铁碳合金相图

合集下载

铁碳合金相图25959

铁碳合金相图25959

▪ 莱氏体性能:莱氏体的力学性能与渗碳体相似,硬度很高, 塑性极差,几乎为零。
精选ppt课件
18
精选ppt课件
19
γ
精选ppt课件
▪ 转变产物为珠光体,用符号
P表示。组织中的Fe3C称为共
析渗碳体。
20
珠光体
▪ 珠光体:珠光体是奥氏体冷却时,在727℃发生共析转变的 产物,由铁素体和渗碳体组成的机械混合物,用符号“P” 表示。显微组织为由铁素体片与渗碳体片交替排列的片状 组织。
▪ 铁素体性能:铁素体的力学性能特点是塑性、韧性好,而强
度、硬度低。(δ=30%~50%,AKU=128~160J),
σb=180~280MPa,50~80HBS)
精选ppt课件
4
奥氏体
▪ 奥氏体:是碳溶于γ-Fe中的间隙固溶体,用符号“γ”(或 A)表示,呈面心立方晶格。碳在γ-Fe中的溶解度要比在 α-Fe中大,在727℃时为0.77%,在1148℃时溶解度最大, 可达2.11%。奥氏体是一种高温组织,稳定存在的温度范围 为727~1394℃,显微组织为多边形晶粒。
是国际通用的,不能 随意更换。
精选ppt课件
11
▪ 单相区5个 ▪ 双相区7个 ▪ 三相区3个
精选ppt课件
12
精选ppt课件
13
γ L+γ
包晶转变线(HJB):含碳0.53%的液相与含碳0.09%的δ铁素
体发生反应,生成含碳0精.选1p7p%t课件的奥氏体。
14
▪ 碳含量小于2.11%的合金在冷却的历程中,都可在一个温度区 间得到单相的奥氏体。
铁碳合金二元相图
海洋材料科学与工程研究院
刘LO伯G洋O
精选ppt课件

铁碳合金相图分析

铁碳合金相图分析

1点以上
1~2点
2~3点
图3-3 共析钢结晶过程示意图
3点~室温
共析钢的室温组织全部为P,呈层片状,其室温下的显微组织如图3-4 所示。
图3-4 共析钢室温下的显微组织
(二)亚共析钢的结晶过程 图 3-2 中的合金Ⅱ为 wC 0.45% 的亚共析钢,其结晶过程如图 3-5 所示。
1点以上
1~2点
A3 线 合金冷却时从奥氏体中开始析出铁素体的析出线
三、铁碳合金的结晶过程
图3-2 简化后的Fe-Fe3C相图
根据碳的质量分数和室温显微组织不同,铁碳合金可以分为工业纯 铁、钢和白口铸铁三大类,具体如下。
(一)共析钢的结晶过程 在图 3-2 中,合金Ⅰ为 wC 0.77% 的共析钢,其结晶过程如图 3-3 所示。
图3-12 亚共晶白口铸铁室温下的显微组织
(六)过共晶白口铸铁的结晶过程 图 3-2 中的合金Ⅵ为 wC 5.0% 的过共晶白口铸铁,其结晶过程如图 3-13
所示。
1点以上
1~2点
2~3点
图3-13 过共晶白口铸铁的结晶示意图
3点~室温
过共晶白口铸铁室温下的显微组织如图 3-14 所示,图中白色条状为 Fe3CⅠ , 黑白 相间的 基 体 为 Ld′ 。所 有过共 晶 白口 铸铁 的 室温 组织 均 为 Ld Fe3CⅠ,只是随着碳含量的增加, Fe3CⅠ量增加。
0.09
碳在 δ-Fe 中的最大溶解度
J
1 495
K
727
0.17 6.69
包晶点 LB δH
A 1495℃ J
Fe3C 的成分
符号 N P S Q
温度 T/℃ 1 394 727
727 室温

铁碳合金相图

铁碳合金相图

二 相图中点的含义
1A点 纯铁的熔点;温度 1538℃,Wc=0
2G点 纯铁的同素异晶转变点; 冷却到912℃时,发生 γF→α-Fe
3Q点 600℃时,碳在αFe中的 溶度,Wc=0 0057%
二 相图中点的含义
4D点 渗碳体熔点,温度 1227℃,Wc=6 69%
5C点 共晶点;温度1148℃,Wc=4 3% 成分为C的液相,冷却到此 温度时,发生共晶反应 Lc→A+Fe3C
一 铁碳合金的分类:
按含碳量的不同;铁 碳合金的室温组织可 分为工业纯钛 钢和 白口铸铁; 其中,把 含碳量小雨0 0218% 的铁碳合金称为纯铁; 把含碳量大于 0.0218%而小于2.11% 的铁碳合金称为钢; 把含碳量大于2.11% 的铁碳合金称为铸铁。
纯铁 钢和铸铁的含碳量:
⑴ 工业纯铁组织为单相铁素体 (<0 0218% C)
一次渗碳体+ 低温莱氏体
性能特 强度 硬 C↑,强度 硬度逐 强度较高,硬度 硬度较高,塑性差,
点平衡 度低、 渐提高,有较好的 适中,具有一定 随着网状二次渗碳
状态 塑性好 塑性和韧性
的塑性和韧性 体增加,强度降低
硬度高;脆性大,几乎没有塑性
1 亚共析钢的组织的变化顺序:
亚共析钢的室温组 织由珠光体和铁素体 组成合金的组织按下 列顺序变化:
课堂练习:
1 共析钢冷却到S点时;会发生共析转变,从奥氏体中
同时析出
铁和素(体
)渗的碳混体 合物,称为(
) ; 珠光体
2、过共晶白口铸铁的室温组织是(一次渗碳体 )加( )。低温莱氏体
3、共晶白口铸铁的含碳量为( 4 3 )%
一 填空题
1、常见的金属晶体类型有 晶格、( )晶格和( )晶格三种; 2、金属的整个结晶过程包括( )、( )两个基本过程组成 。 3、根据溶质原子在溶剂晶格中所处的位置不同;固溶体分为( )和 ( )两种。 4、铁碳合金的基本组织中属于固溶体的有( )和( ),属 于金属化合物的有( ),属于混合物的有( )和莱氏体。 5、原子呈无序堆积状态的物体叫( );原子呈有序、有规则排 列的物体叫( )。一般固态金属都属于( )。 6、常温下金属的塑性变形方式主要有( )和( )两种。 7、变形一般分为( )变形和( )变形两种,不能随载荷的去除 而消失的变形称为( )变形。 8、细化晶粒的根本途径是控制结晶时的( )及( )。

铁碳合金相图分析

铁碳合金相图分析

第四章铁碳合金第一节铁碳合金的相结构与性能一、纯铁的同素异晶转变δ-Fe→γ-Fe→α-Fe体心面心体心同素异晶转变——固态下,一种元素的晶体结构随温度发生变化的现象.特点:是形核与长大的过程重结晶将导致体积变化产生内应力通过热处理改变其组织、结构→ 性能二、铁碳合金的基本相基本相定义力学性能溶碳量铁素体 F碳在α-Fe中的间隙固溶体强度,硬度低,塑性,韧性好最大%奥氏体 A碳在γ-Fe中的间隙固溶体硬度低,塑性好最大%渗碳体Fe3C Fe与C的金属化合物硬而脆800HBW,δ↑=αk=0%第二节铁碳合金相图一、相图分析两组元:Fe、 Fe3C上半部分图形二元共晶相图共晶转变:1148℃ 727℃→ + Fe3C →P + Fe3C莱氏体Ld Ld′2、下半部分图形共析相图两个基本相:F、Fe3C共析转变:727℃→ + Fe3C珠光体P二、典型合金结晶过程分类:三条重要的特性曲线① GS线---又称为A3线它是在冷却过程中由奥氏体析出铁素体的开始线或者说在加热过程中铁素体溶入奥氏体的终了线.② ES线---是碳在奥氏体中的溶解度曲线当温度低于此曲线时就要从奥氏体中析出次生渗碳体通常称之为二次渗碳体因此该曲线又是二次渗碳体的开始析出线.也叫Acm线.③ PQ线---是碳在铁素体中的溶解度曲线.铁素体中的最大溶碳量于727oC时达到最大值%.随着温度的降低铁素体中的溶碳量逐渐减少在300oC以下溶碳量小于%.因此当铁素体从727oC冷却下来时要从铁素体中析出渗碳体称之为三次渗碳体记为Fe3CⅢ.工业纯铁<%C钢——亚共析钢、共析钢%C、过共析钢白口铸铁——亚共晶白口铸铁、共晶白口铸铁、过共晶白口铸铁L → L+A → A → PF+Fe3CL → L+A → A → A+F →P+FL → L+A → A → A+ Fe3CⅡ→P+ Fe3CⅡ4、共晶白口铸铁L → LdA+Fe3C →LdA+Fe3C+ Fe3CⅡ → Ld′P+Fe3C+Fe3CⅡ5、亚共晶白口铸铁L → LdA+Fe3C + A →Ld+A+ Fe3CⅡ → Ld′+P+ Fe3CⅡ6、过共晶白口铸铁L → LdA+Fe3C + Fe3C → Ld + Fe3C→ Ld′+ Fe3C三、铁碳合金的成分、组织、性能之间的关系1、含碳量对铁碳合金平衡组织的影响2、含碳量对铁碳合金力学性能的影响四、铁碳合金相图的应用1、选材方面的应用2、在铸造、锻造和焊接方面的应用3、在热处理方面的应用第三节碳钢非合金钢碳钢是指ωc≤%,并含有少量锰、硅、磷、硫等杂质元素的铁碳合金.铁碳合金具有良好的力学性能和工艺性能,且价格低廉,故广泛应用.一、杂质元素对碳钢性能的影响1、锰Mn + FeO → MnO + Fe 脱氧Mn+ S → MnS 炉渣去硫Mn溶入铁素体→ 固溶强化Mn溶入Fe3C → 形成合金渗碳体Fe, Mn3C Mn <%,对性能影响不大2、硅Si + FeO → SiO2 + Fe 脱氧Si溶入铁素体→ 固溶强化Si<%,对性能影响不大3、硫钢中S+Fe → FeS.FeS与Fe形成低熔点的共晶体985℃分布在晶界上,当钢在热加工1000~1200℃时,共晶体熔化,导致开裂——热脆消除热脆:Mn+ S → MnS熔点高1620℃并有一定塑性硫是一种有害元素4、磷钢中磷全部溶于铁素体,产生强烈固溶强化,低温时更加严重——冷脆磷是一种有害元素二、碳钢的分类按含碳量分:低碳钢~、中碳钢~、高碳钢~%按质量分类:普通碳钢、优质碳钢、特殊碳钢S、P含量按用途分类:碳素结构钢、碳素工具钢三、碳钢的牌号、性能和应用1、碳素结构钢GB700-88 Q195, Q215, Q235, Q255, Q275五大类,20个钢种GB700-79 A1, A2, A3, A4, A5Q235-AF表示:σs≥235Mpa,质量等级为A,沸腾钢.应用:Q195, Q215——塑性高,用于冲压件、铆钉、型钢等; Q235——强度较高,用于轴、拉杆、连杆等;Q255, Q275——强度更高,用于轧辊、主轴、吊钩等.2、优质碳素结构钢优质碳素结构钢:优质钢、高级优质钢A、特级优质钢E 牌号:08F ——冲压件;45——齿轮、连杆、轴类;65 Mn——弹簧、弹簧垫圈、轧辊等.3、碳素工具钢牌号:T8、T8A——木工工具;T10、T10A——手锯锯条、钻头、丝锥、冷冲模;T12、T12A——锉刀、绞刀、量具.4、铸钢表示方法:用力学性能表示ZG200-400σs≥200Mpa,σb≥400Mpa用化学成分表示ZG30%C用于制作形状复杂且强度和韧性要求较高的零件,如轧钢机架、缸体、制动轮、曲轴等.. 状态图中的特性点Fe- Fe3C相图中各点的温度、浓度及其含义Fe-Fe3C 相图中各特性点的符号及意义二. 状态图中的特性线Fe-C合金相图中的特性线三. 状态图中的相区在Fe-Fe3C相图中共有五个单相区、七个两相区和三个三相区.五个单相区是:ABCD以上——液相区LAHNA——δ固溶体区δα、δNJESGN——奥氏体区γ或AGPQG——铁素体区α或FDFKL——渗碳体区Fe3C或Cm两相区是:L+δ、L+γ、L+ Fe3C、δ+γ、α+γ、γ+ Fe3C和α+ Fe3C.三个三相区是:HJB线、ECF线和PSK线.1. 工业纯铁含C≤%——其显微组织为铁素体+Fe3CⅢ.2. 钢含C在~%——其特点是高温组织为单相奥氏体具有良好的塑性因而适于锻造.根据室温组织的不同钢又可分为三类:① 亚共析钢< C <%——其组织是铁素体+珠光体② 共析钢C=%——其组织为珠光体③ 过共析钢< C≤%——其组织为珠光体+渗碳体3. 铁在1538ºC结晶为δ-FeX射线结构分析表明它具有体心立方晶格.当温度继续冷却至1394ºC时δ-Fe转变为面心立方晶格的γ- Fe通常把δ-Fe←→γ- Fe的转变称为A4转变转变的平衡临界点称为A4点.当温度继续降至912ºC时面心立方晶格的γ- Fe又转变为体心立方晶格的α-Fe把γ- Fe←→α-Fe的转变称为A3转变转变的平衡临界点称为A3点.4. 三条重要的特性曲线① GS线---又称为A3线它是在冷却过程中由奥氏体析出铁素体的开始线或者说在加热过程中铁素体溶入奥氏体的终了线.② ES线---是碳在奥氏体中的溶解度曲线当温度低于此曲线时就要从奥氏体中析出次生渗碳体通常称之为二次渗碳体因此该曲线又是二次渗碳体的开始析出线.也叫Acm线.③ PQ线---是碳在铁素体中的溶解度曲线.铁素体中的最大溶碳量于727ºC时达到最大值%.随着温度的降低铁素体中的溶碳量逐渐减少在300ºC以下溶碳量小于%.因此当铁素体从727ºC冷却下来时要从铁素体中析出渗碳体称之为三次渗碳体记为Fe3CⅢ.四. 名词1. 铁素体:是碳在α-Fe中形成的固溶体常用“δ”或“F”表示.铁素体在770ºC以上具有顺磁性在770ºC以下时呈铁磁性.通常把这种磁性转变称为A2转变把磁性转变温度称为铁的居里点.碳溶于δ-Fe中形成的固溶体叫δ铁素体在1495ºC时其最大溶碳量为%.2. 顺磁性:就是在顺磁物质中分子具有固有磁矩无外磁场时由于热运动各分子磁矩的取向无规宏观上不显示磁性;在外磁场作用下各分子磁矩在一定程度上沿外场排列起来宏观上呈现磁性这种性质称为顺磁性.3. 铁磁性:就是磁性很强的物质在未磁化时宏观上不显示出磁性但在外加磁场后将会显示很强的宏观磁性.4. 奥氏体:是碳溶于γ-Fe中所形成的固溶体用“γ”或“A”表示.奥氏体只有顺磁性而不呈现铁磁性.碳在γ-Fe 中是有限溶解其最大溶解度为%1148ºC.5. 渗碳体:是铁与碳的稳定化合物Fe3C 用“C”表示.其含碳量为%.由于碳在α-Fe中的溶解度很小所以在常温下碳在铁碳合金中主要是以渗碳体的形式存在.渗碳体于低温下具有一定的铁磁性但是在230ºC以上铁磁性就消失了所以230ºC是渗碳体的磁性转变温度称为A0转变.渗碳体的熔点为1227ºC.它不能单独存在总是与铁素体混合在一起.在钢中它主要是强化相它的形态、大小及分布对钢的性能有很大的影响.另外渗碳体在一定的条件下可以分解形成石墨状的自由碳.即Fe3C——→3Fe+C石墨6. 珠光体:是由铁素体和渗碳体所组成的机械混合物常用“P”表示.珠光体存在于727ºC以下至室温.五. 铁碳合金相图的应用一在选材方面的应用若需要塑性、韧性高的材料应选用低碳钢含碳为~%;需要强度、塑性及韧性都较好的材料应选用中碳钢含碳为~%;当要求硬度高、耐磨性好的材料时应选用高碳钢含碳为~%.一般低碳钢和中碳钢主要用来制造机器零件或建筑结构.高碳钢主要用来制造各种工具.二在制定热加工工艺方面的应用铁碳相图总结了不同成分的合金在缓慢加热和冷却时组织转变的规律即组织随温度变化的规律这就为制定热加工及热处理工艺提供了依据.钢处于奥氏体状态时强度较低、塑性较好便于塑性变形.因此钢材在进行锻造、热轧时都要把坯料加热到奥氏体状态.各种热处理工艺与状态图也有密切的关系退火、正火、淬火温度的选择都得参考铁碳相图.六. 应用铁碳相图应注意的几个问题1. 铁碳相图不能说明快速加热或冷却时铁碳合金组织的变化规律.2. 可参考铁碳相图来分析快速加热或冷却的问题但还应借助于其他理论知识.3. 相图告诉我们铁碳合金可能进行的相变但不能看出相变过程所经过的时间.相图反映的是平衡的概念而不是组织的概念.铁碳相图是由极纯的铁和碳配制的合金测定的而实际的钢铁材料中还含有或有意加入许多其他元素.其中有些元素对临界点和相的成分都有很大的影响此时必须借助于三元或多元相图来分析和研究.第二部分晶体结构一. 金属键1. 金属键:金属原子依靠运动于其间的公有化的自由电子的静电作用而结合起来这种结合方式叫金属键.2. 在固态金属及合金中众多的原子依靠金属键牢固的结合在一起.二. 晶体结构1. 晶体:凡是原子或离子、分子在三维空间按一定规律呈周期性排列的固体均是晶体.液态金属的原子排列无周期规则性不为晶体.2. 晶体结构:是指晶体中原子或离子、分子、原子集团的具体排列情况也就是晶体中这些质点原子或离子、分子、原子集团在三维空间有规律的周期性的重复排列方式.3. 三种典型的金属晶体结构a. 体心立方晶格:晶胞的三个棱边长度相等三个轴间夹角均为90º构成立方体.除了在晶胞的八个角上各有一个原子外在立方体的中心还有一个原子.b. 面心立方晶格:在晶胞的八个角上各有一个原子构成立方体在立方体6个面的中心各有一个原子.c. 密排六方晶格:在晶胞的12个角上各有一个原子构成六方柱体上底面和下底面的中心各有一个原子晶胞内还有3个原子.三. 固溶体1. 固溶体:合金的组元以不同的比例相互混合混合后形成的固相的晶体结构与组成合金的某一组元的相同这种相就称为固溶体.2. 置换固溶体:是指溶质原子位于溶剂晶格的某些结点位置所形成固溶体.3. 间隙固溶体:是指溶质原子不是占据溶剂晶格的正常结点位置而是填入溶剂原子间的一些间隙中.4. 金属化合物:是合金组元间发生相互作用而形成的一种新相又称为中间相其晶格类型和性能均不同于任一组元一般可以用分子式大致表示其组成.除了固溶体外合金中另一类相是金属化合物.四. 金属的结晶1. 金属的结晶:金属由液态转变为固态的过程称为凝固由于凝固后的固态金属通常是晶体所以又将这一转变过程称之为结晶.2. 杠杆定律的应用.在合金的结晶过程中合金中各个相的成分以及它们的相对含量都在发生着变化.为了了解相的成分及其相对含量就需要应用杠杆定律.对于二元合金两相共存时两个平衡相的成分固定不变.五. 同素异构转变当外部条件如温度和压强改变时金属内部由一种晶体结构向另一种晶体结构的转变称为多晶型转变或同素异构转变.六. 晶体的各向异性各向异性是晶体的一个重要特性是区别于非晶体的一个重要标志.晶体具有各向异性的原因是由于在不同的晶向上的原子紧密程度不同所致.原子的紧密程度不同意味着原子之间的距离不同从而导致原子之间的结合力不同使晶体在不同晶向上的物理、化学和机械性能不同.第三部分元素的影响1. 锰和硅的影响:锰和硅是炼钢过程中必须加入的脱氧剂用以去除溶于钢液中的氧.它还可以把钢液中的F eO还原成铁并生成MnO和SiO2.脱氧剂中的锰和硅总会有一部分溶于钢液中冷至室温后即溶于铁素体中提高铁素体的强度.锰对钢的机械性能有良好的影响它能提高钢的强度和硬度当含锰量低于%时可以稍微提高或不降低钢的塑性和韧性.碳钢中的含硅量一般小于%它也是钢中的有益元素.硅溶于铁素体后有很强的固溶强化作用显著的提高了钢的强度和硬度但含量较高时将使钢的塑性和韧性下降.2. 硫的影响:硫是钢中的有害元素.硫只能溶于钢液中在固态中几乎不能溶解而是以FeS夹杂的形式存在于固态钢中.硫的最大危害是引起钢在热加工时开裂这种现象称为热脆.防止热脆的方法是往钢中加入适量的锰形成MnS可以避免产生热脆.硫能提高钢的切削加工性能.在易切削钢中含硫量通常为%~%同时含锰量为%~%.3. 磷的影响:一般来说磷是有害的杂质元素.无论是高温还是低温磷在铁中具有较大的溶解度所以钢中的磷都固溶于铁中.磷具有很强的固溶强化作用它使钢的强度、硬度显著提高但剧烈地降低钢的韧性尤其是低温韧性称为冷脆磷的有害影响主要就在于此.4. 氮的影响:一般认为钢中的氮是有害元素但是氮作为钢中合金元素的应用已日益受到重视.5. 氢的影响:氢对钢的危害是很大的.一是引起氢脆.二是导致钢材内部产生大量细微裂纹缺陷——白点在钢材纵断面上呈光滑的银白色的斑点在酸洗后的横断面上则成较多的发丝壮裂纹.存在白点时钢材的延伸率显著下降尤其是断面收缩率和冲击韧性降低的更多有时可接近于零值.因此具有白点的钢是不能用的.6. 氧及其它非金属夹杂物的影响:氧在钢中的溶解度非常小几乎全部以氧化物夹杂的形式存在于钢中如FeO、AL2O3、SiO2、MnO、CaO、MgO等.除此之外钢中往往存在FeS、MnS、硅酸盐、氮化物及磷化物等.这些非金属夹杂物破坏了钢的基体的连续性在静载荷和动载荷的作用下往往成为裂纹的起点.它们的性质、大小、数量及分布状态不同程度地影响着钢的各种性能尤其是对钢的塑性、韧性、疲劳强度和抗腐蚀性能等危害很大.因此对非金属夹杂物应严加控制.第四部分热处理一. 热处理的作用1. 热处理:是将钢在固态下加热到预定的温度保温一定的时间然后以预定的方式冷却下来的一种热加工工艺.钢中组织转变的规律是热处理的理论基础称为热处理原理.热处理原理包括钢的加热转变、珠光体转变、马氏体转变、贝氏体转变和回火转变.在临界温度以下处于不稳定状态的奥氏体称为过冷奥氏体.钢在加热和冷却时临界温度的意义如下:Ac1——加热时珠光体向奥氏体转变的开始温度;Ar1——冷却时奥氏体向珠光体转变的开始温度;Ac3——加热时先共析铁素体全部转变为奥氏体的终了温度;Ar3——冷却时奥氏体开始析出先共析铁素体的温度;Accm——加热时二次渗碳体全部溶入奥氏体的终了温度;Arcm——冷却时奥氏体开始析出二次渗碳体的温度.通常把加热时的临界温度加注下标“C”而把冷却时的临界温度加注下标“r”.2. 珠光体转变——是过冷奥氏体在临界温度A1以下比较高的温度范围内进行的转变.珠光体转变是单相奥氏体分解为铁素体和渗碳体两个新相的机械混合物的相变过程因此珠光体转变必然发生碳的重新分布和铁的晶格改组.由于相变在较高温度下发生铁、碳原子都能进行扩散所以珠光体转变是典型的扩散型相变.无论珠光体、索氏体还是屈氏体都属于珠光体类型的组织.它们的本质是相同的都是铁素体和渗碳体组成的片层相间的机械混合物.它们之间的差别只是片层间距的大小不同而已.珠光体的片层间距:450~150 nm形成于A1~650℃温度范围内.索氏体的片层间距:150~80nm形成于650~600℃温度范围内.屈氏体的片层间距:80~30nm形成于600~550℃温度范围内.3. 马氏体转变——是指钢从奥氏体化状态快速冷却抑制其扩散性分解在较低温度下低于Ms点发生的转变.马氏体转变属于低温转变.钢中马氏体是碳在α-Fe中的过饱和固溶体具有很高的强度和硬度.由于马氏体转变发生在较低温度下此时铁原子和碳原子都不能进行扩散马氏体转变过程中的Fe的晶格改组是通过切变方式完成的因此马氏体转变是典型的非扩散型相变.二. 热处理工艺1. 退火和正火:将金属及其合金加热保温和冷却使其组织结构达到或接近平衡状态的热处理工艺称为退火或回火.A. 低温退火去应力退火:是指钢材及各类合金为消除内应力而施行的退火.加热温度< A1 碳钢及低合金钢550~650℃高合金工具钢600~750℃B. 再结晶退火:加热温度> Tr Tr+150~250℃C. 扩散退火:是指为了改善和消除在冶金过程中形成的成分不均匀性而实行的退火.1 通过扩散退火可以使在高温下固溶于钢中的有害气体主要是氢脱溶析出这时称为脱氢退火.2 均匀化退火的任务在于消除枝晶成分偏析改善某些可以溶入固溶体夹杂物如硫化物的状态从而使钢的组织与性能趋与均一.扩散退火的加热温度> Ac3 Acm 在固相线以下高温加热同时也要考虑不使奥氏体晶粒过于长大.碳钢1100~1200℃D. 完全退火:是指将充分奥氏体化的钢缓慢冷却而完成重结晶过程的退火.加热温度 Ac3+30~50℃E. 等温退火:是指将奥氏体用较快的速度冷却到临界点以下较高温度范围进行珠光体等温转变的退火. 加热温度 Ac3~Ac12. 正火:是指将碳合金加热到临界点Ac3以上适当温度并保持一定时间然后在空气中冷却的工艺方法.过共析钢正火后可消除网状碳化物而低碳钢正火后将显著改善钢的切削加工性.所有的钢铁材料通过正火均可使锻件过热晶粒细化和消除内应力.正火比退火的冷却速度快正火后的组织比退火后的组织细.3. 淬火与回火1. 淬火:是指将钢通过加热、保温和大于临界淬火速度Vc的冷却是过冷奥氏体转变为马氏体或贝氏体组织的工艺方法.2. 钢的淬透性:就是钢在淬火时能够获得马氏体的能力它是钢材本身固有的一个属性.3. 当淬火应力在工件内超过材料的强度极限时在应力集中处将导致开裂.4. 回火:本质上是淬火马氏体分解以及碳化物析出、聚集长大的过程.它与淬火不同点是由非平衡态向平衡态稳定态的转变.4. 化学热处理:是将工件放在一定的活性介质中加热使非金属或金属元素扩散到工件表层中、改变表面化学成分的热处理工艺.如:渗入碳、氮、硼、钒、铌、铬、硅等元素第五部分宏观检验一. 宏观检验主要可分为低倍组织及缺陷酸蚀检验、断口检验、硫印检验等.二. 酸蚀试验在宏观检验领域中酸蚀检验是最常用的检验金属材料缺陷、评定钢铁产品质量的方法.如果一批钢材在酸蚀中显示出不允许存在的缺陷或超过允许程度的缺陷时其它检验可不必进行.1. 酸蚀试验:是用酸蚀方法来显示金属或合金的不均匀性.1 热酸浸蚀实验方法2 冷酸浸蚀实验方法3 电解腐蚀实验方法2. 酸蚀试验所检验的常见组织和缺陷A:偏析:是钢中化学成分不均匀现象的总称.在酸蚀面上偏析若是易蚀物质和气体夹杂物析集的结果将呈现出颜色深暗、形状不规则而略凹陷、底部平坦的斑点;若是抗蚀性较强元素析集的结果则呈颜色浅淡、形状不规则、比较光滑微凸的斑点.根据偏析的位置和形状可分为中心偏析、锭型偏析或称方框偏析、点状偏析、白斑和树枝状组织.中心偏析:出现在试面中心部位形状不规则的深暗色斑点.锭型偏析:具有原钢锭横截面形状的、集中在一条宽窄不同的闭合带上的深暗色斑点.B. 疏松:这种缺陷是钢凝固过程中由于晶间部分低熔点物最后凝固收缩和放出气体而产生的孔隙.在横向酸蚀面上这种孔隙一般呈不规则多边形、底部尖狭的凹坑这种凹坑多出现在偏析斑点之内.根据疏松分布的情况可分为中心疏松和一般疏松.C. 夹杂:宏观夹杂可分为外来金属、外来非金属和翻皮三大类.D. 缩孔:由于最后凝固的钢液凝固收缩后得不到填充而遗留下来的宏观孔穴.E. 气泡:由于钢锭浇注凝固过程中所产生和放出气体所造成的.一般可分为皮下气泡和内部气泡两类.a. 皮下气泡: 由于浇注时钢锭模涂料中的水分和钢液发生作用而产生的气体.b. 内部气泡:又可分为蜂窝气泡和针孔气泡.蜂窝气泡是由于钢液去气不良所导致一般为不允许存在的缺陷存在钢坯内部在试面上较易浸蚀象排列有规律的点状偏析但颜色更深暗些;针孔是因为较深的皮下气泡在锻轧过程中未焊合而被延伸成细管状在横试面上呈孤立的针状小孔.白点:也称发裂是由于氢气脱溶析集到疏松孔中产生巨大压力和钢相变时所产生的局部内应力联合造成的细小裂缝.在横试面上呈细短裂缝三. 硫印检验是一种定性检验是用来直接检验硫元素并间接检验其它元素在钢中偏析或分布情况的操作.硫印检验时先用5~10%的稀硫酸水溶液浸泡相纸5分钟左右后取出去除多余的硫酸溶液把湿润的相纸感光面贴到受检表面上应确保相纸与试样面的紧密接触不能发生任何滑动排除相纸与试样面的气泡和液滴.其化学反应大致为:MnS+H2SO4→MnSO4+H2S↑FeS+H2SO4→FeSO4+H2S↑H2S+2AgBr→2HBr+Ag2S↓几秒到几分钟后将从试面上揭下的相纸在水中冲洗约10分钟然后放入定影液中定影10分钟以上取出后在流动水中冲洗30分钟以上干燥后既成.四. 断口检验1. 脆性断口:通常工程上把没有明显塑性变形的断裂统称为脆性断裂发生脆性断裂的断口为脆性断口.脆性断口也称晶状断口是指出现大量晶界破坏的耀眼光泽断口断口中晶状区的面积与断口原始横截面积的百分比则是脆性断面率也称晶状断面率.2. 结晶状断口:此种断口具有强烈的金属光泽有明显的结晶颗粒断面平齐而呈银灰色.是一种正常的断口.属于脆性断口.3. 纤维状断口:这种断口呈无光泽和无结晶颗粒的均匀组织.通常在断口的边缘有明显的塑性变形.一般情况下是允许存在的.属于韧性断口.4. 瓷状断口:是一种类似瓷碎片的断口呈亮灰色、致密、有绸缎的光泽和柔和感.是一种正常的断口.5. 台状断口:这种断口出现在纵向断面上呈比基体颜色略浅、变形能力稍差、宽窄不同、较为平坦的片状平台状.多分布在偏析内.6. 撕痕状断口:这种断口出现在纵向断面上沿热加工方向呈灰白色、变形能力差致密而光滑的条带.7. 层状断口:这种断口出现在纵向断面上呈劈裂的朽木状或高低不平的、无金属光泽的、层次起伏的条带条带中伴有白亮或灰色线条.8. 缩孔残余断口:出现在纵向断口的轴心区是非结晶状条带或疏松区有时伴有非金属夹杂物或夹杂沿条带常带有氧化色.9. 石状断口:在断口表面呈现粗大而凹凸不平的沿晶界断裂的粗晶颜色暗灰而无金属光泽象有棱角的沙石颗粒堆砌在一起.。

第3章 铁碳合金相图

第3章  铁碳合金相图
ωc>0.9% →σ↓
硬度:ωc↑→Fe3C ↑→HB↑
塑性、韧性: ωc↑→Fe3C ↑ →塑性↓、韧性↓
3.3 对工艺性能的影响
主要表现在对切削加工性、可锻性、 22/24 铸造性和焊接性能的影响。
2020/5/12
2020/5/12
切削加工性:指金属经切削加工形成工件的难易程度。低碳钢切削加 工性差。高碳钢中Fe3C多,刀具磨损严重,切削加工性也差。中碳 钢中F和Fe3C的比例适当,切削加工性好。
(Acm) GS A F(A3)
PQ F Fe3CⅢ
ACM A3
A1
600
15/24
2020/5/12
共晶转变: ECF 共晶线
1148°C
C 共晶点
ωC =4.3%
LC Ld(A+Fe3C) 室温下: Ld Ld´ 低温莱氏体Ld´ (P+ Fe3CⅡ+Fe3C)
共析转变: PSK 共析线 S 共析点
莱氏体:奥氏体和渗碳体组成的机械混合物,常用Ld表示,它是碳的质 量分数为4.3%的铁碳合金液体在1148℃发生共晶转变的产物。在 727℃以下,莱氏体中的奥氏体将转变为珠光体,由珠光体与渗碳体组 成的机械混合物,称为低温莱氏体,用符号Ld′表示。 8/24 莱氏体的硬度很高,塑性、韧性极差。
2020/5/12
晶界上(如Fe3CⅢ),变为分布在 F的基体内(如P),进而分布在
原A的晶界上(如Fe3CⅡ),最后 形成Ld′时,Fe3C已作为基体出 现。碳的质量分数不同,铁碳合
金的组织和性能也不同。
21/24
3.2 对力学性能的影响
强度:ωc<0.77% ωc↑→P↑ F↓
σ↑
0.77 % <ωc<0.9% 强度增加缓慢

第三章铁碳合金相图详解版

第三章铁碳合金相图详解版

第 二 节 铁碳合金状态图
铁和碳可形成一系列稳定化合物: Fe3C、 Fe2C、 FeC,它们都可以作为纯组元看待。
含碳量大于Fe3C成分(6.69%)时,合金太脆, 已无实用价值。
实际所讨论的铁碳合金相图是Fe- Fe3C相图。
Fe
Fe3C Fe2C
FeC
C
C%(at%) →
一、Fe - Fe3C 相图的建立
4. 铁碳合金分类
(1) 工业纯铁 <0.0218% C 亚共析钢 <0.77% C
(2) 碳钢 共析钢 0.77% C 过共析钢 >0.77% C 亚共晶白口铸铁<4.3% C
(3) 白口铸铁 共晶白口铸铁 4.3% C 过共晶白口铸铁 >4.3% C
三、典型铁碳合金的结晶过程
1 1)共析钢的结晶过程
1 3)过共析钢的结晶过程
T12钢组织
室温组织:P+Fe3CⅡ
1
补充:工业纯铁的结晶过程
4)共晶白口铁结晶过程
室温组织为: Ld‘ ( P+ Fe3C共晶+ Fe3CⅡ )
1
5)亚共晶白口铁的结晶过程 室温组织为P+Fe3CⅡ+Ld’。
1
6)过共晶白口铁的结
晶过程
室温组织为:Fe3CⅠ +Ld‘ Ld‘( P+ Fe3C共晶+ Fe3CⅡ )
1
第三节 含碳量对碳钢组织与性能的影响
一 、含碳量对碳钢室温平衡组织的影响 含碳量与缓冷后相及组织组成物之间的定量关系为:
钢铁 分类



共析钢

铁 亚共析钢 过共析钢
白口 铸 铁
共晶白口铸铁

铁碳合金相图

铁碳合金相图

200×
(6)过共晶白口铁 ( C % = 3 % )结晶过程
室温组织:
Le′+ Fe3CI
500×
标注了组织组成物的相图
3.铁碳合金的 成分-组织-性能关系
含碳量与相的相对量关系:
C %↑→F %↓,Fe3C %↑
含碳量与组织关系: 图(a)和(b) 含碳量与性能关系 HB:取决于相及相对量 强度:C%=0.9% 时最大 塑性、韧性:随C%↑而↓
图4-13
6.亚共晶白口铁结晶过程
图4-14 亚共晶白口铁结晶过程示意图
亚共晶白口铁组织金相图
图4-15
7.过共晶白口铁结晶过相图
图4-17
二、碳对铁碳合金平衡组织和性 能的影响
含碳量对平衡组织的影响 含碳量对铁碳合金机械性能的影响
Ⅲ 3 Ⅱ
3

含碳量对平衡组织的影响
图4-18 含碳量对平衡组织的影响示意图
含碳量对铁碳合金机械性能的影响
图4-19含碳量对铁碳合金机械性能的影响
§4铁碳合金的成分—组织—性能
关系
一、含碳量与平衡组织间的关系
一、含碳量与平衡组织间的关系
1、含碳量——相相对量 C%↑→F%↓,Fe3C%↑ 2、含碳量——组织 F--->F+P--->P--->P+Fe3CII-->P+Fe3CII+Le’--->Le’-->Le’+Fe3CII--->Fe3C
第四章 铁碳合金相图
§1铁碳合金的基本相 §2 铁碳相图 §3典型铁碳合金的结晶过程及其组织 §4铁碳合金的成分—组织—性能关系
§1铁碳合金的基本相
• 一、铁碳合金相图中组元的性质和相的类

第五章:铁碳合金相图

第五章:铁碳合金相图

第一节 Fe - C相图的基础知识
1.铁与碳可以形成 Fe3C、Fe2C、FeC 等一系列化合物。
2.稳定的化合物可以作为一个独的组 元。 3.Fe – C 二元相图。
Fe – C 二元相图
温 度
Fe
Fe3C Fe2C (6.69%C)
FeC
C
Mg – Si 合金相图
第二节 形成Fe - Fe3C 相图组元 和基本组织的结构与性能
2.优质碳素结构钢
* 45 --- Wc = 45%00 * 较高锰质量分数的优质碳素结构钢 45Mn --- Wc = 45%00 ; WMn = 0.7%~1.0%
3.碳素工具钢
T 12 A
高级优质
Wc = 12%0
碳素工具钢
4.铸造碳钢
ZG 200 - 400
σb ≥ 400MPa σs≥ 200MPa
1495℃
AJ
2.共晶转变反应式:
LC
1148℃
( AE + Fe3C )
Le
3.共析转变反应式:
AS
727℃
( FP + Fe3C )
P
三.典型铁碳合金的结晶过程分析
工业纯铁
( ingot iron ) 共析钢 ( eutectoid steel ) 亚共析钢 ( hypoeutectoid steel ) 过共析钢 ( hypereutectoid steel ) 共晶白口铁 ( eutectoid white iron ) 亚共晶白口铁( hypoeutectoid white iron ) 过共晶白口铁( hypereutectoid white iron )
Si — 有很强的固溶强化作用,能脱

铁碳合金相图图文解析

铁碳合金相图图文解析

铁碳合金相图图文解析一、铁碳图相简介:Fe-C合金相图实际上是Fe-Fe3C相图,铁碳合金的基本组元也应该是纯铁和Fe3C。

铁碳合金相图是研究铁碳合金的工具,是研究碳钢和铸铁成分、温度、组织和性能之间关系的理论基础,也是制定各种热加工工艺的依据。

1、Fe-C相图中重要的点2、Fe-C相图中重要的线3、Fe-C合金平衡结晶过程Fe-Fe3C相图中的相:Ⅳ、过共析钢(0.77%<2.11%)Ⅴ、共晶白口铁(C%=4.3%)Ⅶ、过共晶白口铸铁(C%>4.3%)二、钢中常见组织分类:奥氏体:碳与合金元素溶解在γ-Fe中的固溶体,仍保持γ-Fe的面心立方晶格特征:奥氏体塑性很好,强度较低,具有一定韧性,不具有铁磁性铁素体:碳与合金元素溶解在a-Fe中的固溶体,具有体心立方晶格,溶碳能力极差;特征:具有良好的韧性和塑性;呈明亮的多边形晶粒组织;马氏体:碳溶于α-Fe的过饱和的固溶体,体心正方结构;常见的马氏体形态:板条、片状;板条马氏体:在低、中碳钢及不锈钢中形成,由许多成群的、相互平行排列的板条所组成的板条束。

空间形状是扁条状的,一个奥氏体晶粒可转变成几个板条束(通常3到5个);片状马氏体(针状马氏体):常见于高、中碳钢及高Ni的Fe-Ni合金中;当最大尺寸的马氏体片小到光学显微镜无法分辨时,便称为隐晶马氏体。

在生产中正常淬火得到的马氏体,一般都是隐晶马氏体。

回火马氏体:低温(150~250oC)回火产生的过饱和程度较低的马氏体和极细的碳化物共同组成的组织。

这种组织极易受腐蚀,光学显微镜下呈暗黑色针状组织(保持淬火马氏体位向),与下贝氏体很相似,只有在高倍电子显微镜下才能看到极细小的碳化物质点。

渗碳体:碳与铁形成的一种化合物Fe3C;特征:含碳量为6.67%,具有复杂的斜方晶体结构;硬度很高,脆性极大,韧性、塑性几乎为零;珠光体:铁碳合金中共析反应所形成的铁素体与渗碳体组成的片层相间的机械混合物;特征:呈现珍珠般的光泽;力学性能介于铁素体与渗碳体之间,强度较高,硬度适中,塑性和韧性较好;片状珠光体:铁素体和渗碳体以薄层形式,交替重叠形成的混合物;根据珠光体片间距的大小不同可以分为:珠光体(片间距450~150nm,形成温度范围A1~650℃,在光学显微镜下能明显分辨出来)索氏体(片间距150~80nm,形成温度范围650~600℃,只有高倍光学显微镜下才分辨出来)屈氏体(片间距80~30nm,形成温度范围600~550℃,只能用电子显微镜才能分辨出来)粒状珠光体:由铁素体和粒状碳化物组成。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

钢锭及其冶炼
冶炼工艺的主要任务 冶炼工艺的主要方法
钢锭的结构
钢锭是由冒口、锭 身、 底部组成
钢锭的内部缺陷
激冷结晶区(细小等轴结晶区) 没问题 柱状结晶区 没多大问题 树枝状结晶区 多产生负V型偏析,因此这部分多产生偏析线、夹渣、气泡等缺陷 自由结晶区(粗大等轴结晶区) 多产生V型偏析,常产生偏析线、夹渣、金属夹杂物、渣孔、气泡等缺陷,呈 所谓疏松组织 淀淀结晶区 常产生夹渣类缺陷
实例
Elliptical head Upper shell (Ⅰ、 Ⅱ) Conical shell Intermediate shell (lower) (Ⅰ、Ⅱ、Ⅲ) Tube sheet Primary head (channel head)
实例
Upper head Core shell Lower head
锻造生产的特点及其在国民经济中的作用
特点 地位
大型锻件主要应用于以下方面
1、轧钢设备 2、锻压设备 3、矿山设备 4、火力发电设备 5、水力发电设备 6、核能发电设备 7、石油、化工设备 8、船舶制造工业 9、军工产品制造:
实例(核反应堆中主要锻件M140)
Closure head(monobloc) Vessel flange Inlet(outlet) nozzle Nozzle shell Core shell Transition ring Lower dome
3. Fe—Fe3C相图分析
如图为Fe—Fe3C相图 全貌。根据分析围绕三条 水平线可把Fe—Fe3C相图 分解为三个部分考虑:左 上角的包晶部分,右边的 共晶部分,左下角的共析 部分。 分析点、线、区特 别是重要的点、三条水平 恒温转变线 、重要的相
界线
(1)Fe—Fe3C相图的点
Fe—Fe3C 相 图 相 图 中 的各特性点所对应的 温度、成分和意义如 下表: A、B、C、D、E、 F、G、H、J、K、N、P、 S、Q各点(表2-1)
Fe—C合金中的基本相
(3) 奥氏体(austenite) 奥氏体( γ 或A)是C溶解于 γ—Fe形成的间 隙固溶体称为奥氏体(austenite)。
Fe—C合金中的基本相 (4)铁素体(ferrite) 铁素体(α或F)是C溶于α-Fe形成的 间隙固溶体称为铁素体(ferrite)。 (5)渗碳体(cementite) 前面已讨论过 (6) 石墨(C) 在一些条件下,碳可以以游离态石墨 (graphite) (hcp)稳定相存在。所以石墨 在于Fe—C合金铸铁中也是一个基本相。
Fe-Fe3C相图
1.Fe—C合金中的组元 铁碳合金中组元:纯铁(Fe) 渗碳体(Fe3C)
(1)
纯铁(Fe)
纯铁(pure iron) 纯 铁 固 态 下 具 有同 素 异 构 转 变 (allotropic transformation) 纯铁具有磁性转变(770℃磁性转变、 magnetic transformation)。
A0、A1、A2、A3、Acm 线温度依次升高。
C. 几条重要的相界线(固态转变线)
① GS线(A3 线): 冷却时从γ中开始析出或 加热时α全部溶入γ中的 转变线. ② ES线(Acm线): 碳在γ中的溶解度曲线。 冷却时从γ中开始析出 Fe3CⅡ 或加热时Fe3CⅡ 全部 溶入γ中的转变线.
C. 几条重要的相界线(固态转变线)
(2)钢
钢(steel)是含碳量在(Wc=0.0218~2.11%) 之间的Fe、C合金。其特点是: 高温组织为单相的γ,具有很好的塑性。因而 可以进行锻造、轧制等压力加工。根据其室温 组织的不同,碳钢(carbon steel)又可分为: 共析钢(eutectoid steel):Wc=0.77% 亚 共 析 钢 ( hypoeutectoid steel): Wc=0.0218~0.77% 过 共 析 钢 ( hypereutectoid steel): Wc=0.77~2.11%
偏析
定义: 指各处成分与杂质分不的不均匀现象, 包括枝晶偏析和区域偏析等 成因:由于选择性结晶、溶解度变化、比重 差异和流速不同造成的。 危害:造成力学性能不均匀和裂纹缺陷
夹杂
定义:主要是指冶炼时产生的氧化物,硫化 物、硅酸盐等非金属夹杂。 成因:冶炼产物,及外来夹渣物 危害:对热锻过程和锻件质量均有不良影响, 它破坏金属的连续性,在应力的作用下在夹 杂处产生应力集中,引发微裂纹,成为疲劳 源
4. Fe—C合金分类
Fe、C合金通常按其含碳量(Wc)及其室温平 衡组织分为三大类: 工 业 纯 铁 ( pure iron)、 碳 钢 ( carbon steel)、铸铁(cast iron)。根据碳钢和铸铁 的相变、组织特征可把二者细分。即: (1)工业纯铁:(Wc<0.0218%)显微组织为固 溶体。
(2)Fe—Fe3C相图的线

A.三条水平线
①HJB--包晶转变线: (1459℃) L0.53+δ0.09 γ0.17 (LB+δH γ J)
转变产物为奥氏体 (austenit) 强度低,塑性好
A.三条水平线
②ECF--共晶转变线: (1148℃), L4.3 γ2.11+ Fe3C (LC γE+ Fe3C) 转变产物为莱氏体 (ledeburite),用Ld 表示。 硬、脆、无法加工
(3)白口铸铁
白 口 铸 铁 ( white cast iron) 是 含 碳 量 在 Wc=2.11~6.69%之间的Fe、C合金。其特点液态合 金结晶时都发生共晶反应,液态时有良好的流动 性,因而铸铁都具有良好的铸造性能。但因共晶 产物是以Fe3C为基的莱氏体组织,所以性能硬、 脆,不能锻造。其断口呈银白色,故称为白口铸 铁。 上述Wc=2.11%具有重要的意义,它是钢和铸铁(生 铁)的理论分界线。
(2) 渗碳体(Fe3C)-A
渗碳体(cementite)是Fe—C合金中碳以 化合物(Fe3C)形式出现的。 Fe3C在230℃以下具有铁磁性,常用A0表 示这个临界点。 Fe3C在钢和铸铁中呈现片状,粒状,网 状和板条状。
2. Fe—C合金中的基本相
在Fe—Fe3C相图中,Fe—C合金在不同条件 (成分,温度)下,可有五(六)个基本相: L 相、δ相、γ相、α相、Fe3C相、(石墨G)。 (1)液相(L) Fe与C在高温下形成的液体溶液。(ABCD线 以上) (2)δ相[高温铁素体(high temperature ferrite)]
我国锻造生产的历史,现状及发展趋势
历史 现状 趋势
锻造生产方法的分类
按所用工具不同,锻造可以分为自由锻和模 锻两大类 按坯料在加工时的温度可分为冷锻和热锻。
第二、锻造用原材料
金属材料 按加工状态
锻造用钢锭
钢锭及其冶炼 钢锭的结构 钢锭的内部缺陷 实例(接管段炼钢的简要流程)
气体
定义:主要指钢中的有害气体,如氢、氧等。 危害:容易产生白点缺陷,还会引起脆性, 热锻工艺性将明显下降。白点对钢的机械性 能,尤其对塑性和韧性有影响,是许多重要 用途的合金钢不允许有的低倍缺陷
气泡
它主要产生在钢锭的冒口、底部、及中心部 位。
缩孔
它主要在最后凝固的冒口区形成,由于冷凝 结晶时没有钢液补充面形成孔洞性缺陷组织, 同时含有大量杂质,因此必须切除
疏松
它主要集中在钢锭中心部位,产生的原因与 缩孔相同。
影响钢锭冶金缺陷的条件
综上所述,钢锭的冶金缺陷与冶炼、浇注过 程、冷凝结晶条件、钢锭模具设计、耐火材 料质量等有关。
实例(接管段锻件用钢生产方案 )
采用双真空处理的工艺进行生产。 .1、冶炼浇注方案 采用电炉(3#、4#、5#)冶炼温度较高、成份合 适的粗炼钢水,分别热兑到130t和90t精炼炉内进行 精炼及一次真空处理。依据炉前快速分析的结果, 适时调整钢水成份,直至达到目标值。 当精炼炉钢水成份、温度合适时,分别采用200t 及250t天车吊包出钢,在250t真空室(1#真空室)、 利用真空浇注及中间包芯杆吹氩(LB3),在浇注 过程中对钢水进行二次真空处理。 钢锭在浇注完并冷凝一定时间后,脱模,用300t送 锭车热送至水锻
Fe—C合金概述
在铁碳合金中,Fe与C可以形成一系列化合物:Fe3C、 Fe2C、FeC。 所 以 , Fe-C 相 图 可 以 划 分 成 Fe-Fe3C, Fe3C-Fe2C, Fe2C-FeC和FeC-C四个部分。由于化合物是 硬脆相,后面三部分相图实际上没有应用价值(工业 上使用的铁碳合金含碳量不超过5%),因此,通常所 说的铁碳相图就是Fe-Fe3C部分。
Wc对铁碳合金机械性能的影响
F为软韧相,Fe3C为硬脆相,故Fe-C合金的力学性能取决于 α和Fe3C两相的相对量及它们的相互分布特征。 硬度(HB) 延伸率δ(塑性、韧性) 强度(Mpa) 铁素体 50-80 30%-50% 180-230 渗碳体 800 0 30 珠光体 180 20%-35% 770
A.三条水平线
③PSK--共析转变线(A1线): (727℃) γ0.77 α0.0218 + Fe3C (γS αP+ Fe3C)
转变产物为α和Fe3C组成的 机械混合物称为珠光体 (pearlite),用P表示。 塑性、韧性、硬度介于 α和Fe3C之间。
B. 两条磁性转变线
①A0线(虚线) : 渗碳体的磁性转变线, 230℃以上无磁性, 230℃以下铁磁性。 ② MO(A2线): 铁素体的磁性转变线。 770℃以上无磁性, 770℃以下铁磁体。 A2温度又称居里点。
主要涉及的内容

绪论 锻造用原材料 锻造的热规范 自由锻主要工序分析 锻后热处理 性能热处理 金属材料的机械性能
相关文档
最新文档