勾股定理复习课
北师大版八年级上册第一章勾股定理复习(教案)
举例:针对勾股定理证明的难点,教师可以通过以下方法帮助学生突破:
-使用直观的图形和动画演示面积法的证明过程,让学生看到面积转化的直观效果。
-分步骤讲解证明过程,强调每一步的逻辑关系和数学意义。
-组织学生进行小组讨论,鼓励他们用自己的语言解释证明过程,加深理解。
其次,在新课讲授环节,我注重理论与实践相结合,通过具体的案例分析和实验操作,帮助学生加深对勾股定理的理解。这种教学方法取得了较好的效果,但我也注意到部分学生在理解证明过程时仍存在困难。因此,在今后的教学中,我需要更加关注学生的个体差异,针对不同水平的学生进行有针对性的辅导。
在实践活动环节,分组讨论和实验操作使学生积极参与到课堂中,提高了他们的动手能力和团队协作能力。但同时,我也发现部分小组在讨论过程中存在时间分配不均的问题。为了提高课堂效率,我需要在今后的教学中加强对小组讨论的引导和监督,确保每个学生都能充分参与到讨论中来。
-对于勾股数的性质,教师可以设计一些探索性的活动,如让学生尝试找出一定范围内所有的勾股数,通过实践活动发现勾股数的规律。
-在解决实际问题时,教师应引导学生如何从问题中抽象出数学模型,如何将现实问题转化为数学问题,并通过示例来演示解题步骤。
四、教学流程
(一)导入新课(用时5分钟)
同学们,今天我们将要复习的是《勾股定理》这一章节。在开始之前,我想先问大家一个问题:“你们在日常生活中是否遇到过需要计算直角三角形斜边长度的情况?”比如,测量一块三角形的草地面积。这个问题与我们将要复习的内容密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同回顾勾股定理的奥秘。
-勾股定理的应用:学会将勾股定理应用于解决实际问题,如计算直角三角形的斜边长度或判断一组数是否为勾股数。
第一章勾股定理复习课教案
(五)总结回顾(用时5分钟)
今天的学习,我们回顾了勾股定理的基本概念、重要性和应用。通过实践活动和小组讨论,我们加深了对勾股定理的理解。我希望大家能够掌握这些知识点,并在解决实际问题时能够灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。
举例解释:
-对于实际问题,教师需设计不同难度的题目,如斜边未知、一条直角边未知或者需要用到勾股定理的变形等,帮助学生克服在应用中遇到的困难。
-在证明难点上,教师应详细解释每种证明方法的思路,如几何拼贴法中如何通过面积相等来推导出勾股定理,代数推导法中如何利用平方差公式等。
-对于勾股数的创造性应用,教师可以通过提供不完整的直角三角形信息,让学生尝试用勾股数去补全信息,锻炼学生的思维能力和创新意识。
4.学生小组讨论环节,大家积极分享自己的观点和想法,有助于提高他们的表达能力和思维能力。但在今后的教学中,我需要关注每个学生的参与程度,鼓励他们大胆发表自己的见解,使讨论更加全面和深入。
5.总结回顾环节,学生对勾股定理的理解和掌握程度得到了巩固。但在今后的教学中,我应加强对学生的引导,帮助他们从多个角度理解和运用勾股定理,提高他们的综合运用能力。
五、教学反思
在今天的勾股定理复习课中,我尝试了多种教学方法,希望能够帮助学生更好地理解和掌握这一数学概念。通过教学实践,我发现以下几点值得反思:
1.导入新课环节,以生活中的实际例子引导学生思考,激发了他们的学习兴趣。然而,在今后的教学中,我应更加注重引导学生从实际问题中发现数学规律,提高他们的问题意识。
3.提升学生的数学建模素养,将勾股定理应用于解决实际问题,建立数学模型,提高解决实际问题的能力。
勾股定理的证明及应用(复习课)
2
B
X
X+0.5 A
勾股定理 一辆装满货物的卡车2.5m高,1.6m宽,要开进 具有如图所示形状厂门的某工厂,问这辆卡车能 否通过厂门?说明你的理由。 P 1 0.6 A B O 0.8 Q 2.3
2
勾股定理 如图,点A是一个半径为 250 m的圆形森林公园的
中心,在森林公园附近有 B .C 两个小镇,现要在 B.C 两小镇之间修一条长为 1000 m 的笔直公路将两镇 连通,经测得 ∠B=60°,∠C=30°,问?请通过计算 说明此公路会不会穿过该森林公园.
A
勾股定理
变式一:如果电线杆的高度未知,现有一根一端固定在电线杆 顶端的钢缆,且钢缆长比电线杆长8米,地面钢缆固定点A 到电线杆底部B的距离为12米,求电线杆的高度。 变式二:现有一根一端固定在电线杆顶端的钢缆,给你一把米 尺,你能测量出旗杆的高度吗?请你设计方案。
C
B
A
荷花问题
勾股定理
7.印度数学家什迦逻(1141年-1225年)曾提出过“荷 花问题”: “平平湖水清可鉴,面上半尺生红莲; 出泥不染亭亭立,忽被强风吹一边, 渔人观看忙向前,花离原位二尺远; 能算诸君请解题,湖水如何知深浅?”, C 请用学过的数学知识回答这个问题。
勾股定理复习课 1、美丽的勾股树
勾股定理
2、拼图证明
勾股定理
赵爽弦图
勾股定理
c
b
a
印度婆什迦罗的证明
勾股定理
c b a
c2 = b2 + a2
直接观察验证
勾股定理
a2
a2 c2 b2 a 2 + b 2 = c2
总统法
勾股定理
a
b
勾股定理复习课件
h
1.如图,已知长方体的长、宽、高分 别为4cm、3cm、12cm,求BD’的长。
解:连结BD,在直角三角形 ABD中,根据勾股定理 A’
BD AB AD 4 3 5
2 2 2 2 2 2
D’ B’
C’
BD 5
在直角三角形D’ BD 中,根 据勾股定理
BD'2 DD '2 BD 2 12 2 52 13 2 BD' 13(cm)。
4.若一个三角形某两边的平方和不等于第三边的平 方,则这个三角形一定不是直角三角形( ).
选择: 直角三角形的两条直角边长为a,b, 斜边上的高为h,则下列各式中总能成立 的是 ( D )
A. ab=h
2
B. a +b =2h
2
2
2
1 1 1 C. + = a b h
1 1 1 D. 2 + 2 = 2 a b h
4.互逆命题与互逆定理的概念
无理数在数轴上的表示
在数轴上表示 13 , 17 , 5,20
4.勾股定理及其逆定理的应用
①勾股定理可以解决直角三角形当中一些
与边有关的问题(直角边、斜边、斜边上
的高、面积等)
②勾股定理的逆定理可以判断一个三角形
是否是直角三角形(此时先找到最长边,再
看看两较短边的平方和是否等于长边的平
本章知识框图:
实际问题
(直角三角形边长计算)
互逆 定理
由形到数
勾股定理
实际问题 (判定直角三角形)
由数到形
勾股定理 的逆定理
题设
勾股定理 在Rt△ABC 中,∠C=900
勾股定理的逆定理 在△ABC 中, 三边 a,b,c满足a2+b2=c2
2勾股定理2(经典题型)
(7)在Rt△ABC中,∠C=90°,AC=3,BC=8,则BC边上的中线AD的长为。
3、解答:
(1)如图是水上乐园的一滑梯,AD=AB,若高BC=4cm,CD=2cm ,求滑道AD的长。
(2)A、B、C、D四个住宅小区位置如图所示,已知:AB=0.5km,AD=1.2km,CD=0.9km,现要建一个公交总站,使它到四个小区路程和最短,
(2). 求证:
11、小明想测量学校旗杆的高度,他采用如下的方法:先降旗
杆上的绳子接长一些,让它垂到地面还多1米,然后将绳子
下端拉直,使它刚好接触地面,测得绳下端离旗杆底部5米,
你能帮它计算一下旗杆的高度.
12、有一只鸟在一棵高4米的小树梢上捉虫子,它的伙伴在离该树12米,高20米的一棵大树的树梢上发出友好的叫声,它立刻以4米/秒的速度飞向大树树梢.那么这只鸟至少几秒才能到达大树和伙伴在一起.
6、已知:如图2-7所示,△ABC中,D是AB的中点,若AC=12,BC=5,CD=6.5。
求证:△ABC是直角三角形.
7、如右图,壁虎在一座底面半径为2米,高为4米的油罐的下底边沿A处,它发现在自己的正上方油罐上边缘的B处有一只害虫,便决定捕捉这只害虫,为了不引起害虫的注意,它故意不走直线,而是绕着油罐,沿一条螺旋路线,从背后对害虫进行突然袭击.结果,壁虎的偷袭得到成功,获得了一顿美餐.请问壁虎至少要爬行多少路程才能捕到害虫?
课堂训练
1、如图,已知:△ABC中,∠C=90°,点D是AC上的任意一点,
请判断AB2+CD2与AC2+BD2的大小关系。
2、如图,已知:AC平分∠BAD,CE⊥AB于E,CF⊥AD于F,CB=CD,
勾股定理复习课5.13
三、常见问题枚举:
知识点3:勾股定理与其他定理的简单应用
⑸与逆定理
变式:已知,如图,四边形ABCD中,AB=3cm, AD=4cm,BC=13cm,CD=12cm,且∠A=90°,求 四边形ABCD的面积。
A B C D
通过本堂课的学习,你弄懂了哪些知识? 感受到了那些思想?还有什么困惑?
题设 结论
勾股定理 在Rt△ABC 中,∠C=900
勾股定理的逆定理 在△ABC 中, 三边 a,b,c满足a2.用勾股定理进行计算 1.判断某三角形是否 2.证明与平方有关的问题 为直角三角形(3种) 3.解决实际问题 2.解决实际问题 联系 1.两个定理都与“三角形的三边关系a2+b2=c2”
E AA
E
B
B
DD
C
C
变式:如图所示,在 RTΔABC中,∠C=90°,DE 是斜边AB的垂直平分线, BC=8,AC=4,求BD
三、常见问题枚举:
知识点3:勾股定理与其他定理的简单应用
⑸与逆定理
例7:如图所示一块地,已知AD=4m,CD=3m, AD⊥DC,AB=13m,BC=12m,求这块地的面积.
三、常见问题枚举:
知识点3:勾股定理与其他定理的简单应用
⑶与角平分线
例5:在RTΔABC中,两直角边AB=6,BC=8, ∠BAC的角平分线交BC边于点D,则BD的长 为 .
A
M
B
D
C
三、常见问题枚举:
知识点3:勾股定理与其他定理的简单应用
⑷与线段垂直平分线
例6:如图所示,在ΔABC中,DE是AB的垂直 平分线,BD=5,DE=3,求AB
例2:在⊿ABC中,∠ACB=90°,CD⊥AB 于点D,AC=8,BC=6,求CD
勾股定理复习课件
4
44
4
∴AC2+AD2=CD2, ∴∠CAD=90°.
12+(3)2=5. 44
∴S 四边形 ABCD=S△ABC+S△ACD=12AB·BC+12AD·AC=12×1×34+12×3×54=94
第十七章 勾股定理
素养提升
专题一 方程思想——折叠问题
例 1 如图, 将一个长方形纸片 ABCD 沿对角线 AC 折叠, 点 B 落在 点 E 处, AE 交 DC 于点 F, 已知 AB=4 cm, BC=2 cm. 求折叠后重合 部分(△ACF)的面积.
如图, 过点 C 作 CD⊥AB 于点 D,
由勾股定理, 得 AB= AC2+BC2= 92+122=15.
根据等积法 12AC·BC=
12AB·CD,
则 CD=
36. 5
第十七章 勾股定理
专题二: 勾股定理的实际应用
例 3 如图, 在公路 l 旁有一块山地正在开发, 发现需要在 C 处进 行爆破. 已知点 C 与公路上的停靠点 A 的距离为 300 m,与公路上 的另一停靠点 B 的距离ቤተ መጻሕፍቲ ባይዱ 400 m,且 AC⊥CB, 为了安全起见, 以爆 破点 C 为圆心, 250 m 为半径的圆内不得有人进入. 则在进行爆破 时, 公路 AB 段是否有危险?需要暂时封锁吗?
相关题 2 [广州中考]在 Rt△ABC 中, ∠C=90°, AC=9, BC=12, 则
点 C 到 AB 的距离是( A ).
A.356
B.1225
C.94
D.3 4 3
分析:
先根据题意画出图形, 再结合勾股定理求出直角三角形的斜边长, 最
第十七章 勾股定理 章末复习 课件(共23张PPT) 2024-2025学年人教版八年级数学下册
巩固练习
1.如图,一个圆柱形油罐,要从A点环绕油罐建梯子,正好到A 点的正上方B点,请你算一算梯子最短需多少米? ( 已知油罐 的底面周长是12米,高是5米).
解:如图,将油罐侧面展开,
此时AB= 122 52 =13(m).
2.如图,已知在△ABC中,AB=17 , AC=10 , BC边上的高AD=8, 求:(1)BC边的长;(2)△ABC的面积.
A
思考:如何判定一个三角形是直角三角形呢?
1.有一个内角为直角的三角形是直角三角形.
2.两个内角互余的三角形是直角三角形.
3.如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角
形是直角三角形.
A
勾股定理的逆定理
c
几何语言:∵a2+b2=c2, b
∴△ABC是直角三角形.
C
a
B
典型例题
S阴影=S△CAD-S△ABC
=
1 2
AC·AD-
1 2
AB·BC
=24
互逆命题
勾股定理
题设:一个三角形 是直角三角形.
勾股定理 的逆定理
题设:一个三角形 的三边长a,b,c
满足a2+b2=c2.
结论:两条直角边的平 方和等于斜边的平方.
(a2+b2=c2)
结论:这个三角形 是直角三角形.
若两个命题的题设、结论正好相反,则这两个命题叫 做互逆命题.
知识框图 勾股定理
互逆定理
勾股定理的逆定理
直角三角形边 长的数量关系
直角三角形的判定
复习回顾
回顾思考:
1.直角三角形三边的长有什么特殊的关系? 2.赵爽证明勾股定理运用了什么思想方法? 3.已知一个三角形的三边长,怎样判断它是不是直角三 角形? 你作判断的依据是什么? 4.证明勾股定理的逆定理运用了什么方法? 5.一个命题成立,它的逆命题未必成立. 请举例说明.
勾股定理复习课课件
20
15
如图是一个长8m,宽6m,高5m的仓库,在
其内壁的A处(长的四等分点)处有一只壁虎,
B(宽的三等分)处有一只蚊子,则壁虎抓到蚊
子的最短距离的平方为
m2
A B 21 02521 2 5
B
A
5
5 A
6
8
B
64
8
6B
46
A B 2 6 2 9 23 6 8 1 1 1 7
A、120
B、121 C、132
D、123
6.等腰三角形底边上的高为8,周长为32, 则三角形的面积为(B ) A、56 B、48 C、40 D、32
A x2+82=(16-x)2
x=6
16-x
BC=2x=12
8
SABC
1128B48 2
x
Dx
C
选择题
7.若等腰三角形中相等的两边长为10cm,第三 边长为16 cm,那么第三边上的高为 ( ) A. 12 cm B. 10 cm C. 8 cm D. 6 cm
C 20 A
在Rt△ADC中,(1 0x)22 02(3 0-x)2
解得x=5 ∴树高CD=BC+BD=10+5=15(m)
如图所示是2002年8月北京第24届国际数学 家大会会标“弦图”,它由4个全等的直角三 角形拼合而成。如果图中大、小正方形的面
积分别为52和4,那么一个直角三角形的两
直角边的和等于 10 。
P
30° 100
M 160
A
Q
有一棵树(如图中的CD)的10m高处B有两只猴子
,其中一只猴子爬下树走到离树20m处的池塘A
勾股定理专题复习课
详细描述
根据勾股定理,直角三角形的面积可以通过两条直角边的长度和斜边的高来计算。面积 = (1/2) × 直角边1 × 直角边2 = (1/2) × 斜边 × 高。
示例
在直角三角形ABC中,已知直角边a=3和b=4,斜边c=5,斜边上的高h可以通过面积公式计 算为h=12/5。
等。
05 勾股定理的易错点解析
勾股定理适用条件的误解
总结词
理解不准确
01
总结词
应用范围限制
03
总结词
忽视前提条件
05
02
详细描述
勾股定理适用于直角三角形,但学生常常误 以为它适用于所有三角形,导致在解题时出 现错误。
04
详细描述
勾股定理只适用于直角三角形,对于 非直角三角形,需要使用其他定理和 公式进行计算。
06
详细描述
勾股定理的前提是三角形必须是直角三角形, 如果忽视这个前提,会导致计算结果不准确。
勾股定理计算中的常见错误
在此添加您的文本17字
总结词:计算错误
在此添加您的文本16字
详细描述:学生在使用勾股定理进行计算时,常常因为粗 心或对公式理解不准确而出现计算错误。
在此添加您的文本16字
总结词:单位不统一
勾股定理与三角函数的关系
总结词
勾股定理与三角函数之间存在密 切关系,可以通过三角函数来求 解相关问题。
详细描述
在解决与直角三角形相关的三角 函数问题时,勾股定理常常被用 来计算边长或角度。例如,在求 解三角函数的实际应用问题时, 可以使用勾股定理来计算相关物 体的长度或距离。
示例
在解决与航海、测量和几何学相 关的实际问题时,常常需要使用 勾股定理和三角函数来求解角度 和距离。
勾股定理全章复习公开课
熟记勾股定理及其逆定理
能综合应用勾股定理及其 逆定理解决问题.
教学目标:
自主复习课本108页———125页;
思考:你学到了哪些知识?
设疑导学
a
b
c
勾股定理
勾股定理
勾股定理的逆定理
拼图验证法
勾股定理的应用
勾股数
勾股定理的逆定理的应用
5 或
合作探究
问题一:如图,在矩形ABCD中,BC=8,CD=4,将矩形沿BD折叠,点A落在A′处,求重叠部分△BFD的面积。
A
B
C
D
F
A′
4
8
x
8-x
3
5
归纳:
1
折叠出对称,勾股建方程!
2
合作探究
问题二:已知Rt△ABC中,∠C=90°,若a+b=14cm,c=10cm,则Rt△ABC的面积是( ) A.24cm2 B.36cm2 C.48cm2 D.60cm2
∵a2+b2=c2
(3)
如果三角形的三边长为a、b、c满足 a2+b2=c2,那么这个三角形是直角三角形
C
A
B
a
b
c
第1题
1.如图,字母A,B,C分别代表正方形的面积 (1)若B=225个单位面积,C=400个单位面积, 则A=______个单位面积. (2)若A=225个单位面积,B=81个单位面积, 则C=______个单位面积.
C
A
B
a
b
c
A
测评反馈
1、如图,在直角三角形ABC中,∠C=90°,BC=3cm,AC=4cm,折叠∠CBA,使BC边落在AB边上,点C落在点E处,求CD的长。
初中数学《勾股定理》复习课
A.20
B.10 C.14 D.无法确定
2
O
蛋糕
B
C
6
8
8
A
周长的一半
A
B
2.一根150cm的木棒,要放在长、宽、高分别是
40 cm,30 cm,120 cm的长方体木箱中,露出木
箱的部分最短是多少?
探究新知
类型五:判断一个三角形是否为直角三角形
例1: 如图,正方形ABCD中,边长为4,F为DC的中点,E为BC上
那么这个三角形是直角三角形
B
b
C
符号语言: 在△ABC中,
2+b2=c2
∵a
c
∴ △ABC 是直角三角形,
∠C=90°
a
A
在∆ABC中, a,b,c为三边长,若 c为最大边, 则∠C为三
角形最大角。
若a2 +b2=c2, 则∆ABC为 直角 三角形; ∠C为 直角
若a2 +b2>c2, 则∆ABC为 锐角 三角形; ∠C 为 锐角
∴AE2+ AD2= DE2, BE2+ BC2= EC2,
∴AE2+ AD2= BE2+ BC2,
设AE= ,则BE=AB-AE=(25- ),
∵DA=15km,CB=10km,
∴ 2+ 152=(25- )2 + 102;
解得: =10, ∴ AE= 10km ,
探究新知
类型七:勾股定理与最短距离问题
DA⊥AB于A,CB⊥AB于B,已知DA=15km,CB=10km,现在要
在铁路AB上建一个土特产品收购站E,使得C,D两村到E站的距
离相等.
E站应建在A站多少km处?
勾股定理期末复习课件(公开课)
勾股定理
1:勾股定理的验证 2:求第三边 3:求斜边上的高 4:求面积 1:勾股数 2:逆定理(给出三边长度判断直角三角形)
第 一 章 股 股 定 理
勾股定理 逆定理
勾股定理 应用
1:折叠问题 2:最短路径问题
勾股定理: 如果用a,b,c表示直角三角形的两个直角边和斜 边,那么a2+b2=c2 B 变形: 2 2
例1:如图,已知圆柱体底面直径为2cm,高为4cm (1)求一只蚂蚁从A点到F点的距离。 (2)如果蚂蚁从A点到CG边中点H,求蚂蚁爬行的距 离。
F
●
H
A
例2、如图,一只蚂蚁从实心长方体的顶点A出发,沿长方体的表面爬到
对角顶点C1处(三条棱长如图所示),问怎样走路线最短?最短路线长 为多少?
D1 A1 D A 4
.
C S3 A S1
S2 B
图3
变式1.如图1-1-3所示的图形中,所有的四边形都 是正方形,所有的三角形都是直角三角形,其中最 大的正方形的边长为7cm,则正方形A,B,C,D的面 积的和是_______
变式2:如图4,分别以Rt
ABC三边为边向外作三个 半圆,其面积分别用S1、S2、S3表示,容易得出S1、S2、
例1:在△ABC中, a : b : c 1:1: 确切形状是_____________。
2
,那么△ABC的
例2:如图,已知四边形ABCD中,∠B=90°,AB=3,BC=4,CD=12, AD=13, 求四边形ABCD的面积.
例1:如图,小红用一张长方形纸片ABCD进行折纸,已知该纸片宽AB 为8cm,• 长BC为10cm.当小红折叠时,顶点D落在BC边上的点F处 (折痕为AE) D A (1)求BF的长; (2)求EC的长。
勾股定理复习课(第1和2课时)
3km
20s
V=S÷T
8.某考古员发现了一张文字叙述的藏宝图“他们登陆后先往东走 8千米,又往北走 2千米,遇到障碍后又往西走 3 千米,再折向北 走到 图画出来(2)登陆点A到宝藏点B的直线距离是多少千米?
过点B作BC⊥AC于C 解:在Rt△ABC中,∠ACB=90° AC=6,BC=8 AB = 2 2 = 6 8 =10(千米) 答:登陆点A到宝藏点B的直线 距离是10千米。
D O
BD OD OB
B
在RtCOD中,由勾股定理得:
OD2 CD 2 OC 2
?
OD 21
即:21 3 2
分类思想
1.直角三角形中,已知两条边,不知道是 直角边还是斜边时,应分类讨论。
2.当已知条件中没有给出图形时,应认真 读句画图,避免遗漏另一种情况。
六、最短路径
勾股定理的复习
第1课时
什么叫勾股定理?
直角三角形两直角边的平方和等于斜边的平方。
a2+b2=c2
注意:
1、直角三角形是前提。 2、谁是斜边要清楚。
1、勾股定理的公式变形
a2+b2=c2
A
a2=c2-b2
c
b2 =c2-a2
2
2
b C
a c b
2
B
b= c2-a2
2
a
c a b
勾股定理的证明
5.勾股定理的逆定理:
三角形的三边a,b,c满足 a2+b2=c2,则这个三角形是直角 三角形,较大边C所对的角是
直角.
6、特殊三角形的三边关系:
A
A b c
c
b
B
a
C
七年级数学上册 第十八章 勾股定理复习课件 新人教版(共10张PPT)
(如直图角所三示角,形圆边柱长形计玻算璃) 容器的高为18cm,底面周长为24cm,在外侧距下底1cm的点A处有一小蚂蚁,它在与自己相对的圆柱形容器的上 如口图外是 侧一距个开机口器1c零m的件点示B意处图发,现∠一AC点D点=9食0°物是碎这屑种.零请件问合:格蚂的蚁一爬项到指食标物.处现的测最得近A路B=线4是cm多,长B?C=3cm,CD=12cm,AD=13cm, ∠一A长B方C=形90水°.池根的据长这、些宽条、件高,分能别否为知12道dm∠、AC4Ddm等、于39d0m°?,池中有一满池水.小亮把长度为14dm的金属棒放入水中,能否被完全淹没?说说
5.一长方形水池的长、宽、高分别 你的理由.
小亮想知道学校旗杆的高度.他发现旗杆上的绳子垂到地面还多2米; 如果一个命题成立,它的逆命题一定成立吗?请举例说明.
为12dm、4dm、3dm,池中有一满池 如图是一个机器零件示意图,∠ACD=90°是这种零件合格的一项指标.现测得AB=4cm,BC=3cm,CD=12cm,AD=13cm,
第十八章 勾股定理 (复习课)
一、 本章知识结构
实际问题 (直角三角形边长ห้องสมุดไป่ตู้算)
实际问题 (判定直角三角形)
勾股定理
互逆定理
勾股定理的逆定理
回顾与思考
1.直角三角形三边的长有什么关系?找一 个实际问题并用勾股定理解决.
2.已知一个三角形的三边,你能判断它 是否直角三角形吗?
3.如果一个命题成立,它的逆命题一定成 立吗?请举例说明.
2.小亮想知道学校旗杆的高度.他发 如直图角是 三一角个形机三器边零的件长示有意什图么,关系∠A?C找D一=9个0°实是际这问种题零并件用合勾格股的定一理项解指决标..现测得AB=4cm,BC=3cm,CD=12cm,AD=13cm,
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
勾股定理复习课
学习目标:
1、进一步理解勾股定理的内容。
2、能熟练使用方程思想解决问题。
3、培养学生独立分析问题、解决问题的水平。
一、知识要点
1、勾股定理
____________________________________
2、勾股定理应用的条件:
____________________________________
二、巩固练习
填空题
1、在Rt△ABC中,∠C=90°,
①若a=5,b=12,则c=___________;
②若a=15,c=25,则b=___________;
选择题
2.已知一个Rt△的两边长分别为3和4,则第三边长的平方是()A、25 B、14 C、7 D、7或25
3.下列各组数中,以a,b,c为边的三角形不是Rt△的是()A、a=1.5,b=2,c=3 B、a=7,b=24,c=25 C、a=6,b=8,c=10
D、a=3,b=4,c=5
三、方程思想的使用
1、我国古代数学著作《九章算术》中的一个问题,原文是:今有方池一丈,葭生其中央,出水一尺,引葭赴岸,适与岸齐,水深、葭长各几何?请用学过的数学知识回答这个问题。
方程思想规律总结
直角三角形中,当无法已知两边求第三边时,应灵活地寻找题中的等量关系,利用勾股定理列方程。
2、有一张直角三角形纸片,两直角边AC=6 cm,BC=8 cm,将△ABC 折叠,使点B与点A重合,折痕是DE,求CD的长.
3、折叠矩形ABCD的一边AD,点D落在BC边上的点F处,已知AB=8cm,BC=10cm,求: 1.CF=? 2.EC=?
4(变式)、折叠矩形ABCD的一边AD,点D落在BC边上的点F处,已知AB=8cm,BC=10cm,求AE
当堂检测
1.一根旗杆高8m,断裂后旗杆顶端落于旗杆底端4m处,旗杆的断裂出距离地面()米
2.以直角三角形的两直角边所作正方形的面积分别是25和144,则斜边长是()
3.已知Rt△ABC中,∠C=90°,若a+b=14cm,c=10cm,则Rt△ABC 的面积是()A、24cm2B、36cm2C、48cm2 D、60cm2 4.等腰三角形底边上的高为8,周长为32,则三角形的面积为()
A、56
B、48
C、40
D、32
5.一块直角三角形的纸片,两直角边AC=6㎝,BC=8㎝。
现将AC沿直线AD折叠,使它落在斜边AB上,且与AE重合,求CD。