高三圆锥曲线知识点总结人教版
(完整版)高三圆锥曲线知识点总结
第八章 《圆锥曲线》专题复习一、椭圆方程.1. 椭圆的第一定义:为端点的线段以无轨迹方程为椭圆21212121212121,2,2,2F F F F a PF PF F F a PF PF F F a PF PF ==+=+=+2.椭圆的方程形式: ①椭圆的标准方程:i. 中心在原点,焦点在x 轴上:)0(12222 b a by ax =+. ii. 中心在原点,焦点在y 轴上:)0(12222 b a bx ay =+.②一般方程:)0,0(122B A By Ax =+.③椭圆的参数方程:2222+b y a x ⎩⎨⎧==θθsin cos b y a x (一象限θ应是属于20πθ ). 注意:椭圆参数方程的推导:得→)sin ,cos (θθb a N 方程的轨迹为椭圆. 3.椭圆的性质: ①顶点:),0)(0,(b a ±±或)0,)(,0(b a ±±.②轴:对称轴:x 轴,y 轴;长轴长a 2,短轴长b 2.③焦点:)0,)(0,(c c -或),0)(,0(c c -.④焦距:2221,2b a c c F F -==.⑤准线:ca x 2±=或c a y 2±=.⑥离心率:)10( e ace =.⑦焦半径: i. 设),(00y x P 为椭圆)0(12222 b a by ax =+上的一点,21,F F 为左、右焦点,则:证明:由椭圆第二定义可知:)0()(),0()(0002200201 x a ex x ca e pF x ex a c a x e pF -=-=+=+=归结起来为“左加右减”.ii.设),(00y x P 为椭圆)0(12222 b a ay bx =+上的一点,21,F F 为上、下焦点,则:⑧通径:垂直于x 轴且过焦点的弦叫做通径: 222b d a=;坐标:22(,),(,)b b c c a a -4.共离心率的椭圆系的方程:椭圆)0(12222 b a b y a x =+的离心率是)(22b a c ace -==,方程t t b y a x (2222=+是大于0的参数,)0 b a 的离心率也是ace =我们称此方程为共离心率的椭圆系方程. 5.若P 是椭圆:12222=+b y a x 上的点.21,F F 为焦点,若θ=∠21PF F ,则21F PF ∆的面积为2tan2θb (用余弦定理与a PF PF 221=+可得). 若是双曲线,则面积为2cot2θ⋅b .1020,PF a ex PF a ex=+=-1020,PF a ey PF a ey =+=-asin α,)α)二、双曲线方程.1. 双曲线的第一定义:的一个端点的一条射线以无轨迹方程为双曲线21212121212121,222F F F F a PF PF F F a PF PF F F a PF PF ==-=-=-2.双曲线的方程:①双曲线标准方程:)0,(1),0,(122222222 b a b x a y b a b y a x =-=-. 一般方程:)0(122 AC Cy Ax =+.3.双曲线的性质:①i. 焦点在x 轴上: 顶点:)0,(),0,(a a - 焦点:)0,(),0,(c c - 准线方程ca x 2±= 渐近线方程:0=±b ya x 或02222=-b y a x ii. 焦点在y 轴上:顶点:),0(),,0(a a -. 焦点:),0(),,0(c c -. 准线方程:c a y 2±=. 渐近线方程:0=±b x a y 或02222=-b x a y ,参数方程:⎩⎨⎧==θθtan sec b y a x 或⎩⎨⎧==θθsec tan a y b x . ②轴y x ,为对称轴,实轴长为2a , 虚轴长为2b ,焦距2c. ③离心率a ce =. ④准线距c a 22(两准线的距离);通径a b 22. ⑤参数关系ace b a c =+=,222. ⑥焦半径公式:对于双曲线方程12222=-b y a x (21,F F 分别为双曲线的左、右焦点或分别为双曲线的上下焦点)“长加短减”原则:aex MF a ex MF -=+=0201 构成满足a MF MF 221=-aex F M a ex F M +-='--='0201(与椭圆焦半径不同,椭圆焦半aey F M a ey F M a ey MF a ey MF -'-='+'-='+=-=020102014. 等轴双曲线:双曲线222a y x ±=-称为等轴双曲线,其渐近线方程为x y ±=,离心率2=e . 5.共轭双曲线:以已知双曲线的虚轴为实轴,实轴为虚轴的双曲线,叫做已知双曲线的共轭双曲线.λ=-2222b y a x 与λ-=-2222by a x 互为共轭双曲线,它们具有共同的渐近线:02222=-by ax .6.共渐近线的双曲线系方程:)0(2222≠=-λλb y a x 的渐近线方程为02222=-b y a x 如果双曲线的渐近线为0=±b ya x 时,它的双曲线方程可设为)0(2222≠=-λλby a x .例如:若双曲线一条渐近线为x y 21=且过)21,3(-p ,求双曲线的方程? 解:令双曲线的方程为:)0(422≠=-λλy x ,代入)21,3(-得12822=-y x . 7.直线与双曲线的位置关系:区域①:无切线,2条与渐近线平行的直线,合计2条;区域②:即定点在双曲线上,1条切线,2条与渐近线平行的直线,合计区域③:2条切线,2条与渐近线平行的直线,合计4条;区域④:即定点在渐近线上且非原点,1条切线,1区域⑤:即过原点,无切线,无与渐近线平行的直线.注意:⑴过定点作直线与双曲线有且仅有一个交点,可以作出的直线数目可能有0、2、3、4条.⑵若直线与双曲线一支有交点,交点为二个时,求确定直线的斜率可用代入”“∆法与渐近线求交和两根之和与两根之积同号.⑶若P 在双曲线12222=-b y a x ,则常用结论1:P 到焦点的距离为m 与n ,则P 到两准线的距离比为m ︰n. 简证:ePF e PF d d 2121= =nm. ⑷:从双曲线一个焦点到另一条渐近线的距离等于b.三、抛物线方程.设0 p ,抛物线的标准方程、类型及其几何性质:注意:⑴x c by ay =++2顶点)244(2aba b ac --.⑵)0(22≠=p px y 则焦点半径2P x PF +=;)0(22≠=p py x 则焦点半径为2P y PF +=.⑶通径为2p ,这是过焦点的所有弦中最短的.⑷px y 22=(或py x 22=)的参数方程为⎩⎨⎧==pt y pt x 222(或⎩⎨⎧==222pty ptx )(t 为参数). ⑸关于抛物线焦点弦的几个结论:设AB 为过抛物线 y 2=2px (p>0 )焦点的弦,A(x 1 ,y 1)、B (x 2 ,y 2 ) ,直线AB 的倾斜角为θ,则:① x 1x 2=24p , y 1y 2=-p 2; ② |AB|=22sin p θ;③以AB 为直径的圆与准线相切;④焦点F 对A 、B 在准线上射影的张角为900;⑤112||||FA FB P+=. 四、圆锥曲线的统一定义.1. 圆锥曲线的统一定义:平面内到定点F 和定直线l 的距离之比为常数e 的点的轨迹. 当10 e 时,轨迹为椭圆; 当1=e 时,轨迹为抛物线; 当1 e 时,轨迹为双曲线; 当0=e 时,轨迹为圆(ace =,当b a c ==,0时). 2. 圆锥曲线方程具有对称性. 例如:椭圆的标准方程对原点的一条直线与双曲线的交点是关于原点对称的.因为具有对称性,所以欲证AB=CD, 即证AD 与BC 的中点重合即可.3. 当椭圆的焦点位置不明确,而无法确定其标准方程时,可设方程为22x y m n+ =1(m>0,n>0且m ≠n ),这样可以避免讨论和繁杂的运算,椭圆与双曲线的标准方程均可用简单形式 mx 2+ny 2=1(mn ≠0)来表示,所不同的是:若方程表示椭圆,则要求m>0,n>0且m ≠n ; 若方程表示双曲线,则要求mn<0,利用待定系数法求标准方程时,应注意此方法的合理使用,以避免讨论。
高中数学圆锥曲线方程知识总结
高中数学圆锥曲线方程知识总结一、椭圆方程及其性质. 1. 椭圆的第一定义:椭圆的第二定义:PFe d=,PF 点P 到定点F 的距离,d 为点P 到直线l的距离其中F 为椭圆焦点,l 为椭圆准线①椭圆的标准方程:的参数方程为()(现在了解,后面选修4-4要详细讲).②通径:垂直于对称轴且过焦点的弦叫做通径,椭圆通径长为③设椭圆:12222=+by ax 上弦AB的中点为M (x 0,y 0),则斜率k AB =2020b x a y -,对椭圆:为端点的线段以无轨迹方程为椭圆21212121212121,2,2,2F F F F a PF PF F F a PF PF F F a PF PF ==+=+=+ 12222=+by ax ⎩⎨⎧==θθsin cos b y a x 20πθ ab 2212222=+b x a y , 则k AB=2020a xb y -.弦长AB= ⑸若P 是椭圆:上的点.为焦点,若,则的面积为(可用余弦定理与推导). 若是双曲线,则面积为2tan b θ.二、双曲线方程及其性质. 1. 双曲线的第一定义:双曲线的第二定义:PFe d=,PF 点P 到定点F 的距离,d 为点P 到直线l 的距离其中F 为双曲线的焦点,l 为双曲线的准线 2.双曲线的简单几何性质:12222=+by ax 21,F F θ=∠21PF F 21F PF ∆2tan 2θb a PF PF 221=+的一个端点的一条射线以无轨迹方程为双曲线21212121212121,222F F F F a PF PF F F a PF PF F F a PF PF ==-=-=-注:①双曲线标准方程:.参数方程:或 . (现在了解,后面选修4-4要详细讲)②通径:垂直于对称轴且过焦点的弦叫做通径,椭圆通径长为③焦半径:对于双曲线方程(分别为双曲线的左、右焦点或上、下焦点)双曲线不带符号)构成满足)0,(1),0,(12222b a bx ay b a by a x =-=-⎩⎨⎧==θθtan sec b y a x ⎩⎨⎧==θθsec tan a y b x ab 2212222=-by ax 21,F F aex MF a ex MF -=+=0201a MF MF221=-aex F M a ex F M +-='--='0201④设双曲线22221x y a b -=:上弦AB 的中点为M (x 0,y 0),则斜率k AB =2020b x a y ,对双曲线:22221y x a b -=, 则k AB =2020a xb y .弦长AB= ⑤常设与22221x y a b -=渐近线相同的双曲线方程为2222x y a bλ-=;常设渐近线方程为0mx ny ±=的双曲线方程为2222m x n y-=例如:若双曲线一条渐近线为且过⑥从双曲线一个焦点到另一条渐近线的距离等于b ⑦直线与双曲线的位置关系:三、抛物线方程及其性质.抛物线的定义:PF d =,PF 为点P 到定点F 的距离,d 为点P 到直线l 的距离其中F 为抛物线的焦点,l 为抛物线的准线 设,抛物线的标准方程、类型及其几何性质: x y 21=)21,3(-p 0 p注:①抛物线通径为2p ,这是过焦点的所有弦中最短的.②(或)的参数方程为(或)(为参数).(现在了解,后面选修4-4要详细讲)4.抛物线的焦半径、焦点弦.(抛物线中常用结论和方法)如图所示,抛物线方程为y 2=2px (p >0).(1)焦半径设A 点在准线上的射影为A 1,设A (x 1,y 1),准线方程为x =-p2,由抛物线定义|AF |=|AA 1|=x 1+p2. 抛物线上任意一条弦的弦长为(2)关于抛物线焦点弦的几个结论设AB 为过抛物线y 2=2px (p >0)焦点的弦,A (x 1,y 1)、B (x 2,y 2),AB中点为00(,)M x y ,直线AB 的倾斜角为θ,则①x 1x 2=p 24,y 1y 2=-p 2,12x x ≠时,有1222p x x p k +=+②|AB |=2p sin 2θ=x 1+x 2+p =12222()pp x x k+≠,0AB p k y =,22sin AOB p S θ∆=px y 22=py x 22=⎩⎨⎧==pty pt x 222⎩⎨⎧==222pty ptx t③以AB 为直径的圆与准线相切;④焦点F 对A 、B 在准线上射影的张角为90°; ⑤1|FA |+1|FB |=2p .四、圆锥曲线的统一定义..4. 圆锥曲线的统一定义:平面内到定点F 和定直线的距离之比为常数的点的轨迹.当时,轨迹为椭圆;当时,轨迹为抛物线;当时,轨迹为双曲线;当时,轨迹为圆(,当时).5. 圆锥曲线方程具有对称性. 例如:椭圆的标准方程对原点的一条直线与双曲线的交点是关于原点对称的.因为具有对称性,所以欲证AB=CD, 即证AD 与BC 的中点重合即可.注:椭圆、双曲线、抛物线的标准方程与几何性质l e 10 e 1=e 1 e 0=e ac e =b a c ==,0导数的基础知识一.导数的定义:0000000()()()'()'|lim()()()'()'limx x x x f x x f x y f x x x f x y xf x x f x y f x f x y x=∆→∆→+∆-====∆+∆-===∆1.(1).函数在处的导数: (2).函数的导数:2.利用定义求导数的步骤:①求函数的增量:00()()y f x x f x ∆=+∆-;②求平均变化率:00()()f x x f x yx x+∆-∆=∆∆;③取极限得导数:00'()limx y f x x∆→∆=∆ (下面内容必记) 二、导数的运算:(1)基本初等函数的导数公式及常用导数运算公式: ①'0()C C =为常数;②1()'nn x nx-=;11()'()'n n n x nx x---==-;1()'m mn n m x x n -==③(sin )'cos x x =; ④(cos )'sin x x =- ⑤()'x x e e = ⑥()'ln (0,1)x x a a a a a =>≠且; ⑦1(ln )'x x=; ⑧1(log )'(0,1)ln a x a a x a=>≠且 法则1:[()()]''()'()f x g x f x g x ±=±;(口诀:和差的导数等于导数的和差). 法则2:[()()]''()()()'()f x g x f x g x f x g x ⋅=⋅+⋅(口诀:左导右不导+左不导右导) 法则3:2()'()()()'()[]'(()0)()[()]f x f x g x f x g x g x g x g x ⋅-⋅=≠ (口诀:(上导下不导-上不导下导) ÷下平方) (2)复合函数(())y f g x =的导数求法:(理科必须掌握)①换元,令()u g x =,则()y f u =②分别求导再相乘[][]'()'()'y g x f u =⋅③回代()u g x =题型一、导数定义的理解题型二:导数运算1、已知()22sin f x x x π=+-,则()'0f =2、若()sin x f x e x =,则()'f x =3.)(x f =ax 3+3x 2+2 ,4)1(=-'f ,则a =( )319.316.313.310.D C B A 三.导数的物理意义1.求瞬时速度:物体在时刻0t 时的瞬时速度0V 就是物体运动规律()S f t =在0t t = 时的导数()0f t ',即有()00V f t '=。
人教版数学选修2-1圆锥曲线知识总结
精心整理数学选修2-1圆锥曲线知识归纳一、复习总结:名称椭圆双曲线图象定义平面内到两定点21,FF的距离的和为常数(大于21FF)的动点的轨迹叫椭圆即aMFMF221=+当2a﹥2c时,轨迹是椭圆当2a=2c时,轨迹是一条线段21FF当2a﹤2c时,轨迹不存在平面内到两定点21,FF的距离的差的绝对值为常数(小于21FF)的动点的轨迹叫双曲线即aMFMF221=-当2a﹤2c时,轨迹是双曲线当2a=2c时,轨迹是两条射线当2a﹥2c时,轨迹不存在标准方程焦点在x轴上时:12222=+byax焦点在y轴上时:12222=+bxay注:是根据分母的大小来判断焦点在哪一坐标轴上焦点在x轴上时:12222=-byax焦点在y轴上时:12222=-bxay常数cba,,的关系222bac+=,渐近线焦点在x轴上时:焦点在y轴上时:抛物线:图形方程 焦点 准线二、知识点:椭圆、双曲线、抛物线分别是满足某些条件的点的轨迹,由这些条件可以求出它们的标准方程,并通过分析标准方程研究这三种曲线的几何性质1.椭圆定义:在平面内,到两定点距离之和等于定长(定长大于两定点间的距离)的动点的轨迹2.椭圆的标准方程:12222=+b y a x ,12222=+b x a y (0>>b a )3.椭圆的性质:由椭圆方程12222=+by a x (0>>b a )(1)范围:a x a ≤≤-,b y b ≤≤-,椭圆落在b y a x ±=±=,组成的矩形中.(2)对称性:图象关于y 轴对称.图象关于x 轴对称.图象关于原点对称原点叫椭圆的对称中心,简称中心.x 轴、y 轴叫椭圆的对称轴.从椭圆的方程中直接可以看出它的范围,对称的截距. (3)顶点:椭圆和对称轴的交点叫做椭圆的顶点.椭圆共有四个顶点:)0,(),0,(2a A a A -,),0(),,0(2b B b B -加两焦)0,(),0,(21c F c F -共有六个特殊点21A A 叫椭圆的长轴,21B B 叫椭圆的短轴.长分别为b a 2,2.b a ,分别为椭圆的长半轴长和短半轴长,椭圆的顶点即为椭圆与对称轴的交点.(4)离心率:椭圆焦距与长轴长之比a c e =⇒2)(1abe -=10<<e 椭圆形状与e 的关系:0,0→→c e ,椭圆变圆,直至成为极限位置圆,此时也可认为圆为椭圆在0=e 时的特例,,1a c e →→椭圆变扁,直至成为极限位置线段21F F ,此时也可认为圆为椭圆在1=e 时的特例.(识记方法)以下4-7点要求不高,或者不要求.4.椭圆的第二定义:一动点到定点的距离和它到一条定直线的距离的比是一个)1,0(内常数e ,那么这个点的轨迹叫做椭圆其中定点叫做焦点,定直线叫做准线,常数e 就是离心率5.椭圆的准线方程对于12222=+by a x ,左准线c a x l 21:-=;右准线c a x l 22:=对于12222=+bx a y ,下准线c a y l 21:-=;上准线c a y l 22:=6.椭圆的焦半径公式:椭圆22221(0)x y a b a b+=>>焦半径公式:21()a PF e x a ex c =+=+,22()a PF e x a exc =-=-其中e 是离心率其中21,F F 分别是椭圆左右焦点.焦点在y 轴上的椭圆的焦半径公式:其中e 是离心率其中21,F F 分别是椭圆的下上焦点.焦半径公式的两种形式的区别只和焦点的左右有关,而与点在左在右无关可以记为:左加右减,上减下加7椭圆的参数方程)(sin cos 为参数ϕϕϕ⎩⎨⎧==b y a x以下为椭圆重要结论:(要求记忆1、2、3条,了解4、5)1.准线到中心的距离为2a c,焦点到对应准线的距离(焦准距)c b c c a c c a p 2222=-=-= 过焦点且垂直于长轴的弦叫通经,其长度为:22b a.2.椭圆22221(0)x y a b a b+=>>两焦半径与焦距构成三角形的面积:1221||tan2F PF P F PFS c y b ∆∠==. 3椭圆的光学性质:从椭圆的一个焦点出发的光线,经椭圆反射后,反射光线必经过椭圆的另一个焦点.例:今有一个水平放置的椭圆形台球盘,点A 、B 是它的两个焦点,长轴长为2a ,焦距为2c ,当静放在点A 的小球(小球的半径不计),从点A 沿直线l 击出,经椭圆壁反弹后再回到A ,若l 与椭圆长轴的夹角为锐角,则小球经过的路程是(???D) A.4b?????????????B.2(a-c)?????????????C.2(a+c)????????????D.4a4.椭圆的的内外部:(1)点00(,)P x y 在椭圆22221(0)x y a b a b +=>>的内部2200221x y a b ⇔+<.(2)点00(,)P x y 在椭圆22221(0)x y a b a b +=>>的外部2200221x y a b⇔+>.5.椭圆的切线方程:(1)椭圆22221(0)x y a b a b +=>>上一点00(,)P x y 处的切线方程是00221x x y ya b +=.(2)过椭圆22221x y a b +=外一点00(,)P x y 所引两条切线的切点弦方程是00221x x y ya b +=.(3)椭圆22221(0)x y a b a b +=>>与直线0Ax By C ++=相切的条件是22222A a B b c +=.8.双曲线的定义:平面内到两定点21,F F 的距离的差的绝对值为常数(小于21F F )的动点的轨迹叫双曲线即a MF MF 221=-这两个定点叫做双曲线的焦点,两焦点间的距离叫做焦距在同样的差下,两定点间距离较长,则所画出的双曲线的开口较开阔(→两条平行线)两定点间距离较短(大于定差),则所画出的双曲线的开口较狭窄(→两条射线)双曲线的形状与两定点间距离、定差有关9.双曲线的标准方程及特点:(1)双曲线的标准方程有焦点在x 轴上和焦点y 轴上两种:焦点在x 轴上时双曲线的标准方程为:12222=-b y a x (0>a ,0>b );焦点在y 轴上时双曲线的标准方程为:12222=-bx a y (0>a ,0>b )(2)c b a ,,有关系式222b a c +=成立,且0,0,0>>>c b a其中a 与b 的大小关系:可以为b a b a b a ><=,,10.焦点的位置:从椭圆的标准方程不难看出椭圆的焦点位置可由方程中含字母2x 、2y 项的分母的大小来确定,分母大的项对应的字母所在的轴就是焦点所在的轴而双曲线是根据项的正负来判断焦点所在的位置,即2x 项的系数是正的,那么焦点在x 轴上;2y 项的系数是正的,那么焦点在y 轴上11.双曲线的几何性质: (1)范围、对称性由标准方程12222=-by a x ,从横的方向来看,直线x=-a ,x=a 之间没有图象,从纵的方向来看,随着x 的增大,y 的绝对值也无限增大,所以曲线在纵方向上可无限伸展,不像椭圆那样是封闭曲线双曲线不封闭,但仍称其对称中心为双曲线的中心. (2)顶点顶点:()0,),0,(21a A a A -,特殊点:()b B b B -,0),,0(21实轴:21A A 长为a 2,a 叫做半实轴长虚轴:21B B 长为b 2,b 叫做虚半轴长双曲线只有两个顶点,而椭圆则有四个顶点,这是两者的又一差异(3)渐近线过双曲线12222=-b y a x 的渐近线x a b y ±=(0=±bya x )(4)离心率双曲线的焦距与实轴长的比aca c e ==22,叫做双曲线的离心率范围:1>e 双曲线形状与e 的关系:1122222-=-=-==e ac a a c a b k ,e 越大,即渐近线的斜率的绝对值就大,这是双曲线的形状就从扁狭逐渐变得开阔由此可知,双曲线的离心率越大,它的开口就越阔12.等轴双曲线定义:实轴和虚轴等长的双曲线叫做等轴双曲线,这样的双曲线叫做等轴双曲线等轴双曲线的性质:(1)渐近线方程为:x y ±=;(2)渐近线互相垂直;(3)离心率2=e13.共渐近线的双曲线系如果双曲线与12222=-b y a x 有公共渐近线,可设为λ=-2222b y a x以下14-17点要求不高,或者不要求. 14.双曲线的第二定义:到定点F 的距离与到定直线l 的距离之比为常数)0(>>=a c ace 的点的轨迹是双曲线其中,定点叫做双曲线的焦点,定直线叫做双曲线的准线常数e 是双曲线的离心率.15.双曲线的准线方程:对于12222=-b y a x 来说,相对于左焦点)0,(1c F -对应着左准线c a x l 21:-=,相对于右焦点)0,(2c F 对应着右准线ca x l 22:=;对于12222=-b x a y 来说,相对于上焦点),0(1c F -对应着上准线c a y l 21:-=;相对于下焦点),0(2c F 对应着下准线ca y l 22:=16.双曲线的焦半径(了解)定义:双曲线上任意一点M 与双曲线焦点21,F F 的连线段,叫做双曲线的焦半径焦点在x 轴上的双曲线的焦半径公式:⎩⎨⎧-=+=∴0201ex a MF ex a MF (21,F F 分别是左、右焦点)焦点在y 轴上的双曲线的焦半径公式:⎩⎨⎧-=+=∴0201ey a MF ey a MF (21,F F 分别是下、上焦点)17.双曲线的焦点弦:定义:过焦点的直线割双曲线所成的相交弦焦点弦公式:当双曲线焦点在x 轴上时,过左焦点与左支交于两点时:)(221x x e a AB +--=过右焦点与右支交于两点时:)(221x x e a AB ++-=当双曲线焦点在y 轴上时,过左焦点与左支交于两点时:)(221y y e a AB +--=过右焦点与右支交于两点时:)(221y y e a AB ++-=18.双曲线的重要结论:(识记(1)-(4)点,了解(5)点)(1)双曲线焦点到对应准线的距离(焦准距)2b p c=.(2)过焦点且垂直于实轴的弦叫通经,其长度为:22b a.(3)两焦半径与焦距构成三角形的面积1221cot 2F PF F PFS b ∆∠=.(4)焦点到渐近线的距离总是b . (5)双曲线的切线方程:(1)双曲线22221(0,0)x y a b a b -=>>上一点00(,)P x y 处的切线方程是00221x x y ya b -=.(2)过双曲线22221x y a b -=外一点00(,)P x y 所引两条切线的切点弦方程是00221x x y ya b -=.(3)双曲线22221x y a b-=与直线0Ax By C ++=相切的条件是22222A a B b c -=.19抛物线定义:平面内与一个定点F 和一条定直线l 的距离相等的点的轨迹叫做抛物线定点F 叫做抛物线的焦点,定直线l 叫做抛物线的准线20.抛物线的准线方程:(1))0(22>=p px y ,焦点:)0,2(p ,准线l :2px -= (2))0(22>=p py x ,焦点:)2,0(p ,准线l :2p y -=(3))0(22>-=p px y ,焦点:)0,2(p -,准线l :2p x =(4))0(22>-=p py x ,焦点:)2,0(p -,准线l :2p y =相同点:(1)抛物线都过原点;(2)对称轴为坐标轴;(3)准线都与对称轴垂直,垂足与焦点在对称轴上关于原点对称它们到原点的距离都等于一次项系数绝对值的41,即242pp = 不同点:(1)图形关于X 轴对称时,X 为一次项,Y 为二次项,方程右端为px 2±、左端为2y ;图形关于Y 轴对称时,X 为二次项,Y 为一次项,方程右端为py 2±,左端为2x (2)开口方向在X 轴(或Y 轴)正向时,焦点在X 轴(或Y 轴)的正半轴上,方程右端取正号;开口在X 轴(或Y 轴)负向时,焦点在X 轴(或Y 轴)负半轴时,方程右端取负号21.抛物线的几何性质 (1)范围因为p >0,由方程()022>=p px y 可知,这条抛物线上的点M 的坐标(x ,y )满足不等式x≥0,所以这条抛物线在y 轴的右侧;当x 的值增大时,|y|也增大,这说明抛物线向右上方和右下方无限延伸.(2)对称性以-y 代y ,方程()022>=p px y 不变,所以这条抛物线关于x 轴对称,我们把抛物线的对称轴叫做抛物线的轴. (3)顶点抛物线和它的轴的交点叫做抛物线的顶点.在方程()022>=p px y 中,当y=0时,x=0,因此抛物线()022>=p px y 的顶点就是坐标原点.(4)离心率抛物线上的点M 与焦点的距离和它到准线的距离的比,叫做抛物线的离心率,用e 表示.由抛物线的定义可知,e=1.22抛物线的焦半径公式:(画图即可)抛物线)0(22>=p px y ,0022x pp x PF +=+= 抛物线)0(22>-=p px y ,0022x pp x PF -=-= 抛物线)0(22>=p py x ,0022y pp y PF +=+= 抛物线)0(22>-=p py x ,0022y pp y PF -=-= 23.直线与抛物线: (1)位置关系:相交(两个公共点或一个公共点);相离(无公共点);相切(一个公共点)将b kx y l +=:代入0:22=++++F Ey Dx Cy Ax C ,消去y ,得到 关于x 的二次方程02=++c bx ax (*)若0>∆,相交;0=∆,相切;0<∆,相离综上,得: 联立⎩⎨⎧=+=pxy b kx y 22,得关于x 的方程02=++c bx ax 当0=a (二次项系数为零),唯一一个公共点(交点) 当0≠a ,则若0>∆,两个公共点(交点)0=∆,一个公共点(切点)0<∆,无公共点(相离)(2)相交弦长: 弦长公式:21k ad +∆=, (3)焦点弦公式:抛物线)0(22>=p px y ,)(21x x p AB ++=(识记)抛物线)0(22>-=p px y ,)(21x x p AB +-=抛物线)0(22>=p py x ,)(21y y p AB ++=抛物线)0(22>-=p py x ,)(21y y p AB +-=(4)通径:定义:过焦点且垂直于对称轴的相交弦通径:p d 2=通径是所有焦点弦(经过焦点的弦简称焦点弦)中最短的弦. (5)若已知过焦点的直线倾斜角θ(识记这条结论)则⎪⎩⎪⎨⎧=-=px y p x k y 2)2(20222=--⇒p y k p y ⎪⎩⎪⎨⎧-==+⇒221212py y k p y y (6)常用结论:⎪⎩⎪⎨⎧=-=pxy p x k y 2)2(20222=--⇒p y k p y 和04)2(22222=++-p k x p p k x k 221.3p y y -=⇒结论和421px x =(7)若OA 、OB 是过抛物线22(0)y px p =>顶点O 的两条互相垂直的弦,则直线AB 恒经过定点(2,0)p (8)过抛物线px y 22=的焦点F 作一直线交抛物线于P 、Q 两点,则pFQ PF 211=+. 24.抛物线)0(22>=p px y 的参数方程:⎩⎨⎧==222pt y pt x (t 为参数)25.提示.处理椭圆、双曲线、抛物线的弦中点问题常用点差法:设为曲线上不同的两点,是的中点,则可得到弦中点与两点间关系:?????推导:。
高中数学圆锥曲线知识点总结
高中数学圆锥曲线知识点总结一、椭圆1、平面内与两个定点1F ,2F 的距离之和等于常数(大于12F F )的点的轨迹称为椭圆. 即:|)|2(,2||||2121F F a a MF MF >=+。
这两个定点称为椭圆的焦点,两焦点的距离称为椭圆的焦距.2、椭圆的几何性质:焦点的位置焦点在x 轴上焦点在y 轴上图形标准方程()222210x y a b a b +=>> ()222210y x a b a b+=>> 范围a x a -≤≤且b y b -≤≤ b x b -≤≤且a y a -≤≤顶点()1,0a A -、()2,0a A()10,b B -、()20,b B()10,a A -、()20,a A ()1,0b B -、()2,0b B轴长 短轴的长2b = 长轴的长2a =焦点 ()1,0F c -、()2,0F c ()10,F c -、()20,F c焦距 ()222122F F c c a b ==-对称性 关于x 轴、y 轴、原点对称离心率 ()22101c b e e a a==-<<1、平面内与两个定点1F ,2F 的距离之差的绝对值等于常数(小于12F F )的点的轨迹称为双曲线.即:|)|2(,2||||||2121F F a a MF MF <=-。
这两个定点称为双曲线的焦点,两焦点的距离称为双曲线的焦距.2、双曲线的几何性质:焦点的位置焦点在x 轴上焦点在y 轴上图形标准方程()222210,0x y a b a b -=>> ()222210,0y x a b a b-=>> 范围 x a ≤-或x a ≥,y R ∈ y a ≤-或y a ≥,x R ∈顶点 ()1,0a A -、()2,0a A ()10,a A -、()20,a A轴长 虚轴的长2b = 实轴的长2a =焦点 ()1,0F c -、()2,0F c ()10,F c -、()20,F c焦距 ()222122F F c c a b ==+对称性 关于x 轴、y 轴对称,关于原点中心对称离心率()2211c b e e a a==+>渐近线方程 b y x a=±a y x b=±3、等轴双曲线:双曲线222a y x ±=-称为等轴双曲线,其渐近线方程为x y ±=,离心率2=e .4、共渐近线的双曲线系方程:)0(2222≠=-λλb y a x1、平面内与一个定点F 和一条定直线l 的距离相等的点的轨迹称为抛物线.定点F 称为抛物线的焦点,定直线l 称为抛物线的准线.2、抛物线的几何性质:标准方程22y px =()0p >22y px =- ()0p > 22x py = ()0p > 22x py =-()0p >图形顶点()0,0对称轴x 轴y 轴焦点,02p F ⎛⎫⎪⎝⎭ ,02p F ⎛⎫- ⎪⎝⎭0,2p F ⎛⎫ ⎪⎝⎭0,2p F ⎛⎫- ⎪⎝⎭准线方程2px =-2p x =2p y =-2p y =离心率1e =范围 0x ≥ 0x ≤0y ≥ 0y ≤3、过抛物线的焦点作垂直于对称轴且交抛物线于A 、B 两点的线段AB ,称为抛物线的“通径”,即2p AB =.4、焦半径公式:若点()00,x y P 在抛物线()220y px p =>上,焦点为F ,则02pF x P =+; 若点()00,x y P 在抛物线()220x py p =>上,焦点为F ,则02p F y P =+;5、焦点弦:AB =21x x ++p四、圆1、定义:点集{M ||OM |=r },其中定点O 为圆心,定长r 为半径.2、方程:(1)标准方程:圆心在c(a,b),半径为r 的圆方程是(x-a)2+(y-b)2=r 2圆心在坐标原点,半径为r 的圆方程是x 2+y 2=r 2(2)一般方程:①当D 2+E 2-4F >0时,一元二次方程x 2+y 2+Dx+Ey+F=0叫做圆的一般方程,圆心为)2,2(ED --半径是2422FE D -+。
(完整版)高中数学圆锥曲线知识点总结
高中数学知识点大全—圆锥曲线一、考点(限考)概要:1、椭圆:(1)轨迹定义:①定义一:在平面内到两定点的距离之和等于定长的点的轨迹是椭圆,两定点是焦点,两定点间距离是焦距,且定长2a大于焦距2c。
用集合表示为:;②定义二:在平面内到定点的距离和它到一条定直线的距离之比是个常数e,那么这个点的轨迹叫做椭圆。
其中定点叫焦点,定直线叫准线,常数是离心率用集合表示为:;(2)标准方程和性质:注意:当没有明确焦点在个坐标轴上时,所求的标准方程应有两个。
(3)参数方程:(θ为参数);3、双曲线:(1)轨迹定义:①定义一:在平面内到两定点的距离之差的绝对值等于定长的点的轨迹是双曲线,两定点是焦点,两定点间距离是焦距。
用集合表示为:②定义二:到定点的距离和它到一条定直线的距离之比是个常数e,那么这个点的轨迹叫做双曲线。
其中定点叫焦点,定直线叫准线,常数e是离心率。
用集合表示为:(2)标准方程和性质:注意:当没有明确焦点在个坐标轴上时,所求的标准方程应有两个。
4、抛物线:(1)轨迹定义:在平面内到定点和定直线的距离相等的点的轨迹是抛物线,定点是焦点,定直线是准线,定点与定直线间的距离叫焦参数p。
用集合表示为:(2)标准方程和性质:①焦点坐标的符号与方程符号一致,与准线方程的符号相反;②标准方程中一次项的字母与对称轴和准线方程的字母一致;③标准方程的顶点在原点,对称轴是坐标轴,有别于一元二次函数的图像;二、复习点睛:1、平面解析几何的知识结构:2、椭圆各参数间的关系请记熟“六点六线,一个三角形”,即六点:四个顶点,两个焦点;六线:两条准线,长轴短轴,焦点线和垂线PQ;三角形:焦点三角形。
则椭圆的各性质(除切线外)均可在这个图中找到。
3、椭圆形状与e的关系:当e→0,c→0,椭圆→圆,直至成为极限位置的圆,则认为圆是椭圆在e=0时的特例。
当e→1,c→a椭圆变扁,直至成为极限位置的线段,此时也可认为是椭圆在e=1时的特例。
高中数学圆锥曲线知识点总结
高中数学圆锥曲线知识点总结
高中数学圆锥曲线知识点总结
一、圆锥曲线的基本概念
1、圆锥曲线:平面内以圆为母线的曲线,又称为圆锥线,是数学上的一类曲线。
2、离心率:圆锥曲线的离心率是有两个参数确定的:它们是焦距a和准线焦距c。
3、双曲线:双曲线是一类特殊的圆锥曲线,a>0, c>0时,它概括了圆锥曲线的一般情况,称为双曲线。
二、圆锥曲线的性质
1、改变离心率可以改变圆锥曲线的形状,当离心率大于1时,曲线呈双曲线,当离心率小于1时,曲线呈凹凸线;
2、圆锥曲线的焦点与顶点之间的距离是两个焦距的和,a+c;
3、圆锥曲线的切线方程的斜率是1/(a+c);
4、圆锥曲线的半矢量的方向是以焦点为圆心,从焦距a出发的方向;
5、圆锥曲线的曲率半径是2a+c;
6、圆锥曲线的弧长是一定积分的表达式,是确定的;
7、圆锥曲线的曲线方程是确定的,但极坐标表示法有两种形式,要根据离心率来确定;
三、圆锥曲线的应用
1、圆锥曲线的应用着重于机械设计领域,如齿轮的设计和制造;
2、圆锥曲线的半径可以用于圆弧的求解和曲线的精度检验;
3、圆锥曲线的弧长可以用于求解同轴运动的轮毂的周长;
4、圆锥曲线的曲线方程可以用于二维图形的绘制;
5、圆锥曲线的曲线方程可以用于求解曲面曲线的面积和表面积;
6、圆锥曲线的曲线方程可以用于求解椭圆锥曲线的主曲线参数,以求解椭球面的曲线参数;
7、圆锥曲线的曲率半径可以用于求解圆的曲率半径参数;
8、圆锥曲线的切线可以用于求解圆弧的切线参数;
9、圆锥曲线的球面可以用于求解曲面的曲率方向;
10、圆锥曲线的曲线可以用于运动学分析和机器学习算法中的运动路径规划。
(完整版)最全圆锥曲线知识点总结
4.方程 Ax2 By 2 C ( A, B, C均不为零) 是表示椭圆的条件
方程 Ax 2 By 2 C 可化为 Ax 2 By 2 1 ,即 x 2 By 2 1,所以只有 A、 B、 C同号,
CC
CC
AB
且 A B 时,方程表示椭圆。 当 C
C
时,椭圆的焦点在
x 轴上; 当 C
C
时,椭圆的焦点在
y
AB
AB
轴上。
5.求椭圆标准方程的常用方法:
①待定系数法:由已知条件确定焦点的位置,从而确定椭圆方程的类型,设出标准方程,再
由条件确定方程中的参数 a,b, c 的值。其主要步骤是“先定型,再定量”;
②定义法:由已知条件判断出动点的轨迹是什么图形,然后再根据定义确定方程。
F1 (0, c) F2 (0, c)
3
焦点在实轴上, c 顶点坐标 ( a ,0 ) ( a ,0)
2
2
a b ;焦距: F1F2 2c
(0, a ,) (0 , a )
离心率
渐近线 方程
ec a
b2 1 a2 ,( e 1)
y bx a
共渐近线 的双曲线
x2 a2
y2 b2
k ( k 0)
系方程
分别表示椭圆的长半轴长、短半轴长和半焦距长,均为正数,且三个量的大小关系为:
(a b 0) , (a c 0) ,且 ( a2 b2 c2 ) 。
可借助右图理解记忆:
a, b, c 恰构成一个直角三角形的三条边,其中 a 是斜边, b、c 为两条直角边。
3.如何由椭圆标准方程判断焦点位置 椭圆的焦点总在长轴上,因此已知标准方程,判断焦点位置的方法是:
(完整版)《圆锥曲线》主要知识点
圆锥曲线与方程知识要点一、椭圆方程. 1、椭圆的定义:平面内与两个定点尸卜F 2,点P 满足IP 用+1尸/2∣=2α>2∣,则点P 的轨迹是 平面内与两个定点尸八F 2,点尸满足IP 居|+|Pq=2z=∣FE ∣,则点尸的轨迹是 平面内与两个定点尸I 、F 2,点P 满足IPFJ+1PKI=2〃<忻八|,则点P 的轨迹是 2X 2V 2若户是椭圆:-τ+J=I 上的点为焦点,若NF1P 户产氏则AT//2的面积为ab3、点与椭圆、直线与椭圆的位置关系9 2⑴点Pa0,比)与椭圆E+g=1(α>b>0)的位置关系:①点尸在椭圆上O;②点P 在椭圆内部=;③点P 在椭圆外部Q.(2)直线尸履+〃?与椭圆,+方=1(α>Z>O)的位置关系判断方法:消y 得一个一元二次方程是: _____________________________________________________v(3)弦长公式:设直线方程为),=履+加(%0),椭圆方程为/+方=1(α>b>0)或方+∕=1(α>b>0),直线与椭圆的两个交点为A(X1,yι),3(X2,)力则∣A8∣=N(为一7)2+(小一”)2,Λ∖AB∖=7(X1X2)2+(如一g)2=<1+F∙d(X1-X2)2=y∣I+*7(X1+切)4_¥1囚,或HB1=d(i>1⅛2)+(上_1)2=[]+、•'(%_")2=^1+.XJ(>1+>2)2_领/其中,即+“2,汨M 或“+”,V”的值,可通过由直线方程与椭圆方程联立消去y或X后得到关于X或y的一元二次方程得到.2 2(4)直线/:y=Ax+m与椭圆:二+与=1(α>/?>0)的两个交点为Aa1,y),8(如力),a'b~弦A8的中点M(X0,州),则2=(用X0,州表示)二、双曲线方程.1、双曲线的定义:平面内与两个定点尸I、F2,点尸满足归/JTPgh2々<囚尸21则点尸的轨迹是平面内与两个定点尸卜尸2,点尸满足仍PJTPW=2α>巴川,则点P的轨迹是平面内与两个定点尸1、尸2,点P满足归尸]|-|尸/』=2〃=|尸尸小则点P的轨迹是21等轴双曲线:双曲线“2_,2=±『称为等轴双曲线,其渐近线方程为,离心率《=2 2(2)共渐近线的双曲线系方程:二-1?=”之0°)的渐近线方程为_________________a~Zr如果双曲线的渐近线为±±2=0时,它的双曲线方程可设为 ____________________ .ab(3)从双曲线一个焦点到一条渐近线的距离等于.3、直线与双曲线的位置关系r2V2(1)一般地,设直线/:y=kxΛ-m……①双曲线C:^-p=1(α>O,bX))……②把①代入②得关于X的一元二次方程为.①当〃一"仆=O时,直线/与双曲线的渐近线,直线与双曲线C.②当/一/炉和时,/>0=直线与双曲线有公共点,此时称直线与双曲线:/=0=直线与双曲线有公共点,此时称直线与双曲线:/<0=直线与双曲线公共点,此时称直线与双曲线.注意:直线和双曲线只有一个公共点时,直线不一定与双曲线相切,当直线与双曲线的渐近线平行时,直线与双曲线相交,只有一个交点.AB的中点M(xo>h),则A=(用必,yo表示)三、抛物线方程.1、抛物线的定义平面内与一个定点尸和一条定直线/(不经过点F)的点的轨迹叫做抛物线.点尸叫做抛物线的,直线/叫做抛物线的.思考1:平面内与一个定点F和一条定直线/(/经过点F),点的轨迹是2、抛物线的性质:3、抛物线的焦点弦的性质1.如图,A8是抛物线y2=2pMp>0)过焦点尸的一条弦,设Aa∣,》)、8(及,工),AB的中点MX°,并),相应的准线为/.(1)以AB为直径的圆必与准线/的位置关系是:(2)HB1=(焦点弦长用中点M的坐标表示);(3)若直线AB的倾斜角为α,则∣A8∣=(焦点弦长用倾斜角为α表示);如当α=90。
(完整版)圆锥曲线知识点归纳总结
完整版)圆锥曲线知识点归纳总结1.圆锥曲线的定义和构造圆锥曲线是在平面上由一个固定点(焦点)和一个固定直线(准线)决定的点集。
三种经典的圆锥曲线分别为椭圆、抛物线和双曲线。
构造圆锥曲线需要确定焦点和准线的位置以及确定参数值。
2.椭圆的特性椭圆是圆锥曲线中最常见的一种形式,由两个焦点和一个大于等于焦距的参数决定。
椭圆的离心率小于1,且离心率等于焦点到准线的距离除以准线长度。
椭圆的焦缩比为焦点到椭圆上某一点的距离与该点到准线的距离的比值。
重要公式:椭圆的标准方程为(x^2/a^2) + (y^2/b^2) = 1;焦缩比为e = c/a,其中c^2 = a^2 – b^2.3.抛物线的特性抛物线是圆锥曲线中的一种形式,由一个焦点和一个参数决定。
抛物线的离心率为1,焦缩比为1.抛物线的轴是准线,顶点是焦点和准线的交点。
重要公式:抛物线的标准方程为(x^2/4a) = y。
4.双曲线的特性双曲线是圆锥曲线中的一种形式,由两个焦点和一个焦距决定。
双曲线的离心率大于1,离心率等于焦点到准线的距离除以准线长度。
双曲线的焦缩比为c^2 = a^2 + b^2.重要公式:双曲线的标准方程为(x^2/a^2) – (y^2/b^2) = 1.5.圆锥曲线的应用圆锥曲线在数学和物理学中都有广泛的应用。
椭圆的应用包括轨道运动、天体力学以及密码学等领域。
抛物线的应用包括抛物面反射器、人工卫星的轨道设计等。
双曲线的应用包括电磁波的传播、双曲线钟的标定等。
6.圆锥曲线的性质圆锥曲线有许多共同的性质,如对称性、切线性质和焦点性质等。
对称性:椭圆和双曲线关于x轴和y轴都有对称性,抛物线关于y轴有对称性。
切线性质:圆锥曲线上任意一点的切线与焦点到该点的连线垂直。
焦点性质:圆锥曲线上的任意一点到焦点的距离与焦缩比成正比。
此文档总结了圆锥曲线的定义、特性、应用和性质等重要知识点,并提供了相关公式和图示。
熟悉了这些知识后,我们可以更加深入地理解和应用圆锥曲线的概念。
高中数学圆锥曲线知识全归纳
圆锥曲线一、椭圆及其性质第一定义平面内一动点P 与两定点F 1、F 2距离之和为常数(大于F 1F 2 )的点轨迹第二定义平面内一动点到定点与到准线的距离比是常数的点轨迹MF 1d 1=MF 2d 2=e 焦点焦点在x 轴上焦点在y 轴上图形yxF 1F 2abc O A 1A 2B 2B 1x =a 2cx =-a 2c y x F 1F 2ab c A 1A 2B 2B 1y =a2cy =-a2c标准方程x 2a 2+y 2b 2=1a >b >0y 2a 2+x 2b2=1a >b >0范围-a ≤x ≤a 且-b ≤y ≤b-b ≤x ≤b 且-a ≤y ≤a顶点A 1-a ,0 ,A 2a ,0 ,B 10,-b ,B 20,bA 10,-a ,A 20,a ,B 1-b ,0 ,B 2b ,0轴长长轴长=2a ,短轴长=2b ,焦距=F 1F 2 =2c ,c 2=a 2-b 2焦点F 1-c ,0 、F 2c ,0F 10,-c 、F 20,c焦半径PF 1 =a +e x 0,PF 2 =a -e x 0PF 1 =a -e y 0,PF 2 =a +e y 0焦点弦左焦点弦|AB |=2a +e (x 1+x 2),右焦点弦|AB |=2a -e (x 1+x 2).离心率e =c a=1-b 2a20<e <1 准线方程x =±a 2cy =±a 2c切线方程x 0x a 2+y 0y b 2=1x 0xb 2+y 0y a 2=1通径过椭圆焦点且垂直于对称轴的弦长AB =2b 2a(最短焦点弦)焦点三角形(1)由定义可知:|PF 1|+|PF 2|=2a ,周长为:2a +2c (2)焦点三角形面积:S △F 1PF 2=b 2×tan θ2(3)当P 在椭圆短轴上时,张角θ最大,θ≥1-2e 2cos (4)焦长公式:PF 1 =b 2a -c αcos 、MF 1 =b 2a +c αcos MP =2ab 2a 2-c 22αcos =2ab 2b 2+c 22αsin (5)离心率:e =(α+β)sin α+βsin sin yxF 1F 2θαP OMβ第一定义平面内一动点P与两定点F1、F2距离之差为常数(大于F1F2)的点轨迹第二定义平面内一动点到定点与到准线的距离比是常数的点轨迹MF1d1=MF2d2=e焦点焦点在x轴上焦点在y轴上图形yxF1F2bc虚轴实轴ayxF1F2实轴虚轴标准方程x2a2-y2b2=1a>0,b>0y2a2-x2b2=1a>0,b>0范围x≤-a或x≥a,y∈R y≤-a或y≥a,x∈R 顶点A1-a,0、A2a,0A10,-a、A20,a轴长虚轴长=2b,实轴长=2a,焦距=F1F2=2c,c2=a2+b2焦点F1-c,0、F2c,0F10,-c、F20,c焦半径|PF1|=a+e x0,|PF2|=-a+e x0左支添“-”离心率e=ca=1+b2a2e>1准线方程x=±a2c y=±a2c渐近线y=±ba x y=±ab x切线方程x0xa2-y0yb2=1x0xb2-y0ya2=1通径过双曲线焦点且垂直于对称轴的弦长AB=2b2a(最短焦点弦)焦点三角形(1)由定义可知:|PF1|-|PF2|=2a(2)焦点直角三角形的个数为八个,顶角为直角与底角为直角各四个;(3)焦点三角形面积:S△F1PF2=b2÷tanθ2=c∙y(4)离心率:e=F1F2PF1-PF2=sinθsinα-sinβ=sin(α+β)sinα-sinβyxF1F2Pθαβ定义平面内与一个定点F 和一条定直线l 的距离相等的点的轨迹称为抛物线.方程y 2=2px p >0y 2=-2px p >0x 2=2py p >0x 2=-2py p >0图形yxF x =-p2yxFx =p2y xFy =-p2yxFy =p2顶点0,0对称轴x 轴y 轴焦点F p2,0 F -p 2,0 F 0,p 2 F 0,-p 2准线方程x =-p 2x =p2y =-p 2y =p 2离心率e =1范围x ≥0x ≤0y ≥0y ≤0切线方程y 0y =p x +x 0y 0y =-p x +x 0x 0x =p y +y 0x 0x =-p y +y 0通径过抛物线焦点且垂直于对称轴的弦AB =2p (最短焦点弦)焦点弦AB 为过y 2=2px p >0 焦点的弦,A (x 1,y 1)、B (x 2,y 2),倾斜角为α.则:(1)AF =x 1+p 2BF =x 2+p2AB =x 1+x 2+p ,(2)x 1x 2=p 24y 1y 2=-p 2(3)AF =p 1-αcos BF =p 1+αcos 1|FA |+1|FB |=2P (4)AB =2psin 2αS △AOB =p 22αsin AB 为过x 2=2py (p >0)焦点的弦,A (x 1,y 1)、B (x 2,y 2),倾斜角为α.则:(1)AF =p 1-αsin BF =p1+αsin (2)AB =2p 2αcos S △AOB=p 22αcos (3)AF BF=λ,则:α=λ-1λ+1sin yxFx =-p 2αABO yxFαABOy 2=2px (p >0)y 2=2px (p >0)四、圆锥曲线的通法F 1F 2POxyOxyFP MOxyF 1F 2P椭圆双曲线抛物线点差法与通法1、圆锥曲线综述:联立方程设交点,韦达定理求弦长;变量范围判别式,曲线定义不能忘;弦斜中点点差法,设而不求计算畅;向量参数恰当用,数形结合记心间.★2、直线与圆锥曲线的位置关系(1)直线的设法:1若题目明确涉及斜率,则设直线:y =kx +b ,需考虑直线斜率是否存在,分类讨论;2若题目没有涉及斜率或直线过(a ,0)则设直线:x =my +a ,可避免对斜率进行讨论(2)研究通法:联立y =kx +bF (x ,y )=0得:ax 2+bx +c =0判别式:Δ=b 2−4ac ,韦达定理:x 1+x 2=−b a ,x 1x 2=ca(3)弦长公式:AB =(x 1-x 2)2+(y 1-y 2)2=1+k 2|x 1-x 2|=(1+k 2)⋅[(x 1+x 2)2-4x 1x 2]=1+1k2(y 1+y 2)2−4y 1y 2 3、硬解定理设直线y =kx +φ与曲线x 2m +y 2n=1相交于A (x 1,y 1)、B (x 2,y 2)由:y =kx +φnx 2+my 2=mn,可得:(n +mk 2)x 2+2kφmx +m (φ2-n )=0判别式:△=4mn (n +mk 2-φ2)韦达定理:x 1+x 2=-2kmφn +mk 2,x 1x 2=m (φ2-n )n +mk 2由:|x 1-x 2|=(x 1+x 2)2-4x 1x 2,代入韦达定理:|x 1-x 2|=△n +mk 2★4、点差法:若直线l 与曲线相交于M 、N 两点,点P (x 0,y 0)是弦MN 中点,MN 的斜率为k MN ,则:在椭圆x 2a 2+y 2b 2=1(a >b >0)中,有k MN ⋅y 0x 0=−b 2a2;在双曲线x 2a 2−y 2b 2=1(a >b >0)中,有k MN ⋅y 0x 0=b 2a2;在抛物线y 2=2px (p >0)中,有k MN ⋅y 0=p .(椭圆)设M 、N 两两点的坐标分别为(x 1,y 1)、(x 2,y 2),则有x 12a 2+y 12b 2=1,⋯⋯(1)x 22a 2+y 22b 2=1.⋯⋯(2) (1)−(2),得x 12−x 22a 2+y 12−y 22b 2=0.∴y 2−y 1x 2−x 1⋅y 2+y 1x 2+x 1=−b 2a2.又∵k MN =y 2−y 1x 2−x 1,y 1+y 2x 1+x 2=2y 2x =y x .∴k MN ⋅y x =−b 2a2.圆锥曲线的参数方程1、参数方程的概念在平面直角坐标系中,曲线上任意一点的坐标x ,y 都是某个变数t 的函数x =f (t )y =g (t )并且对于t 的每一个允许值,由这个方程所确定的点M (x ,y )都在这条曲线上,该方程就叫做这条曲线的参数方程,联系变数x ,y 的变数t 叫做参变数,简称参数.相对于参数方程而言,直接给出点的坐标间关系的方程叫做普通方程.※2、直线的参数方程(1)过定点P (x 0,y 0)、倾斜角为α(α≠π2)的直线的参数方程x =x 0+t cos αy =y 0+t sin α (t 为参数)(2)参数t 的几何意义:参数t 表示直线l 上以定点M 0为起点,任意一点M (x ,y )为终点的有向线段的长度再加上表示方向的正负号,也即|M 0M|=|t |,|t |表示直线上任一点M 到定点M 0的距离.当点M 在M 0上方时,t >0;当点M 在M 0下方时,t <0;当点M 与M 0重合时,t =0;(3)直线方程与参数方程互化:y −y o =tan α(x −x o )⇔x =x 0+t cos αy =y 0+t sin α(t 为参数)(4)直线参数方程:x =x 0+aty =y 0+bt (t 为参数),当a 2+b 2=1时,参数方程为标准型参数方程,参数的几何意义才是代表距离.当a 2+b 2≠1时,将参数方程化为x =x 0+aa 2+b 2t y =y 0+ba 2+b 2t 然后在进行计算.★3、圆的参数方程(1)圆心(a ,b ),半径r 的圆(x -a )2+(y -b )2=r 2参数方程x =a +r cos θy =b +r sin θ (θ为参数);特别:当圆心在原点时,半径为r 的圆x 2+y 2=r 2的参数方程为:x =r cos θy =r sin θ (θ是参数).(2)参数θ的几何意义:θ表示x 轴的正方向到圆心和圆上任意一点的半径所成的角.(3)消参的方法:利用sin 2θ+cos 2θ=1,yxF 1F 2PN OMyxM 0tαO M 1αP (x ,y )rxy可得圆方程:(x -a )2+(y -b )2=r 2★4、椭圆的参数方程(1)椭圆x 2a 2+y 2b 2=1(a >b >0)的参数方程为x =a cos φy =b sin φ (φ为参数);椭圆y 2a 2+x 2b2=1(a >b >0)的参数方程为x =b cos φy =a sin φ (φ为参数);(2)参数θ的几何意义:参数θ表示椭圆上某一点的离心角.如图所示,点P 对应的离心角为θ=∠QOx (过P 作PQ ⊥x 轴,交大圆即以2a 为直径的圆于Q ),切不可认为是θ=∠POx .5、双曲线的参数方程(1)双曲线x 2a 2-y 2b 2=1(a >b >0)的参数方程x =a sec φy =b tan φ (φ为参数);sec φ=1cos φ双曲线y 2a 2-x 2b2=1(a >b >0)的参数方程x =b cot φy =a csc φ (φ为参数);csc φ=1sin φ(2)参数θ的几何意义:参数θ表示双曲线上某一点的离心角.※6、抛物线的参数方程(1)抛物线y 2=2px 参数方程x =2pt 2y =2pt(t 为参数,t =1tan α);(2)参数t 的几何意义:抛物线上除顶点外的任意一点与原点连线的斜率的倒数.t =1k OP仿射变换与齐次式1、仿射变换:在几何中,一个向量空间进行一次线性变换并接上一个平移,变换为另一个向量空间.※2、椭圆的变换:椭圆b 2x 2+a 2y 2=a 2b 2变换内容x =x y=a b y x =xy =b a yx =b a x y=yx =a b x y =y圆方程x 2+y 2=a 2x 2+y 2=b 2图示yxAB OCyxABOCyxAB OCyxAB OC 点坐标A (x 0,y 0)→A '(x 0,a by 0)A (x 0,y 0)→A '(b ax 0,y 0)斜率变化k '=a bk ,由于k A 'C '⋅k B 'C '=−1.k AC ⋅k BC =b a k A 'C '⋅b a k B 'C '=−b 2a 2k '=a bk ,由于k A 'C '⋅k B 'C '=−1.k AC ⋅k BC =b a k A 'C '⋅b a k B 'C '=−b 2a2弦长变化则AB =1+k 2x 1-x 2 ⇒A 'B '=1+k '2x 1-x 2 =1+(a b)2k 2x 1-x 2 yxαPOQ面积变化S△ABC=b a S△A'B'C'(水平宽不变,铅锤高缩小)S△ABC=a b S△A'B'C'(水平宽扩大,铅垂高不变)3、中点弦问题,k OP⋅k AB=−b2a2,中垂线问题k OPk MP=b2a2,且x M=c2x0a2y N=-c2y0b2,拓展1:椭圆内接△ABC中,若原点O为重心,则仿射后一定得到△OB'C'为120°的等腰三角形;△A'B'C'为等边三角形;拓展2:椭圆内接平行四边形OAPB(A、P、B)在椭圆上,则仿射后一定得菱形OA'P'B' 4、面积问题:(1)若以椭圆x2a2+y2b2=1对称中心引出两条直线交椭圆于A、B两点,且k OA⋅k OB=−b2a2,则经过仿射变换后k OA'⋅k OB'=−1,所以S△AOB为定值.(2)若椭圆方程x2a2+y2b2=1上三点A,B,M,满足:①k OA⋅k OB=−b2a2②S△AOB=ab2③OM=sinαOA+cosαOBα∈0,π2,三者等价※5、平移构造齐次式:(圆锥曲线斜率和与积的问题)(1)题设:过圆锥曲线上的一个定点P作两条直线与圆锥曲线交于A、B,在直线PA和PB斜率之和或者斜率之积为定值的情况下,直线AB过定点或者AB定斜率的问题.(2)步骤:①将公共点平移到坐标原点(点平移:左加右减上减下加)找出平移单位长.②由①中的平移单位长得出平移后的圆锥曲线C ,所有直线方程统一写为:mx+ny=1③将圆锥曲线C 展开,在一次项中乘以mx+ny=1,构造出齐次式.④在齐次式中,同时除以x2,构建斜率k的一元二次方程,由韦达定理可得斜率之积(和).圆锥曲线考点归类(一)条件方法梳理1、椭圆的角平分线定理(1)若点A、B是椭圆x2a2+y2b2=1(a>b>0)上的点,AB与椭圆长轴交点为N,在长轴上一定存在一个点M,当仅当则x M⋅x N=a2时,∠AMN=∠BMN,即长轴为角平分线;(2)若点A、B是椭圆x2a2+y2b2=1(a>b>0)上的点,AB与椭圆短轴交点为N,在短轴上一定存在一个点M,当仅当则y M⋅y N=b2时,∠AMN=∠BMN,即短轴为角平分线;※2、关于角平分线的结论:若直线AO的斜率为k1,直线CO的斜率为k2,EO平分∠AOC则有:k1+k2=tanα+tan(π-α)=0角平分线的一些等价代换条件:作x轴的对称点、点到两边的距离相等.3、四种常用直线系方程(1)定点直线系方程:经过定点P 0(x 0,y 0)的直线系方程为y -y 0=k (x -x 0)(除直线x =x 0),其中k 是待定的系数;经过定点P 0(x 0,y 0)的直线系方程为A (x -x 0)+B (y -y 0)=0,其中A ,B 是待定的系数.(2)共点直线系方程:经过两直线l 1:A 1x +B 1y +C 1=0,l 2:A 2x +B 2y +C 2=0的交点的直线系方程为(A 1x +B 1y +C 1)+λ(A 2x +B 2y +C 2)=0(除l 2),其中λ是待定的系数.(3)平行直线系方程:直线y =kx +b 中当斜率k 一定而b 变动时,表示平行直线系方程.与直线Ax +By +C =0平行的直线系方程是Ax +By +λ=0(λ≠0),λ是参变量.(4)垂直直线系方程:与直线Ax +By +C =0(A ≠0,B ≠0)垂直的直线系方程是Bx -Ay +λ=0,λ是参变量.4、圆系方程(1)过直线l :Ax +By +C =0与圆C :x 2+y 2+Dx +Ey +F =0的交点的圆系方程是x 2+y 2+Dx +Ey +F +λ(Ax +By +C )=0,λ是待定的系数.(2)过圆C 1:x 2+y 2+D 1x +E 1y +F 1=0与圆C 2:x 2+y 2+D 2x +E 2y +F 2=0的交点的圆系方程是x 2+y 2+D 1x +E 1y +F 1+λ(x 2+y 2+D 2x +E 2y +F 2)=0,λ是待定的系数.★(二)圆锥曲线过定点问题1、直线过定点的背景:(1)直线过定点模型:A ,B 是圆锥曲线上的两动点,M 是一定点,其中α,β分别为MA ,MB 的倾斜角,则:①、MA ⋅MB 为定值⇔直线AB 恒过定点;②、k MA ⋅k MB 为定值⇔直线AB 恒过定点;③、α+β=θ(0<θ<π)⇔直线AB 恒过定点.(2)抛物线中直线过定点:A ,B 是抛物线y 2=2px (p >0)上的两动点,α,β分别为OA ,OB 的倾斜角,则:OA ⊥OB ⇔k OA ⋅k OB =-1⇔α-β =π2⇔直线AB 恒过定点(2p ,0).(3)椭圆中直线过定点模型:A ,B 是椭圆x 2a 2+y 2b2=1(a >b >0)上异于右顶点D 的两动点,其中α,β分别为DA ,DB 的倾斜角,则可以得到下面几个充要的结论:DA ⊥DB ⇔k DA ⋅k DB =-1⇔α-β =π2⇔直线AB 恒过定点(ac 2a 2+b 2,0)2、定点的求解方法:1含参形式简单的直线方程,通过将直线化为y -y 0=k (x -x 0)可求得定点坐标(x 0,y 0)2含参形式复杂的通过变换主元法求解定点坐标.变换主元法:将直线化为h (x ,y )+λf (x ,y )=0,解方程组:h (x ,y )=0f (x ,y )=0 可得定点坐标.eg :直线方程:(2m +1)x +(m -5)y +6=0,将m 看作主元,按照降幂排列:(2x +y )m+x -5y +6=0,解方程组:2x +y =0x -5y +6=0,解得:x =-611y =1211,求得直线过定点(-611,1211).3、关于以AB 为直径的圆过定点问题:(1)直接法:设出参数后,表示出圆的方程.圆的直径式方程:(x -x 1)(x -x 2)+(y -y 1)(y -y 2)=0(2)由特殊到一般:利用赋值法,先求出几个位置的圆方程,联立圆方程解出公共交点,该交点即为圆所过的定点,再利用向量数量积为0证明点恒在圆上.★(三)圆锥曲线面积问题1、面积的求解方法:(1)S △ABC =12MN ∙d ,从公式可以看出,求面积重在求解弦长和点到线的距离.(2)S △ABC =12×水平宽×铅锤高,主要以点的坐标运算为主.(3)S △AOB =12x 1y 2-x 2y 1例题1.在平面直角坐标系xOy 中,已知点O 0,0 ,A x 1,y 1 ,B x 2,y 2 不共线,证明:△AOB 的面积为S △AOB =12x 1y 2-x 2y 1 .2、面积中最值的求解(1)f (x )=αx 2+βx +φx +n型:令t =x +n ⇒x =t -n 进行代换后裂项转化为:y =at +bt (2)f (x )=x +n αx 2+βx +φ型:先在分母中配出分子式f (x )=x +n α(x +n )2+λ(x +n )+υ令t =x +n ,此时:y =t αt 2+λt +υ,分子分母同时除t ,此时y =1αt +υt+λ,再利用对勾函数或不等式分析最值.(3)f (x )=αx +βx +n型:令t =x +n ⇒x =t 2-n 进行代换后裂项,可转化为:y =at +bt五、椭圆的二级结论1.PF1+PF2=2a2.标准方程x2a2+y2b2=13.PF1d1=e<14.点P处的切线PT平分△PF1F2在点P处的外角.5.PT平分△PF1F2在点P处的外角,则焦点在直线PT上的射影H点的轨迹是以长轴为直径的圆,除去长轴的两个端点.6.以焦点弦PQ为直径的圆必与对应准线相离.7.以焦点半径PF1为直径的圆必与以长轴为直径的圆内切.8.设A1、A2为椭圆的左、右顶点,则△PF1F2在边PF2(或PF1)上的旁切圆,必与A1A2所在的直线切于A2 (或A1).9.椭圆x2a2+y2b2=1(a>b>0)的两个顶点为A1(-a,0),A2(a,0),与y轴平行的直线交椭圆于P1、P2时A1P1与A2P2交点的轨迹方程是x2a2-y2b2=1.10.若点P0(x0,y0)在椭圆x2a2+y2b2=1a>b>0上,则在点P0处的切线方程是x0xa2+y0yb2=1.11.若P0(x0,y0)在椭圆x2a2+y2b2=1外,则过Po作椭圆的两条切线切点为P1、P2,则切点弦P1P2的直线方程是x0xa2+y0yb2=1.12.AB是椭圆x2a2+y2b2=1的不平行于对称轴的弦,M为AB的中点,则k OM⋅k AB=-b2a2.13.若P0(x0,y0)在椭圆x2a2+y2b2=1内,则被PO所平分的中点弦的方程是x0xa2+y0yb2=x02a2+y02b2.14.若P0(x0,y0)在椭圆x2a2+y2b2=1内,则过PO的弦中点的轨迹方程是x2a2+y2b2=x0xa2+y0yb2.15.若PQ是椭圆x2a2+y2b2=1(a>b>0)上对中心张直角的弦,则1r12+1r22=1a2+1b2(r1=|OP|,r2=|OQ|).16.若椭圆x2a2+y2b2=1(a>b>0)上中心张直角的弦L所在直线方程为Ax+By=1(AB≠0),则(1)1a2+1 b2=A2+B2;(2)L=2a4A2+b4B2a2A2+b2B2.17.给定椭圆C1:b2x2+a2y2=a2b2(a>b>0),C2:b2x2+a2y2=a2-b2a2+b2ab2,则(i)对C1上任意给定的点P(x0,y0),它的任一直角弦必须经过C2上一定点M a2-b2a2+b2x0,-a2-b2a2+b2y0. (ii)对C2上任一点P (x0 ,y0 )在C1上存在唯一的点M ,使得M 的任一直角弦都经过P 点.18.设P(x0,y0)为椭圆(或圆)C:x2a2+y2b2=1(a>0,.b>0)上一点,P1P2为曲线C的动弦,且弦PP1,PP2斜率存在,记为k1,k2,则直线P1P2通过定点M(mx0,-my0)(m≠1)的充要条件是k1⋅k2=-1+m1-m⋅b2a2.19.过椭圆x2a2+y2b2=1(a>0,b>0)上任一点A(x0,y0)任意作两条倾斜角互补的直线交椭圆于B,C两点,则直线BC有定向且k BC=b2x0a2y0(常数).20.椭圆x2a2+y2b2=1(a>b>0)的左右焦点分别为F1,F2,点P为椭圆上任意一点∠F1PF2=γ,则椭圆的焦点三角形的面积为S△F1PF2=b2tanγ2,P±ac c2-b2tan2γ2,±b2c tanγ2.21.若P为椭圆x2a2+y2b2=1(a>b>0)上异于长轴端点的任一点,F1,F2是焦点,∠PF1F2=α,∠PF2F1=β,则a-ca+c=tanα2tanβ2.22.椭圆x2a2+y2b2=1(a>b>0)的焦半径公式:|MF1|=a+ex0,|MF2|=a-ex0(F1(-c,0),F2(c,0),M(x0,y0)).23.若椭圆x2a2+y2b2=1(a>b>0)的左、右焦点分别为F1、F2,左准线为L,则当2-1≤e<1时,可在椭圆上求一点P,使得PF1是P到对应准线距离d与PF2的比例中项.24.P为椭圆x2a2+y2b2=1(a>b>0)上任一点,F1,F2为二焦点,A为椭圆内一定点,则2a-|AF2|≤|PA|+|PF1|≤2a+|AF2|,当且仅当A,F2,P三点共线时,等号成立.25.椭圆x2a2+y2b2=1(a>b>0)上存在两点关于直线l:y=k(x-x0)对称的充要条件是x02≤(a2-b2)2a2+b2k2.26.过椭圆焦半径的端点作椭圆的切线,与以长轴为直径的圆相交,则相应交点与相应焦点的连线必与切线垂直.27.过椭圆焦半径的端点作椭圆的切线交相应准线于一点,则该点与焦点的连线必与焦半径互相垂直.28.P是椭圆x=a cosϕy=b sinϕ(a>b>0)上一点,则点P对椭圆两焦点张直角的充要条件是e2=11+sin2ϕ.29.设A,B为椭圆x2a2+y2b2=k(k>0,k≠1)上两点,其直线AB与椭圆x2a2+y2b2=1相交于P,Q,则AP=BQ.30.在椭圆x 2a 2+y 2b 2=1中,定长为2m (o <m ≤a )的弦中点轨迹方程为m 2=1-x 2a 2+y 2b 2a 2cos 2α+b 2sin 2α ,其中tan α=-bx ay ,当y =0时,α=90∘.31.设S 为椭圆x 2a 2+y 2b2=1(a >b >0)的通径,定长线段L 的两端点A ,B 在椭圆上移动,记|AB |=l ,M(x 0,y 0)是AB 中点,则当l ≥ΦS 时,有(x 0)max =a 2c -l 2e c 2=a 2-b 2,e =c a;当l <ΦS 时,有(x 0)max =a 2b4b 2-l 2,(x 0)min=0.32.椭圆x 2a 2+y 2b2=1与直线Ax +By +C =0有公共点的充要条件是A 2a 2+B 2b 2≥C 2.33.椭圆(x -x 0)2a 2+(y -y 0)2b2=1与直线Ax +By +C =0有公共点的充要条件是A 2a 2+B 2b 2≥(Ax 0+By 0+C )2.34.设椭圆x 2a 2+y 2b2=1(a >b >0)的两个焦点为F 1、F 2,P (异于长轴端点)为椭圆上任意一点,在△PF 1F 2中,记∠F 1PF 2=α,∠PF 1F 2=β,∠F 1F 2P =γ,则有sin αsin β+sin γ=c a =e.35.经过椭圆b 2x 2+a 2y 2=a 2b 2(a >b >0)的长轴的两端点A 1和A 2的切线,与椭圆上任一点的切线相交于P 1和P 2,则|P 1A 1|⋅|P 2A 2|=b 2.36.已知椭圆x 2a 2+y 2b2=1(a >b >0),O 为坐标原点,P 、Q 为椭圆上两动点,且OP ⊥OQ .(1)1|OP |2+1|OQ |2=1a 2+1b2;(2)|OP |2+|OQ |2的最小值为4a 2b 2a 2+b 2;(3)S ΔOPQ 的最小值是a 2b 2a 2+b 2.37.MN 是经过椭圆b 2x 2+a 2y 2=a 2b 2(a >b >0)焦点的任一弦,若AB 是经过椭圆中心O 且平行于MN 的弦,则|AB |2=2a |MN |.38.MN 是经过椭圆b 2x 2+a 2y 2=a 2b 2(a >b >0)焦点的任一弦,若过椭圆中心O 的半弦OP ⊥MN ,则2a |MN |+1|OP |2=1a 2+1b2.39.设椭圆x 2a 2+y 2b2=1(a >b >0),M (m ,o )或(o ,m )为其对称轴上除中心,顶点外的任一点,过M 引一条直线与椭圆相交于P 、Q 两点,则直线A 1P 、A 2Q (A 1,A 2为对称轴上的两顶点)的交点N 在直线l :x =a2m(或y =b 2m)上.40.设过椭圆焦点F 作直线与椭圆相交P 、Q 两点,A 为椭圆长轴上一个顶点,连结AP 和AQ 分别交相应于焦点F 的椭圆准线于M 、N 两点,则MF ⊥NF .41.过椭圆一个焦点F的直线与椭圆交于两点P、Q,A1、A2为椭圆长轴上的顶点,A1P和A2Q交于点M,A2P和A1Q交于点N,则MF⊥NF.42.设椭圆方程x2a2+y2b2=1,则斜率为k(k≠0)的平行弦的中点必在直线l:y=kx的共轭直线y=k x上,而且kk =-b2 a2 .43.设A、B、C、D为椭圆x2a2+y2b2=1上四点,AB、CD所在直线的倾斜角分别为α,β,直线AB与CD相交于P,且P不在椭圆上,则PA⋅PBPC⋅PD=b2cos2β+a2sin2βb2cos2α+a2sin2α.44.已知椭圆x2a2+y2b2=1(a>b>0),点P为其上一点F1,F2为椭圆的焦点,∠F1PF2的外(内)角平分线为l,作F1、F2分别垂直l于R、S,当P跑遍整个椭圆时,R、S形成的轨迹方程是x2+y2=a2c2y2=a2y2+b2x x±c2 a2y2+b2x±c2.45.设△ABC内接于椭圆Γ,且AB为Γ的直径,l为AB的共轭直径所在的直线,l分别交直线AC、BC于E和F,又D为l上一点,则CD与椭圆Γ相切的充要条件是D为EF的中点.46.过椭圆x2a2+y2b2=1(a>b>0)的右焦点F作直线交该椭圆右支于M,N两点,弦MN的垂直平分线交x轴于P,则|PF||MN|=e2.47.设A(x1,y1)是椭圆x2a2+y2b2=1(a>b>0)上任一点,过A作一条斜率为-b2x1a2y1的直线L,又设d是原点到直线L的距离,r1,r2分别是A到椭圆两焦点的距离,则r1r2d=ab.48.已知椭圆x2a2+y2b2=1(a>b>0)和x2a2+y2b2=λ(0<λ<1),一直线顺次与它们相交于A、B、C、D四点,则│AB│=|CD│.49.已知椭圆x2a2+y2b2=1(a>b>0),A、B、是椭圆上的两点,线段AB的垂直平分线与x轴相交于点P(x0,0),则-a2-b2a<x0<a2-b2 a.50.设P点是椭圆x2a2+y2b2=1(a>b>0)上异于长轴端点的任一点,F1、F2为其焦点记∠F1PF2=θ,则(1)|PF1||PF2|=2b21+cosθ.(2)SΔPF1F2=b2tanθ2.51.设过椭圆的长轴上一点B(m,o)作直线与椭圆相交于P、Q两点,A为椭圆长轴的左顶点,连结AP和AQ分别交相应于过H点的直线MN:x=n于M,N两点,则∠MBN=90∘⇔a-ma+m=a2n-m2 b2(n+a)2.52.L是经过椭圆x2a2+y2b2=1(a>b>0)长轴顶点A且与长轴垂直的直线,E、F是椭圆两个焦点,e是离心率,点P∈L,若∠EPF=α,则α是锐角且sinα≤e或α≤arcsin e(当且仅当|PH|=b时取等号).53.L是椭圆x2a2+y2b2=1(a>b>0)的准线,A、B是椭圆的长轴两顶点,点P∈L,e是离心率,∠EPF=α,H是L与X轴的交点c是半焦距,则α是锐角且sinα≤e或α≤arcsin e(当且仅当|PH|=ab c时取等号).54.L是椭圆x2a2+y2b2=1(a>b>0)的准线,E、F是两个焦点,H是L与x轴的交点,点P∈L,∠EPF=α,离心率为e,半焦距为c,则α为锐角且sinα≤e2或α≤arcsin e2(当且仅当|PH|=b c a2+c2时取等号).55.已知椭圆x2a2+y2b2=1(a>b>0),直线L通过其右焦点F2,且与椭圆相交于A、B两点,将A、B与椭圆左焦点F1连结起来,则b2≤|F1A|⋅|F1B|≤(2a2-b2)2a2(当且仅当AB⊥x轴时右边不等式取等号,当且仅当A、F1、B三点共线时左边不等式取等号).56.设A、B是椭圆x2a2+y2b2=1(a>b>0)的长轴两端点,P是椭圆上的一点,∠PAB=α,∠PBA=β,∠BPA=γ,c、e分别是椭圆的半焦距离心率,则有(1)|PA|=2ab2|cosα|a2-c2cos2α.(2)tanαtanβ=1-e2.(3)SΔPAB=2a2b2b2-a2cotγ.57.设A、B是椭圆x2a2+y2b2=1(a>b>0)长轴上分别位于椭圆内(异于原点)、外部的两点,且x A、x B的横坐标x A⋅x B=a2,(1)若过A点引直线与这椭圆相交于P、Q两点,则∠PBA=∠QBA;(2)若过B引直线与这椭圆相交于P、Q两点,则∠PAB+∠QAB=180∘.58.设A、B是椭圆x2a2+y2b2=1(a>b>0)长轴上分别位于椭圆内(异于原点),外部的两点,(1)若过A点引直线与这椭圆相交于P、Q两点,(若BP交椭圆于两点,则P、Q不关于x轴对称),且∠PBA=∠QBA,则点A、B的横坐标x A、x B满足x A⋅x B=a2;(2)若过B点引直线与这椭圆相交于P、Q两点,且∠PAB+∠QAB=180∘,则点A、B的横坐标满足x A⋅x B=a2.59.设A,A 是椭圆x2a2+y2b2=1的长轴的两个端点,QQ 是与AA 垂直的弦,则直线AQ与A Q 的交点P的轨迹是双曲线x2a2-y2b2=1.60.过椭圆x2a2+y2b2=1(a>b>0)的左焦点F作互相垂直的两条弦AB、CD则8ab2a2+b2≤|AB|+|CD|≤2(a2+b2)a.61.到椭圆x 2a 2+y 2b2=1(a >b >0)两焦点的距离之比等于a -c b (c 为半焦距)的动点M 的轨迹是姊妹圆(x ±a )2+y 2=b 2.62.到椭圆x 2a 2+y 2b2=1(a >b >0)的长轴两端点的距离之比等于a -c b (c 为半焦距)的动点M 的轨迹是姊妹圆x ±a e 2+y 2=b e 2.63.到椭圆x 2a 2+y 2b2=1(a >b >0)的两准线和x 轴的交点的距离之比为a -c b (c 为半焦距)的动点的轨迹是姊妹圆x ±a e 2 2+y 2=b e 2 2(e 为离心率).64.已知P 是椭圆x 2a 2+y 2b2=1(a >b >0)上一个动点,A ,A 是它长轴的两个端点,且AQ ⊥AP ,A Q ⊥AP ,则Q 点的轨迹方程是x 2a 2+b 2y 2a4=1.65.椭圆的一条直径(过中心的弦)的长,为通过一个焦点且与此直径平行的弦长和长轴之长的比例中项.66.设椭圆x 2a 2+y 2b 2=1(a >b >0)长轴的端点为A ,A ,P (x 1,y 1)是椭圆上的点过P 作斜率为-b 2x 1a 2y 1的直线l ,过A ,A 分别作垂直于长轴的直线交l 于M ,M ,则(1)|AM ||A M |=b 2.(2)四边形MAA M 面积的最小值是2ab .67.已知椭圆x 2a 2+y2b2=1(a >b >0)的右准线l 与x 轴相交于点E ,过椭圆右焦点F 的直线与椭圆相交于A 、B 两点,点C 在右准线l 上,且BC ⎳x 轴,则直线AC 经过线段EF 的中点.68.OA 、OB 是椭圆(x -a )2a 2+y 2b 2=1(a >0,b >0)的两条互相垂直的弦,O 为坐标原点,则(1)直线AB必经过一个定点2ab 2a 2+b 2,0 .(2)以OA 、OB 为直径的两圆的另一个交点Q 的轨迹方程是x -ab 2a 2+b 2 2+y 2=ab 2a 2+b 2 2(x ≠0).69.P (m ,n )是椭圆(x -a )2a 2+y 2b2=1(a >b >0)上一个定点,PA 、PB 是互相垂直的弦,则(1)直线AB 必经过一个定点2ab 2+m (a 2-b 2)a 2+b 2,n (b 2-a 2)a 2+b 2 .(2)以PA 、PB 为直径的两圆的另一个交点Q 的轨迹方程是x -ab 2+a 2m a 2+b 2 2+y -b 2n a 2+b 2 2=a 2[b 4+n 2(a 2-b 2)](a 2+b 2)2(x ≠m 且y ≠n ).70.如果一个椭圆短半轴长为b ,焦点F 1、F 2到直线L 的距离分别为d 1、d 2,那么(1)d 1d 2=b 2,且F 1、F 2在L 同侧⇔直线L 和椭圆相切.(2)d 1d 2>b 2,且F 1、F 2在L 同侧⇔直线L 和椭圆相离,(3)d 1d 2<b 2,或F 1、F 2在L 异侧⇔直线L 和椭圆相交.71.AB 是椭圆x 2a 2+y 2b2=1(a >b >0)的长轴,N 是椭圆上的动点,过N 的切线与过A 、B 的切线交于C 、D两点,则梯形ABDC的对角线的交点M的轨迹方程是x2a2+4y2b2=1(y≠0).72.设点P(x0,y0)为椭圆x2a2+y2b2=1(a>b>0)的内部一定点,AB是椭圆x2a2+y2b2=1过定点P(x0,y0)的任一弦,当弦AB平行(或重合)于椭圆长轴所在直线时(|PA|⋅|PB|)max=a2b2-(a2y02+b2x02)b2.当弦AB垂直于长轴所在直线时,(|PA|⋅|PB|)min=a2b2-(a2y02+b2x02)a2.73.椭圆焦三角形中,以焦半径为直径的圆必与以椭圆长轴为直径的圆相内切.74.椭圆焦三角形的旁切圆必切长轴于非焦顶点同侧的长轴端点.75.椭圆两焦点到椭圆焦三角形旁切圆的切线长为定值a+c与a-c.76.椭圆焦三角形的非焦顶点到其内切圆的切线长为定值a-c.77.椭圆焦三角形中,内点到一焦点的距离与以该焦点为端点的焦半径之比为常数e(离心率).(注:在椭圆焦三角形中,非焦顶点的内、外角平分线与长轴交点分别称为内、外点.)78.椭圆焦三角形中,内心将内点与非焦顶点连线段分成定比e.79.椭圆焦三角形中,半焦距必为内、外点到椭圆中心的比例中项.80.椭圆焦三角形中,椭圆中心到内点的距离、内点到同侧焦点的距离、半焦距及外点到同侧焦点的距离成比例.81.椭圆焦三角形中,半焦距、外点与椭圆中心连线段、内点与同侧焦点连线段、外点与同侧焦点连线段成比例.82.椭圆焦三角形中,过任一焦点向非焦顶点的外角平分线引垂线,则椭圆中心与垂足连线必与另一焦半径所在直线平行.83.椭圆焦三角形中,过任一焦点向非焦顶点的外角平分线引垂线,则椭圆中心与垂足的距离为椭圆长半轴的长.84.椭圆焦三角形中,过任一焦点向非焦顶点的外角平分线引垂线,垂足就是垂足同侧焦半径为直径的圆和椭圆长轴为直径的圆的切点.85.椭圆焦三角形中,非焦顶点的外角平分线与焦半径、长轴所在直线的夹角的余弦的比为定值e.86.椭圆焦三角形中,非焦顶点的法线即为该顶角的内角平分线.87.椭圆焦三角形中,非焦顶点的切线即为该顶角的外角平分线.88.椭圆焦三角形中,过非焦顶点的切线与椭圆长轴两端点处的切线相交,则以两交点为直径的圆必过两焦点.89.已知椭圆x2a2+y2b2=1(a>0,b>0)(包括圆在内)上有一点P,过点P分别作直线y=b a x及y=-b a x的平行线,与x 轴于M ,N ,与y 轴交于R ,Q .,O 为原点,则:(1)|OM |2+|ON |2=2a 2;(2)|OQ |2+|OR |2=2b 2.90.过平面上的P 点作直线l 1:y =b a x 及l 2:y =-b ax 的平行线,分别交x 轴于M ,N ,交y 轴于R ,Q .(1)若|OM |2+|ON |2=2a 2,则P 的轨迹方程是x 2a 2+y 2b2=1(a >0,b >0).(2)若|OQ |2+|OR |2=2b 2,则P 的轨迹方程是x 2a 2+y 2b2=1(a >0,b >0).91.点P 为椭圆x 2a 2+y 2b2=1(a >0,b >0)(包括圆在内)在第一象限的弧上任意一点,过P 引x 轴、y 轴的平行线,交y 轴、x 轴于M ,N ,交直线y =-b ax 于Q ,R ,记ΔOMQ 与ΔONR 的面积为S 1,S 2,则:S 1+S 2=ab 2.92.点P 为第一象限内一点,过P 引x 轴、y 轴的平行线,交y 轴、x 轴于M ,N ,交直线y =-b ax 于Q ,R ,记△OMQ 与△ONR 的面积为S 1,S 2,已知S 1+S 2=ab 2,则P 的轨迹方程是x 2a 2+y 2b2=1(a >0,b >0).93.过椭圆焦点垂直于长轴的弦(通径)是最短的弦,长为2b 2a,过焦点最长弦为长轴.94.过原点最长弦为长轴长2a ,最短弦为短轴长2b .95.与椭圆x 2a 2+y 2b 2=1(a >b >0)有共焦点的椭圆方程为x 2a 2+λ+y 2b 2+λ=1(a >b >0,λ>-b 2).96.与椭圆y 2a 2+x 2b 2=1(a >b >0)有共焦点的椭圆方程为y 2a 2+λ+x 2b 2+λ=1(a >b >0,λ>-b 2).97.焦点三角形:椭圆上的点P (x 0,y 0)与两焦点F 1,F 2构成的△PF 1F 2叫做焦点三角形.若r 1=|PF 1|,r 2=|PF 2|,∠F 1PF 2=θ,△PF 1F 2的面积为S ,则在椭圆x 2a 2+y 2b2=1(a >b >0)中:①当r 1=r 2时,即点P 为短轴端点时,θ最大;cos θ=r 21+r 22-4c 22r 1r 2=r 1+r 2 2-2r 1r 2-4c22r 1r 2=4b 22r 1r 2-1=2b 2r 1r 2-1≥2b 2r 1+r 222-1=2b 2-a 2a 2=b 2-c 2a 2当且仅当r 1=r 2时,等号成立.②S =12|PF 1||PF 2|sin θ=c |y 0|=sin θ1+cos θb 2=b 2tan θ2,当|y 0|=b ,即点P 为短轴端点时,S 取得最大值,最大值为bc ;③△PF 1F 2的周长为2(a +c ).98.AB 为过F 的焦点弦,则1FA +1FB =2ab 299.已知椭圆Γ:x 2a 2+y 2b2=1a >b >0 的左右焦点分别为F 1、F 2.椭圆Γ在点P 处的切线为l ,Q ∈l .且满足∠AQF1=θ0<θ<π2,则点Q在以C0,±cθcot为圆心,a θsin为半径的圆上.六、双曲线的二级结论1.PF1-PF2=2a2.标准方程x2a2-y2b2=13.PF1d1=e>14.点P处的切线PT平分△PF1F2在点P处的内角.5.PT平分△PF1F2在点P处的内角,则焦点在直线PT上的射影H点的轨迹是以实轴为直径的圆,除去实轴的两个端点.6.以焦点弦PQ为直径的圆必与对应准线相交.7.以焦点半径PF1为直径的圆必与以实轴为直径的圆外切.8.设P为双曲线上一点,则△PF1F2的内切圆必切于与P在同侧的顶点.9.双曲线x2a2-y2b2=1(a>0,b>0)的两个顶点为A1(-a,0),A2(a,0),与y轴平行的直线交双曲线于P1、P2时A1P1与A2P2交点的轨迹方程是x2a2+y2b2=1.10.若点P0(x0,y0)在双曲线x2a2-y2b2=1(a>0,b>0)上,则在点P0处的切线方程是x0xa2-y0yb2=1.11.若P0(x0,y0)在双曲线x2a2-y2b2=1(a>0,b>0)外,则过P0作双曲线的两条切线切点为P1、P2,则切点弦P1P2的直线方程是x0xa2-y0yb2=1.12.若AB是双曲线x2a2-y2b2=1(a>0,b>0)的不平行于对称轴且过原点的弦,M为AB的中点,则k OM⋅k AB=b2a2.13.若P0(x0,y0)在双曲线x2a2-y2b2=1(a>0,b>0)内,则被P0所平分的中点弦的方程是x0xa2-y0yb2=x02a2-y02 b2 .14.若P0(x0,y0)在双曲线x2a2-y2b2=1(a>0,b>0)内,则过Po的弦中点的轨迹方程是x2a2-y2b2=x0xa2-y0y b2.15.若PQ是双曲线x2a2-y2b2=1(b>a>0)上对中心张直角的弦,则1r12+1r22=1a2-1b2(r1=|OP|,r2=|OQ|).16.若双曲线x2a2-y2b2=1(b>a>0)上中心张直角的弦L所在直线方程为Ax+By=1(AB≠0),则(1)1a2-1 b2=A2+B2;(2)L=2a4A2+b4B2|a2A2-b2B2|.17.给定双曲线C1:b2x2-a2y2=a2b2(a>b>0),C2:b2x2-a2y2=a2+b2a2-b2ab2,则(i)对C1上任意给定的点P(x0,y0),它的任一直角弦必须经过C2上一定点M a2+b2a2-b2x0,-a2+b2a2-b2y0. (ii)对C2上任一点P (x0 ,y0 )在C1上存在唯一的点M ,使得M 的任一直角弦都经过P 点.18.设P(x0,y0)为双曲线x2a2-y2b2=1(a>0,b>0)上一点,P1P2为曲线C的动弦,且弦PP1,PP2斜率存在,记为k1,k2,则直线P1P2通过定点M(mx0,-my0)(m≠1)的充要条件是k1⋅k2=1+m1-m⋅b2a2.19.过双曲线x2a2-y2b2=1(a>0,b>o)上任一点A(x0,y0)任意作两条倾斜角互补的直线交双曲线于B,C两点,则直线BC有定向且k BC=-b2x0a2y0(常数).20.双曲线x2a2-y2b2=1(a>0,b>0)的左右焦点分别为F1,F2,点P为双曲线上任意一点∠F1PF2=γ,则双曲线的焦点角形的面积为S△F1PF2=b2cotγ2=b2γ2tan,P±ac c2+b2cot2γ2,±b2c cotγ2.21.若P为双曲线x2a2-y2b2=1(a>0,b>0)右(或左)支上除顶点外的任一点,F1,F2是焦点,∠PF1F2=α,∠PF2F1=β,则c-ac+a=tan α2cotβ2(或c-ac+a=tanβ2cotα2).22.双曲线x2a2-y2b2=1(a>0,b>o)的焦半径公式:F1(-c,0),F2(c,0)当M(x0,y0)在右支上时,|MF1|=ex0+a,|MF2|=ex0-a.当M(x0,y0)在左支上时,|MF1|=-ex0-a,|MF2|=-ex0+a.23.若双曲线x2a2-y2b2=1(a>0,b>0)的左、右焦点分别为F1、F2,左准线为L,则当1<e≤2+1时,可在双曲线上求一点P,使得PF1是P到对应准线距离d1与PF2的比例中项.24.P为双曲线x2a2-y2b2=1(a>0,b>0)上任一点,F1,F2为二焦点,A为双曲线左支内一定点,则|AF2|-2a≤|PA|+|PF1|,当且仅当A,F2,P三点共线且P在左支时,等号成立.25.双曲线x2a2-y2b2=1(a>0,b>0)上存在两点关于直线l:y=k(x-x0)对称的充要条件是x02>(a2+b2)2 a2-b2k2k≠0且k≠±a b .26.过双曲线焦半径的端点作双曲线的切线,与以长轴为直径的圆相交,则相应交点与相应焦点的连线必与切线垂直.27.过双曲线焦半径的端点作双曲线的切线交相应准线于一点,则该点与焦点的连线必与焦半径互相垂直.28.P是双曲线x=a secϕy=b tanϕ(a>0,b>0)上一点,则点P对双曲线两焦点张直角的充要条件是e2=11-tan2ϕ.29.设A,B为双曲线x2a2-y2b2=k(a>0,b>0,k>0,k≠1)上两点,其直线AB与双曲线x2a2-y2b2=1相交于P,Q,则AP=BQ.30.在双曲线x2a2-y2b2=1中,定长为2m(m>0)的弦中点轨迹方程为m2=1-x2a2-y2b2a2cosh2t+b2sinh2t,coth t=-aybx,x=0时t=0,弦两端点在两支上x2a2-y2b2-1a2sinh2t+b2cosh2t,coth t=-bxay,y=0时t=0,弦两端点在同支上31.设S为双曲线x2a2-y2b2=1(a>0,b>0)的通径,定长线段L的两端点A,B在双曲线右支上移动,记|AB|=l,M(x0,y0)是AB中点,则当l≥ΦS时,有(x0)min=a2c+l2e c2=a2+b2,e=c a;当l<ΦS时,有(x0)min=a2b4b2+l2.32.双曲线x2a2-y2b2=1(a>0,b>0)与直线Ax+By+C=0有公共点的充要条件是A2a2-B2b2≤C2.33.双曲线(x-x0)2a2-(y-y0)2b2=1(a>0,b>0)与直线Ax+By+C=0有公共点的充要条件是A2a2-B2b2≤(Ax0+By0+C)2.34.设双曲线x2a2-y2b2=1(a>0,b>0)的两个焦点为F1、F2,P(异于长轴端点)为双曲线上任意一点,在△PF1F2中,记∠F1PF2=α,∠PF1F2=β,∠F1F2P=γ,则有sinα±(sinγ-sinβ)=c a=e.35.经过双曲线x2a2-y2b2=1(a>0,b>0)的实轴的两端点A1和A2的切线,与双曲线上任一点的切线相交于P1和P2,则|P1A1|⋅|P2A2|=b2.36.已知双曲线x2a2-y2b2=1(b>a>0),O为坐标原点,P、Q为双曲线上两动点,且OP⊥OQ.(1)1|OP|2+1 |OQ|2=1a2-1b2;(2)|OP|2+|OQ|2的最小值为4a2b2b2-a2;(3)SΔOPQ的最小值是a2b2b2-a2.37.MN是经过双曲线x2a2-y2b2=1(a>0,b>0)过焦点的任一弦(交于两支),若AB是经过双曲线中心O且平行于MN的弦,则|AB|2=2a|MN|.38.MN是经过双曲线x2a2-y2b2=1(a>b>0)焦点的任一弦(交于同支),若过双曲线中心O的半弦OP⊥。
高考圆锥曲线知识点汇总(精选)
高考圆锥曲线知识点汇总(精选)为左、右焦点,则有以下几何性质:1)顶点为(±a,0)和(0,±b),其中长轴长为2a,短轴长为2b;2)焦点为(±c,0),其中c=√(a^2-b^2)为焦距;3)范围为−a≤x≤a,−b≤y≤b;4)对称轴为x=0和y=0,对称中心为原点;5)准线为x=±c;6)离心率为e=c/a,其中e越小,椭圆越圆;e越大,椭圆越扁;7)焦点半径为PF1=a+ex,PF2=a-ex。
二、双曲线方程1.双曲线的定义:平面内到两个定点F1,F2的距离之差等于常数2a的点的轨迹叫做双曲线。
其中两个定点F1,F2为双曲线的两个焦点,两焦点间的距离F1F2叫做双曲线的焦距。
第一定义:当PF1-PF2<2a,无轨迹;当PF1-PF2=2a,轨迹是以F1,F2为端点的线段;当PF1-PF2>2a,轨迹为双曲线。
第二定义:双曲线上的点到对应焦点的距离与到对应准线的距离的差等于常数2a。
切记:“点点距为分子、点线距为分母”,其差即为常数2a。
如图:PF1 d1 PF2 cc 或PF2 d2 PF1 ccd1-d2=2a2.双曲线的标准方程:1)中心在原点,焦点在x轴上的双曲线的标准方程:x2-y21(a>0)a22)中心在原点,焦点在y轴上的双曲线的标准方程:y2-x21(a>0)a23.双曲线的一般方程:Ax2+Bxy+Cy2+Dx+Ey+F=0(A,C≠0)4.双曲线x2/a2-y2/b2=1的几何性质:1)顶点:(±a,0)和(0,±b);2)渐近线:y=±b/a*x;3)渐近线与双曲线的交点称为双曲线的端点;4)离心率:e=c/a,其中c=√(a^2+b^2)为焦距;5)对称轴:x=0和y=0,对称中心为原点;6)焦点:(±c,0),其中c=√(a^2+b^2)为焦距。
三、抛物线方程1.抛物线的定义:平面内到定点F的距离等于定点到直线L的距离的点的轨迹叫做抛物线。
圆锥曲线知识点全归纳(完整精华版)
圆锥曲线知识点全归纳(精华版)圆锥曲线包括椭圆,双曲线,抛物线。
其统一定义:到定点的距离与到定直线的距离的比e 是常数的点的轨迹叫做圆锥曲线。
当0<e<1时为椭圆:当e=1时为抛物线;当e>1时为双曲线。
一、圆锥曲线的方程和性质:1)椭圆文字语言定义:平面内一个动点到一个定点与一条定直线的距离之比是一个小于1的正常数e。
定点是椭圆的焦点,定直线是椭圆的准线,常数e是椭圆的离心率。
标准方程:1.中心在原点,焦点在x轴上的椭圆标准方程:(x^2/a^2)+(y^2/b^2)=1其中a>b>0,c>0,c^2=a^2-b^2.2.中心在原点,焦点在y轴上的椭圆标准方程:(x^2/b^2)+(y^2/a^2)=1其中a>b>0,c>0,c^2=a^2-b^2.参数方程:X=acosθY=bsinθ(θ为参数,设横坐标为acosθ,是由于圆锥曲线的考虑,椭圆伸缩变换后可为圆此时c=0,圆的acosθ=r)2)双曲线文字语言定义:平面内一个动点到一个定点与一条定直线的距离之比是一个大于1的常数e。
定点是双曲线的焦点,定直线是双曲线的准线,常数e是双曲线的离心率。
标准方程:1.中心在原点,焦点在x轴上的双曲线标准方程:(x^2/a^2)-(y^2/b^2)=1其中a>0,b>0,c^2=a^2+b^2.2.中心在原点,焦点在y轴上的双曲线标准方程:(y^2/a^2)-(x^2/b^2)=1.其中a>0,b>0,c^2=a^2+b^2.参数方程:x=asecθy=btanθ(θ为参数 )3)抛物线标准方程:1.顶点在原点,焦点在x轴上开口向右的抛物线标准方程:y^2=2px 其中 p>02.顶点在原点,焦点在x轴上开口向左的抛物线标准方程:y^2=-2px 其中 p>03.顶点在原点,焦点在y轴上开口向上的抛物线标准方程:x^2=2py 其中 p>04.顶点在原点,焦点在y轴上开口向下的抛物线标准方程:x^2=-2py 其中 p>0参数方程x=2pt^2 y=2pt (t为参数) t=1/tanθ(tanθ为曲线上点与坐标原点确定直线的斜率)特别地,t 可等于0直角坐标y=ax^2+bx+c (开口方向为y轴, a<>0 ) x=ay^2+by+c (开口方向为x轴, a<>0 )圆锥曲线(二次非圆曲线)的统一极坐标方程为ρ=ep/(1-e×cosθ)其中e表示离心率,p为焦点到准线的距离。
高中数学圆锥曲线知识点总结
高中数学圆锥曲线知识点总结高中数学圆锥曲线知识点总结一、基本概念1、圆锥曲线:圆锥曲线是由一系列圆及其与它们的共轭切面围成的曲线,也可以看作是由一条曲线以及一个光滑曲面所围成的曲线空间。
2、圆弧:圆弧是曲线上一定角度范围内的闭合曲线,实际中常用于表示圆的片段。
3、渐开线:渐开线是由来自同一个圆的两个圆弧构成的弧线,渐开线的共轭切面是一条直线,而此直线又可在空间上做一个新的圆锥曲线。
二、圆锥曲线的性质1、圆锥曲线的曲线部分是由圆弧和渐开线组成的,曲线上每个点都是圆切弧上的一个点;2、圆锥曲线的表面部分是一个椭圆锥曲面,其参数方程由三个椭圆锥参数函数组成,其积分可以计算出圆锥曲面上的面积;3、点P(x,y,z)在圆锥曲线上,则其有连续的x,y,z三个坐标参数,并且满足圆锥曲线的参数方程;4、圆锥曲线的曲线部分是椭圆锥曲线,并且任一点在曲线上的切线方向都是一致的;5、圆锥曲线的曲线与曲面的连接,是一条中间缝合曲线,即渐开线,渐开线也可以看作是空间曲线上的锥面的交线。
6、圆锥曲线的曲线部分与表面部分的连接,是一条中间缝合曲线,被称为椭圆锥曲线,椭圆锥曲线也是一条空间曲线上的椭圆锥面的交线。
7、圆锥曲线的曲线部分与表面部分之间的交点的曲线,也被称为椭圆锥曲线,它也可以看作是圆锥曲线上的椭圆锥线的交点的曲线。
三、圆锥曲线的应用1、圆锥曲线在建筑学上常用于建造拱顶、圆顶、屋顶等,这些曲线具有很好的象征性;2、圆锥曲线在航空和航天工程上常用于设计飞机、火箭的运动轨迹;3、圆锥曲线在汽车制造上常用于设计汽车的底盘,以实现更好的操控性能;4、圆锥曲线在计算机渲染上常用于设计三维物体,以获得更加逼真的渲染效果;5、圆锥曲线在绘画上常用于创作凹凸有致的曲线,以实现更加自然的线条。
总之,圆锥曲线是一种非常有用的曲线,它在不同领域有着广泛的应用。
完整版)高三圆锥曲线知识点总结
完整版)高三圆锥曲线知识点总结第八章《圆锥曲线》专题复一、椭圆方程1.椭圆的第一定义:设F1.F2是平面内两个定点,对于任意点P,有PF1 +PF2 = 2a (a。
0),则称所有满足该性质的点P的轨迹为椭圆。
椭圆的方程为 PF1 + PF2 = 2a,无轨迹为 PF1 + PF2 = 2a,以F1,F2为端点的线段。
2.椭圆的方程形式:①椭圆的标准方程:i。
中心在原点,焦点在x轴上。
x^2/a^2 + y^2/b^2 = 1 (a。
b)。
ii。
中心在原点,焦点在y轴上:x^2/b^2 + y^2/a^2 = 1 (a。
b)。
②一般方程:Ax^2 + By^2 = 1 (A,B不同时为0)。
③椭圆的参数方程:x = a*cosθ,y = b*sinθ (θ ∈ [0,π])。
注意:椭圆参数方程的推导:设点N(acosθ,bsinθ),则有PF1 + PF2 = 2a,即√[(acosθ - c)^2 + (bsinθ)^2] + √[(acosθ + c)^2 + (bsinθ)^2] = 2a,整理得到x = a*cosθ,y = b*sinθ。
3.椭圆的性质:①顶点:(±a,0)或(0,±b)。
②轴:对称轴为x轴,y轴;长轴长2a,短轴长2b。
③焦点:(±c,0)或(0,±c),其中c = √(a^2 - b^2)。
④焦距:F1F2 = 2c,c = √(a^2 - b^2)。
⑤准线:x = ±a/e 或 y = ±b/e,其中e为离心率。
⑥离心率:e = c/a。
⑦焦半径:y = ±(b^2 - x^2)^(1/2) 或 x = ±(a^2 - y^2)^(1/2)。
⑧通径:垂直于x轴且过焦点的弦叫做通径,坐标为(±c,d/2),其中d为通径长度。
4.共离心率的椭圆系的方程:椭圆 x^2/a^2 + y^2/b^2 = 1 的离心率是e = c/a (c = √(a^2 -b^2)),方程 x^2/a^2 + y^2/b^2 = t (t。
高三数学圆锥曲线基础知识总结
高三数学圆锥曲线知识总结(一)椭圆:1、定义和标准方程:(1)平面上到两个定点12,F F 的距离和为定值(定值大于12F F )的点的轨迹称为椭圆,其中12,F F 称为椭圆的焦点,12F F 称为椭圆的焦距 (2)标准方程:①焦点在x 轴上的椭圆:设椭圆上一点(),P x y ,()()12,0,,0F c F c -,设距离和122PF PF a +=,则椭圆的标准方程为:22221x y a b+=,其中()2220,a b b a c >>=-②焦点在y 轴上的椭圆:设椭圆上一点(),P x y ,()()120,,0,F c F c -,设距离和122PF PF a +=,则椭圆的标准方程为:22221y x a b+=,其中()2220,a b b a c >>=-焦点在哪个轴上,则标准方程中哪个字母的分母更大2、椭圆的性质:以焦点在x 轴的椭圆为例:()222210x y a b a b+=>>(1)a :与长轴的顶点有关:()()12,0,,0A a A a -,122A A a =称为长轴长 b :与短轴的顶点有关:()()120,,0,B b B b -,122B B b =称为短轴长 c :与焦点有关:()()12,0,,0F c F c -,122F F c =称为焦距 (2)对称性:椭圆关于x 轴,y 轴对称,且关于原点中心对称 (3)椭圆上点的坐标范围:设()00,P x y ,则00,a x a b y b -≤≤-≤≤ (4)通径:焦点弦长的最小值 ① 焦点弦:椭圆中过焦点的弦② 过焦点且与长轴垂直的弦22b PQ a=说明:假设PQ 过()1,0F c -,且与长轴垂直,则()()00,,,P c y Q c y ---,所以2242002221c y b y a b a +=⇒=,可得20b y a =。
则22b PQ a= (5)离心率:ce a=,因为c a <,所以()0,1e ∈ (6)焦半径公式:称P 到焦点的距离为椭圆的焦半径① 设椭圆上一点()00,P x y ,则1020,PF a ex PF a ex =+=-(可记为“左加右减”) ② 焦半径的最值:由焦半径公式可得:焦半径的最大值为a c +,最小值为a c - (7)焦点三角形面积:122tan 2PF F S b θ=V (其中12PF F θ=∠)证明:1212121sin 2PF F S PF PF F PF =⋅V 且222121212122cos F F PF PF PF PF F PF =+-()()212121221cos PF PF PF PF F PF =+-+()2212124421cos c a PF PF F PF ∴=-+ 2221212122221cos 1cos a c b PF PF F PF F PF -∴==++ 12212121212112sin sin 221cos PF F b S PF PF F PF F PF PF F =⋅=⋅+V 22121212sin tan 1cos 2F PF F PFb b F PF =⋅=+因为1200122PF F S c y c y =⋅⋅=⋅V ,所以2120tan 2F PFb c y =⋅,由此得到的推论: ① 12F PF ∠的大小与0y 之间可相互求出② 12F PF ∠的最大值:12F PF 最大⇔12PF F S V 最大⇔0y 最大⇔P 为短轴顶点(二)双曲线:1、定义:平面上到两个定点12,F F 距离差的绝对值为一个常数(小于12F F )的点的轨迹称为双曲线,其中12,F F 称为椭圆的焦点,12F F 称为椭圆的焦距;如果只是到两个定点12,F F 距离差为一个常数,则轨迹为双曲线的一支2、标准方程:① 焦点在x 轴:设双曲线上一点(),P x y ,()()12,0,,0F c F c -,设距离差的绝对值122PF PF a -=,则双曲线标准方程为:22221x y a b-=,其中()2220,0,a b b c a >>=-② 焦点在y 轴:设双曲线上一点(),P x y ,()()120,,0,F c F c -,设距离差的绝对值122PF PF a -=,则双曲线标准方程为:22221y x a b-=,其中()2220,0,a b b c a >>=-焦点在哪个轴上,则对应字母作为被减数2、双曲线的性质:以焦点在x 轴的双曲线为例:()222210,0x y a b a b-=>>(1)a :与实轴的顶点有关:()()12,0,,0A a A a -,122A A a =称为实轴长 b :与虚轴的顶点有关:()()120,,0,B b B b -,122B B b =称为虚轴长 c :与焦点有关:()()12,0,,0F c F c -,122F F c =称为焦距 (2)对称性:双曲线关于x 轴,y 轴对称,且关于原点中心对称(3)双曲线上点坐标的范围:设()00,P x y ,则有0x a ≤-或0x a ≥,0y R ∈ (4)离心率:ce a=,因为c a > ,所以()1,e ∈+∞ (5)渐近线:当x →+∞或x →-∞时,双曲线在向两方无限延伸时,会向某条直线无限靠近,但不相交,则称这条直线为曲线的渐近线。
高中数学_圆锥曲线知识点小结
高中数学_圆锥曲线知识点小结《圆锥曲线》知识点小结一、椭圆:(1)椭圆的定义:平面内与两个定点F1,F2的距离的和等于常数(大于|其中:两个定点叫做椭圆的焦点,焦点间的距离叫做焦距。
注意:2a |F1F2|表示椭圆;2a |F1F2|表示线段F1F2;2a |F1F2|没有轨迹;(2F1F2|)的点的轨迹。
22xy3.常用结论:(1)椭圆1(a b 0)的两个焦点为F1,F2,过F1的直线交椭圆于A,B两a2b2点,则ABF2的周长= (2)设椭圆x2y22 1(a b 0)左、右两个焦点为F1,F2,过F1且垂直于对称轴的直线2ab交椭圆于P,Q两点,则P,Q的坐标分别是|PQ|二、双曲线:(1)双曲线的定义:平面内与两个定点F1,F2|迹。
其中:两个定点叫做双曲线的焦点,焦点间的距离叫做焦距。
注意:|F1F2|PF1| |PF2| 2a与|PF2| |PF1| 2a(2a |F1F2|)表示双曲线的一支。
2a |F1F2|表示两条射线;2a |F1F2|没有轨迹;(2)双曲线的标准方程、图象及几何性质:标准方程中心在原点,焦点在x轴上中心在原点,焦点在y轴上x2y21(a 0,b 0) a2b2y2x22 1(a 0,b 0) 2ab图形B1(0, a),B2(0,a)顶点对称轴焦点焦距离心率渐近线通径(3)双曲线的渐近线:A1( a,0),A2(a,0)x轴,y轴;虚轴为2b,实轴为2aF1( c,0),F2(c,0)|F1F2| 2c(c 0) ceF1(0, c),F2(0,c)a2 b2c(e 1)(离心率越大,开口越大)aybx a2b2 ayax b2222①求双曲线x y 1的渐近线,可令其右边的1为0,即得x y 0,因式分解得到x y 0。
aba2b2a2b2x2y2x2y2②与双曲线2 2 1共渐近线的双曲线系方程是2 ;2ab(4)等轴双曲线为x2y2 t2,其离心率为yx(4)常用结论:(1)双曲线2 1(a 0,b 0)的两个焦点为F1,F2,过F1的直线交双曲线的2ab同一支于A,B两点,则ABF2的周长x2y22 1(a 0,b 0)左、右两个焦点为F1,F2,过F1且垂直于对称轴的2ab(2)设双曲线直线交双曲线于P,Q两点,则P,Q的坐标分别是|三、抛物线:PQ|(1)抛物线的定义:平面内与一个定点的距离和一条定直线的距离相等的点的轨迹。
高中数学圆锥曲线方程知识点总结
2.双曲线的第二定义:平面内到定点 F 的距离和它到一条定直线 L(F 不在 L 上)的距离的比为常数 e (e>1) 的点的轨迹叫做双曲线。 其中定点 F 为双曲线的焦点, 定直线 L 为双曲线焦点 F 相应的准线。
3
三、抛物线方程
(1)抛物线的概念 平面内与一定点 F 和一条定直线 l 的距离相等的点的轨迹叫做抛物线(定点 F 不在定直线 l 上)。 定点 F 叫做抛物线的焦点,定直线 l 叫做抛物线的准线。 方程 y 2 px
⑴①双曲线标准方程:
x2 a
2
y2 b
2
1(a, b 1(a, b 0) .
一般方程: Ax 2 Cy 2 1( AC 0) . ⑵①i. 焦点在 x 轴上: 顶点: (a,0), ( a,0) 焦点: (c,0), (c,0) 准线方程 x
x2 y2 a2 x y 渐近线方程: 0 或 2 2 0 c a b a b a2 . c
ii. 焦点在 y 轴上: 顶点: (0, a ), (0, a ) . 参数方程: 焦点:(0, c), (0,c) . 准线方程:y
渐近线方程:
y a
y2 x2 x 0或 2 2 0, b a b
c ,当 c 0, a b 时).【弦长公式 a
AB 1 k 2 x1 x2 (1 k 2 )[( x1 x2 ) 2 4 x1 x2 ] 】
双曲线 抛物线
2.椭圆、双曲线、抛物线的标准方程与几何性质 椭圆 1.到两定点 F1,F2 的距离之 和为定值 2a(2a>|F1F2|)的 点的轨迹 2.与定点和直线的距离之 比为定值 e 的点的轨迹. (0<e<1)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高三圆锥曲线知识点总结人教版高三圆锥曲线知识点总结(人教版)
在高三数学学习的过程中,圆锥曲线是一个重要的知识点。
它既有着理论的深度,又有着实际应用的广泛性。
下面我将对高三圆锥曲线的知识点进行总结。
一、圆锥曲线的基本概念
圆锥曲线是指在一个平面内,有一个点(焦点F),到该点的距离与一个定点(直角顶点O)到平面的距离成一定比例的一组曲线。
其中,焦点与顶点连线的垂直平分线称为准线。
圆锥曲线可以分为椭圆、双曲线、抛物线三种。
1. 椭圆
椭圆是一个封闭曲线,其定义是所有到焦点F1和F2的距离之和等于常数2a,其中a称为椭圆的长半轴,b称为椭圆的短半轴。
椭圆的标准方程为:x^2/a^2 + y^2/b^2 = 1
2. 双曲线
双曲线是一个非封闭曲线,其定义是所有到焦点F1和F2的距离之差等于常数2a,其中a称为双曲线的半轴。
双曲线的标准方程为:x^2/a^2 - y^2/b^2 = 1
3. 抛物线
抛物线是一个开口朝上或朝下的曲线,其定义是到焦点F和准线的距离相等。
抛物线的标准方程为:y^2 = 2px
二、圆锥曲线的性质
1. 椭圆的性质
(1)离心率e的定义是焦点到准线的距离与焦点到曲线的距离之比。
对于椭圆,离心率e满足0<e<1。
(2)椭圆的两个焦点F1和F2关于中心对称。
(3)椭圆的两个半焦距相加等于长轴的长度,即2ae = 2a。
(4)椭圆的两个半焦距相减等于短轴的长度,即2ae = 2b。
2. 双曲线的性质
(1)离心率e的定义同样适用于双曲线。
对于双曲线,离心率e满足e>1。
(2)双曲线的两个焦点F1和F2关于中心对称,但不在曲线上。
(3)双曲线的两个半焦距相减等于长轴的长度,即2ae = 2a。
(4)双曲线的两个半焦距相加等于短轴的长度,即2ae = 2b。
3. 抛物线的性质
(1)抛物线关于准线对称。
(2)焦点和准线的距离等于半焦距的绝对值,即|PF| = |PG|。
(3)抛物线的焦距与抛物线的方程有关,焦距的公式为2p = a/e。
三、圆锥曲线的应用
圆锥曲线作为数学中的基础概念,不仅在理论研究中有着重要的应用,也在实际生活中有着广泛的应用。
1. 宇宙轨道
在天文学中,行星、卫星等天体的运动一般可以近似为圆锥曲线。
根据Kepler第二定律,行星在椭圆轨道上的运动速度是不均匀的,这也是地球季节变化的原因之一。
2. 广告巨幕
在广告行业中,巨幅屏幕常常采用双曲线形状,这样可以让画面更加生动、夺人眼球,吸引观众的注意力。
3. 抛物线的抛物天线
抛物天线的形状为抛物线,使得信号能够集中到一个点上,从而提高信号接收的强度和精确度。
四、总结
圆锥曲线是高三数学中的重要知识点,它是一个具有深度和广泛应用的数学概念。
通过对椭圆、双曲线、抛物线的基本概念和性质的总结,我们可以更好地理解和应用这些知识。
无论是在天
文学、广告设计还是通信领域,圆锥曲线都发挥着重要的作用。
因此,掌握圆锥曲线的知识对我们的学习和工作都是非常有帮助的。
在高三数学的复习中,我们要加强对圆锥曲线的理解和掌握,同时注重实际应用,提高解决实际问题的能力。