条件概率及其性质
高三条件概率知识点总结
高三条件概率知识点总结高中数学中的概率是一个重要的章节,而条件概率是其中的一个核心知识点。
在高三阶段,学生们需要对条件概率进行全面的学习和理解。
本文将从条件概率的定义和性质、条件概率的计算方法、条件概率的应用等方面对这一知识点进行总结和归纳。
一、条件概率的定义和性质条件概率是指在事件B已经发生的条件下,事件A发生的概率。
用数学符号表示为P(A|B)。
条件概率的定义和性质需要我们对概率的基本概念有一定的了解。
条件概率的定义可以表示为:P(A|B) = P(AB) / P(B)。
其中,P(B) ≠ 0。
条件概率的性质有以下几个方面:互斥性、非互斥性、独立性和非独立性。
互斥性是指在两个事件的发生过程中,其中一个事件的发生将排除另一个事件的发生。
非互斥性则相反。
独立性是指两个事件的发生与否不会相互影响,而非独立性则表示相反的情况。
二、条件概率的计算方法条件概率的计算主要有两种方法:频率法和几何法。
频率法是根据历史数据或实验结果来计算条件概率。
几何法则是通过几何图形进行计算。
在使用频率法计算条件概率时,我们需要先进行事件的分类和计数,然后使用P(A|B) = N(A∩B) / N(B)的公式进行计算。
其中,N(A∩B)表示A和B同时发生的次数,N(B)表示事件B发生的总次数。
几何法则是通过事件发生的几何图形进行计算。
可以通过画出事件A和B在样本空间中的区域,来计算两个事件之间的重叠面积。
通过求出重叠面积与事件B的面积之比,即可得到条件概率。
三、条件概率的应用条件概率在实际生活中有着广泛的应用。
其中一个经典的应用是贝叶斯定理。
贝叶斯定理是一种根据已知的结果来推断事件的概率的方法。
在实际应用中,我们通常会通过贝叶斯定理来进行医学诊断、市场预测等方面的分析。
另一个应用是在赌博游戏中的运用。
比如,在扑克牌游戏中,根据已知的手牌和公共牌,可以通过条件概率来计算自己手中牌型的概率,从而根据概率来做出合理的决策。
此外,条件概率还可以应用于信息论和统计学等领域。
条件概率知识点
条件概率知识点一、条件概率的定义。
1. 概念。
- 设A、B为两个事件,且P(A)>0,称P(BA)=(P(AB))/(P(A))为在事件A发生的条件下事件B发生的条件概率。
- 例如,扔一个骰子,事件A为“骰子的点数为偶数”,P(A)=(3)/(6)=(1)/(2),事件B为“骰子的点数小于4”,AB表示“骰子的点数为2”,P(AB)=(1)/(6)。
那么在A发生的条件下B发生的条件概率P(BA)=(P(AB))/(P(A))=(frac{1)/(6)}{(1)/(2)}=(1)/(3)。
2. 性质。
- 非负性:对于任意事件B,A(P(A)>0),有P(BA)≥slant0。
- 规范性:P(ΩA) = 1,这里Ω是样本空间。
- 可列可加性:如果B_1,B_2,·s是两两互不相容的事件,则P(bigcup_i =1^∞B_iA)=∑_i = 1^∞P(B_iA)。
二、条件概率的计算方法。
1. 公式法。
- 直接根据定义P(BA)=(P(AB))/(P(A))计算。
- 例如,有一批产品共100件,其中次品10件,从中不放回地抽取两次,每次取一件。
设事件A为“第一次取到次品”,P(A)=(10)/(100)=(1)/(10);事件B为“第二次取到次品”。
AB表示“第一次和第二次都取到次品”,P(AB)=(10)/(100)×(9)/(99)=(1)/(110)。
那么P(BA)=(P(AB))/(P(A))=(frac{1)/(110)}{(1)/(10)}=(1)/(11)。
2. 缩减样本空间法。
- 当直接计算P(AB)和P(A)比较复杂时,可以考虑缩减样本空间。
- 还是以上面抽取产品的例子,在A发生的条件下,即第一次已经取到了次品,此时样本空间就缩减为99件产品,其中次品还有9件,所以P(BA)=(9)/(99)=(1)/(11)。
三、条件概率的乘法公式。
1. 公式。
- 由P(BA)=(P(AB))/(P(A))可得P(AB)=P(A)P(BA)(P(A)>0)。
概率论条件概率
三、全概率公式与贝叶斯(Bayes)公式
例1 有三个箱子,分别编号为1,2,3,1号箱 装有1个红球4个白球,2号箱装有2红3白 球,3号箱装有3红球. 某人从三箱中任取一 箱,从中任意摸出一球,求取得红球的概率.
每一个随机试验都是在一定条件下进行 的,设A是随机试验的一个事件,则P(A)是在 该试验条件下事件A发生的可能性大小.
而条件概率P(A|B)是在原条件下又添加 “B发生”这个条件时A发生的可能性大小,即 P(A|B)仍是概率.
P(A)与P(A |B)的区别在于两者发生的条件不同, 它们是两个不同的概念,在数值上一般也不同.
3
∑ P( A) = P(Bi )P( A|Bi ) i =1
对求和中的每一项 代入数据计算得:P(A)=8/15
运用乘法公式得
将此例中所用的方法推广到一般的情形,就 得到在概率计算中常用的全概率公式.
全概率公式
定理二、设B1,…, Bn是Ω的 一个划分,且P(Bi)>0,(i=1 ,…,n),则对任一事件A,
求解如下: 设 C={抽查的人患有癌症}, A={试验结果是阳性},
则C 表示“抽查的人不患癌症”.
已知 P(C)=0.005,P( C)=0.995, P(A|C)=0.95, P(A| C )=0.04
求P(C|A).
由贝叶斯公式,可得
P(C | A) =
P(C)P( A | C)
P(C)P(A | C) + P(C )P(A | C )
条件概率P(A|B)与P(A)数值关系
条件概率P(A|B)是在原条件下又添加“B发 生”这个条件时A发生的可能性大小. 那么,是 否一定有:
条件概率、二项分布及正态分布(讲解部分)
考法二 正态分布问题的解题方法
例2 (2018河北石家庄新华模拟,19)“过大年,吃水饺”是我国不少地方 过春节的一大习俗.2018年春节前夕,A市某质检部门随机抽取了100包某 种品牌的速冻水饺,检测其某项质量指标值,所得频率分布直方图如下:
(1)求所抽取的100包速冻水饺该项质量指标值的样本平均数 x(同一组中 的数据用该组区间的中点值作代表);
∴E(X)=4×1 =2.
2
方法总结 1.对于正态分布N(μ,σ2),由x=μ是正态曲线的对称轴知 (1)P(X≥μ)=P(X≤μ)=0.5; (2)对任意的a有P(X<μ-a)=P(X>μ+a); (3)P(X<x0)=1-P(X≥x0); (4)P(a<X<b)=P(X<b)-P(X≤a). 2.服从N(μ,σ2)的随机变量X在某个区间内取值的概率的求法: (1)利用P(μ-σ<X≤μ+σ),P(μ-2σ<X≤μ+2σ),P(μ-3σ<X≤μ+3σ)的值直接求; (2)充分利用正态曲线的对称性和曲线与x轴之间的面积为1这些特殊性质 求解.
(2)①由直方图可以认为,速冻水饺的该项质量指标值Z服从正态分布N(μ,σ2),
利用该正态分布,求Z落在(14.55,38.45)内的概率; ②将频率视为概率,若某人从某超市购买了4包这种品牌的速冻水饺,记这4 包速冻水饺中这种质量指标值位于(10,30)内的包数为X,求X的分布列和数 学期望. 附:计算得所抽查的这100包速冻水饺的质量指标值的标准差为σ= 142.75 ≈11.95; 若ξ~N(μ,σ2),则P(μ-σ<ξ≤μ+σ)=0.682 6,P(μ-2σ<ξ≤μ+2σ)=0.954 4. 解题导引
《8.1.1 条件概率》 讲义
《8.1.1 条件概率》讲义《811 条件概率》讲义一、引入在我们的日常生活和各种决策中,常常会遇到需要考虑在某个特定条件下事件发生的概率。
比如,在已知今天下雨的情况下,明天晴天的概率是多少?在已经抽到一张红桃牌的情况下,再抽到一张红桃牌的概率是多少?这就引出了我们要讨论的“条件概率”。
二、条件概率的定义条件概率是指事件 A 在事件 B 已经发生的条件下发生的概率,记作 P(A|B)。
用数学公式来表示,如果P(B)>0,那么P(A|B) =P(AB) /P(B) 。
这里的 P(AB) 表示事件 A 和事件 B 同时发生的概率。
为了更好地理解这个定义,我们来看一个简单的例子。
假设有一个盒子,里面装有 5 个红球和 3 个白球。
从盒子中随机抽取一个球,记事件A 为“抽到红球”,事件B 为“抽到的球是第一个球”。
那么 P(A) = 5/8 ,因为总共有 8 个球,其中红球有 5 个。
而 P(A|B) = 5/8 ,因为在第一个球抽取的情况下,抽到红球的概率就是红球在总球数中的比例。
三、条件概率的性质1、非负性:0 ≤ P(A|B) ≤ 1 。
2、规范性:如果 B 是必然事件,那么 P(A|B) = P(A) 。
四、计算条件概率的方法1、利用定义计算如前面提到的例子,先计算P(AB) 和P(B),然后相除得到P(A|B) 。
2、利用缩小样本空间法还是以盒子抽球为例,如果已知事件 B 发生了,那么我们可以把 B 当作新的样本空间,然后计算在这个新样本空间中事件A 发生的概率。
比如已知第一个球抽到的是红球,那么在剩下的 7 个球中,再计算抽到红球的概率。
五、条件概率的应用1、在医疗诊断中的应用假设某种疾病在人群中的发病率为 01% ,而某种检测方法对患有该疾病的人检测结果为阳性的概率为 99% ,对未患该疾病的人检测结果为阳性的概率为 1% 。
现在有一个人的检测结果为阳性,那么他真正患有该疾病的概率是多少?设事件 A 为“患有疾病”,事件 B 为“检测结果为阳性”。
高考专题复习 二项分布(解析版)
(3)由题意,得 ~
,从而
:
; 所以 的分布列为
X
0
1
P
: .
2
3
故
:
.
考向三 超几何分布与二项分布区分
【例 3】某地区为调查新生婴儿健康状况,随机抽取 6 名 8 个月龄婴儿称量体重(单位:千克),称量结果 分别为 6,8,9,9,9.5,10.已知 8 个月龄婴儿体重超过 7.2 千克,不超过 9.8 千克为“标准体重”,否 则为“不标准体重”.
(1)根据样本估计总体思想,将频率视为概率,若从该地区全部 8 个月龄婴儿中任取 3 名进行称重,则至少 有 2 名婴儿为“标准体重”的概率是多少?
(2)从抽取的 6 名婴儿中,随机选取 4 名,设 X 表示抽到的“标准体重”人数,求 X 的分布列和数学期望.
【答案】(1) P( A) 20 (2)见解析 27
(Ⅰ)用该实验来估测小球落入 4 号容器的概率,若估测结果的误差小于 ,则称该实验是成功的.试问:
该兴趣小组进行的实验是否成功?(误差
)
(Ⅱ)再取 3 个小球进行试验,设其中落入 4 号容器的小球个数为 ,求 的分布列与数学期望.(计算时采 用概率的理论值)
【答案】(Ⅰ)是成功的;(Ⅱ)详见解析.
(1)在被调查的驾驶员中,从平均车速不超过 100 km/h 的人中随机抽取 2 人,求这 2 人恰好有 1 名男性驾 驶员和 1 名女性驾驶员的概率;
(2)以上述样本数据估计总体,从高速公路上行驶的家用轿车中随机抽取 3 辆,记这 3 辆车平均车速超过 100
km/h 且为男性驾驶员的车辆为 X,求 X 的概率分布.
a
考向二 二项分布
【例 2】为研究家用轿车在高速公路上的车速情况,交通部门随机选取 100 名家用轿车驾驶员进行调查,得 到其在高速公路上行驶时的平均车速情况为:在 55 名男性驾驶员中,平均车速超过 100 km/h 的有 40 人, 不超过 100 km/h 的有 15 人;在 45 名女性驾驶员中,平均车速超过 100 km/h 的有 20 人,不超过 100 km/h 的有 25 人.
条件概率与贝叶斯定理
条件概率与贝叶斯定理条件概率和贝叶斯定理是概率论中重要的概念和理论,它们在统计学、机器学习和人工智能等领域有着广泛的应用。
本文将介绍条件概率和贝叶斯定理的定义、性质和应用,并通过实际案例来说明其实际意义。
一、条件概率的定义与性质条件概率是指在已知事件B发生的条件下,事件A发生的概率。
用数学符号表示为P(A|B),读作"A在B发生的条件下发生的概率"。
条件概率的计算公式为:P(A|B) = P(A∩B) / P(B)其中,P(A∩B)表示事件A和事件B同时发生的概率,而P(B)表示事件B发生的概率。
条件概率具有以下性质:1. 非负性:条件概率始终大于等于零,即P(A|B) ≥ 0。
2. 归一性:当事件B发生时,相关事件A的所有可能性的概率之和为1,即P(A|B) + P(~A|B) = 1,其中~A表示事件A的对立事件。
二、贝叶斯定理的定义与推导贝叶斯定理是由英国数学家托马斯·贝叶斯于18世纪提出的,是概率论中重要的基本定理之一。
它表示在已知事件B发生的条件下,事件A发生的概率,并提供了从逆条件概率P(B|A)求取条件概率P(A|B)的方法。
贝叶斯定理的公式为:P(A|B) = P(B|A) * P(A) / P(B)其中,P(A|B)表示事件A在事件B发生的条件下发生的概率,P(B|A)表示事件B在事件A发生的条件下发生的概率,P(A)表示事件A发生的概率,P(B)表示事件B发生的概率。
贝叶斯定理的推导过程需要使用条件概率的定义和乘法法则,这里不再赘述。
三、贝叶斯定理的应用贝叶斯定理在实际应用中具有广泛的应用,下面以医学诊断为例,说明贝叶斯定理的应用。
假设有一种罕见疾病A,已知该疾病的发生概率为0.01%,现有一种新型检测方法B,在特定条件下能够准确识别出该疾病的患者。
假设该检测方法的准确率为99%,即当患者真实患有疾病时,该检测方法给出阳性结果的概率为99%;而当患者没有患病时,该检测方法给出阴性结果的概率为99%。
一.条件概率及其性质1.条件概率的定义 设A,B为两个事件,...
(2)甲地为雨天时乙地也为雨天的概率是多少?
甲、乙2人分别对一目标射击1次,甲射中的概率为0.8,乙射 中的概率为0.9,求: (1) 2 人都射中的概率; (2) 2 人中有1人射中的概率;
(3) 2 人至少有1人射中的概率; (4) 2 人至多有1人射中的概率.
某安全生产监督部门对5家小型煤矿进行安全检查(简称安 检).若安检不合格,则整改.若整改后经复查仍不合格,则强行关 闭.设每家煤矿安检是否合格是相互独立的,且每家煤矿整改前 安检合格的概率是0.5,整改后安检合格的概率是0.8,计算(结果 精确到0.01)
三.独立重复试验 1.在相同条件下重复做的n次试验称为n次重复试验. 2.如果事件A与B相互独立,那么 A与B, A与B, A与B 也都相互独立 四.二项分布 在n次独立重复试验中,设事件A发生的次数为X,在每次 试验中事件A发生的概率为p,那么在n次独立重复试验中,事件 A恰好发生k次的概率为:
4.概率的乘法 :计算公式 :P(AB)=P(A)P(B|A)=P(B)P(A|B)
5.概率的加法 :计算公式 P(A+B)= P(A)+P(B)-P(AB) 推扩:P(A+B+C)=P(A)+P(B)+P(C)-P(AB)-P(AC)-P(BC)+P(ABC)
二.事件的相互独立性 1.定义:事件A(或B)是否发生对事件B(或A)发生的概率没有 影响,这样的两个事件叫做相互独立事件。 2、计算公式:P(AB)=P(A)P(B) 公式的推扩:P(ABC)=P(A)P(B)P(C) 3、不可能事件(或必然事件)与任何事件都是相互独立的; 4、相互独立事件的性质 若事件A与B相互独立,则事件 A与B, A与B, A与B 也都是相互独立的 5、相互独立事件与互斥事件的区别 前者是指两个试验中,两个事件发生的概率互不影响, 计算公式是P(AB)=P(A)P(B) 后者是指同一个试验中两个事件不会同时发生, 计算公式为:P(A+B)=P(A)+P(B),且满足 P( A A) P( A) P( A) 1
第三节条件概率全概率公式
第三节条件概率全概率公式条件概率、全概率公式是概率论中两个重要的概念和方法。
在实际问题中,我们常常需要考虑一些事件发生的条件下,另一个事件发生的概率,即条件概率。
而全概率公式则是一种根据一组互斥事件的概率可以计算出其他事件概率的方法。
本节将详细介绍条件概率和全概率公式的概念、性质以及应用。
一、条件概率条件概率是指在一个已知事件B发生的条件下,事件A发生的概率。
记为P(A,B),读作“A在B下的概率”。
其计算公式为:P(A,B)=P(A∩B)/P(B)其中,P(A∩B)表示事件A与事件B同时发生的概率,P(B)表示事件B发生的概率。
条件概率具有以下性质:1.非负性:对于任意的事件A和B,有P(A,B)≥0。
2.规范性:当P(B)>0时,有P(B,B)=13.直积性:对于任意的事件A和B,有P(A∩B)=P(B)×P(A,B)。
4.反转性:若P(B)>0,有P(A,B)=P(A∩B)/P(B)=P(B,A)×P(A)/P(B)。
条件概率在实际应用中非常重要。
例如,在医学诊断中,我们常常需要计算一些疾病在一些检查结果呈阳性的条件下的概率,以判断该疾病的可能性大小。
全概率公式是指通过一组互斥事件的概率可以计算出另一个事件的概率的方法。
假设事件B1、B2、..、Bn互不相容且构成样本空间S,即B1、B2、..、Bn是一组完备事件,且P(Bi)>0,那么对任意事件A有:P(A)=P(A,B1)×P(B1)+P(A,B2)×P(B2)+...+P(A,Bn)×P(Bn)全概率公式的核心思想是将事件A在各个互斥事件的条件下进行考虑,并加权求和得到事件A的概率。
全概率公式的应用非常广泛。
例如,在市场营销中,一个产品的销量可能受到不同市场环境的影响。
我们可以通过对不同市场环境下产品销售的数据进行分析,运用全概率公式计算出在不同市场环境下产品销售的概率,进而制定相应的营销策略。
概率论中的贝叶斯定理与条件概率
概率论中的贝叶斯定理与条件概率概率论是数学中的一个重要分支,它研究的是随机现象的规律性。
在概率论中,贝叶斯定理和条件概率是两个基本概念,它们在统计学和机器学习等领域有着广泛的应用。
本文将介绍贝叶斯定理与条件概率的概念、性质以及应用。
一、条件概率的定义与性质条件概率是指在已知某一事件发生的条件下,另一事件发生的概率。
设A、B为两个事件,且P(B) > 0,则事件A在事件B发生的条件下发生的概率记为P(A|B),其定义为:P(A|B) = P(A∩B) / P(B)其中,P(A∩B)表示事件A与事件B同时发生的概率,P(B)表示事件B发生的概率。
条件概率的性质包括:1. 非负性:对于任意的事件A、B,有P(A|B) ≥ 0;2. 规范性:对于任意的事件A,有P(A|Ω) = P(A);3. 相对性:对于任意的事件A、B,有P(A|B) = P(A∩B) / P(B) = P(B|A)P(A) /P(B)。
二、贝叶斯定理的定义与推导贝叶斯定理是一种基于条件概率的推理方法,它描述了在已知事件B发生的情况下,事件A发生的概率。
根据条件概率的定义,可以得到贝叶斯定理的表达式:P(A|B) = P(B|A)P(A) / P(B)其中,P(A|B)表示在事件B发生的条件下事件A发生的概率,P(B|A)表示在事件A发生的条件下事件B发生的概率,P(A)和P(B)分别表示事件A和事件B的概率。
贝叶斯定理的推导基于条件概率的乘法公式:P(A∩B) = P(B|A)P(A) = P(A|B)P(B)将乘法公式代入条件概率的定义中,即可得到贝叶斯定理的表达式。
三、贝叶斯定理的应用贝叶斯定理在实际应用中具有广泛的用途,下面列举几个常见的应用场景。
1. 疾病诊断:假设某种疾病的患病率为1%,某项检测方法的准确率为95%,如果一个人接受了该项检测并得到了阳性结果,那么他真正患病的概率是多少?根据贝叶斯定理,可以计算出该患者患病的概率为:P(患病|阳性) = P(阳性|患病)P(患病) / P(阳性)其中,P(阳性|患病)表示在患病的条件下得到阳性结果的概率,P(患病)表示患病的概率,P(阳性)表示得到阳性结果的概率。
概率论中的条件概率计算技巧
概率论中的条件概率计算技巧概率论是数学中的一个重要分支,研究随机事件的概率性质。
在概率论中,条件概率是一个重要的概念,用于描述在已知一些信息的情况下,另一事件发生的概率。
本文将探讨概率论中的条件概率计算技巧。
一、条件概率的定义和性质条件概率是指在已知某一事件发生的条件下,另一事件发生的概率。
设A和B 是两个事件,且P(A)>0,那么在事件A发生的条件下,事件B发生的概率记作P(B|A)。
条件概率的计算公式为:P(B|A) = P(A∩B) / P(A)其中,P(A∩B)表示事件A和事件B同时发生的概率。
条件概率具有以下性质:1. 非负性:对于任意事件A和B,P(B|A)≥0。
2. 规范性:对于必然事件Ω,P(Ω|A) = 1。
3. 乘法公式:对于任意事件A和B,P(A∩B) = P(A)P(B|A) = P(B)P(A|B)。
二、条件概率计算的基本方法在实际问题中,计算条件概率的方法有很多种。
下面介绍几种常用的方法。
1. 列举法列举法是一种直观的计算条件概率的方法。
通过列举所有可能的情况,并计算出每种情况下的概率,然后根据条件事件的发生情况,计算出条件概率。
例如,假设有一个装有5个红球和3个蓝球的袋子,现从袋子中随机取出一个球,已知取出的球是红球,求取出的球是蓝球的概率。
根据列举法,我们可以列举出以下情况:1) 取出红球,概率为5/8;2) 取出蓝球,概率为3/8。
由于已知取出的球是红球,因此只需考虑取出红球的情况,即概率为5/8。
所以,取出的球是蓝球的概率为3/8。
2. 全概率公式全概率公式是一种常用的计算条件概率的方法。
它适用于当事件A的发生依赖于多个互斥事件B1、B2、...、Bn时。
全概率公式的表达式为:P(A) = P(A|B1)P(B1) + P(A|B2)P(B2) + ... + P(A|Bn)P(Bn)其中,B1、B2、...、Bn为互斥事件,且它们的并集为样本空间Ω。
例如,假设有两个袋子,袋子1中有4个红球和2个蓝球,袋子2中有3个红球和5个蓝球。
条件概率
Probabilit
条件概率的性质
Probabilit
例 某科动物出生之后活到20岁的概率为0.7,活到25 岁的概率为0.56,求现年为20岁的动物活到25岁的概率.
解 :设A表示“活到20岁以上”的事件,B表示“活
Probabilit
到25
P(A)=0.7,P(B)=0.56,且B A.
P( A | B)
4 P( AB) 10
Probabilit
4 5
4 4 10 P( AB) P( A | B) 5 5 P( B) 10
B
AB A
条件概率的定义
定义1.4.1 设(Ω,F ,P)为一概率空间, A∈ F ,B∈ F ,且P(B)>0,在“已 知事件B 已经发生”的条件下,“事件 A 发生”的条件概率P(A|B)定义为:
Probabilit
Probabilit
4、 根据以往的临床记录,某种诊断癌 症的试验具有如下的效果:若以A表示事 件“试验反应为阳性”,以C表示事件” 被诊断者患有癌症”,则有P(A|C) =0.95,P( A | C ) 0.95 .现在对自然人群 进行普查,设被试验的人患有癌症的概率 为0.005。即P(C)=0.005。试求P(C|A)
Probabilit
Probabilit
4
四、贝叶斯公式
全概率公式的逆问题 设在进行随机试验中该事件B已发生,问 在这条件下,各原因发生的条件概率是多 少?
Probabilit
A1 A2
A3
B A4 A7
A5 A6 A8
四、贝叶斯公式
Probabilit
二项分布及其应用(答案)
二项分布及其应用【知识要点】一、条件概率及其性质1、条件概率一般地,设A ,B 为两个事件,且0)(>A P ,称)()()(A P AB P A B P =为在事件A 发生的条件下,事件B 发生的条件概率。
2、性质(1)任何事件的条件概率都在0和1之间,即1)(0≤≤A B P .(2)如果B 和C 是两个互斥事件,则)()()(A C P A B P A C B P ==Y 。
【例题1—1】从1,2,3,4,5中任取2个不同的数,事件A 为“取到的2个数之和为偶数”,事件B 为“取到的2个数均为偶数”,则=)(A B P ( B ) A 、81 B 、41 C 、52 D 、21 【例题1—2】在一次考试的5道题中,有3道理科题和2道文科题,如果不放回地依次抽取2道题,则在第一次抽到理科题的条件下,第二次抽到理科题的概率为 21 。
【例题1—3】某地区空气质量监测表明,一天的空气质量为优良的概率是0.75,连续两天为优良的概率是0.6,已知某天的空气质量为优良,则随后一天的空气质量为优良的概率是( A )A 、0.8B 、0.75C 、0.6D 、0.45【例题1—4】从混有5张假钞的20张一百元钞票中任意抽取2张,将其中一张在验钞机上检验发现是假钞,则这两张都是假钞的概率为( A )A 、172B 、152C 、51D 、103 【例题1—5】把一枚硬币连续抛掷两次,事件A=“第一次出现正面”,事件B=“第二次出现正面”,则=)(A B P ( A )A 、21B 、41 C 、61 D 、81 【例题1—6】1号箱中有2个白球和4个红球,2号箱中有5个白球和3个红球,现随机地从1号箱中取出一球放入2号箱,然后从2号箱随机取出一球,则在从1号箱中取出的是红球的条件下,从2号箱取出红球的概率是94 。
二、相互独立事件及n 次独立重复事件1、相互独立事件同时发生的概率(1)相互独立事件的定义:如果事件A (或B )是否发生对事件B (A )发生的概率没有影响,这样的两个事件叫做相互独立事件。
条件概率及应用
条件概率及应用概率论是数学中的一个重要分支,而条件概率是概率论中的一个基本概念,被广泛应用于各个领域。
条件概率是指在已知某一事件发生的条件下,另一事件发生的概率。
在实际应用中,条件概率常用于决策、预测和推断等方面,发挥着重要作用。
一、条件概率的定义与性质条件概率的定义是指事件B在事件A已经发生的条件下发生的概率,记作P(B|A)。
其中,P(B|A)表示在已知事件A发生的条件下,事件B发生的概率。
条件概率具有以下性质:1. 非负性:条件概率始终大于等于零,即P(B|A)≥0。
2. 规范性:当事件A必然发生时,条件概率为1,即P(A|A)=1。
3. 乘法规则:P(A∩B) = P(B|A) × P(A)。
4. 加法规则:P(A∪B) = P(A) + P(B) - P(A∩B)。
二、条件概率的应用1. 医学诊断条件概率在医学诊断中有着重要应用。
医生根据患者的症状和体征,结合已知的疾病概率,计算出患者患某种疾病的概率,从而进行准确的诊断。
例如,假设某种疾病在整个人群中的发病率为0.1%,而该疾病的某种症状在该疾病患者中的发生率为90%。
那么,当一个人出现了该症状时,他患该疾病的概率是多少?根据条件概率的计算公式,可以得到该人患该疾病的概率为0.09%。
2. 信号处理在信号处理领域,条件概率常用于噪声滤波和模式识别等任务中。
通过建立概率模型,根据已知的观测数据,计算出信号的条件概率分布,从而对信号进行处理和分析。
例如,在语音识别中,我们可以通过条件概率模型来计算某个单词在给定语音信号下的概率,从而判断出这个单词最有可能是什么。
这种基于条件概率的模式识别方法,广泛应用于语音识别、图像处理等领域。
3. 金融风险评估条件概率在金融风险评估中也有着重要的应用。
通过建立风险模型,根据历史数据和市场因素,计算出特定事件发生的条件概率,从而评估风险的大小。
例如,在股票市场中,投资者可以通过条件概率模型来计算某只股票在市场行情下的涨跌概率,从而决定是否进行买入或卖出操作。
条件概率
§ 1.4 条件概率一、条件概率条件概率的直观定义:设有事件A ,B ,P (A )>0,在事件A 发生的条件下,B 发生的概率称为条件概率。
记为P (B|A )条件概率的性质i i j i i i 1i 11P(|A)12P(|)13i=12,i j,P(|)P(|)B S A B B A B A φ∞∞==≤≤=≠=∑() 非负性:0;() 规范性: =;() 可列可加性;若B ,,,....,且B 则有;以上是三条基本性质,象前面一般概率一样也可推出以下性质:(1)P(|)0A φ=i i j nn i i i 1i 1i=12,i j,P(|)P(|)B B A B A φ===≠=∑(2)有限可加性;若B ,,,....,且B 则有;(3)P(|A)1P(|)()B B A =-重要公式(4)A B P{(B-A)|C}P(B|C)P(A|C)⊂=-(减法公式)若,则(5)P{(A+B)|C}P(A|C)P(B|C)P(AB|C)=+-(一般加法公式)n ni i i j i=1i 11i j n n 1i j k 12n 1i j k n (6)(P(A |B)P(A |B)P(A A |B)P(A A A |B)...........(1)P(A A .......A |B)=≤<≤-≤<<≤=-+-+-∑∑∑∑多除少补原理)二、 乘法公式将条件概率公式 P (A B )P (A |B )P (B )= 改写 P(AB)P(B)P(A|B)=称为乘法公式 利用结合律推出多个事件的乘法公式:三个事件积的乘法公式 123P (A A A )12312P (A A )P (A |A A )= 312=P()P()P(A |A A )121AA|An 个事件积的乘法公式123n 1213123123n 123n-1P(A A A .........A )(A )(A |A )(A |A A )(A |A A A )......(A |A A A .........A )P P P P P =⋅三、全概率公式和贝叶斯公式全概率公式和贝叶斯公式主要用于计算比较复杂事件的概率, 它们实质上是加法公式和乘法公式的综合运用。
概率问题的条件概率与独立性
概率问题的条件概率与独立性概率论是数学的一个分支,研究随机事件的发生及其规律性。
在概率论中,条件概率与独立性是两个重要的概念。
本文将详细讨论条件概率与独立性的概念、性质以及应用。
一、条件概率的概念与计算方法条件概率是指在已知某一事件发生的前提下,另一事件发生的概率。
设A、B是两个事件,且P(A)>0,则在事件A发生的条件下,事件B发生的概率记为P(B|A),读作“在A发生的条件下B发生的概率”。
条件概率的计算方法如下:P(B|A) = P(A∩B) / P(A)其中,P(A∩B)表示事件A与事件B同时发生的概率,P(A)表示事件A发生的概率。
二、条件概率的性质1. 乘法定理:对于任意两个事件A和B,有P(A∩B) = P(A) × P(B|A) = P(B) × P(A|B)。
2. 独立事件的条件概率:对于独立事件A和B,有P(B|A) = P(B),P(A|B) = P(A),即事件A的发生与否不影响事件B的概率,反之亦然。
三、独立性的概念与判定方法独立性是指两个事件之间的发生与否相互独立,即一个事件的发生不受另一个事件的影响。
设A、B是两个事件,如果满足P(A∩B) =P(A) × P(B),则称事件A和事件B是独立事件,简写为A⊥B。
判定事件的独立性可以通过以下方法:1. 乘法法则:若P(A) × P(B) = P(A∩B),则可以推断A与B是独立事件。
2. 条件概率的性质:若P(B|A) = P(B),则A与B是独立事件。
四、条件独立性的概念与判定方法条件独立性是指在已知某一条件的前提下,两个事件之间仍然相互独立。
设A、B、C是三个事件,若满足P(A∩B|C) = P(A|C) × P(B|C),则称事件A和事件B在条件C下是条件独立的,简写为A⊥B|C。
我们可以通过以下方法判断事件的条件独立性:若满足P(A∩B|C) = P(A|C) × P(B|C),则可以推断在条件C下事件A 与事件B是条件独立的。
条件概率的性质概念
条件概率的性质概念条件概率是概率论中的基本概念之一,它描述了在给定某个条件下的事件发生的概率。
条件概率是一种经验性的或者统计性的概率,它需要依赖于一定数量的观察结果来计算。
在理解条件概率的性质之前,我们先从条件概率的定义开始。
条件概率的定义:设A和B是两个事件,且P(B)>0,那么在事件B已经发生的条件下,事件A 发生的概率称为事件A在事件B的条件下发生的条件概率,记作P(A B)。
条件概率的性质:1.非负性:条件概率是一个概率值,因此它的取值范围在0到1之间,即对于任何事件A和B,有0≤P(A B)≤1。
2.规范性:当事件A包含在事件B中时,即A⊆B时,有P(A B)=1。
3.对立性:当事件A与事件B互斥时,即A与B不可能同时发生时,有P(A B)=0。
4.可加性:当事件B的概率大于0时,有P(A∪B)=P(A B)P(B)+P(A B')P(B'),其中B'表示事件B的补事件。
5.乘法公式:对于任何两个事件A和B,有P(A∩B)=P(A B)P(B)=P(B A)P(A)。
这一性质也称为乘法规则。
6.独立性:当事件A和B相互独立时,即P(A∩B)=P(A)P(B),根据乘法公式可知P(A B)=P(A),即事件B的发生与否对事件A的发生概率没有影响。
条件概率的性质可以帮助我们更好地理解和计算各种事件之间的关联关系。
在实际应用中,条件概率常常用于解决与观察结果有关的问题,例如医学诊断、金融风险评估等。
通过计算各种疾病的发生概率以及与之相关的症状,医生可以利用条件概率来判断某位患者是否患有某种疾病。
类似地,金融机构可以利用条件概率来评估某个投资项目的风险程度,进而作出合理的决策。
此外,条件概率还可以应用于事件的预测和分类。
通过观察某个事件已经发生的条件下的频率,我们可以计算出在给定观察结果下其他事件发生的概率。
这对于制定决策、进行预测以及进行风险评估等具有重要作用。
条件概率知识点总结归纳
条件概率知识点总结归纳一、条件概率的基本概念1.1 条件概率的定义条件概率是指在已知事件B发生的条件下,事件A发生的概率。
它的数学表示为P(A|B),读作“A在B条件下发生的概率”,其计算公式为P(A|B) = P(A∩B)/P(B)。
1.2 条件概率的意义条件概率是描述事件之间关联性的重要工具,能够揭示一个事件在另一事件发生的条件下的概率,反映了事件之间的相互依存关系。
在实际问题中,许多事件不是独立发生的,而是受到其他事件的影响,这时需要用到条件概率来进行分析和计算。
1.3 条件概率的性质条件概率具有以下性质:(1)非负性:条件概率始终大于等于0,即P(A|B) ≥ 0;(2)归一性:当总体空间Ω为有限集合时,有P(Ω|B) = 1;(3)加法公式:当事件A与B互斥时,有P(A∪B|C)=P(A|C)+P(B|C);(4)乘法公式:当事件A与B独立时,有P(A∩B|C) = P(A|C) * P(B|C)。
二、条件概率的计算方法2.1 全概率公式全概率公式是指当事件B的发生是由于多个互斥事件引起时,可以利用这些事件与事件A的交集来计算事件A的概率。
全概率公式的表达式为P(A) = P(A|B1) * P(B1) + P(A|B2) *P(B2) + … + P(A|Bn) * P(Bn),其中B1、B2、…、Bn为互斥事件,且并集为样本空间。
2.2 贝叶斯定理贝叶斯定理是用来计算在得到某一新信息后,原有的主观概率应该如何进行修正的方法。
它的表达式为P(Bi|A) = P(A|Bi) * P(Bi) / [P(A|B1) * P(B1) + P(A|B2) * P(B2) + … + P(A|Bn)* P(Bn)],其中P(Bi|A)表示在事件A发生的条件下,事件Bi发生的概率。
2.3 独立性的条件概率当事件A与事件B相互独立时,有P(A|B) = P(A),即事件B的发生并不影响事件A的发生概率。
第七节 n次独立重复试验及二项分布
第七节n 次独立重复试验及二项分布1.条件概率及其性质(1)条件概率的定义:对于任何两个事件A 和B ,在已知事件A 发生的条件下,事件B 发生的概率叫做条件概率,用符号P (B |A )来表示,其公式为P (B |A )=P (AB )P (A )(P (A )>0).(2)条件概率的性质 ①非负性:0≤P (B |A )≤1;②可加性:如果B 和C 是两个互斥事件, 则P (B ∪C |A )=P (B |A )+P (C |A ). 2.相互独立事件(1)对于事件A ,B ,若事件A 的发生与事件B 的发生互不影响,则称事件A ,B 是相互独立事件.(2)若P (AB )=P (A )P (B ),则A 与B 相互独立.(3)若A 与B 相互独立,则A 与B ,A 与B ,A 与B 也都相互独立. (4)若A 与B 相互独立,则P (B |A )=P (B ), P (AB )=P (B |A )P (A )=P (A )P (B ).(5)一般地,如果事件A 1,A 2,…,A n (n >2,n ∈N *)相互独立,那么这n 个事件同时发生的概率等于每个事件发生的概率的积,即P (A 1A 2…A n )=P (A 1)P (A 2)·…·P (A n ).互斥事件与相互独立事件的相同点与不同点(1)相同点:二者都是描述两个事件间的关系;(2)不同点:互斥事件强调两事件不可能同时发生,即P (AB )=0,相互独立事件则强调一个事件的发生与否对另一个事件发生的概率没有影响.3.独立重复试验与二项分布(1)独立重复试验:一般地,在相同条件下重复做的n 次试验称为n 次独立重复试验. 独立重复试验的条件:①每次试验在相同条件下可重复进行;②各次试验是相互独立的;③每次试验都只有两种结果,即事件要么发生,要么不发生.(2)二项分布:一般地,在n 次独立重复试验中,设事件A 发生的次数为X ,在每次试验中事件A 发生的概率为p ,则事件A 恰好发生k 次的概率为P (X =k )=C k n p k (1-p )n -k ,k =0,1,2,…,n ,则称随机变量X 服从二项分布,记作X ~B (n ,p ),并称p 为成功概率.判断一个随机变量是否服从二项分布,要看两点:,(1)是否为n 次独立重复试验;,(2)随机变量是否为某事件在这n 次独立重复试验中发生的次数.[小题查验基础]一、判断题(对的打“√”,错的打“×”)(1)P (B |A )表示在事件A 发生的条件下,事件B 发生的概率,P (AB )表示事件A ,B 同时发生的概率,一定有P (AB )=P (A )P (B ).( )(2)相互独立事件就是互斥事件.( )(3)二项分布是一个概率分布列,是一个用公式P (X =k )=C k n p k (1-p )n -k,k =0,1,2,…,n 表示的概率分布列,它表示了n 次独立重复试验中事件A 发生的次数的概率分布.( )答案:(1)× (2)× (3)√ 二、选填题1.打靶时甲每打10次,可中靶8次;乙每打10次,可中靶7次.若两人同时射击一个目标,则它们都中靶的概率是( )A.35 B.34 C.1225D.1425解析:选D 由题意知甲中靶的概率为45,乙中靶的概率为710,两人打靶相互独立,同时中靶的概率P =45×710=1425.2.设随机变量X ~B ⎝⎛⎭⎫6,12,则P (X =3)=( ) A.516 B.316 C.58D.38解析:选A 因为X ~B ⎝⎛⎭⎫6,12,由二项分布可得, P (X =3)=C 36⎝⎛⎭⎫123·⎝⎛⎭⎫1-123=516. 3.根据历年气象统计资料,宜都三月份吹东风的概率为310,下雨的概率为1130,既吹东风又下雨的概率为830,则在吹东风的条件下下雨的概率为( )A.911B.89C.25D.811解析:选B 设事件A 表示宜都三月份吹东风,事件B 表示三月份下雨,根据条件概率计算公式可得在吹东风的条件下下雨的概率P (B |A )=830310=89.4.甲、乙两人独立地对同一目标各射击一次,命中率分别为0.6和0.5,现已知目标被击中,则它是被甲击中的概率为________.解析:设目标被击中为事件B ,目标被甲击中为事件A ,则由P (B )=0.6×0.5+0.4×0.5+0.6×0.5=0.8,得P (A |B )=P (AB )P (B )=P (A )P (B )=0.60.8=0.75.答案:0.755.位于坐标原点的一个质点P 按下述规则移动:质点每次移动一个单位,移动的方向为向上或向右,并且向上、向右移动的概率都是12.质点P 移动五次后位于点(2,3)的概率是________.解析:因为质点移动五次后位于点(2,3),所以质点P 必须向右移动2次,向上移动3次.故其概率为C 35⎝⎛⎭⎫123·⎝⎛⎭⎫122=C 35⎝⎛⎭⎫125=516. 答案:516考点一 条件概率[师生共研过关][典例精析](1)(2019·合肥模拟)将三颗骰子各掷一次,记事件A 为“三个点数都不同”,B 为“至少出现一个6点”,则条件概率P (A |B )=__________,P (B |A )=________.(2)从1,2,3,4,5中任取2个不同的数,事件A =“取到的2个数之和为偶数”,事件B =“取到的2个数均为偶数”,则P (B |A )=________.[解析] (1)P (A |B )的含义是在事件B 发生的条件下,事件A 发生的概率,即在“至少出现一个6点”的条件下,“三个点数都不相同”的概率,因为“至少出现一个6点”有6×6×6-5×5×5=91种情况,“至少出现一个6点,且三个点数都不相同”共有C 13×5×4=60种情况,所以P (A |B )=6091.P (B |A )的含义是在事件A 发生的条件下,事件B 发生的概率,即在“三个点数都不相同”的条件下,“至少出现一个6点”的概率,因为“三个点数都不同”有6×5×4=120种情况,所以P (B |A )=12.(2)P (A )=C 23+C 22C 25=410=25,P (AB )=C 22C 25=110,由条件概率公式,得P (B |A )=P (AB )P (A )=11025=14. [答案] (1)6091 12 (2)14[解题技法]条件概率的3种求法[过关训练]1.(2019·石家庄摸底)某种电路开关闭合后会出现红灯或绿灯闪烁,已知开关第一次闭合后出现红灯的概率为12,两次闭合后都出现红灯的概率为15,则开关在第一次闭合后出现红灯的条件下第二次闭合后出现红灯的概率为________.解析:设“开关第一次闭合后出现红灯”为事件A ,“开关第二次闭合后出现红灯”为事件B ,则“开关两次闭合后都出现红灯”为事件AB ,“开关在第一次闭合后出现红灯的条件下第二次闭合后出现红灯”为事件B |A ,由题意得P (B |A )=P (AB )P (A )=25.答案:252.现有3道理科题和2道文科题共5道题,若不放回地一次抽取2道题,则在第1次抽到理科题的条件下,第2次抽到理科题的概率为________.解析:法一:设第1次抽到理科题为事件A ,第2次抽到理科题为事件B ,则P (B |A )=P (AB )P (A )=3×2A 2535=12.法二:在第1次抽到理科题的条件下,还有2道理科题和2道文科题,故在第1次抽到理科题的条件下,第2次抽到理科题的概率为12.答案:12考点二 相互独立事件的概率[师生共研过关][典例精析](1)设每个工作日甲、乙、丙、丁4人需使用某种设备的概率分别为0.6,0.5,0.5,0.4,各人是否需使用设备相互独立,则同一工作日至少3人需使用设备的概率为________.(2)某次知识竞赛规则如下:在主办方预设的5个问题中,选手若能连续正确回答出两个问题,即停止答题,晋级下一轮.假设某选手正确回答每个问题的概率都是0.8,且每个问题的回答结果相互独立,则该选手恰好回答了4个问题就晋级下一轮的概率为________.[解析] (1)设甲、乙、丙、丁需使用设备分别为事件A ,B ,C ,D ,则P (A )=0.6,P (B )=P (C )=0.5,P (D )=0.4,恰好3人使用设备的概率P 1=P (A BCD +A B CD +AB C D +ABC D )=(1-0.6)×0.5×0.5×0.4+0.6×(1-0.5)×0.5×0.4+0.6×0.5×(1-0.5)×0.4+0.6×0.5×0.5×(1-0.4)=0.25,4人使用设备的概率P 2=0.6×0.5×0.5×0.4=0.06,故所求概率P =0.25+0.06=0.31.(2)依题意,该选手第2个问题回答错误,第3,4个问题均回答正确,第1个问题回答正误均有可能,则所求概率P =1×0.2×0.82=0.128.[答案] (1)0.31 (2)0.128 [变式发散]1.(变设问)保持本例(2)条件不变,则该选手恰好回答了5个问题就晋级下一轮的概率为________.解析:依题意,该选手第3个问题的回答是错误的,第4,5个问题均回答正确,第1,2个问题回答均错误或有且只有1个错误,则所求概率P =0.23×0.82+2×0.2×0.8×0.2×0.82=0.005 12+0.040 96=0.046 08.答案:0.046 082.(变设问)保持本例(2)条件不变,则该选手回答了5个问题(5个问题必须全部回答)就结束的概率为________.解析:依题意,设答对的事件为A ,可分第3个回答正确与错误两类,若第3个回答正确,则有A A A A 或AA A A 两类情况,其概率为:0.8×0.2×0.8×0.2+0.2×0.2×0.8×0.2=0.025 6+0.006 4=0.032.若该选手第3个问题的回答是错误的,第1,2个问题回答均错误或有且只有1个错误,则所求概率P =0.23+2×0.2×0.8×0.2=0.008+0.064=0.072.所以所求概率为0.032+0.072=0.104.答案:0.104[解题技法]利用相互独立事件求复杂事件概率的解题思路 (1)将待求复杂事件转化为几个彼此互斥简单事件的和.(2)将彼此互斥简单事件中的简单事件,转化为几个已知(易求)概率的相互独立事件的积事件.(3)代入概率的积公式求解.[过关训练]1.在高三的某次模拟考试中,对于数学选修4系列的考查中,甲同学选做《不等式选讲》的概率为13,乙同学选做《不等式选讲》的概率为14,假定二人的选择相互之间没有影响,那么这次模拟考试中甲、乙两个同学至少有1人选做《不等式选讲》的概率为________.解析:记高三的某次模拟考试中“甲同学不选做《不等式选讲》”为事件A ,“乙同学不选做《不等式选讲》”为事件B ,且A ,B 相互独立.依题意,P (A )=1-13=23,P (B )=1-14=34,所以P (AB )=P (A )·P (B )=23×34=12.又因为甲、乙二人至少有一人选做《不等式选讲》的对立事件为甲、乙二人都不选做《不等式选讲》,所以所求概率为1-P (AB )=1-12=12.答案:122.从甲地到乙地要经过3个十字路口,设各路口信号灯工作相互独立,且在各路口遇到红灯的概率分别为12,13,14.(1)设X 表示一辆车从甲地到乙地遇到红灯的个数,求随机变量X 的分布列; (2)若有2辆车独立地从甲地到乙地,求这2辆车共遇到1个红灯的概率. 解:(1)随机变量X 的所有可能取值为0,1,2,3, 则P (X =0)=⎝⎛⎭⎫1-12×⎝⎛⎭⎫1-13×⎝⎛⎭⎫1-14=14, P (X =1)=12×⎝⎛⎭⎫1-13×⎝⎛⎭⎫1-14+⎝⎛⎭⎫1-12×13×⎝⎛⎭⎫1-14+⎝⎛⎭⎫1-12×⎝⎛⎭⎫1-13×14=1124, P (X =2)=⎝⎛⎭⎫1-12×13×14+12×⎝⎛⎭⎫1-13×14+12×13×⎝⎛⎭⎫1-14=14, P (X =3)=12×13×14=124.所以随机变量X 的分布列为(2)设Y 表示第一辆车遇到红灯的个数,Z 表示第二辆车遇到红灯的个数,则所求事件的概率为P (Y +Z =1)=P (Y =0,Z =1)+P (Y =1,Z =0) =P (Y =0)P (Z =1)+P (Y =1)P (Z =0) =14×1124+1124×14 =1148. 所以这2辆车共遇到1个红灯的概率为1148.考点三 独立重复试验与二项分布[师生共研过关][典例精析]九节虾的真身是虎斑虾,虾身上有一深一浅的横向纹路,煮熟后有明显的九节白色花纹,肉味鲜美.某酒店购进一批九节虾,并随机抽取了40只统计质量,得到的结果如下表所示:(1)若购进这批九节虾35 000 g ,且同一组数据用该组区间的中点值代表,试估计这批九节虾的数量(所得结果保留整数);(2)以频率估计概率,若在本次购买的九节虾中随机挑选4只,记质量在[5,25)间的九节虾的数量为X ,求X 的分布列.[解] (1)由表中数据可以估计每只九节虾的质量为140×(4×10+12×20+11×30+8×40+5×50)=29.5(g),因为35 000÷29.5≈1 186(只), 所以这批九节虾的数量约为1 186只.(2)由表中数据知,任意挑选1只九节虾,质量在[5,25)间的概率p =4+1240=25,X 的所有可能取值为0,1,2,3,4,则P (X =0)=⎝⎛⎭⎫354=81625, P (X =1)=C 14×25×⎝⎛⎭⎫353=216625, P (X =2)=C 24×⎝⎛⎭⎫252×⎝⎛⎭⎫352=216625, P (X =3)=C 34×⎝⎛⎭⎫253×35=96625, P (X =4)=⎝⎛⎭⎫254=16625. 所以X 的分布列为[解题技法]独立重复试验与二项分布问题的类型及解题策略(1)在求n 次独立重复试验中事件恰好发生k 次的概率时,首先要确定好n 和k 的值,再准确利用公式求概率.(2)在根据独立重复试验求二项分布的有关问题时,关键是理清事件与事件之间的关系,确定二项分布的试验次数n 和变量的概率,求得概率.[过关训练]1.甲、乙两名运动员练习定点投球,已知在该点每次投篮甲命中的概率是0.8,乙命中的概率是0.9,每人投两次,则甲、乙都恰好命中一次的概率为( )A.0.32B.0.18C.0.50D.0.057 6解析:选D 甲命中一次的概率为C 12×0.8×(1-0.8)=0.32,乙命中一次的概率为C 12×0.9×(1-0.9)=0.18,他们投篮命中与否相互独立,所以甲、乙都恰好命中一次的概率为P =0.32×0.18=0.057 6.2.一款击鼓小游戏的规则如下:每盘游戏都需击鼓三次,每次击鼓要么出现一次音乐,要么不出现音乐;每盘游戏击鼓三次后,出现一次音乐获得10分,出现两次音乐获得20分,出现三次音乐获得100分,没有出现音乐则扣除200分(即获得-200分).设每次击鼓出现音乐的概率为12,且各次击鼓出现音乐相互独立.(1)设每盘游戏获得的分数为X ,求X 的分布列; (2)玩三盘游戏,至少有一盘出现音乐的概率为多少? 解:(1)X 可能的取值为10,20,100,-200. 根据题意,有P (X =10)=C 13×⎝⎛⎭⎫121×⎝⎛⎭⎫1-122=38, P (X =20)=C 23×⎝⎛⎭⎫122×⎝⎛⎭⎫1-121=38, P (X =100)=⎝⎛⎭⎫123=18, P (X =-200)=⎝⎛⎭⎫1-123=18. 所以X 的分布列为(2)设“第i 盘游戏没有出现音乐”为事件A i (i =1,2,3),则P (A 1)=P (A 2)=P (A 3)=P (X =-200)=18.所以“三盘游戏中至少有一盘出现音乐”的概率为 1-P (A 1A 2A 3)=1-⎝⎛⎭⎫183=1-1512=511512. 因此,玩三盘游戏,至少有一盘出现音乐的概率为511512.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
条件概率及其性质1.条件概率及其性质(1)条件概率的定义设A、B为两个事件,且P(A)>0,称P(B|A)=为在事件A发生的条件下,事件B发生的条件概率.(2)条件概率的求法求条件概率除了可借助定义中的公式,还可以借助古典概型概率公式,即P(B|A)=.(3)条件概率的性质①条件概率具有一般概率的性质,即0≤P(B|A)≤1.②如果B和C是两个互斥事件,则P(B∪C|A)=P(B|A)+P(C|A) ) .2.事件的相互独立性(1)设A、B为两个事件,如果P(AB)=P(A)P(B) ,则称事件A与事件B相互独立.(2)如果事件A与B相互独立,那么与,与,与也都相互独立.3.二项分布在n次独立重复试验中,设事件A发生的次数为X,在每次试验中事件A 发生的概率为p,那么在n次独立重复试验中,事件A恰好发生k次的概率为P(X=k)=C k n p k(1-p)n-k(k=0,1, 2,…,n).此时称随机变量X服从二项分布,记作X~B(n,p) ,并称_p_为成功概率.若X~B(n,p),则E(X)=np.1.区分条件概率P(B|A)与概率P(B)它们都以样本空间Ω为总样本,但它们取概率的前提是不相同的.概率P(B)是指在整个样本空间Ω的条件下事件B发生的可能性大小,而条件概率P(B|A)是在事件A发生的条件下,事件B发生的可能性大小.2.求法:(1)利用定义分别求P(A),P(AB),得P(B|A)=P(AB) P(A);(2)先求A含的基本事件数n(A),再求在A发生的条件下B包含的事件数即n(AB),得P(B|A)=n(AB) n(A).1.1号箱中有2个白球和4个红球,2号箱中有5个白球和3个红球,现随机地从1号箱中取出一球放入2号箱,然后从2号箱随机取出一球,问(1)从1号箱中取出的是红球的条件下,从2号箱取出红球的概率是多少?(2)从2号箱取出红球的概率是多少?【解】记事件A:最后从2号箱中取出的是红球;事件B:从1号箱中取出的是红球.P(B)=42+4=23,P(B)=1-P(B)=13,(1)P(A|B)=3+18+1=49.(2)∵P(A|B)=38+1=13,∴P(A)=P(AB)+P(A B)=P(A|B)P(B)+P(A|B)P(B)=49×23+13×13=1127.2.(2011年湖南)如图,EFGH是以O为圆心,半径为1的圆的内接正方形,将一颗豆子随机地扔到该圆内,用A表示事件“豆子落在正方形EFGH内”,B表示事件“豆子落在扇形OHE(阴影部分内),”则(1)P(A)=________;(2)P(B|A)=_____答案:(1)2π (2)141.相互独立事件是指两个试验中,两事件发生的概率互不影响;相互对立事件是指同一次试验中,两个事件不会同时发生.2.在解题过程中,要明确事件中的“至少有一个发生”“至多有一个发生”“恰有一个发生”“都发生”“都不发生”“不都发生”等词语的意义.已知两个事件A 、B ,它们的概率分别为P (A )、P (B ),则A 、B 中至少有一个发生的事件为A ∪B ;A 、B 都发生的事件为AB ;A 、B 都不发生的事件为A B ;A 、B 恰有一个发生的事件为A B ∪A B ;A 、B 中至多有一个发生的事件为A B ∪A B ∪ A B .3.互斥事件与相互独立事件的区别:两事件互斥是指同一次试验中两事件不能同时发生,两事件相互独立是指不同试验下,二者互不影响;两个相互独立事件不一定互斥,即可能同时发生,而互斥事件不可能同时发生.3.(2012年山东)现有甲、乙两个靶.某射手向甲靶射击一次,命中的概率为34,命中得1分,没有命中得0分;向乙靶射击两次,每次命中的概率为23,每命中一次得2分,没有命中得0分,该射手每次射击的结果相互独立.假设该射手完成以上三次射击.(1)求该射手恰好命中一次的概率;(2)求该射手的总得分X的分布列及数学期望E(X).【解】(1)记:“该射手恰好命中一次”为事件A,“该射手射击甲靶命中”为事件B,“该射手第一次射击乙靶命中”为事件C,“该射手第二次射击乙靶命中”为事件D,由题意知P(B)=34,P(C)=P(D)=23,由于A=B C D+B C D+B C D,根据事件的独立性和互斥性得P(A)=P(B C D+B C D+B C D)=P(B C D)+P(B C D)+P(B C D)=P(B)P(C)P(D)+P(B)P(C)P(D)+P(B)P(C)P(D)=34×⎝⎛⎭⎪⎪⎫1-23×⎝⎛⎭⎪⎪⎫1-23+⎝⎛⎭⎪⎪⎫1-34×23×⎝⎛⎭⎪⎪⎫1-23+⎝⎛⎭⎪⎪⎫1-34×⎝⎛⎭⎪⎪⎫1-23×23=736.(2)根据题意,X 的所有可能取值为0,1,2,3,4,5,根据事件的独立性和互斥性得P (X =0)=P (B C D )=[1-P (B )][1-P (C )][1-P (D )]=⎝⎛⎭⎪⎪⎫1-34×⎝⎛⎭⎪⎪⎫1-23×⎝ ⎛⎭⎪⎪⎫1-23=136, P (X =1)=P (B C D )=P (B )P (C )P (D )=34×⎝ ⎛⎭⎪⎪⎫1-23×⎝ ⎛⎭⎪⎪⎫1-23=112,P (X =2)=P (B C D +B C D )=P (B C D )+P (B C D )=⎝⎛⎭⎪⎪⎫1-34×23×⎝ ⎛⎭⎪⎪⎫1-23+⎝ ⎛⎭⎪⎪⎫1-34×⎝ ⎛⎭⎪⎪⎫1-23×23=19, P (X =3)=P (BC D +B C D )=P (BC D )+P (B C D )=34×23×⎝ ⎛⎭⎪⎪⎫1-23+34×⎝⎛⎭⎪⎪⎫1-23×23=13, P (X =4)=P (B CD )=⎝⎛⎭⎪⎪⎫1-34×23×23=19, P (X =5)=P (BCD )=34×23×23=13. 故X 的分布列为所以E(X)=0×136+1×112+2×19+3×13+4×19+5×13=4112.(1)注意区分互斥事件和相互独立事件,互斥事件是在同一试验中不可能同时发生的情况,相互独立事件是指几个事件的发生与否互不影响,当然可以同时发生.(2)求离散型随机变量的分布列的关键是正确理解随机变量取每一个值所表示的具体事件,然后综合应用各类求概率的公式,求出概率.(3)求随机变量的期望和方差的关键是正确求出随机变量的分布列,若随机变量服从二项分布,则可直接使用公式求解.4.(2011年山东高考)红队队员甲、乙、丙与蓝队队员A、B、C进行围棋比赛,甲对A,乙对B,丙对C各一盘.已知甲胜A,乙胜B,丙胜C 的概率分别为0.6,0.5,0.5.假设各盘比赛结果相互独立.(1)求红队至少两名队员获胜的概率;(2)用ξ表示红队队员获胜的总盘数,求ξ的分布列和数学期望E(ξ).解:(1)设甲胜A的事件为D,乙胜B的事件为E,丙胜C的事件为F.则D,E,F分别表示甲不胜A、乙不胜B、丙不胜C的事件.因为P(D)=0.6,P(E)=0.5,P(F)=0.5,由对立事件的概率公式知P(D)=0.4,P(E)=0.5,P(F)=0.5.红队至少两人获胜的事件有:DE F,D E F,D EF,DEF.由于以上四个事件两两互斥且各盘比赛的结果相互独立,因此红队至少两人获胜的概率为P=P(DE F)+P(D E F)+P(D EF)+P(DEF)=0.6×0.5×0.5+0.6×0.5×0.5+0.4×0.5×0.5+0.6×0.5×0.5=0.55.(2)由题意知ξ可能的取值为0,1,2,3.又由(1)知D E F、D E F、D E F是两两互斥事件,且各盘比赛的结果相互独立,因此P(ξ=0)=P(D E F)=0.4×0.5×0.5=0.1,P(ξ=1)=P(D E F)+P(D E F)+P(D E F)=0.4×0.5×0.5+0.4×0.5×0.5+0.6×0.5×0.5=0.35,P(ξ=3)=P(DEF)=0.6×0.5×0.5=0.15.由对立事件的概率公式得P(ξ=2)=1-P(ξ=0)-P(ξ=1)-P(ξ=3)=0.4.所以ξ的分布列为:ξ012 3P 0.10.350.40.15因此E(ξ)=0×0.1+1×0.35+2×0.4+3×0.15=1.6.1.判断某事件发生是否是独立重复试验,关键有两点:(1)在同样的条件下重复,相互独立进行;(2)试验结果要么发生,要么不发生.2.在利用n次独立重复试验中,恰好发生k次的概率P(x=k)=C k n p k(1-p)n-k,k=0,1,2,….要注意n,k,p的取值.3.遇到“至少”“至多”问题时,要考虑从对立事件入手计算.4.二项分布模型(1)判断一个随机变量是否服从二项分布,要看两点:①是否为n 次独立重复试验.②随机变量是否为在这n 次独立重复试验中某事件发生的次数.(2)涉及产品数量很大,而且抽查次数又相对较少的产品抽查问题时,由于产品数量很大,因而抽查时,抽出次品与否对后面的抽样的次品率影响很小,所以可以认为各次抽查的结果是彼此独立的.(3)若随机变量X ~B (n ,p ),则E (X )=np .5.(2012年天津)现有4个人去参加某娱乐活动,该活动有甲、乙两个游戏可供参加者选择.为增加趣味性,约定:每个人通过掷一枚质地均匀的骰子决定自己去参加哪个游戏,掷出点数为1或2的人去参加甲游戏,掷出点数大于2的人去参加乙游戏.(1)求这4个人中恰有2人去参加甲游戏的概率;(2)求这4个人中去参加甲游戏的人数大于去参加乙游戏的人数的概率;(3)用X ,Y 分别表示这4个人中去参加甲、乙游戏的人数,记ξ=|X -Y |,求随机变量ξ的分布列与数学期望E (ξ) 【解】 依题意,这4个人中,每个人去参加甲游戏的概率为13,去参加乙游戏的概率为23. 设“这4个人中恰有i 人去参加甲游戏”为事件A i (i =0,1,2,3,4),则P (A i )=C i 4⎝⎛⎭⎪⎪⎫13i ⎝ ⎛⎭⎪⎪⎫234-i . (1)这4个人中恰有2人去参加甲游戏的概率P (A 2)=C 24⎝⎛⎭⎪⎪⎫132 ⎝ ⎛⎭⎪⎪⎫232=827. (2)设“这4个人中去参加甲游戏的人数大于去参加乙游戏的人数”为事件B ,则B =A 3∪A 4.由于A 3与A 4互斥,故P (B )=P (A 3)+P (A 4)=C 34⎝⎛⎭⎪⎪⎫133⎝ ⎛⎭⎪⎪⎫23+C 44⎝ ⎛⎭⎪⎪⎫134=19. 所以,这4个人中去参加甲游戏的人数大于去参加乙游戏的人数的概率为19.(3)ξ的所有可能取值为0,2,4. 由于A 1与A 3互斥,A 0与A 4互斥,故P (ξ=0)=P (A 2)=827, P (ξ=2)=P (A 1)+P (A 3)=4081,P (ξ=4)=P (A 0)+P (A 4)=1781. 所以ξ的分布列是随机变量ξ的数学期望E (ξ)=0×827+2×4081+4×1781=14881.6. 张先生家住H 小区,他工作在C 科技园区,从家到公司上班的路上有L 1,L 2两条路线(如图所示),L 1路线上有A 1,A 2,A 3三个路口,各路口遇到红灯的概率均为12;L 2路线上有B 1,B 2两个路口,各路口遇到红灯的概率依次为34,35.(1)若走L 1路线,求最多遇到1次红灯的概率;(2)若走L 2路线,求遇到红灯的次数X 的数学期望;(3)按照“遇到红灯的平均次数最少”的要求,请你帮助张先生从上述两条路线中选择一条最好的上班路线,并说明理由.解:(1)设“走L 1路线最多遇到1次红灯”为事件A ,则P (A )=C 03×⎝⎛⎭⎪⎪⎫123+C 13×12×⎝ ⎛⎭⎪⎪⎫122=12.所以走L 1路线,最多遇到1次红灯的概率为12. (2)依题意,X 的可能取值为0,1,2.,P (X =0)=⎝⎛⎭⎪⎪⎫1-34×⎝ ⎛⎭⎪⎪⎫1-35=110,P (X=1)=34×⎝ ⎛⎭⎪⎪⎫1-35+⎝ ⎛⎭⎪⎪⎫1-34×35=920, P (X =2)=34×35=920.故随机变量X 的分布列为 X0 1 2P 110 920 9206.(1)设某种灯管使用了500 h 还能继续使用的概率是0.94,使用到700 h 后还能继续使用的概率是0.87,问已经使用了500 h 的灯管还能继续使用到700 h 的概率是多少?(2)有一批种子的发芽率为0.9,出芽后的幼苗成活率为0.8,在这批种子中,随机抽取1粒,求这粒种子能成长为幼苗的概率.【正确解答】 (1)设A =“能使用到500 h ”,B =“能使用到700h ”,则P (A )=0.94,P (B )=0.87.而所求的概率为P (B |A ),由于B ⊆A ,故P (B |A )=P (A ∩B )P (A )=P (B )P (A )=0.870.94=8794. (2)据题意知P (A )=0.9,P (B |A )=0.8,故由P (B |A )=P (A ∩B )P (A )知P (A ∩B )=P (A )·P (B |A )=0.72,又由于B ⊆A ,故P (A ∩B )=P (B )=0.72即为这粒种子能成长为幼苗的概率.假定生男生女是等可能的,某家庭有3个孩子,其中有1名女孩,求其至少有1个男孩的概率.解:法一:此家庭共有3个孩子,包含基本事件有(男,男,男),(男,男,女),(男,女,男),(女,男,男),(男,女,女),(女,男,女),(女,女,男),(女,女,女)其中至少有1个女孩共有7种可能,其中至少有1个男孩有6种可能,故其概率为67法二:记事件A表示“其中有1名女孩”,B表示“至少有1个男孩”,P(B|A)=6878=67.。