质点运动学速度与加速度
质点运动的速度和加速度
质点运动的速度和加速度质点运动的速度和加速度是物体运动学中的两个重要概念,它们描述了质点在运动过程中的快慢和变化率。
本文将对质点的速度和加速度进行详细阐述,并探讨它们之间的关系与物理意义。
一、质点运动的速度速度是质点运动的基本特征之一,它描述了质点在单位时间内运动的距离。
速度的定义公式为:\[v=\frac{ds}{dt}\]其中,\(v\)表示速度,\(s\)表示物体相对某一参考点的位移,\(t\)表示时间。
速度的单位通常是m/s(米每秒)。
根据速度的定义,可以进一步推导出平均速度和瞬时速度。
1. 平均速度平均速度指的是质点在一段时间内的平均速度。
计算平均速度的公式为:\[v_{avg}=\frac{\Delta s}{\Delta t}\]其中,\(v_{avg}\)表示平均速度,\(\Delta s\)表示物体在时间间隔\(\Delta t\)内的位移。
平均速度可以用来描述物体在运动过程中的整体快慢。
2. 瞬时速度瞬时速度指的是质点在某一时刻的瞬时速度,也可以理解为质点在极短时间间隔内的瞬时速度。
瞬时速度可以通过求相邻两点的位移的极限得到:\[v=\lim_{\Delta t\to 0}\frac{\Delta s}{\Delta t}=\frac{ds}{dt}\]瞬时速度可以用来描述物体在某一瞬间的快慢,也就是物体在该时刻的瞬时速度。
二、质点运动的加速度质点运动的加速度是描述质点运动状态改变率的物理量,它描述了质点在单位时间内速度的变化量。
加速度的定义公式为:\[a=\frac{dv}{dt}\]其中,\(a\)表示加速度,\(v\)表示质点的速度,\(t\)表示时间。
加速度的单位通常是m/s²(米每秒平方)。
与速度类似,加速度也有平均加速度和瞬时加速度两个概念。
1. 平均加速度平均加速度指的是质点在一段时间内的平均加速度。
计算平均加速度的公式为:\[a_{avg}=\frac{\Delta v}{\Delta t}\]其中,\(a_{avg}\)表示平均加速度,\(\Delta v\)表示质点在时间间隔\(\Delta t\)内的速度变化量。
大学物理第一章质点运动学
∫ d x = ∫ (2t −t )dt
2 0 0
t
质点的运动方程
13 x = t − t (m) ) 3
2
(3) 质点在前三秒内经历的路程
s = ∫ vdt = ∫ 2t − t 2 dt
0 0
3
3
令 v =2t-t 2 =0 ,得 t =2
8 s = ∫ (2t − t )dt + ∫ (t − 2t)dt = m 0 2 3
初始条件为x 初始条件为 0=0, v0=0 质点在第一秒末的速度;(2)运动方程;(3)质点在前三秒内 运动方程; 质点在前三秒内 运动方程 求 (1) 质点在第一秒末的速度 运动的路程。 运动的路程。 解 (1) 求质点在任意时刻的速度 dv dv a= = 2 − 2t 由 dt dv = (2 − 2t) dt 分离变量 两边积分
y
P点在 系和 '系的空间坐标 、 点在K系和 系的空间坐标、 点在 系和K 时间坐标的对应关系为: 时间坐标的对应关系为:
y'
r v
P
}
r r
o z
r r′
o' x x'
r R
z'
伽利略坐标变换式
2. 速度变换 r r vK、vK′ 分别表示质点在两个坐标系中的速度 r r r d r ′ d(r − vt) r r r vK′ = = = vK − v dr′ r dt t r 即 vK′ = vK − v r r r vK = vK′ + v 伽利略速度变换
dv = g − Bv dt 分离变量并两边积分
t dv ∫0 g - Bv = ∫0 dt v
g v = (1− e−Bt ) B
物理学教程第三版第一章质点运动学
第一章 质点运动学 1 -1 质点作曲线运动,在时刻t 质点的位矢为r ,速度为v ,速率为v ,t 至(t +Δt )时间内的位移为Δr , 路程为Δs , 位矢大小的变化量为Δr ( 或称Δ|r |),平均速度为v ,平均速率为v .(1) 根据上述情况,则必有( )(A) |Δr |= Δs = Δr(B) |Δr |≠ Δs ≠ Δr ,当Δt →0 时有|d r |= d s ≠ d r(C) |Δr |≠ Δr ≠ Δs ,当Δt →0 时有|d r |= d r ≠ d s(D) |Δr |≠ Δs ≠ Δr ,当Δt →0 时有|d r |= d r = d s(2) 根据上述情况,则必有( )(A) |v |= v ,|v |= v (B) |v |≠v ,|v |≠ v (C) |v |= v ,|v |≠ v (D) |v |≠v ,|v |= v分析与解 (1) 质点在t 至(t +Δt )时间内沿曲线从P 点运动到P′点,各量关系如图所示, 其中路程Δs =PP′, 位移大小|Δr |=PP ′,而Δr =|r |-|r |表示质点位矢大小的变化量,三个量的物理含义不同,在曲线运动中大小也不相等(注:在直线运动中有相等的可能).但当Δt →0 时,点P ′无限趋近P 点,则有|d r |=d s ,但却不等于d r .故选(B).(2) 由于|Δr |≠Δs ,故ts t ΔΔΔΔ≠r ,即|v |≠v . 但由于|d r |=d s ,故ts t d d d d =r ,即|v |=v .由此可见,应选(C). 1 -2 一运动质点在某瞬时位于位矢r (x,y )的端点处,对其速度的大小有四种意见,即(1)t r d d ; (2)t d d r ; (3)t s d d ; (4)22d d d d ⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛t y t x . 下述判断正确的是( )(A) 只有(1)(2)正确 (B) 只有(2)正确(C) 只有(2)(3)正确 (D) 只有(3)(4)正确分析与解tr d d 表示质点到坐标原点的距离随时间的变化率,在极坐标系中叫径向速率.通常用符号v r 表示,这是速度矢量在位矢方向上的一个分量;t d d r 表示速度矢量;在自然坐标系中速度大小可用公式t s d d =v 计算,在直角坐标系中则可由公式22d d d d ⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛=t y t x v 求解.故选(D). 1 -3 质点作曲线运动,r 表示位置矢量, v 表示速度,a 表示加速度,s 表示路程, a t表示切向加速度.对下列表达式,即(1)d v /d t =a ;(2)d r /d t =v ;(3)d s /d t =v ;(4)d v /d t |=a t.下述判断正确的是( )(A) 只有(1)、(4)是对的 (B) 只有(2)、(4)是对的(C) 只有(2)是对的 (D) 只有(3)是对的分析与解td d v 表示切向加速度a t,它表示速度大小随时间的变化率,是加速度矢量沿速度方向的一个分量,起改变速度大小的作用;t r d d 在极坐标系中表示径向速率v r (如题1 -2 所述);t s d d 在自然坐标系中表示质点的速率v ;而t d d v 表示加速度的大小而不是切向加速度a t.因此只有(3) 式表达是正确的.故选(D).1 -4 一个质点在做圆周运动时,则有( )(A) 切向加速度一定改变,法向加速度也改变(B) 切向加速度可能不变,法向加速度一定改变(C) 切向加速度可能不变,法向加速度不变(D) 切向加速度一定改变,法向加速度不变分析与解 加速度的切向分量a t起改变速度大小的作用,而法向分量a n 起改变速度方向的作用.质点作圆周运动时,由于速度方向不断改变,相应法向加速度的方向也在不断改变,因而法向加速度是一定改变的.至于a t是否改变,则要视质点的速率情况而定.质点作匀速率圆周运动时, a t恒为零;质点作匀变速率圆周运动时, a t为一不为零的恒量,当a t改变时,质点则作一般的变速率圆周运动.由此可见,应选(B).1 -7 已知质点沿x 轴作直线运动,其运动方程为32262t t x -+=,式中x 的单位为m,t 的单位为 s .求:(1) 质点在运动开始后4.0 s 内的位移的大小;(2) 质点在该时间内所通过的路程;(3) t =4 s 时质点的速度和加速度.分析 位移和路程是两个完全不同的概念.只有当质点作直线运动且运动方向不改变时,位移的大小才会与路程相等.质点在t 时间内的位移Δx 的大小可直接由运动方程得到:0Δx x x t -=,而在求路程时,就必须注意到质点在运动过程中可能改变运动方向,此时,位移的大小和路程就不同了.为此,需根据0d d =t x 来确定其运动方向改变的时刻t p ,求出0~t p 和t p ~t 内的位移大小Δx 1 、Δx 2 ,则t 时间内的路程21x x s ∆+∆=,如图所示,至于t =4.0 s 时质点速度和加速度可用tx d d 和22d d t x 两式计算.题 1-5 图解 (1) 质点在4.0 s 内位移的大小m 32Δ04-=-=x x x(2) 由 0d d =tx 得知质点的换向时刻为s 2=p t (t =0不合题意)则m 0.8Δ021=-=x x xm 40Δ242-=-=x x x所以,质点在4.0 s 时间间隔内的路程为m 48ΔΔ21=+=x x s(3) t =4.0 s 时1s0.4s m 48d d -=⋅-==t t x v 2s0.422m.s 36d d -=-==t t x a 1 -8 已知质点的运动方程为j i r )2(22t t -+=,式中r 的单位为m,t 的单位为s.求:(1) 质点的运动轨迹;(2) t =0 及t =2s时,质点的位矢;(3) 由t =0 到t =2s内质点的位移Δr 和径向增量Δr ;分析 质点的轨迹方程为y =f (x ),可由运动方程的两个分量式x (t )和y (t )中消去t 即可得到.对于r 、Δr 、Δr 、Δs 来说,物理含义不同,(详见题1-1分析).解 (1) 由x (t )和y (t )中消去t 后得质点轨迹方程为 2412x y -=这是一个抛物线方程,轨迹如图(a)所示.(2) 将t =0s和t =2s分别代入运动方程,可得相应位矢分别为j r 20= , j i r 242-=图(a)中的P 、Q 两点,即为t =0s和t =2s时质点所在位置.(3) 由位移表达式,得j i j i r r r 24)()(Δ020212-=-+-=-=y y x x 其中位移大小m 66.5)(Δ)(ΔΔ22=+=y x r而径向增量m 47.2ΔΔ2020222202=+-+=-==y x y x r r r r题 1-6 图 1 -9 质点的运动方程为23010t t x +-=22015t t y -=式中x ,y 的单位为m,t 的单位为s.试求:(1) 初速度的大小和方向;(2) 加速度的大小和方向.分析 由运动方程的分量式可分别求出速度、加速度的分量,再由运动合成算出速度和加速度的大小和方向.解 (1) 速度的分量式为t tx x 6010d d +-==v t ty y 4015d d -==v 当t =0 时, v 0x =-10 m·s-1 , v 0y =15 m·s-1 ,则初速度大小为 120200s m 0.18-⋅=+=y x v v v设v 0与x 轴的夹角为α,则23tan 00-==x yαv v α=123°41′(2) 加速度的分量式为2s m 60d d -⋅==ta x x v , 2s m 40d d -⋅-==t a y y v 则加速度的大小为 222s m 1.72-⋅=+=y x a a a设a 与x 轴的夹角为β,则 32tan -==x y a a β β=-33°41′(或326°19′)1 -11 质点沿直线运动,加速度a =4 -t2 ,式中a 的单位为m·s-2 ,t 的单位为s.如果当t =3s时,x =9 m,v =2 m·s-1 ,求质点的运动方程.分析 本题属于运动学第二类问题,即已知加速度求速度和运动方程,必须在给定条件下用积分方法解决.由t a d d v =和tx d d =v 可得t a d d =v 和t x d d v =.如a =a (t )或v =v (t ),则可两边直接积分.如果a 或v 不是时间t 的显函数,则应经过诸如分离变量或变量代换等数学操作后再做积分.解 由分析知,应有⎰⎰=t t a 0d d 0v v v 得 03314v v +-=t t (1)由 ⎰⎰=t x x t x 0d d 0v 得 00421212x t t t x ++-=v (2) 将t =3s时,x =9 m,v =2 m·s-1代入(1)、(2)得 v 0=-1 m·s-1, x 0=0.75 m于是可得质点运动方程为75.0121242+-=t t x 1 -20 一半径为0.50 m 的飞轮在启动时的短时间内,其角速度与时间的平方成正比.在t =2.0s 时测得轮缘一点的速度值为4.0 m·s-1.求:(1) 该轮在t′=0.5s的角速度,轮缘一点的切向加速度和总加速度;(2)该点在2.0s内所转过的角度.分析 首先应该确定角速度的函数关系ω=kt 2.依据角量与线量的关系由特定时刻的速度值可得相应的角速度,从而求出式中的比例系数k ,ω=ω(t )确定后,注意到运动的角量描述与线量描述的相应关系,由运动学中两类问题求解的方法(微分法和积分法),即可得到特定时刻的角加速度、切向加速度和角位移.解 因ωR =v ,由题意ω∝t 2 得比例系数322s rad 2-⋅===Rtt ωk v 所以 22)(t t ωω== 则t ′=0.5s 时的角速度、角加速度和切向加速度分别为12s rad 5.02-⋅='=t ω2s rad 0.24d d -⋅='==t tωα 2s m 0.1-⋅==R αa t总加速度n t t n R ωR αe e a a a 2+=+= ()()2222s m 01.1-⋅=+=R ωR αa在2.0s内该点所转过的角度 rad 33.532d 2d 203202200====-⎰⎰t t t t ωθθ 1 -21 一质点在半径为0.10 m 的圆周上运动,其角位置为342t θ+=,式中θ 的单位为rad,t 的单位为s.(1) 求在t =2.0s时质点的法向加速度和切向加速度.(2) 当切向加速度的大小恰等于总加速度大小的一半时,θ 值为多少?(3) t 为多少时,法向加速度和切向加速度的值相等?分析 掌握角量与线量、角位移方程与位矢方程的对应关系,应用运动学求解的方法即可得到.解 (1) 由于342t θ+=,则角速度212d d t tθω==.在t =2 s 时,法向加速度和切向加速度的数值分别为 22s 2s m 30.2-=⋅==ωr a t n2s 2s m 80.4d d -=⋅==t ωr a t t (2) 当22212/t n t a a a a +==时,有223n t a a =,即 ()()422212243t r rt = 得 3213=t此时刻的角位置为 rad 15.3423=+=t θ(3) 要使t n a a =,则有()()422212243t r rt =t =0.55s。
大学物理科学出版社第四版第一章质点运动学
第一章 质点运动学一、 基本要求1.掌握位矢、位移、速度、加速度,角速度和角加速度等描述质点运动和运动变化的物理量。
2. 能借助于直角坐标计算质点在平面内运动时的速度、加速度。
3.能计算质点作圆周运动时的角速度和角加速度,切向加速度和法向加速度。
4.理解伽利略坐标,速度变换。
二、 基本内容1.位置矢量(位矢)位置矢量表示质点任意时刻在空间的位置,用从坐标原点向质点所在点所引的一条有向线段r 表示。
r 的端点表示任意时刻质点的空间位置。
r同时表示任意时刻质点离坐标原点的距离及质点位置相对坐标系的方位。
位矢是描述质点运动状态的物理量之一。
注意:(1)瞬时性:质点运动时,其位矢是随时间变化的,即()t r r=;(2)相对性:用r描述质点位置时,对同一质点在同一时刻的位置,在不同坐标系中r 可以是不相同的。
它表示了r的相对性,也反映了运动描述的相对性;(3)矢量性:r为矢量,它有大小,有方向,服从几何加法。
在直角坐标系Oxyz 中k z j y i x r++= 222z y x r r ++==r z r y r x ===γβαcos ,cos ,cos质点运动时, ()t r r= (运动方程矢量式)()()()⎪⎩⎪⎨⎧===t z z t y y t x x (运动方程标量式)。
2.位移()(),j y i x t r t t r r ∆+∆=-∆+=∆ r∆的模()()22y x r ∆+∆=∆ 。
注意:(1)r∆与r ∆:前者表示质点位置变化,是矢量,同时反映位置变化的大小和方位;后者是标量,反映质点位置离开坐标原点的距离的变化。
(2)r∆与s ∆:s ∆表示t —t t ∆+时间内质点通过的路程,是标量,只有质点沿直线运动时两者大小相同或0→∆t 时,s r ∆=∆。
3. 速度dtrd v =是描述位置矢量随时间的变化。
在直角坐标系中k v j v i v k dtdz j dt dy i dt dx dt r d v z y x++=++==222222z y x v v v dt dz dt dy dt dx v v ++=⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛==v的方向:在直线运动中,v>0表示沿坐标轴正向运动,v <0表示沿坐标轴负向运动。
质点运动学速度加速度位移的概念与计算方法
质点运动学速度加速度位移的概念与计算方法质点运动学速度、加速度和位移的概念与计算方法质点运动学是研究物体在运动过程中速度、加速度和位移等参数变化规律的学科。
在运动学中,速度、加速度和位移是最基本的概念,同时也是最重要的物理量之一。
本文将详细介绍质点运动学中速度、加速度和位移的概念,以及它们的计算方法。
一、速度的概念与计算方法速度是描述物体在单位时间内形成的位移量的物理量,是一个矢量量。
其定义为单位时间内物体位移的矢量大小,可以用以下公式表示:速度 = 位移 / 时间其中,速度的单位是米每秒(m/s)。
当物体运动时,速度的大小和方向都可以发生变化。
在一维运动情况下,速度的计算方法相对简单。
若物体在时间t内的位移为Δx,则速度可以表示为:速度= Δx / t在二维或三维的运动情况下,速度的计算方法稍微复杂一些。
可以将位移量Δx、Δy和Δz分别用于表示物体在x、y和z方向上的位移。
速度可以表示为:速度= ( Δx / t ) i + ( Δy / t ) j + ( Δz / t ) k其中,i、j和k分别表示x、y和z方向上的单位矢量。
二、加速度的概念与计算方法加速度是衡量物体运动改变速度大小和方向的物理量,同样是一个矢量量。
它的定义为单位时间内速度变化的矢量大小,可以用以下公式表示:加速度 = 速度变化量 / 时间加速度的单位是米每秒平方(m/s²)。
与速度一样,加速度也可以在一维、二维或三维运动情况下进行计算。
在一维运动情况下,加速度的计算方法相对简单。
若物体在时间t 内的速度变化量为Δv,则加速度可以表示为:加速度= Δv / t在二维或三维运动情况下,加速度的计算方法稍微复杂一些。
可以将速度变化量Δv的x、y和z分量分别用于表示物体在x、y和z方向上的速度变化量。
加速度可以表示为:加速度= ( Δvx / t ) i + ( Δvy / t ) j + ( Δvz / t ) k其中,i、j和k分别表示x、y和z方向上的单位矢量。
大学物理课后习题答案详解
第一章质点运动学1、(习题:一质点在xOy 平面内运动,运动函数为2x =2t,y =4t 8-。
(1)求质点的轨道方程;(2)求t =1 s t =2 s 和时质点的位置、速度和加速度。
解:(1)由x=2t 得,y=4t 2-8 可得: y=x 2-8 即轨道曲线(2)质点的位置 : 22(48)r ti t j =+-r r r由d /d v r t =r r 则速度: 28v i tj =+r r r由d /d a v t =r r 则加速度: 8a j =r r则当t=1s 时,有 24,28,8r i j v i j a j =-=+=rr r rrrrr当t=2s 时,有 48,216,8r i j v i j a j =+=+=r r r r r rr r2、(习题): 质点沿x 在轴正向运动,加速度kv a -=,k 为常数.设从原点出发时速度为0v ,求运动方程)(t x x =.解:kv dtdv-= ⎰⎰-=t v v kdt dv v 001 t k e v v -=0t k e v dtdx-=0 dt e v dx t k tx-⎰⎰=000)1(0t k e kv x --=3、一质点沿x 轴运动,其加速度为a 4t (SI),已知t 0时,质点位于x 10 m处,初速度v0.试求其位置和时间的关系式.解: =a d v /d t 4=t d v 4=t d t ⎰⎰=vv 0d 4d tt t v 2=t 2v d =x /d t 2=t 2t t x txx d 2d 020⎰⎰= x 2= t 3 /3+10 (SI)4、一质量为m 的小球在高度h 处以初速度0v 水平抛出,求:(1)小球的运动方程;(2)小球在落地之前的轨迹方程;(3)落地前瞬时小球的d d r t v ,d d v t v,tvd d .解:(1) t v x 0= 式(1)2gt 21h y -= 式(2) 201()(h -)2r t v t i gt j =+v v v(2)联立式(1)、式(2)得 22v 2gx h y -=(3)0d -gt d rv i j t=v v v 而落地所用时间 gh2t =所以0d d r v i j t =v vd d v g j t=-v v 2202y 2x )gt (v v v v -+=+=2120212202)2(2])([gh v gh g gt v t g dt dv +=+= 5、 已知质点位矢随时间变化的函数形式为22r t i tj =+v vv,式中r 的单位为m ,t 的单位为s .求:(1)任一时刻的速度和加速度;(2)任一时刻的切向加速度和法向加速度。
大学物理学复习资料
大学物理学复习资料第一章 质点运动学 主要公式:1.笛卡尔直角坐标系位失r=x i +y j +z k,质点运动方程(位矢方程):k t z j t y i t x t r)()()()(++=参数方程:。
t t z z t y y t x x 得轨迹方程消去→⎪⎩⎪⎨⎧===)()()(2.速度:dt r d v =3.加速度:dt vd a =4.平均速度:trv ∆∆=5.平均加速度:t va ∆∆=6.角速度:dt d θω=7.角加速度:dtd ωα=8.线速度与角速度关系:ωR v = 9.切向加速度:ατR dtdva ==10.法向加速度:Rv R a n 22==ω11.总加速度:22n a a a +=τ第二章 牛顿定律 主要公式:1.牛顿第一定律:当0=合外F时,恒矢量=v。
2.牛顿第二定律:dtP d dt v d m a m F=== 3.牛顿第三定律(作用力与反作用力定律):F F '-=第三章 动量与能量守恒定律 主要公式:1.动量定理:P v v m v m dt F I t t∆=-=∆=⋅=⎰)(12212.动量守恒定律:0,0=∆=P F合外力当合外力3、 动能定理:)(21212221v v m E dx F W x x k -=∆=⋅=⎰合 4.机械能守恒定律:当只有保守内力做功时,0=∆E 第五章 机械振动 主要公式:1.)cos(ϕω+=t A x Tπω2= 弹簧振子:mk=ω,k m T π2=单摆:lg =ω,g lT π2=2.能量守恒:动能:221mv E k =势能:221kx E p =机械能:221kA E E E Pk =+= 3.两个同方向、同频率简谐振动得合成:仍为简谐振动:)cos(ϕω+=t A x 其中:⎪⎩⎪⎨⎧++=∆++=22112211212221cos cos sin sin cos 2ϕϕϕϕϕϕA A A A arctg A A A A Aa. 同相,当相位差满足:πϕk 2±=∆时,振动加强,21A A A MAX +=;b. 反相,当相位差满足:πϕ)12(+±=∆k 时,振动减弱,21A A A MIN -=。
01绪论,质点,参考系,位移,速度,加速度
Fan
3)多边形法则
有限个矢量 a1 , a 2 , L a n 相加可由矢量的三角形 求和 法则推广
开始, 自任意点 O 开始,依次引 OA1 = a1 , A1 A2 = a 2 , L , An − 1 An = a n , 由此得一折线 OA1 A2 L An , 于是矢量 OA n = a就是 n 个矢量 a1 , a 2 , L , a n的和,即 的和, OA = OA1 + A1 A2 + L + An − 1 An .
Fan
二、质点(mass point) 质点( ) 具有物体的质量,没有形状和大小的几何点。 具有物体的质量,没有形状和大小的几何点。 说明 如果我们研究某一物体的运动, 如果我们研究某一物体的运动,而可以忽略其大小和 形状对物体运动的影响,若不涉及物体的转动和形变, 形状对物体运动的影响,若不涉及物体的转动和形变, 我们就可以把物体当作是一个具有质量的点( 质点) 我们就可以把物体当作是一个具有质量的点(即质点) 来处理 . 相对性;理想模型; 相对性;理想模型;质点运动是研究物质运动的基础 一个物体能否看作质点,要根据问题的性质来决定。 一个物体能否看作质点,要根据问题的性质来决定。
Fan
1)矢量的表示: 矢量的表示:
常用黑体母或带箭头的字母表示。 常用黑体母或带箭头的字母表示。 矢量的几何表示: 矢量的几何表示:一个矢量可用一条有方向的线段来表示 v v v v A 矢量的代数表示: v 矢量的代数表示: = eA A = eA A
A
r A 矢量的大小或模: 矢量的大小或模: = A v A v eA = 矢量的单位矢量: 矢量的单位矢量: A
x cos α = , r y cos β = , r z cos γ = r
大学物理答案第一章
第一章 质点运动学1-1 质点作直线运动,运动方程为2612t t x -=其中t 以s 为单位,x 以m 为单位,求:(1)t = 4s 时,质点的位置、速度和加速度;(2)质点通过原点时的速度;(3)质点速度为零时的位置;(4)作出x -t 图,v -t 图和a -t 图.分析解 (1)根据直线运动情况下的定义,可得质点的位矢、速度和加速度分别为2612t t x -= (1)t tx 1212d d -==v (2) 12d d 22-==tx a (3) 当t = 4s 时,代入数字后得m 48m 46m 4122-=⨯-⨯=xm/s -36m/s 412m/s 12=⨯-=v2m/s 12-=a(2)当质点通过原点时,位矢0=x ,代入运动方程,得06122=-t t因此可得质点通过原点的时间分别为01=t ,s 22=t ,代入(2)式后得m/s 121=v ,m/s 122-=v(3)将0=v 代入(2)式,得01212=-t即质点速度为零时s 1=t ,代入(1)式,得其位置为m 6m 16-m 12=⨯=x(4)根据(1)、(2)和(3)式,描述该质点运动的x -t 图,v -t 图和a -t 图如图1-1所示.1-2 一质点在xy 平面内运动,在某一时刻它的位置矢量)54(j i r +-=m ,经5Δ=t s 后,其位移)86(Δj i r -=m ,求:(1)此时刻的位矢;(2)在Δt 时间内质点图1-1的平均速度.(i 、j 分别为x 、y 方向的单位矢.)分析解 (1)据题意,在t t ∆+时刻,该质点的位矢为m 32m )8-(6m )54(1)(j i j i j i r r r -=++-=∆+=(2)在Δt 时间内质点的平均速度为m/s )1.6-(1.2m/s 586j i j i r v =-=∆∆=t 1-3 质点在xy 平面上运动,运动方程为t y t x 4sin ,4cos 3ππ== 其中t 以s 为单位,x ,y 以m 为单位.(1)求质点运动轨道的正交坐标方程并在xy 平面上绘出质点的轨道;(2)求出质点的速度和加速度表示式,由此求出质点在轨道上运动的方向并证明质点的加速度指向坐标原点;(3)求t = 1 s 时质点的位置和速度与加速度的大小和方向.分析解 (1)质点的运动方程为 t x 43πcos = (1) t y 4πsin = (2) (1)式两边同乘以3并平方后与(2)式的平方相加,得正交坐标方程为 1322=+y x 上式表明质点的运动轨道是一个椭圆,如图1-2所示.(2)由(1)和(2)式可得质点速度和加速度的x ,y 方向分量分别为t t x 443d d ππsin -==x v (3) t t y 44d d ππcos ==y v (4) t t a x 4163d d 2ππcos -==x v (5) t t a y 416d d 2ππsin -==yv (6)则质点速度为 j i v t t 44443ππππcos sin +-= 当t =0时,由运动方程(1)和(2)式,得知质点位于横坐标上3的位置,图1-2由(3)和(4)式,知040>==πy x v v ,,即表明质点在椭圆上沿反时针方向运动. 质点加速度为 j i a 2t t 41641632ππππsin cos --= 由(1)和(2)式得t 时刻质点的位矢为j i r t t 44ππsin cos += (7) 位矢r 与x 轴的夹角ϕ由下式确定:t x y 433πϕtan tan == 而加速度a 与x 轴的夹角α则由下式确定:t a a x y433παtan tan == 即有ϕαtan tan =,注意到在曲线运动中加速度始终指向曲线凹的一侧,则得πϕα+=,表明a 与r 方向相反,指向原点,如图1-2所示.(3)当t = 1 s 时,由(1)--(2)式得m 26=x m 22=y m/s 86π-=x v m/s 82π=y v 22m/s 326π-=x a 22m/s 322π-=y a 速度的大小 m/s 42π=+=2y 2xv v v 速度v 与x 轴的夹角θ则由下式确定:33-==x yv v θtan 注意到此时v x <0,v y >0,则 πθ6533=-=)a r c t a n (. 加速度的大小 22m/s 162π=+=2y 2x a a a对于夹角α有 33==x ya a αtan 又因a x <0,a y <0,则 πα6733==)a r c t a n (. 1-4 质点沿直线运动,其速度2323++=t t v ,如果t = 2时,x = 4,求t = 3时质点的位置、速度和加速度.(其中v 以m/s 为单位,t 以s 为单位,x 以m 为单位)分析解 速度表示式对t 积分,得034241d x t t t t x +++==⎰v 将t = 2 s 时,x = 4 m 代入上式,得积分常数120-=x m ,则1224134-++=t t t x 速度表示式对t 求导数,得t t ta 63d d 2+==v 因此t = 3 s 时质点的位置、速度和加速度分别为m 2541m 12m 32m 3m 34134.=-⨯++⨯=x m/s 56m/s 2m/s 33m/s 323=+⨯+=v2222m/s 45m/s 36m/s 33=⨯+⨯=a1-5 质点沿直线运动,加速度24t a -=,如果当t = 3时,x = 9,v = 2,求质点的运动方程.(其中a 以m/s 2为单位,t 以s 为单位,x 以m 为单位,v 以m/s 为单位)分析解 加速度表示式对t 积分,得03431d v v ++-==⎰t t t a 0242121d x t t t t x +++-==⎰0v v 将t =3 s 时,x = 9 m ,v = 2 m/s 代入以上二式,得积分常数m/s 10-=v ,7500.=x m ,则14313-+-=t t v 750212124.+-+-=t t t x 1-6 质点以不变的速率5m/s 运动,速度的方向与x 轴间夹角等于t 弧度(t为时间的数值),当t = 0时,x = 0,y = 5m ,求质点的运动方程及轨道的正交坐标方程,并在xy 平面上描画出它的轨道.分析解 设质点的速率为v ,与x 轴间夹角为t 弧度,则速度的分量为t t x x cos v v ==d d t ty y s i n v v ==d d 以上两式分别积分,得1C t x +=sin v 2C t y +-=c o s v初始条件为t = 0时,x = 0,y = 5m ,代入以上两式后,得01=C m 102=C因此运动方程为t x sin 5= 105+-=t y cos从中消去t ,得质点运动轨道的正交坐标方程为251022=-+)(y x这是圆心在y 轴上10m 处的圆,半径为5m ,如图1-3所示.1-7 在离水面高度为h 的岸上,有人用绳子拉船靠岸,人以0v 的速率收绳,求当船离岸边的距离为s 时,船的速度和加速度.分析解 选如图1-4所示的直角坐标系,设t 时刻绳长为l ,船的速度为v ,则此时船的x ,y 方向坐标分别为22h l x -= h y =由速度定义得0d d d d ===th t y y v t l hl l t x d d d d 22-===x v v图1-3 图1-4因绳长l 随时间减小的速率等于人的收绳速率,即0d d v =-tl ,则当s x =时,船的速度为022022v v v s h s h l l+-=--= 其中负号表明船的速度方向沿x 轴的负向.又由加速度的定义得0d d ==t a yy v2023222022d d d d v v v x )(h l h h l l t t a a x --=⎪⎪⎭⎫ ⎝⎛--=== 当s x =时,加速度为 2032v sh a -= 其中负号表明船的加速度方向也沿x 轴的负向,且船作变加速直线运动.1-8 当物体以非常高的速度穿过空气时,由空气阻力产生的反向加速度大小与物体速度的平方成正比,即2v k a -=,其中k 为常量.若物体不受其它力作用沿x 方向运动,通过原点时的速度为0v ,试证明在此后的任意位置x 处其速度为x k -=e 0v v分析证 根据加速度的定义,得2v v k a t-==d d 因 tt x x t a d d d d d d d d v v v v ===,代入上式,整理后得 x d d 1-k v v= 应用初始条件0=x 时,0v v =,上式两边分别对v 和x 积分⎰⎰-=x x 0d d 10k v v vv 得 kx -=0v v ln 即有 x k -=e 0v v1-9 一支气枪竖直向上发射,发射速度为29.4m /s ,若发射两粒子弹的间隔时间为4s ,求二子弹将在距发射点多高的地方彼此相遇?分析解 以发射点为原点,竖直向上为y 坐标正向,第一粒子弹发射后的t 时刻,其位置为20121gt t y -=v (1) 其中0v 为发射速度,第二粒子弹此时(设4>t s )的位置为2024214)()(---=t g t y v (2) 当二子弹相遇时,21y y =,由(1)和(2)式得s 5s 2s 8942920=+=+=..g t v 将上式代入(1)式,得m 524m 58921m 5429212201...=⨯⨯-⨯=-=gt t y v 1-10 A 车通过某加油站后其行驶路程x 与时间t 的关系可以表示为24.02t t x +=(其中t 以s 为单位,x 以m 为单位)在A 车离开10 s 后B 车通过该加油站时速度为12 m/s ,且具有与A 车相同的加速度.求:(1)B 车离开加油站后追上A 车所需时间;(2)两车相遇时各自的速度.分析解 (1)令B 车通过该加油站时0=t ,则A 车的运动方程为2A 1040102)(.)(+++=t t xB 车的运动方程为2B 4012t t x .+=两车相遇时有B A x x =,由以上两式得2240121040102t t t t .)(.)(+=+++解得 s 30=t(2)根据速度的定义,相遇时两车速度分别为m/s 3410802d d A A =+⨯+==)(.t tx v m/s 368012d d B B =+==t tx .v 1-11 一升降机以加速度1.22m /s 2上升,当上升速度为2.44m /s 时,有一螺帽自升降机的天花板松落,天花板与升降机底面相距2.74m ,计算:(1)螺帽从天花板落到底面所需的时间;(2)螺帽相对于升降机外固定柱子的下降距离. 分析解 (1)以升降机外固定柱子为参考系,竖直向上为y 坐标正向,螺帽松落时升降机底面位置为原点.螺帽松落后从m 7420.=y 处以初速度m /s4420.=v 作竖直上抛运动,升降机底面则从原点以同样的初速度作向上的加速运动,加速度2m/s 221.=a ,它们的运动方程分别为螺帽: 200121gt t y y -+=v 底面: 20221at t y +=v 螺帽落到底面上时,21y y =,由以上两式可得s 0.705s 22189742220=+⨯=+=...a g y t (2)螺帽相对于升降机外固定柱子的下降距离为m 7150m 70508921m 7050442 2122010.....=⨯⨯+⨯-=+-=-=gt t y y s v 1-12 一小球自h = 4.9m 处落到一倾角θ= 45°的斜面上,设小球与斜面碰撞后速率不变,方向如图所示.求小球第二次与斜面碰撞时,离第一次碰撞处的距离L 为若干? 分析 解 以小球与斜面第一次相撞点为原点取直角坐标系如图1-5所示.第一次相撞后小球作平抛运动,初速度为0v .此前,小球为自由落体,因此有 gh 20=v小球作平抛运动的运动方程为t x 0v = 221gt y = 由于斜面倾角θ= 45°,当小球第二次碰到斜面时,应有y x =,则由以上二式解得 gt 02v =两次碰撞点之间的距离为m 27.7m 459444200=︒⨯=====sin .sin sin sin sin θθθθh g t x L 2v v 1-13 消防队员用水龙头喷射10 m 外的着火竖墙,水龙头每分钟喷水量为图1-5280 kg ,水喷出时速度为26 m/s ,与地面交角为45º。
03 质点运动学(讲稿)2-2
?第一部分 力学 第一章 质点运动学共2讲北京邮电大学理学院物理部1§3 质点运动学的基本问题1. 第一类问题 已知质点的运动方程,求质点在任意时刻的位置,速 度和加速度。
——微分法r = r (t )dr v= dtdv d 2 r a= = 2 dt dt只要知道运动方程,就可以确定质点在任意时刻的位置、 速度和加速度。
从运动方程中消去时间参数t,还可得质点运动的轨迹方程。
北京邮电大学理学院物理部2例:已知: 求: 解一:ˆ r = 2t i + (2 − t 2 ) ˆ (SI) j2秒末速度的大小x = 2t r=2y = 2−t2(2 t ) + (2 − t )2t 3 4 +t42 2=4+ t4dr v= = dt t=28 5 v2 = = 3 . 58 5北京邮电大学理学院物理部m ⋅ s -13解二:ˆ + (2 − t2 ) ˆ r = 2t i j dr ˆ = 2 i − 2t ˆ v= j dt vx = 2 vy = −2t v = v + v = 2 1+ t2 x 2 y 2 -1t = 2 v2 = 2 5 = 4.47 m ⋅ s请判断正误并说明理由 解一错误,解二正确!北京邮电大学理学院物理部4例 已知: 求: 解:ˆ r = 2t i + (2 − t 2 ) ˆ (SI) j2秒末加速度的大小y2 Pˆ r = 2t i + ( 2 − t 2 ) ˆ jθ′r θo-24 Qxr′dr ˆ = 2 i − 2t ˆ v= j dt dv a= = −2 ˆ j dta =2m.s-2 , 沿 -y 方向,与时间无关。
北京邮电大学理学院物理部5例已知:ˆ r = 5ti + (15t − 5t 2 ) ˆ (SI) j1.质点做什么运动? 2.找一个实例 3.求抛射角、轨道方程、射程、射高 4.求 t = 1s 时 : a n = ?aτ = ?ρ =?北京邮电大学理学院物理部6已知:ˆ r = 5ti + (15t − 5t 2 ) ˆ (SI) j1.质点做什么运动? 平面曲线运动 2.找一个实例ˆ j v = 5i + (15 − 10t ) ˆa = −10 ˆ jˆ t = 0 : r0 = 0, v0 = 5i + 15 ˆ j质点从原点出发,初速度为 v 0x : v x = 5, a x = 0y : v y = 15 − 10 t匀速直线运动a y = − 10 ≈ − g 为竖直上抛运动合运动:斜抛运动北京邮电大学理学院物理部73.求抛射角、轨道方程、射程、射高 抛射角:ˆ v0 = 5i + 15 ˆ jα = arctg轨道方程: x = 5tv0 y v0 x= arctg3 = 72x2 y = 3x − 5y = 15t − 5t 2yY射程:y = 0 X = 15mv0αoxX/2X射高:x = 7 .5 m Y = 11.25 m8北京邮电大学理学院物理部4.求 t = 1s 时 : a n = ?aτ = ?y (m )ρ =?v1ˆ r = 5ti + (15t − 5t 2 ) ˆ j ˆ t = 1: r = 5i + 10 ˆ jˆ v = 5i + (15 − 10t ) ˆ j a = −10 ˆ jv =aτ =2 vx + v2 = y10aτ 1a n15oa1x (m )155 2 + (15 − 10 t )2dv = dt10 ( 2 t − 3 ) 4 t 2 − 12 t + 10t = 1 : aτ 1 = − 5 2 ≈ − 7 .1 m ⋅ s -2 , v 1 = 5 2 m ⋅ s -1北京邮电大学理学院物理部9y (m )v110aτ 1a n15oa1x (m )15t = 1 : aτ 1 = − 5 2 ≈ − 7.1 m ⋅ s -2 a1 = − 10 m ⋅ s - 2v 1 = 5 2 m ⋅ s -1a n1 =a12 − aτ21 = 5 2 ≈ 7.1 m ⋅ s -2v12 ρ1 = = 5 2 ≈ 7 .1 m a n1注意:结果保留2-3位有效数字北京邮电大学理学院物理部10例 离水平面高为 h 的绞车以恒定的速率 v0收绳,使船靠 岸。
质点运动学——精选推荐
第1章质点运动学基本要求1.掌握描述质点运动的基本物理量 位置矢量㊁位移㊁速度和加速度等概念及其主要性质(矢量性㊁瞬时性和相对性)㊂2.理解运动方程和轨道方程的意义,能应用直线运动方程和运动叠加原理求解简单的质点运动学问题㊂(1)已知质点运动方程,求质点的位移㊁速度和加速度等物理量;(2)已知速度或加速度及初始条件,求质点的运动方程;(3)熟练掌握匀变速直线运动㊁抛体运动的规律㊂3.掌握圆周运动中角速度㊁角加速度㊁切向加速度和法向加速度等概念㊂基本概念和基本规律1.质点在所研究的问题中,物体的大小和形状可忽略不计时,我们把它看作只具有质量而无大小㊁形状的理想物体,称为质点㊂质点是物理学中物体的理想模型㊂2.位置矢量(或矢径)r在直角坐标系中点P的位置矢量(如图1.2.1所示)表示为r=x i+y j+z k位置矢量的大小为r=|r|=x2+y2+z2位置矢量的方向用方向余弦表示为c o sα=x r,c o sβ=y r,c o sγ=z r在二维运动中(如图1.2.2所示)r=x i+y jr=|r|=x2+y2θ=a r c t a n y x式中θ是r与x轴正向间夹角㊂Ң2大学物理学习指导图 1.2.1图 1.2.23.位移位移是描述质点在t ~t +Δt 时间内位置矢量变化的物理量(如图1.2.3所示)㊂质点在Δt 内由P 1到P 2的位移等于同一时间内位置矢量的增量Δr:图 1.2.3Δr =r 2-r 1=(x 2-x 1)i +(y 2-y 1)j +(z 2-z 1)k 位移的大小|Δr |=(x 2-x 1)2+(y2-y 1)2+(z 2-z 1)2位移的方向:c o s α=Δx |Δr |, c o s β=Δy |Δr |, c o s γ=Δz |Δr | 注意:①位移Δr 与位置矢量r 的物理意义不同,r 与时刻t 对应,Δr 与Δt 对应;②|Δr |ʂΔr =r 2-r 1,Δr =x 22+y 22+z 22-x 21+y21+z 21;③位移与参照系的选择有关,具有相对性;④直线运动中的位移Δx =x 2-x 1,Δx 的正负表示位移的方向沿x 轴的正向或负向㊂4.速度速度是描述质点的位置随时间变化快慢和方向的物理量㊂(1)平均速度췍-=Δr Δt =Δx Δt i +Δy Δt j +Δz Δtk =v -x i +v -y j +v -z k 췍-称为质点在t ~t +Δt 这段时间内的平均速度㊂(2)瞬时速度췍=d r d t =d x d t i +d y d t j +dz d tk =v x i +v yj +v z k 췍称为质点在时刻t 的瞬时速度,简称速度㊂注意:①v =|췍|=v 2x +v 2y +v 2z =d x d æèçöø÷t 2+d y d æèçöø÷t 2+d z d æèçöø÷t 2ʂd r d t;②直线运动中v =d x d t,v 的正负表示速度的方向沿x轴正向㊁负向㊂(3)平均速率v -=Δs Δt式中Δs 是质点在t ~t +Δt 时间内走过的路程,v -称质点在t ~t +Δt 时间内的平均速率㊂第1章 质点运动学Ң3(4)瞬时速率v =d s d tv 称为质点在t 时刻的瞬时速率,简称速率㊂同一瞬间的瞬时速率和瞬时速度的大小是相同的㊂5.加速度加速度是描述质点运动速度变化的物理量㊂(1)平均加速度a -=Δ췍Δt =Δv x Δt i +Δv y Δt j +Δv zΔtk a -称为质点在t ~t +Δt 这段时间内的平均加速度㊂(2)瞬时加速度a =d 췍d t =d v x d t i +d v y d t j +d v z d t k =d 2x d t 2i +d 2y d t 2j +d 2z d t2k =a x i +a yj +a z k a 称为质点在t 时刻的瞬时加速度,简称加速度㊂(3)质点作平面曲线运动时的加速度,亦可用自然坐标系中的法向加速度和切向加速度表示:法向加速度a n =v 2ρ,方向指向该处的曲率中心;切向加速度a τ=d v d t,正㊁负表示切向加速度的方向与该处速度方向 同 ㊁ 反 ㊂总加速度a =a n +a τ式中,v 为质点所在处的速率;ρ为质点所在处曲率半径㊂注意:①a 的方向是速度变化的方向,即Δ췍的极限方向,一般不代表质点的运动方向㊂②区分췍和a 概念:췍=0,a 不一定为零;췍大,a 不一定大㊂③曲线运动中a n ʂ0;直线运动中a n =0,a τ=d v d t;直线运动a 的正㊁负表示加速度的方向沿选定轴的正向㊁负向㊂6.圆周运动的角量描述设质点作圆周运动,t 时刻质点在A 点,t +Δt 时刻质点运动到B 点,如图1.2.4所示㊂则质点的运动亦可用下述角量描述㊂图 1.2.4θ为半径O A 与x 轴间夹角,θA 是质点在A 点的角位置,则Δθ=θB -θAΔθ称为质点在t ~t +Δt 内对O 点的角位移㊂ω=l i mΔt ң0ΔθΔt =d θd tω称为质点在t 时刻对O 点的瞬时角速度(简称角速度)㊂α=l i mΔt ң0ΔωΔt =d ωd tα称为质点在t 时刻对O 点的瞬时角加速度(简称角加速度)㊂Ң4大学物理学习指导角量与线量间的关系:v =R ωa n =v 2R , a τ=d v d t=R α7.运动方程r (t)质点的位置矢量r (t)(或角位置θ)随时间的变化规律称为质点的运动方程,可表示为r (t )=x (t )i +y (t )j +z (t )k 或θ=θ(t)质点的运动方程在直角坐标系中亦可用分量式表示为x =x (t )y =y (t )z =z (tìîíïïï) 运动方程反映了质点的空间位置随时间的变化过程㊂从运动方程的分量式中消去t,得到x ㊁y ㊁z 间的关系式,称为质点的轨道方程㊂8.运动叠加原理一个运动可看成几个各自独立进行的运动叠加而成,这称为运动叠加原理或运动独立性原理㊂例如,抛体运动可看成水平方向的匀速直线运动和竖直方向的匀变速直线运动的叠加㊂9.几种简单的运动规律(1)直线运动的规律(假设运动发生在x 轴上)匀速直线运动方程:x =x 0+v t 匀变速直线运动方程:x =x 0+v 0t +12a t 2变速直线运动方程:x =x 0+ʏt 0v d t v =v 0+ʏt 0a dt式中x 0㊁v 0分别是t=0时质点的初始位置㊁初始速度㊂(2)圆周运动的角量描述规律匀速圆周运动:θ=θ0+ωt a n =R ω2, a τ=0 匀变速圆周运动:θ=θ0+ω0t +12αt 2a n =R ω2, a τ=d vd t=Rα第1章 质点运动学Ң5 式中θ0㊁ω0分别是t=0时质点的角位置㊁初角速度㊂(3)抛体运动规律图 1.2.5抛体运动(如图1.2.5所示)方程为x =v 0c o s θ0t y =h +v0s i n θ0t -12g t 2讨论:θ0=0时为平抛运动;θ0=π2时为竖直上抛运动;θ0=-π2且v 0=0,则为自由落体运动㊂10.运动的相对性由于位置矢量㊁速度和加速度的大小和方向都与参照系的选择有关,具有相对性,因此同一质点的运动对不同参照系的描述是不同的㊂设坐标系O x ᶄy ᶄz ᶄ相对于坐标系O x yz 的平动速度为u ,则位移Δr =Δr ᶄ+u Δt 速度췍=췍ᶄ+u或表示为췍A 对C =췍A 对B +췍B 对C上式称速度变换原理或速度合成定理㊂加速度a A 对C =a A 对B +a B 对C上式称加速度交换原理或加速度合成定理㊂解题指导本章的重点是深刻理解位置矢量㊁位移㊁速度和加速度等概念,注意其矢量性与相对性㊂本章习题一般分两大类:第一类是已知质点的运动方程,利用微分法求各物理量(速度㊁加速度等);第二类是已知速度或加速度及初始条件,利用积分法求运动方程㊂第二类问题和学会用速度合成定理处理运动的矢量性和相对性问题是本章的难点㊂在直线运动中,位移㊁速度和加速度的方向均在一直线上,建立坐标后,这些矢量可作为标量来处理㊂位移Δx ㊁速度v 和加速度a 的正负,表示其方向与选定坐标轴的正向一致或相反㊂应特别注意的是,中学阶段定量研究的是匀变速直线运动,加速度是常量㊂但大学物理中讨论的是具有普遍意义的运动,加速度不一定是常量,必须用高等数学中的微积分解题㊂由中学的 常量 到大学的 变量 ,这是学习的一个飞跃㊂质点运动学问题的一般解题程序为:(1)审清题意,确定研究对象,分析研究对象的运动情况㊂(2)选择适当的参照系,建立坐标系㊂(3)根据所求物理量的定义,列式并求解㊂或根据运动的特点和题设条件,列方程求解㊂Ң6大学物理学习指导(4)必要时进行分析讨论㊂ʌ例题1.1ɔ有一物体作直线运动,其运动方程为x=6t2-2t3,式中x的单位为m,t 的单位为s㊂求:(1)速度和加速度的表达式;(2)t=0,1,2,3,4s时物体的位置x㊁速度v和加速度a;(3)第2s内的平均速度;(4)最初4s内物体的位移㊁路程㊁平均速度和平均速率;(5)讨论物体的运动情况㊂ʌ解ɔ(1)物体的运动方程x=6t2-2t3速度v=d x d t=12t-6t2(m/s)加速度a=d v d t=12-12t(m/s2)(2)将t的各值代入上述三式,可得各时刻的x㊁v和a,见表1.3.1:表1.3.1t/s01234x/m0480-32v/(m/s)060-18-48a/(m/s2)120-12-24-36(3)第2s内平均速度v-1 2=x2-x1t2-t1=8-42-1=4(m/s)但这不能用下式来计算:v-1 2=v1+v22为什么不行?请读者自己思考㊂(4)位移Δx=x4-x0=-32-0=-32(m)式中负号表示位移的方向沿x轴负向㊂路程Δs是否等于位移Δx通常ΔsʂΔx,只有在直线运动中速度不改变方向的那段时间内,路程才与位移的大小相等㊂今由d x d t=12t-6t2=0得t=2s时开始速度改变方向,所以路程为Δs=Δs1+Δs2=|x2-x0|+|x4-x2|=|8-0|+|-32-8|=48(m)平均速度为v-0 4=x4-x0t4-t0=-324=-8(m/s)式中负号表示平均速度的方向沿x轴负向㊂第1章质点运动学Ң7平均速率为v-0 4=ΔsΔt=484=12(m/s)(5)由v=12t-6t2,可见t<2s,v>0;t=2s,v=0;t>2s,v<0㊂而由a=12-12t得t<1s,a>0;t=1s,a=0;t>1s,a<0㊂因此:t在0~1s内,v>0,a>0,物体作加速运动;t在1~2s内,v>0,a<0,物体作减速运动;t>2s,v<0,a<0,物体沿x轴负向作加速运动㊂应注意:a>0,并不表示物体作加速运动;a<0也不一定是减速运动㊂如何判断物体作加速还是减速运动呢?这应从a和v的方向是否一致来判断㊂a与v同号(即同方向),则为加速运动;a与v异号(即反向),则为减速运动㊂ʌ例题1.2ɔ已知质点的运动方程为x=3t,y=t2+t式中x㊁y以m计,t以s计㊂试求:(1)t=1s和2s时质点的位置矢量,并计算这1s内质点的位移和平均速度;(2)2s末质点的速度和加速度;(3)质点的轨道方程㊂ʌ解ɔ(1)质点的位置矢量为r=3t i+(t2+t)jt=1s时,r1=3i+(1+1)j=3i+2j(m)t=2s时,r2=6i+6j(m)根据位移的定义,这1s内的位移为Δr=r2-r1=(6-3)i+(6-2)j=3i+4j(m)或用位移的大小和方向表示为|Δr|=(Δx)2+(Δy)2=(6-3)2+(6-2)2=5(m)θ=a r c t a nΔyΔx=a r c t a n6-26-3=53ʎ式中θ是位移与x轴正向间夹角㊂根据平均速度的定义,这1s内的平均速度为췍-=ΔrΔt=3i+4j2-1=3i+4j(m/s)(2)根据速度的定义,可得速度的两个分量v x和v y:v x=d x d t=3(m/s)v y=d y d t=(2t+1)|t=2=2ˑ2+1=5(m/s)所以质点在2s末的速度为췍2=3i+5j(m/s)或用췍2的大小和췍2与x轴正向间夹角来表示为v2=v2x+v2y=32+52=5.83(m/s)Ң8大学物理学习指导θ=a r c t a n v y v x =a r c t a n 53=59ʎ式中θ是速度췍2与x 轴正向间夹角㊂根据加速度的定义,它的两个分量a x ㊁a y 分别为a x =d v xd t=0a y =d v y d t =2(m /s 2)所以a =a x i +a yj =2j (m /s 2)即加速度的大小为a =2m /s2,方向沿y 轴正向㊂由于加速度不随时间变化,所以本题中质点作匀加速运动㊂(3)从质点的运动方程中消去t ,即得轨道方程y =x æèçöø÷32+x 3即x 2+3x -9y =0ʌ例题1.3ɔ 一质点沿x 轴运动㊂已知加速度a =4t (S I ),t =0时,初速度v 0=0,初始位置x 0=10m ㊂试求质点的运动方程㊂ʌ解ɔ 根据加速度的定义a =d v d t,得a d t =4t d t =d v 对上式两边积分,得速度v 随时间t 的变化规律ʏt 04t d t =ʏv 0d v积分后代入上下限得v =2t2又根据速度的定义v =d xd t得d x =v d t =2t 2d t对上式两边积分后得质点的运动方程ʏxx 0d x =ʏt 02t 2d tx =x 0+23t 3将x 0=10m 代入上式得x =10+23t 2(m)本题属已知加速度及初始条件(即t =0时的x 0㊁v 0)求运动方程的问题,主要根据加速度和速度的定义,通过积分解决㊂需注意初始条件的运用和定积分的计算方法㊂ʌ例题1.4ɔ 一物体沿x 轴运动,开始时物体位于坐标原点,初速度v 0=3m /s ㊂若加第1章 质点运动学Ң9速度a =4x (S I),求:(1)物体经过x =2m 时的速度;(2)物体的运动方程㊂ʌ解ɔ (1)本题中加速度随x 而变化,所以物体作变速直线运动㊂根据加速度和速度的定义v =d x d t ,a =d v d t,得v d t =d xa d t =d v =ad xv所以v d v =a d x =4x d x两边积分:ʏvv 0v d v =ʏxx 04x dxv 2-v 20=4(x 2-x 20)将x 0=0,v 0=3m /s 及x =2m 代入上式得v =v 20+4x 2=32+4ˑ22=5(m /s ) (2)再根据速度的定义得d x =v d t =v 20+4x 2d t 所以ʏx 0d xv 20+4x 2=ʏt 0d t由积分公式ʏd x a 2+x2=l n (x +a 2+x 2),将上式积分,则有12l n (2x +v 20+4x 2)|x0=t2x +v 20+4x2v 0=e2t化简后得运动方程x =v 04(e 2t -e -2t )=34(e 2t -e -2t )(m )图 1.3.1需注意:通常解题时应先用文字式运算,求得结果的文字表达式后,再代入数据进行计算,得出最后的结果㊂ʌ例题1.5ɔ 如图1.3.1所示,在离水面高度h 的岸边上,有人用绳子拉船靠岸㊂船位于离岸的水平距离s 处㊂当人以v 0的匀速率收绳时,试求船的速度和加速度㊂ʌ解ɔ 本题要求췍和a ,但船的运动方程未知,因此须先根据已知条件,建立坐标后写出船的运动方程,然后根据定义求췍和a ㊂以人的收绳点为坐标原点,建立坐标系如图1.3.1所Ң10大学物理学习指导示,则船的位置矢量即运动方程为r =x i -h j式中h 是常量,x 随时间而变㊂根据速度和加速度的定义得췍=d r d t =d xd ti a =d 2r d t 2=d 2xd t2i 根据题意,人的收绳速率为v 0=-d r d t =-d d t x 2+h 2=-x x 2+h 2d x dt 这里因r =|r |随时间减小,所以d r d t<0,而v 0>0㊂由上式得v x =d x d t =-v 0x 2+h 2x所以船的速度为췍=-v 0s 2+h 2si 而a x =d v x d t =d d t -v 0x 2+h 2æèçöø÷x =d d x -v 0x 2+h 2æèçöø÷xd x dt =-h 2v 20x 3所以船的加速度为a =-h 2v 20x3i当船在x =s 处的速度和加速度为췍=-v 0s 2+h 2si a =-h 2v 20s3i讨论:(1)췍和a 的方向均沿x 轴负向,所以船向岸边作加速运动㊂(2)由a 的表达式,h 和v 0不变,s 随时间减小,|a |随时间增大,所以船作变加速运动㊂(3)船的速率v >v 0(人的收绳速率),这是严格按速度的定义求得的㊂显然v 不等于v 0在水平方向的分量㊂图 1.3.2ʌ例题1.6ɔ 一石子从倾角为α=30ʎ的斜面上的O 点抛出㊂已知初速度v 0=9.8m /s ,췍0与水平面的夹角θ=30ʎ,如图1.3.2所示㊂若忽略空气阻力,试求:(1)石子落到斜面上的B 点离O 点的距离l ;(2)石子所到达的最大高度;(3)t =1.5s 时石子的速度㊁切向加速度和法向加速度㊂ʌ解ɔ (1)石子的运动可看作水平方向的匀速直线运动和竖直方向的加速度为g 的匀变速直线运动的叠加㊂今以O 点为原点,建立坐标如图,则石子的加速度分量为。
大学物理第一章质点运动学习题解详细完整
第一章 质点运动学1–1 描写质点运动状态的物理量是 ;解:加速度是描写质点状态变化的物理量,速度是描写质点运动状态的物理量,故填“速度”;1–2 任意时刻a t =0的运动是 运动;任意时刻a n =0的运动是 运动;任意时刻a =0的运动是 运动;任意时刻a t =0,a n =常量的运动是 运动;解:匀速率;直线;匀速直线;匀速圆周;1–3 一人骑摩托车跳越一条大沟,他能以与水平成30°角,其值为30m/s 的初速从一边起跳,刚好到达另一边,则可知此沟的宽度为 )m/s 102=g ;解:此沟的宽度为m 345m 1060sin 302sin 220=︒⨯==g R θv1–4 一质点在xoy 平面内运动,运动方程为t x 2=,229t y -=,位移的单位为m,试写出s t 1=时质点的位置矢量__________;s t 2=时该质点的瞬时速度为__________,此时的瞬时加速度为__________;解:将s t 1=代入t x 2=,229t y -=得2=x m,7=y ms t 1=故时质点的位置矢量为j i r 72+=m由质点的运动方程为t x 2=,229t y -=得质点在任意时刻的速度为m/s 2d d ==t x x v ,m/s 4d d t tx y -==v s t 2=时该质点的瞬时速度为j i 82-=v m/s质点在任意时刻的加速度为0d d ==ta x x v ,2m/s 4d d -==t a y y v s t 2=时该质点的瞬时加速度为j 4-m/s 2;1–5 一质点沿x 轴正向运动,其加速度与位置的关系为x a 23+=,若在x =0处,其速度m/s 50=v ,则质点运动到x =3m 处时所具有的速度为__________;解:由x a 23+=得x xt x x t 23d d d d d d d d +===v v v v 故x x d )23(d +=v v积分得⎰⎰+=305d )23(d x x v v v则质点运动到x =3m 处时所具有的速度大小为 61=v m/s=s ;1–6 一质点作半径R =的圆周运动,其运动方程为t t 323+=θ,θ以rad 计,t 以s 计;则当t =2s 时,质点的角位置为________;角速度为_________;角加速度为_________;切向加速度为__________;法向加速度为__________;解: t =2s 时,质点的角位置为=⨯+⨯=23223θ22rad由t t 323+=θ得任意时刻的角速度大小为36d d 2+==t tθω t =2s 时角速度为 =+⨯=3262ω27rad/s任意时刻的角速度大小为t t12d d ==ωα t =2s 时角加速度为 212⨯=α=24rad/s 2t =2s 时切向加速度为=⨯⨯==2120.1t αR a 24m/s 2t =2s 时法向加速度为=⨯==22n 270.1ωR a 729m/s 2;1–7 下列各种情况中,说法错误的是 ;A .一物体具有恒定的速率,但仍有变化的速度B .一物体具有恒定的速度,但仍有变化的速率C .一物体具有加速度,而其速度可以为零D .一物体速率减小,但其加速度可以增大解:一质点有恒定的速率,但速度的方向可以发生变化,故速度可以变化;一质点具有加速度,说明其速度的变化不为零,但此时的速度可以为零;当加速度的值为负时,质点的速率减小,加速度的值可以增大,所以A 、C 和D 都是正确的,只有B 是错误的,故选B;1–8 一个质点作圆周运动时,下列说法中正确的是 ;A .切向加速度一定改变,法向加速度也改变B .切向加速度可能不变,法向加速度一定改变C .切向加速度可能不变,法向加速度不变D .切向加速度一定改变,法向加速度不变解:无论质点是作匀速圆周运动或是作变速圆周运动,法向加速度a n 都是变化的,因此至少其方向在不断变化;而切向加速度a t 是否变化,要视具体情况而定;质点作匀速圆周运动时,其切向加速度为零,保持不变;当质点作匀变速圆周运动时,a t 值为不为零的恒量,但方向变化;当质点作一般的变速圆周运动时,a t 值为不为零变量,方向同样发生变化;由此可见,应选B;1–9 一运动质点某瞬时位于位置矢量),(y x r 的端点处,对其速度大小有四种意见: 1t r d d 2t d d r 3t s d d 422d d d d ⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛t y t x 下述判断正确的是 ;A .只有1,2正确B .只有2,3正确C .只有3,4正确D .只有1,3正确 解:tr d d 表示质点到坐标原点的距离随时间的变化率,在极坐标系中为质点的径向速度,是速度矢量沿径向的分量;t d d r 表示速度矢量;t s d d 是在自然坐标系中计算速度大小的公式;22d d d d ⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛t y t x 是在真角坐标系中计算速度大小的公式;故应选C;1–10 一质点在平面上运动,已知质点位置矢量的表示式为j i r 22bt at +=其中a 、b 为常量,则该质点作 ;A .匀速直线运动B .变速直线运动C .抛物线运动D .一般曲线运动解:由j i r 22bt at +=可计算出质点的速度为j i bt at 22+=v ,加速度为j i b a 22+=a ;因质点的速度变化,加速度的大小和方向都不变,故质点应作变速直线运动;故选B;1–11 一小球沿斜面向上运动,其运动方程为S =5+4t –t 2SI,则小球运动到最高点的时刻是 ;A .t =4sB .t =2sC .t =8sD .t =5s解:小球到最高点时,速度应为零;由其运动方程为S =5+4t –t 2,利用ts d d =v 得任意时刻的速度为 t 24-=v令024=-=t v ,得s 2=t故选B;1–12 如图1-1所示,小球位于距墙MO 和地面NO 等远的一点A ,在球的右边,紧靠小球有一点光源S 当小球以速度V 0水平抛出,恰好落在墙角O 处;当小球在空中运动时,在墙上就有球的影子由上向下运动,其影子中心的运动是 ;A .匀速直线运动B .匀加速直线运动,加速度小于gC .自由落体运动D .变加速运动解:设A 到墙之间距离为d ;小球经t 时间自A 运动至B;此时影子在竖直方向的位移为S ;t V x 0=, 221gt y = 根据三角形相似得d S x y //=,所以得影子位移为2/V gt x yd S == 由此可见影子在竖直方向作速度为02V g 的匀速直线运动;故选A;1–13 在相对地面静止的坐标系内,A 、B 二船都以2m/s 的速率匀速行驶,A 船沿x 轴正向,B 船沿y 轴正向;今在A 船上设置与静止坐标系方向相同的坐标系x 、y 方向单位矢量用i 、j 表示,那么在A 船上的坐标系中,B 船的速度以m/s 为单位为 ;A .j i 22+B .j i 22+-C .j i 22--D .j i 22+解:选B 船为运动物体,则B 船相对于地的速度为绝对速度j 2=v ,A 船相对于地的速度为牵连速度i 2=0v ,则在A 船的坐标系中,B 船相对于A 船的速度为相对速度v ';因v v v 0'+=,故j i 22+-='v ,因此应选B1–14 2004年1月25日,继“勇气”号之后,“机遇”号火星探测器再次成功登陆火星;在人类成功登陆火星之前,人类为了探测距离地球大约5103⨯km 的月球,也发射了一种类似四轮小车的月球探测器;它能够在自动导航系统的控制下行走,且每隔10s 向地球发射一次信号;探测器上还装着两个相同的减速器其中一个是备用的,这种减速器可提供的最大加速度为5m/s 2;某次探测器的自动导航系统出现故障,从而使探测器只能匀速前进而不再能自动避开障碍物;此时地球上的科学家必须对探测器进行人工遥控操作;下表为控制中心的显示屏的数据:图1-1y BM9:10:40 12 已知控制中心的信号发射与接收设备工作速度极快;科学家每次分析数据并输入命令最少需要3s;问: 1经过数据分析,你认为减速器是否执行了减速命令2假如你是控制中心的工作人员,应采取怎样的措施加速度需满足什么条件,才可使探测器不与障碍物相撞请计算说明;解:1设在地球和月球之间传播电磁波需时为0t ,则有s 10==c s t 月地从前两次收到的信号可知:探测器的速度为m/s 21032521=-=v 由题意可知,从发射信号到探测器收到信号并执行命令的时刻为9:10:34;控制中心第3次收到的信号是探测器在9:10:39发出的;从后两次收到的信号可知探测器的速度为m/s 2101232=-=v 可见,探测器速度未变,并未执行命令而减速;减速器出现故障;(2)应启用另一个备用减速器;再经过3s 分析数据和1s 接收时间,探测器在9:10:44执行命令,此时距前方障碍物距离s =2m;设定减速器加速度为a ,则有222≤=as v m,可得1≥a m/s 2,即只要设定加速度1≥a m/s 2,便可使探测器不与障碍物相撞;1–15 阿波罗16号是阿波罗计划中的第十次载人航天任务1972年4月16日,也是人类历史上第五次成功登月的任务;1972年4月27日成功返回;照片图1-2显示阿波罗宇航员在月球上跳跃并向人们致意;视频显示表明,宇航员在月球上空停留的时间是;已知月球的重力加速度是地球重力加速度的1/6;试计算宇航员在月球上跳起的高度;解:宇航员在月球上跳起可看成竖直上抛运动,由已知宇航员在空中停留的时间为,故宇航员从跳起最高处下落到月球表面的时间为t =,由于月球的重力加速度是地球的重力加速度的1/6,即g g 61M =,所以 m 43.0725.08.961212122M =⨯⨯⨯==t g h1–16 气球上吊一重物,以速度0v 从地面匀速竖直上升,经过时间t 重物落回地面;不计空气对物体的阻力,重物离开气球时离地面的高度为多少;解:方法一:设重物离开气球时的高度为x h ,当重物离开气球后作初速度为0v 的竖直上抛运动,选重物离开气球时的位置为坐标原点,则重物落到地面时满足图1-220021)(x x x gt h t h --=-v v 其中x h -表示向下的位移,0v x h 为匀速运动的时间,x t 为竖直上抛过程的时间,解方程得 gt t x 02v = 于是,离开气球时的离地高度可由匀速上升过程中求得,其值为)2()(000gt t t t h x x v v v -=-= 方法二:将重物的运动看成全程做匀速直线运动与离开气球后做自由落体运动的合运动;显然总位移等于零,所以0)(21200=--v v x h t g t 解得 )2(00g t t h x v v -=1–17 在篮球运动员作立定投篮时,如以出手时球的中心为坐标原点,作坐标系Oxy 如图1–3所示;设篮圈中心坐标为x ,y ,出手高度为H ,于的出手速度为0v ,试证明球的出手角度θ应满足⎥⎥⎦⎤⎢⎢⎣⎡+-±=)2(211tan 2022020v v v gx y g gx θ才能投入;证明:设出手后需用时t 入蓝,则有 θt t x x cos 0v v ==20221sin 21gt t gt t y y -=-=θv v 消去时间t ,得 θgx gx αx θgx θx y 22022022202tan 22tan cos 21tan v v v --=-= 图1-3整理得02tan tan 22022202=++-v v gx y θx θgx解之得⎥⎥⎦⎤⎢⎢⎣⎡+-±=)2(211tan 2022020v v v gx y g gx θ1–18 有一质点沿x 轴作直线运动,t 时刻的坐标为32254t t .x -=SI;试求:1第2s 内的平均速度;2第2s 末的瞬时速度;3第2s 内的路程;解:1将t =1s 代入32254t t .x -=得第1s 末的位置为m 5.225.41=-=x将t =2s 代入32254t t .x -=得第2s 末的位置为m 0.22225.4322=⨯-⨯=x则第2s 内质点的位移为0.5m 2.5m -m 0.212-==-=∆x x x第2s 内的平均速度-0.5m/s 10.5=-=∆∆=t x v 式中负号表示平均速的方向沿x 轴负方向;2质点在任意时刻的速度为269d d t t tx -==v 将s 2=t 代入上式得第2s 末的瞬时速度为 m/s 626292-=⨯-⨯=v式中负号表示瞬时速度的方向沿x 轴负方向;3由069d d 2=-==t t tx v 得质点停止运动的时刻为s 5.1=t ;由此计算得第1s 末到末的时间内质点走过的路程为m 875.05.25.125.15.4321=-⨯-⨯=s 第末到第2s 末的时间内质点走过的路程为m 375.10.25.125.15.4322=-⨯-⨯=s则第2s 内的质点走过的路程为m 25.2375.1875.021=+=+=s s s1–19 由于空气的阻力,一个跳伞员在空中运动不是匀加速运动;一跳伞员在离开飞机到打开降落伞的这段时间内,其运动方程为)e (/k t k t c b y -+-=SI,式中b 、c 和k 是常量,y 是他离地面的高度;问:1要使运动方程有意义,b 、c 和k 的单位是什么2计算跳伞员在任意时刻的速度和加速度;解:1由量纲分析,b 的单位为m,c 的单位为m/s,k 的单位为s;2任意时刻的速度为)e 1(d d /k t c ty -+-==v 当时间足够长时其速度趋于c -;任意时刻的加速度为k t kc t a /ed d -==v 当时间足够长时其加速度趋于零;1–20 一艘正在沿直线行驶的电艇,在发动机关闭后,其加速度方向与速度方向相反,大小与速度平方成正比,即2d d v v K t-=,式中K 为常量;试证明电艇在关闭发动机后又行驶x 距离时的速度为Kx -=e 0v v 其中0v 是发动机关闭时的速度; 证明:由2d d v v K t-=得 2d d d d d d v v v v K xt x x -== 即x K d d -=vv 上式积分为⎰⎰-=x x K 0d d 0v v v v 得 Kx -=e 0v v1–21 一质点沿圆周运动,其切向加速度与法向加速度的大小恒保持相等;设θ为质点在圆周上任意两点速度1v 与2v 之间的夹角;试证:θe 12v v =;证明:因R a 2n v =,ta d d t v =,所以 t R d d 2v v =dsv v d d = 即vv d d =R s 对上式积分⎰⎰=2d d 0v v v v s R s得 12ln v v =R s 12ln v v ==R s θ 所以 θe 12v v =1–22 长为l 的细棒,在竖直平面内沿墙角下滑,上端A 下滑速度为匀速v ,如图1-4所示;当下端B 离墙角距离为xx<l 时,B 端水平速度和加速度多大解:建立如图所示的坐标系;设A 端离地高度为y ;∆AOB 为直角三角形,有222l y x =+ 方程两边对t 求导得 0d d 2d d 2=+t y y t x x所以B 端水平速度为 t y x y t x d d d d -=v xy =v x x l 22-= B 端水平方向加速度为v 222d /d d /d d d x tx y t y x t x-=232v x l -=1–23 质点作半径为m 3=R 的圆周运动,切向加速度为2t ms 3-=a ,在0=t 时质点的速度为零;试求:1s 1=t 时的速度与加速度;2第2s 内质点所通过的路程;图1-4解:1按定义ta d d t v =,得 t a d d t =v ,两端积分,并利用初始条件,可得 ⎰⎰⎰==t t t a t a 0t 0t 0d d d v v t t a 3t ==v当s 1=t 时,质点的速度为 m/s 3=v方向沿圆周的切线方向;任意时刻质点的法线加速度的大小为2222n m/s 39t Rt R a ===v 任意时刻质点加速度的大小为242n 2t m/s 99t a a a +=+=任意时刻加速度的方向,可由其与速度方向的夹角θ给出;且有22t n 33tan t t a a ===θ 当s 1=t 时有24m/s 23199=⨯+=a ,1tan =θ注意到0t >a ;所以得︒=45θ2按定义ts d d =v ,得t s d d v =,两端积分可得 ⎰⎰⎰==t t t s d 3d d v故得经t 时间后质点沿圆周走过的路程为C t s +=223 其中C 为积分常数;则第2s 内质点走过的路程为:m 5.4)123()223()1()2(22=+⨯-+⨯=-=∆C C s s s1–24 一飞机相对于空气以恒定速率v 沿正方形轨道飞行,在无风天气其运动周期为T ;若有恒定小风沿平行于正方形的一对边吹来,风速为)1(<<=k k V v ;求飞机仍沿原正方形对地轨道飞行时周期要增加多少解:依题意,设飞机沿如图1-5所示的ABCD 矩形路径运动,设矩形每边长为l ,如无风时,依题意有 vl T 4= 1 图1-5当有风时,设风的速度如图1-5所示,则飞机沿AB 运动时的速度为v v v k V +=+,飞机从A 飞到B 所花时间为vv k l t +=1 2 飞机沿CD 运动时的速度为v v v k V -=-,飞机从C 飞到D 所花时间为vv k l t -=2 3 飞机沿BC 运动和沿DA 运动所花的时间是相同的,为了使飞机沿矩形线运动,飞机相对于地的飞行速度方向应与运动路径成一夹角,使得飞机速度时的速度v 在水平方向的分量等于v k -,故飞机沿BC 运动和沿DA 运动的速度大小为222v v k -,飞机在BC 和DA 上所花的总时间为22232v v k lt -= 4综上,飞机在有风沿此矩形路径运动所花的总时间,即周期为2223212vv v v v v k l k l k l t t t T -+-++=++=' 5 利用1式,5式变为)1(4)4()1(4)11(22222k k T k k T T --≈--+='飞机在有风时的周期与无风时的周期相比,周期增加值为43)1(4)4(222T k T k k T T T T =---≈'-=∆。
质点运动中的速度和加速度
质点运动中的速度和加速度在质点运动中,速度和加速度是描述物体运动状态的重要物理量。
速度描述了物体运动的快慢和方向,而加速度则表示了速度变化的快慢和方向。
本文将就质点运动中的速度和加速度进行详细阐述。
一、速度速度是物体在单位时间内位移的改变量。
对于一维运动来说,速度可以用以下公式表示:v = Δx / Δt其中,v表示速度,Δx为位移的改变量,Δt为时间的改变量。
速度的单位通常为米每秒(m/s)。
对于二维或三维运动来说,速度的计算稍有不同。
在二维运动中,速度可表示为一个矢量,包括大小和方向两个方面。
在三维运动中,速度则需要用到三个分量分别表示物体在x、y、z方向的速度。
速度的方向可以用正负号来表示,正号表示正方向,负号表示负方向。
当速度方向与位移方向一致时,速度为正;当速度方向与位移方向相反时,速度为负。
如果物体沿直线运动,速度的方向只有一个;如果物体沿曲线运动,速度的方向则随时间变化。
二、加速度加速度是物体速度改变的快慢和方向。
对于一维运动来说,加速度可以用以下公式表示:a = Δv / Δt其中,a表示加速度,Δv为速度的改变量,Δt为时间的改变量。
加速度的单位通常为米每秒平方(m/s²)。
与速度一样,二维和三维运动中的加速度也需要用矢量来表示。
加速度矢量包含大小和方向两个方面。
加速度的方向也可以用正负号来表示,正号表示正方向,负号表示负方向。
当加速度方向与速度方向一致时,物体加速;当加速度方向与速度方向相反时,物体减速。
如果加速度与速度方向垂直,则物体会发生曲线运动。
三、速度和加速度的关系速度和加速度是密切相关的物理量。
根据牛顿第二定律,物体受到的合力与加速度成正比,方向与加速度一致。
在一维运动中,可以用以下公式表示:F = m × a其中,F表示作用在物体上的合力,m为物体的质量,a为加速度。
根据上述公式,如果合力为零,则加速度为零,即物体处于匀速运动状态;如果合力不为零,则加速度不为零,即物体处于加速或减速状态。
第一章 质点运动学
六. 单位 本课程采用国际单位制( ), ),其中 本课程采用国际单位制(SI),其中 长度单位 时间单位 速度单位 加速度单位 米(符号 m) ) 秒(符号 s) ) 米每秒( 米每秒(符号 m/s ) 米每二次方秒( 米每二次方秒(符号 m/s2 )
例题1-4 已知质点作匀加速直线运动,加速度 已知质点作匀加速直线运动, 例题 求这质点的运动方程。 为 a ,求这质点的运动方程。 dv = a 常量),积分得 ),积分得 解 由定义 (常量), dt
∆r = r1 − r
即等于质点位矢在∆t O 即等于质点位矢在∆ 时间内的增量。 时间内的增量。且有
r
r ∆t 时间内位移 1
t +∆t 时刻位矢 ∆
x
∆r = x1i + y1 j − xi − yj = ( x1 − x )i + ( y1 − y ) j
时间内质点通过的路程 为标量 路程∆ 为标量, ∆t 时间内质点通过的路程∆s为标量,仅当 ∆t→0时,位移的大小 时 lim ∆r = ∆s
d 2 x dv x ax = 2 = = −ω 2 R cos ω t dt dt d 2 y dv y ay = 2 = = −ω 2 R sin ω t dt dt
由此得加速度的大小
v a = ω R cos ωt + sin ωt = ω R = R
2 2 2 2
2
如果把加速度写成矢量式, 如果把加速度写成矢量式,则有
本课程中只讨论平面内的运动问题, 本课程中只讨论平面内的运动问题,常用坐标 系有平面直角坐标系 极坐标系和自然坐标系。 平面直角坐标系、 系有平面直角坐标系、极坐标系和自然坐标系。
二. 质点 一般情况下, 一般情况下,运动物体的形状和大小都可能变化
1-1 运动方程位移速度加速度
绪论
对大家提出的学习要求:
1、有针对性的课前预习, 2、认真的听讲(适当做笔记), 3、及时的复习, 4、按时、独立地完成作业。
•每周一交作业(课前) •数学作业纸:班级、姓名、学号、页码,题目
dxphysics@
第一章 质点运动学
一. 教学内容
质点、参照系、坐标系; 运动方程、位移、速度、加速度; 抛体运动; 圆周运动、切向加速度、法向加速度、角量与线 量的关系; 相对运动.
x
( x xi ) ( y y ) j ( z zk ) 2 1 2 1 2 1
2 2 2 大小: r x y z
导数的定义: 函数y=f(x),当自变量x在x0处取得增量x时,相应的 函数y取得增量y;如果y与x之比当x0时的极限 存在,则称函数y=f(x)在x0处可导,并称这个极限为函 数在点x0处的导数,记为y ' ,即
在高速运动领域即速度可与光速比拟时应适用爱因斯坦建立的相对论力学在微观领域由原子和原子核物理发展到量子论和量子力学近代物理学绪论力学第一章质点的运动大学物理与中学物理的关系与差别1中学物理是学习大学物理的基础
绪论
给开始学习<大学物理>课程的同学们:
“科学是一种 方法。它告诉我们:一些事物是怎样被了解的,什 么事情是已知的,现在了解到了什么程度,如何对待疑问和不确定 性,证据服从什么法则;如何思考事物,做出判断,如何区别真伪 和表面现象。 ” —— R.Feynman
z A
· Δr r( t ) r( t +Δ t )
0 y
·
ΔS
B
r ⑴比较 与r :二者均为矢量;前者是过程量,后
者为瞬时量。 r ⑵比较 与 s :二者均为过程量;前者是矢量,后 者是标量。
1-2 质点运动学 (角速度 角加速度 相对运动)
在自然坐标系中的质点加速度:
a
d
dv d
dt dt
d
n
(v) dv
dt
d
d
n
v d
dt d ds
dv
dt
n
1
vn
v2
n
dt dt ds dt
ds
v
d
5
a
dv
d
(v)
dv
v2
n
dt dt
dt
切向加速度
a
a
反映速度大小变化
法向加速度
an
v2
n
反映速度方向变化
角加速度
lim d d 2
t0 t dt dt 2
单位:rad/s2
角加速度等于质点的角速度对时间的一阶导数
考虑矢量性 质点的 角d坐标对时间的二阶导数
加速转动
dt
方向一致
减速转动
方向相反
11
角量之间的关系:
匀速圆周运动 是恒量
d dt
d
t dt
0
0
0 t
匀角变速圆周运动
§1-3 自然坐标系 圆周运动
一、自然坐标系
物体的运动状态的物理量:位矢、位移、速度和加速 度。通常建立直角坐标系进行描述。
但直角坐标系统并非总是很方便。例如:汽车在公路 上行使;运动员沿操场跑道跑步;物体沿圆周运动。
通常做法是:是选取一个起点,然后用路程、速度和 加速度描述其运动。
当质点做曲线运动,且运动的轨道已知时,选取一 个起点,然后用路程、速度和加速度描述其运动。
质点作变速直线运动 质点作匀速圆周运动 质点作任意圆周运动
13
质点的速度与加速度
质点的速度与加速度在物理学中,速度和加速度是描述物体运动状态的两个重要概念。
质点作为物理学中的理想化模型,用来描述物体的质量集中在一个点,并且没有尺寸和形状。
本文将探讨质点的速度和加速度以及它们的关系。
质点的速度是指其位置随时间变化的快慢程度。
在一维运动中,如果质点的位移为s,时间为t,那么速度v可以通过求解位移对时间的导数得到:v = ds/dt。
当然,我们也可以通过测量两个相邻位置之间的位移和时间间隔来估计质点的速度。
在二维和三维运动中,质点的速度是一个矢量,包括大小和方向。
加速度是指质点速度随时间变化的快慢程度。
与速度类似,我们可以通过求解速度对时间的导数来得到加速度。
在一维运动中,如果质点的速度为v,时间为t,那么加速度a可以表示为:a = dv/dt。
同样地,在二维和三维运动中,加速度也是一个矢量,包括大小和方向。
从直观上来看,速度和加速度是相关的。
当一个质点的速度发生改变时,我们通常会认为它受到了加速度的影响。
根据牛顿第二定律,质点的加速度与施加在其上的力成正比,而质量则是一个比例常数。
这意味着,质点的加速度越大,它所受到的力也会越大。
换句话说,加速度是力的效果。
根据速度和加速度的定义,我们可以得到它们之间的关系。
在一维运动中,如果质点的加速度保持不变,那么速度随时间的变化可以通过积分加速度对时间的函数得到:v = ∫a dt。
反过来,如果我们知道质点的速度函数,可以通过求解速度对时间的导数来得到加速度:a = dv/dt。
这就是速度和加速度之间的基本关系。
在一般情况下,速度和加速度之间的关系可以更为复杂。
质点的速度和加速度可能不仅仅受到一个固定的力的影响,还可能受到其他因素的干扰。
例如,在一个相对静止的质点上施加一个外力,它会加速,速度增加;但如果这个质点受到了空气的阻力,它的速度可能会减小,加速度也会相应减小。
此外,质点的速度和加速度还可以描述物体的运动特征。
如果质点的速度和加速度方向相同,那么它将加速。
自然坐标系中的速度、加速度
速度的矢量表示
总结词
速度的矢量表示包括大小和方向两个方 面,通常用箭头表示方向,用绝对值表 示大小。
VS
详细描述
矢量表示法是速度最常用的表示方法,它 能够完整地描述速度的大小和方向。在自 然坐标系中,速度的大小由箭头的长度表 示,箭头的指向代表速度的方向。
速度的标量表示
总结词
速度的标量表示只考虑速度的大小,忽略方向,通常用绝对值表示。
特点
自然坐标系与质点运动的具体轨迹相 关,可以直观地描述速度和加速度的 方向和大小。
自然坐标系的应用
描述曲线运动
自然坐标系常用于描述质点在曲线上 的运动,如行星绕太阳的椭圆轨道运 动。
分析动力学
在分析力学中,自然坐标系用于描述 质点的速度和加速度,进而研究其动 力学行为。
自然坐标系与直角坐标系的区别与联系
02
03
健康管理
在健康管理中,个人的速度和加速度 可以用来监测身体的运动状态,从而 进行科学的健身计划和健康管理。
THANKS FOR WATCHING
感谢您的观看
定义法
根据加速度的定义式计算,即加速度等于速度的变化量除以时间的变化量。
公式法
根据加速度的公式计算,即加速度等于速度的导数或切向加速度。
02
速度在自然坐标系中的 表示
速度的定义
总结词
速度是描述物体运动快慢的物理量,定义为物体在单位时间内通过的位移。
详细描述
速度是矢量,具有大小和方向,通常用符号"v"表示。在自然坐标系中,速度的 大小等于物体在单位时间内通过的直线距离,方向则与物体位移的方向相同。
详细描述
匀速直线运动是指物体在直线轨道上以恒定速度进行的运动,其方程为 $s = v_0t$,其中 $s$ 是位移, $v_0$ 是初始速度,$t$ 是时间。
03运动学圆周运动 (自然坐标系、角速度、角加速度、切向加速度、法向加速度)
这时加速度可以表示为 a aτ t an n
6
由于τ与n相互垂直,加速度a的大小与aτ 、an的 关系为 2 2
a a an
例1、半径R=0.5米的飞轮绕中心轴转动, 其运动函数 为θ=t3+3t(SI)求t=2秒时,轮缘上一点的角速度角加速 度以及切向加速度、法向加速度。 解:ω=3t2+3
dr d d v R sin i R cos j R d ( sin i cos j ) dt dt dt dt
Y
V
r
d R [cos( )i sin( ) j ] dt 2 2
X
括号中的项是与r垂直的单位矢量
d lim t 0 t dt
2
平均角加速度 t
t 0
瞬时角加速度 lim d
t dt
(SI)单位:rad/s2 角速度与角加速度都是矢量,角速度的方向由右手定 则确定。(规定用右手螺旋定则来判定:四指方向为 绕向,大拇指方向为角速度方向!! ) α与ω同向。质点作加速圆周运动。
an=gcos γ =gV x/V=9.13m/s2
aτ=gcosβ=gVy/V=3.53m/s2
ρ=V2/an=25.03m
11
5 质点运动学小结: 1、描述运动的物理量 :t、Δt、r、Δr、v、a 、 s dv dr 加速度: a 2、定义:速度 v dt dt 对一维的情况:v=dx/dt a=dv/dt 3、质点运动学的两类问题: 1)已知运动方程,求速度、加速度。 解法:用求导数的方法解决。 2)已知速度(或加速度)及初始条件求运动方程。
△τ=1× △ θ 当△t→0时, dτ=1× d θ、方向指向曲率中 心(即法向)。 d d n dt dt
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
ds2 dx2 dy2 dz2
曲线运动
3. 加速度
a(t ) ax (t )i ay (t ) j az (t )k
分量式:
d 2 x(t ) (t ) a x (t ) x dt
d 2 y (t ) (t ) a y (t ) y dt
最小的长度
目前,物理学中涉及的普朗克长度约为10-35米, 被认为是最小的长度,意思是说,在比普朗克长度更 小的范围内,长度的概念可能就不再适用了。
牛顿力学适用范围:微米尺度— 天体尺度
§1.2
质点和参考系
质点 :
参考物 :
质点和参考系
突出了“物体具有质量”、“物体占有位 置” 为了研究运动,固定坐标系的物体
x x(t )
0
直线运动
平均速度: v x(t ) x(t0 ) t t t t0 瞬时速度: x(t t ) x(t ) dx(t ) v(t ) lim t dt t 0
右图表示的是质点做直线运动时的位置、 速度和加速度关于时间的图形。由图上可 见,当位置最大时,速度为零(此时曲线 的斜率为零),同样当速度最大时,其加 速度为零。
在国际单位制中,速度的单位是米/秒,常用的单位还 有厘米/秒、千米/小时等
加速度
1. 直线运动
质点在 t1 = t 到 t2 = t +△t 时间间隔内的平均加速度
a t t t v(t t ) v(t ) t
瞬时加速度(简称加速度)定义为:
a(t ) lim
t 0
时间的测量 :
任何具有重复性的周期过程或现象,都可以作为测量 时间的一种钟 (例如,太阳的升没表示天;四季的 循环称作年;月亮的盈亏是农历的月。其他的循环过 程,如双星的旋转、人体的脉搏、吊灯的摆动、分子 的振动等等,也都可以用作测时的工具)
时间的测量 :
1967年10月在第十三届国际度量衡会议上规定: 位于海平面上的铯原子的基态的两个超精细能级 在零磁场中跃迁辐射的周期T与1秒的关系为 1秒 = 9,192,631,770 T 这样的时间标准称为原子时
位移、路程与速度 2. 三维曲线运动
瞬时速度(简称速度)定义为:
v(t ) lim
t 0
r (t t ) rt
速度的数值大小(绝对值)称 为速率,由上式知:
v(t ) | v(t ) |
lim
t 0
r | r | s ds(t ) lim lim t dt t 0 t t 0 t
速度、加速度是矢量,它具有矢量性 质点做变速运动中各个时刻的速度、加速度不一 定相同,它具有瞬时性 选取不同的参考系,质点的速度和加速度是不 同的,它具有相对性
• 人体能承受的最大 加速度为10g左右。 未受专业训练的一般 人只能承受2-3g左右。
§1.4
运动方程:
直角坐标系中运动的描述
t
位矢: r(t ) r0 路程:
t
t0
v(t )dt
x(t ) x t v (t )dt 0 t0 x t ds (t ) y (t ) y0 t v y (t )dt 2 2 2 0 v(t ) | v(t ) | v x (t ) v y (t ) v z (t ) t dt z (t ) z0 v z (t )dt t t0 2 2 2 s(t ) s(t0 ) vx (t) vy (t ) vy (t) dt
位移、路程与速度 2. 三维曲线运动
质点在 t1 = t 到 t2 = t +△t 时 间间隔内的平均速度
r(t 2 ) r(t1 ) r v t1t2 t 2 t1 t
这个平均速度的定义表明,平 均速度是矢量。
r r(t2 ) r(t1 )
是在时间间隔 △t 内质点位置矢量的改变量,称为位 移矢量(简称位移)
v(t t ) v(t ) v dv(t ) d 2 x(t ) lim t dt dt 2 t 0 t
加速度
2. 曲线运动
质点在 t1 = t 到 t2 = t +△t 时间 间隔内的平均加速度
a t t t v v (t t ) v(t ) t t
§1.1
力学的研究对象
引 言
运动学: 研究物体运动的几何性质,而不研究引起物 体运动的原因。(位移,速度,加速度,轨 迹等的描述和计算) 动力学: 研究受力物体的运动变化与作用力之间的 关系。(运动微分方程的建立和求解)
静力学: 研究物体在力系作用下的平衡规律,同时 也研究力的一般性质和力系的简化方法等。 (平衡方程的应用和受力分析)
瞬时加速度(简称加速度)定义为:
a(t ) lim v(t t) v(t ) v d v(t ) d 2 r(t ) lim t dt dt 2 t 0 t
t 0
在国际单位制中,加速度的单位是米/秒2,常用的 单位还有厘米/秒2 等。
§1.3
小结:
速度与加速度
参考坐标系 : 固定在参考物上的坐标架(简称参考系)
参考系 = 参考物 + 坐标架 + 钟
质点近似的相对性
对于某个物体,如果其
大小和自转对于所研究 的具体问题可以忽略, 则该物体可以近似为质 点。
质点和参考系
质点 的位置矢量 r(简 称位矢)的大小为OP 的长度,而方向从O指 向P。用这个矢量就完 全确定了质点P的位置
r xi yj zk
其中i,j,k分别分别表示空间的三个坐标方向 ( x, y, z 轴)上的单位矢量,称为坐标基矢。 参考系的选择是任意的,对于同一个质点的位置,用 不同参考系来描写时,则具有不同的位置矢量。就这 一点,我们可以说,位置是具有相对性的物理量。
轨迹和运动学方程
质点在运动中所经过的各点在空间连成一条曲线,这 条曲线我们称之为轨迹。 轨迹可以利用曲线方程来描写。
用铯钟作为计时标准,误差若按一个周期计算,测量 精度要比秒表作时计提高 1010 倍,即误差下降到秒 表的 1010 之一
时间是测量得最准确的一个基本量
空间的测量 :
长度是空间的一个基本性质
对长度的测量,在日常的范围中,是用各种各样 的尺,如米尺、千分尺、螺旋测微计等等。
空间的测量 :
米: 规定为通过巴黎的自北极至赤道的子午线长度 的1/10,000,000 1875年起,决定改用米原器(截面呈“X”形的 铂铱合金尺)作为长度标准。由于这样规定的标准米 不易复制,精度又不高 1960年在第十一届国际计量大会上规定: 1米等于氪86原子的两个特定能级之间跃迁时所对 应的辐射(橙色谱线)在真空中的波长λ的 1,650,763.73倍。这样规定的米叫原子米
v(t ) dx / dt
t 0 t
0
v(t ) v0 a(t )dt
x(t ) x0 v(t )dt
s(t ) s0
t 0
| v(t ) | dt
曲线运动
1. 运动方程
r(t ) x(t )i y(t ) j z (t )k
x x(t ) y y (t ) z z (t )
经典力学适用范围:弱引力场中宏观物体的低速运动。
时间、空间和牛顿力学的绝对量
时间 : 空间 : 时间用以表述事物之间的顺序
空间用以表述事件相互之间的位形
在牛顿力学中,时间间隔和空间间隔(长度)被认为 是绝对量,是独立于所研究对象(物体)和运动而存 在的客观实在。时间的流逝与空间位置无关,空间为 欧几里德几何空间。
譬如,曲线方程:
x2 y 2 R 2 z 0 就描写了在oxy平面上半径为R的圆周 运动的轨迹。 一般曲线方程可以表示成:
f1 ( x, y , z ) 0 f 2 ( x, y , z ) 0
轨迹和运动方程
我们知道,可以利用矢量方法来描写质点 M 的位置。 质点的位置关于时间的函数称为运动方程,知道了这 个方程等于知道了此质点运动的一切情况。质点的运 动方程可以表示成:
2. 速度
分量式: 速率: 其中:
v x (t )
v(t ) vx (t )i vy (t ) j vz (t )k
dy (t ) dx (t ) (t ) y (t ) v y (t ) x dt dt 2 2 2 1/ 2 ds(t ) dx dy dz v(t ) dt dt dt dt
位移、路程与速度
质点在t1到t2时间间隔内的平均 速度 x(t 2 ) x(t1 ) v t1t2 t 2 t1
瞬时速度(简称速度)定义为:
v(t ) lim
t 0
x(t t ) x(t ) x dx(t ) lim t dt t 0 t
通常称平均速度的绝对值为平均速率。类似地,瞬时 速度的绝对值被称为速率。
1983年10月在第十七届国际计量大会上规定: 米是光在真空中在1/299,792,458秒的时间间隔内所 传播的路程长度 光速:c = 299,792,458米/秒
最短的时间
目前物理学中涉及的最小的时间是10-43秒,称为 普朗克时间。普朗克时间被认为是最小的时间,比普 朗克时间还要小的范围内,时间的概念可能就不再适 用了。
路程函数s(t):质点从 t1 =0 到 t2 = t 时 刻所走过的轨迹长度 (标量) 质点从 t1 = t 到 t2 = t +△t 时 间间隔内所走过的路程
s s(t2 ) s(t1 )