声学技术海洋声学目标探测技术研究现状
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
声学技术I海洋声学目标探测技术研究现状
海洋声学LI标探测技术对于维护国家主权,保障国家海洋环境安
全,促进海洋探索与开发至关重要。
近年来,水下口标隐身技术不断进步,给水声探测技术带来了巨大挑战。
针对这一挑战,低频、移动、多节点水声探测技术日益受到重视,同时,探测隐身LI标的多源声学网络也应运而生。
山此可见,通过水声通信组网技术将主被动探测节点连接成水声探测网络,并对获取的多源信息进行融合,是海洋声学LI标探测技术发展的一个重要途径。
被动探测技术
海洋声学H标被动探测是应用最为广泛的技术之一,其主要利用水听器及其阵列接收U标自身辐射噪声或信号,如潜艇辐射的螺旋桨转动噪声、艇体与水流摩擦产生的流噪声、以及各种发动机机械振动引起的辐射噪声等,同时结合信号处理技术以提取有用信息,如口标信号特征、方位、距离和深度等。
山于被动探测系统本身并不发射信号,所以口标不易察觉其存在,具有较强的隐蔽性。
水听器及其阵列构成了被动探测的硬件基础,而被动声呐系统则是水听器及其阵列的主要安装平台,其形式、尺寸及安装形式等都对信号接收产生直接影响;信号处理部分则构成了软件基础,决定了信息提取的有效性,是被动声呐系统的大脑。
硬件和软件基础共同决定了被动探测技术的性能。
1•典型被动声呐平台
典型被动声呐平台主要包括岸基平台、舰船与潜艇平台以及航空飞行器平台,其包含的水听器主要有标量的声压水听器和矢量水听器2种,阵列形式可分为线
型、面型和体积型,实际中可依据不同的应用环境选择不同的阵型。
岸基声呐是固定式水声监听系统的一种,一般以海岸为基地,在大陆架或者海岛周边大型布放水下基阵,用于警戒和监视海峡、港口、航道以及敬感水域的敌方
水下潜艇活动,是反潜预警系统的重要组成部分。
一般山线性水听器基阵、海底电(光)缆、岸上终端电子设备以及电源系统等组成。
岸基声呐中较为典型的是美国在
冷战时期部署的声音监控系统(SOSUS),该系统釆用子阵技术,将一条长线阵分成2〜3个子阵单独处理,再结合起来进行波束形成,从而得到较窄的波束和更好的指向性。
图1洛克希徳-马丁公司生产的TB-29系列细长线阵
船用被动声呐主要包括拖曳阵声呐和舷侧阵声呐等。
其中拖曳阵声呐具有2个显著的特点:基阵孔径不受舰(艇)空间尺度的限制,可比一般的舰(艇)载声呐基阵孔径大1个数量级以上,因而它在极低频段仍有较高的空间增益,适合在低频工作:基阵远离其拖曳平台,并可选择在最有利的深度工作,背景干扰大为减小,传播条件
相对有利。
基于这两大特点,拖曳阵声呐与其他常规声呐相比,探测能力大为提高。
拖曳阵声呐作为平台声呐中工作频率最低、作用距离最远的设备,已经成为舰船的主要声呐装备之一,典型的有美国潜用粗线拖曳阵声呐TB-16(相对于直径小于40mm 的细线阵而言),以及后续改进的细线型TB-29A,如图1所示。
航空声呐是海军反潜直升机和反潜巡逻机的主要反潜探测设备。
用于搜索、识别和跟踪潜艇,保障机载反潜武器的使用或引导其他反潜兵力实施对潜攻击,主要分为吊放式声呐和声呐浮标系统2种。
吊放式声呐装备于反潜直升机,一般釆取跳跃式逐点搜索。
当直升机飞临某一探测点,低空悬停,将换能器基阵吊放入水至最佳深度,以主动或被动方式全向搜索:对某一点搜索完毕后,即将基阵提出海面飞向另一探测点搜索。
典型的吊放声呐有法国的FLASH和美国的HELRAS系统,其被动接收水听器基阵均是体积型阵列,如图2所示。
(b) HELRAS
(a) FLASH
图2典型的航空吊放声吶
声呐浮标是一种抛弃式航空声呐系统,一般装备于固定翼反潜飞机上,包含浮标投放装置、无线电信号接收机和信号处理显示设备等。
使用时,反潜机先将浮标组按一定的阵式投布于搜索海区,然后在海区上空盘旋以接收山不同浮标经无线电调制发射的口标信息。
典型的声呐浮标有澳大利亚的BARRA和美国的ADAR系统,前者包含的水听器阵列是一个5X 5 的多环平面阵(见图3),后者则包含一个40元的体积型水听器基阵。
图3 BARRA声呐浮标
2.被动信号处理技术
被动探测中,信号处理技术的主要任务是利用各种技术手段提高输出信噪比,将LI标信号从噪声和干扰中区分开来,进而实现水下LI标的检测、定位和识别。
现阶段,提高信噪比主要有时域、空域处理和后置处理等技术途径。
限于篇幅,文中将主要从空域处理的角度进行介绍。
⑴波束形成技术
波束形成是被动声呐系统中的重要部分,其功能主要有:抑制环境噪声,提高输出信噪比;实现对LI标信号波达方向的估计;检测和分辨多个不同方位到达的平面波信号。
波束形成技术主要包括数据独立和自适应波束形成两大类。
①据独立波束形成技术
数据独立波束形成方法的权值向量是固定的,不随接收数据的变化而变化,其形成的波束响应同样是固定的。
延迟求和方法以及各种加窗处理技术都是具有代表性的固定权值波束形成方法,如Chebyshev窗、Hanning窗和Hamming窗等。
在数据独立波束形成方法中,获取更高的指向性,以提高检测微弱信号和分辨紧邻LI标的能力,一直是其主要的研究方向,由此催生出了 "超指向性”方法。
②自适应波束形成技术
自适应波束形成技术,也可称之为数据驱动波束形成技术,其权值向量随接收数据的变化而自适应调整,所获得的波束响应也随之变化。
自适应波束形成器可以在干扰方位自适应产生凹槽,从而提高信干噪比
(SINR),其中最典型的是Capon于1969年提出的最小方差无失真响应
(MYDR)波束形成技术。
该技术在保持波束指向方向信号无失真的条件下,通过使基
阵输出功率最小来实现对干扰的有效抑制,有较好的方位分辨能力和较强的干扰抑制能力。
然而,MVDR方法的稳健性较差,当出现阵列流形误差时,如波达角(A0A)误差、阵形校准误差、平面波假设的失配等,其性能会急剧下降。
为了减小MVDR方法对各种误差失配引起的性能下降,人们提出了各种稳健算法,而对角加载类方法是最常用的一种。
Cox等最早通过增加白噪声增益的方法推导出对角加载算法的表达式,提高了MVDR波束形成器对阵列流形误差的稳健性。
口噪声增益约束方法和巧一种常见的加权值范数约束方法,均可等效为对角加载方法。
然而,对角加载算法很难给出合适的对角加载量的值,从而给该方法的实用带来一定的限制。
⑵方位估计技术
基于传感器阵列的方位佔计(D0A)技术是被动声呐的遼要研究内容,目前主要的方位佔计方法可以分为以下3类:波束扫描类算法、子空间类算法和稀疏信号处理类算法。
①波束扫描类方位估计算法
常用的方位估计技术主要有波束形成方法和高分辨方位佔计方法。
最早的基于阵列的DOA算法为常规方法,也称为Bartlett方法。
山于常规方法易于实现、稳健性好及对信号之间的相干性不敬感,很多声呐系统均釆用此种技术预成多波束来实现对L1标方位的估讣。
但常规方法的角度分辨能力受瑞利极限的限制,无法分辨2个在方位上翥得较近的信号源。
②子空间类方位估计算法
自20世纪70年代以来,空间谱估计研究方面涌现出大量文献,这些理论克服了
方位分辨的瑞利准则,获得了超过常规方法的方位分辨能力。
其中以美国的Schmidt 等提出的多重信号分类(MUSIC)算法最为著名,它的提出促进了特征子空间类算法的兴起。
这类算法的共同特点是通过对阵列接收数据特征分解或奇异值分解等,将接收数据划分成2个相互正交的子空间,即信号子空间和噪声子空间。
子空间分解类算法从处理方式上可分为2类:一类是以MUSIC为代表的噪声子空间算法,另一类是以旋转不变子空间(ESPRIT)为代表的信号子空间类算法。
MUSIC算法是利用导向矢量与噪声子空间的正交特性,而ESPRIT算法则是利用数据协方差矩阵信号子空间的旋转不变特性。
与MUSIC算法相比,ESPRIT算法计•算量小,不需要进行谱峰搜索。
③稀疏信号处理类方位估计算法
稀疏信号处理类算法是近十年发展起来的DOA估汁算法。
此类算法首先将空间扫描方位离散化,信号分布于有限数LI的扫描方位位置上,没有信号的扫描方位上信号参数为零。
通常U标空间方位分布模型具备稀疏性,利用信号的稀疏信息可以提高DOA估计性能。
稀疏信号处理类算法主要包括稀疏信号重构类算法、稀疏协方差拟合类算法和非正则参数或非人工参数类算法。
稀疏信号重构类算法如多测量向量的欠定系统局域解法(M-focuss)和基于奇异值分解的厶范数稀疏方法(7;-SVD),利用扫描网格点信号波形的厶(0〈pWl)范数和信号重构模型误差的Z范数联合最小化来实现信号方位估计。
稀疏协方差拟合类算法如稀疏谱拟合算法(SpSF),其思路与稀疏信号重构类算法一致,利用基阵输出数据的2阶统计量信息,通过扫描网格信号功率的人范数和协方差矩阵拟合误差的厶范数联合最小化来实现信号方位估计。
上述2种算法的共同弊端是均需预先给定正则参数,然而正则参数很难做到恰当的选择。
非人工参数类算法如协方差
稀疏迭代fill-(SPICE)算法和稀疏近似最小方差(SAMV)算法并不是从心,厶范数联合最优化入手,而是从最大似然佔计的角度,利用釆样协方差与期望信号模型协方差的关系给出信号的参数估计准则,并在此估计准则下得到扫描网格点的信号功率谱佔计,算法过程无需提供任何正则参数。
对于宽带信号,波束扫描类方位估讣算法如宽带稳健Capon波束形成方法,利
用不确定集约束提高有限快拍数量Capon波束形成算法的稳健性,具有一定高分辨
能力;宽带信号的子空间方位估计算法分为非相干信号子空间(ISS)算法和相干信号
子空间(CSS)算法。
ISS算法通过子频带非相干叠加实现宽带信号方位佔计,但只能
处理非相干信号;CSS算法将宽带信号映射到某个参考频点上,再利用窄带子空间类
算法估计U标方位,具有相干信号方位估计能力,但该算法需提前给出LI标方位的
预估角度,且预佔角对算法性能影响较大。
对于稀疏信号处理类算法,几-SVD算法
已经被应用于宽带信号方位估计,取得较好DOA估计性能,然而7-SVD算法待优化
的参数较多,计算量庞大,正则参数选取困难;宽带信号协方差矩阵稀疏表示算法
无需将接收信号变换到子带进行处理,而是利用宽带信号的时延信息和协方差矩阵
的稀疏性,在时域实现LI标的方位估计,但该方法要求入射信号必须具有相同的自
相关函数,从而建立协方差矩阵内部元素与信号时延的线性映射关系,应用面较
窄。
主动探测技术
主动探测技术所涉及的范围很广,所探测的目标有潜艇、蛙人、无人水下航行
器(UUV)、水雷、沉船等,据此所使用的频率有儿百赫兹、儿千赫兹、儿十千赫
兹、儿百千赫兹等。
文中主要聚焦于工作频率为儿百赫兹到儿千赫兹的对潜主动探测技术。
过去儿十年来,潜艇减振降噪技术的发展,使得潜艇辐射噪声大约以每年平均ldB的速度降低,这给被动探测技术带来了很大挑战,同时促使主动水声探测技术得到了足够的重视和充分的发展。
在主动水声探测技术的发展方面,低频大功率探测技术和不断涌现的新式探测技术(双/多基地探测、前向散射探测和多输入多输出(HIHO)探测等)形成了主要的技术发展脉络。
⑴低频大功率探测技术
主动声呐自诞生以来,就一直向低频大功率方向发展。
低频大功率探测技术逐渐成为探潜的主流技术之一,其核心之一是低频大功率发射换能器技术。
国际上,低频大功率发射换能器已经运用于美国的监视拖曳阵传感器系统(SURTASS)主被动联合探测系统(见图4)和HELRAS吊放声呐系统(见图2(b))、欧洲Thales公司的CAPTAS系列声呐(见图5)及Atlas公司的LFTAS声呐。
图4 SURTASS系列探测示意图
知识的力量Tel
(a) C A PT AS系列声呐发射端
(b)CAPTAS系列声呐拖曳不意图
图5泰勒斯公司的CAPTAS系列声吶示意图
SURTASS系统、CAPTAS系列声呐和LFTAS声呐均釆用给拖曳线列阵声
呐配备低频大功率发射换能器的技术方案,其中SURTASS系统发射频率范
围覆盖100〜500Hz,声源级可达235dBo CAPTAS系列声呐采用2只或4 只的大功率溢流
环换能器组成不同的子型号以满足不同需求,工作频段可覆盖900〜2000Hzo LFTAS 声呐工作频段为1400〜2400Hz。
这些系统在使用低频大功率发射换能器或换能器基阵的前提下,同时采用大孔径拖曳线列阵声呐进行被动接收,从而获得接收大孔径、深度可变化等优点,显著提高了探测性能。
与拖曳的工作方式不同,HELRAS吊放声呐系统山直升机携带,工作频段为1000〜2000Hz,可单独进行探测,也可以和浮标等组合,辅以相应的数据共厚与联合处理软件,从而拓展成双基地、多基地探测系统,具有灵活的探测方式。
这些低频大功率探测声呐代表了U前的国际先进水平。
国内主要由中科院声学所、哈尔滨工程大学、杭州应用声学研究所等机构对低频大功率发射换能器技术进行了深入研究,并已经制作了相应的部分换能器样机。
随着低频大功率发集增益,并设计了最优接收滤波器。
水下通信组网技术
将水面和水下各种探测平台连接成水声探测网络,对获取的多源信息进行融合,是海洋声学口标探测技术发展的一个重要途径。
海洋声学LI标探测中,水声通信网络将多探测平台互联,为不同探测平台间LI标特征信息的交互建立传输通道,同时也为各个探测平台提供地理位置与时间信息。
水声通信网络技术是实现水下LI 标多源声学信息融合探测的关键技术之一。
1・国外发展现状
水声通信网络的研究起步于20世纪90年代。
随着水声通信技术及水声Modem 技术的不断发展,在实现了点对点的实时通信之后,美国、欧盟、中国和日本等国家和地区相继开始了水声通信网络技术的研究,诞生了一些具有代表性的研究项訂,典型的如美国的海网(Seaweb)项忖和近海水下持续监视网(PLUSNet),欧盟的研究与开发框架讣划和“地平线2020” 计划(horizon 2020)等。
Seaweb项口关注水下固定部署节点实际组网的可靠性,验证长时间部署网络的
可行性,推动了水下通信节点研制和组网技术的发展。
该项口的网络节点分布在100〜10000km2的范围内,提供声学通信、探测、定位与导航功能,由固定的水面浮标节点、水下固定节点和水下移动节点构成自主水下网络系统,并采用先进的组网协议来完成给定的任务。
Seaweb项LI 早在1998年就开始实际的水下组网试验,到目前为止已经进行了十儿年,是U前试验时间最长、规模最大的水下网络。
Seaweb98'采用多频移键控(MFSK)调制技术、频分多址(FDMA)方式、二叉树形式的拓扑结构和静态路由,验证了存储转发、自动重传及简单的路由等网络概念。
Seaweb99'增加了节点和网关,增加了运行在网关上的Seaweb服务器。
Seaweb98*和Seaweb99'暴露了FDMA 方式的不足,推动了通信节点硬件的改进。
Seaweb2000'采用混合码分多址/时分多址(cCDMA/TDMA)的复用方式,设计与实现一个紧凑的结构化网络协议,新增加了协议的控制功能,通过使用握手方式来避免网络通信中的数据冲突。
Seaweb200r用
潜艇作为移动节点,潜艇不仅能够和Seaweb 网络的控制中心通信,棋至 实现了与海上巡逻飞机之间进行通信。
Seaweb2003,〜2005'使用1〜3 个CUV 作为移动节点,如图7所示,与多个固定在水下的节点协同工
作。
图7 Seaweb2003 '试验拓扑
Seaweb 2004'布设了约40个节点,测试了分布式拓扑结构和动态路 山协议。
Sedweb2003'还开展了利用固定水下节点为UUV 提供导航功能的 试验。
表1给出了 Seaweb2006'〜2010'试验的关键技术以及取得的主 要成果。
表1 Seaweb 试验介绍
时间
试验地点 关键技术 主要成果 Seaweb
加利福尼亚圣安德 采用变长数据包, 绘制海底图形及收集海
t rerWnve radio Iraks
2 Kacom caEcwav node^
3 zlidrr mobile nodes
fi rrpeater
LAJL€ Lm
水面浮标将水下信
息经卫星传递给控
制中心。
Seaweb的成功带动了美国多种水声通信网络应用讣划。
依据Seaweb 的概念,军事应用上可构建可部署自主分布系统(DADS),使得水下的军事任务能以跨系统、跨平台、跨国家的协作方式进行,还推动了舰队作战实验(如印度舰队作战实验(FBE-I))、浅海反潜战(ASW)(如分布式敬捷反潜项U(DASH))、水下通信(如Sublink项訂)以及UUV命令与控制等计划,用于沿海广大区域的警戒、反潜战和反水雷系统,实
施命令、控制、通信和导航功能。
2006年,于美国海军潜艇联合会-潜艇技术论坛披露了PLUSNet,它是一种半自主控制的海底固定加水中机动的网络化设施,III 携带半自主传感器的多个潜航器组成。
这些潜航器能够互相通信,并在没有人为指令的情
况下做出基本决策,从而履行多种功能,包括对温度、水流、盐度、化学成分及其
他海洋元素进行取样,密切监视并预测海洋环境变化。
欧盟笫四框架(1994〜1998年)计划支持下的海洋科学技术项U (MAST) 发展了一
个系列化的水声通信网络研究计划。
第五框架(1998〜2002年)支持下的水声网络项U (ACMEnet)是一个以长期、实时进行沿海环境观测为目的构建的水声通信网络,分别于2002年9月和2003年9月进行了2次海试。
ACMEnet采用基于MFSK/TDMA的主从式网络协议,主节点可调整网络的调制方式和声源级,用轮询或定时方式直接或经
过中继获得节点的数据,中继通信釆用静态路由。
欧盟第七框架(2008〜2011年)计划支持下的水声网络(UAN)项□,其目标是在海上开发和测试一个创新且可运行的联合地面和空中传感器的网络系统以保护关键基
础设施,如离岸平台和能源工厂等。
UA\着重于建立通过水声通信实现面向安全的水下无线网络基础设施,通过收集声传播过程中海洋环境信息预测在任何给定时间上的声传播状况和可获得的最优化网络通信性能的研究方法。
笫七框架讣划支持下的基于联合架构的水下感知、监测和管控项U (SUNRISE)应用了物联网的理念,提出了水下物联网(I0UT)的构想,通过联合现有的水下基础设施对水下世界进行感知、监测和开发来扩大未来的互联网世界。
图8 SWARMs项目概念图
该项LI是山欧洲多所科研院校和机构共同合作建立的水声通信网络联合试验项L1。
该项L1新开发了网络协议SUNSET和水下航行器等平台,在欧洲范围内建立了5种工作于不同水域环境(地中海、海洋、黑海、湖泊、运河)下的水声通信网络,并可通过统一门户访问。
欧盟“地平线2020” (2015〜2018年)计划支持下的空地海未来网络试验(RAWFIE)项U,旨在构建涵盖陆地、空中和水下的无人驾驶平台未来物联网的试验系统。
“地平线2020”计划支持下的水下机器人智能联合组网项U (SWARMs) 项LI,其基本概念如图8所示,通过构建基于UUV的合作网络以降低海上作业的成本,提高作业的安全性。
Seaweb项LI从最初的可行性验证,到不断的功能性扩展,再到大规模分布式的组网试验研究,有力地推动了水声通信网络的发展。
其组网协议随着研究的深入不断得到优化和提升,网络节点呈现出从静态到动态再到多平台联合的发展趋势。
欧盟的水声通信网络系列化研究逐步推进,其网络协议从简单的主从模式到依据信道动态优化方式,组网节点从静态到覆盖陆地、空中和水下的多种平台。
从美国和欧盟在水声通信网络领域的发展现状可以看出,适应水下环境特点深入优化网络协议和实现水下与水面、空天多平台互连将是未来重要的发展趋势。
2•国内发展现状
我国水声通信网络的研究仍处在初步阶段,西北工业大学、哈尔滨工程大学、厦门大学、中国海洋大学、中国科学院声学所和中国船舶重工集团公司第715研究所是我国进行此项研究较早的单位。
LI前,国内在水声通信组网的仿真研究较为广泛,长持续时间海上试验较少,具有代表性的国内水声通信网络研究项LI主要有以
下儿个方面。
⑴在十二五国家重大专项子课题“隔水管疲劳监测系统研究”支持下,西北工业大学航海学院研制了5节点的隔水管疲劳监测网络,5个水下节点固定部署于隔水管上,实时采集隔水管疲劳相关参数,以水声通信方式传输数据,采用TDMA方式接入水面处理节点。
该网络分别于2012 年、2014年在海洋石油“XXX ”平台,2015年在XX号石油平台完成了3次海上试验,试验结果表明,该系统能够长期有效地进行隔水管疲劳参数的采集与传输。
图9为该项目2014年在海洋石油“XXX ”平台海试时其中2个节点的布放场景。
图9 隔水管疲劳监测网络试验
⑵在国家自然基金项口支持下,西北工业大学航海学院研制了海空天跨介质通信网络,该网络由5个水下节点和1个水面节点构成。
5节点水下通信网络已具备网络自定位功能。
⑶在863课题“OFDM水声通信及组网关键技”支持下,哈尔滨工程大学于2014
年6〜7月在南海陵水附近海域进行了15节点的大规模水声通信组网测试,该网络物理层同时支持高速OFDM和低速多载波MFSK两种通信制式,在组网过程中可以根据传输数据包类型和LI标数据率的大小自适应切换通信制式,在网络层可同时支持随机接入的Aloha协议和握手方式的MACAW协议,可根据数据包的长度自适应切换。
⑷在863课题“海洋环境监测传感器网络技术”支持下,中国科学院声学研究所通过研制的小型化、低功耗及通用型水声通信网络声通信节点,分别于2008年和2009年在浙江千岛湖进行了2次湖上组网测试,以正交相移键控相干通信和直接序列扩频通信2种通信方式为基础,完成了4〜7节点的自组织组网,实时端对端传输图像、语音以及传感器数据(深度信息)。
⑸在863课题“深海海洋环境监测传感器网络技术”支持下,中船重工第715研究所进行了基于集中式拓扑结构的3节点组网试验,验证了节点值班休眠模式、自适应功率/数据率调整、SW-HARQ链路层协议等。
从上述国内研究现状可以看出,国内L1前已开展了多种物理层通信技术的试验研究,对典型的MAC层接入技术也开展了初步的性能验证,网络的应用场景呈现出多样化,基于网络场景和水下环境的网络协议优化已经逐步开展。
对比国外研究现状,国内虽然已有相当规模的水声通信网络试验研究(最大包含15个节点),但仍需要进一步加强长期大规模的试验研究。
综合国内外研究现状可以看出,不断提升水声通信网络协议性能,使其更好地适应水声信道和水下环境特点始终是水声通信网络的研究重点,尤其需要针对性的开发适用于长传播时延、链路不可靠等环境的水声通信网络组网协议。