高考数学一轮复习6 第6讲 二项分布及其应用

合集下载

高考数学第一轮总复习知识点课件 第二节 二项分布及其应用

高考数学第一轮总复习知识点课件 第二节   二项分布及其应用
第二节 二项分布及其应用
基础梳理
1. 条件概率及其性质
(1)条件概率的定义
P AB
设A,B为两个事件,且P(A)>0,称P(B|A)= PA为在事件A发生的
条件下,事件B发生的条件概率.
(2)条件概率的求法
求条件概率除了借助定义中的公式,还可以借助古典概型概率公式,即
P(A|B)=nnABB
(3)条件概率的性质
法是利用条件概率公式P(B|A)= PPAA,B这就需要求出P(AB)和P
(A),用到原来的概率知识.
(2)本题中可以计算事件B的概率为
P(B)=P(AB+AB )=P(AB)+P( AB)=
5 4 95 5,可见5,条0件.05概 100 99 100 99 100
率P(B|A)≠P(B).
故X~B(6 , 1),………………………………………………3′ 3
以此为基础求X的分布列.
由X~B(6, 1),P(X=k)=
3
C6k
1 3
k
, 23…6…k …………4′
k=0,1,2,3,4,5,6.
所以X的分布列为
X
0
P
2
6
3
1
C61
1 3
2 3
5
2
33
C62
1 3
2
2 3
3 (1)设X为这名学生在途中遇到红灯的次数,求X的分布列;
(2)求这名学生在途中至少遇到一次红灯的概率.
分析 (1)可看做6次独立重复试验; (2)X的取值为0,1,2,3,4,5,6; (3)可通过求对立事件的概率解决.
解 (1)将通过每个交通岗看做一次试验,则遇到红灯的概

高考数学复习二项分布及其应用

高考数学复习二项分布及其应用
2.2 二项分布及其应用
引例:抛掷两枚骰子 (1)两枚出现的点数都是偶数的概率是多少? (2)若两枚都出现偶数点,就说这次实验成功, 试求在3次实验中成功次数X的分布列.
1.事件的相互独立性定义: 设A,B为两个事件,如果P(AB)=P(A)P(B),则 称事件A与事件B相互独立。
引例:抛掷两枚骰子 (1)两枚出现的点数都是偶数的概率是多少? (2)若两枚都出现偶数点,就说这次实验成功, 试求
C n2 5 (1)设“世博会会徽”卡有 n 张,由 2 ,得 n 5 , C9 18 C42 1 故“海宝”卡有 4 张,抽奖者获奖的概率为 2 ; C9 6
(2) ~ B(4, ) 的分布列为 P( k ) C 4 ( ) ( )
k k
1 6
1 6
5 6
4 k
例 3.某单位举办 2010 年上海世博会知识宣传活动, 进行现场 抽奖.盒中装有 9 张大小相同的精美卡片,卡片上分别印有 “世博会会徽”或“海宝”(世博会吉祥物)图案; 抽奖规则 是: 参加者从盒中抽取卡片两张, 若抽到两张都是“海宝” 卡即可获奖,否则,均为不获奖. 卡片用后放回盒子,下一位 参加者继续重复进行.活动开始后,一位参加者问:盒中有几 张“海宝”卡?主持人答:我只知道,从盒中抽取两张都是 5 “世博会会徽”卡的概率是 , 18 (1)求抽奖者获奖的概率; (2)现有 4 人依次抽奖,用 表示获奖的人数,求 的分布列.
例1:甲乙两人独立地对同一目标各射击一次,其中 命中率分别是0.6和0.5
(1)求两人都击中目标的概率 (2)求两人中恰有一人击中目标的概率 (3)求两人中至多有一人击中目标的概率
变式.若甲连续射击4次,且各次射击是否击中目标
相互之间没有影响,有下列结论:

第06章二项分布及其应用

第06章二项分布及其应用

二项分布概念:二项分布即重复n次独立的伯努利试验。

在每次试验中只有两种可能的结果,而且两种结果发生与否互相对立,并且相互独立,与其它各次试验结果无关,事件发生与否的概率在每一次独立试验中都保持不变,则这一系列试验总称为n重伯努利实验,当试验次数为1时,二项分布就是伯努利分布。

该事件发生k次的概率为:P=C(k,n)×p^k×(1-p)^(n-k),其中C(k,n)表示组合数,即从n个事物中拿出k个的方法数.,p为事件发生的概率,k是发生的次数,其中k=1,2,3...n,Ek=np,方差:Dk=np(1-p)例6-1某种药物治疗某种非传染性疾病的有效率为0.70,无效率为0.30。

今用该药治疗该疾病患者10人,试分别计算这10人中有6人、7人、8人有效的概率(《医学统计学》,第三版,孙振球)。

#源代码例6-1:dbinom(6,10,0.7)#二项分布函数dbinom(7,10,0.7)dbinom(8,10,0.7)#其中dbinom(k,n,p)中,k是发生的次数,10是共次数,p是概率>#源代码例6-1:>dbinom(6,10,0.7)[1]0.2001209>dbinom(7,10,0.7)[1]0.2668279>dbinom(8,10,0.7)[1]0.2334744>#其中dbinom(k,n,p)中,k是发生的次数,10是共次数,p是概率例6-2在对13名输卵管结扎的育龄妇女经壶腹部-壶腹部吻合术后,观察其受孕情况,发现有6人受孕,试据此资料估计该吻合术受孕率的95%可信区间。

#源代码例6-2:binom.test(6,13,p=6/13,conf.level=0.95)>#源代码例6-2:>binom.test(6,13,p=6/13,conf.level=0.95)Exact binomial testdata:6and13number of successes=6, number of trials=13, p-value=1alternative hypothesis:true probability of success is not equal to0.461538595percent confidence interval:0.19223240.7486545sample estimates:probability of success0.4615385例6-3在观测一种药物对某种非传染性疾病的治疗效果时,用该药治疗了此种非传染性疾病患者100人,发现55人有效,试据此估计该药物治疗有效率的95%可信区间。

高考数学复习考点知识讲解课件68 二项分布、正态分布及其应用

高考数学复习考点知识讲解课件68 二项分布、正态分布及其应用
b
‫׬‬a φμ,σ x dx ,则称随机变量X服从正态分布,记作X~N(μ,σ2).
(3)正态曲线的特点
①曲线位于x轴的上方,与x轴不相交;
②曲线是单峰的,它关于直线x=μ对称;
1
③曲线在x=μ处达到峰值

σ 2π
④曲线与x轴之间的面积为1;
⑤当σ一定时,曲线的位置由μ确定,曲线随着μ的变化而沿着x轴平
5
6
1
36
36 6
1
P(甲丙)=0≠P(甲)P(丙),P(甲丁)= =P(甲)P(丁),
36
1
P(乙丙)= ≠P(乙)P(丙),P(丙丁)=0≠P(丁)P(丙).
36
解析:P(甲)= ,P(乙)= ,P(丙)= ,P(丁)= = ,
关键能力—考点突破
考点一
条件概率
[基础性]
1.[2022·安徽阶段测试]将三颗骰子各掷一次,记事件A=“三个点
y中有偶数,且x≠y”,则概率P(B|A)=(
)
1
1
1
1
A.
B.
C.
D.
3
4
5
6
答案:A
2×3×3 1
3×2 1
= ,P(AB)= = ,所以P(B|A)=
36
2
36
6
解析:因为P(A)=
1
6
1
2
1
3
= .
3.[选修2-3·P75 习题B组T2 改编]已知随机变量X服从正态分布N(3,
1),且P(X>2c-1)=P(X<c+3),则c等于(
生的条件下,事件B发生的概率.
(2)条件概率的性质
①条件概率具有一般概率的性质,即0≤P(B|A)≤1;

高考数学一轮复习 10.6 二项分布及其应用精品课件 理 新人教A版

高考数学一轮复习 10.6 二项分布及其应用精品课件 理 新人教A版
根据条件,概率公式 P(AB)=P(B|A)·P(A)=0.9×0.8=0.72,
即这粒种子能成长为幼苗的概率为0.72.
【评析】在解决条件概率问题时,要灵活掌握
P(AB),P(B|A),P(A|B),P(A),P(B)之间的关系,即
P(AB)
P(AB)
P(B|A)= P(A) ,P(A|B)= P(B)
6
故从甲、乙、丙加工的零件中各取一个检验,至少 有一个一等品的概率为 5 .
6
精选版ppt
12
【评析】 (1)对照互斥事件、对立事件的定义进行判 断,哪些是互斥事件,哪些是对立事件,是解好题目的 关键.“正难则反”,一个事件的正面包含基本事件个数 较多,而它的对立事件包含基本事件个数较少,则用公 式P(A)=1-P(A)计算.
(2)审题应注意关键的词句,例如“至少有一个发 生”“至多有一个发生”“恰好有一个发生”等.
(3)复杂问题可考虑拆分为等价的几个事件的概率问 题,同时结合对立事件的概率求法进行求解.
(4)求相互独立事件同时发生的概率的方法主要有:
①利用相互独立事件的概率乘法公式;
②正面计算较繁或难以入手时,可以从对立事件入
10.6 二项分布及其 应用
精选版ppt
1
考点分析
1.条件概率
一般地,设A,B为两个事件,且P(A)>0,称P P(A ∩B )
(B|A)= P(A) 为在事件A发生的条件下,事件B
发生的条件概率.P(B|A)读

A发生的条件下B发生的概率
.
条件概率具有概率的性质,任何事件的条件概率都 在0和1之间,即0≤P(B|A)≤1.
一个一等品的概率.
精选版ppt
9

高考数学课程一轮复习 第64课时 二项分布及其应用

高考数学课程一轮复习 第64课时  二项分布及其应用

第64课时 二项分布及其应用【考点点知】知己知彼,百战不殆新课标对二项分布的要求是:了解条件概率和两个事件相互独立的概念,理解n 次独立重复试验的模型及二项分布,并能解决一些简单的实际问题.本节在高考试题中多以解答题的形式考查,有时也以选择和填空的形式考查,解决本节问题的思路是:首先要搞清事件间的关系,然后根据相应的概率公式求解.对于较复杂的概率问题,就应该分清事件的构成和概率的转化,并注意运用集合的观点将复杂事件的概率向简单事件的概率转化.考点一:二项分布 (1)二项分布概念如果在一次试验中某事件发生的概率是P ,那么在n 次独立重复试验中这个事件恰好发生k 次的概率是:kn k k n qp C k)P(ξ-==[其中p q n k -==1,,,1,0 ] 于是得到随机变量ξ的概率分布如下:我们称这样的随机变量ξ服从二项分布,记作ξ~B (n·p),其中n ,p 为参数,并记p)n b(k;qp C k n k k n ⋅=- (2)二项分布的判断与应用.①二项分布,实际是对n 次独立重复试验.关键是看某一事件是否是进行n 次独立重复,且每次试验只有两种结果,如果不满足此两条件,随机变量就不服从二项分布.②当随机变量的总体很大且抽取的样本容量相对于总体来说又比较小,而每次抽取时又只有两种试验结果,此时可以把它看作独立重复试验,利用二项分布求其分布列.【小题热身】明确考点,自省反思1.已知随机变量ξ服从二项分布,1(6,)3B ξ ,则(2)P ξ== .2.(2010江西卷)有n 位同学参加某项选拔测试,每位同学能通过测试的概率都是(01)p p <<,假设每位同学能否通过测试是相互独立的,则至少有一位同学能通过测试的概率为 .3.(2010湖北卷)一个病人服用某种新药后被治愈的概率为0.9则服用这种新药的4个病人中至少3人被治愈的概率为 (用数字作答).【考题点评】分析原因,醍醐灌顶例1.如果在一次试验中,某事件A 发生的概率为p ,那么在n 次独立重复试验中,这件事A 发生偶数次的概率为________.命题立意:本题考查二项分布与二项式定理的综合,考查知识迁移的能力.思路透析:由题,因为()p n B ,~ξ且ξ取不同值时事件互斥,所以,[][]n n n n n n n n n p p q p q q p C q p C q p C P P P P )21(121)()(21)4()2()0(44422200-+=-++=+++=+=+=+==-- ξξξ(因为1=+q p ,所以p p q 21-=-)点评:本题获解的切入点是二项展开式中的偶数次的和.这需要抓住np q )(+与n p q )(-展开式的特点:联系与区分,从而达到去除p 奇次,留下p 偶次的目的.例2.某车间有5台机床,每台机床所附电动机功率均为10kW ,每台机床是否工作是独立的,且工作的概率均为15.若供电部门只能提供30kW 的电力给该车间,试问是否会对该车间的正常工作产生较大影响?思路透析:用ξ表示开动机床的台数,如果开动4台或4台以上的机床,则用电超过30kW ,不能正常工作.所以事件(ξ≥4)表示该车间不能正常工作.由于每台机床工作的概率均为15,各台机床工作与否又彼此独立,所以ξ服从二项分布:ξ~()B 515,.ξ的分布列如表不能正常工作的概率为:P P P ()()()ξξξ≥==+=445445555141()()()555C C =+210.006723125=≈ 若按一天8小时工作时间计算,不能正常工作的时间为0006728603.⨯⨯≈分钟,对生产几乎没有影响.点评:本题考查二项分布解决实际问题的能力,属综合题.像本例中,事件()ξ≥4发生的概率(0.00672)很小,一般称这样的事件(指概率小于0.05)为小概率事件.由于小概率事件在一次试验中几乎不可能发生,因此通常可视小概率事件为不可能事件而忽略不计,如客机、客车在正常行进中发生重大灾难事故等.例 3.抛掷两个骰子,取其中一个的点数为点P 的横坐标,另一个点数为P 的纵坐标,求连续抛掷这两个骰子三次,点P 在圆2216x y +=内次数ξ的概率分布.命题立意:这是一道二项分布的计算与概率综合的问题,考查概率与解几的交汇,有利于学生分析问题能力的提高.思路透析:点P 的坐标可能有6636⨯=种情况,而符合题意的点只有下列8个:(1,1),(1,2),(2,1),(2,2),(3,1),(1,3),(2,3),(3,2).那么在抛掷骰子时,点P 在圆2216x y +=内的概率为82369=,由题意可知(3,)B p ξ ,所以003327343(0)()()99729P C ξ===,112327294(1)()()99729P C ξ===22132784(2)()()99729P C ξ===,3303278(3)()()99729P C ξ===可得ξ的分布列如下表:点评:先求出在一次试验中点P 在圆2216x y +=内的概率,然后结合题意知(3,)B p ξ ,这是解决问题的关键.例 4.一台仪器每启动一次都随机地出现一个5位的二进制数A 的各位数字中,11,(2,3,4,5)k a a k ==出现0的概率为13,出现1的概率为23.例如:A=10 001,其中151a a ==,2340a a a ===,记12345a a a a a ξ=++++.当启动一次仪器时:(Ⅰ)求3X =的概率 (Ⅱ)求X 的概率分布.思路透析(Ⅰ)3X =时,(2,3,4,5)k a k =中有2个1,2个0出现,所以2224218(3)()()3327P X C ==⨯⨯=.(Ⅱ)设3Y X =-,则2(4,)3Y B .所以4421(1)()()33kk k P Y X k C -=-==⨯⨯即4421(1)()()kk k P X k C -=+=⨯⨯,故X 的概率分布如表:点评:.二进制属信息技术的范畴,计算机技术已融入新课程之中,在概率与统计处命制交汇题,立意新颖,富有时代气息.【即时测评】学以致用,小试牛刀1. 一射手对同一目标独立地进行了四次射击,已知他至少命中一次的概率为6581,则四次射击中他命中三次的概率为( ) A.3281B. 1681C. 481D. 8812. 一台X 型号自动机床在一小时内不需要工人照看的概率为0.8000,有四台这中型号的自动机床各自独立工作,则在一小时内至多2台机床需要工人照看的概率是( ) A. 0.1808 B. 0.1708 C. 0.1608 D. 0.15083. 在四次独立重复试验中,随机事件A 恰好发生1次的概率不大于其恰好发生两次的概率,则事件A 在一次试验中发生的概率p 的取值范围是( )A. [0.4,1)B. [0.6,1)C. [0,0.6)D. [0.4,0.6) 4. 已知随机变量ξ服从二项分布1~(6,)3B ξ,则P (ξ=2) =( )A. 75243B. 60243C. 80243D. 85243 【课后作业】学练结合,融会贯通一、填空题:1. 某产品寿命超过1000小时的为一级品,如果此产品中一级品率为0.2,现从中任抽取5件,其中恰有两件一级品的概率为 .2. 袋中有5个球,用1,2,3,4,5编号,从中抽取3次,每次抽取一个且抽后放回,则3次中恰有两次抽得奇数编号的概率为 .3. 已知一组抛物线1212++=bx ax y ,其中a 为2,4,6,8中任取的一个数,b 为1,3,5,7中任取的一个数,从这些抛物线中任意抽取两条,它们在与直线x =1交点处的切线相互平行的概率是 .4. 设随机变量X 的概率分布列为()(1,2,,)P X k ak k n === ,则常数a = .5. 接种某疫苗后,出现发热反应的概率为0.80,现有5人接种了该疫苗,至少有3人出现发热反应的概率为 .(精确到0.01)6. 设随机变量(2,)X B p ,随机变量(3,)Y B p ,如果3(1),4P X ≥= 则(1)P X ≥=二、解答题:7. 某地区为下岗人员免费提供财会和计算机培训,以提高下岗人员的再就业能力,每名下岗人员可以选择参加一项培训、参加两项培训或不参加培训,已知参加过财会培训的有60%,参加过计算机培训的有75%,假设每个人对培训项目的选择是相互独立的,且各人的选择相互之间没有影响.(I )任选1名下岗人员,求该人参加过培训的概率;(II )任选3名下岗人员,记ξ为3人中参加过培训的人数,求ξ的分布列.8.下面玩掷骰子放球游戏,若掷出1点,甲盒中放一球,若掷出2点或3 点,乙盒中放一球,若掷出4点、5点或6点,丙盒中放一球,设掷n 次后,甲、乙、丙各盒内的球数分别为z y x ,,.(Ⅰ)n =3时,求z y x ,,成等差数列的概率; (Ⅱ)当n =6时,求z y x ,,成等比数列的概率.第64课时 二项分布及其应用参考答案【小题热身】1. 802432. 1(1)n p --3. 0.9477【即时测评】1. D2. A3. A4. C【课后作业】一、填空题:1. 0.020482. 0.4323. 6074. 2(1)n n + 5. 0.94 6. 78 二、解答题:7.解析:任选1名下岗人员,记“该人参加过财会培训”为事件A ,“该人参加过计算机培训”为事件B ,由题设知,事件A 与B 相互独立,且()0.6P A =,()0.75P B =. (I )解法一:任选1名下岗人员,该人没有参加过培训的概率是1()()()0.40.250.1P P A B P A P B ===⨯=所以该人参加过培训的概率是21110.10.9P P =-=-=. 解法二:任选1名下岗人员,该人只参加过一项培训的概率是3()()0.60.250.40.750.45P P A B P A B =+=⨯+⨯=该人参加过两项培训的概率是4()0.60.750.45P P A B ==⨯= . 所以该人参加过培训的概率是5340.450.450.9P P P =+=+=.(II )因为每个人的选择是相互独立的,所以3人中参加过培训的人数ξ服从二项分布(30.9)B ,,33()0.90.1kk k P k C ξ-==⨯⨯,0123k =,,,,即ξ的分布列是8.解析:(Ⅰ)∵z x y z y x +==++2,3①⎪⎩⎪⎨⎧===210z y x ②⎪⎩⎪⎨⎧===111z y x ③⎪⎩⎪⎨⎧===012z y x ①表示:掷3次,1次出现2点或3点,2次出现4点,5点或6点,共13C 种情况,故2,1,0===z y x 的概率为41)21(·)31()61(3210=②1===z y x 的概率为6121·31·61·6=③0,1,2===z y x 的概率为 361)21()31()61(3012=故n =3时,x 、y 、z 成等差数列,概率为943616141=++ (Ⅱ)n=6时,x 、y 、z 成等比数列. ∴2===z y x 所求概率为725)21()31()61(222224226=C C C .。

高考数学一轮复习 二项分布及其应用

高考数学一轮复习   二项分布及其应用

第7节二项分布及其应用最新考纲了解n次独立重复试验的模型及二项分布.知识梳理1.事件的相互独立性(1)定义:设A,B为两个事件,如果P(AB)=P(A)P(B),则称事件A 与事件B相互独立.(2)性质:若事件A与B相互独立,则A与B,A与B,A与B也都相互独立,P(B|A)=P(B),P(A|B)=P(A).2.独立重复试验与二项分布(1)独立重复试验在相同条件下重复做的n次试验称为n次独立重复试验,其中A i(i=1,2,…,n)是第i次试验结果,则P(A1A2A3…A n)=P(A1)P(A2)P(A3)…P(A n).(2)二项分布在n次独立重复试验中,用X表示事件A发生的次数,设每次试验中事件A发生的概率为p,则P(X=k)=C k n p k(1-p)n-k(k=0,1,2,…,n),此时称随机变量X服从二项分布,记作X~B(n,p),并称p为成功概率.[常用结论与微点提醒]1.相互独立事件与互斥事件的区别相互独立事件是指两个事件发生的概率互不影响,计算公式为P(AB)=P(A)P(B).互斥事件是指在同一试验中,两个事件不会同时发生,计算公式为P(A∪B)=P(A)+P(B).2.(1)判断一个随机变量是否服从二项分布,关键有二:其一是独立性,即一次试验中,事件发生与不发生二者必居其一;其二是重复性,即试验是独立重复地进行了n次.(2)二项分布与超几何分布的联系与区别.有放回抽取问题对应二项分布,不放回抽取问题对应超几何分布,当总体数量很大时,超几何分布可近似为二项分布来处理.诊 断 自 测1.思考辨析(在括号内打“√”或“×”)(1)若事件A ,B 相互独立,则P (B |A )=P (B ).( )(2)P (AB )表示事件A ,B 同时发生的概率,一定有P (AB )=P (A )·P (B ).( )(3)二项分布是一个概率分布列,是一个用公式P (X =k )=C k n p k (1-p )n -k ,k =0,1,2,…,n 表示的概率分布列,它表示了n 次独立重复试验中事件A 发生的次数的概率分布.( )解析 对于(2),若A ,B 独立,则P (AB )=P (A )·P (B ),若A ,B 不独立,则P (AB )=P (A )·P (B |A ),故(2)不正确. 答案 (1)√ (2)× (3)√2.设随机变量X ~B ⎝ ⎛⎭⎪⎫6,12,则P (X =3)等于( )A.516B.316C.58D.38解析 X ~B ⎝ ⎛⎭⎪⎫6,12,由二项分布可得, P (X =3)=C 36⎝ ⎛⎭⎪⎫123·⎝ ⎛⎭⎪⎫1-123=516. 答案 A3.两个实习生每人加工一个零件,加工为一等品的概率分别为23和34,两个零件是否加工为一等品相互独立,则这两个零件中恰有一个一等品的概率为( ) A.12B.512C.14D.16解析 设事件A :甲实习生加工的零件为一等品;事件B :乙实习生加工的零件为一等品,且A ,B 相互独立,则P (A )=23,P (B )=34,所以这两个零件中恰有一个一等品的概率为P (AB -)+P (A -B )=P (A )P (B -)+P (A -)P (B )=23×⎝ ⎛⎭⎪⎫1-34+⎝ ⎛⎭⎪⎫1-23×34=512.答案 B4.连续掷一个质地均匀的骰子3次,各次互不影响,则恰好有一次出现1点的概率为 .解析 掷一次骰子出现1点的概率为P =16,所以所求概率为P =C 13·16·⎝ ⎛⎭⎪⎫562=2572. 答案 25725.(2018·嘉兴测试)天气预报,端午节假期甲、乙、丙三地降雨的概率分别是0.9,0.8,0.75,若甲、乙、丙三地是否降雨相互之间没有影响,则其中至少一个地方降雨的概率为 .解析 ∵甲、乙、丙三地降雨的概率分别是0.9,0.8,0.75, ∴甲、乙、丙三地不降雨的概率分别是0.1,0.2,0.25, 甲、乙、丙三地都不降雨的概率是0.1×0.2×0.25=0.005, 故至少一个地方降雨的概率为1-0.005=0.995. 答案 0.995考点一 相互独立事件的概率【例1】 (2017·天津卷)从甲地到乙地要经过3个十字路口,设各路口信号灯工作相互独立,且在各路口遇到红灯的概率分别为12,13,14.(1)记X 表示一辆车从甲地到乙地遇到红灯的个数,求随机变量X 的分布列和数学期望;(2)若有2辆车独立地从甲地到乙地,求这2辆车共遇到1个红灯的概率. 解 (1)随机变量X 的所有可能取值为0,1,2,3,P (X =0)=⎝ ⎛⎭⎪⎫1-12×⎝ ⎛⎭⎪⎫1-13×⎝ ⎛⎭⎪⎫1-14=14,P (X =1)=12×⎝ ⎛⎭⎪⎫1-13×⎝ ⎛⎭⎪⎫1-14+⎝ ⎛⎭⎪⎫1-12×13×⎝ ⎛⎭⎪⎫1-14+⎝ ⎛⎭⎪⎫1-12×⎝ ⎛⎭⎪⎫1-13×14=1124,P (X =2)=⎝ ⎛⎭⎪⎫1-12×13×14+12×⎝ ⎛⎭⎪⎫1-13×14+12×13×⎝ ⎛⎭⎪⎫1-14=14,P (X =3)=12×13×14=124. 所以,随机变量X 的分布列为随机变量X 的数学期望E (X )=0×14+1×1124+2×14+3×124=1312.(2)设Y 表示第一辆车遇到红灯的个数,Z 表示第二辆车遇到红灯的个数,则所求事件的概率为P (Y +Z =1)=P (Y =0,Z =1)+P (Y =1,Z =0) =P (Y =0)P (Z =1)+P (Y =1)P (Z =0) =14×1124+1124×14=1148.所以,这2辆车共遇到1个红灯的概率为1148.规律方法 (1)求解该类问题在于正确分析所求事件的构成,将其转化为彼此互斥事件的和或相互独立事件的积,然后利用相关公式进行计算. (2)求相互独立事件同时发生的概率的主要方法 ①利用相互独立事件的概率乘法公式直接求解.②正面计算较繁(如求用“至少”表述的事件的概率)或难以入手时,可从其对立事件入手计算.【训练1】 某社区举办《“环保我参与”有奖问答比赛》活动.某场比赛中,甲、乙、丙三个家庭同时回答一道有关环保知识的问题,已知甲家庭回答对这道题的概率是34,甲、丙两个家庭都回答错的概率是112,乙、丙两个家庭都回答对的概率是14.若各家庭回答是否正确互不影响.(1)求乙、丙两个家庭各自回答对这道题的概率;(2)求甲、乙、丙三个家庭中不少于2个家庭回答对这道题的概率.解 (1)记“甲答对这道题”、“乙答对这道题”、“丙答对这道题”分别为事件A ,B ,C ,则P (A )=34,且有 ⎩⎪⎨⎪⎧P (A -)·P (C -)=112,P (B )·P (C )=14,即⎩⎪⎨⎪⎧[1-P (A )]·[1-P (C )]=112,P (B )·P (C )=14,所以P (B )=38,P (C )=23. (2)有0个家庭回答对的概率为P 0=P (A -B -C -)=P (A -)·P (B -)·P (C -)=14×58×13=596,有1个家庭回答对的概率为P 1=P (AB -C -+A -BC -+A -B -C )=34×58×13+14×38×13+14×58×23=724,所以不少于2个家庭回答对这道题的概率为P =1-P 0-P 1=1-596-724=2132. 考点二 独立重复试验与二项分布【例2】 一款击鼓小游戏的规则如下:每盘游戏都需击鼓三次,每次击鼓要么出现一次音乐,要么不出现音乐;每盘游戏击鼓三次后,出现一次音乐获得10分,出现两次音乐获得20分,出现三次音乐获得100分,没有出现音乐则扣除200分(即获得-200分).设每次击鼓出现音乐的概率为12,且各次击鼓出现音乐相互独立.(1)设每盘游戏获得的分数为X ,求X 的分布列; (2)玩三盘游戏,至少有一盘出现音乐的概率.解 (1)设“每盘游戏中击鼓三次后,出现音乐的次数为ξ”.依题意,ξ的取值可能为0,1,2,3,且ξ~B ⎝ ⎛⎭⎪⎫3,12,则P (ξ=k )=C k 3⎝ ⎛⎭⎪⎫123-k ⎝ ⎛⎭⎪⎫12k =C k 3·⎝ ⎛⎭⎪⎫123. 又每盘游戏得分X 的取值为10,20,100,-200.根据题意 则P (X =10)=P (ξ=1)=C 13⎝ ⎛⎭⎪⎫123=38,P (X =20)=P (ξ=2)=C 23⎝ ⎛⎭⎪⎫123=38, P (X =100)=P (ξ=3)=C 33⎝ ⎛⎭⎪⎫123=18,P (X =-200)=P (ξ=0)=C 03⎝ ⎛⎭⎪⎫123=18.所以X 的分布列为(2)设“第i 盘游戏没有出现音乐”为事件A i (i =1,2,3), 则P (A 1)=P (A 2)=P (A 3)=P (X =-200)=18. 所以,“三盘游戏中至少有一次出现音乐”的概率为 1-P (A 1A 2A 3)=1-⎝ ⎛⎭⎪⎫183=1-1512=511512.因此,玩三盘游戏至少有一盘出现音乐的概率是511512.规律方法 利用独立重复试验概率公式可以简化求概率的过程,但需要注意检查该概率模型是否满足公式P (X =k )=C k n p k (1-p )n -k 的三个条件:(1)在一次试验中某事件A 发生的概率是一个常数p ;(2)n 次试验不仅是在完全相同的情况下进行的重复试验,而且各次试验的结果是相互独立的;(3)该公式表示n 次试验中事件A 恰好发生了k 次的概率.【训练2】 某商场举行有奖促销活动,顾客购买一定金额的商品后即可抽奖,每次抽奖都是从装有4个红球、6个白球的甲箱和装有5个红球、5个白球的乙箱中,各随机摸出1个球,在摸出的2个球中,若都是红球,则获一等奖;若只有1个红球,则获二等奖;若没有红球,则不获奖. (1)求顾客抽奖1次能获奖的概率;(2)若某顾客有3次抽奖机会,记该顾客在3次抽奖中获一等奖的次数为X ,求X 的分布列.解 (1)记事件A 1为“从甲箱中摸出的1个球是红球”, A 2为“从乙箱中摸出的1个球是红球”, B 为“顾客抽奖1次能获奖”, 则B 表示“顾客抽奖1次没有获奖”.由题意A 1与A 2相互独立,则1A 与2A 相互独立,且B =1A ·2A ,因为P (A 1)=410=25,P (A 2)=510=12,所以P (B )=P (1A ·2A )=⎝ ⎛⎭⎪⎫1-25·⎝ ⎛⎭⎪⎫1-12=310, 故所求事件的概率P (B )=1-P (B )=1-310=710. (2)设“顾客抽奖一次获得一等奖”为事件C , 由P (C )=P (A 1·A 2) =P (A 1)·P (A 2)=15, 顾客抽奖3次可视为3次独立重复试验,则X ~B ⎝ ⎛⎭⎪⎫3,15, 于是P (X =0)=C 03⎝ ⎛⎭⎪⎫150⎝ ⎛⎭⎪⎫453=64125, P (X =1)=C 13⎝ ⎛⎭⎪⎫151⎝ ⎛⎭⎪⎫452=48125, P (X =2)=C 23⎝ ⎛⎭⎪⎫152⎝ ⎛⎭⎪⎫451=12125, P (X =3)=C 33⎝ ⎛⎭⎪⎫153⎝ ⎛⎭⎪⎫450=1125. 故X 的分布列为基础巩固题组一、选择题1.(2018·金华调研)打靶时,甲每打10次可中靶8次,乙每打10次可中靶7次,若两人同时射击一个目标,则他们同时中靶的概率是( ) A.1425B.1225C.34D.35解析 因为甲每打10次可中靶8次,乙每打10次可中靶7次,所以P (甲)=45,P (乙)=710,所以他们都中靶的概率是45×710=1425. 答案 A2.先后抛掷硬币三次,则至少一次正面朝上的概率是( ) A.18B.38C.58D.78解析 三次均反面朝上的概率是⎝ ⎛⎭⎪⎫123=18,所以至少一次正面朝上的概率是1-18=78. 答案 D3.某居民小区有两个相互独立的安全防范系统A 和B ,系统A 和系统B 在任意时刻发生故障的概率分别为18和p ,若在任意时刻恰有一个系统不发生故障的概率为940,则p =( ) A.110 B.215 C.16 D.15解析 由题意得18(1-p )+⎝ ⎛⎭⎪⎫1-18p =940,∴p =215,故选B.答案 B4.甲射击命中目标的概率是12,乙命中目标的概率是13,丙命中目标的概率是14.现在三人同时射击目标,则目标被击中的概率为( ) A.34B.23C.45D.710解析 设甲命中目标为事件A ,乙命中目标为事件B ,丙命中目标为事件C ,则击中目标表示事件A ,B ,C 中至少有一个发生.又P (A ·B ·C )=P (A )·P (B )· P (C )=[1-P (A )]·[1-P (B )]·[1-P (C )]=⎝ ⎛⎭⎪⎫1-12×⎝ ⎛⎭⎪⎫1-13×⎝ ⎛⎭⎪⎫1-14=14.∴目标被击中的概率P =1-P (A ·B ·C )=34. 答案 A5.(2017·丽水市调研)一袋中有5个白球、3个红球,现从袋中往外取球,每次任取一个记下颜色后放回,直到红球出现10次时停止,设停止时共取了X 次球,则P (X =12)等于( )A.C 1012⎝ ⎛⎭⎪⎫3810⎝ ⎛⎭⎪⎫582B.C 912⎝ ⎛⎭⎪⎫389⎝ ⎛⎭⎪⎫58238C.C 911⎝ ⎛⎭⎪⎫582⎝ ⎛⎭⎪⎫382D.C 911⎝ ⎛⎭⎪⎫3810⎝ ⎛⎭⎪⎫582解析 由题意知第12次取到红球,前11次中恰有9次红球2次白球,由于每次取到红球的概率为38,所以P (X =12)=C 911⎝ ⎛⎭⎪⎫389×⎝ ⎛⎭⎪⎫582×38. 答案 D 二、填空题6.设随机变量X ~B (2,p ),随机变量Y ~B (3,p ),若P (X ≥1)=59,则P (Y ≥1)= .解析 ∵X ~B (2,p ),∴P (X ≥1)=1-P (X =0)=1-C 02(1-p )2=59,解得p =13.又Y ~B (3,p ),∴P (Y ≥1)=1-P (Y =0)=1-C 03(1-p )3=1927. 答案 19277.(2018·台州调考)某大厦的一部电梯从底层出发后只能在第18,19,20层停靠.若该电梯在底层有5个乘客,且每位乘客在这三层的每一层下电梯的概率均为13,用X 表示这5位乘客在第20层下电梯的人数,则P (X =4)= . 解析 考察一位乘客是否在第20层下电梯为一次试验,这是5次独立重复试验,故X ~B ⎝ ⎛⎭⎪⎫5,13,即有P (X =k )=C k 5⎝ ⎛⎭⎪⎫13k ×⎝ ⎛⎭⎪⎫235-k,k =0,1,2,3,4,5. 故P (X =4)=C 45⎝ ⎛⎭⎪⎫134×⎝ ⎛⎭⎪⎫231=10243. 答案 102438.(2018·温州月考)某小区物业加强对员工服务宗旨教育,服务意识和服务水平不断提高,某服务班组经常收到表扬电话和表扬信.设该班组一周内收到表扬电话和表扬信的次数用X 表示,据统计,随机变量X 的概率分布如下:(1)a 的值为 ;(2)假设某月第一周和第二周收到表扬电话和表扬信的次数互不影响,则该班组在这两周内共收到表扬电话和表扬信2次的概率为 . 解析 (1)由随机变量X 的概率分布列性质得: 0.1+0.3+2a +a =1, 解得a =0.2.(2)该班组在这两周内共收到表扬电话和表扬信2次的概率: P =0.1×0.4+0.4×0.1+0.3×0.3=0.17. 答案 (1)0.2 (2)0.17 三、解答题9.一名学生每天骑车上学,从他家到学校的途中有6个交通岗,假设他在各个交通岗遇到红灯的事件是相互独立的,并且概率都是13.(1)设X 为这名学生在途中遇到红灯的次数,求X 的分布列(只列算式,不必计算结果);(2)设Y 为这名学生在首次停车前经过的路口数,求Y 的分布列(只列算式,不必计算结果);(3)求这名学生在途中至少遇到一次红灯的概率.解 (1)将通过每个交通岗看作一次试验,遇到红灯的概率为13,且每次试验结果是相互独立的, 故X ~B ⎝ ⎛⎭⎪⎫6,13.∴P (X =k )=C k 6⎝ ⎛⎭⎪⎫13k⎝ ⎛⎭⎪⎫236-k,k =0,1,2,3,4,5,6.∴X 的分布列为(2)由于Y 表示这名学生在首次停车时经过的路口数,显然Y 是随机变量,其取值为0,1,2,3,4,5,6.其中{Y =k }(k =0,1,2,3,4,5)表示前k 个路口没有遇上红灯,但在第k +1个路口遇上红灯,故各概率应按独立事件同时发生计算. P (Y =k )=⎝ ⎛⎭⎪⎫23k·13(k =0,1,2,3,4,5).而{Y =6}表示一路没有遇上红灯, 故其概率为P (Y =6)=⎝ ⎛⎭⎪⎫236.因此Y 的分布列为: (3)这名学生在途中至少遇到一次红灯的事件为(X ≥1)={X =1或X =2或…或X =6},所以其概率为P (X ≥1)=∑k =16P (X =k )=1-P (X =0)=1-⎝ ⎛⎭⎪⎫236=665729. 10.挑选空军飞行员可以说是“万里挑一”,要想通过需要五关:目测、初检、复检、文考(文化考试)、政审.若某校甲、乙、丙三位同学都顺利通过了前两关,根据分析甲、乙、丙三位同学通过复检关的概率分别是0.5,0.6,0.75,能通过文考关的概率分别是0.6,0.5,0.4,由于他们平时表现较好,都能通过政审关,若后三关之间通过与否没有影响.(1)求甲、乙、丙三位同学中恰好有一人通过复检的概率; (2)设只要通过后三关就可以被录取,求录取人数X 的分布列.解 (1)设A ,B ,C 分别表示事件“甲、乙、丙通过复检”,则所求概率P =P (AB -C -)+P (A -BC -)+P (A -B -C )=0.5×(1-0.6)×(1-0.75)+(1-0.5)×0.6×(1-0.75)+(1-0.5)×(1-0.6)×0.75=0.275.(2)甲被录取的概率为P 甲=0.5×0.6=0.3,同理P 乙=0.6×0.5=0.3,P 丙=0.75×0.4=0.3.∴甲、乙、丙每位同学被录取的概率均为0.3,故可看成是独立重复试验,即X ~B (3,0.3),X 可能取值为0,1,2,3,其中P (X =k )=C k 3(0.3)k ·(1-0.3)3-k.故P (X =0)=C 03×0.30×(1-0.3)3=0.343, P (X =1)=C 13×0.3×(1-0.3)2=0.441, P (X =2)=C 23×0.32×(1-0.3)=0.189, P (X =3)=C 33×0.33=0.027,故X 的分布列为能力提升题组11.(2018·绍兴测试)排球比赛的规则是5局3胜制(无平局),甲在每局比赛获胜的概率都为23,前2局中乙队以2∶0领先,则最后乙队获胜的概率是( ) A.49 B.827 C.1927 D.4081解析 乙队3∶0获胜的概率为13,乙队3∶1获胜的概率为23×13=29,乙队3∶2获胜的概率为⎝ ⎛⎭⎪⎫232×13=427.∴最后乙队获胜的概率为P =13+29+427=1927,故选C.答案 C12.某一部件由三个电子元件按如图所示方式连接而成,元件1或元件2正常工作,且元件3正常工作,则部件正常工作.设三个电子元件的使用寿命(单位:小时)均服从正态分布N (1 000,502),且各个元件能否正常工作相互独立,那么该部件的使用寿命超过1 000小时的概率为 W.解析 设元件1,2,3的使用寿命超过1 000小时的事件分别记为A ,B ,C ,显然P (A )=P (B )=P (C )=12,∴该部件的使用寿命超过1 000小时的事件为(AB +AB +AB )C ,∴该部件的使用寿命超过1 000小时的概率 P =⎝ ⎛⎭⎪⎫12×12+12×12+12×12×12=38.答案 3813.口袋中装有2个白球和n (n ≥2,n ∈N *)个红球,每次从袋中摸出2个球(每次摸球后把这2个球放回口袋中),若摸出的2个球颜色相同则为中奖,否则为不中奖.(1)用含n 的代数式表示1次摸球中奖的概率; (2)若n =3,求3次摸球中恰有1次中奖的概率;(3)记3次摸球中恰有1次中奖的概率为f (p ),当f (p )取得最大值时,求n 的值.解 (1)设“1次摸球中奖”为事件A ,则P (A )=C 22+C 2nC 2n +2=n 2-n +2n 2+3n +2.(2)由(1)得若n =3,则1次摸球中奖的概率为p =25, ∴3次摸球中,恰有1次中奖的概率为P 3(1)=C 13p(1-p )2=3×25×⎝ ⎛⎭⎪⎫352=54125.(3)设“1次摸球中奖”的概率为p ,则3次摸球中,恰有1次中奖的概率为:f (p )=C 13p (1-p )2=3p 3-6p 2+3p (0<p <1),∵f ′(p )=9p 2-12p +3=3(p -1)(3p -1), ∴f (p )在⎝ ⎛⎭⎪⎫0,13上是增函数,在⎝ ⎛⎭⎪⎫13,1上是减函数,∴当p =13时,f (p )取得最大值.∴p =n 2-n +2n 2+3n +2=13,解得n =2或n =1(舍),∴当f (p )取得最大值时,n 的值为2.故n =2时,三次摸球中恰有一次中奖的概率最大.14.(2016·山东卷节选)甲、乙两人组成“星队”参加猜成语活动,每轮活动由甲、乙各猜一个成语,在一轮活动中,如果两人都猜对,则“星对”得3分;如果只有一人猜对,则“星对”得1分;如果两人都没猜对,则“星对”得0分.已知甲每轮猜对的概率是34,乙每轮猜对的概率是23;每轮活动中甲、乙猜对与否互不影响,各轮结果亦互不影响.假设“星队”参加两轮活动,求: (1)“星队”至少猜对3个成语的概率; (2)“星队”两轮得分之和X 的分布列.解 (1)记事件A :“甲第一轮猜对”,记事件B :“乙第一轮猜对”, 记事件C :“甲第二轮猜对”,记事件D :“乙第二轮猜对”, 记事件E :“‘星队’至少猜对3个成语”.由题意,E =ABCD +A -BCD +AB -CD +ABC -D +ABCD -.由事件的独立性与互斥性,得P (E )=P (ABCD )+P (A -BCD )+P (AB -CD )+P (ABC -D )+P (ABCD -)=P (A )P (B )P (C )P (D )+P (A -)P (B )P (C )P (D )+P (A )P (B -)P (C )P (D )+P (A )P (B )P (C -)P (D )+P (A )P (B )P (C )P (D -)=34×23×34×23+2×⎝ ⎛⎭⎪⎫14×23×34×23+34×13×34×23=23.所以“星队”至少猜对3个成语的概率为23.(2)由题意,随机变量X 可能的取值为0,1,2,3,4,6. 由事件的独立性与互斥性,得 P (X =0)=14×13×14×13=1144,P (X =1)=2×⎝ ⎛⎭⎪⎫34×13×14×13+14×23×14×13=10144=572,P (X =2)=34×13×34×13+34×13×14×23+14×23×34×13+14×23×14×23=25144,P (X =3)=34×23×14×13+14×13×34×23=12144=112,P (X =4)=2×⎝ ⎛⎭⎪⎫34×23×34×13+34×23×14×23=60144=512,P (X =6)=34×23×34×23=36144=14. 可得随机变量X 的分布列为。

高考数学一轮总复习 11.5 二项分布及其应用精品课件 理 新人教版

高考数学一轮总复习 11.5 二项分布及其应用精品课件 理 新人教版

A.18
B.14
C.25
D.12
∵P(A)=C22C+52C
2 3
=2,
5
P(AB)=CC2252
=1,
10
B ∴P(B|A)=������(������������)=1.
������(������) 4
考点一 考点二 考点三
关闭 关闭
解析 答案
探究突破
-14-
方法提炼
条件概率的求法: (1)利用定义,分别求 P(A)和 P(AB),得 P(B|A)=���������(���(���������������)���).这是通用的求条件 概率的方法.
pk(1-p)n-k .因此 n 次独立重复试验中事件 A 恰好发生 k 次的概率为
C������������ pk(1-p)n-k.
梳理自测
-6-
想一想甲、乙、丙三人分别射击同一个目标,都是“中”与“不 中”两种结果,是三次独立重复试验吗?
答案:不是,因为甲、乙、丙三人击中的概率不一定相同,只是独 立事件,但不符合独立重复试验的要求.
相互独立.
梳理自测
-4-
想一想 P(B|A)与 P(AB)有何区别?
答案:P(B|A)的值是 AB 发生相对于事件 A 发生的概率的大小;而 P(AB)是 AB 发生相对于原来的全体基本事件而言,一般 P(B|A)≠P(AB).
梳理自测
-5-
3.独立重复试验与二项分布 一般地,在 n 次独立重复试验中,设事件 A 发生的次数为 X,在每次试验 中事件 A 发生的概率是 p,那么在 n 次独立重复试验中,事件 A 恰好发生 k
为在事件 A 发
生的条件下事件 B 发生的条件概率.如果 B 和 C 是两个互斥事件,则 P(B∪

高考数学知识点之二项分布

高考数学知识点之二项分布

高考数学学问点之二项分布高考数学学问点之二项分布二项分布是概率分布的一种,与独立重复试验亲密相关,下面给大家介绍高考数学学问点之二项分布,抓紧来看看吧!高考数学学问点之二项分布二项分布:一般地,在n次独立重复的试验中,用X表示事务A 发生的次数,设每次试验中事务A发生的概率为p,则,k=0,1,2,…n,此时称随机变量X听从二项分布,记作X~B(n,p),并记。

独立重复试验:(1)独立重复试验的意义:做n次试验,假如它们是完全同样的一个试验的重复,且它们相互独立,那么这类试验叫做独立重复试验.(2)一般地,在n次独立重复试验中,设事务A发生的次数为X,在每件试验中事务A发生的概率为p,那么在n次独立重复试验中,高考数学,事务A恰好发生k次的概率为此时称随机变量X听从二项分布,记作并称p为胜利概率.(3)独立重复试验:若n次重复试验中,每次试验结果的概率都不依靠于其他各次试验的结果,则称这n次试验是独立的.(4)独立重复试验概率公式的特点:是n次独立重复试验中某事务A恰好发生k次的概率.其中,n是重复试验的次数,p是一次试验中某事务A发生的概率,k是在n次独立重复试验中事务A恰好发生的次数,须要弄清公式中n,p,k的.意义,才能正确运用公式.二项分布的推断与应用:(1)二项分布,实际是对n次独立重复试验从概率分布的角度作出的阐述,推断二项分布,关键是看某一事务是否是进行n次独立重复试验,且每次试验只有两种结果,假如不满意这两个条件,随机变量就不听从二项分布.(2)当随机变量的总体很大且抽取的样本容量相对于总体来说又比较小,而每次抽取时又只有两种试验结果时,我们可以把它看作独立重复试验,利用二项分布求其分布列.求独立重复试验的概率:(1)在n次独立重复试验中,“在相同条件下”等价于各次试验的结果不会受其他试验的影响,即2,…,n)是第i次试验的结果.(2)独立重复试验是相互独立事务的特例,只要有“恰好”“恰有”字样的用独立重复试验的概率公式计算更简洁,要弄清n,p,k的意义。

高考数学一轮复习二项分布、超几何分布与正态分布

高考数学一轮复习二项分布、超几何分布与正态分布
果随机变量X的分布列具有上式的形式,那么称随机变量X服从超几何
分布.
4.正态分布
(1)正态曲线
1
函数f(x)=
e
σ 2π
(x−μ)2

2σ2
,x∈R,其中μ∈R,σ>0为参数,我们称f(x)
为正态密度函数,称它的图象为正态分布密度曲线,简称正态曲
线.特别地,当μ=0,σ=1时,相应曲线称为标准正态曲线.
事件发生的概率相同;②各次试验中的事件是相互独立的;③在每一
次试验中,试验的结果只有两个,即发生与不发生.
(2)在求n重伯努利试验中事件恰好发生k次的概率时,首先要确定好
n和k的值,再准确利用公式求概率.
巩固训练1
2
[2023·河南洛阳模拟]已知某植物种子每粒成功发芽的概率都为 ,某
3
植物研究所分两个小组分别独立进行该种子的发芽试验,每次试验种
第六节
二项分布、超几何分布与正态分布
必备知识·夯实双基
关键能力·题型突破
【课标标准】
1.了解伯努利试验,掌握二项分布及其数字特征,并能解决简单的
实际问题.
2.了解超几何分布及其均值,并能解决简单的实际问题.
3.了解服从正态分布的随机变量,了解正态分布的均值、方差及其
含义.
必备知识·夯实双基
知识梳理
一粒种子,每次试验结果相互独立.如果某次试验种子发芽,则称该
次试验是成功的;如果种子没有发芽,则称该次试验是失败的.
(1)第一小组做了四次试验,求该小组恰有两次成功的概率;
(2)第二小组做了四次试验,设试验成功与失败的次数的差的绝对值
为X,求X的分布列及数学期望.
题型二 超几何分布
例 2 [2023·广东广州模拟]近年来,某市为促进生活垃圾分类处理,

【高中数学】二项分布及其应用

【高中数学】二项分布及其应用

2 0.0025
四、几何分布 1. 定义: 在独立重复试验中,某事件 A 第一次发生时所作的试验次数 ξ 也是一个取值为正整数的随机变量。“ξ =k”表示在第 k
次独立重复试验时事件 A 第一次发生。如果把第 k 次实验时事件 A 发生记为 Ak,p( Ak)=p,事件 A 不发生记为 Ak ,
P( Ak )=q (q=1-p),那么:
P( k) Cnk pk qnk (其中 k=0,1, ... ,n,q=1-p )
于是可得随机变量 ξ 的概率分布如下:
(ab) C a C a b C a b C b 由于 Cnk pk qnk 恰好是二项展开式
n
0 n
n
1 n1 1
n
r nr r
n
nn
n 中的第 k+1 项,
所以,称这样的随机变量 ξ 服从二项分布,记作 ξ~B(n,p),其中 n,p 为参数,并记:
下概率不变,则为相互独立. (2)互斥事件是指不可能同时发生的两个事件. 相互独立事件是指一事件的发生与否对另一事件发生的概率没影响. (3)如果 A、B 是相互独立事件,则 A 的补集与 B 的补集、A 与 B 的补集、A 的补集与 B 也都相互独立.
2. 相互独立事件同时发生的概率公式
两个相互独立事件同时发生的概率,等于每个事件发生的概率的积。则有: P( A • B) P( A) • P(B)
第2页
Cnk pk qnk B(k; n, p)
4. 解题步骤 例 3. 某厂生产电子元件,其产品的次品率为 5%。现从一批产品中任意地连续取出 2 件,写出其中次品数 ξ 的概率 分布。 解:依题意,随机变量 ξ~B(2,5%)
因此,次品数 ξ 的概率分布是: ξ p
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第6讲二项分布及其应用最新考纲考向预测1.结合古典概型,了解条件概率,能计算简单随机事件的条件概率,了解条件概率与独立性的关系.2.通过具体实例,了解伯努利试验,掌握二项分布及其数字特征,并能解决简单的实际问题.命题趋势条件概率、相互独立事件同时发生的概率、独立重复事件、二项分布和正态分布仍是高考考查的热点,三种题型均有可能出现.核心素养数据分析、数学建模1.条件概率(1)定义设A,B为两个事件,且P(A)>0,称P(B|A)=P(AB)P(A)为在事件A发生的条件下,事件B发生的条件概率.(2)性质①条件概率具有一般概率的性质,即0≤P(B|A)≤1;②如果B,C是两个互斥事件,则P(B∪C|A)=P(B|A)+P(C|A).2.事件的相互独立性(1)定义设A,B为两个事件,如果P(AB)=P(A)P(B),则称事件A与事件B相互独立.(2)性质①若事件A与B相互独立,则P(B|A)=P(B),P(A|B)=P(A),P(AB)=P(A)P(B).②如果事件A与B相互独立,那么A与B,A与B,A与B也相互独立.3.独立重复试验与二项分布独立重复试验二项分布定义在相同条件下重复做的n在n次独立重复试验中,用X表示事件A次试验称为n次独立重复试验发生的次数,设每次试验中事件A发生的概率是p,此时称随机变量X服从二项分布,记作X~B(n,p),并称p为成功概率计算公式用A i(i=1,2,…,n)表示第i次试验结果,则P(A1A2A3…A n) =P(A1)P(A2)…P(A n)在n次独立重复试验中,事件A恰好发生k次的概率为P(X=k)=Ck n p k(1-p)n-k(k=0,1,2,…,n)常用结论1.相互独立事件与互斥事件的区别相互独立事件是指两个事件发生的概率互不影响,计算公式为P(AB)=P(A)P(B),互斥事件是指在同一试验中,两个事件不会同时发生,计算公式为P(A∪B)=P(A)+P(B).2.两个概率公式(1)在事件B发生的条件下A发生的概率为P(A|B)=P(AB)P(B).注意其与P(B|A)的不同.(2)若事件A1,A2,…,A n相互独立,则P(A1A2…A n)=P(A1)P(A2)…P(A n).常见误区运用公式P(AB)=P(A)P(B)时,一定要注意公式成立的条件,只有当事件A,B相互独立时,公式才成立.1.判断正误(正确的打“√”,错误的打“×”)(1)条件概率一定不等于它的非条件概率.()(2)相互独立事件就是互斥事件.()(3)对于任意两个事件,公式P(AB)=P(A)P(B)都成立.()(4)二项分布是一个概率分布,其公式相当于(a+b)n二项展开式的通项公式,其中a=p,b=1-p.()(5)P(B|A)表示在事件A发生的条件下,事件B发生的概率,P(AB)表示事件A,B 同时发生的概率.()答案:(1)× (2)× (3)× (4)× (5)√2.(易错题)天气预报,在元旦假期甲地降雨的概率是0.2,乙地降雨的概率是0.3.假设在这段时间内两地是否降雨相互之间没有影响,则这两地中恰有一个地方降雨的概率为( )A .0.2B .0.3C .0.38D .0.56解析:选C.设甲地降雨为事件A ,乙地降雨为事件B , 则两地恰有一地降雨为A B -+A -B , 所以P (A B -+A -B )=P (A B -)+P (A -B ) =P (A )P (B -)+P (A -)P (B ) =0.2×0.7+0.8×0.3 =0.38.3.先后掷一枚质地均匀的骰子(骰子的六个面上分别标有1,2,3,4,5,6个点)两次,落在水平桌面后,记正面朝上的点数分别为x ,y ,设事件A 为“x +y 为偶数”,事件B 为“x ,y 中有偶数,且x ≠y ”,则概率P (B |A )=( )A.13B.14C.15D.16解析:选A.因为P (A )=2×3×336=12,P (AB )=3×236=16,所以P (B |A )=1612=13.4.设随机变量X ~B ⎝⎛⎭⎪⎫6,12,则P (X =3)=________.解析:因为X ~B ⎝ ⎛⎭⎪⎫6,12,所以P (X =3)=C36⎝ ⎛⎭⎪⎫123×⎝ ⎛⎭⎪⎫1-123=516. 答案:5165.(2020·高考天津卷)已知甲、乙两球落入盒子的概率分别为12和13.假定两球是否落入盒子互不影响,则甲、乙两球都落入盒子的概率为________;甲、乙两球至少有一个落入盒子的概率为________.解析:依题意得,甲、乙两球都落入盒子的概率为12×13=16,甲、乙两球都不落入盒子的概率为(1-12)×(1-13)=13,则甲、乙两球至少有一个落入盒子的概率为1-13=23.答案:16 23条件概率(1)某道数学试题含有两问,当第一问正确做对时,才能做第二问,为了解该题的难度,调查了100名学生的做题情况,做对第一问的学生有80人,既做对第一问又做对第二问的学生有72人,以做对试题的频率近似作为做对试题的概率,已知某个学生已经做对第一问,则该学生做对第二问的概率为( )A .0.9B .0.8C .0.72D .0.576(2)从1,2,3,4,5中任取2个不同的数,事件A =“取到的2个数之和为偶数”,事件B =“取到的2个数均为偶数”,则P (B |A )=( )A.18B.14C.25D.12【解析】 (1)做对第一问的学生有80人,则做对第一问的频率为80100=0.8.既做对第一问又做对第二问的学生有72人,则两问都做对的频率为72100=0.72.设“做对第一问”为事件A ,“做对第二问”为事件B ,则P (A )=0.8,P (AB )=0.72,某个学生已经做对第一问,则该学生做对第二问的概率P(B|A)=P(AB)P(A)=0.720.8=0.9,故选A.(2)P(A )=C23+C22C25=410=25,P(AB)=C22C25=110,由条件概率公式,得P(B|A)=P(AB)P(A)=11025=14.【答案】(1)A(2)B【引申探究】(变条件)将本例(2)中的“和”改为“积”,求P(B|A).解:事件A:“取到的2个数之积为偶数”所包含的基本事件有:(1,2),(3,2),(4,2),(5,2),(4,1),(4,3),(4,5),所以P(A)=710.事件B:“取到的2个数均为偶数”所包含的基本事件有(2,4),所以P(AB)=110,所以P(B|A)=P(AB)P(A)=110710=17.条件概率的两种求解方法1.(2021·云南师大附中月考)小明早上步行从家到学校要经过有红绿灯的两个路口,根据经验,在第一个路口遇到红灯的概率为0.4,在第二个路口遇到红灯的概率为0.5,在两个路口连续遇到红灯的概率是0.2.某天早上小明在第一个路口遇到了红灯,则他在第二个路口也遇到红灯的概率是()A.0.2 B.0.3C.0.4 D.0.5解析:选 D.记“小明在第一个路口遇到红灯”为事件A ,“小明在第二个路口遇到红灯”为事件B ,“小明在第一个路口遇到了红灯,在第二个路口也遇到红灯”为事件C ,则P (A )=0.4,P (B )=0.5,P (AB )=0.2,则P (B |A )=P (AB )P (A )=0.20.4=0.5.故选D.2.甲、乙、丙、丁四名同学报名参加假期社区服务活动,社区服务活动共有关怀老人、环境监测、教育咨询、交通宣传四个项目,每人限报其中一项,记事件A 为“4名同学所报项目各不相同”,事件B 为“只有甲同学一人报关怀老人项目”,则P (A |B )的值为( )A.14B.34C.29D.59解析:选C.因为P (B )=3344,P (AB )=A3344,所以P (A |B )=P (AB )P (B )=29.相互独立事件的概率(2020·高考全国卷Ⅰ)甲、乙、丙三位同学进行羽毛球比赛,约定赛制如下: 累计负两场者被淘汰;比赛前抽签决定首先比赛的两人,另一人轮空;每场比赛的胜者与轮空者进行下一场比赛,负者下一场轮空,直至有一人被淘汰;当一人被淘汰后,剩余的两人继续比赛,直至其中一人被淘汰,另一人最终获胜,比赛结束.经抽签,甲、乙首先比赛,丙轮空.设每场比赛双方获胜的概率都为12. (1)求甲连胜四场的概率; (2)求需要进行第五场比赛的概率; (3)求丙最终获胜的概率.【解】 (1)甲连胜四场的概率为116.(2)根据赛制,至少需要进行四场比赛,至多需要进行五场比赛.比赛四场结束,共有三种情况: 甲连胜四场的概率为116; 乙连胜四场的概率为116; 丙上场后连胜三场的概率为18.所以需要进行第五场比赛的概率为1-116-116-18=34. (3)丙最终获胜,有两种情况: 比赛四场结束且丙最终获胜的概率为18.比赛五场结束且丙最终获胜,则从第二场开始的四场比赛按照丙的胜、负、轮空结果有三种情况:胜胜负胜,胜负空胜,负空胜胜,概率分别为116,18,18.因此丙最终获胜的概率为18+116+18+18=716.利用相互独立事件求复杂事件概率的解题思路(1)将待求复杂事件转化为几个彼此互斥简单事件的和.(2)将彼此互斥简单事件中的简单事件,转化为几个已知(易求)概率的相互独立事件的积事件.(3)代入概率的积、和公式求解.1.两个实习生每人加工一个零件,加工成一等品的概率分别为23和34,两个零件能否被加工成一等品相互独立,则这两个零件中恰好有一个一等品的概率为( )A.12B.512C.14D.16解析:选 B.因为两人加工零件成一等品的概率分别为23和34,且相互独立,所以两个零件中恰好有一个一等品的概率P =23×14+13×34=512.2.(2021·沈阳市教学质量检测(一))在2019年女排世界杯中,中国女子排球队以11连胜的优异战绩成功夺冠,为祖国母亲七十华诞献上了一份厚礼.排球比赛采用5局3胜制,前4局比赛采用25分制,每个队只有赢得至少25分,并超过对方2分时,才胜1局;在决胜局(第5局)采用15分制,每个队只有赢得至少15分,并超过对方2分为胜.在每局比赛中,发球方赢得此球后可得1分,并获得下一球的发球权,否则交换发球权,并且对方得1分.现有甲、乙两支球队进行排球比赛:(1)若前3局比赛中甲已经赢2局,乙赢1局,接下来两队赢得每局比赛的概率均为12,求甲队最后赢得整场比赛的概率.(2)若前4局比赛中甲、乙两队已经各赢2局,在决胜局(第5局)中,两队当前的得分为甲、乙各14分,且甲已获得下一球的发球权.若甲发球时甲赢1分的概率为25,乙发球时甲赢1分的概率为35,得分者获得下一球的发球权.设两队打了x (x ≤4)个球后甲赢得整场比赛,求x 的取值及相应的概率P (x ).解:(1)依题意,若甲队赢得整场比赛,则甲队将以3∶1或3∶2的比分赢得比赛.若甲队以3∶1的比分赢得比赛,则第4局甲赢,若甲队以3∶2的比分赢得比赛,则第4局乙赢,第5局甲赢. 故甲队最后赢得整场比赛的概率为12+12×12=34.(2)依题意,每次发球,发球队得分的概率为25,接球队得分的概率为35.甲接下来可以以16∶14或17∶15赢得比赛,故x 的取值为2或4.若甲、乙比分为16∶14,则x 的取值为2,其赢球顺序为“甲甲”,对应发球顺序为“甲甲”,所以P (x =2)=25×25=425.若甲、乙比分为17∶15,则x 的取值为4,其赢球顺序为“甲乙甲甲”或“乙甲甲甲”,对应发球顺序为“甲甲乙甲”和“甲乙甲甲”,所以P (x =4)=25×35×35×25+35×35×25×25=72625.独立重复试验与二项分布(2021·合肥第一次教学检测)“大湖名城,创新高地”的合肥,历史文化积淀深厚,民俗和人文景观丰富,科教资源众多,自然风光秀美,成为中小学生“研学游”的理想之地.为了将来更好地推进“研学游”项目,某旅游学校一位实习生,在某旅行社实习期间,把“研学游”分为科技体验游、民俗人文游、自然风光游三种类型,并在前几年该旅行社接待的全省高一学生“研学游”学校中,随机抽取了100所学校,统计如下:研学游类型 科技体验游民俗人文游自然风光游学校数404020校,并以统计的频率代替学校选择研学游类型的概率(假设每所学校在选择研学游类型时仅选择其中一类,且不受其他学校选择结果的影响).(1)若这3所学校选择的研学游类型是“科技体验游”和“自然风光游”,求这两种类型都有学校选择的概率;(2)设这3所学校中选择“科技体验游”的学校数为随机变量X ,求X 的分布列. 【解】 (1)依题意,学校选择“科技体验游”的概率为25,选择“自然风光游”的概率为15,若这3所学校选择研学游类型为“科技体验游”和“自然风光游”,则这两种类型都有学校选择的概率为P =C23⎝ ⎛⎭⎪⎫252×15+C23⎝ ⎛⎭⎪⎫152×25=18125.(2)X 的可能取值为0,1,2,3.则P (X =0)=C03⎝ ⎛⎭⎪⎫353=27125,P (X =1)=C13×25×⎝ ⎛⎭⎪⎫352=54125,P (X =2)=C23⎝ ⎛⎭⎪⎫252×35=36125,P (X =3)=C33⎝ ⎛⎭⎪⎫253=8125,所以X 的分布列为X 0 1 2 3 P 2712554125361258125(1)独立重复试验的特点①每次试验中,事件发生的概率是相同的;②每次试验中的事件是相互独立的,其实质是相互独立事件的特例. (2)判断随机变量X 服从二项分布的条件(X ~B (n ,p )) ①X 的取值为0,1,2,…,n ;②P (X =k )=Ck n p k (1-p )n -k (k =0,1,2,…,n ,p 为试验成功的概率). [提醒] 在实际应用中,往往出现数量“较大”“很大”“非常大”等字眼,这表明试验可视为独立重复试验,进而判定是否服从二项分布.为了拓展网络市场,某公司为手机客户端用户推出了多款APP 应用 ,如“农场”“音乐”“读书”等.市场调查表明,手机用户在选择以上三种应用时,选择农场、音乐、读书的概率分别为12,13,16.现有甲、乙、丙三位手机客户端用户独立任意选择以上三种应用中的一种进行添加.(1)求三人所选择的应用互不相同的概率;(2)记ξ为三人中选择的应用是农场与音乐的人数,求ξ的分布列.解:记第i 名用户选择的应用是农场、音乐、读书分别为事件A i .B i ,C i ,i =1,2,3.由题意知A 1,A 2,A 3相互独立,B 1,B 2,B 3相互独立,C 1,C 2,C 3相互独立,A i ,B j ,C k (i ,j ,k =1,2,3且i ,j ,k 互不相同)相互独立,且P (A i )=12,P (B i )=13,P (C i )=16.(1)他们选择的应用互不相同的概率P =3!·P (A 1B 2C 3)=6P (A 1)P (B 2)P (C 3)=16.(2)设3位用户选择的应用是“读书”的人数是η,由已知得η~B ⎝⎛⎭⎪⎫3,16,且ξ=3-η,所以P (ξ=0)=P (η=3)=C33×⎝ ⎛⎭⎪⎫163=1216,P (ξ=1)=P (η=2)=C23×⎝ ⎛⎭⎪⎫162×56=15216=572, P (ξ=2)=P (η=1)=C13×16×⎝ ⎛⎭⎪⎫562=75216=2572,P (ξ=3)=P (η=0)=C03×⎝ ⎛⎭⎪⎫563=125216.故ξ的分布列为 ξ 0 1 2 3 P12165722572125216[A 级 基础练]1.先后抛掷硬币三次,则至少一次正面向上的概率是( ) A.18 B.38 C.58D.78解析:选D.硬币正面向上的次数服从二项分布,即X ~B ⎝⎛⎭⎪⎫3,12,由二项分布概率公式知,三次均反面向上的概率是⎝ ⎛⎭⎪⎫123=18,所以至少一次正面向上的概率是1-18=78.故选D 项.2.一个盒子里有6支好晶体管,4支坏晶体管,任取两次,每次取一支,每次取后不放回,已知第一支是好晶体管,则第二支也是好晶体管的概率为( )A.23B.512C.59D.79解析:选C.记“第i (i =1,2)支晶体管是好的”为事件A i (其中i =1,2),依题意知,要求的概率为P (A 2|A 1).由P (A 1)=35,P (A 1A 2)=6×510×9=13, 所以P (A 2|A 1)=P (A1A2)P (A1)=1335=59.3.(2021·山东烟台第一中学联考)首届中国国际进口博览会期间,甲、乙、丙三家中国企业都有意向购买同一种型号的机床设备,他们购买该机床设备的概率分别为12,13,14,且三家企业的购买结果相互之间没有影响,则三家企业中恰有一家购买该机床设备的概率是( )A.2324B.524C.1124D.124解析:选 C.记“甲企业购买该机床设备”为事件A ,“乙企业购买该机床设备”为事件B ,“丙企业购买该机床设备”为事件C ,则P (A )=12,P (B )=13,P (C )=14,所以P (A -)=1-P (A )=12,P (B -)=1-P (B )=23,P (C -)=1-P (C )=34.记“三家企业中恰有一家购买该机床设备”为事件D ,则P (D )=P (A B -C -)+P (A -B C -)+P (A -B -C )=12×23×34+12×13×34+12×23×14=1124.故选C.4.(多选)(2020·山东潍坊临朐模拟)下列说法正确的是( )A.⎝ ⎛⎭⎪⎫12x -2y 5的展开式中含x 2y 3项的二项式系数为20B .事件A ∪B 为必然事件,则事件A 、B 是互为对立事件C .am 2>bm 2是a >b 的充分不必要条件D .甲、乙、丙、丁4个人到4个景点旅游,每人只去一个景点,设事件A =“4个人去的景点各不相同”,事件B =“甲独自去一个景点”,则P (A |B )=29解析:选CD.A.⎝ ⎛⎭⎪⎫12x -2y 5的展开式的通项为T k +1=Ck 5·⎝ ⎛⎭⎪⎫12x 5-k·(-2y )k ,要求含x 2y 3项的二项式系数,则k =3,所求二项式系数为C35=10,故A 错误;B.事件A ∪B 为必然事件无法说明事件A 、B 是互为对立事件,缺少A ∩B 为不可能事件的条件,故B 错误;C.因为am 2>bm 2,所以a >b ,但a >b 且m =0时有am 2=bm 2,所以a >b 时,am 2>bm 2不一定成立,故C 正确.D.P (A )=4!44=332,P (B )=4×3344=2764,P (AB )=4×3!44=332,则P (A |B )=P (AB )P (B )=29,故D 正确.5.(2021·江西五校联考)非洲成员代表团团长及相关的人员参加了中非合作论坛北京峰会,会后某记者在场地外随机进行采访,假设第一次采访到的人恰好是参会的代表团团长的概率为0.7,连续两次采访到的人都是代表团团长的概率为0.6,则在第一次采访到的人是代表团团长的条件下,第二次采访到的也是代表团团长的概率为________.解析:记“第一次采访到的人是代表团团长”为事件A ,“第二次采访到的人是代表团团长”为事件B ,则P (A )=0.7,P (AB )=0.6,则P (B |A )=P (AB )P (A )=67.答案:676.一个口袋内有n (n >3)个大小相同的球,其中3个红球和(n -3)个白球,已知从口袋中随机取出1个球是红球的概率为p ,6p ∈N ,若有放回地从口袋中连续4次取球(每次只取1个球),在4次取球中恰好2次取到红球的概率大于827,则n =________.解析:由题设知,C24p 2(1-p )2>827,因为p (1-p )>0,所以不等式化为p (1-p )>29,解得13<p <23,故2<6p <4.又因为6p ∈N ,所以6p =3,即p =12,由3n =12,得n =6.答案:67.为了促进学生的全面发展,某市教育局要求本市所有学校重视社团文化建设,2019年该市某中学的某新生想通过考核选拔进入该校的“电影社”和“心理社”,已知该同学通过考核选拔进入这两个社团成功与否相互独立.根据报名情况和他本人的才艺能力,两个社团都能进入的概率为124,至少进入一个社团的概率为38,并且进入“电影社”的概率小于进入“心理社”的概率.(1)求该同学分别通过选拔进入“电影社”的概率p 1和进入“心理社”的概率p 2; (2)学校根据这两个社团的活动安排情况,对进入“电影社”的同学增加1个校本选修课学分,对进入“心理社”的同学增加0.5个校本选修课学分,求该同学在社团方面获得校本选修课学分分数不低于1分的概率.解:(1)根据题意得⎩⎪⎨⎪⎧p1p2=124,1-(1-p1)(1-p2)=38,p1<p2,所以p 1=16,p 2=14.(2)设该同学在社团方面获得校本选修课学分分数为ξ,则P (ξ=1)=⎝⎛⎭⎪⎫1-14×16=18,P (ξ=1.5)=14×16=124,所以该同学在社团方面获得校本选修课学分分数不低于1分的概率为P =18+124=16.8.(2021·湖北省部分重点中学10月联考)某中学数学竞赛培训共开设有初等代数、初等几何、初等数论和微积分初步四门课程,要求初等代数、初等几何都要合格,且初等数论和微积分初步至少有一门合格,才能取得参加数学竞赛复赛培训的资格.现有甲、乙、丙三位同学报名参加数学竞赛培训,每一位同学的这四门课程考试是否合格相互独立,每门课程考试合格的概率均相同(见下表),且各个同学每一门课程考试是否合格相互独立.(2)记ξ表示三位同学中取得参加数学竞赛培训的资格的人数,求ξ的分布列. 解:(1)分别记甲初等代数课程、初等几何课程、初等数论课程、微积分初步课程考试合格为事件A ,B ,C ,D ,则“甲能取得参加数学竞赛复赛培训的资格”的概率为P (ABCD )+P (ABC D -)+P (AB C -D ),事件A ,B ,C ,D 相互独立,故P (ABCD )+P (ABC D -)+P (AB C -D )=34×23×23×12+34×23×23×12+34×23×13×12=512. (2)ξ的所有可能取值为0,1,2,3.由(1)可得,每位同学取得参加数学竞赛复赛培训资格的概率为512,且ξ~B ⎝ ⎛⎭⎪⎫3,512,P (ξ=0)=⎝ ⎛⎭⎪⎫7123=3431 728,P (ξ=1)=C13×512×⎝ ⎛⎭⎪⎫7122=245576,P (ξ=2)=C23×⎝ ⎛⎭⎪⎫5122×712=175576,P (ξ=3)=⎝ ⎛⎭⎪⎫5123=1251 728.因此,ξ的分布列为9.博彩公司曾经对当年NBA 总决赛做了大胆地预测和分析,预测西部冠军是老辣的马刺队,东部冠军是拥有詹姆斯的年轻的骑士队,总决赛采取7场4胜制,每场必须分出胜负,场与场之间的结果互不影响,只要有一队获胜4场就结束比赛,前4场,马刺队胜利的概率为12,第5,6场马刺队因为平均年龄大,体能下降厉害,所以胜利的概率降为25,第7场,马刺队因为有多次打第7场的经验,所以胜利的概率为35.(1)分别求马刺队以4∶0,4∶1,4∶2,4∶3胜利的概率及总决赛马刺队获得冠军的概率;(2)随机变量X 为分出总冠军时比赛的场数,求随机变量X 的分布列.解:(1)设“马刺队以4∶0胜利”为事件A ,“马刺队以4∶1胜利”为事件B ,“马刺队以4∶2胜利”为事件C ,“马刺队以4∶3胜利”为事件D ,“总决赛马刺队获得冠军”为事件E ,则P (A )=⎝ ⎛⎭⎪⎫124=116,P (B )=C34×⎝ ⎛⎭⎪⎫124×25=110,P (C )=C34×⎝ ⎛⎭⎪⎫124×35×25+C24×⎝ ⎛⎭⎪⎫124×⎝ ⎛⎭⎪⎫252=325,P (D )=C34×⎝ ⎛⎭⎪⎫124×⎝ ⎛⎭⎪⎫353+C24×⎝ ⎛⎭⎪⎫124×C12×25×35×35+C14×⎝ ⎛⎭⎪⎫124×25×25×35=93500.所以P (E )=P (A )+P (B )+P (C )+P (D )=9372 000.(2)随机变量X 的可能取值为4,5,6,7,P (X =4)=⎝ ⎛⎭⎪⎫124×2=18,P (X =5)=C34×⎝ ⎛⎭⎪⎫124×⎝ ⎛⎭⎪⎫25+35=14,P (X =6)=2C34×⎝ ⎛⎭⎪⎫124×25×35+C24×⎝ ⎛⎭⎪⎫124×⎝ ⎛⎭⎪⎫425+925=63200,P (X =7)=1-P (X =4)-P (X =5)-P (X =6)=31100.所以随机变量X 的分布列为地区中心城市,它不仅有着深厚的历史积淀与丰富的民俗文化,更有着众多旅游景点,每年来武汉参观旅游的人数不胜数,其中黄鹤楼与东湖被称为两张名片.为合理配置旅游资源,现对已游览黄鹤楼景点的游客进行随机问卷调查,若不游玩东湖记1分,若继续游玩东湖记2分,每位游客选择是否游览东湖景点的概率均为12,游客之间选择意愿相互独立.(1)从游客中随机抽取3人,记总得分为随机变量X ,求X 的分布列;(2)(i)若从游客中随机抽取m 人,记总得分恰为m 的概率为A m ,求数列{A m }的前10项和;(ii)在对所有游客进行随机问卷调查过程中,记已调查过的累计得分恰为n 的概率为B n ,探讨B n 与B n -1之间的关系,并求数列{B n }的通项公式.解:(1)X 的可能取值为3,4,5,6.P (X =3)=⎝ ⎛⎭⎪⎫123=18,P (X =4)=C13⎝ ⎛⎭⎪⎫123=38,P (X =5)=C23⎝ ⎛⎭⎪⎫123=38,P (X =6)=C33⎝ ⎛⎭⎪⎫123=18.所以X 的分布列为(2)(i)总得分恰为m 的概率A m =⎝ ⎛⎭⎪⎫12,所以数列{A m }是首项为12,公比为12的等比数列, 前10项和S 10=12×⎝ ⎛⎭⎪⎫1-12101-12=1 0231 024. (ii)已调查过的累计得分恰为n 的概率为B n ,得不到n 分的情况只有先得(n -1)分,再得2分,概率为12B n -1,B 1=12.所以1-B n =12B n -1,即B n =-12B n -1+1, 所以B n -23=-12⎝ ⎛⎭⎪⎫Bn -1-23.所以B n -23=⎝ ⎛⎭⎪⎫B2-1-23·⎝ ⎛⎭⎪⎫-12n -1,所以B n =23-16⎝ ⎛⎭⎪⎫-12n -1=23+13⎝ ⎛⎭⎪⎫-12n.[C 级 创新练]11.(2020·武汉部分学校质量检测)同时抛掷两个质地均匀的四面分别标有1,2,3,4的正四面体一次,记事件A ={第一个四面体向下的一面出现偶数};事件B ={第二个四面体向下的一面出现奇数};事件C ={两个四面体向下的一面或者同时出现奇数,或者同时出现偶数}.给出下列说法:①P (A )=P (B )=P (C );②P (AB )=P (AC )=P (BC );③P (ABC )=18;④P (A )P (B )P (C )=18.其中正确的有( )A .0个B .1个C .2个D .3个解析:选D.由古典概型的概率计算公式,得P (A )=P (B )=24=12,P (C )=84×4=12,所以P (A )=P (B )=P (C )=12,①正确;P (A )P (B )P (C )=18,④正确;而事件A ,B ,C 不可能同时发生,故P (ABC )=0,所以③不正确;又P (AB )=2×24×4=14,P (AC )=2×24×4=14,P (BC )=2×24×4=14,所以P (AB )=P (AC )=P (BC ),②正确.故选D.12.将一个半径适当的小球放入如图所示的容器最上方的入口处,小球将自由落下,小球在下落的过程中,将3次遇到黑色障碍物,最后落入A 袋或B 袋中,已知小球每次遇到黑色障碍物时,向左、右两边下落的概率分别为23,13,求小球落入A 袋中的概率.解:方法一:由题意知,小球落入A 袋中的概率为:P (A )=1-P (B )=1-⎝ ⎛⎭⎪⎫13×13×13+23×23×23=23. 方法二:因为小球每次遇到障碍物时有一次向左和两次向右或两次向左和一次向右下落时,小球将落入A 袋,所以小球落入A 袋中的概率为C13·23·⎝ ⎛⎭⎪⎫132+C23·⎝ ⎛⎭⎪⎫232·13=23.。

相关文档
最新文档