二次函数与一元二次方程、不等式知识点总结与例题讲解

合集下载

二次函数与一元二次方程知识点及经典例题

二次函数与一元二次方程知识点及经典例题

二次函数y=ax 2+bx +c 与ax 2+bx +c =0(a ≠0)的关系1、 一元二次方程ax 2+bx +c =0(a ≠0)的根是二次函数y=ax 2+bx +c (a ≠0)与x 轴交点的横坐标,反之y=ax 2+bx +c (a ≠0)与x 轴交点的横坐标是一元二次方程ax 2+bx +c =0(a ≠0)的根;2、 一元二次方程ax 2+bx +c =0(a ≠0)根情况的判别即二次函数y=ax 2+bx +c (a ≠0)与x 轴交点个数情况:①判别式∆②直接看方程③平移 例1:抛物线y=ax 2+bx +c 图像如下, 则 ① ax 2+bx +c =0的根有 ( )个 ②ax 2+bx +c+3=0的根有( )个 ③ax 2+bx +c -4=0的根有( )个x 3-≥a例2:若关于x 的不等式组 无解,则二次函数y=(a-2)x 2-x +41与X x a 515-≤ 轴交点有( )个; 例3:一元二次方程22717)83(2-=-x y 与X 轴的交点个数为( )个;例4:二次函数y=ax 2+bx +c (a ≠0)的图像如图所示,根据图像解答下列问题:(1) 写出方程ax 2+bx +c =0的两个根; (2) 写出不等式ax 2+bx +c >0的解集;(3) 写出y 随x 的增大而减小的自变量x 的取值范值;(4) 若方程ax 2+bx +c =k 有两个不相等的实数根,求k 的取什范围。

3、 韦达定理在二次函数y=ax2+bx +c (a ≠0)中的应用(a ca b x x x x =-=+2121,)① 已知其中一个交点,求另一个交点: 例5:若抛物线m x y x+-=22与X 轴的一个交点是(-2,0)则另一个交点是( ); ② 求两交点A,B 线段的长度x x x x AB 212421)(-=+例6:若抛物线32-+=ax y x与X 轴的交点为A ,B ,且AB 的长度为10,求a③ 利用韦达定理求面积: 例7:抛物线m x y x++=-22与X 轴的一个交点是A(3,0),另一个交点是B ,且与y 轴交于点C , (1)求m 的值;(2)求点B 的坐标;(3)该二次函数图象上有一点D (x ,y )(其中x>0,y>0),使s sABC ABD∆∆=,求点D 的坐标。

二次函数与一元二次方程、不等式知识点总结与例题讲解

二次函数与一元二次方程、不等式知识点总结与例题讲解

二次函数与一元二次方程、不等式知识点总结与例题讲解一、本节知识点(1)一元二次不等式的概念. (2)三个二次的关系. (3)一元二次不等式的解法. 知识点拓展:(4)分式不等式的解法. (5)高次不等式的解法. 二、本节题型(1)解不含参数的一元二次不等式. (2)解含参数的一元二次不等式. (3)三个二次之间的关系.(4)简单高次不等式、分式不等式的解法. (5)不等式恒成立问题. (6)一元二次不等式的应用. 三、知识点讲解.知识点 一元二次不等式的概念我们把只含有1个未知数,并且未知数的最高次数是2的不等式,称为一元二次不等式.即形如02>++c bx ax (≥0)或02<++c bx ax (≤0)(其中0≠a )的不等式叫做一元二次不等式.元二次不等式的解与解集使一元二次不等式成立的x 的值,叫做这个一元二次不等式的解,其解的集合,叫做这个一元二次不等式的解集.注意 一元二次不等式的解集要写成集合或区间的形式. 知识点 三个二次的关系一元二次不等式的解集、一元二次方程的解以及二次函数的图象之间有着紧密的联系.一元二次方程()002≠=++a c bx ax 与二次函数()002≠=++=a c bx ax y 的关系是:(1)当ac b 42-=∆≥0时,一元二次方程()002≠=++a c bx ax 有实数根,二次函数()002≠=++=a c bx ax y 的图象与x 轴有交点,且方程的解是交点的横坐标,交点的横坐标亦是方程的解;①当0>∆时,一元二次方程()002≠=++a c bx ax 有两个不相等的实数根,二次函数()002≠=++=a c bx ax y 的图象与x 轴有两个不同的交点;②当0=∆时,一元二次方程()002≠=++a c bx ax 有两个相等的实数根,二次函数()002≠=++=a c bx ax y 的图象与x 轴只有一个交点(即抛物线的顶点).(2)当042<-=∆ac b 时,一元二次方程()002≠=++a c bx ax 无实数根,二次函数()002≠=++=a c bx ax y 的图象与x 轴没有交点.具体关系见下页表(1)所示.一元二次不等式与二次函数()002≠=++=a c bx ax y 的关系是:(1)一元二次不等式02>++c bx ax (≥0)的解集就是二次函数()002≠=++=a c bx ax y 的图象位于x 轴上方(包括x 轴)的部分所对应的自变量的取值范围;(2)一元二次不等式02<++c bx ax (≤0)的解集就是二次函数()002≠=++=a c bx ax y 的图象位于x 轴下方(包括x 轴)的部分所对应的自变量的取值范围.由表可知 一元二次不等式的解集的端点值就是对应的一元二次方程的解. 知识点 一元二次不等式的解法解一元二次不等式的一般步骤是:(1)利用不等式的性质,将二次项系数化为正数; (2)计算ac b 42-=∆的值,并判断∆的符号; (3)当∆≥0时,求出相应的一元二次方程的根; (4)画出对应的二次函数的简图;(5)根据一元二次不等式的形式,结合简图,写出其解集.注意 一元二次不等式的解集结构与二次项系数的符号有着直接的关系.其中,①当0>∆时,一元二次不等式()002>>++a c bx ax 的解集在“两根之外”,即“大于大根或小于小根”;一元二次不等式()002><++a c bx ax 的解集在“两根之内”,即“大于小根且小于大根”,简记为“大于0取两边,小于0取中间”;②当0=∆时,一元二次不等式()002>>++a c bx ax 的解集为⎭⎬⎫⎩⎨⎧-≠a b x x 2;一元二次不等式()002><++a c bx ax 的解集为∅;③当0<∆时,一元二次不等式()002>>++a c bx ax 的解集为R ;一元二次不等式()002><++a c bx ax 的解集为∅.表(1)一元二次方程、二次函数以及一元二次不等式的关系:一元二次不等式在R 上恒成立的问题(1)02>++c bx ax 在R 上恒成立,则有:⎩⎨⎧<-=∆>0402ac b a 或⎩⎨⎧>==00c b a ; (2)02<++c bx ax 在R 上恒成立,则有:⎩⎨⎧<-=∆<0402ac b a 或⎩⎨⎧<==00c b a ;(3)一元二次不等式c bx ax ++2≥0在R 上恒成立,则有:⎩⎨⎧≤-=∆>0402ac b a ; (4)一元二次不等式c bx ax ++2≤0在R 上恒成立,则有:⎩⎨⎧≤-=∆<0402ac b a . 补充概念 二次函数的零点我们把使一元二次方程02=++c bx ax 的实数x 叫做二次函数c bx ax y ++=2的零点. 对零点的理解(1)二次函数的零点即相应一元二次方程02=++c bx ax 的实数根;(2)根据数形结合,二次函数的零点,即二次函数的图象与x 轴的交点的横坐标,且交点的个数等于零点的个数;(3)并非所有的二次函数都有零点.当ac b 42-=∆≥0时,一元二次方程有实数根,相应二次函数存在零点.知识点 分式不等式的解法 分式不等式的概念分母中含有未知数的不等式叫做分式不等式.利用不等式的性质,可将分式不等式化为以下标准形式: ①0)()(>x g x f ; ②)()(x g x f ≥0; ③0)()(<x g x f ; ④)()(x g x f ≤0. 分式不等式的解法解分式不等式的思路是把其转化为整式不等式求解.解分式不等式时,要先把分式不等式转化为标准形式. 各标准形式的分式不等式的解法为: (1)0)()(>x g x f 与不等式组⎩⎨⎧>>0)(0)(x g x f 或⎩⎨⎧<<0)(0)(x g x f 同解,与不等式0)()(>⋅x g x f 同解; (2))()(x g x f ≥0与不等式组⎩⎨⎧≠≥⋅0)(0)()(x g x g x f 同解;(3)0)()(<x g x f 与不等式组⎩⎨⎧<>0)(0)(x g x f 或⎩⎨⎧><0)(0)(x g x f 同解,与不等式0)()(<⋅x g x f 同解;(4))()(x g x f ≤0与不等式组⎩⎨⎧≠≤⋅0)(0)()(x g x g x f .由以上解法可以看出:将分式不等式转化为标准形式后,再将其转化为不等式组或同解整式不等式进行求解.知识点 高次不等式的解法解高次不等式,一般用“数轴标根法”,也叫“穿根引线法”,其步骤如下:(1)把高次不等式化为左边是几个因式的乘积,右边是0的形式,注意每个因式最高次项的系数必须为正;(2)把不等号换成等号,求出所得方程的所有实数根; (3)标根: 把各个实数根在数轴上标出;(4)画穿根线: 从“最右根”的右上方穿过根,往左下画线,然后又穿过“次右根”上去,如此一上一下依次穿过各根.但要注意偶次根不穿过,即奇过偶不过;(5)写出解集: 若不等号为“ > ”,则取数轴上方穿根线以内的范围;若不等号为“ < ”,则取数轴下方穿根线以内的范围.四、例题讲解例1. 解不等式0452>-+-x x .分析 先把不等式的二次项系数化为正数,再进行求解.注意不等式的解集要写成区间或集合的形式.解: 原不等式可化为:0452<+-x x .对于方程0452=+-x x ,∵()0941452>=⨯⨯--=∆∴该方程有两个不相等的实数根,解之得:4,121==x x . ∴不等式0452>-+-x x 的解集为{}41<<x x .点评 在求解一元二次不等式时,先观察二次项系数是否为正,若为负,则先把不等式的二次项系数化为正数(利用不等式的基本性质).例2. 已知关于x 的不等式022>++c x ax 的解集为⎭⎬⎫⎩⎨⎧<<-2131x x ,求不等式022>-+-a x cx 的解集.分析 先根据一元二次不等式与相应一元二次方程之间的关系,利用根与系数的关系定理,求出c a ,的值.注意 一元二次不等式的解集的端点值是对应一元二次方程的根. 解: 由题意可知:0<a .∵关于x 的不等式022>++c x ax 的解集为⎭⎬⎫⎩⎨⎧<<-2131x x ∴21,3121=-=x x 是方程022=++c x ax 的两个实数根由根与系数的关系定理可得:⎪⎪⎩⎪⎪⎨⎧⨯-=+-=-213121312a c a ,解之得:⎩⎨⎧=-=212c a . ∴022>-+-a x cx 即012222>++-x x ∴062<--x x ,解之得:32<<-x .∴不等式022>-+-a x cx 的解集为{}32<<-x x .例3. 一元二次不等式()()052>-+x x 的解集为 【 】 (A ){}52>-<x x x 或 (B ){}25>-<x x x 或 (C ){}52<<-x x (D ){}25<<-x x分析 本题可用数轴标根法求解.使用该方法时,要把乘积中所有因式的最高次项的系数化为正数.解: 原不等式可化为:()()052<-+x x .∵方程()()052=-+x x 的根为5,221=-=x x .∴不等式()()052<-+x x 的解集为{}52<<-x x ,即原不等式的解集. ∴选择答案【 C 】.例4. 已知不等式042<++ax x 的解集为空集,则实数a 的取值范围是 【 】 (A ){}44≤≤-a a (B ){}44<<-a a (C ){}44≥-≤a a a 或 (D ){}44>-<a a a 或分析 本题考查一元二次不等式与相应的二次函数之间的关系,同时问题还可以转化为一元二次不等式恒成立的问题.不等式042<++ax x 的解集为空集,即相应的二次函数42++=ax x y 的图象位于x 轴上及其上方,或者不等式42++ax x ≥0在R 上恒成立.解: ∵不等式042<++ax x 的解集为空集∴162-=∆a ≤0,解之得:4-≤a ≤4. ∴实数a 的取值范围是{}44≤≤-a a . ∴选择答案【 A 】.例5. 若关于x 的不等式()()021>--x mx 的解集为⎭⎬⎫⎩⎨⎧<<21x m x ,则实数m 的取值范围是 【 】 (A ){}0>m m (B ){}20<<m m(C )⎭⎬⎫⎩⎨⎧>21m m (D ){}0<m m分析 本题由题意可知:0<m . 解: ∵()()021>--x mx∴()02122>++-x m mx .∵其解集为⎭⎬⎫⎩⎨⎧<<21x m x ∴0<m .∴实数m 的取值范围是{}0>m m . ∴选择答案【 D 】.例6. 已知函数182++=bx ax y 的定义域为[]6,3-,则实数a 的值为_________,实数b 的值为_________.解: ∵函数182++=bx ax y 的定义域为[]6,3-∴一元二次不等式182++bx ax ≥0的解集为[]6,3-. 由根与系数的关系定理可得:⎪⎪⎩⎪⎪⎨⎧⨯-=+-=-631863aab ,解之得:⎩⎨⎧=-=31b a . ∴实数a 的值为1-,实数b 的值为3. 例7. 已知函数m x x y +-=2.(1)当2-=m 时,求不等式0>y 的解集; (2)若0,0<>y m 的解集为{}b x a x <<,,求ba 41+的最小值. 解:(1)2-=m 时,22--=x x y .∵0>y ,∴()()02122>-+=--x x x x 解之得:1-<x 或2>x .∴不等式0>y 的解集为{}21>-<x x x 或;(2)∵02<+-=m x x y 的解集为{}21>-<x x x 或 ∴m ab b a ==+,1,且041>-=∆m ,解之得:41<m . ∵0>m ,∴0,0>>b a ,410<<m . ∴()a b b a b a b a b a ++=⎪⎭⎫ ⎝⎛++=+454141≥9425=⋅+a b b a . 当且仅当a b b a =4,即32,31==b a 时,等号成立.此时41923231<=⨯=m ,符合题意. ∴ba 41+的最小值为9. 例8. 解关于x 的不等式02>-x ax (0≠a ).分析 本题考查含有参数的一元二次不等式的解法.当二次项系数含有参数时,要对二次项系数的正负进行讨论(一元二次不等式解集的结构与二次项系数的符号有关).解: ∵02>-x ax ,∴()01>-ax x∴01>⎪⎭⎫ ⎝⎛-a x ax .∵0≠a ,∴分为两种情况:①当0>a 时,原不等式的解集为⎭⎬⎫⎩⎨⎧<>01x a x x 或;②当0<a 时,原不等式的解集为⎭⎬⎫⎩⎨⎧<<01x a x . 综上所述,当当0>a 时,原不等式的解集为⎭⎬⎫⎩⎨⎧<>01x a x x 或,当0<a 时,原不等式的解集为⎭⎬⎫⎩⎨⎧<<01x a x .另解: 解方程02=-x ax (0≠a )得:ax x 1,121==. 分为两种情况:①当0>a 时,原不等式的解集为⎭⎬⎫⎩⎨⎧<>01x a x x 或; ②当0<a 时,原不等式的解集为⎭⎬⎫⎩⎨⎧<<01x a x . 综上所述,当当0>a 时,原不等式的解集为⎭⎬⎫⎩⎨⎧<>01x a x x 或,当0<a 时,原不等式的解集为⎭⎬⎫⎩⎨⎧<<01x a x . 点评 不等式02>-x ax (0≠a )可化为01>⎪⎭⎫⎝⎛-a x ax .当0>a 时,根据不等式的性质可知,原不等式同解于不等式01>⎪⎭⎫⎝⎛-a x x ;当0<a 时,原不等式同解于不等式01<⎪⎭⎫⎝⎛-a x x .例9. 若对于0>∀x ,132++x x x≤a 恒成立,则实数a 的取值范围是 【 】 (A )⎭⎬⎫⎩⎨⎧≥31a a (B )⎭⎬⎫⎩⎨⎧>31a a (C )⎭⎬⎫⎩⎨⎧>51a a (D )⎭⎬⎫⎩⎨⎧≥51a a . 解: ∵132++x x x≤a 恒成立 ∴只需a ≥max213⎪⎭⎫ ⎝⎛++x x x 即可. ∵0>∀x ∴311132++=++x x x x x≤513121=+⋅xx . 当且仅当xx 1=,即1=x 时,等号成立. ∴5113max 2=⎪⎭⎫ ⎝⎛++x x x . ∴a ≥51,即实数a 的取值范围是⎭⎬⎫⎩⎨⎧≥51a a .∴选择答案【 D 】.例10.(1)若关于x 的不等式0232>+-x ax (∈a R )的解集为{}b x x x ><或1(∈b R ),求b a ,的值;(2)解关于x 的不等式ax x ax ->+-5232(∈a R ).解:(1)由题意可知:0>a .一元二次方程0232=+-x ax 的根为b x x ==21,1.由根与系数的关系定理可得:⎪⎪⎩⎪⎪⎨⎧⨯=+=baba1213,解之得:⎩⎨⎧==21b a .∴a 的值为1,b 的值为2;(2)∵ax x ax ->+-5232(∈a R ) ∴()0332>--+x a ax .当0=a 时,原不等式为523>+-x ,解之得:1-<x . ∴原不等式的解集为{}1-<x x ;当0≠a 时,原不等式可化为()031>⎪⎭⎫ ⎝⎛-+a x x a . ①若0>a ,则原不等式的解集为⎭⎬⎫⎩⎨⎧-<>13x a x x 或; ②若03<<-a 时,原不等式同解于()031<⎪⎭⎫ ⎝⎛-+a x x ,且13-<a ∴原不等式的解集为⎭⎬⎫⎩⎨⎧-<<13x a x ; ③若3-=a ,原不等式为()0132<+x ,其解集为∅;④若3-<a ,则13->a ,则原不等式的解集为⎭⎬⎫⎩⎨⎧<<-a x x 31. 综上所述,当0=a 时, 原不等式的解集为{}1-<x x ;当0>a 时,原不等式的解集为⎭⎬⎫⎩⎨⎧-<>13x a x x 或;当03<<-a 时,原不等式的解集为⎭⎬⎫⎩⎨⎧-<<13x a x ; 当3-=a 时,原不等式的解集为∅; 当3-<a 时,原不等式的解集为⎭⎬⎫⎩⎨⎧<<-a x x 31. 例11.已知关于x 的不等式08322<-+kx kx . (1)若不等式的解集为⎭⎬⎫⎩⎨⎧<<-123x x ,求实数k 的值;(2)若不等式08322<-+kx kx 恒成立,求实数k 的取值范围. 解:(1)由题意可知:0>k .一元二次方程08322=-+kx kx 的根是1,2321=-=x x . 由根与系数的关系定理:123283⨯-=-k ,解之得:81=k .∴实数k 的值为81;(2)当0=k 时,083<-恒成立,符合题意;当0≠k 时,由题意可知:⎪⎩⎪⎨⎧<⎪⎭⎫ ⎝⎛-⨯⨯-=∆<08324022k k k ,解之得:03<<-k . 综上所述,实数k 的取值范围为{}03≤<-k k .例12. 若∀1≤x ≤4,不等式()422++-x a x ≥1--a 恒成立,求实数a 的取值范围.分析 本题考查一元二次不等式在给定闭区间上的恒成立问题,要把问题转化为相应二次函数在闭区间上的最值问题.解: ∵()422++-x a x ≥1--a∴()1-x a ≤522+-x x . ∵1≤x ≤4∴当1=x 时,显然0⨯a ≤4521=+-成立,∴∈a R ; 当x <1≤4时,01>-x∴a ≤1522-+-x x x 恒成立,只需a ≤min2152⎪⎭⎫⎝⎛-+-x x x 即可.∵()14114115222-+-=-+-=-+-x x x x x x x ≥()41412=-⋅-x x . 当且仅当141-=-x x ,即3=x 时,等号成立.此时3=x []4,1∈,符合题意.∴a ≤4.综上所述,实数a 的取值范围是(]4,∞-. 例13. 已知不等式012<--mx mx .(1)当∈x R 时不等式恒成立,求实数m 的取值范围; (2)当∈x {}31≤≤x x 时不等式恒成立,求实数m 的取值范围.解:(1)当0=m 时,01<-恒成立,符合题意;当0≠m 时,则有⎩⎨⎧<+=∆<0402m m m ,解之得:04<<-m . 综上,实数m 的取值范围是(]0,4-;(2)当0=m 时,显然∈x {}31≤≤x x 时,01<-恒成立,符合题意; 当0≠m 时,()11<-x mx .若1=x ,显然10<恒成立,此时∈m R ; 若x <1≤3,则()01>-x x ∴()11-<x x m 恒成立,只需()min11⎥⎦⎤⎢⎣⎡-<x x m 即可. ∵()4121111122-⎪⎭⎫ ⎝⎛-=-=-x x x x x ≥614121312=-⎪⎭⎫ ⎝⎛- ∴()6111min=⎥⎦⎤⎢⎣⎡-<x x m . 综上所述,实数m 的取值范围为⎪⎭⎫⎝⎛∞-61,.例14. 解关于x 的不等式()m x m mx --+122≥0.解: 当0=m 时,x -≥0,解之得:x ≤0.∴原不等式的解集为{}0≤x x ;当0≠m 时,原不等式可化为()()m x mx +-1≥0∴()[]m x m x m --⎪⎭⎫⎝⎛-1≥0.方程()m x m mx --+122的两个实数根分别为m x mx -==21,1. 当0>m 时,原不等式的解集为⎭⎬⎫⎩⎨⎧-≤≥m x m x x 或1; 当0<m 时,原不等式同解于()[]m x m x --⎪⎭⎫ ⎝⎛-1≤0,且m m -<1. ∴原不等式的解集为⎭⎬⎫⎩⎨⎧-≤≤m m m x 1. 综上所述,当0=m 时,原不等式的解集为{}0≤x x ;当0>m 时,原不等式的解集为⎭⎬⎫⎩⎨⎧-≤≥m x m x x 或1;当0<m 时,原不等式的解集为⎭⎬⎫⎩⎨⎧-≤≤m m m x 1. 例15. 已知关于x 的不等式222->-x kx kx . (1)当2=k 时,解不等式; (2)当∈k R 时,解不等式.解:(1)当2=k 时,2422->-x x x∴02522>+-x x ∴()()0212>--x x . 解之得:2>x 或21<x . ∴原不等式的解集为⎭⎬⎫⎩⎨⎧<>212x x x 或;(2)原不等式可化为()02122>++-x k kx . 当0=k 时,02>+-x ,解之得:2<x . ∴原不等式的解集为{}2<x x ;当0≠k 时,原不等式可化为()()012>--kx x∴()012>⎪⎭⎫⎝⎛--k x x k .方程222->-x kx kx 的根为kx x 1,221==. 当0<k 时,原不等式同解于()012<⎪⎭⎫ ⎝⎛--k x x ,且21<k .∴原不等式的解集为⎭⎬⎫⎩⎨⎧<<21x k x ; 当0>k 时,原不等式同解于()012>⎪⎭⎫⎝⎛--k x x .①若21>k ,则21<k ,∴原不等式的解集为⎭⎬⎫⎩⎨⎧<>k x x x 12或; ②若21=k ,则21=k,∴原不等式的解集为{}2≠x x ; ③若210<<k ,则21>k ,∴原不等式的解集为⎭⎬⎫⎩⎨⎧<>21x k x x 或.综上所述,当0=k 时,原不等式的解集为{}2<x x ;当0<k 时,原不等式的解集为⎭⎬⎫⎩⎨⎧<<21x k x ; 当210<<k 时,原不等式的解集为⎭⎬⎫⎩⎨⎧<>21x k x x 或;当21=k 时,原不等式的解集为{}2≠x x ; 当21>k 时,原不等式的解集为⎭⎬⎫⎩⎨⎧<>k x x x 12或.例16. 已知关于x 的不等式0622<+-k x kx .(1)若不等式的解集为{}23->-<x x x 或,求实数k 的取值; (2)若不等式的解集为R ,求实数k 的取值范围.解:(1)由题意可知:0<k .一元二次方程0622=+-k x kx 的两个实数根分别为2,321-=-=x x .由根与系数的关系定理可得:232--=--k ,解之得:52-=k . ∴实数k 的值为52-;(2)当0=k 时,原不等式的解集为{}0>x x ,不符合题意;当0≠k 时,则有:⎩⎨⎧<-=∆<024402k k ,解之得:66-<k . 综上所述,实数k 的取值范围是⎭⎬⎫⎩⎨⎧-<66k k .例17. 已知122++ax ax ≥0恒成立,解关于x 的不等式022<+--a a x x .解:∵122++ax ax ≥0恒成立∴当0=a 时,1≥0恒成立,符合题意;当0≠a 时,则有:⎩⎨⎧≤-=∆>04402a a a ,解之得:a <0≤1. 综上,实数a 的取值范围是[]1,0. 对于不等式022<+--a a x x当0≤a ≤1时,原不等式可化为()()01<-+-a x a x∴()()[]01<---a x a x ,方程022=+--a a x x 的根为a x a x -==1,21.①若a <21≤1,则a a ->1,∴原不等式的解集为{}a x a x <<-1; ②若21=a ,则a a -=1,∴原不等式的解集为∅;③若210<<a ,则a a -<1,∴原不等式的解集为{}a x a x -<<1.综上所述,对于不等式022<+--a a x x :当a <21≤1时,不等式的解集为{}a x a x <<-1; 当21=a 时,不等式的解集为∅;当0≤21<a 时,不等式的解集为{}a x a x -<<1.例18. 不等式()()xa c xb x -++≤0的解集为{}321≥<≤-x x x 或,则=+c b 【 】(A )5- (B )2- (C )1 (D )3解: 原不等式可化为()()ax c x b x -++≥0,同解于()()()⎩⎨⎧≠-≥++-00a x c xb x a x .方程()()0=-++ax c x b x 的解为c x b x -=-=21,.∵该不等式的解集为{}321≥<≤-x x x 或∴2=a ,⎩⎨⎧=--=-31c b 或⎩⎨⎧-=-=-13c b ,∴⎩⎨⎧-==31c b 或⎩⎨⎧=-=13c b .∴2-=+c b . ∴选择答案【 B 】.例19. 已知函数b ax x y +=2(b a ,为常数),且方程012=+-x y 的两个根为31=x ,42=x .(1)求b a ,的值;(2)设1>k ,解关于x 的不等式()xkx k y --+<21.解:(1)由题意可得:⎪⎪⎩⎪⎪⎨⎧=+-+=+-+0124416012339b a b a ,整理得:⎪⎪⎩⎪⎪⎨⎧-=+-=+142131ba ba ,解之得:⎩⎨⎧=-=21b a . ∴a 的值为1-,b 的值为2;(2)由(1)可知:xx y -=22.∵()x kx k y --+<21,∴()xkx k x x --+<-2122. ∴()()()021212<---=-++-xk x x x k x k x . 原不等式同解于()()()021>---k x x x .∵1>k∴当21<<k 时,原不等式的解集为{}21><<x k x x 或; 当2=k 时,()()0212>--x x ,原不等式的解集为{}21≠>x x x 且;当2>k 时,原不等式的解集为{}k x x x ><<或21.综上所述,当21<<k 时,原不等式的解集为{}21><<x k x x 或;当2=k 时,原不等式的解集为{}21≠>x x x 且;当2>k 时,原不等式的解集为{}k x x x ><<或21.例20. 已知集合()()[]{}0132<+--=a x x x A ,()⎭⎬⎫⎩⎨⎧<+--=012a x a x x B . (1)当2=a 时,求B A ;(2)若A B ⊆,求实数a 的取值范围.解:(1)当2=a 时∵()(){}{}72072<<=<--=x x x x x A ,{}52052<<=⎭⎬⎫⎩⎨⎧<--=x x x x x B∴{}52<<=x x B A ;(2)∵∈∀a R ,恒有a a >+12,()()()[]{}010122<+--=⎭⎬⎫⎩⎨⎧<+--=a x a x x a x a x x B ∴{}12+<<=a x a x B . 当213>+a ,即31>a 时,{}132+<<=a x x A . ∵A B ⊆,∴⎩⎨⎧+≤+≥13122a a a ,解之得: 2≤a ≤3.∴实数a 的取值范围是[]3,2;当213=+a ,即31=a 时,(){}∅=<-=022x x A ,显然不符合题意; 当213<+a ,即31<a 时,{}213<<+=x a x A .∵A B ⊆,∴⎩⎨⎧≤+≤+21132a aa ,解之得: 1-≤a ≤21-.∴实数a 的取值范围是⎥⎦⎤⎢⎣⎡--21,1. 综上所述,实数a 的取值范围是[]3,221,1 ⎥⎦⎤⎢⎣⎡--. 例21. 已知不等式442-+>+m x mx x .(1)若对任意实数x 不等式恒成立,求实数m 的取值范围; (2)若对于0≤m ≤4不等式恒成立,求实数x 的取值范围.解:(1)∵442-+>+m x mx x∴()0442>-+-+m x m x . ∵对任意实数x 不等式恒成立∴()()04442<---=∆m m ,解之得: 40<<m .∴实数m 的取值范围是()4,0; (2)∵442-+>+m x mx x ∴()04412>+-+-x x m x . ∵对[]4,0∈∀m ,不等式恒成立∴()()⎩⎨⎧>+-+⨯->+-+⨯-044410440122x x x x x x ,解之得:0≠x 且2≠x . ∴实数x 的取值范围是{}2200><<<x x x x 或或.点评 解决恒成立问题时一定要清楚谁是主元,谁是参数.一般情况下,知道谁的范围,就选谁当主元,求谁的范围,谁就是参数,构造以主元为变量的函数,根据主元的取值范围求解.例22. 设()12--=mx mx x f ,求使()0<x f ,且m ≤1恒成立的x 的取值范围.解: ∵()0<x f ,m ≤1,∴012<--mx mx ,[]1,1-∈m .∴()012<--m x x 对[]1,1-∈m 恒成立. 设()()12--=m x x m g ,则有:()()()()()⎩⎨⎧<-⨯-=<--⨯-=-0111011122x x g x x g ,解之得:251251+<<-x .∴实数x 的取值范围是⎪⎪⎭⎫⎝⎛+-251,251.重要结论 一次函数()b kx x f +=()0≠k 在区间[]n m ,上的恒成立问题:(1)若()0>x f 恒成立,则()()⎩⎨⎧>>00n f m f ;(2)若()0<x f 恒成立,则()()⎩⎨⎧<<0n f m f .例23. 设函数()12--=mx mx x f ()0≠m ,若对于[]3,1∈x ,()5+-<m x f 恒成立,求m 的取值范围.解: ∵()5+-<m x f 在[]3,1∈x 上恒成立∴062<-+-m mx mx 在[]3,1∈x 上恒成立. 令()62-+-=m mx mx x g ,只需()0max <x g 即可. 函数()x g 图象的对称轴为直线212=--=m m x . 当0>m 时,()x g 在[]3,1上单调递增 ∴()()0673max <-==m g x g ,解之得:76<m . ∴760<<m ; 当0<m 时,()x g 在[]3,1上单调递减 ∴()()061max <-==m g x g ,解之得:0<m .综上所述,m 的取值范围是⎭⎬⎫⎩⎨⎧<<<7600m m m 或.另解: ∵062<-+-m mx mx 在[]3,1∈x 上恒成立∴()612<+-x x m 在[]3,1∈x 上恒成立.∵04321122>+⎪⎭⎫ ⎝⎛-=+-x x x ∴162+-<x x m 在[]3,1∈x 上恒成立.只需761336162min 2=+-=⎪⎭⎫ ⎝⎛+-<x x m 即可. ∵0≠m∴m 的取值范围是⎭⎬⎫⎩⎨⎧<<<7600m m m 或. 例24. 已知集合{}042≤-=t t A ,对于任意的A t ∈,使不等式122->-+x t tx x 恒成立的x 的取值范围是_____________.解: {}{}22042≤≤-=≤-=t t t t A .∵当A t ∈时,不等式122->-+x t tx x 恒成立 ∴()01212>+-+-x x t x 恒成立. 设()()1212+-+-=x x t x t f ,则有:()()⎩⎨⎧>-=>+-=-012034222x f x x f ,解之得:1-<x 或3>x . ∴x 的取值范围是{}31>-<x x x 或.例25. 对一切实数x ,不等式12++x a x ≥0恒成立,则实数a 的取值范围是_____________.解: 当0=x 时,显然对∈∀a R 成立;当0≠x 时,a ≥⎪⎭⎫ ⎝⎛+-=--=--x x x x x x 1112,只需a ≥max 1⎪⎭⎫ ⎝⎛+-x x 即可.∵⎪⎭⎫ ⎝⎛+-x x 1≤212-=⋅-x x∴21max -=⎪⎭⎫ ⎝⎛+-x x ,∴a ≥2-.∴实数a 的取值范围是[)+∞-,2.例26. 已知0,0>>y x ,且()()()144152++--+y x m y x ≥0恒成立,则实数m 的取值范围是_____________.解: ∵0,0>>y x ,∴0>+y x .∵()()()144152++--+y x m y x ≥0恒成立∴15-m ≤()y x y x yx y x +++=+++1441442恒成立,只需15-m ≤min144⎪⎭⎫ ⎝⎛+++y x y x 即可. ∵y x y x +++144≥()241442=+⋅+yx y x (当且仅当12=+y x 时,等号成立) ∴24144min =⎪⎭⎫ ⎝⎛+++y x y x ,∴15-m ≤24,解之得:m ≤5.∴实数m 的取值范围是(]5,∞-. 例27. 已知61>k ,对任意正实数y x ,,不等式ky x k +⎪⎭⎫ ⎝⎛-213≥xy 2恒成立,求实数k 的取值范围.解: ∵61>k ,∴0213>-k . ∴ky x k +⎪⎭⎫ ⎝⎛-213≥xy k k ky x k ⎪⎭⎫⎝⎛-=⋅⎪⎭⎫ ⎝⎛-213221322.当且仅当ky x k =⎪⎭⎫⎝⎛-213,即x kk y 213-=时,等号成立.∴ky x k +⎪⎭⎫ ⎝⎛-213的最小值为xy k k ⎪⎭⎫⎝⎛-21322∵不等式ky x k +⎪⎭⎫⎝⎛-213≥xy 2恒成立∴xy k k ⎪⎭⎫ ⎝⎛-21322≥xy 2∴xy k k ⎪⎭⎫ ⎝⎛-21342≥xy 2,解之得:k ≥21.∴实数k 的取值范围是⎪⎭⎫⎢⎣⎡+∞,21.例28. 若关于x 的不等式()()0121122>+++-+-x x x k x k 的解集为R ,则实数k 的取值范围是_____________.解: ∵04321122>+⎪⎭⎫ ⎝⎛+=++x x x 在R 上恒成立 ∴原不等式同解于不等式()()02112>+-+-x k x k ,其解集为R 当1=k 时,02> 在R 上恒成立,符合题意;当1≠k 时,则有:()()⎩⎨⎧<---=∆>-0181012k k k ,解之得:91<<k . 综上所述,实数k 的取值范围是[)9,1.例29.(1)解关于x 的不等式()422++-x a x ≤a 24-(∈a R );(2)若x <1≤4时,不等式()422++-x a x ≥1--a 恒成立,求实数a 的取值范围.解:(1)∵()422++-x a x ≤a 24-∴()()a x x --2≤0.当2>a 时,原不等式的解集为{}a x x ≤≤2; 当2=a 时,()22-x ≤0,原不等式的解集为{}2=x x ;当2<a 时,原不等式的解集为{}2≤≤x a x .综上所述,当当2>a 时,原不等式的解集为{}a x x ≤≤2;当2=a 时,()22-x ≤0,原不等式的解集为{}2=x x ;当2<a 时,原不等式的解集为{}2≤≤x a x . (2)由题意可知,当(]4,1∈x 时,不等式()5212+---x x a x ≥0恒成立.∴当(]4,1∈x 时,a ≤1522-+-x x x 恒成立,只需a ≤min2152⎪⎭⎫⎝⎛-+-x x x 即可.∵(]4,1∈x ,∴()14114115222-+-=-+-=-+-x x x x x x x ≥()41412=-⋅-x x . 当且仅当141-=-x x ,即3=x 时,等号成立.∴4152min 2=⎪⎭⎫ ⎝⎛-+-x x x .∴a ≤4,即实数a 的取值范围为(]4,∞-.例30.(1)已知命题∈∀x p :R ,a x x +-22≥0,命题∈∃x q :R ,0122=-++a x x ,若p 为真命题,q 为假命题,求实数a 的取值范围;(2)已知a ≥21,二次函数c ax x a y ++-=22,其中c a ,均为实数,证明对任意x (0≤x ≤1),均有y ≤1成立的充要条件是c ≤43.解:(1)∵命题∈∀x p :R ,a x x +-22≥0为真命题∴()a a 44422-=--=∆≤0,解之得: a ≥1.∵命题∈∃x q :R ,0122=-++a x x 为假命题 ∴⌝q :∈∀x R ,0122≠-++a x x 为真命题. ∴()01241<--=∆a ,解之得:85>a . ∴实数a 的取值范围是[)+∞,1;(2)证明: 二次函数c ax x a y ++-=22图象的对称轴为直线aa a x 2122=--=. ∵a ≥21,∴a210<≤1. ∵[]1,0∈∀x ,02<-a∴函数c ax x a y ++-=22的最大值在顶点处取得,即4144222max +=---=c a a c a y . 充分性: ∵c ≤43,∴41+c ≤14143=+,即max y ≤1. ∴y ≤1;必要性: ∵[]1,0∈∀x ,均有y ≤1成立. ∴max y ≤1,即41+c ≤1,解之得: c ≤43. 综上所述, 对任意x (0≤x ≤1),均有y ≤1成立的充要条件是c ≤43.例31.已知关于x 的不等式222++-m mx x ≤0(∈m R )的解集为M . (1)当M 为空集时,求m 的取值范围;(2)在(1)的条件下,求1522+++m m m 的最小值;(3)当M 不为空集,且{}41≤≤⊆x x M 时,求实数m 的取值范围.解:(1)∵不等式222++-m mx x ≤0(∈m R )的解集为M 为空集∴()()084424222<--=+--=∆m m m m ,解之得:21<<-m .∴m 的取值范围是{}21<<-m m ;(2)由(1)可知: 21<<-m ,∴310<+<m .∴()14114115222+++=+++=+++m m m m m m m ≥()41412=+⋅+m m . 当且仅当141+=+m m ,即1=m 时,等号成立. ∴1522+++m m m 的最小值为4;(3)由题意可知,方程0222=++-m mx x 的两个实数根均在[]4,1内 设()222++-=m mx x x f ,则有:()()()()⎪⎪⎪⎩⎪⎪⎪⎨⎧≤--≤≥++-=≥++-=≥+--=∆42210281640221102422m m m f m m f m m ,解之得: 2≤m ≤718. ∴实数m 的取值范围是⎥⎦⎤⎢⎣⎡718,2. 例32. 当10<<x 时,若关于x 的二次方程m mx x 2122-=++有两个不相等的实数根,求实数m 的取值范围.分析 本题考查的是一元二次方程的K 分布:两根均在()21,k k 内. 解: ∵m mx x 2122-=++∴01222=+++m mx x . 设()1222+++=m mx x x f .∵该方程在()1,0内有两个不相等的实数根∴()()()()⎪⎪⎪⎩⎪⎪⎪⎨⎧>+++=>+=<-<>+-=∆01221101201220012422m m f m f m m m ,解之得:2121-<<-m . ∴实数m 的取值范围是⎪⎭⎫ ⎝⎛--21,21.重要结论 一元二次方程的实数根的K 分布:一元二次方程02=++c bx ax (0>a )的两个实数根分别为21,x x ,且21x x <.(1)若k x x <<21,则有:()⎪⎪⎩⎪⎪⎨⎧><->∆020k f k a b; (2)若21x x k <<,则有:()⎪⎪⎩⎪⎪⎨⎧>>->∆020k f k a b; (3)若21x k x <<,则有:()0<k f ;(4)若2211k x x k <<<,即两根21,x x 在()21,k k 内,则有:()()⎪⎪⎩⎪⎪⎨⎧>><-<>∆00202121k f k f k a b k(5)若11k x <,且22k x >(21k k <),则有:()()⎩⎨⎧<<021k f k f ; (6)()()212211,,,k k x k k x ∈∈中只有一个成立,即方程只有一个实数根在()21,k k 内,则有:()()021<k f k f或⎪⎩⎪⎨⎧<-<=∆2120k ab k . 例33. 已知二次函数1222-+-=t tx x y (∈t R ).(1)若该二次函数有两个互为相反数的零点,解不等式1222-+-t tx x ≥0; (2)若关于x 的方程01222=-+-t tx x 的两个实数根均大于2-且小于4,求实数t 的取值范围.解:(1)∵二次函数1222-+-=t tx x y 有两个互为相反数的零点∴方程01222=-+-t tx x 有两个互为相反数的实数根,设为21,x x ,∴021=+x x . 由根与系数的关系定理可得:0221==+t x x ,解之得:0=t .∵1222-+-t tx x ≥0∴12-x ≥0,解之得:x ≥1或x ≤1-. ∴该不等式的解集为{}11-≤≥x x x 或;(2)∵()()044441422222>=+-=---=∆t t t t∴∈∀t R ,该方程总有两个不相等的实数根. ∵方程的两个实数根均大于2-且小于4∴()()⎪⎪⎩⎪⎪⎨⎧>+-=>++=-<--<-015840342422222t t f t t f t ,解之得:31<<-t .∴实数t 的取值范围是()3,1-. 例34. 已知二次函数12+-=bx ax y .(1)是否存在实数b a ,,使不等式012>+-bx ax 的解集是{}21<<x x ?若存在,求实数b a ,的值,若不存在,请说明理由;(2)若a 为整数,2+=a b ,且方程012=+-bx ax 在{}12-<<-∈x x x 上恰有一个实数根,求a 的值.解:(1)假设存在这样的实数b a ,.∵不等式012>+-bx ax 的解集是{}21<<x x ∴0<a ,方程012=+-bx ax 的两个实数根分别为2,1. 由根与系数的关系定理可得:⎪⎪⎩⎪⎪⎨⎧⨯=+=--21121aa b ,解之得:⎪⎪⎩⎪⎪⎨⎧==2321b a . ∵021>=a ,与0<a 矛盾 ∴不存在这样的实数b a ,,使不等式012>+-bx ax 的解集是{}21<<x x ; (2)∵2+=a b ∴()0122=++-x a ax .∵()[]()0314242222>+-=+-=-+-=∆a a a a a∴方程()0122=++-x a ax 总有两个不相等的实数根.∵方程()0122=++-x a ax 在{}12-<<-∈x x x 上恰有一个实数根 ∴()()[]()[]0121122222<+++-⨯⨯+++-⨯a a a a整理得:()()03256<++a a ,解之得:6523-<<-a . ∵a 为整数 ∴a 的值为1-.例35. 已知不等式052>+-b ax x 的解集为{}14<>x x x 或. (1)求实数b a ,的值; (2)若10<<x ,()xbx a x f -+=1,求函数()x f 的最小值. 分析 (1)一元二次不等式的解的结构与二次项系数的符号有关,且一元二次不等式解集的端点值就是其对应的一元二次方程的两个实数根;(2)注意到()11=-+x x ,且01,10>-<<x x ,考虑利用基本不等式求函数()x f 的最小值.解:(1)∵不等式052>+-b ax x 的解集为{}14<>x x x 或∴方程052=+-b ax x 的两个实数根分别4和1. 由根与系数的关系定理可得:⎩⎨⎧⨯=+=14145b a ,解之得:⎩⎨⎧==41b a . ∴a 的值为1,b 的值为4; (2)由(1)可知:4,1==b a . ∴()xx x f -+=141. ∵10<<x ,∴01>-x . ∴()()[]x x x x x x x x x x x f -+-+=⎪⎭⎫ ⎝⎛-+-+=-+=11451411141 ≥911425=-⋅-+xxx x . 当且仅当x x x x -=-114,即31=x 时,等号成立. ∴函数()x f 的最小值为9.。

二次函数与一元二次方程、不等式知识点总结与例题讲解

二次函数与一元二次方程、不等式知识点总结与例题讲解

二次函数与一元二次方程、不等式知识点总结与例题讲解一、本节知识点(1)一元二次不等式的概念. (2)三个二次的关系. (3)一元二次不等式的解法. 知识点拓展:(4)分式不等式的解法. (5)高次不等式的解法. 二、本节题型(1)解不含参数的一元二次不等式. (2)解含参数的一元二次不等式. (3)三个二次之间的关系.(4)简单高次不等式、分式不等式的解法. (5)不等式恒成立问题. (6)一元二次不等式的应用. 三、知识点讲解.知识点 一元二次不等式的概念我们把只含有1个未知数,并且未知数的最高次数是2的不等式,称为一元二次不等式.即形如02>++c bx ax (≥0)或02<++c bx ax (≤0)(其中0≠a )的不等式叫做一元二次不等式.元二次不等式的解与解集使一元二次不等式成立的x 的值,叫做这个一元二次不等式的解,其解的集合,叫做这个一元二次不等式的解集.注意 一元二次不等式的解集要写成集合或区间的形式. 知识点 三个二次的关系一元二次不等式的解集、一元二次方程的解以及二次函数的图象之间有着紧密的联系.一元二次方程()002≠=++a c bx ax 与二次函数()002≠=++=a c bx ax y 的关系是:(1)当ac b 42-=∆≥0时,一元二次方程()002≠=++a c bx ax 有实数根,二次函数()002≠=++=a c bx ax y 的图象与x 轴有交点,且方程的解是交点的横坐标,交点的横坐标亦是方程的解;①当0>∆时,一元二次方程()002≠=++a c bx ax 有两个不相等的实数根,二次函数()002≠=++=a c bx ax y 的图象与x 轴有两个不同的交点;②当0=∆时,一元二次方程()002≠=++a c bx ax 有两个相等的实数根,二次函数()002≠=++=a c bx ax y 的图象与x 轴只有一个交点(即抛物线的顶点).(2)当042<-=∆ac b 时,一元二次方程()002≠=++a c bx ax 无实数根,二次函数()002≠=++=a c bx ax y 的图象与x 轴没有交点.具体关系见下页表(1)所示.一元二次不等式与二次函数()002≠=++=a c bx ax y 的关系是:(1)一元二次不等式02>++c bx ax (≥0)的解集就是二次函数()002≠=++=a c bx ax y 的图象位于x 轴上方(包括x 轴)的部分所对应的自变量的取值范围;(2)一元二次不等式02<++c bx ax (≤0)的解集就是二次函数()002≠=++=a c bx ax y 的图象位于x 轴下方(包括x 轴)的部分所对应的自变量的取值范围.由表可知 一元二次不等式的解集的端点值就是对应的一元二次方程的解. 知识点 一元二次不等式的解法解一元二次不等式的一般步骤是:(1)利用不等式的性质,将二次项系数化为正数; (2)计算ac b 42-=∆的值,并判断∆的符号; (3)当∆≥0时,求出相应的一元二次方程的根; (4)画出对应的二次函数的简图;(5)根据一元二次不等式的形式,结合简图,写出其解集.注意 一元二次不等式的解集结构与二次项系数的符号有着直接的关系.其中,①当0>∆时,一元二次不等式()002>>++a c bx ax 的解集在“两根之外”,即“大于大根或小于小根”;一元二次不等式()002><++a c bx ax 的解集在“两根之内”,即“大于小根且小于大根”,简记为“大于0取两边,小于0取中间”;②当0=∆时,一元二次不等式()002>>++a c bx ax 的解集为⎭⎬⎫⎩⎨⎧-≠a b x x 2;一元二次不等式()002><++a c bx ax 的解集为∅;③当0<∆时,一元二次不等式()002>>++a c bx ax 的解集为R ;一元二次不等式()002><++a c bx ax 的解集为∅.表(1)一元二次方程、二次函数以及一元二次不等式的关系:一元二次不等式在R 上恒成立的问题(1)02>++c bx ax 在R 上恒成立,则有:⎩⎨⎧<-=∆>0402ac b a 或⎩⎨⎧>==00c b a ; (2)02<++c bx ax 在R 上恒成立,则有:⎩⎨⎧<-=∆<0402ac b a 或⎩⎨⎧<==00c b a ;(3)一元二次不等式c bx ax ++2≥0在R 上恒成立,则有:⎩⎨⎧≤-=∆>0402ac b a ; (4)一元二次不等式c bx ax ++2≤0在R 上恒成立,则有:⎩⎨⎧≤-=∆<0402ac b a . 补充概念 二次函数的零点我们把使一元二次方程02=++c bx ax 的实数x 叫做二次函数c bx ax y ++=2的零点. 对零点的理解(1)二次函数的零点即相应一元二次方程02=++c bx ax 的实数根;(2)根据数形结合,二次函数的零点,即二次函数的图象与x 轴的交点的横坐标,且交点的个数等于零点的个数;(3)并非所有的二次函数都有零点.当ac b 42-=∆≥0时,一元二次方程有实数根,相应二次函数存在零点.知识点 分式不等式的解法 分式不等式的概念分母中含有未知数的不等式叫做分式不等式.利用不等式的性质,可将分式不等式化为以下标准形式: ①0)()(>x g x f ; ②)()(x g x f ≥0; ③0)()(<x g x f ; ④)()(x g x f ≤0. 分式不等式的解法解分式不等式的思路是把其转化为整式不等式求解.解分式不等式时,要先把分式不等式转化为标准形式. 各标准形式的分式不等式的解法为: (1)0)()(>x g x f 与不等式组⎩⎨⎧>>0)(0)(x g x f 或⎩⎨⎧<<0)(0)(x g x f 同解,与不等式0)()(>⋅x g x f 同解; (2))()(x g x f ≥0与不等式组⎩⎨⎧≠≥⋅0)(0)()(x g x g x f 同解;(3)0)()(<x g x f 与不等式组⎩⎨⎧<>0)(0)(x g x f 或⎩⎨⎧><0)(0)(x g x f 同解,与不等式0)()(<⋅x g x f 同解;(4))()(x g x f ≤0与不等式组⎩⎨⎧≠≤⋅0)(0)()(x g x g x f .由以上解法可以看出:将分式不等式转化为标准形式后,再将其转化为不等式组或同解整式不等式进行求解.知识点 高次不等式的解法解高次不等式,一般用“数轴标根法”,也叫“穿根引线法”,其步骤如下:(1)把高次不等式化为左边是几个因式的乘积,右边是0的形式,注意每个因式最高次项的系数必须为正;(2)把不等号换成等号,求出所得方程的所有实数根; (3)标根: 把各个实数根在数轴上标出;(4)画穿根线: 从“最右根”的右上方穿过根,往左下画线,然后又穿过“次右根”上去,如此一上一下依次穿过各根.但要注意偶次根不穿过,即奇过偶不过;(5)写出解集: 若不等号为“ > ”,则取数轴上方穿根线以内的范围;若不等号为“ < ”,则取数轴下方穿根线以内的范围.四、例题讲解例1. 解不等式0452>-+-x x .分析 先把不等式的二次项系数化为正数,再进行求解.注意不等式的解集要写成区间或集合的形式.解: 原不等式可化为:0452<+-x x .对于方程0452=+-x x ,∵()0941452>=⨯⨯--=∆∴该方程有两个不相等的实数根,解之得:4,121==x x . ∴不等式0452>-+-x x 的解集为{}41<<x x .点评 在求解一元二次不等式时,先观察二次项系数是否为正,若为负,则先把不等式的二次项系数化为正数(利用不等式的基本性质).例2. 已知关于x 的不等式022>++c x ax 的解集为⎭⎬⎫⎩⎨⎧<<-2131x x ,求不等式022>-+-a x cx 的解集.分析 先根据一元二次不等式与相应一元二次方程之间的关系,利用根与系数的关系定理,求出c a ,的值.注意 一元二次不等式的解集的端点值是对应一元二次方程的根. 解: 由题意可知:0<a .∵关于x 的不等式022>++c x ax 的解集为⎭⎬⎫⎩⎨⎧<<-2131x x ∴21,3121=-=x x 是方程022=++c x ax 的两个实数根由根与系数的关系定理可得:⎪⎪⎩⎪⎪⎨⎧⨯-=+-=-213121312a c a ,解之得:⎩⎨⎧=-=212c a . ∴022>-+-a x cx 即012222>++-x x ∴062<--x x ,解之得:32<<-x .∴不等式022>-+-a x cx 的解集为{}32<<-x x .例3. 一元二次不等式()()052>-+x x 的解集为 【 】 (A ){}52>-<x x x 或 (B ){}25>-<x x x 或 (C ){}52<<-x x (D ){}25<<-x x分析 本题可用数轴标根法求解.使用该方法时,要把乘积中所有因式的最高次项的系数化为正数.解: 原不等式可化为:()()052<-+x x .∵方程()()052=-+x x 的根为5,221=-=x x .∴不等式()()052<-+x x 的解集为{}52<<-x x ,即原不等式的解集. ∴选择答案【 C 】.例4. 已知不等式042<++ax x 的解集为空集,则实数a 的取值范围是 【 】 (A ){}44≤≤-a a (B ){}44<<-a a (C ){}44≥-≤a a a 或 (D ){}44>-<a a a 或分析 本题考查一元二次不等式与相应的二次函数之间的关系,同时问题还可以转化为一元二次不等式恒成立的问题.不等式042<++ax x 的解集为空集,即相应的二次函数42++=ax x y 的图象位于x 轴上及其上方,或者不等式42++ax x ≥0在R 上恒成立.解: ∵不等式042<++ax x 的解集为空集∴162-=∆a ≤0,解之得:4-≤a ≤4. ∴实数a 的取值范围是{}44≤≤-a a . ∴选择答案【 A 】.例5. 若关于x 的不等式()()021>--x mx 的解集为⎭⎬⎫⎩⎨⎧<<21x m x ,则实数m 的取值范围是 【 】 (A ){}0>m m (B ){}20<<m m(C )⎭⎬⎫⎩⎨⎧>21m m (D ){}0<m m分析 本题由题意可知:0<m . 解: ∵()()021>--x mx∴()02122>++-x m mx .∵其解集为⎭⎬⎫⎩⎨⎧<<21x m x ∴0<m .∴实数m 的取值范围是{}0>m m . ∴选择答案【 D 】.例6. 已知函数182++=bx ax y 的定义域为[]6,3-,则实数a 的值为_________,实数b 的值为_________.解: ∵函数182++=bx ax y 的定义域为[]6,3-∴一元二次不等式182++bx ax ≥0的解集为[]6,3-. 由根与系数的关系定理可得:⎪⎪⎩⎪⎪⎨⎧⨯-=+-=-631863aab ,解之得:⎩⎨⎧=-=31b a . ∴实数a 的值为1-,实数b 的值为3. 例7. 已知函数m x x y +-=2.(1)当2-=m 时,求不等式0>y 的解集; (2)若0,0<>y m 的解集为{}b x a x <<,,求ba 41+的最小值. 解:(1)2-=m 时,22--=x x y .∵0>y ,∴()()02122>-+=--x x x x 解之得:1-<x 或2>x .∴不等式0>y 的解集为{}21>-<x x x 或;(2)∵02<+-=m x x y 的解集为{}21>-<x x x 或 ∴m ab b a ==+,1,且041>-=∆m ,解之得:41<m . ∵0>m ,∴0,0>>b a ,410<<m . ∴()a b b a b a b a b a ++=⎪⎭⎫ ⎝⎛++=+454141≥9425=⋅+a b b a . 当且仅当a b b a =4,即32,31==b a 时,等号成立.此时41923231<=⨯=m ,符合题意. ∴ba 41+的最小值为9. 例8. 解关于x 的不等式02>-x ax (0≠a ).分析 本题考查含有参数的一元二次不等式的解法.当二次项系数含有参数时,要对二次项系数的正负进行讨论(一元二次不等式解集的结构与二次项系数的符号有关).解: ∵02>-x ax ,∴()01>-ax x∴01>⎪⎭⎫ ⎝⎛-a x ax .∵0≠a ,∴分为两种情况:①当0>a 时,原不等式的解集为⎭⎬⎫⎩⎨⎧<>01x a x x 或;②当0<a 时,原不等式的解集为⎭⎬⎫⎩⎨⎧<<01x a x . 综上所述,当当0>a 时,原不等式的解集为⎭⎬⎫⎩⎨⎧<>01x a x x 或,当0<a 时,原不等式的解集为⎭⎬⎫⎩⎨⎧<<01x a x .另解: 解方程02=-x ax (0≠a )得:ax x 1,121==. 分为两种情况:①当0>a 时,原不等式的解集为⎭⎬⎫⎩⎨⎧<>01x a x x 或; ②当0<a 时,原不等式的解集为⎭⎬⎫⎩⎨⎧<<01x a x . 综上所述,当当0>a 时,原不等式的解集为⎭⎬⎫⎩⎨⎧<>01x a x x 或,当0<a 时,原不等式的解集为⎭⎬⎫⎩⎨⎧<<01x a x . 点评 不等式02>-x ax (0≠a )可化为01>⎪⎭⎫⎝⎛-a x ax .当0>a 时,根据不等式的性质可知,原不等式同解于不等式01>⎪⎭⎫⎝⎛-a x x ;当0<a 时,原不等式同解于不等式01<⎪⎭⎫⎝⎛-a x x .例9. 若对于0>∀x ,132++x x x≤a 恒成立,则实数a 的取值范围是 【 】 (A )⎭⎬⎫⎩⎨⎧≥31a a (B )⎭⎬⎫⎩⎨⎧>31a a (C )⎭⎬⎫⎩⎨⎧>51a a (D )⎭⎬⎫⎩⎨⎧≥51a a . 解: ∵132++x x x≤a 恒成立 ∴只需a ≥max213⎪⎭⎫ ⎝⎛++x x x 即可. ∵0>∀x ∴311132++=++x x x x x≤513121=+⋅xx . 当且仅当xx 1=,即1=x 时,等号成立. ∴5113max 2=⎪⎭⎫ ⎝⎛++x x x . ∴a ≥51,即实数a 的取值范围是⎭⎬⎫⎩⎨⎧≥51a a .∴选择答案【 D 】.例10.(1)若关于x 的不等式0232>+-x ax (∈a R )的解集为{}b x x x ><或1(∈b R ),求b a ,的值;(2)解关于x 的不等式ax x ax ->+-5232(∈a R ).解:(1)由题意可知:0>a .一元二次方程0232=+-x ax 的根为b x x ==21,1.由根与系数的关系定理可得:⎪⎪⎩⎪⎪⎨⎧⨯=+=baba1213,解之得:⎩⎨⎧==21b a .∴a 的值为1,b 的值为2;(2)∵ax x ax ->+-5232(∈a R ) ∴()0332>--+x a ax .当0=a 时,原不等式为523>+-x ,解之得:1-<x . ∴原不等式的解集为{}1-<x x ;当0≠a 时,原不等式可化为()031>⎪⎭⎫ ⎝⎛-+a x x a . ①若0>a ,则原不等式的解集为⎭⎬⎫⎩⎨⎧-<>13x a x x 或; ②若03<<-a 时,原不等式同解于()031<⎪⎭⎫ ⎝⎛-+a x x ,且13-<a ∴原不等式的解集为⎭⎬⎫⎩⎨⎧-<<13x a x ; ③若3-=a ,原不等式为()0132<+x ,其解集为∅;④若3-<a ,则13->a ,则原不等式的解集为⎭⎬⎫⎩⎨⎧<<-a x x 31. 综上所述,当0=a 时, 原不等式的解集为{}1-<x x ;当0>a 时,原不等式的解集为⎭⎬⎫⎩⎨⎧-<>13x a x x 或;当03<<-a 时,原不等式的解集为⎭⎬⎫⎩⎨⎧-<<13x a x ; 当3-=a 时,原不等式的解集为∅; 当3-<a 时,原不等式的解集为⎭⎬⎫⎩⎨⎧<<-a x x 31. 例11.已知关于x 的不等式08322<-+kx kx . (1)若不等式的解集为⎭⎬⎫⎩⎨⎧<<-123x x ,求实数k 的值;(2)若不等式08322<-+kx kx 恒成立,求实数k 的取值范围. 解:(1)由题意可知:0>k .一元二次方程08322=-+kx kx 的根是1,2321=-=x x . 由根与系数的关系定理:123283⨯-=-k ,解之得:81=k .∴实数k 的值为81;(2)当0=k 时,083<-恒成立,符合题意;当0≠k 时,由题意可知:⎪⎩⎪⎨⎧<⎪⎭⎫ ⎝⎛-⨯⨯-=∆<08324022k k k ,解之得:03<<-k . 综上所述,实数k 的取值范围为{}03≤<-k k .例12. 若∀1≤x ≤4,不等式()422++-x a x ≥1--a 恒成立,求实数a 的取值范围.分析 本题考查一元二次不等式在给定闭区间上的恒成立问题,要把问题转化为相应二次函数在闭区间上的最值问题.解: ∵()422++-x a x ≥1--a∴()1-x a ≤522+-x x . ∵1≤x ≤4∴当1=x 时,显然0⨯a ≤4521=+-成立,∴∈a R ; 当x <1≤4时,01>-x∴a ≤1522-+-x x x 恒成立,只需a ≤min2152⎪⎭⎫⎝⎛-+-x x x 即可.∵()14114115222-+-=-+-=-+-x x x x x x x ≥()41412=-⋅-x x . 当且仅当141-=-x x ,即3=x 时,等号成立.此时3=x []4,1∈,符合题意.∴a ≤4.综上所述,实数a 的取值范围是(]4,∞-. 例13. 已知不等式012<--mx mx .(1)当∈x R 时不等式恒成立,求实数m 的取值范围; (2)当∈x {}31≤≤x x 时不等式恒成立,求实数m 的取值范围.解:(1)当0=m 时,01<-恒成立,符合题意;当0≠m 时,则有⎩⎨⎧<+=∆<0402m m m ,解之得:04<<-m . 综上,实数m 的取值范围是(]0,4-;(2)当0=m 时,显然∈x {}31≤≤x x 时,01<-恒成立,符合题意; 当0≠m 时,()11<-x mx .若1=x ,显然10<恒成立,此时∈m R ; 若x <1≤3,则()01>-x x ∴()11-<x x m 恒成立,只需()min11⎥⎦⎤⎢⎣⎡-<x x m 即可. ∵()4121111122-⎪⎭⎫ ⎝⎛-=-=-x x x x x ≥614121312=-⎪⎭⎫ ⎝⎛- ∴()6111min=⎥⎦⎤⎢⎣⎡-<x x m . 综上所述,实数m 的取值范围为⎪⎭⎫⎝⎛∞-61,.例14. 解关于x 的不等式()m x m mx --+122≥0.解: 当0=m 时,x -≥0,解之得:x ≤0.∴原不等式的解集为{}0≤x x ;当0≠m 时,原不等式可化为()()m x mx +-1≥0∴()[]m x m x m --⎪⎭⎫⎝⎛-1≥0.方程()m x m mx --+122的两个实数根分别为m x mx -==21,1. 当0>m 时,原不等式的解集为⎭⎬⎫⎩⎨⎧-≤≥m x m x x 或1; 当0<m 时,原不等式同解于()[]m x m x --⎪⎭⎫ ⎝⎛-1≤0,且m m -<1. ∴原不等式的解集为⎭⎬⎫⎩⎨⎧-≤≤m m m x 1. 综上所述,当0=m 时,原不等式的解集为{}0≤x x ;当0>m 时,原不等式的解集为⎭⎬⎫⎩⎨⎧-≤≥m x m x x 或1;当0<m 时,原不等式的解集为⎭⎬⎫⎩⎨⎧-≤≤m m m x 1. 例15. 已知关于x 的不等式222->-x kx kx . (1)当2=k 时,解不等式; (2)当∈k R 时,解不等式.解:(1)当2=k 时,2422->-x x x∴02522>+-x x ∴()()0212>--x x . 解之得:2>x 或21<x . ∴原不等式的解集为⎭⎬⎫⎩⎨⎧<>212x x x 或;(2)原不等式可化为()02122>++-x k kx . 当0=k 时,02>+-x ,解之得:2<x . ∴原不等式的解集为{}2<x x ;当0≠k 时,原不等式可化为()()012>--kx x∴()012>⎪⎭⎫⎝⎛--k x x k .方程222->-x kx kx 的根为kx x 1,221==. 当0<k 时,原不等式同解于()012<⎪⎭⎫ ⎝⎛--k x x ,且21<k .∴原不等式的解集为⎭⎬⎫⎩⎨⎧<<21x k x ; 当0>k 时,原不等式同解于()012>⎪⎭⎫⎝⎛--k x x .①若21>k ,则21<k ,∴原不等式的解集为⎭⎬⎫⎩⎨⎧<>k x x x 12或; ②若21=k ,则21=k,∴原不等式的解集为{}2≠x x ; ③若210<<k ,则21>k ,∴原不等式的解集为⎭⎬⎫⎩⎨⎧<>21x k x x 或.综上所述,当0=k 时,原不等式的解集为{}2<x x ;当0<k 时,原不等式的解集为⎭⎬⎫⎩⎨⎧<<21x k x ; 当210<<k 时,原不等式的解集为⎭⎬⎫⎩⎨⎧<>21x k x x 或;当21=k 时,原不等式的解集为{}2≠x x ; 当21>k 时,原不等式的解集为⎭⎬⎫⎩⎨⎧<>k x x x 12或.例16. 已知关于x 的不等式0622<+-k x kx .(1)若不等式的解集为{}23->-<x x x 或,求实数k 的取值; (2)若不等式的解集为R ,求实数k 的取值范围.解:(1)由题意可知:0<k .一元二次方程0622=+-k x kx 的两个实数根分别为2,321-=-=x x .由根与系数的关系定理可得:232--=--k ,解之得:52-=k . ∴实数k 的值为52-;(2)当0=k 时,原不等式的解集为{}0>x x ,不符合题意;当0≠k 时,则有:⎩⎨⎧<-=∆<024402k k ,解之得:66-<k . 综上所述,实数k 的取值范围是⎭⎬⎫⎩⎨⎧-<66k k .例17. 已知122++ax ax ≥0恒成立,解关于x 的不等式022<+--a a x x .解:∵122++ax ax ≥0恒成立∴当0=a 时,1≥0恒成立,符合题意;当0≠a 时,则有:⎩⎨⎧≤-=∆>04402a a a ,解之得:a <0≤1. 综上,实数a 的取值范围是[]1,0. 对于不等式022<+--a a x x当0≤a ≤1时,原不等式可化为()()01<-+-a x a x∴()()[]01<---a x a x ,方程022=+--a a x x 的根为a x a x -==1,21.①若a <21≤1,则a a ->1,∴原不等式的解集为{}a x a x <<-1; ②若21=a ,则a a -=1,∴原不等式的解集为∅;③若210<<a ,则a a -<1,∴原不等式的解集为{}a x a x -<<1.综上所述,对于不等式022<+--a a x x :当a <21≤1时,不等式的解集为{}a x a x <<-1; 当21=a 时,不等式的解集为∅;当0≤21<a 时,不等式的解集为{}a x a x -<<1.例18. 不等式()()xa c xb x -++≤0的解集为{}321≥<≤-x x x 或,则=+c b 【 】(A )5- (B )2- (C )1 (D )3解: 原不等式可化为()()ax c x b x -++≥0,同解于()()()⎩⎨⎧≠-≥++-00a x c xb x a x .方程()()0=-++ax c x b x 的解为c x b x -=-=21,.∵该不等式的解集为{}321≥<≤-x x x 或∴2=a ,⎩⎨⎧=--=-31c b 或⎩⎨⎧-=-=-13c b ,∴⎩⎨⎧-==31c b 或⎩⎨⎧=-=13c b .∴2-=+c b . ∴选择答案【 B 】.例19. 已知函数b ax x y +=2(b a ,为常数),且方程012=+-x y 的两个根为31=x ,42=x .(1)求b a ,的值;(2)设1>k ,解关于x 的不等式()xkx k y --+<21.解:(1)由题意可得:⎪⎪⎩⎪⎪⎨⎧=+-+=+-+0124416012339b a b a ,整理得:⎪⎪⎩⎪⎪⎨⎧-=+-=+142131ba ba ,解之得:⎩⎨⎧=-=21b a . ∴a 的值为1-,b 的值为2;(2)由(1)可知:xx y -=22.∵()x kx k y --+<21,∴()xkx k x x --+<-2122. ∴()()()021212<---=-++-xk x x x k x k x . 原不等式同解于()()()021>---k x x x .∵1>k∴当21<<k 时,原不等式的解集为{}21><<x k x x 或; 当2=k 时,()()0212>--x x ,原不等式的解集为{}21≠>x x x 且;当2>k 时,原不等式的解集为{}k x x x ><<或21.综上所述,当21<<k 时,原不等式的解集为{}21><<x k x x 或;当2=k 时,原不等式的解集为{}21≠>x x x 且;当2>k 时,原不等式的解集为{}k x x x ><<或21.例20. 已知集合()()[]{}0132<+--=a x x x A ,()⎭⎬⎫⎩⎨⎧<+--=012a x a x x B . (1)当2=a 时,求B A ;(2)若A B ⊆,求实数a 的取值范围.解:(1)当2=a 时∵()(){}{}72072<<=<--=x x x x x A ,{}52052<<=⎭⎬⎫⎩⎨⎧<--=x x x x x B∴{}52<<=x x B A ;(2)∵∈∀a R ,恒有a a >+12,()()()[]{}010122<+--=⎭⎬⎫⎩⎨⎧<+--=a x a x x a x a x x B ∴{}12+<<=a x a x B . 当213>+a ,即31>a 时,{}132+<<=a x x A . ∵A B ⊆,∴⎩⎨⎧+≤+≥13122a a a ,解之得: 2≤a ≤3.∴实数a 的取值范围是[]3,2;当213=+a ,即31=a 时,(){}∅=<-=022x x A ,显然不符合题意; 当213<+a ,即31<a 时,{}213<<+=x a x A .∵A B ⊆,∴⎩⎨⎧≤+≤+21132a aa ,解之得: 1-≤a ≤21-.∴实数a 的取值范围是⎥⎦⎤⎢⎣⎡--21,1. 综上所述,实数a 的取值范围是[]3,221,1 ⎥⎦⎤⎢⎣⎡--. 例21. 已知不等式442-+>+m x mx x .(1)若对任意实数x 不等式恒成立,求实数m 的取值范围; (2)若对于0≤m ≤4不等式恒成立,求实数x 的取值范围.解:(1)∵442-+>+m x mx x∴()0442>-+-+m x m x . ∵对任意实数x 不等式恒成立∴()()04442<---=∆m m ,解之得: 40<<m .∴实数m 的取值范围是()4,0; (2)∵442-+>+m x mx x ∴()04412>+-+-x x m x . ∵对[]4,0∈∀m ,不等式恒成立∴()()⎩⎨⎧>+-+⨯->+-+⨯-044410440122x x x x x x ,解之得:0≠x 且2≠x . ∴实数x 的取值范围是{}2200><<<x x x x 或或.点评 解决恒成立问题时一定要清楚谁是主元,谁是参数.一般情况下,知道谁的范围,就选谁当主元,求谁的范围,谁就是参数,构造以主元为变量的函数,根据主元的取值范围求解.例22. 设()12--=mx mx x f ,求使()0<x f ,且m ≤1恒成立的x 的取值范围.解: ∵()0<x f ,m ≤1,∴012<--mx mx ,[]1,1-∈m .∴()012<--m x x 对[]1,1-∈m 恒成立. 设()()12--=m x x m g ,则有:()()()()()⎩⎨⎧<-⨯-=<--⨯-=-0111011122x x g x x g ,解之得:251251+<<-x .∴实数x 的取值范围是⎪⎪⎭⎫⎝⎛+-251,251.重要结论 一次函数()b kx x f +=()0≠k 在区间[]n m ,上的恒成立问题:(1)若()0>x f 恒成立,则()()⎩⎨⎧>>00n f m f ;(2)若()0<x f 恒成立,则()()⎩⎨⎧<<0n f m f .例23. 设函数()12--=mx mx x f ()0≠m ,若对于[]3,1∈x ,()5+-<m x f 恒成立,求m 的取值范围.解: ∵()5+-<m x f 在[]3,1∈x 上恒成立∴062<-+-m mx mx 在[]3,1∈x 上恒成立. 令()62-+-=m mx mx x g ,只需()0max <x g 即可. 函数()x g 图象的对称轴为直线212=--=m m x . 当0>m 时,()x g 在[]3,1上单调递增 ∴()()0673max <-==m g x g ,解之得:76<m . ∴760<<m ; 当0<m 时,()x g 在[]3,1上单调递减 ∴()()061max <-==m g x g ,解之得:0<m .综上所述,m 的取值范围是⎭⎬⎫⎩⎨⎧<<<7600m m m 或.另解: ∵062<-+-m mx mx 在[]3,1∈x 上恒成立∴()612<+-x x m 在[]3,1∈x 上恒成立.∵04321122>+⎪⎭⎫ ⎝⎛-=+-x x x ∴162+-<x x m 在[]3,1∈x 上恒成立.只需761336162min 2=+-=⎪⎭⎫ ⎝⎛+-<x x m 即可. ∵0≠m∴m 的取值范围是⎭⎬⎫⎩⎨⎧<<<7600m m m 或. 例24. 已知集合{}042≤-=t t A ,对于任意的A t ∈,使不等式122->-+x t tx x 恒成立的x 的取值范围是_____________.解: {}{}22042≤≤-=≤-=t t t t A .∵当A t ∈时,不等式122->-+x t tx x 恒成立 ∴()01212>+-+-x x t x 恒成立. 设()()1212+-+-=x x t x t f ,则有:()()⎩⎨⎧>-=>+-=-012034222x f x x f ,解之得:1-<x 或3>x . ∴x 的取值范围是{}31>-<x x x 或.例25. 对一切实数x ,不等式12++x a x ≥0恒成立,则实数a 的取值范围是_____________.解: 当0=x 时,显然对∈∀a R 成立;当0≠x 时,a ≥⎪⎭⎫ ⎝⎛+-=--=--x x x x x x 1112,只需a ≥max 1⎪⎭⎫ ⎝⎛+-x x 即可.∵⎪⎭⎫ ⎝⎛+-x x 1≤212-=⋅-x x∴21max -=⎪⎭⎫ ⎝⎛+-x x ,∴a ≥2-.∴实数a 的取值范围是[)+∞-,2.例26. 已知0,0>>y x ,且()()()144152++--+y x m y x ≥0恒成立,则实数m 的取值范围是_____________.解: ∵0,0>>y x ,∴0>+y x .∵()()()144152++--+y x m y x ≥0恒成立∴15-m ≤()y x y x yx y x +++=+++1441442恒成立,只需15-m ≤min144⎪⎭⎫ ⎝⎛+++y x y x 即可. ∵y x y x +++144≥()241442=+⋅+yx y x (当且仅当12=+y x 时,等号成立) ∴24144min =⎪⎭⎫ ⎝⎛+++y x y x ,∴15-m ≤24,解之得:m ≤5.∴实数m 的取值范围是(]5,∞-. 例27. 已知61>k ,对任意正实数y x ,,不等式ky x k +⎪⎭⎫ ⎝⎛-213≥xy 2恒成立,求实数k 的取值范围.解: ∵61>k ,∴0213>-k . ∴ky x k +⎪⎭⎫ ⎝⎛-213≥xy k k ky x k ⎪⎭⎫⎝⎛-=⋅⎪⎭⎫ ⎝⎛-213221322.当且仅当ky x k =⎪⎭⎫⎝⎛-213,即x kk y 213-=时,等号成立.∴ky x k +⎪⎭⎫ ⎝⎛-213的最小值为xy k k ⎪⎭⎫⎝⎛-21322∵不等式ky x k +⎪⎭⎫⎝⎛-213≥xy 2恒成立∴xy k k ⎪⎭⎫ ⎝⎛-21322≥xy 2∴xy k k ⎪⎭⎫ ⎝⎛-21342≥xy 2,解之得:k ≥21.∴实数k 的取值范围是⎪⎭⎫⎢⎣⎡+∞,21.例28. 若关于x 的不等式()()0121122>+++-+-x x x k x k 的解集为R ,则实数k 的取值范围是_____________.解: ∵04321122>+⎪⎭⎫ ⎝⎛+=++x x x 在R 上恒成立 ∴原不等式同解于不等式()()02112>+-+-x k x k ,其解集为R 当1=k 时,02> 在R 上恒成立,符合题意;当1≠k 时,则有:()()⎩⎨⎧<---=∆>-0181012k k k ,解之得:91<<k . 综上所述,实数k 的取值范围是[)9,1.例29.(1)解关于x 的不等式()422++-x a x ≤a 24-(∈a R );(2)若x <1≤4时,不等式()422++-x a x ≥1--a 恒成立,求实数a 的取值范围.解:(1)∵()422++-x a x ≤a 24-∴()()a x x --2≤0.当2>a 时,原不等式的解集为{}a x x ≤≤2; 当2=a 时,()22-x ≤0,原不等式的解集为{}2=x x ;当2<a 时,原不等式的解集为{}2≤≤x a x .综上所述,当当2>a 时,原不等式的解集为{}a x x ≤≤2;当2=a 时,()22-x ≤0,原不等式的解集为{}2=x x ;当2<a 时,原不等式的解集为{}2≤≤x a x . (2)由题意可知,当(]4,1∈x 时,不等式()5212+---x x a x ≥0恒成立.∴当(]4,1∈x 时,a ≤1522-+-x x x 恒成立,只需a ≤min2152⎪⎭⎫⎝⎛-+-x x x 即可.∵(]4,1∈x ,∴()14114115222-+-=-+-=-+-x x x x x x x ≥()41412=-⋅-x x . 当且仅当141-=-x x ,即3=x 时,等号成立.∴4152min 2=⎪⎭⎫ ⎝⎛-+-x x x .∴a ≤4,即实数a 的取值范围为(]4,∞-.例30.(1)已知命题∈∀x p :R ,a x x +-22≥0,命题∈∃x q :R ,0122=-++a x x ,若p 为真命题,q 为假命题,求实数a 的取值范围;(2)已知a ≥21,二次函数c ax x a y ++-=22,其中c a ,均为实数,证明对任意x (0≤x ≤1),均有y ≤1成立的充要条件是c ≤43.解:(1)∵命题∈∀x p :R ,a x x +-22≥0为真命题∴()a a 44422-=--=∆≤0,解之得: a ≥1.∵命题∈∃x q :R ,0122=-++a x x 为假命题 ∴⌝q :∈∀x R ,0122≠-++a x x 为真命题. ∴()01241<--=∆a ,解之得:85>a . ∴实数a 的取值范围是[)+∞,1;(2)证明: 二次函数c ax x a y ++-=22图象的对称轴为直线aa a x 2122=--=. ∵a ≥21,∴a210<≤1. ∵[]1,0∈∀x ,02<-a∴函数c ax x a y ++-=22的最大值在顶点处取得,即4144222max +=---=c a a c a y . 充分性: ∵c ≤43,∴41+c ≤14143=+,即max y ≤1. ∴y ≤1;必要性: ∵[]1,0∈∀x ,均有y ≤1成立. ∴max y ≤1,即41+c ≤1,解之得: c ≤43. 综上所述, 对任意x (0≤x ≤1),均有y ≤1成立的充要条件是c ≤43.例31.已知关于x 的不等式222++-m mx x ≤0(∈m R )的解集为M . (1)当M 为空集时,求m 的取值范围;(2)在(1)的条件下,求1522+++m m m 的最小值;(3)当M 不为空集,且{}41≤≤⊆x x M 时,求实数m 的取值范围.解:(1)∵不等式222++-m mx x ≤0(∈m R )的解集为M 为空集∴()()084424222<--=+--=∆m m m m ,解之得:21<<-m .∴m 的取值范围是{}21<<-m m ;(2)由(1)可知: 21<<-m ,∴310<+<m .∴()14114115222+++=+++=+++m m m m m m m ≥()41412=+⋅+m m . 当且仅当141+=+m m ,即1=m 时,等号成立. ∴1522+++m m m 的最小值为4;(3)由题意可知,方程0222=++-m mx x 的两个实数根均在[]4,1内 设()222++-=m mx x x f ,则有:()()()()⎪⎪⎪⎩⎪⎪⎪⎨⎧≤--≤≥++-=≥++-=≥+--=∆42210281640221102422m m m f m m f m m ,解之得: 2≤m ≤718. ∴实数m 的取值范围是⎥⎦⎤⎢⎣⎡718,2. 例32. 当10<<x 时,若关于x 的二次方程m mx x 2122-=++有两个不相等的实数根,求实数m 的取值范围.分析 本题考查的是一元二次方程的K 分布:两根均在()21,k k 内. 解: ∵m mx x 2122-=++∴01222=+++m mx x . 设()1222+++=m mx x x f .∵该方程在()1,0内有两个不相等的实数根∴()()()()⎪⎪⎪⎩⎪⎪⎪⎨⎧>+++=>+=<-<>+-=∆01221101201220012422m m f m f m m m ,解之得:2121-<<-m . ∴实数m 的取值范围是⎪⎭⎫ ⎝⎛--21,21.重要结论 一元二次方程的实数根的K 分布:一元二次方程02=++c bx ax (0>a )的两个实数根分别为21,x x ,且21x x <.(1)若k x x <<21,则有:()⎪⎪⎩⎪⎪⎨⎧><->∆020k f k a b; (2)若21x x k <<,则有:()⎪⎪⎩⎪⎪⎨⎧>>->∆020k f k a b; (3)若21x k x <<,则有:()0<k f ;(4)若2211k x x k <<<,即两根21,x x 在()21,k k 内,则有:()()⎪⎪⎩⎪⎪⎨⎧>><-<>∆00202121k f k f k a b k(5)若11k x <,且22k x >(21k k <),则有:()()⎩⎨⎧<<021k f k f ; (6)()()212211,,,k k x k k x ∈∈中只有一个成立,即方程只有一个实数根在()21,k k 内,则有:()()021<k f k f或⎪⎩⎪⎨⎧<-<=∆2120k ab k . 例33. 已知二次函数1222-+-=t tx x y (∈t R ).(1)若该二次函数有两个互为相反数的零点,解不等式1222-+-t tx x ≥0; (2)若关于x 的方程01222=-+-t tx x 的两个实数根均大于2-且小于4,求实数t 的取值范围.解:(1)∵二次函数1222-+-=t tx x y 有两个互为相反数的零点∴方程01222=-+-t tx x 有两个互为相反数的实数根,设为21,x x ,∴021=+x x . 由根与系数的关系定理可得:0221==+t x x ,解之得:0=t .∵1222-+-t tx x ≥0∴12-x ≥0,解之得:x ≥1或x ≤1-. ∴该不等式的解集为{}11-≤≥x x x 或;(2)∵()()044441422222>=+-=---=∆t t t t∴∈∀t R ,该方程总有两个不相等的实数根. ∵方程的两个实数根均大于2-且小于4∴()()⎪⎪⎩⎪⎪⎨⎧>+-=>++=-<--<-015840342422222t t f t t f t ,解之得:31<<-t .∴实数t 的取值范围是()3,1-. 例34. 已知二次函数12+-=bx ax y .(1)是否存在实数b a ,,使不等式012>+-bx ax 的解集是{}21<<x x ?若存在,求实数b a ,的值,若不存在,请说明理由;(2)若a 为整数,2+=a b ,且方程012=+-bx ax 在{}12-<<-∈x x x 上恰有一个实数根,求a 的值.解:(1)假设存在这样的实数b a ,.∵不等式012>+-bx ax 的解集是{}21<<x x ∴0<a ,方程012=+-bx ax 的两个实数根分别为2,1. 由根与系数的关系定理可得:⎪⎪⎩⎪⎪⎨⎧⨯=+=--21121aa b ,解之得:⎪⎪⎩⎪⎪⎨⎧==2321b a . ∵021>=a ,与0<a 矛盾 ∴不存在这样的实数b a ,,使不等式012>+-bx ax 的解集是{}21<<x x ; (2)∵2+=a b ∴()0122=++-x a ax .∵()[]()0314242222>+-=+-=-+-=∆a a a a a∴方程()0122=++-x a ax 总有两个不相等的实数根.∵方程()0122=++-x a ax 在{}12-<<-∈x x x 上恰有一个实数根 ∴()()[]()[]0121122222<+++-⨯⨯+++-⨯a a a a整理得:()()03256<++a a ,解之得:6523-<<-a . ∵a 为整数 ∴a 的值为1-.例35. 已知不等式052>+-b ax x 的解集为{}14<>x x x 或. (1)求实数b a ,的值; (2)若10<<x ,()xbx a x f -+=1,求函数()x f 的最小值. 分析 (1)一元二次不等式的解的结构与二次项系数的符号有关,且一元二次不等式解集的端点值就是其对应的一元二次方程的两个实数根;(2)注意到()11=-+x x ,且01,10>-<<x x ,考虑利用基本不等式求函数()x f 的最小值.解:(1)∵不等式052>+-b ax x 的解集为{}14<>x x x 或∴方程052=+-b ax x 的两个实数根分别4和1. 由根与系数的关系定理可得:⎩⎨⎧⨯=+=14145b a ,解之得:⎩⎨⎧==41b a . ∴a 的值为1,b 的值为4; (2)由(1)可知:4,1==b a . ∴()xx x f -+=141. ∵10<<x ,∴01>-x . ∴()()[]x x x x x x x x x x x f -+-+=⎪⎭⎫ ⎝⎛-+-+=-+=11451411141 ≥911425=-⋅-+xxx x . 当且仅当x x x x -=-114,即31=x 时,等号成立. ∴函数()x f 的最小值为9.。

二次函数与一元二次方程、一次函数 知识点+例题+练习 (非常好 分类全面)

二次函数与一元二次方程、一次函数  知识点+例题+练习 (非常好 分类全面)

教学主题二次函数与一元二次方程、一次函数教学目标掌握二次函数与一元二次方程、一次函数重要知识点1.二次函数与一元二次方程2.二次函数与一次函数3.教学过程二次函数与一元二次方程知识点一:一元二次方程ax2+bx+c=0(a≠0)的解的情况等价于抛物线y=ax2+bx+c(c≠0)与直线y=0(即x 轴)的公共点的个数。

抛物线y=ax2+bx+c(a≠0)与x轴的公共点有三种情况:两个公共点(即有两个交点),一个公共点,没有公共点,因此有:(1)抛物线y=ax2+bx+c与x轴有两个公共点(x1,0)(x2,0)一元二次方程ax2+bx+c=0有两个不等实根△=b2-4ac>0。

(2)抛物线y=ax2+bx+c与x轴只有一个公共点时,此公共点即为顶点一元二次方程ax2+bx+c=0有两个相等实根,(3)抛物线y=ax2+bx+c与x轴没有公共点一元二次方程ax2+bx+c=0没有实数根△=b2-4ac<0.(4)事实上,抛物线y=ax2+bx+c与直线y=h的公共点情况方程ax2+bx+c=h的根的情况。

抛物线y=ax2+bx+c与直线y=mx+n的公共点情况方程ax2+bx+c=mx+n的根的情况。

练习1:已知:关于x 的函数772--=x kx y 的图象与x 轴总有交点,求k 的取值范围?练习2:已知关于x 的二次函数y =x 2-(2m -1)x +m 2+3m +4.探究m 满足什么条件时,二次函数y 的图象与x 轴的交点的个数.题型二 一次函数图象和二次函数图象的交点问题【例2】已知抛物线C 经过(-5,0),(0,25),(1,6)三点,直线l 的函数表达式为32-=x y ;(1)求抛物线的表达式;(2)证明抛物线C 与直线l 无交点;(3)若与l 平行的直线m x y +=2与抛物线C 只有一个公共点P ,求点P 的坐标;练习1:已知二次函数y=﹣x 2+bx+c 的图象如图所示,它与x 轴的一个交点坐标为(﹣1,0),与y 轴的交点坐标为(0,3).(1)求出b ,c 的值,并写出此二次函数的解析式;(2)根据图象,写出函数值y 为正数时,自变量x 的取值范围.题型三 关于二次函数图象交点的综合问题【例3】已知抛物线2234y x kx k =+-(k 为常数,且k >0).(1)证明:此抛物线与x 轴总有两个交点;(2)设抛物线与x 轴交于M 、N 两点,若这两点到原点的距离分别为OM 、ON ,且1123ONOM-=,求k 的值.练习1:抛物线2y x bx c =-++的部分图象如图所示,则方程02=++-c bx x 的两根为 .练习1:如图所示,二次函数的图象与x轴相交于A、B两点,与y轴相交于点C,点C、D是二次函数图象上的一对对称点,一次函数的图象过点B、D.(1)求D点的坐标和一次函数、二次函数的解析式;(2)根据图象写出使一次函数值大于二次函数值的x的取值范围.练习2:在同一直角坐标系,开口向上的抛物线与坐标轴分别交于A(-1,0),B(3,0),C(0,-3),一次函数图象与二次函数图象交于B、C两点.(1)求一次函数和二次函数的解析式.(2)当自变量x为何值时,两函数的函数值都随x的增大而增大?(3)当自变量x为何值时,一次函数值大于二次函数值.(4)当自变量x为何值时,两函数的函数值的积小于0.练习3:一次函数y=2x+3与二次函数y=ax 2+bx+c 的图象交于A (m ,5)和B (3,n )两点,且点B 是抛物线的顶点.(1)求一次函数和二次函数的表达式; (2)在同一坐标系中画出两个函数的图象;(3)从图象上观察,x 为何值时,两个函数的值都随x 的增大而增大,当x 为何值时,二次函数的值大于一次函数的值?类型三:与一次函数和二次函数的交点有关的面积类问题。

九年级上册 专题03 二次函数与方程、不等式(知识点串讲)(教师版含解析)

九年级上册 专题03 二次函数与方程、不等式(知识点串讲)(教师版含解析)

专题03 二次函数与方程、不等式知识网络重难突破知识点一二次函数与一元二次方程二次函数y=ax2+bx+c(a,b,c是常数,a≠0)1.抛物线与x轴的交点的横坐标是一元二次方程ax2+bx+c=0的解.2.若已知二次函数y=ax2+bx+c的函数值为s,求自变量x的值,就是解一元二次方程ax2+bx+c=s.【典例1】(2019•镇海区一模)若二次函数y=ax2﹣2ax+c(a≠0)的图象经过点(﹣1,0),则方程ax2﹣2ax+c =0的解为()A.x1=﹣3,x2=﹣1 B.x1=﹣1,x2=3C.x1=1,x2=3 D.x1=﹣3,x2=1【点拨】先确定抛物线的对称轴为直线x=1,再根据抛物线的对称性得到抛物线与x轴的另一个交点坐标为(3,0),从而根据抛物线与x轴的交点问题得到方程ax2﹣2ax+c=0的解.【解析】解:抛物线的对称轴为直线x=﹣=1,而抛物线与x轴的一个交点坐标为(﹣1,0),所以抛物线与x轴的另一个交点坐标为(3,0),所以方程ax2﹣2ax+c=0的解为x1=﹣1,x2=3.故选:B.【点睛】本题考查了抛物线与x轴的交点:把求二次函数y=ax2+bx+c(a,b,c是常数,a≠0)与x轴的交点坐标问题转化为解关于x的一元二次方程.也考查了二次函数的性质.【变式训练】1.(2018秋•江汉区期中)如表中列出了二次函数y=ax2+bx+c(a≠0)的一些对应值,则一元二次方程ax2+bx+c=0(a≠0)的一个近似解x1的范围是()x…﹣3 ﹣2 ﹣1 0 1 …y…﹣11 ﹣5 ﹣1 1 1 …A.﹣3<x1<﹣2 B.﹣2<x1<﹣1 C.﹣1<x1<0 D.0<x1<1【点拨】根据函数的增减性:函数在[﹣1,0]上y随x的增大而增大,可得答案.【解析】解:当x=﹣1时,y=﹣1,x=1时,y=1,函数在[﹣1,0]上y随x的增大而增大,得一元二次方程ax2+bx+c=0(a≠0)的一个近似解在﹣1<x1<0,故选:C.【点睛】本题考查了图象求一元二次方程的近似根,两个函数值的积小于零时,方程的解在这两个函数值对应的自变量的中间.2.(2019•德城区一模)关于x的方程(x﹣3)(x﹣5)=m(m>0)有两个实数根α,β(α<β),则下列选项正确的是()A.3<α<β<5 B.3<α<5<βC.α<2<β<5 D.α<3且β>5【点拨】根据平移可知:将抛物线y=(x﹣3)(x﹣5)往下平移m个单位可得出抛物线y=(x﹣3)(x﹣5)﹣m,依此画出函数图象,观察图形即可得出结论.【解析】解:将抛物线y=(x﹣3)(x﹣5)往下平移m个单位可得出抛物线y=(x﹣3)(x﹣5)﹣m,画出函数图象,如图所示.∵抛物线y=(x﹣3)(x﹣5)与x轴的交点坐标为(3,0)、(5,0),抛物线y=(x﹣3)(x﹣5)﹣m与x轴的交点坐标为(α,0)、(β,0),∴α<3<5<β.故选:D.【点睛】本题考查了抛物线与x轴的交点、二次函数的图象以及平移的性质,依照题意画出函数图象,利用数形结合解决问题是解题的关键.3.(2019秋•镇海区校级期中)如图,抛物线y=ax2与直线y=bx+c的两个交点坐标分别为A(﹣3,4),B(1,1),则关于x的方程ax2﹣bx﹣c=0的解为﹣3,1.【点拨】根据抛物线与直线的交点坐标的横坐标即可求解.【解析】解:因为抛物线y=ax2与直线y=bx+c的两个交点坐标分别为A(﹣3,4),B(1,1),所以关于x的方程ax2=bx+c的解为x1=﹣3,x2=1,即关于x的方程ax2﹣bx﹣c=0的解为x1=﹣3,x2=1.故答案为﹣3、1.【点睛】本题考查了抛物线与直线交点坐标,解决本题的关键是两交点的横坐标就是方程的解.知识点二二次函数与x轴交点情况对于二次函数y=ax2+bx+c(a,b,c是常数,a≠0)△=b2﹣4ac决定抛物线与x轴的交点个数:①△=b2﹣4ac>0时,抛物线与x轴有2个交点;②△=b2﹣4ac=0时,抛物线与x轴有1个交点;③△=b2﹣4ac<0时,抛物线与x轴没有交点.【典例2】下列二次函数的图象与x轴没有交点的是()A.y=﹣3x2﹣4x B.y=x2﹣3x﹣4 C.y=x2﹣6x+9 D.y=2x2+4x+5【点拨】分别计算四个选项中的判别式的值,然后根据判别式的意义确定抛物线与x轴的交点个数,从而可对各选项进行判断.【解析】解:A、△=(﹣4)2﹣4×(﹣3)×0>0,此抛物线与x轴有两个交点,所以A选项错误;B、△=(﹣3)2﹣4×(﹣4)>0,此抛物线与x轴有两个交点,所以B选项错误;C、△=(﹣6)2﹣4×9=0,此抛物线与x轴有1个交点,所以C选项错误;D、△=42﹣4×2×5<0,此抛物线与x轴没有交点,所以D选项正确.故选:D.【点睛】本题考查了抛物线与x轴的交点:把求二次函数y=ax2+bx+c(a,b,c是常数,a≠0)与x轴的交点坐标问题转化为解关于x的一元二次方程.△=b2﹣4ac决定抛物线与x轴的交点个数(△=b2﹣4ac>0时,抛物线与x轴有2个交点;△=b2﹣4ac=0时,抛物线与x轴有1个交点;△=b2﹣4ac<0时,抛物线与x轴没有交点).【变式训练】1.(2019秋•新昌县校级月考)二次函数y=2x2﹣5x+3的图象与x轴的交点有()A.1个B.2个C.3个D.4个【点拨】△=b2﹣4ac=25﹣4×2×3=1>0,即可求解.【解析】解:△=b2﹣4ac=25﹣4×2×3=1>0,故二次函数y=2x2﹣5x+3的图象与x轴有两个交点,故选:B.【点睛】本题考查的是抛物线与x轴的交点,主要考查根的判别式,要求学生非常熟悉函数与坐标轴的交点代表的意义.2.(2018秋•西湖区期末)一元二次方程x2+bx+c=0有一个根为x=﹣3,则二次函数y=2x2﹣bx﹣c的图象必过点()A.(﹣3,0) B.(3,0) C.(﹣3,27) D.(3,27)【点拨】先把x=﹣3代入方程x2+bx+c=0得3b﹣c=9,利用整体代入的方法计算出自变量为﹣3对应的函数值为27,从而可判断抛物线经过点(﹣3,27).【解析】解:把x=﹣3代入方程x2+bx+c=0得9﹣3b+c=0,则3b﹣c=9,当x=﹣3时,y=2x2﹣bx﹣c=18+3b﹣c=18+9=27,所以二次函数y=2x2﹣bx﹣c的图象必过点(﹣3,27).故选:C.【点睛】本题考查了抛物线与x轴的交点:把求二次函数y=ax2+bx+c(a,b,c是常数,a≠0)与x轴的交点坐标问题转化解关于x的一元二次方程即可求得交点横坐标.也考查了二次函数的图象上点的坐标特征.3.(2018秋•瑞安市期末)已知二次函数y=ax2+bx+c的图象与x轴交于A,B两点,对称轴是直线x=﹣1,若点A的坐标为(1,0),则点B的坐标是()A.(﹣2,0) B.(0,﹣2) C.(0,﹣3) D.(﹣3,0)【点拨】利用点B与点A关于直线x=﹣1对称确定B点坐标.【解析】解:∵二次函数y=ax2+bx+c的图象与x轴交于A,B两点,∴点A与点B关于直线x=﹣1对称,而对称轴是直线x=﹣1,点A的坐标为(1,0),∴点B的坐标是(﹣3,0).故选:D.【点睛】本题考查了抛物线与x轴的交点:把求二次函数y=ax2+bx+c(a,b,c是常数,a≠0)与x轴的交点坐标问题转化为解关于x的一元二次方程.知识点三二次函数与不等式(组)1.涉及一元二次不等式的,可以利用二次函数图像图象求解2.两个函数的值的大小比较,上方图象的函数值大于下方图象的函数值.【典例4】(2019秋•新昌县校级月考)已知函数y1=x2与函数y2=x+3的图象大致如图所示,若y1<y2,则自变量x的取值范围是()A.<x<2 B.x>2或x<C.x<﹣2或x>D.﹣2<x<【点拨】联立y1=x2、y2=x+3并解得:x=﹣2或,y1<y2,此时直线在抛物线上方,即可求解.【解析】解:联立y1=x2、y2=x+3并解得:x=﹣2或,∵y1<y2,即直线在抛物线上方时,确定x的取值范围,此时,﹣2<x,故选:D.【点睛】本题考查的是二次函数与不等式(组),要求学生通过函数图象交点,比较函数值的大小,从而确定不等式的解值,而不是采取直接解不等式的方法求解.【变式训练】1.(2018秋•苍南县期中)如图,二次函数y=ax2+bx+c的图象与y轴交于A(0,2),且经过B(4,2),则不等式ax2+bx+c>2的解集为0<x<4.【点拨】直接利用二次函数图象利用A,B点坐标得出不等式ax2+bx+c>2的解集.【解析】解:如图所示:∵二次函数y=ax2+bx+c的图象与y轴交于A(0,2),且经过B(4,2),∴不等式ax2+bx+c>2的解集为:0<x<4.故答案为:0<x<4.【点睛】此题主要考查了二次函数与不等式,正确利用数形结合分析是解题关键.2.(2018秋•下城区期末)已知函数y1=﹣(m+1)x2+nx+2与y2=mx+2的图象都经过A(4,﹣4).若y2≤y1,则x的取值范围为x≤0或x≥4.【点拨】先A点坐标代入y2=mx+2得4m+2=﹣4,再求出m,则可判断二次函数图象的开口向上,易得函数y1=﹣(m+1)x2+nx+2与y2=mx+2的图象都经过点(0,2),然后根据函数图象,写出直线不在抛物线上方所对应的自变量的范围即可.【解析】解:把A(4,﹣4)代入y2=mx+2得4m+2=﹣4,解得m=﹣,∵﹣(m+1)>0,∴二次函数图象的开口向上,∵函数y1=﹣(m+1)x2+nx+2与y2=mx+2的图象都经过点(0,2),∴y2≤y1,则x的取值范围为x≤0或x≥4.故答案为x≤0或x≥4.【点睛】本题考查了二次函数与不等式(组):对于二次函数y=ax2+bx+c(a、b、c是常数,a≠0)与不等式的关系,利用两个函数图象在直角坐标系中的上下位置关系求自变量的取值范围,可作图利用交点直观求解,也可把两个函数解析式列成不等式求解.3.(2019秋•秀洲区期中)如图,直线y=x+m和抛物线y=x2+bx+3都经过点A、点B,且A(1,0),(1)求m的值及点B的坐标;(2)求不等式x2+bx+3≥x+m的解集.(直接写出答案)【点拨】(1)将点A的坐标代入一次函数表达式得:0=1+m,解得:m=﹣1,同理解得:b=﹣4,联立方程组即可求解;(2)从图象可以看出:不等式x2+bx+3≥x+m的解集为:x≤1或x≥4.【解析】解:(1)将点A的坐标代入一次函数表达式得:0=1+m,解得:m=﹣1,故直线的表达式为:y=x﹣1…①;将点A的坐标代入抛物线表达式得:0=1+b+3,解得:b=﹣4,故抛物线的表达式为:y=x2﹣4x+3…②,联立①②并解得:x=1或4,故点B(4,3);(2)从图象可以看出:不等式x2+bx+3≥x+m的解集为:x≤1或x≥4.【点睛】本题考查的是抛物线与x轴的交点,主要考查函数图象上点的坐标特征,要求学生非常熟悉函数与坐标轴的交点、顶点等点坐标的求法,及这些点代表的意义及函数特征.巩固训练1.(2019春•西湖区校级月考)函数y=ax2+bx+c如图所示,若方程ax2+bx+c=k有两个不相等的实数根,则()A.k>0 B.k>﹣3 C.k<﹣3 D.k=0【点拨】结合函数图象,利用当k>﹣3时,直线y=k与抛物线y=ax2+bx+c=0有两个交点,从而可对各选项进行判断.【解析】解:抛物线y=ax2+bx+c的顶点的纵坐标为﹣3,直线y=﹣3与抛物线y=ax2+bx+c=0只有一个交点,当k>﹣3时,直线y=k与抛物线y=ax2+bx+c=0有两个交点,所以当k>﹣3时,方程ax2+bx+c=k有两个不相等的实数根.故选:B.【点睛】本题考查了抛物线与x轴的交点:把求二次函数y=ax2+bx+c(a,b,c是常数,a≠0)与x轴的交点坐标问题转化为解关于x的一元二次方程.也考查了二次函数的性质.2.(2019春•安吉县期中)如图,抛物线y=﹣x2+mx的对称轴为直线x=2,若关于x的一元二次方程﹣x2+mx ﹣t=0(t为实数)在1<x<3的范围内有解,则t的取值范围是()A.﹣5<t≤4 B.3<t≤4 C.﹣5<t<3 D.t>﹣5【点拨】先利用抛物线的对称轴方程求出m得到抛物线解析式为y=﹣x2+4x,配方得到抛物线的顶点坐标为(2,4),再计算出当x=1或3时,y=3,结合函数图象,利用抛物线y=﹣x2+4x与直线y=t在1<x<3的范围内有公共点可确定t的范围.【解析】解:∵抛物线y=﹣x2+mx的对称轴为直线x=2,∴﹣=2,解得m=4,∴抛物线解析式为y=﹣x2+4x,抛物线的顶点坐标为(2,4),当x=1时,y=﹣x2+4x=3;当x=3时,y=﹣x2+4x=3,∵关于x的一元二次方程x2+mx﹣t=0(t为实数)在1<x<3的范围内有解,∴抛物线y=﹣x2+4x与直线y=t在1<x<3的范围内有公共点,∴3<t≤4.【点睛】本题考查了抛物线与x轴的交点:把求二次函数y=ax2+bx+c(a,b,c是常数,a≠0)与x轴的交点坐标问题转化为解关于x的一元二次方程.也考查了二次函数的性质.3.(2019•慈溪市模拟)已知抛物线y=x2+mx+n与x轴只有一个公共点,且过点A(a,b),B(a﹣4,b),则b 的值为()A.4 B.2 C.6 D.9【点拨】根据抛物线y=x2+mx+n与x轴只有一个公共点,可知△=0,从而可以得到m与n的关系,再根据抛物线y=x2+mx+n过点A(a,b),B(a﹣4,b),可以得到a和m的关系,从而可以求得b的值.【解析】解:∵抛物线y=x2+mx+n与x轴只有一个公共点,∴△=m2﹣4×1×n=m2﹣4n=0,∴n=m2,∵抛物线y=x2+mx+n过点A(a,b),B(a﹣4,b),∴b=a2+ma+n,b=(a﹣4)2+m(a﹣4)+n,∴a2+ma+n=(a﹣4)2+m(a﹣4)+n,化简,得a=,∴b=a2+ma+n=()2+m×+m2=4,故选:A.【点睛】本题考查抛物线与x轴的交点、二次函数图象上点的坐标特征,解答本题的关键是明确题意,求出b的值.4.(2019•杭州)在平面直角坐标系中,已知a≠b,设函数y=(x+a)(x+b)的图象与x轴有M个交点,函数y =(ax+1)(bx+1)的图象与x轴有N个交点,则()A.M=N﹣1或M=N+1 B.M=N﹣1或M=N+2C.M=N或M=N+1 D.M=N或M=N﹣1【点拨】先把两个函数化成一般形式,若为二次函数,再计算根的判别式,从而确定图象与x轴的交点个数,若一次函数,则与x轴只有一个交点,据此解答.【解析】解:∵y=(x+a)(x+b),a≠b,∴函数y=(x+a)(x+b)的图象与x轴有2个交点,∵函数y=(ax+1)(bx+1)=abx2+(a+b)x+1,∴当ab≠0时,△=(a+b)2﹣4ab=(a﹣b)2>0,函数y=(ax+1)(bx+1)的图象与x轴有2个交点,即N=2,此时M=N;当ab=0时,不妨令a=0,∵a≠b,∴b≠0,函数y=(ax+1)(bx+1)=bx+1为一次函数,与x轴有一个交点,即N=1,此时M=N+1;综上可知,M=N或M=N+1.故选:C.【点睛】本题主要考查一次函数与二次函数与x轴的交点问题,关键是根据根的判别式的取值确定抛物线与x轴的交点个数,二次项系数为字母的代数式时,要根据系数是否为0,确定它是什么函数,进而确定与x轴的交点个数.5.(2019春•西湖区校级月考)函数y=x2+bx+c与y=x的图象如图所示,则不等式x2+(b﹣1)x+c<0的解集为1<x<3.【点拨】根据当1<x<3时,二次函数值小于一次函数值,可得x2+bx+c<x,继而可求得答案.【解析】解:∵当1<x<3时,二次函数值小于一次函数值,∴x2+bx+c<x,∴x2+(b﹣1)x+c<0.∴不等式x2+(b﹣1)x+c<0的解集为1<x<3,故答案为1<x<3.【点睛】主要考查二次函数与不等式(组),此题难度适中,注意掌握数形结合思想的应用.6.(2019•拱墅区校级模拟)已知如图二次函数y1=ax2+bx+c(a≠0)与一次函数y2=kx+m(k≠0)的图象相交于点A(﹣2,4),B(8,2)(如图所示)则能使y1<y2成立的x的取值范围是﹣2<x<8.【点拨】根据函数图象,写出抛物线在直线下方部分的x的取值范围即可.【解析】解:由图可知,﹣2<x<8时,y1<y2.故答案为:﹣2<x<8.【点睛】本题考查了二次函数与不等式组,数形结合是数学中的重要思想之一,解决函数问题更是如此,同学们要引起重视.7.(2019•柯城区校级一模)如图,已知直线y1=﹣x+2与x轴交于点A,与y轴交于点B.过A,B两点的抛物线y2=ax2+bx+c交x轴于点C(﹣1,0).(1)求A,B的坐标;(2)求抛物线的解析式;(3)求出当y1>y2时,自变量x的取值范围.【点拨】(1)利用一次函数的解析式确定A、B的坐标;(2)利用待定系数法求抛物线解析式;(3)写出抛物线在直线下方所对应的自变量的范围.【解析】解:(1)当x=0时,y=﹣x+2=2,则B(0,2);当y=0时,﹣x+2=0,解得x=4,则A(4,0);(2)设抛物线解析式为y=a(x+1)(x﹣4),把B(0,2)代入得a(0+1)(0﹣4)=2,解得:a=﹣,所以抛物线解析式为y=﹣(x+1)(x﹣4),即y=﹣x2+x+2;(3)当y1>y2时,x的取值范围为x<0或x>4.【点睛】本题考查了二次函数与不等式(组):对于二次函数y=ax2+bx+c(a、b、c是常数,a≠0)与不等式的关系,利用两个函数图象在直角坐标系中的上下位置关系求自变量的取值范围,可作图利用交点直观求解,也可把两个函数解析式列成不等式求解.也考查了抛物线与x轴的交点问题和二次函数的性质.8.(2019春•西湖区校级月考)若二次函数y=kx2+(3k+2)x+2k+2.(1)若抛物线的对称轴是直线x=﹣1,求k的值;(2)求证:抛物线与x轴有交点.(3)经研究发现,无论k为何值,抛物线经过某些特定的点,请求出这些定点.(4)若y1=2x+2,在﹣2<x<﹣1范围内请比较y1,y的大小.【点拨】(1)抛物线的对称轴是直线x=﹣1=﹣,即可求解;(2)△=b2﹣4ac=(3k+2)2﹣4k(2k+2)=(k+2)2≥0,即可求解;(3)y=kx2+(3k+2)x+2k+2=k(x2+3x+2)+2x+2,当x2+3x+2=0时,函数过定点,则x=﹣1或﹣2,即可求解;(4)如图所示,抛物线过定点:(﹣1,0)、(﹣2,﹣2),由图象可见:当k>0时,y1>y;当k<0时,y1<y.【解析】解:(1)抛物线的对称轴是直线x=﹣1=﹣,解得:k=﹣2;(2)△=b2﹣4ac=(3k+2)2﹣4k(2k+2)=(k+2)2≥0,故:抛物线与x轴有交点;(3)y=kx2+(3k+2)x+2k+2=k(x2+3x+2)+2x+2,当x2+3x+2=0时,函数过定点,则x=﹣1或﹣2,则定点为:(﹣1,0)、(﹣2,﹣2);(4)如图所示,抛物线过定点:(﹣1,0)、(﹣2,﹣2),由图象可见:当k>0时,y1>y;当k<0时,y1<y.【点睛】本题考查的是抛物线与x轴的交点,主要考查函数图象上点的坐标特征,要求学生非常熟悉函数与坐标轴的交点、顶点等点坐标的求法,及这些点代表的意义及函数特征.。

二次函数与一元二次方程及不等式解析

二次函数与一元二次方程及不等式解析
∴yB=-0.2x2+1.6x.
(2)设投资B种商品x万元,则投资A种商品(10-x)万元,获得利润W万元,
根据题意可得W=-0.2x2+1.6x+0.4(10-x)=-0.2x2+1.2x+4.∴W=-0.2(x-3)2+5.8.
当投资B种商品3万元时,可以获得最大利润5.8万元.
所以投资A种商品7万元,B种商品3万元,这样投资可以获得最大利润5.8万元.
(1)求m的取值范围;
(2)求这个二次函数的解析式;
(3)确定直线y=kx+k的解析式.
解 (1)m2-4<0, -2<m<2.
(2)二次函数的解析式为y=x2-2x-3.
(3)由y=x2-2x-3,得A(-1,0),B(3,0).
强化训练
一、填空题
1.与抛物线y=2x2-2x-4关于x轴对称的图像表示的函数关系式是__y=-2x2+2x+4_.
A.0<S<2 B.0<S<1 C.1<S<2 D.-1<S<1
15.二次函数y=ax2+bx+c(a≠0)的最大值是零,那么代数式│a│+ 的化简结果是( B )
A.a B.-a C. D.0
16.(2006,甘肃兰州)已知y=2x2的图像是抛物线,若抛物线不动,把x轴,y 轴分别向上,向右平移2个单位,那么在新坐标系下抛物线的解析式是( B )
(1)求二次函数的解析式;
(2)求△PAQ的面积;
(3)在线段PQ上是否存在一点D,使△APD≌△QPA,若存在,求出点D坐标, 若不存在,说明理由.
(1)抛物线过(0,4)点.∴c=4,∴y=ax2+bx+4又OP:PQ=1:3,∴x1:x2=1:4

二次函数与一元二次方程总结

二次函数与一元二次方程总结

二次函数与一元二次方程 知识要点梳理: 一元二次方程ax 2+bx+c=0(a ≠0)的解的情况等价于抛物线y=ax 2+bx+c(c ≠0)与直线y=0(即x 轴)的公共点的个数。

抛物线y=ax 2+bx+c(a ≠0)与x 轴的公共点有三种情况:两个公共点(即有两个交点),一个公共点,没有公共点,因此有:(1)抛物线y=ax 2+bx+c 与x 轴有两个公共点(x 1,0)(x 2,0)一元二次方程ax 2+bx+c=0有两个不等实根△=b 2-4ac>0。

(2)抛物线y=ax 2+bx+c 与x 轴只有一个公共点时,此公共点即为顶点一元二次方程ax 2+bx+c=0有两个相等实根,(3)抛物线y=ax 2+bx+c 与x 轴没有公共点一元二次方程ax 2+bx+c=0没有实数根△=b 2-4ac<0.(4)事实上,抛物线y=ax 2+bx+c 与直线y=h 的公共点情况方程ax 2+bx+c=h 的根的情况。

抛物线y=ax 2+bx+c 与直线y=mx+n 的公共点情况方程ax 2+bx+c=mx+n 的根的情况。

习题练习1.不论x 为何值,二次函数y=ax 2+bx+c 的值恒为负的条件( )。

A.a >0,b 2-4ac <0 B .a >0,b 2-4ac >0 C. a <0,b 2-4ac <0 D. a <0,b 2-4ac >02.已知关于x 的方程ax 2+bx+c=0的一个根为x1=1,且二次函数y=ax 2+bx+c 的对称轴是直线x=2,则抛物线的顶点坐标为( )。

3.抛物线2283y x x =--与x 轴有 个交点,因为其判别式24b ac -= 0,相应二次方程23280x x -+=的根的情况为 .4.函数22y mx x m =+-(m 是常数)的图像与x 轴的交点个数为( ) A.0个 B.1个 C.2个 D.1个或2个5. (2008武汉)下列命题:①若0a b c ++=,则240b ac -≥;②若b a c >+,则一元二次方程20ax bx c ++=有两个不相等的实数根; ③若23b a c =+,则一元二次方程20ax bx c ++=有两个不相等的实数根; ④若240b ac ->,则二次函数的图像与坐标轴的公共点的个数是2或3. 其中正确的是( ).A.只有①②③B.只有①③④C.只有①④D.只有②6.关于二次函数2y ax bx c =++的图像有下列命题:①当0c =时,函数的图像经过原点;②当0c >,且函数的图像开口向下时,方程20ax bx c ++=必有两个不相等的实根;③函数图像最高点的纵坐标是244ac b a -;④当0b =时,函数的图像关于y 轴对称.其中正确命题的个数是( )A.1个 B.2个 C.3个 D.4个7、抛物线y=ax 2+bx+c 在x 轴的下方,则所要满足的条件是( )A 、a <0,b 2﹣4ac <0B 、a <0,b 2﹣4ac >0C 、a >0,b 2﹣4ac <0D 、a >0,b 2﹣4ac >08.已知二次函数y=ax 2+bx+c 的图象如图所示,那么下列判断不正确的是( )A 、ac <0B 、a ﹣b+c >0C 、b=﹣4aD 、关于x 的方程ax 2+bx+c=0的根是x 1=﹣1,x 2=59、已知:a >b >c ,且a+b+c=0,则二次函数y=ax 2+bx+c 的图象可能是下列图象中的( )A 、B 、C 、D 、10.关于x 的方程25mx mx m ++=有两个相等的实数根,则相应二次函数25y mx mx m =++-与x 轴必然相交于 点,此时m = .11.关于x 的二次函数22(81)8y mx m x m =+++的图像与x 轴有交点,则m 的范围是( ) A.116m <- B.116m -≥且0m ≠ C.116m =- D.116m >-且0m ≠ 12.已知函数22y x mx m =-+-.(1)求证:不论m 为何实数,此二次函数的图像与x 轴都有两个不同交点; (2)若函数y 有最小值54-,求函数表达式. 13、(2010•镇江)已知二次函数y=x 2+2x+m 的图象C 1与x 轴有且只有一个公共点.(1)求C 1的顶点坐标;(2)将C 1向下平移若干个单位后,得抛物线C 2,如果C 2与x 轴的一个交点为A (﹣3,0),求C 2的函数关系式,并求C 2与x 轴的另一个交点坐标;。

2.3 二次函数与一元二次方程、不等式(全部)

2.3  二次函数与一元二次方程、不等式(全部)

【对点练习】❶ 若关于 x 的不等式 ax2+(a-2)x-2≤0 恒成立,求实数 a 的取值范围.
题型二 一元二次方程根的分布 例 2 已知方程 8x2-(m-1)x+m-7=0 有两实根,如果两实根都大于 1,求实数 m 的取值范围.
[归纳提升] 方程 ax2+bx+c=0(a≠0)的根的分布情况如下,其中 x1,x2 为该方程两根:
【对点练习】❶ 不等式 6x2+x-2≤0 的解集为
.
题型二 三个“二次”的关系 例 2 已知不等式 ax2-bx+2<0 的解集为{x|1<x<2},求 a,b 的值.
[归纳提升] 给出了一元二次不等式的解集,则可知 a 的符号和 ax2+bx+c=0 的两实根,由根与系数的关系
可知 a,b,c 之间的关系.
)
1-4x
|-1≤x≤1
A. x 3 4
|-1≤x<1
B. x 3 4
|x>1或 x≤-1
C. x 4
3
|x≥1或 x≤-1
D. x 4
3
x-1 3.已知 0<a<1,关于 x 的不等式(x-a) a >0 的解集为( )
|x<a 或 x>1
A. x
a
B.{x|x>a}
|x<1或 x>a
C. x a
课堂检测 1.求下列不等式的解集:
(1)(x+2)(x-3)>0;(2)3x2-7x≤10;(3)-x2+4x-4<0;(4)x2-x+1<0;(5)-2x2+x≤-3;(6)x2-3x+4>0. 4
2.当自变量 x 在什么范围取值时,下列函数的值等于 0?大于 0?小于 0?

备战高考数学复习考点知识与题型讲解7---二次函数与一元二次方程、不等式

备战高考数学复习考点知识与题型讲解7---二次函数与一元二次方程、不等式

备战高考数学复习考点知识与题型讲解第7讲二次函数与一元二次方程、不等式一、知识梳理1.一元二次不等式(1)一般地,我们把只含有一个未知数,并且未知数的最高次数是2的不等式,称为一元二次不等式.(2)一元二次不等式的一般形式是ax2+bx+c>0或ax2+bx+c<0.(其中a,b,c均为常数,a≠0)2.二次函数与一元二次方程、不等式的解的对应关系有两个相等的实数常用结论1.分式不等式的解法 (1)f (x )g (x )>0(<0)⇔f (x )g (x )>0(<0).(2)f (x )g (x )≥0(≤0)⇔⎩⎪⎨⎪⎧f (x )g (x )≥0(≤0),g (x )≠0. 2.两个恒成立的充要条件(1)一元二次不等式ax 2+bx +c >0对任意实数x 恒成立⇔⎩⎪⎨⎪⎧a >0,b 2-4ac <0.(2)一元二次不等式ax 2+bx +c <0对任意实数x 恒成立⇔⎩⎪⎨⎪⎧a <0,b 2-4ac <0.二、教材衍化1.(人A 必修第一册P 55习题2.3T 1(3)改编)不等式x 2-3x -10<0的解集为________.解析:由x 2-3x -10<0得(x +2)(x -5)<0,所以-2<x <5. 答案:(-2,5)2.(人A 必修第一册P 55习题2.3T 3改编)已知M ={x |4x 2-4x -15≥0},N ={x |x 2-5x -6>0},则M ∩N =________,M ∪N =________.解析:M ={x |(2x +3)(2x -5)≥0}=⎩⎨⎧⎭⎬⎫x ⎪⎪⎪x ≤-32,或x ≥52,N ={x |(x +1)(x -6)>0}={x |x <-1,或x >6}, 所以M ∩N =⎩⎨⎧⎭⎬⎫x ⎪⎪⎪x ≤-32,或x >6, M ∪N =⎩⎨⎧⎭⎬⎫x ⎪⎪⎪x <-1,或x ≥52.答案:⎩⎨⎧⎭⎬⎫x ⎪⎪⎪x ≤-32,或x >6⎩⎨⎧⎭⎬⎫x ⎪⎪⎪x <-1,或x ≥52一、思考辨析判断正误(正确的打“√”,错误的打“×”)(1)若不等式ax 2+bx +c <0(a ≠0)的解集为(x 1,x 2),则必有a >0.( ) (2)若方程ax 2+bx +c =0(a ≠0)没有实数根,则不等式ax 2+bx +c >0的解集为R .( )(3)不等式ax 2+bx +c ≤0在R 上恒成立的条件是a <0且Δ=b 2-4ac ≤0.( ) (4)若二次函数y =ax 2+bx +c 的图象开口向下,则不等式ax 2+bx +c <0的解集一定不是空集.( )答案:(1)√ (2)× (3)× (4)√ 二、易错纠偏1.(忽略等号能否成立致误)不等式x -1x -3≤0的解集是( ) A.(-∞,1)∪[3,+∞) B.(-∞,1]∪(3,+∞)C.[1,3)D.[1,3] 解析:选C.不等式x -1x -3≤0,等价于⎩⎪⎨⎪⎧(x -1)(x -3)≤0,x -3≠0.解得1≤x <3,所以不等式的解集是[1,3),故选C.2.(忽视二次项系数为0致误)不等式mx 2+mx +1>0对一切x ∈R 恒成立,则实数m 的取值范围是________.解析:当m =0时,1>0,不等式恒成立, 当m ≠0时,⎩⎪⎨⎪⎧m >0,Δ=m 2-4m <0.解得0<m <4. 综上,0≤m <4. 答案:[0,4)3.(不能正确理解不等式的解集致误)若关于x 的不等式ax 2+bx +2>0的解集是⎝ ⎛⎭⎪⎫-12,13,则a +b =________. 解析:因为x 1=-12,x 2=13是方程ax 2+bx +2=0的两个根,所以⎩⎪⎨⎪⎧a 4-b 2+2=0,a 9+b3+2=0,解得⎩⎪⎨⎪⎧a =-12,b =-2,所以a +b =-14. 答案:-14考点一 一元二次不等式的解法(多维探究)复习指导:通过函数图象了解一元二次不等式与相应函数、方程的联系,会解一元二次不等式.角度1 不含参数的不等式(1)不等式-2x 2+x +3<0的解集为( ) A.⎝ ⎛⎭⎪⎫-1,32 B.⎝ ⎛⎭⎪⎫-32,1 C.(-∞,-1)∪⎝ ⎛⎭⎪⎫32,+∞D.⎝ ⎛⎭⎪⎫-∞,-32∪(1,+∞) (2)(链接常用结论1)不等式1-x 2+x ≥0的解集为( )A.[-2,1]B.(-2,1]C.(-∞,-2)∪(1,+∞)D.(-∞,-2]∪(1,+∞) 【解析】 (1)-2x 2+x +3<0可化为2x 2-x -3>0, 即(x +1)(2x -3)>0, 所以x <-1或x >32.(2)原不等式化为⎩⎪⎨⎪⎧(1-x )(2+x )≥0,2+x ≠0,即⎩⎪⎨⎪⎧(x -1)(x +2)≤0,x +2≠0, 解得-2<x ≤1. 【答案】 (1)C (2)B解一元二次不等式的方法和步骤角度2 含参数的不等式解关于x 的不等式ax 2-(a +1)x +1<0(a >0). 【解】 原不等式变为(ax -1)(x -1)<0, 因为a >0,所以⎝ ⎛⎭⎪⎫x -1a (x -1)<0.所以当a >1时,解得1a <x <1; 当a =1时,解集为∅; 当0<a <1时,解得1<x <1a . 综上,当0<a <1时,不等式的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪⎪1<x <1a ; 当a =1时,不等式的解集为∅; 当a >1时,不等式的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪⎪1a <x <1.在本例中,把a >0改成a ∈R ,解不等式. 解:当a >0时,同例2,当a =0时,原不等式等价于-x +1<0,即x >1,当a <0时,1a <1,原不等式可化为⎝ ⎛⎭⎪⎫x -1a (x -1)>0,解得x >1或x <1a .综上,当0<a <1时,不等式的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪⎪1<x <1a ,当a =1时,不等式的解集为∅,当a >1时,不等式的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪⎪1a <x <1,当a =0时,不等式的解集为{x |x >1}, 当a <0时,不等式的解集为⎩⎨⎧⎭⎬⎫x⎪⎪⎪x <1a 或x >1.解含参数的一元二次不等式的步骤(1)二次项若含有参数应讨论参数是等于0,小于0,还是大于0,然后将不等式转化为一次不等式或二次项系数为正的一元二次不等式;(2)判断一元二次不等式所对应的方程实根的个数,即讨论判别式Δ与0的关系;(3)确定方程无实根或有两个相同实根时,可直接写出解集;确定方程有两个相异实根时,要讨论两实根的大小关系,从而确定解集形式.|跟踪训练|1.若不等式ax 2+bx +2<0的解集为{x |x <-12或x >13},则a -b a =( ) A.56 B.16 C.-16D.-56解析:选A.由题意得方程ax 2+bx +2=0的两根为-12和13,所以根据根与系数的关系可得-b a =-12+13=-16,则a -b a =1-b a =1-16=56.2.解不等式12x 2-ax >a 2(a ∈R ). 解:原不等式可化为12x 2-ax -a 2>0, 即(4x +a )(3x -a )>0,令(4x +a )(3x -a )=0, 解得x 1=-a 4,x 2=a3.当a >0时,不等式的解集为⎝ ⎛⎭⎪⎫-∞,-a 4∪⎝ ⎛⎭⎪⎫a 3,+∞;当a =0时,不等式的解集为(-∞,0)∪(0,+∞); 当a <0时,不等式的解集为⎝ ⎛⎭⎪⎫-∞,a 3∪⎝ ⎛⎭⎪⎫-a 4,+∞. 考点二 一元二次不等式恒成立问题(思维发散)复习指导:此类问题的求解常利用转化思想,其思路为:一元二次不等式ax 2+bx +c >0(a ≠0)解集的端点值是一元二次方程ax 2+bx +c =0的根,也是函数y =ax 2+bx +c 与x 轴交点的横坐标.(链接常用结论2)已知函数f (x )=mx 2-mx -1,若对于x ∈R ,f (x )<5-m恒成立,求实数m 的取值范围.【解】 对于x ∈R ,f (x )<5-m 恒成立, 即mx 2-mx -6+m <0对x ∈R 恒成立, 当m =0时,显然符合题意,当m ≠0时,由⎩⎪⎨⎪⎧m <0,Δ=m 2-4m (m -6)<0得m <0,综上,所求实数m 的取值范围是(-∞,0].1.本例中将条件“x ∈R ”改为“x ∈[1,3]”,其他不变,求实数m 的取值范围.解:要使f (x )<-m +5在x ∈[1,3]上恒成立,即m ⎝ ⎛⎭⎪⎫x -122+34m -6<0在x ∈[1,3]上恒成立.令g (x )=m ⎝ ⎛⎭⎪⎫x -122+34m -6,x ∈[1,3].当m >0时,g (x )在[1,3]上是增函数, 所以g (x )max =g (3),即7m -6<0, 所以m <67,所以0<m <67; 当m =0时,-6<0恒成立;当m <0时,g (x )在[1,3]上是减函数, 所以g (x )max =g (1),即m -6<0, 所以m <6,所以m <0.综上所述,m 的取值范围是⎩⎨⎧⎭⎬⎫m ⎪⎪⎪m <67.2.本例中条件改为“若存在x ∈[1,3],使f (x )<5-m 成立”,求实数m 的取值范围.解:题中条件可转化为存在x ∈[1,3],使m <6x 2-x +1成立.因为函数y =6x 2-x +1=6⎝ ⎛⎭⎪⎫x -122+34在[1,3]上的最大值为6, 所以只需m <6即可, 故m 的取值范围是(-∞,6).(1)若不等式ax 2+bx +c >0(a ≠0)恒成立,则满足⎩⎪⎨⎪⎧a >0,Δ=b 2-4ac <0.若a =0,则应单独验证是否符合题意.(2)一元二次不等式在指定范围内恒成立,其本质是这个不等式的解集包含指定的范围.(3)“恒成立”和“能成立”问题都可以转化为函数最值问题.|跟踪训练|1.若函数f (x )=x 2+ax +1的定义域为实数集R ,则实数a 的取值范围为( )A.(-2,2)B.(-∞,-2)∪(2,+∞)C.(-∞,-2]∪[2,+∞)D.[-2,2]解析:选D.由题意知x 2+ax +1≥0恒成立,即Δ=a 2-4≤0,解得-2≤a ≤2,即实数a 的取值范围是[-2,2].故选D.2.若不等式x 2+mx -1<0对于任意x ∈[m ,m +1]都成立,则实数m 的取值范围是________.解析:由题意,得函数f (x )=x 2+mx -1在[m ,m +1]上的最大值小于0,又抛物线f (x )=x 2+mx -1开口向上,所以只需⎩⎪⎨⎪⎧f (m )=m 2+m 2-1<0,f (m +1)=(m +1)2+m (m +1)-1<0,即⎩⎪⎨⎪⎧2m 2-1<0,2m 2+3m <0,解得-22<m <0.答案:⎝ ⎛⎭⎪⎫-22,03.若mx 2-mx -1<0对于m ∈[1,2]恒成立,求实数x 的取值范围.解:设g (m )=mx 2-mx -1=(x 2-x )m -1,其图象是直线,当m ∈[1,2]时,图象为一条线段,则⎩⎪⎨⎪⎧g (1)<0,g (2)<0,即⎩⎪⎨⎪⎧x 2-x -1<0,2x 2-2x -1<0,解得1-32<x <1+32,故x 的取值范围为⎝ ⎛⎭⎪⎫1-32,1+32.考点三 一元二次不等式的实际应用(综合研析)复习指导:体会建立不等式模型解决实际问题的方法.某地区上年度电价为0.8元/kW ·h ,年用电量为a kW ·h.本年度计划将电价降到0.55元/kW ·h 至0.75元/kW ·h 之间,而用户期望电价为0.4元/kW ·h.经测算,下调电价后新增的用电量与实际电价和用户期望电价的差成反比(比例系数为k ).该地区电力的成本价为0.3元/kW ·h.(1)写出本年度电价下调后,电力部门的收益y 与实际电价x 的函数关系式; (2)设k =0.2 a ,当电价最低定为多少时仍可保证电力部门的收益比上年度至少增长20%?注:收益=实际用电量×(实际电价-成本价). 【解】 (1)下调电价后新增的用电量为k x -0.4,所以下调电价后的总用电量为a +kx -0.4, 所以y =⎝ ⎛⎭⎪⎫a +k x -0.4(x -0.3)(0.55≤x ≤0.75). (2)由已知⎩⎨⎧⎝⎛⎭⎪⎫a +0.2a x -0.4(x -0.3)≥[a ×(0.8-0.3)]×(1+20%),0.55≤x ≤0.75,整理得⎩⎪⎨⎪⎧x 2-1.1 x +0.3≥0,0.55≤x ≤0.75,解得0.60≤x ≤0.75.当电价最低定为0.60元/kW ·h 时,仍可保证电力部门的收益比上年度至少增长20%.求解不等式应用题的四个步骤|跟踪训练|若产品的总成本y(万元)与产量x(台)之间的函数关系式是y=3 000+20x-0.1 x2(0<x<240),若每台产品的售价为25万元,则生产者不亏本(销售收入不小于总成本)时的最低产量是________台.解析:生产者不亏本时有y-25x=-0.1 x2-5x+3 000≤0,即x2+50 x-30 000≥0,解得x≥150或x≤-200(舍去).故生产者不亏本时的最低产量是150台.答案:150[A基础达标]1.(2022·铜仁市思南中学期中考试)不等式-x2-3x+10≥0的解集为()A.{x|-5≤x≤2}B.{x|x≤-5或x≥2}C.{x|-2≤x≤5}D.{x|x≤-2或x≥5}解析:选A.-x2-3x+10≥0可化为x2+3x-10≤0,即(x-2)(x+5)≤0,解得-5≤x≤2.2.设m+n>0,则关于x的不等式(m-x)(n+x)>0的解集是()A.{x |x <-n 或x >m }B.{x |-n <x <m }C.{x |x <-m 或x >n }D.{x |-m <x <n }解析:选B.原不等式(m -x )(n +x )>0可化为(x -m )(x +n )<0, 因为m +n >0,所以m >-n , 所以原不等式的解为-n <x <m .3.关于x 的不等式(ax -b )(x +3)<0的解集为(-∞,-3)∪(1,+∞),则关于x 的不等式ax +b >0的解集为( )A.(-∞,-1)B.(-1,+∞)C.(-∞,1)D.(1,+∞)解析:选A.由题意可得a <0,且1,-3是方程(ax -b )(x +3)=0的两实数根, 所以x =1为方程ax -b =0的根,所以a =b , 则不等式ax +b >0可化为x +1<0,即x <-1, 所以不等式ax +b >0的解集为(-∞,-1).4.若存在实数x ∈[2,4],使x 2-2x +5-m <0成立,则m 的取值范围为( ) A.(13,+∞) B.(5,+∞) C.(4,+∞)D.(-∞,13)解析:选B.m >x 2-2x +5,设f (x )=x 2-2x +5=(x -1)2+4,x ∈[2,4],当x =2时,f (x )min =5,若∃x ∈[2,4]使x 2-2x +5-m <0成立,即m >f (x )min ,所以m >5.故选B.5.(多选)满足关于x 的不等式(ax -b )(x -2)>0的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪⎪12<x <2,则满足条件的一组有序实数对(a ,b )的值可以是( )A.(-2,-1)B.(-3,-6)C.(2,4)D.⎝ ⎛⎭⎪⎫-3,-32 解析:选AD.不等式(ax -b )(x -2)>0的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪⎪12<x <2,所以方程(ax -b )(x -2)=0的实数根为12和2, 且⎩⎪⎨⎪⎧a <0,b a =12,即a =2b <0,故选AD.6.不等式x +2x -1>2的解集为________. 解析:原不等式可化为x +2x -1-2>0,即(x +2)-2(x -1)x -1>0,即4-x x -1>0, 即(x -1)(x -4)<0, 解得1<x <4,所以原不等式的解集为{x |1<x <4}. 答案:{x |1<x <4}7.若0<a <1,则不等式(a -x )⎝ ⎛⎭⎪⎫x -1a >0的解集是________.解析:原不等式可化为(x -a )⎝ ⎛⎭⎪⎫x -1a <0,由0<a <1得a <1a ,所以a <x <1a . 答案:⎝ ⎛⎭⎪⎫a ,1a8.(2022·河南温县一中10月月考)已知定义在R 上的运算“⊗”: x ⊗y =x (1-y ),关于x 的不等式(x -a )⊗(x +a )>0.(1)当a =2时,不等式的解集为________________;(2)若∀x ∈[0,1],不等式恒成立,则实数a 的取值范围是________, 解析:(1)当a =2时,不等式(x -a )⊗(x +a )>0为(x -2)(1-x -2)>0, 即(x -2)(x +1)<0,解得-1<x <2,所以不等式的解集为{x |-1<x <2}.(2)不等式(x -a )⊗(x +a )>0为(x -a )(1-x -a )>0, 即-x 2+x +a 2-a >0,不等式对∀x ∈[0,1]恒成立,设y =-x 2+x +a 2-a , 则只要∀x ∈[0,1],y min >0,y =-⎝ ⎛⎭⎪⎫x -122+14+a 2-a ,当x =0或x =1时,y min =a 2-a ,所以y min =a 2-a >0, 解得a <0或a >1.答案:(1){x |-1<x <2} (2)a <0或a >1 9.若不等式ax 2+5x -2>0的解集是⎩⎨⎧x ⎪⎪⎪⎭⎬⎫12<x <2. (1)求实数a 的值;(2)求不等式ax 2-5x +a 2-1>0的解集.解:(1)由题意知a <0,且方程ax 2+5x -2=0的两个实数根为12和2,代入方程解得a =-2.(2)由(1)知不等式ax 2-5x +a 2-1>0,即为-2x 2-5x +3>0,即2x 2+5x -3<0,解得-3<x <12,即不等式ax 2-5x +a 2-1>0的解集为⎝ ⎛⎭⎪⎫-3,12. 10.(2022·重庆九校联考)汽车在行驶中,由于惯性的作用,刹车后还要继续向前滑行一段距离才能停住,我们称这段距离为“刹车距离”.刹车距离是分析事故的一个重要因素.在一个限速为40 km/h 的弯道上,甲、乙两辆汽车相向而行,发现情况不对,同时刹车,但还是相碰了.事后现场勘查测得甲车的刹车距离略超过12 m ,乙车的刹车距离略超过10 m.已知甲、乙两种车型的刹车距离s (m)与车速x(km/h)之间分别有如下关系:s甲=0.1 x+0.01 x2,s乙=0.05 x+0.005 x2.问:甲、乙两车有无超速现象?解:由题意知,对于甲车,有0.1 x+0.01 x2>12,即x2+10 x-1 200>0,解得x>30或x<-40(不符合实际意义,舍去),这表明甲车的车速超过30 km/h.但根据题意知刹车距离略超过12 m,由此估计甲车的车速不会超过限速40 km/h.对于乙车,有0.05 x+0.005 x2>10,即x2+10 x-2 000>0,解得x>40或x<-50(不符合实际意义,舍去),这表明乙车的车速超过40 km/h,即超过规定限速.故甲车没有超速,乙车有超速现象.[B综合应用]11.在关于x的不等式x2-(a+1)x+a<0的解集中至多包含1个整数,则a 的取值范围是()A.(-3,5)B.(-2,4)C.[-1,3]D.[-2,4]解析:选C.因为关于x的不等式x2-(a+1)x+a<0可化为(x-1)(x-a)<0,当a>1时,不等式的解集为{x|1<x<a},当a<1时,不等式的解集为{x|a<x<1},当a=1时,不等式的解集为∅,要使得解集中至多包含1个整数,则a=1或1<a≤3或-1≤a<1,所以实数a的取值范围是a∈[-1,3],故选C.12.(多选)(2022·淄博高三一模)设[x]表示不小于实数x的最小整数,则满足关于x的不等式[x]2+[x]-12≤0的解可以为()A.10B.3C.-4.5D.-5解析:选BC.因为不等式[x]2+[x]-12≤0,所以([x ]-3)([x ]+4)≤0,所以-4≤[x ]≤3,又因为[x ]表示不小于实数x 的最小整数,结合选项, 所以不等式[x ]2+[x ]-12≤0的解可以为3和-4.5. 故选BC.13.(2022·山东泰安一中月考)设m 为实数,若函数f (x )=x 2-mx +2在区间(-∞,2)上是减函数,对任意的x 1,x 2∈⎣⎢⎡⎦⎥⎤1,m 2+1,总有|f (x 1)-f (x 2)|≤4,则m 的取值范围为( )A.[4,6]B.(4,6)C.(4,6]D.[4,6)解析:选A.函数f (x )=x 2-mx +2的对称轴为直线x =m2, 由其在区间(-∞,2)上是减函数,可得m2≥2,即m ≥4; 因为m ≥4,m 2∈⎣⎢⎡⎦⎥⎤1,m 2+1且m 2+1-m 2≤m2-1,故当x 1,x 2∈⎣⎢⎡⎦⎥⎤1,m 2+1时,f (x )max =f (1)=3-m ,f (x )min =f ⎝ ⎛⎭⎪⎫m 2=-m 24+2,由|f (x 1)-f (x 2)|≤4,可得3-m -⎝ ⎛⎭⎪⎫-m 24+2≤4,化简可得m 2-4m -12≤0,可得-2≤m ≤6, 综上可得4≤m ≤6,故选A.[C 素养提升]14.(2022·河南郑州联考改编)已知f (x )=-2x 2+bx +c ,不等式f (x )>0的解集是(-1,3),则b =________;若对于任意x ∈[-1,0],不等式f (x )+t ≤4恒成立,则实数t 的取值范围是________.解析:由题可知-1和3是方程-2x 2+bx +c =0的根,即⎩⎪⎨⎪⎧2=b2,-3=-c2,解得⎩⎪⎨⎪⎧b =4,c =6,所以f (x )=-2x 2+4x +6.所以不等式f (x )+t ≤4可化为t ≤2x 2-4x -2,x ∈[-1,0].令g (x )=2x 2-4x -2,x ∈[-1,0],由二次函数的性质可知g (x )在[-1,0]上单调递减,则g (x )的最小值为g (0)=-2,则t ≤-2.答案: 4 (-∞,-2]15. (2022·浙江诸暨中学高三模拟)设函数f (x )=2x 2+bx +c ,若不等式f (x )<0的解集是(1,5).(1)求f (x )的解析式;(2)若对于任意x ∈[1,3],不等式f (x )≤2+t 有解,求实数t 的取值范围. 解: (1)由题意知1和5是方程2x 2+bx +c =0的两个根,由根与系数的关系知,-b 2=6,c2=5,解得b =-12,c =10,所以f (x )=2x 2-12x +10.(2)不等式f (x )≤2+t 在x ∈[1,3]时有解,等价于2x 2-12x +8≤t 在x ∈[1,3]时有解,只要t ≥(2x 2-12x +8)min 即可,不妨设g (x )=2x 2-12x +8,x ∈[1,3],则g (x )在[1,3]上单调递减,所以g (x )≥g (3)=-10,所以t ≥-10.。

专题05 二次函数与一元二次方程、不等式(解析版)

专题05 二次函数与一元二次方程、不等式(解析版)

目录不等关系与不等式 ................................................................................................. 错误!未定义书签。

考点1:二次函数与一元二次方程、不等式 (2)考点2:一元二次不等式在实际问题中的应用 (9)专题05 二次函数与一元二次方程、不等式考点1:二次函数与一元二次方程、不等式知识点一一元二次不等式的概念定义只含有一个未知数,并且未知数的最高次数是2的不等式,叫做一元二次不等式一般形式ax2+bx+c>0,ax2+bx+c<0,ax2+bx+c≥0,ax2+bx+c≤0,其中a≠0,a,b,c均为常数知识点二一元二次函数的零点一般地,对于二次函数y=ax2+bx+c,我们把使ax2+bx+c=0的实数x叫做二次函数y=ax2+bx+c的零点.知识点三二次函数与一元二次方程的根、一元二次不等式的解集的对应关系判别式Δ=b2-4acΔ>0Δ=0Δ<0二次函数y=ax2+bx+c(a>0)的图象一元二次方程ax2+bx+c=0(a>0)的根有两个不相等的实数根x1,x2(x1<x2)有两个相等的实数根x1=x2=-b2a没有实数根ax2+bx+c>0(a>0)的解集{x|x<x1,或x>x2}⎩⎨⎧⎭⎬⎫x⎪⎪x≠-b2a Rax2+bx+c<0(a>0)的解集{x|x1<x<x2}∅∅题型1:解不含参数的一元二次不等式例1解下列不等式:(1)-x2+5x-6>0;(2)3x2+5x-2≥0;(3)x2-4x+5>0.解(1)不等式可化为x2-5x+6<0.因为Δ=(-5)2-4×1×6=1>0,所以方程x 2-5x +6=0有两个实数根:x 1=2,x 2=3. 由二次函数y =x 2-5x +6的图象(如图①),得原不等式的解集为{x |2<x <3}.(2)因为Δ=25-4×3×(-2)=49>0,所以方程3x 2+5x -2=0的两实根为x 1=-2,x 2=13.由二次函数y =3x 2+5x -2的图象(图②),得原不等式的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪x ≤-2或x ≥13. (3)方程x 2-4x +5=0无实数解,函数y =x 2-4x +5的图象是开口向上的抛物线,与x 轴无交点(如图③).观察图象可得,不等式的解集为R .变式 解下列不等式: (1)4x 2-4x +1>0; (2)-x 2+6x -10>0.解 (1)∵方程4x 2-4x +1=0有两个相等的实根x 1=x 2=12.作出函数y =4x 2-4x +1的图象如图.由图可得原不等式的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪x ≠12.(2)原不等式可化为x 2-6x +10<0, ∵Δ=36-40=-4<0, ∴方程x 2-6x +10=0无实根, ∴原不等式的解集为∅.题型2:三个“二次”间的关系及应用例2 已知二次函数y =ax 2+(b -8)x -a -ab ,且y >0的解集为{x |-3<x <2}. (1)求二次函数的解析式;(2)当关于x 的不等式ax 2+bx +c ≤0的解集为R 时,求c 的取值范围. 解 (1)因为y >0的解集为{x |-3<x <2},所以-3,2是方程ax 2+(b -8)x -a -ab =0的两根, 所以⎩⎨⎧-3+2=-b -8a,-3×2=-a -aba ,解得⎩⎪⎨⎪⎧a =-3,b =5,所以y =-3x 2-3x +18.(2)因为a =-3<0,所以二次函数y =-3x 2+5x +c 的图象开口向下,要使-3x 2+5x +c ≤0的解集为R ,只需Δ≤0,即25+12c ≤0,所以c ≤-2512. 所以当c ≤-2512时,-3x 2+5x +c ≤0的解集为R .变式 已知关于x 的不等式ax 2+5x +c >0的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪13<x <12. (1)求a ,c 的值;(2)解关于x 的不等式ax 2+(ac +2)x +2c ≥0.解 (1)由题意知,不等式对应的方程ax 2+5x +c =0的两个实数根为13和12,由根与系数的关系,得⎩⎨⎧-5a =13+12,c a =12×13,解得a =-6,c =-1.(2)由a =-6,c =-1知不等式ax 2+(ac +2)x +2c ≥0可化为-6x 2+8x -2≥0,即3x 2-4x+1≤0,解得13≤x ≤1,所以不等式的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪13≤x ≤1.题型3:含参数的一元二次不等式的解法例3 设a ∈R ,解关于x 的不等式ax 2+(1-2a )x -2>0.解 (1)当a =0时,不等式可化为x -2>0,解得x >2,即原不等式的解集为{x |x >2}. (2)当a ≠0时,方程ax 2+(1-2a )x -2=0的两根分别为2和-1a .①当a <-12时,解不等式得-1a<x <2,即原不等式的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪-1a<x <2; ②当a =-12时,不等式无解,即原不等式的解集为∅;③当-12<a <0时,解不等式得2<x <-1a,即原不等式的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪2<x <-1a ; ④当a >0时,解不等式得x <-1a或x >2,即原不等式的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪x <-1a 或x >2.变式 (1)当a =12时,求关于x 的不等式x 2-⎝⎛⎭⎫a +1a x +1≤0的解集; (2)若a >0,求关于x 的不等式x 2-⎝⎛⎭⎫a +1a x +1≤0的解集. 解 (1)当a =12时,有x 2-52x +1≤0,即2x 2-5x +2≤0,解得12≤x ≤2,故不等式的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪12≤x ≤2. (2)x 2-⎝⎛⎭⎫a +1a x +1≤0⇔⎝⎛⎭⎫x -1a (x -a )≤0, ①当0<a <1时,a <1a ,不等式的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪a ≤x ≤1a ; ②当a =1时,a =1a=1,不等式的解集为{1};③当a >1时,a >1a ,不等式的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪ 1a ≤x ≤a . 综上,当0<a <1时,不等式的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪ a ≤x ≤1a ; 当a =1时,不等式的解集为{1};当a >1时,不等式的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪1a≤x ≤a .考点1:练习题1.已知集合M ={x |-4<x <2},N ={x |x 2-x -6<0},则M ∩N 等于( ) A .{x |-4<x <3} B .{x |-4<x <-2} C .{x |-2<x <2} D .{x |2<x <3}答案 C解析 ∵N ={x |-2<x <3},M ={x |-4<x <2}, ∴M ∩N ={x |-2<x <2},故选C.2.若0<m <1,则不等式(x -m )⎝⎛⎭⎫x -1m <0的解集为( ) A.⎩⎨⎧⎭⎬⎫x ⎪⎪ 1m <x <m B.⎩⎨⎧⎭⎬⎫x ⎪⎪x >1m 或x <m C.⎩⎨⎧⎭⎬⎫x ⎪⎪ x >m 或x <1m D.⎩⎨⎧⎭⎬⎫x ⎪⎪m <x <1m 答案 D解析 ∵0<m <1,∴1m>1>m ,故原不等式的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪m <x <1m ,故选D. 3.二次方程ax 2+bx +c =0的两根为-2,3,如果a <0,那么ax 2+bx +c >0的解集为( ) A .{x |x >3或x <-2} B .{x |x >2或x <-3} C .{x |-2<x <3} D .{x |-3<x <2}答案 C解析 由题意知-2+3=-b a ,-2×3=ca ,∴b =-a ,c =-6a ,∴不等式ax 2+bx +c >0可化为ax 2-ax -6a >0, 又a <0,∴x 2-x -6<0,∴(x -3)(x +2)<0, ∴-2<x <3,故选C.4.若不等式5x 2-bx +c <0的解集为{x |-1<x <3},则b +c 的值是( ) A .5 B .-5 C .-25 D .10 答案 B解析 由题意知-1,3为方程5x 2-bx +c =0的两根, ∴-1+3=b 5,-3=c5,∴b =10,c =-15,∴b +c =-5.故选B.5.若关于x 的二次不等式x 2+mx +1≥0的解集为R ,则实数m 的取值范围是( ) A .{m |m ≤-2或m ≥2} B .{m |-2≤m ≤2} C .{m |m <-2或m >2} D .{m |-2<m <2}答案 B解析 ∵x 2+mx +1≥0的解集为R , ∴Δ=m 2-4≤0,∴-2≤m ≤2,故选B. 6.不等式x 2-4x +4≤0的解集是________. 答案 {2}解析 原不等式可化为(x -2)2≤0,∴x =2. 7.不等式x 2+3x -4<0的解集为________. 答案 {x |-4<x <1}解析 易得方程x 2+3x -4=0的两根为-4,1,所以不等式x 2+3x -4<0的解集为{x |-4<x <1}.8.关于x 的不等式(mx -1)(x -2)>0,若此不等式的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪1m<x <2,则m 的取值范围是________. 答案 {m |m <0}解析 ∵不等式(mx -1)(x -2)>0的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪1m<x <2, ∴方程(mx -1)(x -2)=0的两个实数根为1m 和2,且⎩⎪⎨⎪⎧m <0,1m<2,解得m <0,∴m 的取值范围是m <0.9.已知不等式x 2-2x -3<0的解集为A ,不等式x 2+x -6<0的解集为B . (1)求A ∩B ;(2)若不等式x 2+ax +b <0的解集为A ∩B ,求不等式ax 2+x +b <0的解集. 解 (1)由x 2-2x -3<0,得-1<x <3, ∴A ={x |-1<x <3}. 由x 2+x -6<0,得-3<x <2,∴B ={x |-3<x <2},∴A ∩B ={x |-1<x <2}.(2)由题意,得⎩⎪⎨⎪⎧ 1-a +b =0,4+2a +b =0,解得⎩⎪⎨⎪⎧a =-1,b =-2.∴-x 2+x -2<0,∴x 2-x +2>0, ∵Δ=1-8=-7<0,∴不等式x 2-x +2>0的解集为R .10.若不等式(1-a )x 2-4x +6>0的解集是{x |-3<x <1}. (1)解不等式2x 2+(2-a )x -a >0;(2)b 为何值时,ax 2+bx +3≥0的解集为R?解 (1)由题意知1-a <0,且-3和1是方程(1-a )x 2-4x +6=0的两根,∴⎩⎨⎧1-a <0,41-a=-2,61-a =-3,解得a =3.∴不等式2x 2+(2-a )x -a >0,即为2x 2-x -3>0, 解得x <-1或x >32.∴所求不等式的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪x <-1或x >32. (2)ax 2+bx +3≥0,即为3x 2+bx +3≥0, 若此不等式解集为R ,则Δ=b 2-4×3×3≤0,∴-6≤b ≤6.11.下列四个不等式:①-x 2+x +1≥0;②x 2-25x +5>0;③x 2+6x +10>0;④2x 2-3x +4<1. 其中解集为R 的是( ) A .① B .② C .③ D .④ 答案 C解析 ①显然不可能;②中Δ=(-25)2-4×5>0,解集不为R ; ③中Δ=62-4×10<0.满足条件;④中不等式可化为2x 2-3x +3<0,所对应的二次函数开口向上,显然不可能.故选C. 12.在R 上定义运算“⊙”:a ⊙b =ab +2a +b ,则满足x ⊙(x -2)<0的实数x 的取值范围为( ) A .{x |0<x <2} B .{x |-2<x <1} C .{x |x <-2或x >1} D .{x |-1<x <2}答案 B解析 根据给出的定义得,x ⊙(x -2)=x (x -2)+2x +(x -2)=x 2+x -2=(x +2)(x -1), 又x ⊙(x -2)<0,则(x +2)(x -1)<0,故不等式的解集是{x |-2<x <1}.13.若关于x 的方程(a -2)x 2-2(a -2)x +1=0无实数解,则a 的取值范围是________. 答案 2≤a <3解析 若a -2=0,即a =2时,原方程为1=0不合题意, ∴a =2满足条件,若a -2≠0,则Δ=4(a -2)2-4(a -2)<0, 解得2<a <3,综上有a 的取值范围是2≤a <3.14.已知不等式x 2-2x +5≥a 2-3a 对∀x ∈R 恒成立,则a 的取值范围为________. 答案 {a |-1≤a ≤4}解析 x 2-2x +5=(x -1)2+4≥a 2-3a 恒成立,∴a 2-3a ≤4,即a 2-3a -4≤0, ∴(a -4)(a +1)≤0,∴-1≤a ≤4.考点2:等式性质与不等式性质知识点 用一元二次不等式解决实际问题的步骤 1.理解题意,搞清量与量之间的关系;2.建立相应的不等关系,把实际问题抽象为数学中的一元二次不等式问题. 3.解决这个一元二次不等式,得到实际问题的解.题型1:分式不等式的解法例1 解下列不等式:(1)2x -5x +4<0; (2)x +12x -3≤1. 解 (1)2x -5x +4<0⇔(2x -5)(x +4)<0⇔-4<x <52,∴原不等式的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪-4<x <52.(2)∵x +12x -3≤1,∴x +12x -3-1≤0,∴-x +42x -3≤0,即x -4x -32≥0.此不等式等价于(x -4)⎝⎛⎭⎫x -32≥0且x -32≠0,解得x <32或x ≥4, ∴原不等式的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪x <32或x ≥4.变式 解下列不等式: (1)2x -13x +1≥0;(2)2-xx +3>1. 解 (1)原不等式可化为⎩⎪⎨⎪⎧(2x -1)(3x +1)≥0,3x +1≠0.解得⎩⎨⎧x ≤-13或x ≥12,x ≠-13,∴x <-13或x ≥12,∴原不等式的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪x <-13或x ≥12. (2)方法一 原不等式可化为⎩⎪⎨⎪⎧ x +3>0,2-x >x +3或⎩⎪⎨⎪⎧x +3<0,2-x <x +3.解得⎩⎪⎨⎪⎧ x >-3,x <-12或⎩⎪⎨⎪⎧x <-3,x >-12, ∴-3<x <-12,∴原不等式的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪-3<x <-12. 方法二 原不等式可化为(2-x )-(x +3)x +3>0,化简得-2x -1x +3>0,即2x +1x +3<0,∴(2x +1)(x +3)<0,解得-3<x <-12.∴原不等式的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪-3<x <-12.题型2:一元二次不等式的实际应用例2 某农贸公司按每担200元的价格收购某农产品,并每100元纳税10元(又称征税率为10个百分点),计划可收购a 万担.政府为了鼓励收购公司多收购这种农产品,决定将征税率降低x (x >0)个百分点,预测收购量可增加2x 个百分点.(1)写出降税后税收y (万元)与x 的关系式;(2)要使此项税收在税率调节后,不少于原计划税收的83.2%,试确定x 的取值范围.解 (1)降低税率后的税率为(10-x )%,农产品的收购量为a (1+2x %)万担,收购总金额为200a (1+2x %)万元.依题意得y =200a (1+2x %)(10-x )%=150a (100+2x )(10-x )(0<x <10). (2)原计划税收为200a ×10%=20a (万元).依题意得150a (100+2x )(10-x )≥20a ×83.2%, 化简得x 2+40x -84≤0,解得-42≤x ≤2.又因为0<x <10,所以0<x ≤2.即x 的取值范围为{x |0<x ≤2}.变式 北京、张家口2022年冬奥会申办委员会在俄罗斯索契举办了发布会,某公司为了竞标配套活动的相关代言,决定对旗下的某商品进行一次评估.该商品原来每件售价为25元,年销售8万件.(1)据市场调查,若价格每提高1元,销售量将相应减少2 000件,要使销售的总收入不低于原收入,该商品每件定价最多为多少元?(2)为了抓住申奥契机,扩大该商品的影响力,提高年销售量.公司决定立即对该商品进行全面技术革新和营销策略改革,并提高定价到x 元.公司拟投入16(x 2-600)万元作为技改费用,投入50万元作为固定宣传费用,投入x 5万元作为浮动宣传费用.试问:当该商品改革后的销售量a 至少应达到多少万件时,才可能使改革后的销售收入不低于原收入与总投入之和?此时该商品每件定价多少元?解 (1)设每件定价为t 元,依题意得⎝⎛⎭⎫8-t -251×0.2t ≥25×8, 整理得t 2-65t +1 000≤0,解得25≤t ≤40.所以要使销售的总收入不低于原收入,每件定价最多为40元.(2)依题意得当x >25时,不等式ax ≥25×8+50+16(x 2-600)+x 5有解, 等价于当x >25时,a ≥150x +x 6+15有解. 由于150x +x 6≥2150x ·x 6=10,当且仅当150x =x 6,即x =30时等号成立, 所以a ≥10.2.故当该商品改革后的销售量a 至少达到10.2万件时,才可能使改革后的销售收入不低于原收入与总投入之和,此时该商品的每件定价为30元.考点2:练习题1.不等式3x -12-x≥1的解集是( ) A.⎩⎨⎧⎭⎬⎫x ⎪⎪ 34≤x ≤2 B.⎩⎨⎧⎭⎬⎫x ⎪⎪ 34≤x <2 C.⎩⎨⎧⎭⎬⎫x ⎪⎪ x >2或x ≤34 D.⎩⎨⎧⎭⎬⎫x ⎪⎪x ≥34 答案 B解析 不等式3x -12-x ≥1,移项得3x -12-x-1≥0, 即x -34x -2≤0,可化为⎩⎪⎨⎪⎧ x -34≥0,x -2<0或⎩⎪⎨⎪⎧x -34≤0,x -2>0, 解得34≤x <2,则原不等式的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪34≤x <2, 故选B.2.与不等式x -32-x≥0同解的不等式是( ) A .(x -3)(2-x )≥0B .0<x -2≤1 C.2-x x -3≥0 D .(x -3)(2-x )>0答案 B解析 解不等式x -32-x≥0,得2<x ≤3, A .不等式(x -3)(2-x )≥0的解是2≤x ≤3,故不正确.B .不等式0<x -2≤1的解是2<x ≤3,故正确.C .不等式2-x x -3≥0的解是2≤x <3,故不正确. D .不等式(x -3)(2-x )>0的解是2<x <3,故不正确.故选B.3.若关于x 的不等式ax -b >0的解集为{x |x >1},则关于x 的不等式ax +b x -2>0的解集为( ) A .{x |x >1或x <-2}B .{x |1<x <2}C .{x |x >2或x <-1}D .{x |-1<x <2}答案 C解析 x =1为ax -b =0的根,∴a -b =0,即a =b ,∵ax -b >0的解集为{x |x >1},∴a >0,故ax +b x -2=a (x +1)x -2>0, 等价为(x +1)(x -2)>0.∴x >2或x <-1.4.已知不等式-x 2+4x ≥a 2-3a 在R 上有解,则实数a 的取值范围为( )A .{a |-1≤a ≤4}B .{a |-1<a <4}C .{a |a ≥4或a ≤-1}D .{a |-4≤a ≤1} 答案 A解析 由题意知,原不等式可化为-(x -2)2+4≥a 2-3a 在R 上有解,∴a 2-3a ≤4,即(a -4)(a +1)≤0,∴-1≤a ≤4,故选A.5.某文具店购进一批新型台灯,若按每盏台灯15元的价格销售,每天能卖出30盏;若售价每提高1元,日销售量将减少2盏,现决定提价销售,为了使这批台灯每天获得400元以上(不含400元)的销售收入.则这批台灯的销售单价x (单位:元)的取值范围是( )A .{x |10≤x <16}B .{x |12≤x <18}C .{x |15<x <20}D .{x |10≤x <20} 答案 C解析 设这批台灯的销售单价为x 元,则[30-(x -15)×2]x >400,即x 2-30x +200<0,∴10<x <20,又∵x >15,∴15<x <20.故选C.6.若不等式ax 2+bx +c >0的解集为{x |-1<x <2},则不等式2a +b x +c >bx 的解集为________.答案 {x |x <0}解析 由题意知,-1,2为ax 2+bx +c =0的两根,∴⎩⎪⎨⎪⎧b =-a ,c =-2a 且a <0, ∴不等式2a +b x +c >bx 可化为a x-2a >-ax , ∵a <0,即1x -2<-x ,即(x -1)2x<0, ∴x <0.7.现有含盐7%的食盐水200克,生产含盐5%以上、6%以下的食盐水,设需要加入含盐4%的食盐水为x 克,则x 的取值范围是________.答案 {x |100<x <400}解析 5%<x ·4%+200·7%x +200<6%, 解得x 的取值范围是{x |100<x <400}.8.某种汽车在水泥路面上的刹车距离(刹车距离是指汽车刹车后由于惯性往前滑行的距离)s m和汽车车速x km/h 有如下关系:s =118x +1180x 2.在一次交通事故中,测得这种车的刹车距离不小于40 m ,那么这辆汽车刹车前的车速不低于________ km/h.答案 80解析 根据题意,得118x +1180x 2≥40. 移项整理,得x 2+10x -7 200≥0.显然Δ>0,x 2+10x -7 200=0有两个实数根,即x 1=80,x 2=-90,然后,根据二次函数y =x 2+10x -7 200的图象(图略),得不等式的解集为{x |x ≤-90或x ≥80}.在这个实际问题中,x >0,所以这辆汽车刹车前的车速不低于80 km/h.9.解关于x 的不等式a -x x +1>0(a ∈R ). 解 原不等式可化为x -a x +1<0, 即(x +1)(x -a )<0,①当a =-1时,x ∈∅;②当a >-1时,{x |-1<x <a };③当a <-1时,{x |a <x <-1}.综上,a =-1时,不等式的解集为∅,a >-1时,不等式的解集为{x |-1<x <a },a <-1时,不等式的解集为{x |a <x <-1}.10.某汽车厂上年度生产汽车的投入成本为10万元/辆,出厂价为12万元/辆,年销售量为10 000辆.本年度为适应市场需求,计划提高产品质量,适度增加投入成本.若每辆车投入成本增加的比例为x (0<x <1),则出厂价相应地提高比例为0.75x ,同时预计年销售量增加的比例为0.6x ,已知年利润=(出厂价-投入成本)×年销售量.(1)写出本年度预计的年利润y 与投入成本增加的比例x 的关系式;(2)为使本年度的年利润比上年度有所增加,则投入成本增加的比例x 应在什么范围内? 解 (1)由题意得y =[12(1+0.75x )-10(1+x )]×10 000×(1+0.6x )(0<x <1),整理得y =-6 000x 2+2 000x +20 000(0<x <1).(2)要保证本年度的年利润比上年度有所增加,必须有⎩⎪⎨⎪⎧ y -(12-10)×10 000>0,0<x <1, 即⎩⎪⎨⎪⎧-6 000x 2+2 000x >0,0<x <1, 解得0<x <13, 所以投入成本增加的比例x 应在0<x <13的范围内. 11.不等式x 2-x -2x -2>0的解集为( ) A .{x |x >-1且x ≠2}B .{x |x >-1}C .{x |-1<x <2}D .{x |x <-1或x >2} 答案 A解析 原不等式可化为(x -2)(x +1)x -2>0⇒⎩⎪⎨⎪⎧x +1>0,x -2≠0,∴x >-1且x ≠2.故选A. 12.若a >0,b >0,则不等式-b <1x<a 的解集为( ) A.⎩⎨⎧⎭⎬⎫x ⎪⎪ x <-1b 或x >1a B.⎩⎨⎧⎭⎬⎫x ⎪⎪ -1a <x <1b C.⎩⎨⎧⎭⎬⎫x ⎪⎪x <-1a 或x >1bD.⎩⎨⎧⎭⎬⎫x ⎪⎪-1b <x <0或0<x <1a 答案 A解析 原不等式可化为⎩⎨⎧1x >-b ,1x <a ,即⎩⎨⎧ bx +1x >0,ax -1x >0, 可得⎩⎨⎧ x <-1b 或x >0,x <0或x >1a , 故不等式的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪ x <-1b 或x >1a . 13.不等式x 2-2x -2x 2+x +1<2的解集为( ) A .{x |x ≠-2}B .RC .∅D .{x |x <-2或x >2} 答案 A解析 ∵x 2+x +1>0恒成立,∴原不等式⇔x 2-2x -2<2x 2+2x +2⇔x 2+4x +4>0⇔(x +2)2>0,∴x ≠-2.∴不等式的解集为{x |x ≠-2}.14.在一个限速40 km /h 的弯道上,甲、乙两辆汽车相向而行,发现情况不对,同时刹车,但还是相碰了.事发后现场测得甲车的刹车距离略超过12 m ,乙车的刹车距离略超过10 m .又知甲、乙两种车型的刹车距离s m 与车速x km/h 之间分别有如下关系:s 甲=0.1x +0.01x 2,s 乙=0.05x +0.005x 2.这次事故的主要责任方为________.答案 乙车解析 由题意列出不等式s 甲=0.1x +0.01x 2>12,s 乙=0.05x +0.005x 2>10.分别求解,得x 甲<-40或x 甲>30.x 乙<-50或x 乙>40.由于x >0,从而得x 甲>30 km /h ,x 乙>40 km/h.经比较知乙车超过限速,应负主要责任.。

一元二次方程与一元二次不等式的解法分析及例题

一元二次方程与一元二次不等式的解法分析及例题

一元二次方程、二次函数与一元二次不等式总结分析及例题(一)一元二次方程的一般形式:()002≠=++a c bx ax 其中c b a ,,为常数,x 为未知数。

根的判别式:ac b 42-=∆ 一元二次方程根的个数与根的判别式的关系: 0<∆时,方程①无实根;0=∆时,方程①有且只有一个实根,或者说方程①有两个相等的实根;ab x 2-= 0>∆时,方程①有两个不相等的实根。

aacb b x 2422,1-±-=(二)二次函数的一般形式:形如()a b ac a b a y a c bx ax y 442x 0222-+⎪⎭⎫ ⎝⎛+==≠++= 其中c b a ,,为常数,x 为自变量。

顶点坐标为⎪⎪⎭⎫ ⎝⎛--a b ac a b P 44,22,其中直线a bx 2-=为对称轴,1、(1)0<a 时,函数c bx ax y ++=2的图象开口向下,函数c bx ax y ++=2在abx 2-=取到最大值,即ab ac y 442max-=,对任意a b ac y R x 44,2-≤∈.(2)0>a 时,函数c bx ax y ++=2的图象开口向上,函数c bx ax y ++=2在abx 2-=取到最小值,即ab ac y 442min-=,对任意a b ac y R x 44,2-≥∈.2、二次函数()02≠++=a c bx ax y 与x 轴交点个数的判断:0<∆时,函数()02≠++=a c bx ax y 与x 轴无交点;0=∆时,函数()02≠++=a c bx ax y 与x 轴相切,有且只有一个交点; 0>∆时,函数()02≠++=a c bx ax y 与x 轴有两个交点。

3、二次函数图象的基本元素:开口方向(即首项系数a 的正负)、对称轴、∆.(三)一元二次不等式的概念:形如()002≠≠++a c bx ax 其中连接c bx ax ++2与0的不等号可以是><≥≤,,,或≠.(四)三个两次之间的关系一元二次方程、一元二次不等式、二次函数基本步骤:化正-----计算--------求根--------写解集(大于取两边,小于取中间)【典型例题】【类型一】一元二次方程()002≠=++a c bx ax 的解法【方法一】求根公式法步骤:①计算∆;②若0<∆,则方程无实根;若0≥∆,利用求根公式aacb b x 2422,1-±-=. 【例1】求解下列方程.(1)0442=-+x x (2)0122=-+x x【练习】解下列方程.(1)03522=-+x x (2)862=-x x【方法二】十字相乘法利用十字相乘法求解方程()002≠=++a c bx ax 的前提条件是:0≥∆,也就是保证方程()002≠=++a c bx ax 必须有实根.十字分解依据:对于方程()002≠=++a c bx ax 而言,c b a ,,均为整数。

二次函数与一元二次方程、不等式+课件——2025届高三数学一轮复习

二次函数与一元二次方程、不等式+课件——2025届高三数学一轮复习

(2)解关于x的不等式:ax 2 − 2x + a < 0 a ∈ .
【解析】若a = 0,则原不等式为−2x < 0,故解集为{x|x > 0}.
(【明易错】不要忽略对二次项系数为0的讨论)
若a ≠ 0,Δ = 4 − 4a2 .
①若a > 0,
2
当Δ > 0,即0 < a < 1时,方程ax − 2x + a = 0的两根为x1 =
若a > 1,则不等式的解为1 < x < a;
若0 < a < 1,则不等式的解为a < x < 1;
若a = 1,则不等式化为 x − 1
2
< 0,其解集为⌀ .
当a < 0时,原不等式等价于 x − 1 x − a > 0,解得x < a或x > 1.
综上,当a > 1时,不等式的解集为{x|1 < x < a};
1
2
式的解集为{x|x > − 或x < −3}.
(2)−x 2 + 8x − 3 > 0;
【解析】因为Δ = 82 − 4 × −1 × −3 = 52 > 0,所以方程−x 2 + 8x − 3 = 0有两
个不等实根x1 = 4 − 13,x2 = 4 + 13.又二次函数y = −x 2 + 8x − 3的图象开口向
(【警示】注意换元后新元的范围)
则不等式可化为t 2 + 3t − 10 < 0,解得−5 < t < 2,
又t ≥ 0,∴ 0 ≤ t < 2,即0 ≤ x 2 < 2,∴ − 2 < x < 2.

2.3 二次函数与一元二次方程、不等式(精讲)(解析版)

2.3 二次函数与一元二次方程、不等式(精讲)(解析版)

2.3二次函数与一元二次方程、不等式思维导图常见考法考点一解无参数一元二次不等式【例1】(2020·全国高一课时练习)解下列不等式:(1)260x x -->;(2)2251010x x -+>;(3)2210x x -++<.【答案】(1){2x x <-或}3x >;(2)15x x ⎧⎫≠⎨⎬⎩⎭;(3)12x x ⎧<-⎨⎩或}1x >.【解析】(1)不等式260x x -->即为()()230x x +->,解得2x <-或3x >,因此,不等式260x x -->的解集为{2x x <-或}3x >;(2)不等式2251010x x -+>即为()2510x ->,解得15x ≠,因此,不等式2251010x x -+>的解集为15x x ⎧⎫≠⎨⎬⎩⎭;(3)不等式2210x x -++<即为2210x x -->,即()()2110x x +->,解得21x <-或1x >.因此,不等式2210x x -++<的解集为12x x ⎧<-⎨⎩或}1x >.解不含参数的一元二次不等式有以下3种方法:方法一:若不等式对应的一元二次方程能够因式分解,即能够转化为几个代数式的乘积形式,则可以直接由一元二次方程的根及不等号方向得到不等式的解集.方法二:若不等式对应的一元二次方程能够化为完全平方式,不论取何值,完全平方式始终大于或等于零,不等式的解集易得.方法三:则采用求一元二次不等式解集的通法——判别式法【一隅三反】1(2020·全国高一课时练习)解下列一元二次不等式:(1)2 76x x -+>;(2)()()242214x x x x -+>-.【答案】(1){|16}x x <<;(2)2{|}3x x ≠.【解析】(1)不等式2 76x x -+>,即()()2760610x x x x -+->⇒-+->,对应抛物线开口向下,不等式解集为“两根之间”,所以解集为{|16}x x <<(2)()()242214x x x x -+>-,化简291240x x -+>,对应方程0∆=,方程的根1223x x ==所以解集为2{|}3x x ≠.2.(2020·浙江高一课时练习)解不等式:21212x x -<+-.【答案】{32x x -<-∣或01}x <.【解析】原不等式可化为22211,212,x x x x ⎧+->-⎨+-⎩即2220,230,x x x x ⎧+>⎨+-≤⎩即(2)0,(3)(1)0,x x x x +>⎧⎨+-⎩20,3 1.x x x ⎧-∴⎨-⎩或如图,结合数轴,可得原不等式的解集为{32x x -<-∣或01}x <.3.(2020·荆州市北门中学高一期末)不等式221x x -≥-的解集是________.【答案】[0,1)【解析】原不等式可化为2201x x --≥-即01xx ≤-,所以()1010x x x ⎧-≤⎨-≠⎩,故01x ≤<,所以原不等式的解集为[0,1).故答案为:[0,1).考点二解含有参数的一元二次不等式【例2】(2020·怀仁市第一中学校云东校区高一期末(理))解关于x 的不等式:22(2)20().ax a x a a R -++>∈【答案】当0a =时,解集为{}0x x <;当0a <<时,解集为2{|x x a>或}x a <;当a >{|x x a >或2}x a<;当0a <<时,解集为2{|}x x a a<<;当a <时,解集为2{|}x a x a <<;当a ={|x x ≠;当a =∅;【解析】由22(2)20().ax a x a a R -++>∈则(2)()0ax x a -->因为a R ∈,故对a 分情况讨论当0a =时,则20x ->,所以0x <,不等式的解集为{}0x x <当0a <<时,由(2)()0ax x a -->,不等式的解集2{|x x a>或}x a <当a >{|x x a >或2}x a<当0a <<时,不等式的解集为2{|}x x a a<<当a <时,不等式的解集为2{|}x a x a<<当a ={|x x ≠当a =∅解含参数的一元二次不等式时(1)关于不等式类型的讨论:二次项的系数a >0,a =0,a <0;(2)关于不等式对应的方程的根的讨论:两根(Δ>0),一根(Δ=0),无根(Δ<0);(3)关于不等式对应的方程根的大小的讨论:x 1>x 2,x 1=x 2,x 1<x 2.【一隅三反】1.(2019·山东济宁.高一月考)求关于x 的一元二次不等式2(1)0x x a a --+>的解集.【答案】详见解析.【解析】()210x x a a --+> ,()()10x a x a ⎡⎤∴+-+>⎣⎦,令()()10x a x a ⎡⎤+-+=⎣⎦,1x a ∴=-,21x a =+,(1)当12a >-时,即1a a +>-,解集为{|x x a <-,或}1x a >+.(2)当12a =-时,即112a a +=-=,解集为1|2x x ⎧⎫≠⎨⎩⎭.(3)当12a <-时,即1a a +<-,解集为{|1x x a <+,或}x a >-.2.(2020·安徽金安.六安一中高一期中(文))解关于x 的不等式22(1)40()ax a x a R -++>∈.【答案】分类讨论,答案见解析.【解析】当0a =时,不等式240x -+>的解为2x <;当0a ≠时,不等式对应方程的根为2ax =或2,①当0a <时,不等式22(1)40()ax a x a R -++>∈即()()220ax x --+<的解集为2,2a ⎛⎫⎪⎝⎭;②当01a <<时,不等式()()220ax x -->的解集为2(,2),a ⎛⎫-∞⋃+∞ ⎪⎝⎭;③当1a =时,不等式()220x +>的解集为(,2)(2,)-∞⋃+∞;④当1a >时,不等式()()220ax x -->的解集为2,(2,)a ⎛⎫-∞⋃+∞ ⎪⎝⎭.综上所述,当0a =时,不等式解集为(),2-∞;当0a <时,不等式的解集为2,2a ⎛⎫⎪⎝⎭;当01a <<时,不等式的解集为2(,2),a ⎛⎫-∞⋃+∞⎪⎝⎭;当1a =时,不等式的解集为(,2)(2,)-∞⋃+∞;当1a >时,不等式的解集为2,(2,)a ⎛⎫-∞⋃+∞ ⎪⎝⎭.3.(2019·陕西秦都咸阳市实验中学高二月考(理))解关于x 的不等式ax 2-(a +1)x +1<0.【答案】见解析【解析】原不等式可化为(ax -1)(x -1)<0当a =0时,原不等式解为x >1.当a <0时,不等式可化为1(1)0x x a-->,∵11a<,∴1x a <或x >1.当a >0时,原不等式可化为1()(1)0x x a--<若11a <,即a >1,则11x a <<;若11a =,即a =1,则x ∈∅;若11a>,即0<a <1,则11x a <<.综上所述,当a <0时,原不等式的解集为1{|x x a<或1}x >;当a =0时,原不等式的解集为{x |x >1};当0<a <1时,原不等式的解集为1{|1}x x a<<;当a =1时,原不等式的解集为∅;当a >1时,原不等式的解集为1{|1}x x a<<.考点三三个一元二次的关联【例3】(1(2020·江西上高二中高一期末(文))设一元二次不等式210ax bx ++>的解集为{}|12x x -<<则ab 的值为()A .1B .14-C .4D .12-(2)(2020·全国高一课时练习)已知方程()2250x m x m +-+-=的两根都大于2,则实数m 的取值范围是()A .(][) 5,44,--⋃+∞B .(] 5,4--C .() 5,-+∞D .[)[)4,24,--⋃+∞【答案】(1)B(2)B【解析】由题意可知方程210ax bx ++=的根为1,2-,所以有11212{{114122b a a ab b a -+=-=-∴∴=--⨯==(2)方程()2250x m x m +-+-=的两根都大于2,则二次函数()225y x m x m =+-+-的图象与x 轴的两个交点都在x=2的右侧,根据图象得:方程的判别式0∆≥;当2x =时函数值0y >;函数对称轴222m -->。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

二次函数与一元二次方程、不等式知识点总结与例题讲解二次函数与一元二次方程、不等式知识点总结与例题讲解本节知识点:1.一元二次不等式的概念。

2.三个二次的关系。

3.一元二次不等式的解法。

知识点拓展:4.分式不等式的解法。

5.高次不等式的解法。

本节题型:1.解不含参数的一元二次不等式。

2.解含参数的一元二次不等式。

3.三个二次之间的关系。

4.简单高次不等式、分式不等式的解法。

5.XXX成立问题。

6.一元二次不等式的应用。

知识点讲解:一元二次不等式的概念:一元二次不等式是只含有1个未知数,并且未知数的最高次数是2的不等式。

即形如ax2+bx+c>(≥)或ax2+bx+c<(≤)(其中a≠)的不等式叫做一元二次不等式。

解一元二次不等式,就是求出使不等式成立的x的值。

解的集合,叫做这个一元二次不等式的解集。

注意一元二次不等式的解集要写成集合或区间的形式。

三个二次的关系:一元二次不等式的解集、一元二次方程的解以及二次函数的图象之间有着紧密的联系。

一元二次方程ax2+bx+c=(a≠)与二次函数y=ax2+bx+c=(a≠)的关系是:1)当Δ=b2-4ac≥时,一元二次方程有实数根,二次函数的图象与x轴有交点,且方程的解是交点的横坐标,交点的横坐标亦是方程的解;①当Δ>0时,一元二次方程有两个不相等的实数根,二次函数的图象与x轴有两个不同的交点;②当Δ=0时,一元二次方程有两个相等的实数根,二次函数的图象与x轴只有一个交点(即抛物线的顶点)。

2)当Δ<0时,一元二次方程无实数根,二次函数的图象与x轴没有交点。

具体关系见下表(1)所示。

一元二次不等式与二次函数y=ax2+bx+c=(a≠)的关系是:一元二次不等式ax2+bx+c>(≥)的解集就是二次函数y=ax2+bx+c=(a≠)的图象位于x轴上方(包括x轴)的部分所对应的自变量的取值范围。

例题讲解:1.解不等式x2+4x+3≤0.解:将不等式化为一元二次方程x2+4x+3=0,解得x=-1,x=-3.因此,不等式的解集为[-3,-1]。

2.解不等式2x2-5x+3<0.解:将不等式化为一元二次方程2x2-5x+3=0,解得x=1/2,x=3/2.因此,不等式的解集为(1/2,3/2)。

3.解不等式x2-2x-3>0.解:将不等式化为一元二次方程x2-2x-3=0,解得x=-1,x=3.因此,不等式的解集为(-∞,-1)U(3,+∞)。

4.已知二次函数y=ax2+bx+c,且a>0,若该函数的图象与x轴有两个交点,则该函数的解析式为y=2x2-4x+1.解:由于该函数的图象与x轴有两个交点,因此Δ=b2-4ac>0.又因为a>0,所以a=2,b=-4,c=1.因此,该函数的解析式为y=2x2-4x+1.5.已知一元二次不等式x2-3x-10>0,求其解集。

解:将不等式化为一元二次方程x2-3x-10=0,解得x=-2,x=5.因此,不等式的解集为(-∞,-2)U(5,+∞)。

6.已知一元二次不等式x2-4x+3≥0,求其解集。

解:将不等式化为一元二次方程x2-4x+3=0,解得x=1,x=3.因此,不等式的解集为[1,3]。

一元二次不等式的解集对应着二次函数$y=ax^2+bx+c$在$x$轴下方(包括$x$轴)的部分所对应的自变量的取值范围。

解一元二次不等式的一般步骤是:(1)利用不等式的性质,将二次项系数化为正数;(2)计算$\Delta=b^2-4ac$的值,并判断$\Delta$的符号;(3)当$\Delta\geq0$时,求出相应的一元二次方程的根;(4)画出对应的二次函数的简图;(5)根据一元二次不等式的形式,结合简图,写出其解集。

需要注意的是,一元二次不等式的解集结构与二次项系数的符号有着直接的关系。

其中,当$\Delta>0$时,一元二次不等式$ax^2+bx+c>a$的解集在“两根之外”,即“大于大根或小于小根”;一元二次不等式$ax^2+bx+ca$的解集为$\{x|x\neq \frac{-b}{2a}\}$;一元二次不等式$ax^2+bx+ca$的解集为$\mathbb{R}$;一元二次不等式$ax^2+bx+c<a$的解集为$\varnothing$。

表(1)展示了一元二次方程、二次函数以及一元二次不等式的关系。

需要注意的是,当一元二次不等式在$\mathbb{R}$上恒成立时,需要解决两个问题:(1)$ax^2+bx+c$在$\mathbb{R}$上恒大于$a$或恒小于$a$的情况;(2)$ax^2+bx+c$在$\mathbb{R}$上恒小于$a$且$\Delta<0$的情况。

一元二次不等式的解法:对于一元二次不等式ax2+bx+c≥0在R上恒成立,根据二次函数的性质,其对应的二次函数y=ax2+bx+c的图像在x轴上必有交点,即存在实数根。

而实数根的判别式为Δ=b2-4ac≤0,因此Δ≤0,即b2-4ac≤0,即可得到a<0且Δ≤0的解法。

对于一元二次不等式ax2+bx+c≤0在XXX成立,同理可得到a>0且Δ≤0的解法。

关于二次函数的零点,可以理解为二次函数与x轴的交点,且交点的个数等于零点的个数。

当Δ≥0时,一元二次方程有实数根,相应二次函数存在零点。

分式不等式的解法:分式不等式是指分母中含有未知数的不等式。

可以利用不等式的性质将其化为标准形式,如f(x)/g(x)>0,f(x)/g(x)<0,f(x)/g(x)≥0,f(x)/g(x)≤0.然后将其转化为整式不等式进行求解。

解高次不等式可以使用数轴标根法,即将高次不等式化为左边是几个因式的乘积,右边是0的形式,求出方程的所有实数根,并在数轴上标出这些根。

然后从最右根的右上方穿过根,往左下画线,依次穿过各根。

需要注意偶次根不穿过,即奇过偶不过。

C)a4或a4(D)4a4分析根据一元二次不等式与相应一元二次方程之间的关系,可得到a的取值范围.解:由题意可知:x2ax4的解集为空集,即方程x2ax4的根不存在.a24404a 4.选择答案【B】.分析本文是一篇数学题解,主要涉及一元二次不等式和二次函数的关系以及根与系数的关系定理的应用。

需要注意的是,文章中有一些格式错误,需要进行修改。

解:本题考查一元二次不等式与相应的二次函数之间的关系,同时问题还可以转化为一元二次不等式恒成立的问题。

对于第一题,不等式 $x^2+ax+4<0$ 的解集为空集,即相应的二次函数 $y=x^2+ax+4$ 的图像位于 $x$ 轴上及其上方,或者不等式 $x^2+ax+4\geq 0$ 在 $\mathbb{R}$ 上恒成立。

因此,根据一元二次不等式恒成立的条件,得到 $\Delta=a^2-16\leq 0$,解得 $-4\leq a\leq 4$。

因此,实数 $a$ 的取值范围是 $\{a|-4\leq a\leq 4\}$。

答案为 $\textbf{(A)}$。

对于第二题,由题意可知 $m0$ 的解集为 $x2$,因此$m$ 满足 $(mx-1)(x-2)>0$ 在 $x2$ XXX成立。

展开不等式得到 $mx^2-(2m+1)x+2>0$,因此 $m$ 满足 $x2$ 时,$mx^2-(2m+1)x+2>0$ XXX成立。

根据一元二次不等式恒成立的条件,得到 $\Delta=(2m+1)^2-8m\leq 0$,解得 $m<0$。

因此,实数$m$ 的取值范围是 $\{m|m<0\}$。

答案为 $\textbf{(D)}$。

对于第三题,函数$y=ax^2+bx+18$ 的定义域为$[-3,6]$,因此一元二次不等式 $ax^2+bx+18\geq 0$ 在 $[-3,6]$ 上恒成立,即 $y=ax^2+bx+18$ 的图像位于 $x$ 轴上及其下方。

由根与系数的关系定理可得$-b=-3+6$,$ab=18$,解得$a=-1$,$b=3$。

因此,实数 $a$ 的值为 $-1$,实数 $b$ 的值为 $3$。

对于第四题,当 $m=-2$ 时,函数 $y=x^2-x-2=(x+1)(x-2)$,因此不等式 $y>0$ 的解集为 $x2$。

当 $m>0$ 时,函数$y=x^2-x+m$ 的图像位于 $x$ 轴上方,因此不等式$y\frac{1}{2}$,即 $m0$ 的解集为 $\{x|x2\}$;当 $m>0$ 时,不等式 $y<0$ 的解集为$\{x|x_1<x<x_2\}=\left\{x\left|\frac{1}{2}<x<\frac{1}{2}+\sqrt{\ frac{9}{4}-m}\right.\right\}$。

给定不等式ax^2-3x+2>(a∈R),解集为{x|xb},求a,b的值。

分析:本题考查含有参数的一元二次不等式的解法。

根据一元二次不等式解集的结构与二次项系数的符号有关,要对二次项系数的正负进行讨论。

解:当a≠0时,不等式ax^2-3x+2>0,即a(x-1)(x-2/ a)>0.根据不等式的性质可知,当a>0时,解集为{x|x2/ a};当a<0时,解集为{x|1<x<2/ a}。

因此,a的取值范围为a≠0.又因为解集为{x|xb},所以不等式的解集为{x|xb},即a(x-1)(x-b)>0.根据不等式的性质可知,当a>0时,解集为{x|x2/ a。

综上所述,a的取值范围为a≠0,b的取值范围为b2/ a。

解:根据题意,对于任意$1\leq x\leq 4$,都有$x^2-(a+2)x+4\geq -a-1$成立。

化简不等式,得$x^2-(a+2)x+a+3\geq 0$。

对于二次函数$f(x)=x^2-(a+2)x+a+3$,当$a+2>0$时,开口向上,当$a+2<0$时,开口向下。

要使得不等式恒成立,即$f(x)\geq 0$的解集为$[1,4]$,则必须满足以下两个条件:1)$f(1)\geq 0$,即$1-(a+2)+a+3\geq 0$,解得$a\leq 2$;2)$f(4)\geq 0$,即$16-4(a+2)+a+3\geq 0$,解得$a\leq 5$。

综上所述,实数$a$的取值范围为$-\infty<a\leq 2$。

分析本题考查一元二次不等式在给定闭区间上的恒成立问题,需要将问题转化为相应二次函数在闭区间上的最值问题。

解:因为 $x-(a+2)x+4\geq -a-12$,所以 $a(x-1)\leq x^2-2x+5$。

相关文档
最新文档