编译原理第三章答案

合集下载

蒋立源编译原理 第三版 第三章 习题与答案(修改后)

蒋立源编译原理 第三版 第三章 习题与答案(修改后)

第3章习题3-1 试构造一右线性文法,使得它与如下得文法等价S→AB A→UT U→aU|a D→bT|b B→cB|c 并根据所得得右线性文法,构造出相应得状态转换图。

3-2 对于如题图3-2所示得状态转换图(1) 写出相应得右线性文法;(2) 指出它接受得最短输入串;(3) 任意列出它接受得另外4个输入串;(4) 任意列出它拒绝接受得4个输入串。

3-3 对于如下得状态转换矩阵:(1) 分别画出相应得状态转换图;(2) 写出相应得3型文法;(3) 用自然语言描述它们所识别得输入串得特征。

3-4 将如下得NFA确定化与最小化:3-5 将如题图3-5所示得具有ε动作得NFA确定化。

题图3-5 具有ε动作得NFA3-6 设有文法G[S]:S→aA A→aA|bB B→bB|cC|c C→cC|c 试用正规式描述它所产生得语言。

3-7 分别构造与如下正规式相应得NFA。

(1) ((0* |1)(1* 0))*(2) b|a(aa*b)*b3-8 构造与正规式(a|b)*(aa|bb)(a|b)*相应得DFA。

第3章习题答案3-1 解:根据文法知其产生得语言就是:L[G]={a m b n c i| m,n,i≧1}可以构造与原文法等价得右线性文法:S→aA A→aA|bB B→bB|cC|c C→cC|c 其状态转换图如下:3-2 解:(1) 其对应得右线性文法就是G[A]:A →0D B→0A|1C C→0A|1F|1D→0B|1C E→0B|1C F→1A|0E|0(2) 最短输入串为011(3) 任意接受得四个输入串为:0110,0011,000011,00110(4) 任意拒绝接受得输入串为:0111,1011,1100,10013-3 解:(1) 相应得状态转换图为:(2) 相应得3型文法为:(ⅰ) S→aA|bS A→aA|bB|b B→aB|bB|a|b(ⅱ) S→aA|bB|a A→bA|aC|a|b B→aB|bC|b C→aC|bC|a|b(ⅲ) S→aA|bB|b A→aB|bA|a B→aB|bB|a|b(ⅳ) S→bS|aA A→aC|bB|a B→aB|bC|b C→aC|bC|a|b(3) 用自然语言描述得输入串得特征为:(ⅰ) 以任意个(包括0个)b开头,中间有任意个(大于1)a,跟一个b,还可以有一个由a,b组成得任意字符串。

蒋立源编译原理第三版第三章习题与答案(修改后)

蒋立源编译原理第三版第三章习题与答案(修改后)

{2} a ={4} a ={1}, {2} b ={4} b ={4}
所以 2 和 4 不可区分, 故子集 {S,B} 已不能再分裂。此时 π 2=π 1 ,子集分裂的过程宣告
结束。
( ⅳ) 现选择状态 2 作为 {2,4} 的代表, 将状态 4 从状态转换图中删去, 并将原来引
至 4 的矢线都引至 2,这样,我们就得到了最小化后的 所示。

{1}
b=
故 1 和 2 可区分,于是便得到下一分划
π1: {1}, {2}, {3}
此时子集已全部分裂,故最小化的过程宣告结束, M′即为状态数最小的 DFA。
(3) 将 NFA M确定化后得 DFA M′,其状态转换矩阵如答案图 3-4-(3) 之 (a) 所示, 给各状态重新命名,即令:
[S]=1, [A]=2, [S,B]=3 且由于 3 的组成中含有 M的终态 B,故 3 为 DFAM′的终态。于是,所构造之 DFAM′的 状态转换矩阵和状态转换图如答案图 3-4-(3) 之(b) 及(c) 所示。
答案图 3-3
a, b C
(2) 相应的 3 型文法为:
( ⅰ ) S →aA|bS
A→aA|bB| b
B→ aB|bB|a|b
( ⅱ) S →aA|bB| a
A→bA|aC| a|b
B→aB|bC| b
C→ aC|bC|a|b
( ⅲ) S →aA|bB| b A→aB|bA| a
B→aB| bB|a|b
示。
a
b
ab
[S]
[Z]
[R,U]
1
[Z]
2
[R,U] [S,X]
[Z]
342
[S,X] [Z] [R,U,Y]

编译原理 第3章习题解答

编译原理 第3章习题解答

第三章习题参考解答3.1 构造自动机A,使得①②③当从左至右读入二进制数时,它能识别出读入的奇数;④它识别字母表{a, b}上的符号串,但符号串不能含两个相邻的a,也不含两个相邻的b;⑤它能接受字母表{0, 1}上的符号串,这些符号串由任意的1、0和随后的任意的11、00对组成。

⑥它能识别形式如±dd*⋅ d*E ±dd的实数,其中,d∈{0, 1, 2, 3, 4, 5, 6, 7, 8, 9}。

3.2 构造下列正规表达式的DFSA:① xy*∣yx*y∣xyx;② 00∣(01)*∣11;③ 01((10∣01)*(11∣00))*01;④ a(ab*∣ba*)*b。

3.3 消除图3.24所示自动机的空移。

bεq1q2q3aba,bqaq6q4q5abεεε图3.24 含空移的自动机3.4 将图3.25所示NDFSA确定化和最小化。

xyqq1q2q4q3xyxyx,yx图3.25 待确定化的NDFSA3.5 设e、e1、e2是字母表∑上的正规表达式,试证明① e∣e=e;② {{e}}={e};③ {e}=ε∣e{e};④ {e1 e2} e1= e1{e2 e1};⑤ {e1∣e2}={{e1}{e2}}={{e1}∣{e2}}。

3.6 构造下面文法G[Z]的自动机,指明该自动机是不是确定的,并写出它相应的语言: G[Z]:Z→A0A→A0∣Z1∣03.7 设NDFSA M=({x, y},{a, b},f, x, {y}), 其中,f(x, a)={x, y}, f(x, b)={y}, f(y, a)=∅, f(y, b)={x, y}。

试对此NDFSA确定化。

3.8 设文法G[〈单词〉]:〈单词〉→〈标识符〉∣〈无符号整数〉〈标识符〉→〈字母〉∣〈标识符〉〈字母〉∣〈标识符〉〈数字〉〈无符号整数〉→〈数字〉∣〈无符号整数〉〈数字〉〈字母〉→a∣b〈数字〉→1∣2试写出相应的有限自动机和状态图。

《编译原理教程》课后习题答案第三章语法分析

《编译原理教程》课后习题答案第三章语法分析
{ S ( ); T′( ); } void T′ ( ) { if ( lookahead==′, ′) { match (′, ′); S ( ); T′ ( ); } }
第三章 语法分析
3.10 已知文法G[A]: A→aABl|a B→Bb|d
(1) 试给出与G[A]等价的LL(1)文法G[A′]; (2) 构造G[A′]的LL(1)分析表; (3) 给出输入串aadl#的分析过程。 【解答】 (1) 文法G[A]存在左递归和回溯,故其不是 LL(1)文法。要将G[A]改造为LL(1)文法,首先要消除文法 的左递归,即将形如P→Pα | β 的产生式改造为 P→β P′ P→α P′| ε
对A′→ABl来说, FIRST(A)∩FOLLOW(A′)={a}∩{#,d}=Φ ,所以文法 G′[A]为所求等价的LL(1)文法。
第三章 语法分析
(2) 构造预测分析表的方法如下: ① 对文法G[A′]的每个产生式A→α 执行②、③ 步。 ② 对 每 个 终 结 符a∈FIRST(A) ,把 A→α 加 入 到 M[A,a]中,其中α 为含有首字符a的候选式或为唯一的 候选式。 ③ 若ε ∈FIRST(A),则对任何属于FOLLOW(A)的 终结符b,将A→ε 加入到M[A,b]中。把所有无定义的 M[A,a]标记上“出错”。 由此得到G[A′]的预测分析表,见表3-1。
c. 最左推导和最右推导必定相同
d. 可能存在两个不同的最左推导,但它们对应的语法树 相同
第三章 语法分析
(3) 采用自上而下分析,必须 。
a. 消除左递归
b. 消除右递归
c. 消除回溯
d. 提取公共左因子
(4) 设a、b、c是文法的终结符,且满足优先关系 ab和bc,则 。

蒋立源编译原理第三版第三章习题与答案(修改后)

蒋立源编译原理第三版第三章习题与答案(修改后)
第 3 章 习题
3-1 试构造一右线性文法,使得它与如下的文法等价 S→AB A → UT U → aU|a D →bT|b B → cB|c
并根据所得的右线性文法,构造出相应的状态转换图。
3-2 对于如题图 3-2 所示的状态转换图 0
0 0 A
D
1
0 1
B
C1
F
0
1
0
E
1 题图 3-2
(1) 写出相应的右线性文法; (2) 指出它接受的最短输入串; (3) 任意列出它接受的另外 4 个输入串; (4) 任意列出它拒绝接受的 4 个输入串。

{1}
b=
故 1 和 2 可区分,于是便得到下一分划
π1: {1}, {2}, {3}
此时子集已全部分裂,故最小化的过程宣告结束, M′即为状态数最小的 DFA。
(3) 将 NFA M确定化后得 DFA M′,其状态转换矩阵如答案图 3-4-(3) 之 (a) 所示, 给各状态重新命名,即令:
[S]=1, [A]=2, [S,B]=3 且由于 3 的组成中含有 M的终态 B,故 3 为 DFAM′的终态。于是,所构造之 DFAM′的 状态转换矩阵和状态转换图如答案图 3-4-(3) 之(b) 及(c) 所示。
π0:{1,2}, {3}
( ⅱ) 为得到下一分划,考察子集 {1,2} 。因为
{2} b ={3}

{1}
b=
故 1 和 2 可区分,于是便得到下一分划
π1: {1}, {2}, {3}
此时子集已全部分裂,故最小化的过程宣告结束, M′即为状态数最小的 DFA。
(4) 将 NFA M确定化后得 DFA M′,其状态转换矩阵如答案图 3-4-(4) 之 (a) 所示, 给各状态重新命名,即令:

编译原理教程-课后习题答案第三章语法分析ppt课件

编译原理教程-课后习题答案第三章语法分析ppt课件

a. LALR文法 b. LR(0)文法
c. LR(1)文法 d. SLR(1)文法
第三章 语法分析
(8) 同心集合并有能够产生新的 冲突。
a. 归约
b. “移进〞/“移进〞
c.“移进〞/“归约〞 〞
d. “归约〞/“归约
【解答】 (1) c (2) a (3) c (5) b (6) b (7) d (8) d
#⋖ (⋖,⋖ (⋖a⋗)⋗)⋗# 因此,素短语为a。
第三章 语法分析
3.8 下述文法描画了C言语整数变量的声明语句: G[D]: D→TL T→int|long|short L→id|L,id
(1) 改造上述文法,使其接受一样的输入序列, 但文法是右递归的;
(2) 分别用上述文法G[D]和改造后的文法G[D′] 为输入序列int a,b,c构造分析树。
第三章 语法分析
(2) 为了构造字母表Σ={a,b}上同时只需奇数个a 和奇数个b的一切串集合的正规式,我们画出如图3-3 所示的DFA,即由开场符S出发,经过奇数个a到达形状 A,或经过奇数个b到达形状B;而由形状A出发,经过 奇数个b到达形状C(终态);同样,由形状B出发经过奇 数个a到达终态C。
第三章 语法分析
第三章 语法分析
3.1 完成以下选择题:
(1) 文法G:S→xSx|y所识别的言语是 。
a. xyx
b. (xyx)*
c. xnyxn(n≥0)
d. x*yx*
(2) 假设文法G是无二义的,那么它的任何句子α 。
a. 最左推导和最右推导对应的语法树必定一样
b. 最左推导和最右推导对应的语法树能够不同 c. 最左推导和最右推导必定一样
能否不画出语法树,而直接由定义(即在句型中)寻觅满足某 个产生式的候选式这样一个最左子串(即句柄)呢?例如,对句型 aAaBcbbdcc,我们可以由左至右扫描找到第一个子串AaB,它恰好 是满足A→AaB右部的子串;与树(a)对照,AaB确实是该句型的句 柄。能否这一方法一直正确呢?我们继续检查句型aAcbBdcc,由 左至右找到第一个子串c,这是满足A→C右部的子串,但由树(b) 可知,c不是该句型的句柄。由此可知,画出对应句型的语法树然 后寻觅最左直接短语是确定句柄的好方法。

编译原理 第二版 第三章课后答案

编译原理 第二版 第三章课后答案

第三章作业第三章作业答案P47 练习1、文法G=({A,B,S},{a,b,c},P,S),其中P为:S->Ac|aB A->ab B->bc写出L(G [S])的全部元素。

S=>Ac=>abc或S=>aB=>abc所以L(G[S])={abc}2、文法G[N]为:N->D|NDD->0|1|2|3|4|5|6|7|8|9G[N]的语言是什么?【解】N=>ND=>NDD.... =>NDDDD...D=>D......DG[N]的语言是V+。

V={0,1,2,3,4,5,6,7,8,9}或:解: N ND n-1D n{0,1,3,4,5,6,7,8,9}+∴L(G[N])= {0,1,3,4,5,6,7,8,9}+5.写一文法,使其语言是偶正数的集合。

要求:(1)允许0打头(2)不允许0打头【解】(1)允许0开头的偶正整数集合的文法E->NT|G|SFMT->NT|GN->D|1|3|5|7|9D->0|GG->2|4|6|8S->NS|εF->1|3|5|7|9|GM->M0|0(2)不允许0开头的偶正整数集合的文法E->NT|DT->FT|GN->D|1|3|5|7|9D->2|4|6|8F->N|0G->D|09.考虑下面上下文无关文法:S→SS*|SS+|a(1) 表明通过此文法如何生成串aa+a*,并为该串构造推导树。

(2) 该文法生成的语言是什么?【解】(1) S=>SS*=>SS+S*aa+a*该串的推导树如下:(2) 该文法生成的语言是只含+、*的算术表达式的逆波兰表示。

11.令文法G[E]为:E→T|E+T|E-TT→F|T*F|T/FF→(E)|i证明E+T*F是它的一个句型,指出这个句型的所有短语、直接短语和句柄。

《编译原理教程》课后习题答案第三章语法分析

《编译原理教程》课后习题答案第三章语法分析

第三章 语法分析 来消除左递归。由此,将产生式B→Bb|d改造为
B→dB′ B′→bB′| ε
其次,应通过提取公共左因子的方法来消除G[A]中的回 溯,即将产生式A→aABl|a改造为 A→aA′ A′→ABl | ε
最后得到改造后的文法为 G[A′]:A→aA′ A′→ABl | ε B→dB′ B′→bB′| ε
S→(T) | aS′ S′→+S | ε T→ST′ T′→,ST′| ε 改造后的文法已经是LL(1)文法,不带回溯的递归子程序如下: void match (token t)
{ if ( lookahead==t) lookahead=nexttoken; else error ( ); }
第三章 语法分析 void S ( ) {
第三章 语法分析 3.3 已知文法G[S]为S→aSb|Sb|b,试证明文法
G[S]为二义文法。 【 解 答】 由 文 法G[S] :S→aSb|Sb|b ,对 句 子
aabbbb可对应如图3-1所示的两棵语法树。
第三章 语法分析
S aSb aSb
Sb b
S Sb aSb aSb b
图3-1 句子aabbbb对应的两棵不同语法树
第三章 语法分析
求得:
FIRST(A)={a}
FIRST(A′)={a, ε }
FIRST(B)={d}
FIRST(B′)={b, ε }
对文法开始符号A,有FOLLOW(A)={#}。
由 A′→ABl 得 FIRST(B)\{ ε }FOLLOW(A) , 即 FOLLOW(A)={#,d};
第三章 语法分析 【解答】 (1) 消除左递归后,文法G[D′]如下:
D→TL T→int|long|short L→idL

编译原理(龙书)答案第三章

编译原理(龙书)答案第三章

3.3.2, 3.3.6, 3.3.7, 3.3.8, 3.3.9,3.6.3, 3.6.4, 3.6.53.7.1, 3.7.2, 3.7.33.8.1, 3.8.23.9.3《编译原理》(龙书)第三章答案3.3.2 描述下列正则表达式代表的语言。

a) a(a|b)*ab) ((ε|a)b*)*c) (a|b)*a(a|b)(a|b)d) a*ba*ba*ba*e) (aa|bb)*((ab|ba)(aa|bb)*(ab|ba)(aa|bb)*)*答案(a)由a开头并结尾的由a和b构成的字符串(b)由a和b构成的字符串(c)倒数第三位为a的由a和b构成的字符串(d)仅含3个b的由a和b构成的字符串(e)含有偶数个a和偶数个b的由a和b构成的字符串注意:请准确描述语言的性质而不是列举满足正则表达式的串3.3.6 写出满足下列定义的字符a) The first ten letters in either upper or lower caseb) The lowercase consonantsc) The “digits” in a hexadecimal numberd) The characters that can appear at the end of a legitimate English sentence答案(a)a-jA-J(b)a-j(c)0-9a-f(d).?!3.3.7 写出匹配字符串“\ 的正则表达式答案:\”\\3.6.3 对于图3.29表示的NFA,列出aabb的所有路径。

这个NFA能否接受aabb? 答案:aabb的所有路径01223 00111 012000 00000 01222 00011 00123存在路径1223和0123所以能接受aabb3.6.4 对于图3.30表示的NFA,列出aabb的所有路径。

这个NFA能否接受aabb? 答案:01012301012120301230301212030303232030303212303030321212由于存在03210这样的环,所以这里有无数种路径存在路径终止于3,所以能接受aabb3.6.5 给出以下NFA的Transition Table(a) 图3.29(b) 图3.30(c) 图3.26答案:3.7.1 把下列NFA转化为DFA(a)图3.26(b)图3.29(c)图3.30答案:(a)(b)注意:以上答案并不唯一,等价即可3.7.2 用算法3.22模拟NFA(输入为aabb)(a)图3.29(b)图3.30答案:F={3} 所以返回yesF={3},所以返回yes3.7.3 用算法3.23和3.20把下列正则表达式转换为DFAa) (alb)*b) (a*lb* )*c) ((ela)b*)*d) (alb)*abb(alb)*答案:a) NFAb) NFAc) NFAd) NFA注意:这道题要求大家按照算法构造NFA和DFA,有些同学的NFA没有完全按照算法构造。

编译原理第三章答案

编译原理第三章答案

第3 章文法和语言第1 题文法G=({A,B,S},{a,b,c},P,S)其中P 为:S→Ac|aBA→abB→bc写出L(G[S])的全部元素。

答案:L(G[S])={abc}第2 题文法G[N]为:N→D|NDD→0|1|2|3|4|5|6|7|8|9G[N]的语言是什么?答案: G[N]的语言是V+。

V={0,1,2,3,4,5,6,7,8,9}N=>ND=>NDD.... =>NDDDD...D=>D......D或者:允许0 开头的非负整数?第3题为只包含数字、加号和减号的表达式,例如9-2+5,3-1,7等构造一个文法。

答案:G[S]:S->S+D|S-D|DD->0|1|2|3|4|5|6|7|8|9第4 题已知文法G[Z]:Z→aZb|ab写出L(G[Z])的全部元素。

答案:Z=>aZb=>aaZbb=>aaa..Z...bbb=> aaa..ab...bbbL(G[Z])={anbn|n>=1}第5 题写一文法,使其语言是偶正整数的集合。

要求:(1) 允许0 打头;(2)不允许0 打头。

答案:(1)允许0 开头的偶正整数集合的文法E→NT|DT→NT|DN→D|1|3|5|7|9D→0|2|4|6|8(2)不允许0 开头的偶正整数集合的文法E→NT|DT→FT|GN→D|1|3|5|7|9D→2|4|6|8F→N|0G→D|0第6 题已知文法G:<表达式>::=<项>|<表达式>+<项> <项>::=<因子>|<项>*<因子><因子>::=(<表达式>)|i试给出下述表达式的推导及语法树。

(5)i+(i+i)(6)i+i*i答案:(5) <表达式>=><表达式>+<项>=><表达式>+<因子>=><表达式>+(<表达式>)=><表达式>+(<表达式>+<项>)=><表达式>+(<表达式>+<因子>)=><表达式>+(<表达式>+i)=><表达式>+(<项>+i)=><表达式>+(<因子>+i)=><表达式>+(i+i)=><项>+(i+i)=><因子>+(i+i)=>i+(i+i)(6) <表达式>=><表达式>+<项>=><表达式>+<项>*<因子> =><表达式>+<项>*i=><表达式>+<因子>*i =><表达式>+i*i=><项>+i*i=><因子>+i*i=>i+i*i<表达式><表达式> + <项><因子><表达式><表达式> + <项><因子>i<项><因子>i<项><因子>i()<表达式><表达式> + <项><项> * <因子><因子> i<项><因子>ii第7 题证明下述文法G[〈表达式〉]是二义的。

编译原理第3章 习题解答

编译原理第3章 习题解答

第3章习题解答1.构造正规式1(0|1)*101相应的DFA.[答案]先构造NFA确定化0 1X AA A ABAB AC ABAC A ABYABY AC AB重新命名,令AB为B、AC为C、ABY为D0 1X AA A BB C BC A DD C B转化成DFA:============================================================== 2.将下图确定化:[答案]0 1S VQ QUVQ VZ QUQU V QUZVZ Z ZV ZQUZ VZ QUZZ Z Z重新命名,令VQ为A、QU为B、VZ为C、V为D、QUZ为E、Z为F。

0 1S A BA C BB D EC F FD FE C EF F F转化为DFA:================================================================ 3.把下图最小化:[答案](1)初始分划得Π0:终态组{0},非终态组{1,2,3,4,5}对非终态组进行审查:{1,2,3,4,5}a {0,1,3,5}而{0,1,3,5}既不属于{0},也不属于{1,2,3,4,5} ∵{4} a {0},所以得新分划 (2)Π1:{0},{4},{1,2,3,5} 对{1,2,3,5}进行审查: ∵{1,5} b {4}{2,3} b {1,2,3,5},故得新分划 (3)Π2:{0},{4},{1, 5},{2,3} {1, 5} a {1, 5}{2,3} a {1,3},故状态2和状态3不等价,得新分划 (3)Π3:{0},{2},{3},{4},{1, 5} 这是最后分划了 (4)最小DFA :======================================= 4.构造一个DFA ,它接收Σ={0,1}上所有满足如下条件的字符串:每个1都有0直接跟在右边。

编译原理(第三版)第3章课后练习及参考答案中石大版

编译原理(第三版)第3章课后练习及参考答案中石大版

第3章练习P47作业布置:P47 4 ,9,11,14(1)4、已知文法G[Z]:(1)Z::=aZb (2)Z::=ab写出L(G[Z])的全部元素解:L(G[Z])={a n b n,n>=1}9、考虑下面的上下文无关文法:S→SS* | SS+ | a(1)表明通过此文法如何生成串aa+a*,并为该串构造语法树(2)该文法生成的语言是什么?解:(1)推导过程见语法树。

语法树如下(2)该文法生成的语言为用递归逆波兰式表示的运算式。

逆波兰式是将运算对象写在前面,把运算符写在后面。

11、G[E]:E→T|E+T|E-TT→F|T*F|T/FF → (E)|i证明E+T*F 是它的一个句型,指出这个句型的所有短语、直接短语和句柄。

解:可为E+T*F 构造一棵语法树(见下图),所以它是句型。

从语法树中容易看出,E+T*F 的短语有:T*F 是句型E+T*F 的相对于T 的短语,也是相对于规则T →T*F 的直接短语。

E+T*F 是句型E+T*F 的相对于E 的短语。

句型E+T*F 的句柄(最左直接短语)是T*F 。

14、给出生成下述语言的上下文无关文法:(1){a n b n a m b m |n,m>=0}(2){1n 0m 1m 0n |n,m>=0}(3){WaW r |W 属于{0|a}*,W r 表示W 的逆}解:(1)所求文法为G[S]=({S,A},{a,b},P,S),其中P 为:S →AA A →aAb|ε (2)所求文法为G[S]=({S,A},{0,1},P,S),其中P 为: S →1S0|AA →0A1|ε(3)W 属于{0|a}*是指W 可以的取值为{ε,0,a,00,a0,aa0,00aa,a0a0,…}E E + T T * F如果W=aa0a00,则W r=00a0aa。

所求文法为G[S]=({S,P,Q},{0,a},P,S),其中P为:S 0S0|aSa|a。

蒋立源编译原理第三版第三章习题与答案(修改后)

蒋立源编译原理第三版第三章习题与答案(修改后)

[S] [A] [S,B]
ab
[A]
[S,B]
2
[A]
初态 : [S] 终态 : [S,B] (a) 确定化后的状态矩阵
ab
1
2
3
3
2
初态 : 1 终态 : 3 (b) 改名后的状态矩阵
a
1
2
b 3
a (c) DFA M ′的状态转换图
答案图 3-4-(3)
现将 DFA M′最小化:
( ⅰ) 初始分划由两个子集组成,即
3-3 对于如下的状态转换矩阵:
ab
S
AS
AAB
B
BB
ab S
ABA B
AB BB
( ⅰ ) 初态 : S 终态 : B
( ⅲ ) 初态 : S 终态 : B
ab
S
AB
A
CA
BBC
C
CC
ab S
ACB BBC
C
AS CC
( ⅱ ) 初态 : S 终态 : A,C
( ⅳ ) 初态 : S 终态 : C
答案图 3-3
a, b C
(2) 相应的 3 型文法为:
( ⅰ ) S →aA|bS
A→aA|bB| b
B→ aB|bB|a|b
( ⅱ) S →aA|bB| a源自A→bA|aC| a|bB→aB|bC| b
C→ aC|bC|a|b
( ⅲ) S →aA|bB| b A→aB|bA| a
B→aB| bB|a|b
**
(2) b|a(aa b) b
NFA。
3-8 构造与正规式 (a|b) *(aa|bb)(a|b) * 相应的 DFA。
第 3 章 习题答案

编译原理教程-课后习题答案第三章语法分析

编译原理教程-课后习题答案第三章语法分析

c. 最左推导和最右推导必定相同
d. 可能存在两个不同的最左推导,但它们对应的语法树 相同
第三章 语法分析
(3) 采用自上而下分析,必须 。
a. 消除左递归
b. 消除右递归
c. 消除回溯
d. 提取公共左因子
(4) 设a、b、c是文法的终结符,且满足优先关系 ab和bc,则 。
a. 必有ac
b. 必有ca
第三章 语法分析 表3-1 预测分析表
A A′ B B′
能否不画出语法树,而直接由定义(即在句型中)寻 找满足某个产生式的候选式这样一个最左子串(即句柄) 呢?例如,对句型aAaBcbbdcc,我们可以由左至右扫描 找到第一个子串AaB,它恰好是满足A→AaB右部的子串; 与树(a)对照,AaB的确是该句型的句柄。是否这一方法 始终正确呢?我们继续检查句型aAcbBdcc,由左至右找 到第一个子串c,这是满足A→C右部的子串,但由树(b) 可知,c不是该句型的句柄。由此可知,画出对应句型 的语法树然后寻找最左直接短语是确定句柄的好方法。
c. 必有ba
d. a~c都不一定成立
第三章 语法分析
(5) 在规范归约中,用 来刻画可归约串。
a. 直接短语
b. 句柄
c. 最左素短语 d. 素短语
(6) 若a为终结符,则A→α ·aβ 为 项目。
a. 归约
b. 移进
c. 接受
d. 待约
(7) 若项目集Ik含有A→α · ,则在状态k时,仅 当 面 临 的 输 入 符 号 a∈FOLLOW(A) 时 , 才 采 取
第三章 语法分析
因此,文法G[S]为二义文法(对句子abbb也可画出 两棵不同语法树)。
3.4 已知文法G[S]为S→SaS|ε ,试证明文法G[S] 为二义文法。

蒋立源编译原理 第三版 第三章 习题与答案(修改后)

蒋立源编译原理 第三版 第三章 习题与答案(修改后)

第3章习题3-1 试构造一右线性文法,使得它与如下的文法等价S→AB A→UT U→aU|a D→bT|b B→cB|c 并根据所得的右线性文法,构造出相应的状态转换图。

3-2 对于如题图3-2所示的状态转换图(1) 写出相应的右线性文法;(2) 指出它接受的最短输入串;(3) 任意列出它接受的另外4个输入串;(4) 任意列出它拒绝接受的4个输入串。

3-3 对于如下的状态转换矩阵:(1) 分别画出相应的状态转换图;(2) 写出相应的3型文法;(3) 用自然语言描述它们所识别的输入串的特征。

3-4 将如下的NFA确定化和最小化:3-5 将如题图3-5所示的具有ε动作的NFA确定化。

题图3-5 具有ε动作的NFA3-6 设有文法G[S]:S→aA A→aA|bB B→bB|cC|c C→cC|c 试用正规式描述它所产生的语言。

3-7 分别构造与如下正规式相应的NFA。

(1) ((0* |1)(1* 0))*(2) b|a(aa*b)*b3-8 构造与正规式(a|b)*(aa|bb)(a|b)*相应的DFA。

第3章习题答案3-1 解:根据文法知其产生的语言是:L[G]={a m b n c i| m,n,i≧1}可以构造与原文法等价的右线性文法:S→aA A→aA|bB B→bB|cC|c C→cC|c 其状态转换图如下:3-2 解:(1) 其对应的右线性文法是G[A]:A →0D B→0A|1C C→0A|1F|1D→0B|1C E→0B|1C F→1A|0E|0(2) 最短输入串为011(3) 任意接受的四个输入串为:0110,0011,000011,00110(4) 任意拒绝接受的输入串为:0111,1011,1100,10013-3 解:(1) 相应的状态转换图为:(2) 相应的3型文法为:(ⅰ) S→aA|bS A→aA|bB|b B→aB|bB|a|b(ⅱ) S→aA|bB|a A→bA|aC|a|b B→aB|bC|b C→aC|bC|a|b(ⅲ) S→aA|bB|b A→aB|bA|a B→aB|bB|a|b(ⅳ) S→bS|aA A→aC|bB|a B→aB|bC|b C→aC|bC|a|b(3) 用自然语言描述的输入串的特征为:(ⅰ) 以任意个(包括0个)b开头,中间有任意个(大于1)a,跟一个b,还可以有一个由a,b组成的任意字符串。

编译原理教程-课后习题答案第三章语法分析

编译原理教程-课后习题答案第三章语法分析

第三章 语法分析 3.3 已知文法G[S]为S→aSb|Sb|b,试证明文法
G[S]为二义文法。 【 解 答】 由 文 法G[S] :S→aSb|Sb|b ,对 句 子
aabbbb可对应如图3-1所示的两棵语法树。
第三章 语法分析
S aSb aSb
Sb b
S Sb aSb aSb b
图3-1 句子aabbbb对应的两棵不同语法树
if ( lookahead==′a′) match (′a′); else if ( lookahead==′(′) { match (′(′); T ( );
第三章 语法分析
void S′( ) { if ( lookahead==′+′) { match (′+′); S ( ); } }
第三章 语法分析 void T ( )
短语和最左素短语。 【解答】 (1) 句型(S, (a))的语法树如图3-5所示。
第三章 语法分析
S (L ) L ,S S (L )
S a
图3-5 句型(S,(a))的语法树
第三章 语法分析
(2) 由图3-5可知: 短语:S、a、(a)、S,(a)、(S,(a)); 直接短语:a、S; 句柄:S; 素短语:素短语可由图3-5中相邻终结符之间的优 先关系求得,即:
第三章 语法分析 (2) 句子acabcbbdcc的最左推导如下: SaAcBaAaBcBacaBcBacabcBacabcbScAacabcbBdcA acabcbbdcAacabcbbdcc 3.7 对于文法G[S]: S→(L)|aS|a
L→L,S|S (1) 画出句型(S,(a))的语法树; (2) 写出上述句型的所有短语、直接短语、句柄、素

编译原理-第三版-何炎祥-第三章习题答案

编译原理-第三版-何炎祥-第三章习题答案

编译原理作业三T3-1构造自动机A ,使得它能识别形式如±dd*·d*E ±dd 的实数,其中,d ∈{0,1,2,3,4,5,6,7,8,9}T3-4将图所示NFA 确定化和最小化。

解:依据该NFSA 的状态图构造DFSA 如下表所示。

II xI y[q 0] 0 [q 1] 1 [q 2] 2[q 1] 1 [q 2,q 3] 3[q 2] 2[q 1,q 3] 4 [q 2,q 3] 3 [q 3,q 4] 5 [q 1,q 3] 4 [q 1,q 3] 4 [q 2,q 3,q 4] 6 [q 3] 7 [q 3,q 4] 5 [q 3,q 4] 5 [q 3] 7 [q 2,q 3,q 4] 6 [q 3,q 4] 5 [q 1,q 3] 4 [q 3] 7 [q 3,q 4] 5[q 3] 7DFSA 相应的状态图如下图所示:6123457XXyyyXXXXXyyyyS3142567±dEdddd±对DFSA 进行最小化:已知K={0,1,2,3,4,5,6,7},K 可分为两个子集 K1={0,1,2,3,4,7}(非终态集) K2={5,6}(终态集)在K1中,因为状态1只有x 输入,状态2只有y 输入,其他状态均有x ,y 输入,所以可以将K1分割为K11={0,3,4,7} K12={1} K13={2} 在K11中 {0}x=1∈K12 {3,4,7}x={5,6}⊂K2 故可将K11分割为 K111={0} K111={3,4,7} {3,4,7}x={5,6}⊂K2 {3,4,7}y={4,7}⊂K111 因此状态3,4,7是否等价取决于对K2的划分结果 在状态K2={5,6}中{5,6}x=5∈K2 {5,6}y={4,7}⊂K111 所以状态5,6等价,所以状态3,4,7等价所以,将原状态集合划分为{0}、{3,4,7}、{1}、{2}、{5,6} 最小化后的状态图为:S1235XXXXyyyyT3-9图所示的是一个NFA A,试构造一个正规文法G,使得L(G)=L(A). 解:由NFSA的状态转换图得(a|b)*(aa|bb)(a|b)*构造正规文法G[S]:S→aS|bS|aA|bBA→aC|aB→bC|bC→aC|bC|a|b。

编译原理教程课后习题答案——第三章

编译原理教程课后习题答案——第三章

第三章语法分析3.1 完成下列选择题:(1) 文法G:S→xSx|y所识别的语言是。

a. xyxb. (xyx)*c. xnyxn(n≥0)d. x*yx*(2) 如果文法G是无二义的,则它的任何句子α。

 a. 最左推导和最右推导对应的语法树必定相同b. 最左推导和最右推导对应的语法树可能不同c. 最左推导和最右推导必定相同d. 可能存在两个不同的最左推导,但它们对应的语法树相同(3) 采用自上而下分析,必须。

a. 消除左递 a. 必有ac归b. 消除右递归c. 消除回溯d. 提取公共左因子(4) 设a、b、c是文法的终结符,且满足优先关系ab和bc,则。

b. 必有cac. 必有bad. a~c都不一定成立(5) 在规范归约中,用来刻画可归约串。

a. 直接短语b. 句柄c. 最左素短语d. 素短语(6) 若a为终结符,则A→α·aβ为项目。

a. 归约b. 移进c. 接受d. 待约(7) 若项目集Ik含有A→α· ,则在状态k时,仅当面临的输入符号a∈FOLLOW(A)时,才采取“A→α· ”动作的一定是。

a. LALR文法b. LR(0)文法c. LR(1)文法d. SLR(1)文法(8) 同心集合并有可能产生新的冲突。

a. 归约b. “移进”/“移进”c.“移进”/“归约”d. “归约”/“归约”【解答】(1) c (2) a (3) c (4) d (5) b (6) b (7) d (8) d3.2 令文法G[N]为G[N]: N→D|NDD→0|1|2|3|4|5|6|7|8|9(1) G[N]的语言L(G[N])是什么?(2) 给出句子0127、34和568的最左推导和最右推导。

【解答】(1) G[N]的语言L(G[N])是非负整数。

(2) 最左推导:NNDNDDNDDDDDDD0DDD01DD012D0127NNDDD3D34NNDNDDDDD5DD56D568最右推导:NNDN7ND7N27ND27N127D1270127NNDN4D434NNDN8ND8N68D685683.3 已知文法G[S]为S→aSb|Sb|b,试证明文法G[S]为二义文法。

编译原理教程课后习题答案——第三章

编译原理教程课后习题答案——第三章

第三章语法分析3.1 完成下列选择题:(1) 文法G:S→xSx|y所识别的语言是。

a. xyxb. (xyx)*c. xnyxn(n≥0)d. x*yx*(2) 如果文法G是无二义的,则它的任何句子α。

 a. 最左推导和最右推导对应的语法树必定相同b. 最左推导和最右推导对应的语法树可能不同c. 最左推导和最右推导必定相同d. 可能存在两个不同的最左推导,但它们对应的语法树相同(3) 采用自上而下分析,必须。

a. 消除左递 a. 必有ac归b. 消除右递归c. 消除回溯d. 提取公共左因子(4) 设a、b、c是文法的终结符,且满足优先关系ab和bc,则。

b. 必有cac. 必有bad. a~c都不一定成立(5) 在规范归约中,用来刻画可归约串。

a. 直接短语b. 句柄c. 最左素短语d. 素短语(6) 若a为终结符,则A→α·aβ为项目。

a. 归约b. 移进c. 接受d. 待约(7) 若项目集Ik含有A→α· ,则在状态k时,仅当面临的输入符号a∈FOLLOW(A)时,才采取“A→α· ”动作的一定是。

a. LALR文法b. LR(0)文法c. LR(1)文法d. SLR(1)文法(8) 同心集合并有可能产生新的冲突。

a. 归约b. “移进”/“移进”c.“移进”/“归约”d. “归约”/“归约”【解答】(1) c (2) a (3) c (4) d (5) b (6) b (7) d (8) d3.2 令文法G[N]为G[N]: N→D|NDD→0|1|2|3|4|5|6|7|8|9(1) G[N]的语言L(G[N])是什么?(2) 给出句子0127、34和568的最左推导和最右推导。

【解答】(1) G[N]的语言L(G[N])是非负整数。

(2) 最左推导:NNDNDDNDDDDDDD0DDD01DD012D0127NNDDD3D34NNDNDDDDD5DD56D568最右推导:NNDN7ND7N27ND27N127D1270127NNDN4D434NNDN8ND8N68D685683.3 已知文法G[S]为S→aSb|Sb|b,试证明文法G[S]为二义文法。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第3章文法和语言
第1题
文法G=({A,B,S},{a,b,c},P,S)其中P为:
S→Ac|aB
A→ab
B→bc
写出L(G[S])的全部元素。

答案:
L(G[S])={abc}
第2题
文法G[N]为:
N→D|ND
D→0|1|2|3|4|5|6|7|8|9
G[N]的语言是什么?
答案:
G[N]的语言是V+。

V={0,1,2,3,4,5,6,7,8,9}
N=>ND=>NDD.... =>NDDDD...D=>D......D
或者:允许0开头的非负整数?
第3题
为只包含数字、加号和减号的表达式,例如9-2+5,3-1,7等构造一个文法。

答案:
G[S]: S->S+D|S-D|D D->0|1|2|3|4|5|6|7|8|9
第4题
已知文法G[Z]:
Z→aZb|ab
写出L(G[Z])的全部元素。

答案:
Z=>aZb=>aaZbb=>aaa..Z...bbb=> aaa..ab...bbb
L(G[Z])={a n b n|n>=1}
第5题
写一文法,使其语言是偶正整数的集合。

要求:
(1) 允许0打头;
(2)不允许0打头。

答案:
(1)允许0开头的偶正整数集合的文法E→NT|D T→NT|D N→D|1|3|5|7|9 D→0|2|4|6|8
(2)不允许0开头的偶正整数集合的文法E→NT|D T→FT|G N→D|1|3|5|7|9 D→2|4|6|8 F→N|0 G→D|0
第6题
已知文法G:
<表达式>::=<项>|<表达式>+<项>
<项>::=<因子>|<项>*<因子>
<因子>::=(<表达式>)|i
试给出下述表达式的推导及语法树。

(5)i+(i+i)
(6)i+i*i
第8题
文法G[S]为:
S→Ac|aB
A→ab
B→bc
该文法是否为二义的?为什么?
答案:
对于串abc
(1)S=>Ac=>abc (2)S=>aB=>abc
即存在两不同的最右推导。

所以,该文法是二义的。

或者:
第10题
文法S→S(S)S|ε
(1) 生成的语言是什么?
(2) 该文法是二义的吗?说明理由。

答案:
(1)嵌套的括号
(2)是二义的,因为对于()()可以构造两棵不同的语法树。

第11题
令文法G[E]为:
E→T|E+T|E-T
T→F|T*F|T/F
F→(E)|i
证明E+T*F是它的一个句型,指出这个句型的所有短语、直接短语和句柄。

第14题
给出生成下述语言的上下文无关文法:(1){ a n b n a m b m| n,m>=0} (2){ 1n0m 1m0n| n,
m>=0}
(3){WaWr|W属于{0|a}*,Wr表示W的逆}
答案:
(1)S→AA A→aAb|ε (2)S→1S0|A A→0A1|ε (3)
S→0S0|1S1|ε
第16题给出生成下述语言的三型文法:
(1){an|n >=0 }
(2) { a n b m|n,m>=1 }
(3){a n b m c k|n,m,k>=0 }
答案:
(1) S→aS|ε
(2) S→aA A→aA|B B→bB|b
(3) A→aA|B B→bB|C C→cC|ε
第18题
解释下列术语和概念:
(1)字母表
(2)串、字和句子
(3)语言、语法和语义
答案:
(1)字母表:是一个非空有穷集合。

(3)语言:它是由句子组成的集合,是由一组记号所构成的集合。

程序设计的语言就是所有该语言的程序的全体。

语言可以看成在一个基本符号集上定义的,按一定规则构成的一切基本符号串组成的集合。

语法:表示构成语言句子的各个记号之间的组合规律。

程序的结构或形式。

语义:表示按照各种表示方法所表示的各个记号的特定含义。

语言所代表的含义。

附加题
问题1:
给出下述文法所对应的正规式:S→0A|1B A→1S|1 B→0S|0
答案:
R = (01 | 10) ( 01 | 10 )*
问题2:
已知文法G[A],写出它定义的语言描述G[A]: A → 0B|1C B → 1|1A|0BB C → 0|0A|1CC
答案:
G[A]定义的语言由0、1符号串组成,串中0和1的个数相同.
问题3:
给出语言描述,构造文法. 构造一文法,其定义的语言是由算符+, *, (,)和运算对象a构成的算术表达式的集合.
答案一:
G[E] E→E+T|T T→T* F|F F→(E)|a
答案二:
G[E] E→E+E|E* E|(E)|a
问题4:
已知文法G[S]:
S→dAB
A→aA|a
B→ε|bB
相应的正规式是什么?G[S]能否改写成为等价的正规文法?
答案:
正规式是daa*b*;
相应的正规文法为(由自动机化简来):
G[S]:S→dA A→a|aB B→aB|a|b|bC C→bC|b
也可为(观察得来):G[S]:S→dA A→a|aA|aB B→bB|ε
问题5:
已知文法G:
E→E+T|E-T|T
T→T*F|T/F|F
F→(E)|i
试给出下述表达式的推导及语法树
(1) i;
(2) i*i+i
(3) i+i*i
(4) i+(i+i)
答案:
(1)E=>T=>F=>i
(2)E=>E+T=>T+T=>T*F+T=>F*F+T=>i*F+T=>i*i+T=>i*i+F=>i*i+i
(3)E=>E+T=>T+T=>F+T=>i+T=>i+T*F=>i+F*F=>i+i*F=>i+i*i
(4)E=>E+T=>T+T=>F+T=>i+T=>i+F=>i+(E)=>i+(E+T)=>i+(T+T)=>i+(F+T) =>i+(i+T)=>i+(i+F)=>i+(i+i)。

相关文档
最新文档