爆破振速监测
爆破振动监测方案
爆破振动监测方案在爆破工程中,振动是一种普遍存在的现象。
由于振动的强度、频率与距离有关,并且爆破工程通常在城市建筑等人口集中区域使用,因此正确的振动监测方案对于保护周围环境和建筑物非常重要。
一、仪器与设备选择爆破振动监测仪器应该根据工程所在环境特点来选择,一般应该考虑进出口处统计仪、振动计和地震计等设备。
振动计的监测频率一般为1-10Hz,但是一些高频设备也可测量高频振动。
进出口处统计仪需要安置在场地的所有出入口处。
这些仪器可以对远离爆破场地的建筑物和环境提供有用的数据。
由于进出口处统计仪的使用范围非常广泛,因此这种仪器往往是监测方案的核心。
二、仪器与设备的布置1. 进出口处统计仪进出口处统计仪应该安置到危险区域以外的地方,以避免这些设备受到振动影响。
进出口处统计仪应该布置在一个距离爆破场地足够远的地方,以确保其所测量到的数据是合理的。
2. 振动计在选择振动计时,应该优先考虑其安装方便性和测量频率范围。
振动计通常被安装在建筑物和其他重要设施附近。
这样做可以帮助我们监测到振动的强度和频率,以确保所有可能的影响得到控制。
3. 地震计地震监测仪器常用于高要求的振动监测工程。
地震计的监测频率范围一般在1Hz-200Hz之间,可以测量出各种不同频率的振动。
地震计应该被安装在场地中,通常会被嵌入到岩石或者其他坚固的物体中。
三、爆破振动监测方案1. 爆破前在进行爆破振动监测前,我们应该评估工程范围内所有的建筑物和设施。
我们需要确认这些建筑物和设施是否需要进行监测。
同时,我们还要确定有哪些设备需要安装,以及这些设备应该被安置在哪些位置。
2. 爆破时在进行爆破时,我们需要根据上述设备和方案来监测振动。
当触发爆破时,我们需要读取仪器记录到的振动数据。
如果数据不正常,我们需要立即停止工程并进行调整。
3. 爆破后当爆破工程结束后,我们需要对记录到的振动数据进行综合分析。
如果振动数据表现正常,我们可以对工程进行验收并确认工程完成。
高速公路爆破振动监测方案
1.2 监测的目的(1)通过监测信息,提供新建隧隧道地表下沉及爆破振动信息,优化施工方法、调整开挖步序、修正支护参数等最大限度降低隧道施工对东洞口地表苏大山墓及苏懋棋墓的影响,并且使其影响控制在相关规范允许的范围内。
(2)通过监控量测,了解隧道各施工阶段地层与支护结构的动态变化,明确工程施工对地层的影响程度以及可能产生失稳的薄弱环节,把握施工过程中结构所处的安全状态。
(3)用现场实测的结果弥补理论分析的不足,并把监控量测结果反馈到设计和施工中,在施工过程中,及时掌握地层和支护结构的变位和受力信息,以便采取相应的施工技术措施,比如改变施工方法、确定临时支护的拆除时机及二次衬砌施作时机、调整开挖步序、修正支护参数等,以避免出现施工事故。
(4)积累资料。
通过监控量测,了解该工程客观条件下所表现出来的一些地下工程施工规律和特点,为今后类似工程或工法本身的发展提供借鉴,以提高地下工程的设计和施工水平;并为隧道运营后的养护与维修提供可靠的原始数据。
1.3监测的必要性现场监控量测是隧道施工过程中,对围岩及支护系统的稳定状态进行监测,为围岩级别变更、初期支护和二次衬砌的参数调整提供依据,是确保隧道施工安全、指导施工程序、便利施工管理的重要手段,对于采用新奥法施工的隧道,监控量测是新奥法施工过程中必不可少的施工程序。
第三方监测是对工程施工监测的监督、管理和优化,是其施工过程中必不可少的重要环节之一。
由于各种施工开挖方法对土体和支护结构的受力以及周边的环境有较大的影响。
尤其是不良地质现象如果不及时发现和处理,很可能酿成重大施工事故。
为实现施工的安全性和经济性,通过对现场监测的有效管理,及时进行预测、预报,是避免事故,降低施工风险的有效手段。
第三方监测更具有其特殊性和重要性。
1.4施工监测方案制定的原则1)监测方案以确保施工安全监测为首要目的,根据地下工程特点确定监测对象和主要安全监测警戒指标。
2)根据监测对象的重要性确定监测规模和内容、监测项目和测点布置,全面地反映实际工作状态。
爆破振动监测试验方案
爆破振动监测试验方案一、背景介绍爆破工程是一种常见的工程施工方式,但在施工过程中,由于产生的爆破振动可能会对周边环境造成损害,因此需要进行爆破振动监测,以评估振动对建筑物、地下管线等结构的影响程度。
本文就爆破振动监测试验方案进行介绍。
二、测试仪器与设备1. 振动监测仪:使用精度高、响应速度快的振动监测仪,能够准确测量振动的频率、加速度、速度等参数。
2. 数据采集设备:连接振动监测仪和电脑的数据采集设备,负责将采集到的数据传输到电脑中进行记录和分析。
3. 电脑及软件:用于接收和处理采集到的振动数据,通过相应的软件进行数据分析和结果展示。
三、测试方案1. 测试点选取:根据爆破工程的具体情况,选择合适的测试点位。
测试点选取应包括建筑物、地下管线等结构可能受到影响的区域,以及距离爆破源较远的控制点,用于对比分析。
2. 测试参数设定:根据国家相关标准规定,设定合适的测试参数,包括测试时间、测试频率范围、振动监测仪的放置位置等。
3. 数据采集与记录:按照测试参数设定,在测试点位安置好振动监测仪,并连接数据采集设备和电脑。
开始爆破施工后,振动监测仪将自动进行数据采集,采集完成后将数据传输到电脑中进行记录。
4. 数据分析与结果展示:利用相关软件分析采集到的数据,将数据转化为振动参数图表,并进行数据统计和结果分析。
将分析结果进行清晰明了的展示,包括振动图、数据表格等形式。
四、注意事项1. 安全第一:测试人员在进行测试时,应遵守相关安全操作规范,确保人身安全。
2. 工程保护:在测试前,应评估爆破活动可能对周边工程造成的潜在影响,并采取相应的保护措施。
3. 仪器校准:振动监测仪应定期进行校准,以确保测试结果的准确性和可靠性。
4. 数据质量控制:在数据采集过程中,应确保数据的连续性和稳定性,避免误差的干扰。
五、测试结果与分析根据爆破振动监测数据的分析,可评估爆破活动对建筑物、地下管线等结构的影响程度,并根据评估结果进行相应的工程调整和改进措施。
爆破振动监测分析仪可开设的实验和使用方法
仪器名词:爆破震动监测分析仪一:可开设的实验1.爆破震动监测实验2.爆破震动波形预测实验3.爆破药量预测实验4.爆破震动强度预测实验5.单一质点震速安全判据实验6.速度—频率相关安全判据实验7.爆破震动对邻近建筑物的破坏规律实验8.研究爆破地震波在不同传播介质性和场地条件而变化的规律。
二:原理及目的爆破震动测试采用电测法对爆炸载荷在介质中的电学量进行转换,从而达到测震目的,该过程利用敏感元件在磁场中的相对运动,产生与地震形成一定比例关系的电信号,经过放大器和记录装置得到震动信号,将震动信号进行频谱分析和能量衰减分析,获得震动速度、震动主频等安全判据参数,最终实现波形、药量、震动强度预测。
三操作规程方法3.1仪器面板说明(1)监测分析仪面板(图3-1)仪器左右面板接口依次是:网络接口、充电接口、震动信号仪器操作界面从左到右依次是:待机、背光、记录、取消、确定及方向键网络接口:仪器连接计算机数据通信充电接口:给机内电池充电震动接口:连接传感器,震动信号的入口待机:关闭背光情况下等待震动信号的工作状态背光:打开或关闭显示屏背光记录:进入记录震动信号快捷键,默认上次记录参数,功能模式取消:返回上一步,取消功能确定:进入下一步,选定功能方向键:移动光标,波形数值切换,记录时间上下翻阅3.2电源适配器说明电源适配器有两种功能:(1)给仪器供电(6V);(2)给机内电池充电(6V/1.5A);电源适配器前面板上方的指示灯为红灯时表示充电状态,指示灯为绿灯时表示充电完毕。
正确的充电、用电方法:爆破震动监测分析仪内部装有高能量镍氢可充电电池,充满电后可供仪器连续工作72小时以上。
正确的镍氢电池充、放电方法及注意事项:(1)最好是电池能量快用完时才充电;(2)每次充电要充足(建议用户白天在室外工作一天后,晚上给电池充电一晚上,使用快速充电电源者除外);(3)电源适配器中装有专用的镍氢电池充电器,当电池充满电后指示灯会转为绿灯。
爆破振动监测方案
爆破振动监测方案爆破是一种常见的工程施工方式,可以用于矿山开采、建筑拆除等工程领域。
然而,爆破施工会伴随着强烈的振动,可能对周围环境和结构物造成不可忽视的影响。
因此,为了保证工程施工的安全性和可持续发展,爆破振动监测方案应运而生。
1. 振动监测原理爆破振动监测方案的核心是对爆破引起的振动进行实时监测和记录。
通常采用的方法是利用振动传感器将振动信号转化为电信号,并通过数据采集系统进行数据的存储和分析。
振动监测方案的目标是获得准确、全面的振动参数,包括振动速度、振动加速度和振动位移等指标。
2. 振动监测方案的关键技术(1)传感器选择:选择适合的振动传感器对于监测方案至关重要。
常见的振动传感器有加速度传感器、速度传感器和位移传感器等。
根据实际需要和监测要求,选择合适的传感器进行布置。
(2)布置方案:根据监测目标和工程施工的具体情况,合理规划传感器的布置位置和数量。
一般来说,应根据工程施工区域的大小和结构物的分布等因素进行布置,以确保监测数据的准确性和可靠性。
(3)数据采集与处理:振动监测方案需要结合现代信息技术手段,通过数据采集系统对监测数据进行实时采集和处理。
数据处理包括数据存储、传输和分析等环节,可以借助计算机、云平台和人工智能等技术手段进行。
3. 爆破振动监测方案的应用(1)工程施工监测:爆破振动监测方案可以应用于各类工程施工中,如建筑拆除、地铁隧道开挖等。
通过监测振动参数,可以评估工程施工对周围环境和结构物的影响,及时采取相应的措施进行调整和改进。
(2)安全评估与预警:振动监测方案可以提供全面的数据支持,对爆破施工产生的振动进行准确评估。
一旦发现超过安全限值的振动情况,可以及时预警并采取措施,以保证工程施工的安全性。
(3)环境保护与监管:爆破振动监测方案可以用于环境保护和监管领域,对工程施工中的爆破振动进行监测和评估。
通过振动监测数据,可以了解爆破施工对周边生态环境的影响程度,提出相应的环境保护措施和监管建议。
爆破振动监测方案
爆破振动监测方案随着城市建设的快速发展和人们对基础设施建设需求的不断增长,爆破作为一种高效的土石方施工方法被广泛应用。
然而,爆破作业所带来的振动对周围环境和建筑物可能造成一定的影响,因此需要对爆破振动进行科学监测和评估。
本文将提出一个完善的爆破振动监测方案,从监测设备的选择到数据处理的方法,为爆破施工提供可靠的技术支持。
一、监测设备的选择在爆破振动监测中,选择合适的监测设备是保证监测数据准确可靠的基础。
常用的监测设备包括振动监测仪、声级计和位移计。
1. 振动监测仪:振动监测仪是爆破振动监测的核心设备,用于测量和记录振动信号。
在选择振动监测仪时,需要考虑其测量范围、灵敏度、采样频率等参数,以确保监测数据的准确性和可比性。
2. 声级计:声级计用于测量爆破作业中产生的噪音水平。
在监测过程中,噪音与振动常常同时存在,因此使用声级计进行综合监测可以全面评估爆破作业对周围环境的影响。
3. 位移计:位移计用于测量建筑物的变形情况,对于对振动敏感的建筑物尤为重要。
位移计的选择要考虑其工作原理、测量范围以及对建筑物结构的影响。
二、监测方案的制定针对不同的爆破作业需求,需要制定相应的监测方案,包括监测点的布设、监测参数的选择以及监测数据的处理方法。
1. 监测点布设:监测点的布设应充分考虑周围环境特点和敏感目标的位置,并根据爆破作业的具体情况确定监测点的数量和位置。
在布设监测点时,应将其分散布置在可能受到振动影响的区域,以获得全面、全方位的监测数据。
2. 监测参数选择:监测参数的选择要根据爆破振动的特点和所需评估的影响来确定。
常见的监测参数包括振动速度、振动加速度、峰值振动等。
根据实际需要,可以选择不同的监测参数进行综合评估。
3. 监测数据处理:监测数据处理是评估爆破振动影响的重要环节。
监测数据可以通过软件进行分析和处理,例如绘制振动速度-时间曲线、峰值振动-距离曲线等。
通过对监测数据的分析,可以评估振动对周围建筑物和环境的影响,并制定相应的防护措施。
爆破振动监测内容
爆破振动监测内容
爆破振动监测内容通常包括以下几个方面:
1. 振动参数监测:监测爆破引起的振动参数,如振动加速度、振动速度、振动位移等,以评估爆破活动对周围环境和建筑物的影响程度。
2. 频谱分析:对监测到的振动信号进行频谱分析,以确定振动频率成分及其对应的强度,从而判断是否存在可能对周围环境和建筑物产生不利影响的频率。
3. 振动监测点布置:确定爆破振动监测点的布置位置,通常根据预估的爆破震动传播路径和影响范围,选取合适的位置设置振动监测点,以获取准确的监测数据。
4. 数据采集和记录:采用合适的振动监测设备进行数据采集,并将监测数据记录下来,以便后续分析和评估。
5. 数据分析和评估:对采集到的振动监测数据进行分析和评估,以评判爆破活动是否符合相关标准和规定,是否对周围环境和建筑物产生不可逆转的损害。
6. 风险控制和预警:根据数据分析和评估结果,制定相应的风险控制措施,预警可能对环境和建筑物产生不利影响的爆破活动,并采取必要的防护措施。
7. 监测报告和记录:编制爆破振动监测报告,记录监测结果和
评估结论,并根据需要提供给相关部门和企业,作为评估和决策的依据。
爆破振动监测实施方案
爆破振动监测实施方案一、引言。
爆破振动监测是指在进行爆破作业时对周围环境振动情况进行监测和评估,以确保爆破作业对周围建筑物、设施和人员的影响在可接受范围内。
本实施方案旨在规范爆破振动监测工作,保障爆破作业的安全进行。
二、监测设备。
1. 振动监测仪,采用专业的振动监测仪器,确保监测数据的准确性和可靠性。
2. 传感器,选择合适的传感器,根据实际情况确定传感器的布设位置,以保证监测数据的全面性和代表性。
三、监测方案。
1. 前期准备,在进行爆破作业前,对监测设备进行检测和校准,确保监测仪器和传感器的正常工作。
2. 监测布设,根据爆破作业的具体位置和周围环境,合理布设监测点,保证监测数据的全面性和准确性。
3. 监测参数,监测振动速度、振动加速度等参数,对振动情况进行全面监测和记录。
4. 监测频次,根据爆破作业的规模和要求,确定监测频次,确保监测数据的及时性和完整性。
5. 监测记录,对监测数据进行及时记录和整理,形成监测报告,以备后续分析和评估。
四、监测分析。
1. 数据分析,对监测数据进行分析,评估爆破振动对周围环境的影响情况。
2. 结果评估,根据监测数据分析结果,评估爆破振动对周围建筑物、设施和人员的影响程度,确定是否需要采取相应的控制措施。
3. 建议措施,根据评估结果,提出相应的控制措施建议,以减小爆破振动对周围环境的影响。
五、监测报告。
1. 报告内容,监测报告应包括监测数据、分析结果、评估结论和建议措施等内容。
2. 报告提交,监测报告应及时提交给相关部门和责任人,以供参考和决策。
3. 报告保存,监测报告应保存备查,作为爆破作业的监测记录和证据。
六、总结。
爆破振动监测是爆破作业安全进行的重要保障措施,合理有效的监测工作能够及时发现问题、评估影响、提出建议,确保爆破作业的安全进行。
因此,各相关部门和责任人员应严格按照本实施方案进行爆破振动监测工作,确保监测数据的准确性和可靠性,保障爆破作业的安全进行。
爆破振动监测方案
爆破振动监测方案近年来,随着城市建设的飞速发展,建筑物的拆除、爆破工作越来越多。
而在这些工作中,爆破振动监测方案的实施显得尤为重要,能够有效评估爆破振动对周边建筑物和地下管线设施的影响。
一、监测方案的建立在制定监测方案时,需要根据爆破的规模、距离和爆破物的种类等情况进行综合考虑。
基本的监测方案包括三个方面:监测地点的选定、监测设备的布置以及监测参数的设定。
监测地点的选定应根据爆破振动传播的方向和距离而定,同时需要充分考虑周边建筑物和地下管线设施的安全性。
监测设备的布置应覆盖爆破振动传播路径,能够提供充分的监测数据。
监测参数的设定也需要根据实际情况进行调整。
二、监测设备的选择目前常用的监测设备有加速度计、速度计和位移计等。
加速度计可测量振动的加速度,速度计可测量振动的速度,位移计可测量振动的位移。
不同的设备具有不同的优缺点,需要根据实际情况进行选择。
一般情况下,加速度计的测量范围比较广,适用于中小规模的爆破工程;速度计对低频振动有比较好的响应,适用于纵向振动;位移计对高频振动有比较好的响应,适用于侧向振动。
在选择监测设备时,还需要考虑其精度、稳定性、防护性能以及数据传输能力等因素。
三、监测参数的处理监测数据的处理分为实时处理和离线处理两种。
实时处理需要将监测设备的数据及时传输到监测中心,并对数据进行实时处理和分析,以及对监测设备进行状态监测和预警。
离线处理可以在实际爆破过程结束后对监测数据进行处理和分析,如生成时频分析图、频率分析图等,从而更好地评估爆破振动对周边环境的影响。
四、监测报告的撰写监测报告是对监测数据进行分析和评估后的结果报告。
监测报告应当包括以下内容:爆破工程的基本情况、监测方案的制定和实施情况、监测设备的使用和维护情况、监测数据的分析和评估结果、环境影响评估等内容。
监测报告应尽量客观真实,数据分析应科学合理,评估结果应讲求严谨,避免夸大和简化情况。
综上所述,爆破振动监测方案的建立和实施需要充分考虑实际情况和监测设备的选择,并对监测数据进行处理和分析,形成客观、真实的监测报告。
爆破振速监测
爆破振速监测标准化管理处编码[BBX968T-XBB8968-NNJ668-MM9N]爆破振速监测(1)监测目的隧道施工对地面建筑的影响主要有两个方面:地表不均匀沉降和爆破振动,当这两者的作用超过建筑的承受能力,会造成楼房等地表建筑的开裂,后果非常严重。
其中,爆破振动具有瞬时性,是居民对隧道施工最直接的感受,对居民的生活产生较大干扰同时也引发居民对建筑安全的担心和质疑。
因此必须进行爆破振动监测,严格将爆破震动危害控制在允许的范围内,监测对象安全评价,为后续施工提供精确可靠的数据和指导后续施工爆破方案设计等是爆破振动监测的主要目的。
(2)工作内容工作内容为对爆破影响范围内需保护的建(构)筑物进行实时振动监测,确保振速控制在规范规定和建、构筑物安全范围内,具体的工作内容有:现场熟悉、了解和掌握场址影响区范围内构筑物状况;配备先进监测设备、按有关规范对爆破影响区建(构)筑物进行爆破振动监测,对监测数据进行处理分析:A.对振动技术参数即频率、振幅、周期、振动时间、振动相位等的监测。
B.对振动量即速度、加速度、位移等物理量的监测。
(3)爆破振动监测原理爆破振动监测原理如流程图由于炸药在岩石中的爆炸作用,使安装布置在监测质点上的传感器随质点振动而振动,使传感器内部的磁系统、空气隙、线圈之间作相对的运动,变成电动势信号,电动势信号通过导线输入可变增益放大器将信号放大,进入AD转换,再通过时钟、触发电路,同时也通过存储器信号保护,再通过CPU系统输入计算机,采用波形显示和数据处理软件进行波形分析和数据处理。
(4)监测方法爆破振动监测是实时监测,所以在爆破前根据实地调查结果进行细致的准备工作,并严格按照工作流程进行工作。
为确保监测的准确可靠,首先对爆破点附近的监测对象进行详细准确的调查后,确定监测对象,然后在爆破前对监测系统进行检查、检测和标定,同时根据监测对象与爆破点相对位置关系,确定测点位置及布置方法,提前进入现场进行安置,根据爆破时间进行监测。
爆破振动监测方案
爆破振动监测方案爆破工程是一种常见的施工方式,它在矿山、隧道建设、道路拓宽等领域有着广泛的应用。
然而,爆破工程会产生较大的振动,给周围环境和结构物带来潜在的安全风险。
为了有效控制爆破振动,我们需要制定一套科学合理的爆破振动监测方案。
1. 监测目的爆破振动监测的主要目的是保护周围环境和结构物的安全。
通过监测爆破振动的参数,如振动速度、振动加速度等,可以及时判断振动是否超过预定的安全限值,从而采取相应的措施进行风险控制。
2. 监测方案爆破振动监测方案应包括监测设备的选用、监测点的布设以及监测参数的设置等内容。
2.1 监测设备的选用在爆破振动监测中常用的设备有振动传感器、数据采集仪等。
振动传感器用于测量振动参数,数据采集仪用于接收并存储振动信号。
在选用设备时,应考虑设备的准确性、稳定性和适应性,以确保监测结果的准确性和可靠性。
2.2 监测点的布设监测点的布设应充分考虑爆破工程的施工特点和结构物的分布情况。
一般来说,监测点应位于离爆破源较近的区域,并覆盖主要的观测对象,如结构物、管线等。
监测点的数量和位置应根据实际情况进行合理调整,以保证监测结果的全面性和代表性。
2.3 监测参数的设置监测参数的设置是爆破振动监测方案中的重要环节。
合理设置监测参数能够更准确地评估爆破振动的影响程度。
监测参数的设置应参考相关标准和规范,如国家标准《爆破振动测量规范》等。
常见的监测参数包括振动速度、振动加速度、频率等。
3. 监测方法爆破振动监测可采用实时监测和事后分析两种方法,具体应根据实际情况选择合适的监测方法。
3.1 实时监测方法实时监测方法可以通过在线监测系统进行。
监测系统应具备实时数据传输和处理功能,并能够及时将监测结果反馈给工程现场人员。
该方法的优点是能够实时掌握振动参数的变化,及时采取措施进行调整和控制。
3.2 事后分析方法事后分析方法是通过事后处理监测数据来评估爆破振动的影响程度。
监测数据可通过数据采集仪导出并进行分析处理。
爆破振动监测方案
爆破振动监测方案一、引言二、监测目的1、评估爆破振动对周边建(构)筑物、设施的影响程度,确保其结构安全。
2、验证爆破设计参数的合理性,为优化爆破方案提供依据。
3、积累爆破振动数据,为类似工程提供参考。
4、遵守相关法律法规和标准规范的要求,保障公众安全和环境质量。
三、监测依据1、《爆破安全规程》(GB 6722-2014)2、《建筑抗震设计规范》(GB 50011-2010)(2016 年版)3、《工程测量规范》(GB 50026-2020)4、工程爆破设计文件和相关技术要求四、监测内容1、振动速度包括水平径向、水平切向和垂直方向的振动速度。
振动速度是评估爆破振动影响的主要指标。
2、振动频率了解振动的频谱特性,分析振动能量的分布情况。
3、持续时间记录振动的持续时间,评估振动的累积效应。
五、监测仪器选择1、传感器选用高精度、高灵敏度的速度传感器,如压电式加速度传感器。
传感器的频率响应范围应覆盖爆破振动的主要频段。
2、数据采集仪具备多通道同步采集功能,采样频率满足监测要求。
具有数据存储、传输和分析处理功能。
3、计算机及分析软件用于对采集的数据进行后期处理和分析。
六、监测点布置1、监测点的选择原则优先选择在距离爆破源较近、可能受到较大振动影响的建(构)筑物和设施上布置监测点。
考虑不同地质条件、地形地貌和建筑物结构类型的代表性。
2、具体布置位置建筑物的基础、柱、梁等关键部位。
桥梁的墩台、梁体等部位。
地下管线的检查井、阀门等位置。
3、监测点数量根据工程规模、爆破类型和周边环境的复杂程度确定监测点数量,一般不少于 3 个。
七、监测时间和频率1、监测时间在爆破作业前进行背景振动监测,获取初始数据。
爆破作业期间进行实时监测,记录爆破振动过程。
2、监测频率对于单次爆破,在爆破前 5 分钟开始采集数据,直至爆破振动结束后 5 分钟。
对于多次爆破的工程,根据爆破规模和振动影响程度,确定监测的间隔时间,一般每天监测 1-2 次。
爆破振速监测
爆破振速监测(1)监测目的隧道施工对地面建筑的影响主要有两个方面:地表不均匀沉降和爆破振动,当这两者的作用超过建筑的承受能力,会造成楼房等地表建筑的开裂,后果非常严重。
其中,爆破振动具有瞬时性,是居民对隧道施工最直接的感受,对居民的生活产生较大干扰同时也引发居民对建筑安全的担心和质疑。
因此必须进行爆破振动监测,严格将爆破震动危害控制在允许的范围内,监测对象安全评价,为后续施工提供精确可靠的数据和指导后续施工爆破方案设计等是爆破振动监测的主要目的。
(2)工作内容工作内容为对爆破影响范围内需保护的建(构)筑物进行实时振动监测,确保振速控制在规范规定和建、构筑物安全范围内,具体的工作内容有:现场熟悉、了解和掌握场址影响区范围内构筑物状况;配备先进监测设备、按有关规范对爆破影响区建(构)筑物进行爆破振动监测,对监测数据进行处理分析:A.对振动技术参数即频率、振幅、周期、振动时间、振动相位等的监测。
B.对振动量即速度、加速度、位移等物理量的监测。
(3)爆破振动监测原理爆破振动监测原理如流程图由于炸药在岩石中的爆炸作用,使安装布置在监测质点上的传感器随质点振动而振动,使传感器内部的磁系统、空气隙、线圈之间作相对的运动,变成电动势信号,电动势信号通过导线输入可变增益放大器将信号放大,进入AD转换,再通过时钟、触发电路,同时也通过存储器信号保护,再通过CPU系统输入计算机,采用波形显示和数据处理软件进行波形分析和数据处理。
(4)监测方法爆破振动监测是实时监测,所以在爆破前根据实地调查结果进行细致的准备工作,并严格按照工作流程进行工作。
为确保监测的准确可靠,首先对爆破点附近的监测对象进行详细准确的调查后,确定监测对象,然后在爆破前对监测系统进行检查、检测和标定,同时根据监测对象与爆破点相对位置关系,确定测点位置及布置方法,提前进入现场进行安置,根据爆破时间进行监测。
A 测点布置根据设计要求,将爆破振动测点布置在所需监测的地表、建筑物结构支撑柱、隧道侧壁上。
爆破振动监测方案
爆破振动监测方案在建筑和采矿工程等领域中,常常需要采用爆破来实现地质岩石的拆除或挖掘,这种方法虽然快速高效,但是也会引起周围环境的振动。
如果炸药的使用不当,就有可能会对周边建筑物、桥梁、道路、地下管道等设施造成损伤。
因此,有效的爆破振动监测方案显得尤为重要。
一、监测设备的选择爆破振动监测的核心设备就是振动监测仪。
目前市面上的振动监测仪种类繁多,主要包括地震仪、加速度计、伺服加速度计、光弹性仪、光纤光栅传感器等。
其中,地震仪以其灵敏度和抗干扰能力优秀而备受青睐,但是需要实时处理原始数据,成本昂贵。
加速度计则分为传统式和高精度式,传统式以价格低廉和使用方便为其特点,但是数据采样率和采样范围有限;高精度式则相对更贵,但是采集数据更加精细。
伺服加速度计以测量灵敏度和稳定性著称,通常用于大规模的监测工程。
光弹性仪和光纤光栅传感器则由于其无源无干扰和抗自然干扰的特点,被广泛应用于复杂环境和远距离监测场合。
二、传感器的布设传感器的布设是爆破振动监测方案的重要组成部分。
布设要合理,才能更全面、准确地掌握爆破振动情况。
在振动监测仪的选择确定之后,需要根据工程的具体情况来规划传感器的布局。
对于建筑物或桥梁等重要设施来说,必须在其周围设置多个传感器,以便能够准确地掌握振动信息。
此外,传感器的安装位置也应尽可能靠近被监测结构物,避免距离过远而导致数据误差。
具体来说,要注意以下几个方面:1.传感器应尽可能布设在被监测结构物的基础或者最佳监测位置;2.在被监测结构物周围设置至少三个传感器,以便保证数据的精确性;3.传感器的布设应考虑到周边环境,避免有遮挡物影响信号传输。
三、信息接收与处理传感器采集到的数据需要经过信息接收与处理,才能转化为有意义的数据图谱。
处理算法的优化程度也直接决定了监测数据的准确性与实时性。
爆破振动监测的数据处理一般分为两个阶段,第一阶段是实时测量瞬时振动速度,第二阶段是对振动速度进行峰值处理,得出振动强度。
爆破振动监测内容
爆破振动监测内容爆破振动监测是一种用于监测爆破活动所产生的振动的技术。
它通常被应用于爆破工程中,用来评估爆破震动对周围环境的影响和损害程度。
下面将分别介绍爆破振动监测的原理、设备和应用。
一、爆破振动监测原理:爆破振动监测原理是基于振动传感技术,通过将传感器或加速度计安装在地面或其他结构物上,测量爆破活动产生的振动。
这些传感器可以测量振动的振幅、频率和持续时间等参数。
传感器将收集到的数据传输给数据采集器,进而用于分析和评估振动的影响。
二、爆破振动监测设备:1.传感器:常见的传感器包括加速度传感器和压力传感器。
加速度传感器通常用于测量振动的振幅和频率,而压力传感器则用于测量爆破震动的冲击力。
2.数据采集器:数据采集器用于接收传感器传输的数据,并将数据录入计算机系统以供分析和评估。
数据采集器通常具有存储功能,可以存储大量的数据以备后续分析。
3.计算机系统:计算机系统用于接收和处理数据,通过特定的算法和模型分析振动数据,评估爆破活动对周围环境的影响和损害程度。
4.展示器:展示器通常用于实时展示爆破振动数据,以便工程人员及时调整爆破参数和监控振动的变化。
三、爆破振动监测应用:1.评估振动对周围建筑物的影响:爆破振动监测可以帮助评估爆破活动对周围建筑物的影响,如是否会造成结构破坏或引起松动。
2.保护历史遗产和文化遗址:对于位于历史遗产和文化遗址附近的爆破工程,监测爆破震动可以保护这些珍贵的遗产和避免不可逆的损害。
3.评估爆破对地下管道和给水系统的影响:爆破振动监测可以帮助评估爆破活动对地下管道和给水系统的影响,避免管道破裂或水源中断。
4.保证安全和减少环境影响:爆破振动监测可以帮助爆破工程的实施者控制爆破震动在安全范围内,减少对周围环境和居民的影响。
5.研究和改进爆破技术:通过分析和评估爆破振动数据,可以帮助研究人员改进爆破技术,提高工程效率和减少环境影响。
综上所述,爆破振动监测是一项重要的技术,可用于评估爆破活动对周围环境的影响和损害程度。
爆破振动监测方案
爆破振动监测方案为了确保爆破作业的安全和对周围环境的影响进行有效管控,需要建立一个全面的爆破振动监测方案。
本文将介绍一种适用于爆破振动监测的方案,并提供详细的操作步骤。
一、前期准备工作1. 确定监测区域:根据实际情况,确定需要进行爆破振动监测的区域范围,包括可能受影响的建筑、地质构造和环境要素等。
2. 选择监测设备:根据监测需求,选择合适的爆破振动监测设备。
常见的监测设备包括高精度振动传感器、数据采集仪和监测软件等。
3. 部署监测设备:根据监测区域的特点和要求,合理部署监测设备,以保证监测数据的准确性和全面性。
二、监测方案的制定1. 监测参数的选择:根据爆破振动的特征和对环境的影响程度,选择合适的监测参数,包括振动加速度、振动速度和振动位移等。
2. 监测点的设置:根据监测区域的实际情况和要求,确定监测点的数量和位置。
监测点的设置应该覆盖整个爆破工作面,以确保监测的全面性。
同时,重点考虑监测点与可能受影响建筑物的距离和方向。
3. 监测频率和时长:确定监测的频率和时长,以保证监测的连续性和有效性。
监测频率应根据爆破工程的具体情况进行合理确定,通常可以采用每次爆破前、中、后的连续监测方式。
三、监测操作流程1. 监测设备的安装:事先检查监测设备的状态和功能,按照设备说明书进行正确的安装,确保设备的可靠性和稳定性。
2. 监测数据的采集:按照监测方案确定的监测频率和时长,进行监测数据的采集。
确保采集的数据准确、完整,并记录监测时间、地点和设备状态等相关信息。
3. 数据处理和分析:将采集到的监测数据进行处理和分析。
通过数据处理软件,提取有关振动特征和变化规律的信息,为后续的监测评价和决策提供依据。
四、监测结果评价1. 监测数据的解读:根据监测数据的处理和分析结果,对爆破振动的强度、频率和持续时间等进行解读。
结合监测点的位置和周围环境的影响,评估爆破振动对建筑物和环境的潜在影响程度。
2. 结果评价的输出:将监测结果和评价意见进行整理和输出。
工程爆破振动监测计划
工程爆破振动监测计划一、工程概述本次工程爆破地点位于_____,周边环境复杂,附近有建筑物、道路、地下管线等重要设施。
爆破工程的目的是为了_____,预计爆破规模为_____,使用的炸药类型为_____。
二、监测目的工程爆破振动监测的主要目的是:1、保障周边建筑物、设施及人员的安全。
通过监测振动数据,评估爆破振动对周边环境的影响,确保其在安全允许范围内,预防可能出现的结构损坏、人员伤亡等事故。
2、优化爆破设计。
根据监测结果,对爆破参数进行调整和优化,以降低振动强度,提高爆破效果,同时减少对周边环境的干扰。
3、提供数据支持和证据。
监测数据可以作为工程施工过程中的技术依据,在出现纠纷或问题时,能够为相关方提供客观、准确的证据。
三、监测依据本次监测计划依据以下标准和规范制定:1、《爆破安全规程》(GB 6722-2014)2、《建筑抗震设计规范》(GB 50011-2010)3、《工程测量规范》(GB 50026-2020)四、监测内容1、振动速度包括水平径向、水平切向和垂直方向的振动速度,这三个方向的振动速度是评估爆破振动影响的关键参数。
2、振动频率振动频率反映了振动能量的分布情况,对于判断振动对不同类型建筑物和结构的影响具有重要意义。
3、持续时间振动的持续时间会影响建筑物和结构的累积损伤,因此也是监测的重要内容之一。
五、监测仪器1、选用高精度、高可靠性的振动监测仪器,如_____型号的振动传感器和_____型号的数据采集仪。
2、传感器的性能参数应满足以下要求:测量范围:能够覆盖预计的振动速度范围。
频率响应:在爆破振动的主要频率范围内具有良好的响应特性。
精度:满足相关标准和规范的要求。
六、监测点布置1、监测点应根据爆破区域与周边建筑物、设施的相对位置进行合理布置。
2、在距离爆破点较近的重要建筑物和设施处设置重点监测点,如距离爆破点_____米范围内的_____建筑物、_____道路等。
3、对于一般性的区域,可适当减少监测点的密度,但应保证监测范围能够全面覆盖可能受到影响的区域。
爆破振速监测
爆破振速监测(1)监测目得隧道施工对地面建筑得影响主要有两个方面:地表不均匀沉降与爆破振动,当这两者得作用超过建筑得承受能力,会造成楼房等地表建筑得开裂,后果非常严重。
其中,爆破振动具有瞬时性,就是居民对隧道施工最直接得感受,对居民得生活产生较大干扰同时也引发居民对建筑安全得担心与质疑。
因此必须进行爆破振动监测,严格将爆破震动危害控制在允许得范围内,监测对象安全评价,为后续施工提供精确可靠得数据与指导后续施工爆破方案设计等就是爆破振动监测得主要目得。
(2)工作内容工作内容为对爆破影响范围内需保护得建(构)筑物进行实时振动监测,确保振速控制在规范规定与建、构筑物安全范围内,具体得工作内容有:现场熟悉、了解与掌握场址影响区范围内构筑物状况;配备先进监测设备、按有关规范对爆破影响区建(构)筑物进行爆破振动监测,对监测数据进行处理分析:A.对振动技术参数即频率、振幅、周期、振动时间、振动相位等得监测。
B.对振动量即速度、加速度、位移等物理量得监测。
(3)爆破振动监测原理爆破振动监测原理如流程图由于炸药在岩石中得爆炸作用,使安装布置在监测质点上得传感器随质点振动而振动,使传感器内部得磁系统、空气隙、线圈之间作相对得运动,变成电动势信号,电动势信号通过导线输入可变增益放大器将信号放大,进入AD转换,再通过时钟、触发电路,同时也通过存储器信号保护,再通过CPU系统输入计算机,采用波形显示与数据处理软件进行波形分析与数据处理。
(4)监测方法爆破振动监测就是实时监测,所以在爆破前根据实地调查结果进行细致得准备工作,并严格按照工作流程进行工作。
为确保监测得准确可靠,首先对爆破点附近得监测对象进行详细准确得调查后,确定监测对象,然后在爆破前对监测系统进行检查、检测与标定,同时根据监测对象与爆破点相对位置关系,确定测点位置及布置方法,提前进入现场进行安置,根据爆破时间进行监测。
A 测点布置根据设计要求,将爆破振动测点布置在所需监测得地表、建筑物结构支撑柱、隧道侧壁上。
爆破工程爆破振动监测方案
爆破工程爆破振动监测方案一、前言爆破工程是一种在建筑、采矿、隧道等工程中常见的施工方法,它能够在短时间内实现大量的岩石和土壤的破碎和开采,提高工程效率。
然而,爆破工程也会产生大量的振动和冲击波,对周围环境和建筑结构造成影响,因此需要进行爆破振动监测,保证施工安全和环保合规。
二、爆破振动监测的重要性1. 爆破振动监测是确保爆破工程施工安全的重要手段。
由于爆破工程的特殊性,振动和冲击波对周围环境和建筑结构有一定的影响,如果监测不到位,就有可能导致工程安全事故的发生。
2. 爆破振动监测是环境保护和社会责任的需要。
爆破工程产生的振动和冲击波会对周围地质环境、植被和水质造成一定的影响,如果没有有效监测和控制,可能会引发环境污染和生态破坏。
3. 爆破振动监测是保障建筑结构安全的重要手段。
爆破振动对周围建筑结构有一定的影响,需要通过监测和评估来保证建筑结构的安全性,避免振动损害。
三、爆破振动监测的技术原理爆破振动监测主要基于地震学原理和振动测量技术,通过测量地面振动速度和加速度等参数,来评估爆破振动对周围环境、建筑结构和地质构造的影响。
1. 地震学原理:爆破工程产生的振动和冲击波类似于地震波,因此可以采用地震学的相关原理和方法来进行监测和评估。
2. 振动测量技术:爆破振动监测主要通过地面振动传感器和数据采集系统来实现,其中地面振动传感器用于测量地面振动速度和加速度等参数,数据采集系统用于实时采集和记录振动数据。
四、爆破振动监测方案的制定1. 爆破振动监测方案的制定应充分考虑爆破工程的特点和环境背景,采取合理的监测点布设、监测参数选取和监测方法确定等措施,保证监测方案的科学性和有效性。
2. 爆破振动监测方案的制定应与爆破设计和工程施工相衔接,充分考虑爆破设计参数、工程施工方案和现场环境等因素,确保监测方案的针对性和实用性。
3. 爆破振动监测方案的制定应遵循国家和地方相关法规和标准,确定监测指标和限值,保证监测数据的可比性和评估依据的权威性。
爆破振动监测报告
爆破振动监测报告1. 引言本报告旨在对爆破振动监测进行分析和总结,以评估其对周围建筑物和环境的影响。
爆破振动监测是一种重要的工程技术手段,可以确保爆破活动不会对周围的建筑物和地质环境造成损害。
2. 监测方法采用的爆破振动监测方法主要包括:•安放振动监测仪器:在爆破区周围安放多个振动监测仪器,以记录振动数据。
•数据采集与分析:对振动监测仪器采集到的数据进行实时传输和分析,以获取爆破振动数据。
3. 监测参数爆破振动监测中常用的参数包括:•振动速度(Vibration Velocity):反映振动波的强度。
•振动加速度(Vibration Acceleration):反映振动波的变化速率。
•振动位移(Vibration Displacement):反映振动波的位移幅度。
4. 数据分析通过对监测仪器采集到的数据进行分析,我们能够了解爆破振动对周围环境的影响程度。
4.1 爆破振动数据分布通过对振动数据的统计分析,我们可以得到爆破振动数据的分布情况。
以下是一个示例的振动数据分布图表:距离(m)振动速度(mm/s)振动加速度(mm/s²)5 10 5010 5 2515 3 1520 2 1025 1 5从表中可以看出,随着距离的增加,振动速度和振动加速度逐渐降低。
4.2 爆破振动评估根据国家标准和相关规定,我们对爆破振动进行评估。
以下是对爆破振动的评估结果:•振动速度评级:A级。
•振动加速度评级:B级。
根据评估结果可以得出,该爆破活动对周围环境影响较小,不会对建筑物和地质环境造成明显损害。
5. 结论经过对爆破振动的监测和分析,我们得出以下结论:1.经过评估,该爆破活动对周围环境影响较小,不会对建筑物和地质环境造成明显损害。
2.爆破振动的速度和加速度随距离增加而逐渐降低。
6. 建议鉴于本次爆破活动对周围环境和建筑物影响较小,建议继续遵循国家标准和相关规定开展工程爆破活动,注意合理安排爆破参数和振动监测措施。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
爆破振速监测
(1)监测目的
隧道施工对地面建筑的影响主要有两个方面:地表不均匀沉降和爆破振动,当这两者的作用超过建筑的承受能力,会造成楼房等地表建筑的开裂,后果非常严重。
其中,爆破振动具有瞬时性,是居民对隧道施工最直接的感受,对居民的生活产生较大干扰同时也引发居民对建筑安全的担心和质疑。
因此必须进行爆破振动监测,严格将爆破震动危害控制在允许的范围内,监测对象安全评价,为后续施工提供精确可靠的数据和指导后续施工爆破方案设计等是爆破振动监测的主要目的。
(2)工作内容
工作内容为对爆破影响范围内需保护的建(构)筑物进行实时振动监测,确保振速控制在规范规定和建、构筑物安全范围内,具体的工作内容有:现场熟悉、了解和掌握场址影响区范围内构筑物状况;配备先进监测设备、按有关规范对爆破影响区建(构)筑物进行爆破振动监测,对监测数据进行处理分析:
A. 对振动技术参数即频率、振幅、周期、振动时间、振动相位等的监测。
B. 对振动量即速度、加速度、位移等物理量的监测。
(3)爆破振动监测原理
爆破振动监测原理如流程图
由于炸药在岩石中的爆炸作用,使安装布置在监测质点上的传感器随质点振动而振动,使传感器内部的磁系统、空气隙、线圈之间作相对的运动,变成电动势信号,电动势信号通过导线输入可变增益放大器将信号放大,进入AD转换,再通过时钟、触发电路,同时也通过存储器信号保护,再通过CPU系统输入计算机,采用波形显示和数据处理软件进行波形分析和数据处理。
(4)监测方法
爆破振动监测是实时监测,所以在爆破前根据实地调查结果进行细致的准备工作,并
严格按照工作流程进行工作
为确保监测的准确可靠,首先对爆破点附近的监测对象进行详细准确的调查后,确定监测对象,然后在爆破前对监测系统进行检查、检测和标定,同时根据监测对象与爆破点相对位置关系,确定测点位置及布置
方法,提前进入现场进行安置,根据爆破时间进行监测。
A 测点布置
根据设计要求,将爆破振动测点布置在所需监测的地表、建筑物结构支撑柱、隧道侧壁上。
安装传感器时必须安装稳固,否则质点的速度监测数据将产生失真现象,一般采用石膏固定传感器效果较好。
还应注意对传感器的保护,使其避免受到爆破碎石或其它物体的物理性损伤。
另外必须注意传感器的方向性。
a、测点布置遵循的原则
最大振动断面发生的位置和方向监测;
爆破地震效应跟踪监测;
爆破地震波衰减规律监测。
b、测点的布置方法
按照上述原则和爆破地震的传播规律和以往的经验,隧道爆破振动监测点布置在隧道一侧底部,每次监测选择离爆破点最近的2 个测点,每个测点布置垂直方向、水平方向和水平切向的传感器;地面建构筑物的测点布置在距爆破中心最近的建构筑物及其地表面,即靠近开挖隧道一侧(迎爆面)。
对于建构筑物测点选取基础上表面,若基础埋于土层下,则选择最近基础且坚实的散水作为测点。
B 监测
a、爆破振动速度监测系统
爆破振动速度测量系统一般由拾振器(或测振仪配合传感器)和记录器(包括计时器)两个部分组成。
b、使用仪器
爆破振动监测拟使用Mini-Blast I型爆破测振仪,该仪器是一款处于国际、国内领先水平,高智能化、高精度的精密监测仪器,完全符合国内爆破振动影响安全评估要求。
仪器配备高分辨率的液晶显示屏,全中文界面,现场独立运行,且体积小、重量轻,易于携带,可以胜任各种恶劣环境下的监测。
该仪器各项技术指标:
采集方式:全并行同步采集;
工作温度:-10 C ~60C;
输入阻抗:1M Q /20pF;
A / D :24bit ;
采样速率:10000 Hz ;
动态范围:100dB;
量程:±10V;
供电方式:内置锂电池,工作时间》24小时,具有电量指示;
测量范围:振动速度0.001〜35cm/s;
频响(标配传感器)5〜300Hz。
C、监测数据的处理分析
采用自动记录仪将速度传感器测得的测点水平径向、水平切向和垂直方向上的振动速度进行记录。
所记录的振动波形应有时间标尺,并标出最大振幅值和所处时刻
然后需对爆破振动质点速度进行回归分析,模拟出其传播规律。
回归分析可根据测点高程不同采用分组进行,选择相互之间高差较小的测点作为一组采用萨道夫斯基公式进行回归分析:
式中,Vmax为测点最大振动速度,应分三个方向统计分析;
K、a为衰减系数;
Q为爆破装药量,齐发爆破时为总装药量,延时爆破时为最大一段药量;
R为测点至爆源的距离。
按照最小二乘法原理,根据爆破振动监测数据,可求出K a值。
K a值与爆区地形、地质条件和爆破条件都相关,但K值更依赖于爆破条件的变化,a值主要取决于地形、地质条件的变化。
爆破临空条件好,夹
制作用小,K值就小,反之K值大;地形平坦,岩体
完整、坚硬,a值趋小,反之破碎、软弱岩体,地形起伏,a值趋大。
根据我公司以前的相似工程经验,K 取值范围大部分在50〜1000之内,a取值在1.3〜3.0之间。
而近距离振动衰减规律和远距离衰减规律可分开考虑,当比例距离R =R/C K 10,为近距离,R' =R/C K
10时为远距离。
近距离振动K值较大,可达500以上,a值较大,可达2.0〜3.0 ;远距离爆破振动,K达130〜500,a为1.3〜2.0。
(5)建、构筑物及已开挖地下隧道的安全性评估
评价各种爆破对不同类型建(构)筑物和其他保护对象的振动影响,应采用不同的安全判据和允许标准。
地面建筑物的爆破振动判据,采用保护对象所在地质点峰值振动速度和主振频率。
《爆破安全规程》(GB6722-2003中对爆破振动安全规定如下:
爆破振动安全允许标准
a选取建筑物安全允许振速时,应综合考虑建筑物的重要性、建筑质量、新旧
程度、自振
频率、地基条件等因素。
b省级以上(含省级)重点保护古建筑与古迹的安全允许振速,应经专家论证选取,并报相应文物管理部门批准。
c选取隧道、巷道安全允许振速时,应综合考虑构筑物的重要性、围岩状况、断面大小、
深埋大小、爆源方向、地震振动频率等因素。
d非挡水新浇大体积混凝土的安全允许振速,可按本表给出的上限值选取。
若被监测对象的质点振动速度超过上表所规定的范围,应采取相应措施修正爆破方案,
并加强被监测对象的其它监测手段(如安全巡视、沉降及位移监测、应力应变监测等),确保其安全。
爆破方案修正措施包括:控制最大单响药量、选用低爆速低威力的炸药、创造自由面、控制开挖循环进尺、采用多段微差起爆技术、调整爆破传爆方向、开挖减震沟、采用预裂爆破方法等。
这些措施可多种同时采用,确保安全施工。
(6)建议
A、振动安全评价方面,不仅要考虑建筑物结构形式,更要考虑地基基础。
应该说大部分振动破坏都不是建筑结构直接振裂的破坏,而是地基基础的振动变形和位移导致结构破坏案例占多数,因此除考虑不同结构类型的振速标准外,还应考虑不同地基类型的振动标准。
如瑞典的“标准”规定:
散松的冰磧、砂、卵、粘土层[V] < 1.8 cm/s
紧密冰磧层、砂岩、软弱灰岩[V] < 3.5 cm/s
花岗岩、片麻岩、石灰岩、石英砂岩[V] < 7.0 cm/s
这一标准值得参考。
地基的振动变形或破坏以振动加速度判据更为合理。
B、规程中将地下隧道根据功能分为三类,在实用中认为地下巷道的标准好用,建议本项目应根据围岩类型和支护质量不同,确定不同的标准值。
C、对于重要建筑或有纪念意义建筑应由专家组根据调查报告或试验报告论证确定振动安全标准,并跟踪爆破作业进行振动监测,提出振动速度监测报告,报告内容应包括爆破振动安全评价。
D爆源50 m以内若有保护目标时,应作振动监测。
因爆源近区振动危害较大,振动衰减规律变化较大,只有通过测试结果随时调整爆破设计方案,才能确保振动安全,同时也可避免一些不必要的纠纷。
7)仪器操作注意事项
传感器:传感器安装的准确性是数据可靠性的重要保障。
现场安装时,必须注意以下几点:
1. 传感器的测量方向必须准确,安装时应使用水平尺及罗盘,对传感器的安装进行调平及调方向,确保
三维测量方向的正确。
2. 传感器安装位置应选择在与被监测物形成一体的结构上,并选取离爆点最近的位置。
3. 传感器必须与被监测物可靠粘结,粘结剂可选择石膏粉、AB 胶,也可以选择以夹具或磁座方式,与被
测物形成刚性联接。
4. 传感器与仪器的连接必须可靠,连接完成后,可轻拽线缆,确认线缆已接好;仪器进入信号等待状态后,
轻轻用手指敲击传感器,观察仪器是否记录,确保传感器及仪器的可靠工作。
仪器:现场使用时,应先安装好传感器并将传感器线缆与仪器完成连接后,才能打开仪器电源;电源打开后30 秒内不作操作,仪器将自动进入采集等待状态。