数学建模人口增长模型
数学建模在人口增长中的应用
数学建模在人口增长中的应用人口增长一直是全球面临的重要问题之一。
面对人口的迅速增加,我们需要寻找有效的方法来预测和控制人口的增长趋势。
数学建模作为一种重要的工具,可以帮助我们分析和理解人口增长的规律,并提供科学的解决方案。
1. 人口增长模型人口增长可以使用不同的数学模型来描述和预测。
其中,最常用的人口增长模型之一是指数增长模型。
指数增长模型假设人口增长的速度与当前人口数量成正比。
简单来说,人口数量每过一段时间就会翻倍。
这种模型可以用以下公式表示:N(t) = N(0) * e^(rt)其中,N(t)是时间t时刻的人口数量,N(0)是初始人口数量,r是人口增长率,e是自然对数的底数。
2. 人口增长趋势预测利用指数增长模型,我们可以根据过去的人口数据来预测未来的人口增长趋势。
通过对已有数据进行拟合和分析,可以确定合适的增长率,并利用该增长率来预测未来的人口数量。
除了指数增长模型,还有其他一些常用的人口增长模型,如Logistic模型和Gompertz模型。
这些模型考虑了人口增长的上限和减缓因素,更符合实际情况。
3. 人口政策制定数学建模不仅可以帮助我们预测人口增长趋势,还可以为人口政策的制定提供支持。
通过建立人口增长模型,我们可以模拟不同的政策措施对人口增长的影响。
例如,我们可以模拟采取计划生育政策后的人口增长情况,评估政策的有效性和可行性。
此外,数学建模还可以用于评估不同人口政策的长期影响。
通过引入更多因素,如医疗水平、经济发展和教育水平等,我们可以建立更为复杂的人口增长模型,从而更全面地评估政策的效果和潜在风险。
4. 人口分布和迁移模型除了人口增长模型,数学建模还可以用于研究人口分布和迁移的模型。
通过建立人口分布模型,我们可以分析不同地区人口的分布规律和变化趋势。
这些模型可以为城市规划、资源配置和社会发展提供重要参考。
在人口迁移方面,数学建模可以帮助我们研究人口的流动和迁移规律。
例如,我们可以建立迁移网络模型来描述不同地区之间的人口流动情况,从而预测人口迁移的趋势和影响因素。
数学建模论文-基于双线性系统、差分方程的人口增长模型模板
基于双线性系统、差分方程的人口增长模型摘要社会经济的许多领域的规划都必须考虑人口这一重要因素。
而人口普查只能为我们提供某几个时间点的横截面数值,但在现实生活中,人们常常需要其他时间点的人口总数及其构成。
于是一个迫切的任务就是如何用少数的几个时点的信息比较准确的得到较详尽的其他时点的人口数据。
人口系统发展是一个动力学过程,为强惯性系统,人口死亡率和出生率构成人口增长的双线性系统。
针对中短期预测,基于统计理论,将5年的死亡出生率,死亡率求期望,建立了人口增长的定常差分方程模型,预测至2015的人口发展趋势,通过MATLAB求解得到2015年的总人口为14.17亿,乡村城镇化趋势明显;并且人口在2025左右出现峰值,约为15.1亿。
针对长期预测,根据动力学发展过程理论,当时间尺度接近惯性系统的时间常数(社会人口的平均寿命)时,人口状态将发生明显改变。
由此建立了人口增长的时变差分模型。
并通过MATLAB求解,预测2050年的人口总数为14.33亿,人口系统达稳定状态。
然后,利用Leslie矩阵分析模型的稳定性。
当时间t(年)充分大时人口增长也趋于稳定。
针对长期模型的检验,对不同的总和生育率做出了人口总数的变化曲线。
得出当总和生育率的更替水平临界值略大于2.0。
关键词:差分方程,强惯性系统,Leslie矩阵,总和生育率一.问题重述与分析1.1问题重述中国乃泱泱人口大国,人口规模是城市规划和土地利用总体规划中一项重要的控制性指标,人口规模是否合理,不仅影响到未来地区经济和社会发展,而且会影响到地区生态环境可持续发展。
因此准确地预测未来人口的发展趋势,制定合理的人口规划和人口布局方案具有重大的理论意义和现实意义。
根据国家人口报告,对短期、中期和长期人口预测作如下定义:十年内为短期,十到十五年为中期,五十年及其以上为长期。
人口发展过程是一个很缓慢的过程。
它的“时间常数”接近平均期望寿命约七、八十年的时间。
人口状态随时间变化的过程称为人口发展过程。
数学建模-人口增长模型
数函合拟 据数始原
。万百 8668. 333 � ) 0102 ( x 为数口人的年 0102 测预以可们我而从
84981 � t 753. 12 � t 810600. 0 � ) t( x
2
数口人
� 84981 � c , 753. 12� � b�810600.0 � a 得解 � �2 件附见� 程编 baltaM 用们我
录附
。年 4002 , 社 版出 育教等 高� 京北 ,]M[)版三 第( 模建 学数 .俊叶 ,星金 谢 ,源启姜 ]2[ 。年 2002 ,社 版出育教等高:京北 ,]M[用应与计设序程 BALTAM .颖张 ,平昭陈 ,国卫刘 ]1[
献文考参
。越优为更型模 长增数指比测预的来未对�确准更果结�的合适很是测预数口人的来未对型模次 以所�合吻的常非据数的期后是别特�好果效合拟�上线曲合拟在都上本基�律 规长增的口人映反地观客更型模长增滞阻出看以可 。好很得合拟据数口人的区地 该对型模的们我出看以可们我 4 图从 。图果效合拟的型模长增滞阻是 4 图 图果效合拟的型模长增滞阻 4 图
) 0 0 8 1� t ( r �
� 27 � � �1 e�1 � m � x 01 �
m
x
� ) t( x
2 . 7 � ) 0081( x � � � m � td � � x � � � 1 x� � 0r � xd � � x �
ቤተ መጻሕፍቲ ባይዱ
�得解
�到得以可� 2. 7 � ) 0081( x 件条始初用利并�中程方的型模长增数指进代式上把
值数函的点知未在 p 式项多计估 %
)1x,p(lavylop = 1y ;0102=1x
;no dirg ;no xob ;)2,'数函合拟','据数始原'(dnegel ;)'数口人'(lebaly ;)'份年'(lebalx 例图上加形图给 % 来起连次依点据数的义定)ny,x(把 % )ny,nx(tolp 值数函的 p 式项多计估 % ;)nx,p(lavylop = ny 标坐横的新义定 % ;0102:5:0081 = nx p 数系回返�合拟式项多 % )2,y,x(tifylop = p
(完整版)数学建模logistic人口增长模型
Logistic 人口发展模型一、题目描述建立Logistic 人口阻滞增长模型 ,利用表1中的数据分别根据从1954年、1963年、1980年到2005年三组总人口数据建立模型,进行预测我国未来50年的人口情况.并把预测结果与《国家人口发展战略研究报告》中提供的预测值进行分析比较。
分析那个时间段数据预测的效果好?并结合中国实情分析原因。
表1 各年份全国总人口数(单位:千万)二、建立模型阻滞增长模型(Logistic 模型)阻滞增长模型的原理:阻滞增长模型是考虑到自然资源、环境条件等因素对人口增长的阻滞作用,对指数增长模型的基本假设进行修改后得到的。
阻滞作用体现在对人口增长率r 的影响上,使得r 随着人口数量x 的增加而下降。
若将r 表示为x 的函数)(x r 。
则它应是减函数。
于是有:0)0(,)(x x x x r dt dx== (1)对)(x r 的一个最简单的假定是,设)(x r 为x 的线性函数,即 )0,0()(>>-=s r sxr x r (2) 设自然资源和环境条件所能容纳的最大人口数量mx ,当mx x =时人口不再增长,即增长率)(=m x r ,代入(2)式得m x rs =,于是(2)式为)1()(mx x r x r -= (3)将(3)代入方程(1)得:⎪⎩⎪⎨⎧=-=0)0()1(x x x x rx dtdxm (4)解得:rt mme x x x t x --+=)1(1)(0(5)三、模型求解用Matlab 求解,程序如下: t=1954:1:2005;x=[60.2,61.5,62.8,64.6,66,67.2,66.2,65.9,67.3,69.1,70.4,72.5,74.5,76.3,78.5,80.7,83,85.2,87.1,89.2,90.9,92.4,93.7,95,96.259,97.5,98.705,100.1,101.654,103.008,104.357,105.851,107.5,109.3,111.026,112.704,114.333,115.823,117.171,118.517,119.85,121.121,122.389,123.626,124.761,125.786,126.743,127.627,128.453,129.227,129.988,130.756];x1=[60.2,61.5,62.8,64.6,66,67.2,66.2,65.9,67.3,69.1,70.4,72.5,74.5,76.3,78.5,80.7,83,85.2,87.1,89.2,90.9,92.4,93.7,95,96.259,97.5,98.705,100.1,101.654,103.008,104.357,105.851,107.5,109.3,111.026,112.704,114.333,115.823,117.171,118.517,119.85,121.121,122.389,123.626,124.761,125.786,126.743,127.627,128.453,129.227,129.988];x2=[61.5,62.8,64.6,66,67.2,66.2,65.9,67.3,69.1,70.4,72.5,74.5,76.3,78.5,80.7,83,85.2,87.1,89.2,90.9,92.4,93.7,95,96.259,97.5,98.705,100.1,101.654,103.008,104.357,105.851,107.5,109.3,111.026,112.704,114.333,115.823,117.171,118.517,119.85,121.121,122.389,123.626,124.761,125.786,126.743,127.627,128.453,129.227,129.988,130.756];dx=(x2-x1)./x2; a=polyfit(x2,dx,1);r=a(2),xm=-r/a(1)%求出xm 和rx0=61.5;f=inline('xm./(1+(xm/x0-1)*exp(-r*(t-1954)))','t','xm','r','x0');%定义函数 plot(t,f(t,xm,r,x0),'-r',t,x,'+b');title('1954-2005年实际人口与理论值的比较') x2010=f(2010,xm,r,x0) x2020=f(2020,xm,r,x0) x2033=f(2033,xm,r,x0)解得:x(m)= 180.9516(千万),r= 0.0327/(年),x(0)=61.5得到1954-2005实际人口与理论值的结果:根据《国家人口发展战略研究报告》我国人口在未来30年还将净增2亿人左右。
数学建模 之 人口模型
数学建模———关于人口增长的模型摘要:本文讨论了人口的增长问题,并预测出了2010、2020年的美国人口。
首先,我们给出了两种预测方法:第一,在假定人口增长率不变的情况下,建立指数增长模型;第二,假定人口增长率呈线性下降的情况下,建立阻滞增长模型。
对两种模型的求解,我们引入了微分方程。
其次,为了选择一种较好的预测方法,我们分别对两种模型进行了检验和讨论。
先列图表对预测值与真实值进行比较,然后定性的对模型进行讨论,最后一个阶段选择绝对误差、均方差和相关系数对两个模型的优劣进行定量的评价,选出最好的预测方法。
一、 问题的提出:人口问题是当前世界上人们最关心的问题之一,认识人口数量的变化规律,做出较为准确的预报,是有效控制人口增长前提,现根据下表给出的近两百模型一(指数增长模型)1、模型的提出背景:我们对所给的数据进行了认真仔细的分析之后,对其进行处理:将年份进行编号(i X ),人口数量计为(i Y ),以i X 为横坐标,以i Y 为纵坐标,建立直角坐标系。
然后将表格中所给的数据绘在直角坐标系中附表A ,我们发现这些点大体呈指数增长趋势固提出此模型。
附图A2、基本假设:人口的增长率是常数增长率——单位时间内人口增长率与当时人口之比。
故假设等价于:单位时间人口增长量与当时人口成正比。
设人口增长率为常数r 。
时刻t 的人口为X(t),并设X(t)可微,X(0)=X O由假设,对任意△t>0 ,有)()()(t rx tt x t t x =∆-∆+即:单位时间人口增长量=r ×当时人口数当△t 趋向于0时,上式两边取极限,即:o t →∆lim)()()(t rx tt x t t x =∆-∆+ 引入微分方程:)1( )0()(0⎪⎩⎪⎨⎧==x x t rx dtdx3、模型求解: 从(1)得rdt xdx= 两边求不定积分:c rt x +=ln∵t=0时0x x =,∴C x =0lnrt e x rt x x 00ln ln ln =+=∴rte x t x 0)(= (2) 当r>0时.表明人口按指数变化规律增长.备注; r 的确定方法:要用(4.2)式来预测人口,必须对其中的参数r 进行估计: 十年的增长率307.0ln 9.33.5==r,359.1307.0=e,则(2)式现为: t t x )359.1(9.3)(⨯=4、结论:由上函数可预测得:2010的人口为x(22):x(22)=3325.772020的人口为x(23):x(23)=4519.735、检验:根据所建立的指数模型预测1790以后近两百年的美国人口数量,在此6、模型讨论:由表可见,当人口数较少时,模型的预测结果与实际情况相差不大(不超过5%)。
6.2 人口增长模型 数学建模
一、粮食生产 19501950-1984 世界粮食产量的增幅超过人口增 长速度。但84年以后粮食产量增幅一直落后 长速度。但84年以后粮食产量增幅一直落后 于人口增长速度。 原因:缺少新垦土、灌溉量减少、土地生 产率的提高越来越难。
二、水资源的匮乏 国际水资源管理研究预测,到2050年, 国际水资源管理研究预测,到2050年, 约有10亿人口将面临缺水的状况。 约有10亿人口将面临缺水的状况。 三、海洋捕捞
2005年11月 世界人口状况报告》 2005年11月《世界人口状况报告》显示目 前世界总人口为64.647亿,我国占了约20% 前世界总人口为64.647亿,我国占了约20% 2050年世界人口将达77-112亿,若采取94 2050年世界人口将达77-112亿,若采取94 亿的预测值。会带来什么影响?
例题2齐次微分方程3一阶线性非线性微分方程其他模型malthusmalthus11模型假设模型假设33美国的实际人口数据美国的实际人口数据22模型建立模型建立33模型检验分析模型检验分析1人口预测人口预测22景区游客人数增长景区游客人数增长3城市人口增长城市人口增长
第六章鱼类减少
饲料
渔业养殖
四、森林覆盖率、生物多样性、能源危机等等
2、复习
1、微分方程:含有导数 或微分的方程 2、微分方程的类型:
(1)可分离变量的微分方程,形如 dy = f ( x) ⋅ g ( y ) dx
(2)齐次微分方程 (3)一阶线性、非线性微分方程 其他
例题 模型
2、模型建立
3、模型分析检验
美国的实际人口数据
二、阻滞增长模型
1、 模型假设 设人口增长率r是人口数N的线性递减函数, 记为r ( N ), K 是自然资源和环境条件的最大人 口容量,r 表示人口很少时的增长率(固有增 长率)
人口增长问题数学模型
人口增长问题数学模型人口增长问题是一个复杂的社会现象,它涉及到众多因素,如生育率、死亡率、移民、出生性别比等。
为了更好地理解和预测人口增长趋势,人们常常建立数学模型来描述人口变化的规律。
下面是一个简单的人口增长问题数学模型的示例。
假设人口数量为P(t),时间t为以年为单位。
则人口增长可以用以下微分方程表示:dP(t)/dt = rP(t)其中,r是人口自然增长率,是一个常数。
这个微分方程描述了人口数量随着时间的变化情况,即人口数量呈指数增长。
然而,实际情况要复杂得多。
以下是一个更复杂的人口增长模型,考虑到生育率、死亡率和移民等因素:dP(t)/dt = (b - d)P(t) + I其中,b是每单位时间的出生率,d是每单位时间的死亡率,I是每单位时间的移民人数。
这个模型可以更好地描述人口增长的趋势,特别是当存在外部干扰(如战争、自然灾害等)时。
除了以上两个模型,还有其他更复杂的模型,如Logistic增长模型、Malthusian模型等。
这些模型考虑的因素更加全面,可以更准确地描述人口增长的趋势。
例如,Logistic增长模型考虑了环境承载能力对人口增长的限制,而Malthusian 模型则考虑了人口增长与资源供给之间的关系。
建立数学模型有助于我们更好地理解和预测人口增长趋势。
这些模型可以帮助我们评估不同政策对人口增长的影响,如计划生育政策、移民政策等。
此外,这些模型还可以帮助我们预测未来人口数量和结构的变化情况,从而为社会发展规划提供科学依据。
然而,需要注意的是,数学模型只是对现实世界的近似描述,它可能无法完全准确地预测未来情况。
因此,在使用数学模型进行人口增长预测时,需要结合实际情况和专家意见进行综合分析。
总之,数学模型是研究人口增长问题的重要工具之一。
通过建立数学模型,我们可以更好地理解和预测人口增长的规律和趋势。
这些模型可以帮助我们评估不同政策对人口增长的影响,为社会发展规划提供科学依据。
数学建模-人口增长模型
人口增长模型摘要本文根据某地区的人口统计数据,建立模型估计该地区2010年的人口数量。
首先,通过直观观察人口的变化规律后,我们假设该地区的人口数量是时间的二次函数,建立了一个二次函数模型,并用最小二乘法对已有数据进行拟合得到模型的具体参数,从而可以预测2010年的人口数为333.8668百万。
然后,我们发现从1980年开始该地区的人口增长明显变慢,于是我们假设人口增长率是人口数的线性减函数,即随着人口数的增加,人口的增长速度会慢慢下降,从而我们建立了阻滞增长模型,利用此模型我们最后求出2010年的人口预报数为296.3865。
关键字:人口预报,二次函数模型,阻滞增长模型问题重述:根据某地区人口从1800年到2000年的人口数据(如下表),建立模型估计出该地区2010年的人口 ,同时画出拟合效果的图形。
符号说明)(t x t 时刻的人口数量 0x 初始时刻的人口数量 r 人口增长率m x 环境所能容纳的最大人口数量,即0)( m x r问题分析首先,我们运用Matlab软件[1]编程(见附件1),绘制出1800年到2000年的人口数据图,如图1。
18001820184018601880190019201940196019802000图1 1800年到2000年的人口数据图从图1我们可以看出1800年到2000年的人口数是呈现增长的趋势的,而且类似二次函数增长。
所以我们可以建立了一个二次函数模型,并用最小二乘法对已有数据进行拟合得到模型的具体参数。
于是我们假设人口增长率是人口数的线性减函数,即随着人口数的增加,人口的增长速度会慢慢下降,从而我们可以建立一个阻滞增长模型。
模型建立模型一:二次函数模型我们假设该地区t时刻的人口数量的人口数量)(tx是时间t的二次函数,即:2()=++x t at bt c我们可以根据最小二乘法,利用已有数据拟合得到具体参数。
即,要求a、b和c,使得以下函数达到最小值:221(,,)()ni i i i E a b c at bt c x ==++-∑其中i x 是i t 时刻该地区的人口数,即有:2222)3.28020002000...)2.718001800(),,(-+⋅+⋅++-+⋅+⋅=c b a c b a c b a E令0,0,0E E E a b c∂∂∂===∂∂∂,可以得到三个关于a 、b 和c 的一次方程,从而可解得a 、b 和c 。
数学建模-人口增长模型
数学建模-人口增长模型人口增长模型是一种基于数理统计学方法的计算机模型,用于描绘全球各地的人口增长情况。
人口增长模型能够预测人口数量、年龄分布、死亡率、出生率、移民等方面的变化趋势,为社会规划带来指导性的建议,具有很高的实用价值。
本文将从多个方面来探究人口增长模型。
一、人口增长的三个阶段第一阶段:原始社会阶段,这个时期的人口增长缓慢。
由于食物水平低下和医疗条件落后,死亡率非常高,而出生率仍然很高。
第二阶段:传统社会阶段,人口增长迅速。
由于改进了农业技术、医疗技术以及水、电、煤等基础设施建设的改善,死亡率降低,但出生率仍然很高。
第三阶段:现代社会阶段,人口增长开始放缓。
由于生育规律的改变,人们生育晚、生育次数减少,导致出生率下降。
另一方面,医疗技术和生活水平的提高,使得人们的寿命增加,死亡率下降。
人口增长模型是一种以数学为基础、能够预测人口增长变化趋势的计算机模型。
它解决了传统的统计分析方法难以预测未来人口增长趋势的问题,方便了研究人口增长对于社会经济发展的影响。
目前,常用的人口模型有四种:1.经验模型:该模型主要是针对已有数据进行平衡分析,所以只能反映人口变动的历史趋势,难以预测未来人口变化。
2. 非参数回归模型:它又称为核回归模型,它是一种无参数模型,可以从数据本身中学习出应该如何比较好地去拟合数据,因此预测效果相较于经验模型提高了不少。
3. 参数回归模型:这种模型较为复杂,它基于特定的模型,通过拟合已有的数据,建立一个完整的模型,目的是预测新的数据变化趋势。
4. 知识驱动模型:该模型结合了经验模型和参数回归模型的基本特点,它将专家的知识与历史数据相结合,通过精细化的调整,建立能够反映人口增长趋势的模型。
该模型可广泛应用于国家人口预测、社会福利计划等领域。
人口增长有其基本的规律,这些规律可以帮助我们更好地了解和解决人口问题。
1.现代社会阶段的人口增长趋势是死亡率下降,而出生率下降,且死亡率的下降速度比出生率的下降速度快。
Leslie模型(数学建模)
2021/10/10
21
定理:若Leslie矩阵A的第一行中至少有两个相
邻的bi>0则
|i|< |1|且N j/ 1j CN其中C为某一常数,由值bi, Pi及N0决定
N(0,j+1)=bi(j)K i(j)N(i,j)
N(i,j+1)=Pi-1N(i-1,j) i=1,…,m
目前我国人口中中年青人的比例很大,加上计
划生育降低出生率,必然造成若干年后社会人
口的严重老龄化,待这一代人越出m组后,又
会使人口迅速青年化而走向另一个极端。
2021/10/10
24
为减少这种年龄结构上的振荡,人们又引入了一 个控制变量h(i,j),使bi(j)=h(i,j)
设µ(r,t)为t时刻年龄为r的人的死亡率,t时刻年龄在[r,r+dr) 单位时间死亡的人数为µ(r,t)p(r,t)dr
2021/10/10
7
分析:
下面考虑从t到t+dt这一过程的人口变化: 年龄处在[r,r+dr)到t+dt时刻活着的人的年龄变为 [r+dt,r+dr+dt)而这一时刻死亡的人数为µ(r,t)p(r,t)drdt 则p(r,t)dr-p(r+dt,t+dt)dr= µ(r,t)p(r,t)drdt
•••
那么I (1)=MK
S(n-1)
I (t)=MtK
2021/10/10
14
考虑到在一段稳定的时间段内:总的女性人口数比上总 的男性人口数为一个近似为1的定值.为了更为确切地分 析女性个体数量的分布对总人口数的影响,我们单独把 女性人口数作为研究对象.
【数学建模】人口增长Leslie模型
【数学建模】⼈⼝增长Leslie模型问题分析· ⽤数学建模预测⼈⼝增长的⽅法:差分⽅程、微分⽅程、回归分析、时间序列等.· 结合所给数据以差分⽅程组的Leslie模型为基础.· 考虑不同地区、不同性别⼈⼝参数的差别及农村⼈⼝向城市迁移等因素.· 按照地区和性别建⽴以时间和年龄为基本变量的中国⼈⼝增长模型.· 利⽤历史数据估计⽣育率、死亡率及⼈⼝迁移等参数,代⼊模型求解并作预测.模型假设·中国⼈⼝是封闭系统, 将数据中的市、镇合并为城市, 与农村(乡)作为两个地区; 只考虑农村向城市⼈⼝的单向迁移, 不考虑与境外的相互移民.· 对中短期⼈⼝预测, ⽣育率、死亡率及⼈⼝迁移等参数⽤历史数据估计; 长期预测考虑总和⽣育率的控制、城镇化指数的变化趋势等因素.· ⼥性每胎⽣育⼀个⼦⼥.模型建⽴按地区和性别划分、以年龄为离散变量、随时段演变的⼈⼝发展模型,为4n阶差分⽅程组.参数估计存活率的估计死亡率与年龄关系⼤, 与地区、性别和时间的关系⼩.中国⼏⼗年来死亡率降低较快, 未来趋势仍持续下降.中短期预测:将过去若⼲年不同地区、性别和各年龄⼈⼝的死亡率简单地取平均值.长期预测:⽤统计⽅法对历史数据加以处理,并参考发达国家⼈⼝死亡率的演变过程给出估计值.⽣育率的估计中短期预测:将过去若⼲年不同地区、性别和各年龄⼈⼝的⽣育率简单地取平均值.长期预测:设定⼏个不同⽔平的总和⽣育率.⼈⼝迁移的估计模型求解选定初始年份⽤⼈⼝发展模型递推计算MATLAB实现clc;%初始化,设置各种参数和初始⼈数矩阵x = [206.46422.50478.72229.9253.44]';%x0⼥性各阶段⼈数%x0 = x .*0.4988x0 = [102.9822210.7430238.7855114.684126.6559]';%H为状态转移矩阵,其实是存活矩阵H = zeros(5,5);H(2)=0.88; H(8)=0.97; H(14)=0.86; H(20)=0.22;%B是⽣育矩阵,即各个年龄段妇⼥的⽣育率B = [020.300];for n =1:1:5%y是x之下⼀年的⼈⼝数⽬,尚不包括迁移⼈数和1岁的⼈数y = H*x;%y(1)是下⼀年1岁的⼈⼝数⽬,即今年刚出⽣的⼈y(1)= B*x0;%g是迁移⼈数,也得按照年龄⽐例来存储数据g = [301201202010]';%迁移⼈数加到y上y = y + g;%求与y对应的年份的各个年龄段妇⼥⼈数%包括x0中存活下来的,迁移的⼀部分,第⼀时间段为刚出⽣的⼥性⼈数 y0 = zeros(5,1);y0(1)= y(1)/2;%或y(1)乘以⼥婴占总男⼥婴的⽐例for i=1:1:4y0(i+1)= x0(i)*H(i+1+5*(i-1));endg0 = g ./2;y0 = y0 + g0;%g0为迁移过来的各个年龄段的⼥性⼈数disp(2008+n*20)zong = y'nv = y0'x = y;x0 = y0;end%⾃此,则完成了⼀轮的计算%要预测更多,只需要循环计算以上步骤即可。
常微分方程在人口增长模型中的数学建模
常微分方程在人口增长模型中的数学建模人口增长是一个复杂而重要的社会问题,对于解决人口问题,了解人口增长模型是十分必要的。
常微分方程是研究自然现象的重要工具,它在人口增长模型中的应用也是十分广泛的。
本文将介绍常微分方程在人口增长模型中的数学建模。
一、人口增长模型的基本假设在建立人口增长模型之前,我们需要先进行一些基本假设。
首先,我们假设人口增长是一个连续的过程,即人口数量的变化是连续的。
其次,我们假设人口增长的速率与当前人口数量成正比,即人口增长率与人口数量成正比。
最后,我们假设人口增长的速率还受到其他因素的影响,比如出生率、死亡率、迁移率等。
二、人口增长模型的建立为了建立人口增长模型,我们需要引入常微分方程。
常微分方程是描述变量之间关系的方程,它包含一个未知函数及其导数。
在人口增长模型中,我们可以将人口数量表示为一个未知函数P(t),其中t表示时间。
根据前面的假设,我们可以得到人口增长率与人口数量的关系式:dP/dt = kP其中dP/dt表示人口数量P关于时间t的导数,k表示人口增长率。
这个关系式描述了人口数量随时间的变化规律。
三、人口增长模型的求解为了求解上述的常微分方程,我们可以使用分离变量法。
将上述方程改写为:1/P dP = k dt对上述方程两边同时积分,得到:ln|P| = kt + C其中C为常数。
进一步求解,得到:P(t) = e^(kt+C) = Ce^kt由于人口数量不能为负数,所以常数C必须为正数。
这个解表示了人口数量随时间的变化规律。
四、人口增长模型的应用通过上述的人口增长模型,我们可以对人口增长进行预测和分析。
通过调整人口增长率k和常数C的值,我们可以模拟不同的人口增长情况。
例如,如果k为正数,表示人口增长率为正,那么人口数量将会呈指数增长。
这在一些发展中国家中是比较常见的情况。
相反,如果k为负数,表示人口增长率为负,那么人口数量将会呈指数减少。
这在一些发达国家中是比较常见的情况。
数学建模在人口统计学中的应用
数学建模在人口统计学中的应用人口统计学是研究人口数量、结构和变动等方面的学科,它对于社会发展、经济增长以及政策制定都具有重要意义。
而数学建模则是利用数学模型对现实问题进行描述、分析和预测的一种方法。
本文将介绍数学建模在人口统计学中的应用,并探讨其对人口问题的解决和决策制定的重要性。
一、人口增长模型人口增长是人口统计学中的一个核心研究内容,数学建模可以帮助我们理解和预测人口增长的趋势。
常见的人口增长模型有指数增长模型、Logistic增长模型等。
指数增长模型假设人口增长速率与当前人口数量成正比,可以用如下的微分方程来描述:$$\frac{dN}{dt} = rN$$其中,N表示人口数量,r表示人口增长率。
利用这个模型,我们可以预测未来人口数量的变化趋势,从而为人口规划与管理提供依据。
二、人口结构模型人口结构指的是不同年龄、性别和种族等群体在人口总数中所占的比例和分布情况。
人口结构模型可以帮助我们分析和预测不同人口群体的变化趋势,从而为社会政策制定提供科学依据。
其中,常见的人口结构模型有Alvarez-Mathieson模型和Lee-Carter模型等。
Alvarez-Mathieson模型基于生态位模型,通过设定生育率、死亡率和迁移率等参数,来预测不同年龄和性别群体的人口数量。
这种模型可以帮助我们评估不同年龄段人口对经济、教育、医疗等方面的需求,为社会资源的分配提供依据。
Lee-Carter模型则是基于周期性的波动来描述人口结构变化的。
通过将人口死亡率和出生率等数据作为输入,可以预测未来不同年龄群体的人口数量。
这种模型在养老金制度、医疗保健等方面的政策制定中有着重要的应用价值。
三、人口流动模型人口流动是指人口从一个区域或国家向另一个区域或国家的迁移和流动。
人口流动模型可以帮助我们分析和预测人口迁移的趋势,为政策制定提供参考。
常见的人口流动模型有迁移概率模型和重力模型等。
迁移概率模型主要使用迁移率数据来预测人口流动的规模和方向。
数学建模在人口规划中的应用有哪些
数学建模在人口规划中的应用有哪些人口问题一直是社会发展中的重要议题,而数学建模作为一种有效的工具,在人口规划中发挥着关键作用。
通过对人口数据的分析和预测,数学建模可以为政策制定者提供科学依据,帮助他们制定合理的人口规划策略。
一、人口增长模型人口增长模型是数学建模在人口规划中的基础应用之一。
常见的人口增长模型包括指数增长模型和逻辑斯蒂增长模型。
指数增长模型假设人口增长率是恒定的,即人口数量按照指数函数的形式增长。
这种模型在人口增长的初期阶段可能具有一定的合理性,但随着时间的推移,它往往会高估人口的增长速度,因为它没有考虑到资源、环境等因素对人口增长的限制。
逻辑斯蒂增长模型则考虑了环境容纳量的限制,认为人口增长会逐渐趋近于一个上限值。
该模型更加符合实际情况,能够更好地预测人口的长期增长趋势。
通过建立逻辑斯蒂增长模型,我们可以估计出一个地区或国家的人口饱和水平,为制定人口政策提供重要参考。
二、人口年龄结构模型人口年龄结构对于社会经济的发展具有重要影响。
数学建模可以帮助我们构建人口年龄结构模型,从而深入了解人口的年龄分布特征及其变化趋势。
通过将人口按照不同的年龄组进行划分,并考虑生育率、死亡率等因素的影响,我们可以建立起年龄结构的动态模型。
这些模型可以预测未来各年龄组人口的数量和比例,为教育、医疗、养老等公共服务的规划提供依据。
例如,如果预测到未来老年人口比例将大幅增加,那么就需要提前规划和建设更多的养老设施,加强医疗保障体系,以满足老年人的需求。
三、人口迁移模型在现代社会,人口迁移是一个普遍现象。
数学建模可以用于分析人口迁移的规律和趋势,为城市规划和区域发展提供支持。
人口迁移模型通常考虑了经济因素、社会因素、环境因素等对人口迁移的影响。
例如,经济发展水平的差异会导致人口从经济欠发达地区向发达地区迁移;良好的教育和医疗资源也会吸引人口的流入。
通过建立人口迁移模型,我们可以预测不同地区之间人口流动的规模和方向,为城市的基础设施建设、就业政策制定等提供决策依据。
数学建模人口模型
中国人口增长预测模型班级:071221姓名:***学号:********摘要以2010年11月1日零时为标准时点,中国大陆31个省、自治区、直辖市和现役军人的人口共13.397亿。
13亿是一个忧虑的数字。
13亿人要吃饭、要穿衣、要上学、要就业、要住房……,消费的需求乘以13亿,就是一个庞大的数目,而我国的耕地、水资源、森林以及矿产资源本来就稀缺,再除以13亿,就少得可怜。
平均每人耕地面积只有1.4亩,水资源只相当于世界人均水平的1/4…….、中国是世界上人口最多的发展中国家,人口多,底子薄,人均耕地少,人均占有资源相对不足,是我国的基本国情,人口问题一直是制约中国经济发展的首要因素。
当前中国的人口存在着最为明显的三大特点:(1)人口基数大,人口数量的控制难度仍很大。
(2)人口整体素质不高,特别是县域及以下农村人口素质普遍偏低。
(3)人口结构不合理,城乡差别、地区差别和人口素质差别很大。
人口数量、质量和年龄分布直接影响一个地区的经济发展、资源配置、社会保障、社会稳定和城市活力。
在我国现代化进程中,必须实现人口与经济、社会、资源、环境协调发展和可持续发展,进一步控制人口数量,提高人口质量,改善人口结构。
对此,单纯的人口数量控制(如已实施多年的计划生育)不能体现人口规划的科学性。
政府部门需要更详细、更系统的人口分析技术,为人口发展策略的制定提供指导和依据。
我国是世界第一人口大国,地球上每九个人中就有二个中国人,在20世纪的一段时间内我国人口的增长速度过快,如下表:有效地控制人口的增长,不仅是使我国全面进入小康社会、到21世纪中叶建成富强民主文明的社会主义国家的需要,而且对于全人类社会的美好理想来说,也是我们义不容辞的责任。
长期以来,对人口年龄结构的研究仅限于粗线条的定性分析,只能预测年龄结构分布的大致范围,无法用于分析年龄结构的具体形态。
随着对人口规划精准度要求的提高,通过数学方法来定量计算各种人口指数的方法日益受到重视,这就是人口控制和预测。
数学建模人口增长模型
人口增长预测模型摘要本文建立了我国人口增长的预测模型,对各年份全国人口总量增长的中短期和长期趋势作出了预测,并对人口老龄化、人口抚养比等一系列评价指标进行了预测。
最后提出了有关人口控制与管理的措施。
模型Ⅰ:建立了Logistic人口阻滞增长模型,利用附件2中数据,结合网上查找补充的数据,分别根据从1954年、1963年、1980年到2005年三组总人口数据建立模型,进行预测,把预测结果与附件1《国家人口发展战略研究报告》中提供的预测值进行分析比较。
得出运用1980年到2005年的总人口数建立模型预测效果好,拟合的曲线的可决系数为0.9987。
运用1980年到2005年总人口数据预测得到2010年、2020年、2033年我国的总人口数分别为13.55357亿、14.18440亿、14.70172亿。
模型Ⅱ:考虑到人口年龄结构对人口增长的影响,建立了按年龄分布的女性模型(Leslie模型):以附件2中提供的2001年的有关数据,构造Leslie矩阵,建立相应Leslie模型;然后,根据中外专家给出的人口更替率1.8,构造Leslie矩阵,建立相应的 Leslie模型。
首先,分别预测2002年到2050年我国总人口数、劳动年龄人口数、老年人口数(见附录8),然后再用预测求得的数据分别对全国总人口数、劳动年龄人口数的发展情况进行分析,得出:我国总人口在2010年达到14.2609亿人,在2020年达到14.9513亿人,在2023年达到峰值14.985亿人;预测我国在短期内劳动力不缺,但须加强劳动力结构方面的调整。
其次,对人口老龄化问题、人口抚养比进行分析。
得到我国老龄化在加速,预计本世纪40年代中后期形成老龄人口高峰平台,60岁以上老年人口达4.45亿人,比重达33.277%;65岁以上老年人口达3.51亿人,比重达25.53%;人口抚养呈现增加的趋势。
再次,讨论我国人口的控制,预测出将来我国育龄妇女人数与生育旺盛期育龄妇女人数,得到育龄妇女人数在短期内将达到高峰,随后又下降的趋势的结论。
中国人口增长预测数学模型
中国人口增长预测数学模型
中国人口增长可以用人口增长率来描述。
人口增长率是指一个国家的出生率、死亡率和移民率产生的净人口变化的比率。
一般来说,一个国家的人口增长率越高,其人口增长速度越快,反之亦然。
由于中国的出生率和死亡率一直在变化,因此需要建立一个数学模型来预测中国的人口增长。
常见的模型有以下几种:
1. 指数模型
指数模型假设人口增长率是一个恒定值,因此未来的人口数量可以通过不断累乘现有人口数量和人口增长率来预测。
这种模型适用于人口增长迅速的情况,但并不适用于中国的情况,因为中国的人口增长率不是恒定的。
2. Logistic 模型
Logistic 模型假设人口增长率随着人口数量的变化而变化,即当人口数量增加到某一点时,人口增长率会逐渐降低。
这种模型适用于人口数量增长迅速的情况,适用于中国的情况。
3. 随机游走模型
随机游走模型假设人口增长率是一个随机变量,可以根据历史发展趋势来预测未来的变化。
这种模型适用于人口数量变化不规律的情况,但对于中国这样的大国而言,其复杂性较高,难以建立准确的模型。
总之,预测中国的人口增长需要考虑许多因素,例如出生率、死亡率、移民率等等,而且这些因素也会受到其它因素的干扰,例如经济、社会政治等因素。
因此,建立准确的模型需要大量的数据和正确的假设。
数学建模人口增长模型
数学建模人口增长模型摘要:人口的增长是当前世界上引起普遍关注的问题作为世界上人口最多的国家,我国的人口问题是十分突出的由于人口基数大尽管我国已经实行了20多年的计划生育政策人口的增长依然很快,巨大人口压力会给我国的社会政治经济医疗就业等带来了一系列的问题。
因此研究和解决人口问题在我国显得尤为重要。
我们经常在报刊上看见关于人口增长预报,说到本世纪,或下世纪中叶,全世界的人口将达到多少亿。
你可能注意到不同报刊对同一时间人口的预报在数字商场有较大的区别,这显然是由于用了不同的人口整张模型计算出来的结果。
人类社会进入20世纪以来,在科学和技术和生产力飞速发展的同时世界人口也以空前的规模增长。
人口每增加十亿的时间,有一百年缩短为十几年。
我们赖以生存的地球已经携带着他的60亿子民踏入下一个世纪。
长期以来,人类的繁殖一直在自然地进行着,只是由于人口数量的迅速膨胀和环境质量的急剧恶化,人们才猛然醒悟,开始研究人类和自然的关系、人口数量的变化规律以及如何惊醒人口控制等问题。
本论文中有两个模型:(1):中国人口的指数增长模型,并用该模型进行预测,与实际人口数据进行比较。
(2):中国人口的Logistic图形,标出中国人口的实际统计数据进行比较。
而且利用MATLAB图形,标出中国人口的实际统计数据,并画出两种模型的预测曲线。
关键字:人口预测;Malthus模型;Logistic模型;MATLAB软件一、问题背景及重述1.1问题的背景中国是一个人口大国,人口问题始终是制约我国发展的关键因素之一。
我国自1973年全面推行计划生育以来,生育率迅速下降,取得了举世瞩目的成就,但全面建设小康社会仍面临着人口的形势和严峻挑战。
随着我国经济的发展、国家人口政策的实施,未来我国人口高峰期到底有多少人口,专家学者们的预测结果不一。
因此,根据已有数据,运用数学建模的方法,对中国人口做出分析和预测是一个重要问题。
1.2 问题的重述下表列出了中国1982~1998年的人口统计数据,取1982年为起始年(t=0),1982年的人口101654万人,人口自然增长率为14‰,以36亿作为我国人口的容纳量,试建立一个较好的人口数学模型并给出相应的算法和程序,并与实际人二、问题分析对于人口增长的问题,其影响因素有很多,比如:人口基数,出生率,死亡率,人口男女比例,人口年龄结构的组成,人口的迁入率和迁出率,人口的生育率和生育模式,国家的医疗发展情况,国家的政治策略等众多的因素。
数学建模作业-人口增长模型
论文结构合理,模型建立详细,思想明确,论述清楚程序和拟合是文章的亮点,模型建立完了没有做误差分析,如果补完整是一篇很不错的文章。
摘要•随着科学技术的发展,国内资金积累量在不断增加,但是中国人口近几年还是呈增加的趋势,这样就会影响人均收入。
由于国民收入是资金积累的一部分,国民收入变化可以反映资金积累的变化。
因此研究资金积累、国民收入与人口增长的关系可以转化成研究资金积累与人口增长的关系。
若国民平均收入与按人口平均资金积累成正比,说明仅当资金积累的相对增长率大于人口的相对增长率时,国民平均收入才是增长的。
所以认识资金积累与人口增长的关系,对国民平均收入的增长有重大意义。
本文通过微分方程建立三个模型,即人口Malthus模型、资金积累指数模型、资金积累增长率与人口增长率的二次曲线模型。
通过资金积累与人口增长的关系来分析国民平均收入。
关键词:资金积累人口增长国民平均收入资金积累增长率人口增长率一、问题的重述资金积累、国民收入、与人口增长的关系:(1)若国民平均收入x与按人口平均资金积累y成正比,说明仅当总资金积累的相对增长率k大于人口的相对增长率r时,国民平均收入才是增长的. (2)作出k(x)和r(x)的示意图,分析人口激增会引起什么后果.二、问题分析人均国民收入主要与国家资金总积累量和总人口数有关,若总人口数的增长率大于资金积累增长率,则增长的资金不能使每一位国民增加收入,只能使少量国民收入增加,因此,总体来说,国家人均收入实际上是减少的。
三、模型假设假设总资金增长和人口增长均为指数增长,资金积累增长率和人口增长率为二次曲线模型。
四、符号说明a为国民收入在总资金积累中所占比例;y(t)为总资金积累量;N(t)为总人口数;Nm为人口的峰值;x(t) 为人均国民收入;r 为人口增长率;k 为资金积累增长率。
五、模型的建立与求解(1)人口增长模型曲线如图1所示:图1通过图形,用MATLAB 编程可建立指数增长模型6110)()(⨯+=⨯tet N αα 其中0127.01=α 0058.02=α(2)总资金积累模型曲线如图2所示:图2由曲线可知资金增长是呈指数整长的并通过MATLAB编程得到指数模型:y(t)=(0.001+e x003.0) 106。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数学建模人口增长模型摘要:人口的增长是当前世界上引起普遍关注的问题作为世界上人口最多的国家,我国的人口问题是十分突出的由于人口基数大尽管我国已经实行了20多年的计划生育政策人口的增长依然很快,巨大人口压力会给我国的社会政治经济医疗就业等带来了一系列的问题。
因此研究和解决人口问题在我国显得尤为重要。
我们经常在报刊上看见关于人口增长预报,说到本世纪,或下世纪中叶,全世界的人口将达到多少亿。
你可能注意到不同报刊对同一时间人口的预报在数字商场有较大的区别,这显然是由于用了不同的人口整张模型计算出来的结果。
人类社会进入20世纪以来,在科学和技术和生产力飞速发展的同时世界人口也以空前的规模增长。
人口每增加十亿的时间,有一百年缩短为十几年。
我们赖以生存的地球已经携带着他的60亿子民踏入下一个世纪。
长期以来,人类的繁殖一直在自然地进行着,只是由于人口数量的迅速膨胀和环境质量的急剧恶化,人们才猛然醒悟,开始研究人类和自然的关系、人口数量的变化规律以及如何惊醒人口控制等问题。
本论文中有两个模型:(1):中国人口的指数增长模型,并用该模型进行预测,与实际人口数据进行比较。
(2):中国人口的Logistic图形,标出中国人口的实际统计数据进行比较。
而且利用MATLAB图形,标出中国人口的实际统计数据,并画出两种模型的预测曲线。
关键字:人口预测;Malthus模型;Logistic模型;MATLAB软件一、问题背景及重述1.1问题的背景中国是一个人口大国,人口问题始终是制约我国发展的关键因素之一。
我国自1973年全面推行计划生育以来,生育率迅速下降,取得了举世瞩目的成就,但全面建设小康社会仍面临着人口的形势和严峻挑战。
随着我国经济的发展、国家人口政策的实施,未来我国人口高峰期到底有多少人口,专家学者们的预测结果不一。
因此,根据已有数据,运用数学建模的方法,对中国人口做出分析和预测是一个重要问题。
1.2 问题的重述下表列出了中国1982~1998年的人口统计数据,取1982年为起始年(t=0),1982年的人口101654万人,人口自然增长率为14‰,以36亿作为我国人口的容纳量,试建立一个较好的人口数学模型并给出相应的算法和程序,并与实际人二、问题分析对于人口增长的问题,其影响因素有很多,比如:人口基数,出生率,死亡率,人口男女比例,人口年龄结构的组成,人口的迁入率和迁出率,人口的生育率和生育模式,国家的医疗发展情况,国家的政治策略等众多的因素。
如果把这些因素都要考虑进去,则该问题根本无从下手。
因此,应该根据中国人口自身发展的特点,选取相应的能够体现我国人口发展特点的模型。
人口发展模型有连续形式和离散形式,因为题目所给的数据是每个年份的具体数据,可以将这些数据视为连续的。
根据表格中的数据,我们使用MATLAB编程(附录1)画出散点图。
图1中国1982~1998年的人口数据图从图中我们可以看到人口数在 1982—1998 年是呈增长趋势的,且增长趋势类似于指数型增长,因此,我们可以先建立一个指数增长模型(Malthus模型)。
但是,由于地球上的资源是有限的,它只能提供一定数量的生命生存所需的条件,因此人口不可能无限制增加。
随着人口数量的增加,自然资源,环境条件等对人口再增长的限制作用将越来越显著。
于是我们假设在人口较少时,可以把人口增长率看成常数,但随着人口的增加,我们应该把人口增长率视为一个随着人口增加而减小的量,从而我们可以将模型一(Malthus模型)优化为一个阻滞增长模型(Logistic模型)。
三、模型假设(一)Malthus模型假设我国人口的增长符合人口指数增长的规律,即满足Malthus模型的两个前提:第一,食物是人类生存所必需的;第二,两性间的情欲是必然的,而且几乎会保持现状。
从这两个“人类本性的固定法则”出发,可以得出一个最基本的经济比例:食物或生活资料的增长与人口的增殖之间的关系。
马尔萨斯说,人口的增殖比生活资料增长的要快,人口是按几何级数增长的,而生活资料则只按算术级数增长。
但是,马尔萨斯并不认为这两个级数就是人口规律的反映,他提出,保持两个级数平衡的唯一出路就是抑制人口的增长。
他把所谓支配人类命运的永恒的人口自然法则,归纳成以下三个定理。
三个定理:第一点是人口的制约原理, 说明人口与生活资料之间必然存在某种正常的比例, 即“人口的增长, 必然要受到生活资料的限制”;第二点是人口的增殖原理, 即“生活资料增加, 人口也常随着增加”; 第三点是马尔萨斯人口原理的核心, 称之为人口的均衡原理, 即“占优势的人口繁殖力为贫困和罪恶所抑制,因而使现实的人口得以与生活资料保持平衡”。
这个原理与前两个原理是紧密相连的,它说明人口与生活资料之间最终将实现均衡, 但是这种均衡不是自然实现的,而是种种“抑制”的产物。
所以,Malthus 模型假设条件如下:1.设P(t)表示t 时刻的人口数,且P(t)连续可微。
2.人口的增长率r 是常数(增长率=出生率-死亡率)。
3.人口数量的变化是封闭,即人口数量的增加与减少只取决于人口中个体的生育与死亡,且每一个都具有同样的的生育能力与死亡率。
(二)Logistic 模型由于地球上的资源有限,当人口数量发展到一定阶段后,会产生一系列问题,如食物短缺、居住和交通拥挤等。
另外,随着人口密度的增加,疾病将会增多,死亡率会上升,因此,人口的增长率不会是Malthus 所假设的是一个常数不改变,而是会随着人口数量增加而减少。
假设增长率r 表示P(t)的函数r(p),且r(p)为p 的减函数。
1. 设r(p)为p 的线性函数,r(p)=r-kp 。
2. 自然资源与环境条件所能容纳的最大人口数为Pm ,即当P=Pm 时,增长率r(p)=0。
四、变量说明五、模型建立与模型求解5.1 Malthus 模型由假设一,t 时刻到t ∆+t 时刻人口增量为t t P r t P t t P ∆⋅⋅=-∆+)()()(于是可得 00)(p dpp t rp dt ==由分离变量法解得模型的解为rtp(t)e∙=0p对该模型两边同时取对数得到一次线性拟合函数=,=,lny0lnrta=ypa p+取表中1982到1998年的数据在MATLAB中M文件(附录2)进行线性最小二乘拟合可得出:f =0.013141 t - 14.5121所以可知r=0.013141,p(t)=101654*exp(0.013141*(t-1982))用MATLAB进行指数拟合得到下图图2可以看出拟合曲线基本吻合,但是随着时间t的增加其误差逐渐加大,所以需要对其修正。
5.2 Logistic模型由假设二可知,记p(t)是第t年的人口数量,人口增长率r(p)是p的线性函数,r(p)=r-kp。
最大人口容纳量为Pm。
即当P=Pm时,增长率r(p)=0。
所以,)1()(m p prp p p r dt dp -=∙=(5.2.1)00)(p p t =同样利用分离变量法求得其解))(exp()1(1)(p 00t t r p p p t mm-∙-∙-+=(5.2.2)根据(5.2.1)式作出p dt p -d 的曲线图(图1)以及由(5.2.2)式作出p-t 曲线图(图2)从上述曲线图以及表达式中,我们可以总结出如下规律:mpt p t =∞→)(lim ,它表明不管人口初始状态是什么样,人口总数最终都将趋于最大人口容纳量。
当p(t)>pm 时,dt dp <0;当p(t)<pm 时,dt dp>0。
它表明当人口数量超过最大人口容纳量时,人口数量将减少,当人口数量小于最大人口容纳量时,人口数量将增加。
dtdpm p 2/0p 0pO人口变化率dt dp在2p m p时取到最大值,即人口总数达到极限值一半之前是加速生长的,经过此点后,增长率会逐渐减小至0。
采用非线性最小二乘估计法对参数r 和pm 进行估计,通过使用matlab 编写程序(附录4)可得:r =0.01137,pm =3.7465e+04用MATLAB 拟合图像如下图3六、模型检验及结果分析经过前面模型建立的工作,已建立出Malthus 模型和Logisic 模型。
现在根据所建立的模型预测相关年份的人口数量,并与实际人口数量相比较以检验模型的优劣性。
Malthus 模型与Logistic 模型对我国人数据的拟合结果更简单;对于中长期预测,模型二要强于模型一。
七、模型评价与推广一、优点:首先我们采用图表结合法,比较直观地表达出题中所给的信息,并据此得出了人口增长的基本规律。
根据所给出的数据,对其进行分析得出了人口增长率与人口总数的线性关系,从而建立了人口阻滞增长模型,对未来人口数的预测作出了较为准确的判断。
模型一是依据英国神父T·Malthus的发现建立了指数型增长模型,经过我们实际数据的检验,发现其人口早期的增长情况与Malthus模型的预测基本相符,然而随着时间的增加,该模型的预测结果明显出现了不合理性。
其原因就是我们将人口增长率视为常数,因此需要对r进行修正。
所以,我们将r表示为p 的减函数,从而推导建立了模型二二、缺点:本文对模型一中的参数只做了线性估计,所以其计算结果与实际误差较大模型二中仅考虑了r与p的关系是线性的,没有考虑非线性关系八、参考文献[1].司守奎,孙兆亮,孙玺菁,周刚,仲维杰,康淑瑰.数学建模算法与应用(第二版).国防工业出版社,2016年[2].姜启源,谢金星,叶俊.数学模型(第四版).高等教育出版社·北京.2011年[3].储昌木,沈长春.数学建模及其应用.西南交通大学出版社·成都.2015年[4] 胡守信,李柏年.基于MATLAB的数学实验[M].北京科学出版社.2004年6月[5] 扬启帆,康旭升,等.数学模型[M].北京:高等教育出版社.2006年5月[6] 于学军.《中国人口科学》2000年第2期,时间:2000-4-6,中国人口信息网.附录:1)syms x yx0=1982:1:1998y0=[101654 103008 104357 105851 107507 109300 111026 112704 114333 115823 117171 118517 119850 121121 122389 123626 124810]xlabel('x')ylabel('y')plot(x0,y0,'*')2)t=[1982:1:1998];y=[log(101654) log(103008) log(104357) log(105851) log(107507)log(109300) log(111026) log(112704) log(114333) log(115823) log(117171) log(118517) log(119850) log(121121) log(122389) log(123626)log(124810)]p1=polyfit(t,y,1);f=poly2str(p1,'t')3)syms x y px0=1982:1:1998y0=[101654 103008 104357 105851 107507 109300 111026 112704 114333 115823 117171 118517 119850 121121 122389 123626 124810]xlabel('x')ylabel('y')plot(x0,y0,'*')hold ont=1982:1:1998p=101654.*exp(0.013141.*(t-1982))plot(x,p,'r','LineWidth',0.5);legend('原始数据散点图','指数拟合曲线');grid on;4)clc, cleara=textread('data1.txt');p=a([2:2:6],:)';p=nonzeros(p);t=[1982:1:1998]';t0=t(1); p0=p(1);fun=@(cs,td)cs(1)./(1+(cs(1)/p0-1)*exp(-cs(2)*(td-t0)));cs=lsqcurvefit(fun,rand(2,1),t(2:end),p(2:end),zeros(2,1));r=cs(2),pm=cs(1)。