一次复核。
长期以来,大家一直采用图表等形式进行人工手算,不但耗时,还不够精确。
本文尝试使用Sprink2000软件进行自动喷水系统的水力计算,节省了大量人工手算时间。
在模型发生局部更改时,Sprink2000软件可以很容易的进行调整,这是人工手算无法比拟的。
【总页数】3页(P42-44)
【作者】郭天翔
【作者单位】上海核工程研究设计院,上海 200233
【正文语种】中文
【相关文献】
1.软件EXCEL在自动喷水灭火系统设计水力计算中的应用 [J], 陈朝桥
2.含边墙型扩展覆盖喷头的自动喷水系统水力计算 [J], 李湧;张涛
3.基于PDMS的供暖系统水力计算软件开发及应用 [J], 王世军;张宏宇
4.Sprink2000/Asprink在核电自动喷水灭火系统水力计算中的应用 [J], 束玉保
5.基于ZigBee的智能化草坪自动喷水系统设计 [J], 刘智
因版权原因,仅展示原文概要,查看原文内容请购买。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
基于Sprink2000软件的自动喷水系统水力计算
郭天翔
【摘要】自动喷水系统的水力计算是对系统设计的一次复核。
长期以来,大家一
直采用图表等形式进行人工手算,不但耗时,还不够精确。
本文尝试使用
Sprink2000软件进行自动喷水系统的水力计算,节省了大量人工手算时间。
在模型发生局部更改时,Sprink2000软件可以很容易的进行调整,这是人工手算无法比拟的。
【期刊名称】《城镇供水》
【年(卷),期】2015(000)005
【总页数】3页(P42-44)
【关键词】自动喷水系统;水力计算;Sprink2000软件
【作者】郭天翔
【作者单位】上海核工程研究设计院,上海 200233
【正文语种】中文
自动喷水系统的水力计算是自动喷水灭火系统设计的重要组成部分。
通过水力计算可以得到管道内流量、压力及不利位置处的喷头压力,根据计算结果对系统进行必要的优化调整。
自动喷水系统的水力计算不但涉及到系统的经济性、合理性,还涉及到系统的安全性、可靠性。
因此,进行自动喷水系统的水力计算有着重要意义。
目前,自动喷水系统水力计算常用方法有面积节点法、逐点法、作用面积-逐点法。
根据以上三种方法进行人工手算有诸多弊端:需耗费大量时间;由于手算模型的依
据为简化模型,计算结果和实际结果会有一定出入;模型中间某段管道需要修改时,手算结果需要重新计算。
为了避免以上弊端,提高工作效率,本文尝试用Sprink2000软件进行自动喷水系统的水力计算。
Sprink2000软件是国外的一款专门进行喷淋水力计算的软件,目前,在国内某些喷淋水力计算中已经开始应用。
Sprink2000软件通过输入初始参数,包括初始流量、K系数,确定起始点,进而开展喷淋系统水力计算。
Sprink2000软件操作的
重点在于模型构建、初始参数确定。
相比人工手算,Sprink2000软件有着明显的优点:
(1)Sprink2000软件对自动喷水系统如何布置要求不高。
人工手算对喷淋的均
匀布置性要求较高,非均匀布置将会导致较大的人工计算量。
(2)在模型计算完毕后,若需要将模型中间某段管道进行调整,对人工手算来讲可能需要重新计算,而Sprink2000软件仅需将模型部分管道调整即可,其余后续计算交由软件完成。
(3)Sprink2000软件计算精度远大于人工手算。
人工手算模型一般是平面布置图,管道上管配件的水损也需要进行人工估算。
Sprink2000软件建立的模型是系统三维布置图,三维布置图可以将系统完整、全面的呈现出来,包括管道上的各种管配件。
(4)Sprink2000软件库中对管道水损、管配件水损都有定义,计算结果精度高。
基于Sprink2000软件的自动喷水系统水力计算基本原理是:根据作用面积法确定受影响喷头的数量、位置,通过Sprink2000软件后台进行系统水力计算,用Sprink2000软件替代人工手算那部分工作,提高工作效率。
详细计算方法如下:
(1)分析保护对象的性质、危险等级、作用面积。
(2)选择模型计算适用的喷淋规范。
Sprink2000软件内置了美标和国标两套规范,在模型计算前需要提前选择。
(3)建立Sprink2000软件环境下的三维管道模型。
(4)确定模型中作用面积内的喷头数量。
(5)利用Sprink2000进行自动喷淋系统水力计算。
(6)生成自动喷水系统水力计算报告。
4.1 模型构建
在模型构建之前,首先要确定最不利点喷头的压力及K值。
通过喷头流量计算公
式计算最不利点喷头的流量。
将得到的喷头流量、K值等基本参数信息在喷头基本参数界面设定好。
喷头基本参数界面见图1。
Sprink2000软件是一款自动喷水系统计算软件,模型构建通过AutoCAD完成。
基于Sprink2000软件的水力计算模型是1:1的三维模型,可以将自动喷水系统完整、准确的体现出来。
模型构建的基本流程如下:
(1)设置起始点。
(2)从起始点开始,在西南等轴视图模式下,按照不同管径绘制自动喷水系统的三维管道模型。
(3)在模型中添加喷头。
(4)确定作用面积,作用面积内的喷头“打开”,非作用面积内的喷头“关闭”。
(5)将管道上的阀门、三通、弯头等管配件绘制在管道模型上。
4.2 试运行
对建立的自动喷水系统三维模型进行试运行,检查模型是否有错误,完善并修改模型。
试运行过程中,软件会对管道、节点自动编号。
根据编号在后续生成的报告中可以
查到相应管道、节点的具体水力学信息。
4.3 生成计算报告
模型试运行无误后,即可对模型进行计算,生成自动喷水系统的水力计算报告。
水力计算报告内容包括系统起始点所需的流量和压力、模型内所有管道内流速、水头损失以及所有节点处的压力等关键信息。
通过计算报告提供的详细信息,可以更好的优化模型,提高自动喷水系统的设计质量。
以某个轻危险级场所的自动喷水系统为例,建立基于Sprink2000软件的自动喷水系统的三维模型,见下图。
上图中,Sprink2000软件将不同管径的管道用不同颜色加以区分,对管道、喷头、管配件等信息统一编号。
图2内部矩形方框表示作用面积,方框内的喷头“打开”,方框外喷头“关闭”。
模型构建完毕及试运行检查后,即可进行水力计算,计算结果包括起始点的流量和压力、系统管道的水力学信息,计算结果的部分内容如下:
通过Sprink2000软件计算,可以得到起始点处在满足不利点喷头喷水要求条件下的基本参数,将该参数和起始点实际的参数进行对比,可以得到需要降低的压力。
本文假设起始点为固定压力,压力值为500kpa,详细信息见图6。
最后,Sprink2000软件还可以将需要的计算结果以word或者excel的形式导出,作为设计文件的必要技术支撑,提高设计质量。
Sprink2000软件适用于自动喷水系统的水力计算。
相对于手工计算或者其他方法,Sprink2000软件有着极大优势。
Sprink2000软件可以借助电脑处理繁杂、重复
的计算过程,节省大量人工计算时间,还可以处理复杂的自动喷水计算模型。
Sprink2000软件生成的水力计算报告,内容丰富,能对水力分析提供有力支撑。
使用Sprink2000软件进行自动喷水系统水力计算是计算过程软件化、简单化的一
个趋势,值得尝试。
作者通联:186****9287。