求极限的常用方法Word版
求极限的常用方法
例4
lim
n→ ∞
n sin n! n3 + n
解:原式
1 1 1 = lim 2sin[ ln(1 + )]cos[ ln( x 2 + x)] x →∞ 2 x 2 = 0.
注:有界量×无穷小=无穷小 有界量×无穷小=
解:原式
lim
n n3 + n
=0
n →∞
sin n !
首页
上页
返回
下页
∞ 方法:用最大项除分子分母) 一、x → ∞时, 型(方法:用最大项除分子分母) ∞
(2 x + 3)2( x − 2)3 例1 lim x →∞ (2 x + 1)5
解:分子、分母除以x5 例2 lim
4 x2 + x − 1 + x + 1 x 2 + sin x
x →−∞
.
解:分子、分母除以-x,得
ln x + 1 1 = − lim =− x →1 ln x + 1 + 1 2
注: ∞ − ∞ 型不定式极限可
0 ∞ 通过通分变为 , 之一. 0 ∞ 之一.
下页 结束
六、利用罗比达法则求极限 例14 lim x ln x +
x →0
例15
−1
x ln x 解:原式 = lim e 解:原式 = lim −1 = lim −2 x→0+ + + x →0 − x x →0 x ( ex ln x −1)ln x
x x →0
=e
x→0+
lim x ln x
lim 2ln x −x
−1
2
求极限的若干方法
求极限的若干方法求极限是数学中的重要内容之一,它在微积分、数学分析、几何等诸多领域中都有广泛的应用。
在数学中,我们经常使用各种方法来求解极限,以下是一些常见的方法。
1. 代入法:当出现极限中的变量可以直接代入某个值时,可以利用代入法求解。
当求lim(x→0) (sinx/x)时,我们可以将x代入0,得到lim(x→0) sinx/0 = lim(x→0) (sin0)/0 = 1/0 = ∞。
2. 抵消法:当极限存在但不易计算时,可以通过抵消法将其化简为易计算的形式。
当求lim(x→∞) (x^2 + 2x + 3)/(x + 1)时,可以利用抵消法将分子的x^2项与分母的x 项抵消,得到lim(x→∞) (x^2 + 2x + 3)/(x + 1) = lim(x→∞) (x + 2 + 3/x)/(1 + 1/x) = ∞/1 = ∞。
4. 夹逼法:当极限存在但不易直接计算时,可以利用夹逼法将其夹在两个已知的极限之间,从而求出极限的值。
当求lim(x→0) x*sin(1/x)时,可以利用夹逼法,由于-1 ≤ sin(1/x) ≤ 1,所以有-lim(x→0) x ≤ lim(x→0) x*sin(1/x) ≤ lim(x→0) x,即-0 ≤ lim(x→0) x*sin(1/x) ≤ 0。
根据夹逼定理,由-lim(x→0) x = 0及lim(x→0) x = 0可知,lim(x→0) x*sin(1/x) = 0。
5. 利用特殊函数的性质:当极限涉及到特殊函数时,可以利用特殊函数的性质来求解。
当求lim(x→∞) (1 + 1/x)^x时,可以利用自然对数函数的性质,将极限转化为lim(x→∞) e^(x*log(1 + 1/x)) = e^lim(x→∞) (x*log(1 + 1/x)) = e^lim(x→∞) (log(1 + 1/x))/((1/x)) = e^lim(x→∞) ((log(1 + 1/x))/((1/x))),再利用洛必达法则,得到lim(x→∞) ((log(1 + 1/x))/((1/x))) = lim(x→∞) (1/((1 + 1/x)(-1/x^2))) = 1。
各种求极限方法
=
lim e 1 x2
çæ è
1 x
sin
x
-1÷ö ø
=
sin x - x 2
2
x
ö
÷
x -1ø
=
é
lim
x® +¥
êêêëççèæ1
+
x -1
1
x -1 2
÷÷øö
2
çæ1 + è
2
1ù
x
2 -
1
÷ö ø
2
ú ú úû
=
e2
例
6:(1) lim çæ1 x ® +¥ è
1 x2
x
ö ÷
;(2)已知
lim
æ ç
ø
x ® +¥ è
x + 2a ö x ÷
x-a ø
= 8 ,求 a 。
,
x®0
x2
(a >0).
【解】 a x = e xln a = 1 + x ln a + x 2 ln 2 a + o( x 2 ) , 2
a -x = 1 - x ln a + x 2 ln 2 a + o( x 2 ) ; 2
a x + a -x - 2 = x 2 ln 2 a + o( x 2 ).
x ®1
x -1
x®1
2.分子分母同除求极限
例
2:求极限
lim
x®¥
x3 - x2 3x3 +1
【说明】 ¥ 型且分子分母都以多项式给出的极限,可通过分子分母同除来求。 ¥
【解】 lim
x3
- x2
求极限的方法和技巧
1
= b + lim x(e x −1) x→+∞
(a = 1)
= b + lim x ⋅ 1 x x→+∞
(等价无穷小代换)
= b+1
故 a = b = 1.
【例
2】(1997 年
4)求极限
lxi→m0 ⎢⎣⎡
a x
−( 1 x2
− a 2 ) ln(1 +
ax)⎥⎦⎤
(a ≠ 0)
a2 []
2
6
(B)仅有一个跳跃间断点;
(C)有两个可去间断点;
(D)有两个跳跃间断点;
答案
1.1;
β 2 −α 2
n ( n +1)
2.(D); 3. − 2; 4. e 2 ;5. e 2 6.(B); 7.(D).
方法 2 利用有理运算法则求极限
若 lim f (x) = A, lim g(x) = B ,则
+ 1)(5x
+ 1)
=
α
≠
0, ,则(
)
(A)α = 5!, β = 5.
(C) α
=
1 25
,β
=
5.
(B) α
=
5! 25
,β
=
5.
(D) α
=
5 25
,β
=
4.
(B)
【例 9】已知 lim (x + 1)(2x + 1)(3x + 1)(4x + 1)(5x + 1) + ax + b = 16, ,则( )
4.
lxi→m0⎜⎜⎝⎛
1 1
+ +
求极限的方法,(自己总结的)
求极限的常用方法1.直接代入法:对于初等函数f( )的极限, , 若f( )在0处的函数值f( 0)存在, 即。
直接代入法的本质就是只要将= 0代入函数表达式, 若有意义, 其极限就是该函数值(称为“能代则代”)。
例I: 求极限(1)(2)(3)解: (1)(2)(3)2.变型法(包括两个重要极限)通俗地说代入后无意义的极限称为不定式, (如0/0,∞/∞,∞-∞等)此时若极限存在往往要变形后才可看出。
例I: 求极限(1)(2)解: (1)(2)两个重要极限是和, 第一个重要极限过于简单且可通过等价无穷小来实现。
主要考第二个重要极限。
例I: 求极限解:例II: 求极限【说明】第二个重要极限主要搞清楚凑的步骤:先凑出1, 再凑, 最后凑指数部分。
解:3.利用连续性定义。
例I: 求解:y= 可看作由y= 与复合而成。
因为= , 而函数y= 在点u= 连续, 所以=例II: 求解: =例III: 求解:因为 利用定理3及极限的运算法则, 便有4.利用无穷小、无穷大的关系【说明】(1)常见等价无穷小有:当0→x 时,~)1ln(~arctan ~arcsin ~tan ~sin ~x x x x x x +1e x -, ()abx ax x x b ~11,21~cos 12-+- 例1: 求极限解 002ln(1)lim lim 211cos 2x x x x x x x x →→+⋅==- 例2: 求极限 解x x x x 30tan sin lim -→613lim 31cos lim sin lim 222102030-=-==-=-=→→→xx x x x x x x x x 例3因式代替规则x x x x 3sin tan lim 0-→x x x x 30)1cos 1(sin lim -=→212lim 330==→x x x 5.利用极限的性质法(如四则运算)利用极限的4则运算法则, , ,例1: 求解:先用 除分子和分母, 然后求极限, 得52123lim 232+---∞→x x x x x 020512123lim 332==+---=∞→x x x x x x 例2: 求解, 因为分母的极限 , 不能应用商的极限的运算法则, 但因 所以∞=+--→4532lim 21x x x x6.洛必达法则(求不定式极限)定理一 设(1) 当x 时, f(x)及F (x )都趋向于零;(2) 在点a 的某一去心领域内, f ’(x)及F ’(x)都存在且F ’(x)≠o ;(3) )(')('lim x F x f a x →存在(或为无穷大); 那么 )(')('lim )()(lim x F x f x F x f a x a x →→=定理二 设(1) 当x 时,∞→函数f(x)及F(x)都趋向于零;(2) 当;)都存在,且与时0('F )(')('x ≠>x x F x f N (3) 或为无穷大),存在()(')('lim x F x f x ∞→ 那么 )x F x f x F x f x (')('lim )()(lim x ∞→∞→= 例1: 求解: 原式=例2: 求 >0)解: 原式=例3: 求解: 原式=7.积分法积分求极限法:例一: 求 。
求极限13种方法
求极限的 13种方法(简叙)龘龖龍 极限概念与求极限的运算贯穿了高等数学课程的始终, 极限思想亦是高等数学的核心与 基础, 因此,全面掌握求极限的方法与技巧是高等数学的基本要求。
本篇较为全面地介绍了求数列极限与函数极限的各种方法,供同学参考。
一、利用恒等变形求极限利用恒等变形求极限是最基础的一种方法,但恒等变形灵活多 变,令人难以琢磨。
常用的的恒等变形有:分式的分解、分子或分母有理化、三角函数的恒等变形、某些求和公式与求积公式的利用等。
n例 1、求极限 lim (1 a)(1 a 2)...(1 a 2) ,其中 a 1 n分析 由于积的极限等于极限的积这一法则只对有限个因子成立,n因为 (1 a)(1 a 2)...(1 a 2)1(1 a)(1 a)(1 a 2 )...(1 a 21a12 22n(1 a 2)(1 a 2)...(1 a 2) 1a1 2n 111a(1 a 2)22n0,从而 lim (1 a)(1 a 2)...(1 a 2)=n1 a二、利用变量代换求极限利用变量代换求极限的主要目的是化简原表达式,从而减少运算量, 提高运算效率。
常用的变量代换有倒代换、整体代换、三角代换等。
此, 应先对其进行恒等变形。
n 时2n 12n 1a 2例 2、求极限 lim x 1,其中 m,n 为正整数。
x 1nx 1分析 这是含根式的( 0)型未定式,应先将其利用变量代换进行化简,再进一步计算极限1解 令 t x mn,则当 x 1时,t 1三、利用对数转换求极限原式=lim e(cos x 1)csc 2x exo 四、利用夹逼准则求极限利用夹逼准则求极限主要应用于表达式易于放缩的情形。
例 4、求极限 l n im n n !n n n分析 当我们无法或不易把无穷多个因子的积变为有限时,可考虑使 用夹逼准则。
解 因为 o n n! 1 2 n 1 n 1,n n n n n n 且不等式两端当趋于无穷时都以 0为极限,所以 l n im n n !=0 n n n五、利用单调有界准则求极限利用单调有界准则求极限主要应用于给定初始项与递推公式原式=l t im1 ttlim (t 1)(t t 1(t 1)(t n1m1t n 2... 1) t m 2...t n1t n 2 ... 1 t m 1 t m 2 (1)利用对数转换求极限主要是通过公式 u ve lnuv,进行恒等变形,特别的情形,在( 1 )型未定式时可直接运用 (u 1)ve例 3、求极限l x im o(cosx)csc 2x12 sin x lim22x 0sin 2x n 1 f (x n )的数列极限。
求极限的常用方法(精髓版)考试必备
求极限的常用方法(精髓版)初等数学的研究对象基本上是不变的量,而高等数学的研究对象则是变动的量。
极限方法就是研究变量的一种基本方法。
极限分为数列的极限和函数的极限,下文研究的是函数的极限,这些方法对于数列的极限同样适用。
1.直接代入数值求极限例1 求极限1lim(21)x x →- 解 1lim(21)2111x x →-=⋅-=2.约去不能代入的零因子求极限例2 求极限11lim 41--→x x x 解 4221111(1)(1)(1)lim lim lim(1)(1)411x x x x x x x x x x x →→→--++==++=--3.分子分母同除最高次幂求极限例3 求极限13lim323+-∞→x xx x 解3131lim 13lim 11323=+-=+-∞→∞→x xx x x x x注:一般地,分子分母同除x 的最高次幂有如下规律⎪⎪⎩⎪⎪⎨⎧=<∞>=++++++----∞→nm b a n m n m b x b x b a x a x a nnm m m m n n n n x 0lim 0110114.分子(母)有理化求极限 例4 求极限)13(lim 22+-++∞→x x x解13)13)(13(lim)13(lim 22222222+++++++-+=+-++∞→+∞→x x x x x x x x x x132lim22=+++=+∞→x x x例5求极限x →解01)2x x x →→→===5.应用两个重要极限的公式求极限两个重要极限是1sin lim0=→x xx 和1lim(1)x x ex →∞+=,下面只介绍第二个公式的例子。
例6 求极限xx x x ⎪⎭⎫ ⎝⎛-++∞→11lim解 2221212112111lim 121lim 11lim e x x x x x x x xx x x =⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎪⎭⎫ ⎝⎛-+⎪⎪⎭⎫ ⎝⎛+=⎪⎭⎫ ⎝⎛-+=⎪⎭⎫ ⎝⎛-+--+∞→+∞→+∞→6.用等价无穷小量的代换求极限这可以称之为求极限最简便的方法。
(完整word版)高等数学求极限的常用方法(附例题和详解)
高等数学求极限的14 种方法一、极限的定义1. 极限的保号性很重要:设limf (x)A ,x x 0( i )若 A 0 ,则有0 ,使适当 0 | x x 0 |时, f (x) 0 ; ( ii )如有0, 使适当 0 | x x 0 |时, f (x)0,则A0 。
2. 极限分为函数极限、数列极限,此中函数极限又分为限能否存在在:x时函数的极限和 xx 0 的极限。
要特别注意判断极( i )数列 x n 收敛于 a 的充要条件 是它的全部子数列均收敛于 a 。
常用的是其推论,即“一个数列收敛于a 的充要条件是其奇子列和偶子列都收敛于a ”( ii )limf (x)Alimf ( x)limAxxx(iii)lim f ( x)AlimlimAx xx x 0x x 0(iv) 单一有界准则 ( v )两边夹挤准则(夹逼定理 / 夹逼原理) ( vi ) 柯 西 收 敛 准 则 ( 不 需 要 掌 握 )。
极 限 limf ( x) 存 在 的 充 分 必 要 条 件 是 :x x 00,0, 使适当 x 1、 x 2U o ( x 0 )时,恒有 | f ( x 1 ) f ( x 2 ) |二.解决极限的方法以下:1. 等价无量小代换。
只好在乘除 时候使用。
例题略。
..2. 洛必达( L ’ho spital )法例(大题目有时会有示意要你使用这个方法)它的使用有严格的使用前提。
第一一定是X 趋近,而不是 N 趋近,因此面对数列极限时候先要转变为求 x 趋近状况下的极限,数列极限的n 自然是趋近于正无量的,不行能是负无量。
其次 , 一定是函数的导数要存在,假如告诉 f (x )、g (x ), 没告诉能否可导, 不行直接用洛必达法例。
此外,一定是 “0 比 0”或“无量大比无量大” ,而且注意导数分母不可以为 0。
洛必达法例分为 3 种状况:(i )“ 0”“”时候直接用(ii) “0? ”“”,应为无量大和无量小成倒数的关系,因此无量多数写成了无量小的倒数形式了。
求极限的21个方法总结
求极限的21个方法总结1. 直接代入法:将变量的值代入极限表达式中,计算极限的值。
2. 分子分母同除以最高次项的方法:可以使得分子和分母的最高次项的系数为1,简化计算。
3. 消去法:利用性质将某些项消去,使得表达式更容易计算。
4. 因式分解法:将极限表达式中的因式进行分解,简化计算。
5. 分数分解法:将极限表达式中的分数进行分解,简化计算。
6. 奇偶性性质:利用函数的奇偶性质,简化计算。
7. 倍角、半角、和差公式:利用三角函数的相关公式,简化计算。
8. 幂函数性质:利用幂函数的性质,简化计算。
9. 对数函数性质:利用对数函数的性质,简化计算。
10. 指数函数性质:利用指数函数的性质,简化计算。
11. 三角函数性质:利用三角函数的性质,简化计算。
12. 极坐标法:将极限表达式转化为极坐标形式,简化计算。
13. 无穷小代换法:将极限表达式中的变量代换为无穷小量,简化计算。
14. 夹逼定理:利用夹逼定理确定极限的值。
15. L'Hopital法则:当计算的极限为0/0或者∞/∞形式时,可以利用L'Hopital 法则进行计算。
16. 泰勒展开法:将极限表达式进行泰勒展开,取较低阶项进行计算。
17. 递推法:将极限表达式中的各项逐步推导出来,从而得到极限的值。
18. 积分法:将极限表达式转化为积分形式,利用积分的性质计算极限的值。
19. 微分法:将极限表达式转化为微分形式,利用微分的性质计算极限的值。
20. 反函数法:将极限表达式中的函数进行反函数变换,简化计算。
21. 几何法:利用几何图形的性质计算极限的值。
求极限方法总结
求极限方法总结一,求极限的方法横向总结:1带根式的分式或简单根式加减法求极限:1〕根式相加减或只有分子带根式:用平方差公式,凑平方〔有分式又同时出现未知数的不同次幂:将未知数全部化到分子或分母的位置上〕2〕分子分母都带根式:将分母分子同时乘以不同的对应分式凑成完全平方式〔常用到2分子分母都是有界变量与无穷大量加和求极限:分子与分母同时除以该无穷大量凑出无穷小量与有界变量的乘积结果还是无穷小量。
3等差数列与等比数列和求极限:用求和公式。
4分母是乘积分子是相同常数的n项的和求极限:列项求和5分子分母都是未知数的不同次幂求极限:看未知数的幂数,分子大为无穷大,分子小为无穷小或须先通分。
6运用重要极限求极限〔基本〕。
7乘除法中用等价无穷小量求极限。
8函数在一点处连续时,函数的极限等于极限的函数。
9常数比0型求极限:先求倒数的极限。
10根号套根号型:约分,注意别约错了。
11三角函数的加减求极限:用三角函数公式,将sin化cos 二,求极限的方法纵向总结:1未知数趋近于一个常数求极限:分子分母凑出〔x-常数〕的形式,然后约分〔因为x不等于该常数所以可以约分〕最后将该常数带入其他式子。
2未知数趋近于0或无穷:1〕将x放在相同的位置2〕用无穷小量与有界变量的乘积3〕2个重要极限4〕分式解法〔上述〕求极限方法总结 400字部分规律小结1 带根式的分式或简单根式加减法求极限:a根式相加减或只有分子带根式:用平方差公式,凑平方〔有分式又同时出现未知数的不同次幂∶将未知数全部化到分子或分母的位置上〕b分子分母都带根式:将分母分子同时乘以不同的对应分式凑成完全平方式 2 分子分母都是有界变量与无穷大量加和求极限:分子与分母同时除以该无穷大量凑出无穷小量与有界变量的乘积结果还是无穷小量。
3 等差数列与等比数列和求极限:用求和公式。
4 分母是乘积分子是相同常数的 n 项的和求极限:列项求和。
5 分子分母都是未知数的不同次幂求极限:看未知数的幂数,分子大为无穷大,分子小为无穷小或须先通分。
极限的求法总结
3x2 4x2
5 1
lim
x
2 7
3
x 4
x
5 x3 1 x3
2. 7
(无穷小因子分出法)
小结:当a0 0, b0 0, m和n为非负整数时有
lim a0 x n x b0 x m
a1 x n1 b1 x m1
an bm
0ab,00当,当n n
m, m,
,当n m,
2005年数学三考研试题 (第三大题15小题8分)
(15)
1 x
lim( x0 1
e
x
1 ). x
6.利用无穷小运算性质求极限
例 求 lim sin x . x x
解 当x 时, 1 为无穷小,
x
而sin x是有界函数.
lim sin x 0. x x
y sin x x
练习1. 求 lim x2 sin 1 .
例:求极限
lim
n
n
sin
1 n
n2
【说明】这是 1形式的极限,由于数列极限不能使用
洛必达法则,若直接求解有一定难度,若转化成函数
(15) lim 1 ln sin x .
x x0 2
x
11. 应用两个重要极限求极限
两个重要极限是
lim sin x 1 x0 x
和
lim(1
1)x
lim(1
1)n
lim(1
1
x) x
e
x
x
n
n
x0
第一个重要极限过于简单且可通过等价无穷小来实现。
主要考第二个重要极限
例:求极限
lim
x
lim
x
(完整word版)求极限的13种方法
求极限的13种方法(简叙)龘龖龍极限概念与求极限的运算贯穿了高等数学课程的始终,极限思想亦是高等数学的核心与基础,因此,全面掌握求极限的方法与技巧是高等数学的基本要求。
本篇较为全面地介绍了求数列极限与函数极限的各种方法,供同学参考。
一、利用恒等变形求极限利用恒等变形求极限是最基础的一种方法,但恒等变形灵活多变,令人难以琢磨。
常用的的恒等变形有:分式的分解、分子或分母有理化、三角函数的恒等变形、某些求和公式与求积公式的利用等。
例1、求极限)1...()1)(1(22lim na aa n +++∞→ ,其中1<a分析 由于积的极限等于极限的积这一法则只对有限个因子成立,因此,应先对其进行恒等变形。
解 因为)1...()1)(1(22na a a +++ =)1...()1)(1)(1(1122na a a a a +++-- =)1...()1)(1(11222na a a a ++-- =)1(1112+--n a a当∞→n 时,,21∞→+n 而1<a ,故从而,012→+n a)1...()1)(1(22lim naa a n +++∞→=a-11 二、利用变量代换求极限利用变量代换求极限的主要目的是化简原表达式,从而减少运算量,提高运算效率。
常用的变量代换有倒代换、整体代换、三角代换等。
例2、求极限11lim 1--→nmx x x ,其中m,n 为正整数。
分析 这是含根式的(00)型未定式,应先将其利用变量代换进行化简,再进一步计算极限。
解 令11,1→→=t x x t mn时,则当原式=mnt t t t t t t t t t t t m m n n m m n n t m n t =++++++=+++-+++-=----------→→1...1...)1...)(1()1...)(1(lim 11lim 2121212111 三、利用对数转换求极限利用对数转换求极限主要是通过公式,ln v u v e u ⋅=进行恒等变形,特别的情形,在(∞1)型未定式时可直接运用v u v e u ⋅-=)1( 例3、求极限ox →lim xx 2csc )(cos解 原式=ox →lim 21sin sin 21lim csc )1(cos 2202---==→ee e xx xx x四、利用夹逼准则求极限利用夹逼准则求极限主要应用于表达式易于放缩的情形。
求极限方法总结
求极限方法总结求极限方法总结一,求极限的方法横向总结:1带根式的分式或简单根式加减法求极限:1)根式相加减或只有分子带根式:用平方差公式,凑平方(有分式又同时出现未知数的不同次幂:将未知数全部化到分子或分母的位置上)2)分子分母都带根式:将分母分子同时乘以不同的对应分式凑成完全平方式(常用到2分子分母都是有界变量与无穷大量加和求极限:分子与分母同时除以该无穷大量凑出无穷小量与有界变量的乘积结果还是无穷小量。
3等差数列与等比数列和求极限:用求和公式。
4分母是乘积分子是相同常数的n项的和求极限:列项求和5分子分母都是未知数的不同次幂求极限:看未知数的幂数,分子大为无穷大,分子小为无穷小或须先通分。
6运用重要极限求极限(基本)。
7乘除法中用等价无穷小量求极限。
8函数在一点处连续时,函数的极限等于极限的函数。
9常数比0型求极限:先求倒数的极限。
10根号套根号型:约分,注意别约错了。
11三角函数的加减求极限:用三角函数公式,将sin化cos二,求极限的方法纵向总结:1未知数趋近于一个常数求极限:分子分母凑出(x-常数)的形式,然后约分(因为x不等于该常数所以可以约分)最后将该常数带入其他式子。
2未知数趋近于0或无穷:1)将x放在相同的位置2)用无穷小量与有界变量的乘积3)2个重要极限4)分式解法(上述)高数解题技巧。
高数(上册)期末复习要点高数(上册)期末复习要点第一章:1、极限2、连续(学会用定义证明一个函数连续,判断间断点类型)第二章:1、导数(学会用定义证明一个函数是否可导)注:连续不一定可导,可导一定连续2、求导法则(背)3、求导公式也可以是微分公式第三章:1、微分中值定理(一定要熟悉并灵活运用--第一节)2、洛必达法则3、泰勒公式拉格朗日中值定理4、曲线凹凸性、极值(高中学过,不需要过多复习)5、曲率公式曲率半径第四章、第五章:积分不定积分:1、两类换元法 2、分部积分法(注意加C )定积分: 1、定义 2、反常积分第六章:定积分的应用主要有几类:极坐标、求做功、求面积、求体积、求弧长第七章:向量问题不会有很难1、方向余弦2、向量积3、空间直线(两直线的夹角、线面夹角、求直线方程) 3、空间平面4、空间旋转面(柱面)高数解题技巧。
(完整word版)大一高数笔记
导数与极限(一)极限 1. 概念(1)自变量趋向于有限值的函数极限定义(δε-定义) Ax f ax =→)(lim ⇔0>∀ε,0>∃δ,当δ<-<||0a x 时,有ε<-|)(|A x f 。
(2)单侧极限左极限: =-)0(a f Ax f a x =-→)(lim ⇔0>∀ε,0>∃δ,当δ<-<x a 0时,有ε<-|)(|A x f 。
右极限: =+)0(a f Ax f a x =+→)(lim ⇔0>∀ε,0>∃δ,当δ<-<a x 0时,有ε<-|)(|A x f 。
(3)自变量趋向于无穷大的函数极限定义1:0,0>∃>∀X ε,当X x >,成立()ε<-A x f ,则称常数A 为函数()x f 在x 趋于无穷时的极限,记为()Ax f x =∞→lim 。
A y =为曲线()x f y =的水平渐近线。
定义2:00>∃>∀X ,ε,当X x >时,成立()ε<-A x f ,则有()Ax f x =+∞→lim 。
定义3:00>∃>∀X ,ε,当X x -<时,成立()ε<-A x f ,则有()A x f x =-∞→lim 。
运算法则:1) 1) 若()A x f =lim ,()∞=x g lim ,则()()[]∞=+x g x f lim 。
2) 2) 若()()∞≠=但可为,0lim A x f ,()∞=x g lim ,则()()∞=•x g x f lim 。
3) 3) 若()∞=x f lim ,则()01lim=x f 。
注:上述记号lim 是指同一变化过程。
(4)无穷小的定义0>∀ε,0>∃δ,当δ<-<||0a x 时,有ε<|)(|x f ,则称函数)(x f 在a x →时的无穷小(量),即 0)(lim =→x f a x 。
高等数学求极限的17种常用方法(附例题和详解)
⾼等数学求极限的17种常⽤⽅法(附例题和详解)⾼等数学求极限的14种⽅法⼀、极限的定义1.极限的保号性很重要:设A x f x x =→)(lim 0,(i )若A 0>,则有0>δ,使得当δ<-<||00x x 时,0)(>x f ;(ii )若有,0>δ使得当δ<-<||00x x 时,0A ,0)(≥≥则x f 。
2.极限分为函数极限、数列极限,其中函数极限⼜分为∞→x 时函数的极限和0x x →的极限。
要特别注意判定极限是否存在在:(i )数列{}的充要条件收敛于a n x 是它的所有⼦数列均收敛于a 。
常⽤的是其推论,即“⼀个数列收敛于a 的充要条件是其奇⼦列和偶⼦列都收敛于a ”(ii )A x x f x A x f x =+∞→=-∞→?=∞→limlimlim)()((iii)A x x x x A x f x x =→=→?=→+-lim lim lim 0)((iv)单调有界准则(v )两边夹挤准则(夹逼定理/夹逼原理)(vi )柯西收敛准则(不需要掌握)。
极限)(lim 0x f x x →存在的充分必要条件是:εδεδ<-∈>?>?|)()(|)(,0,021021x f x f x U x x o 时,恒有、使得当⼆.解决极限的⽅法如下:1.等价⽆穷⼩代换。
只能在乘除..时候使⽤。
例题略。
2.洛必达(L’ho spital )法则(⼤题⽬有时候会有暗⽰要你使⽤这个⽅法)它的使⽤有严格的使⽤前提。
⾸先必须是X 趋近,⽽不是N 趋近,所以⾯对数列极限时候先要转化成求x 趋近情况下的极限,数列极限的n 当然是趋近于正⽆穷的,不可能是负⽆穷。
其次,必须是函数的导数要存在,假如告诉f (x )、g (x ),没告诉是否可导,不可直接⽤洛必达法则。
另外,必须是“0⽐0”或“⽆穷⼤⽐⽆穷⼤”,并且注意导数分母不能为0。
16种求极限的方法
16种求极限的方法 <网上找的仅供参考>首先说下我的感觉,假如高等数学是棵树木得话,那么极限就是他的根,函数就是他的皮。
树没有跟,活不下去,没有皮,只能枯萎,可见这一章的重要性。
为什么第一章如此重要?各个章节本质上都是极限,是以函数的形式表现出来的,所以也具有函数的性质。
函数的性质表现在各个方面首先对极限的总结如下极限的保号性很重要就是说在一定区间内函数的正负与极限一致1 极限分为一般极限,还有个数列极限,(区别在于数列极限时发散的,是一般极限的一种)2解决极限的方法如下:(我能列出来的全部列出来了!!!!!你还能有补充么???)1 等价无穷小的转化,(只能在乘除时候使用,但是不是说一定在加减时候不能用但是前提是必须证明拆分后极限依然存在) e的X次方-1 或者(1+x)的a次方-1等价于Ax 等等。
全部熟记(x趋近无穷的时候还原成无穷小)2落笔他法则(大题目有时候会有暗示要你使用这个方法)首先他的使用有严格的使用前提!!!!!!必须是 X趋近而不是N趋近!!!!!!!(所以面对数列极限时候先要转化成求x 趋近情况下的极限,当然n趋近是x趋近的一种情况而已,是必要条件(还有一点数列极限的n当然是趋近于正无穷的不可能是负无穷!)必须是函数的导数要存在!!!!!!!!(假如告诉你g(x), 没告诉你是否可导,直接用无疑于找死!!)必须是 0比0 无穷大比无穷大!!!!!!!!!当然还要注意分母不能为0落笔他法则分为3中情况1 0比0 无穷比无穷时候直接用2 0乘以无穷无穷减去无穷(应为无穷大于无穷小成倒数的关系)所以无穷大都写成了无穷小的倒数形式了。
通项之后这样就能变成1中的形式了3 0的0次方 1的无穷次方无穷的0次方对于(指数幂数)方程方法主要是取指数还取对数的方法,这样就能把幂上的函数移下来了,就是写成0与无穷的形式了,(这就是为什么只有3种形式的原因, LNx两端都趋近于无穷时候他的幂移下来趋近于0 当他的幂移下来趋近于无穷的时候 LNX趋近于0)3泰勒公式 (含有e的x次方的时候,尤其是含有正余旋的加减的时候要特变注意!!!!)E的x展开 sina 展开 cos 展开 ln1+x展开对题目简化有很好帮助4面对无穷大比上无穷大形式的解决办法取大头原则最大项除分子分母!!!!!!!!!!!看上去复杂处理很简单!!!!!!!!!!5无穷小于有界函数的处理办法面对复杂函数时候,尤其是正余旋的复杂函数与其他函数相乘的时候,一定要注意这个方法。
求极限的方法总结
求极限的几种常用方法一、 约去零因子求极限例如求极限limx→1x4-1x-1,本例中当x→1时,x-1→0,表明x 与1无限接近,但x≠1,所以x-1这一因子可以约去。
二、 分子分母同除求极限求极限limx→∞x3-x23x3+1∞∞型且分子分母都以多项式给出的极限,可通过分子分母同除来求。
limx→∞x3-x23x3+1=limx→∞1-1x3+1x3=13三、 分子(母)有理化求极限例:求极限limx→∞(x3+3-x2+1)分子或分母有理化求极限,是通过有理化化去无理式。
()()()()131313lim 13lim 22222222+++++++-+=+-++∞→+∞→x x x x x x xx x x 0132lim 22=+++=+∞→x x x例:求极限limx→01+tanx -1+sinxx330sin 1tan 1lim x x x x +-+→=()x x x x x x sin 1tan 1sin tan lim 30+++-→ =300sin tan lim sin 1tan 11lim x x x x x x x -+++→→=41sin tan lim 2130=-→x x x x 本题除了使用分子有理化方法外,及时分离极限式中的非零因子是解题的关键。
四、 应用两个重要极限求极限(2)limx→∞(1+1x)x=limx→0(1+x)1x=e在这一类型题中,一般也不能直接运用公式,需要恒等变形进行化简后才可以利用公式。
例:求极限limx→∞(x+1x-1)x第二个重要极限主要搞清楚凑的步骤:先凑出1,再凑1+1x,最后凑指数部分。
limx→∞(x+1x-1)x=limx→∞(1+2x-1)x=limx→∞[1+1x-122x-1(1+ 2x-1)12]2=e2五、利用无穷小量的性质求极限无穷小量的性质:无穷小量与有界量的乘积还是无穷小量。
这种方法可以处理一个函数极限不存在但有界,和另一个函数的极限是零的极限的乘积的问题。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
求极限的常用方法
摘要 极限思想是大学课程中微积分部分的基本原理,这显示出极限在高等数学中的重要地位。
同时,极限的计算本身也是一个重要内容。
关键词 极限;计算方法
初等数学的研究对象基本上是不变的量,而高等数学的研究对象则是变动的量。
极限方法就是研究变量的一种基本方法。
极限分为数列的极限和函数的极限,下文研究的是函数的极限,这些方法对于数列的极限同样适用。
1.直接代入数值求极限
例1 求极限1lim(21)
x x →-
解
1
lim(21)2111
x x →-=⋅-=
2.约去不能代入的零因子求极限
例2 求极限11
lim
41--→x x x
解 4221111(1)(1)(1)lim lim lim(1)(1)4
11x x x x x x x x x x x →→→--++==++=-- 3.分子分母同除最高次幂求极限
例3 求极限13lim 3
2
3+-∞→x x x x
解
3131lim 13lim 3
11323=+-=+-∞→∞→x x
x x x x x
注:一般地,分子分母同除x 的最高次幂有如下规律
⎪⎪⎩⎪⎪⎨⎧
=<∞>=++++++----∞→n
m b a n m n m b x b x b a x a x a n
n
m m m m n n n n x 0lim 01101
1
4.分子(母)有理化求极限 例4 求极限)
13(lim 22+-++∞
→x x x
解
1
3)
13)(13(lim
)13(lim 2222222
2
+++++++-+=+-++∞
→+∞
→x x x x x x x x x x
1
32lim
2
2
=+++=+∞
→x x x
例5
求极限
x →解
01)2x x x →→→===
5.应用两个重要极限的公式求极限
两个重要极限是1sin lim
0=→x x
x 和1lim(1)x x e
x →∞+=,下面只介绍第二个公式的例子。
例6 求极限
x
x x x ⎪⎭⎫
⎝⎛-++∞→11lim 解 22
212
12112111lim 121lim 11lim e x x x x x x x x
x x x =⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎪⎭⎫ ⎝⎛-+⎪⎪⎭⎫ ⎝⎛+=⎪⎭⎫ ⎝⎛-+=⎪⎭⎫ ⎝⎛-+--+∞→+∞→+∞→
6.用等价无穷小量的代换求极限
这可以称之为求极限最简便的方法。
常见的等价无穷小有:
当0→x 时, sin ~x x ,tan ~x x ,arcsin ~x x ,arctan ~x x ,
2
11cos ~
2x x -,
ln(1)~x x +,1~x e x -
, 1~
x n
例7 求极限0
ln(1)lim
1cos x x x x →+-
解
02
ln(1)lim
lim 211cos 2x x x x x x
x x →→+⋅==-.
7.用洛必达法则求极限
00或∞∞
型的极限,可通过洛必达法则来求。
例8 求极限220)sin 1ln(2cos ln lim
x x x x +-→
解 22
0)sin 1ln(2cos ln lim x x x x +-→x x x
x x x 2sin 12sin 2cos 2sin 2lim
20+--=→
3sin 112cos 222sin lim
20-=⎪⎭
⎫
⎝⎛+--=→x x x x x
8.用换底公式ln b b a
a e =求极限
例9 极限0
lim(sin )x
x x +
→
解
22002
00cos ln sin sin lim lim
cos cos 1
1lim
lim
ln sin sin 0
lim(sin )lim 1
x x x x x x
x x x
x x x x x
x x x
x x x x e e e e
e
++
→→++→→++
---→→======
以上这些求极限的方法是最基本的方法,而计算中经常会遇到需要两种甚至更多种方法
的综合运用(上面的例子中就有不少这种情况),所以掌握这些方法是求极限的关键。
参考文献
[1]同济大学数学系.《高等数学》(上册)·第六版[M].高等数学出版社,2010年. [2]华东师大数学系.《数学分析》(上、下册)[M].高等教育出版社,2001年.
[3]张再云,陈湘栋,丁卫平,涂建斌.极限计算的方法与技巧[J].湖南理工学院学 报(自然科学版), 2009年6月第22卷第2期.
[4]李国华.函数极限的几种求法[J].高师理科学刊,第31卷.。