《一元二次方程》知识讲解

合集下载

初中数学必备 一元二次方程的解法—知识讲解

初中数学必备  一元二次方程的解法—知识讲解


x2

7 10
x
+
49 400

49 400


4
=
−10

x

7 20
2


49
400

4
=
−10

x

7 20
2

+
49 40

4
=
−10

x

7 20
2


111 40


−10


x

7 20
2


0
,∴
−10
x
+
7 4
2

=
25 16

直接开平方,得 x + 7 = 5 . 44

x1
=

1 2

x2
=
−3

【总结升华】方程(1)的二次项系数是 1,方程(2)的二次项系数不是 1,必须先化成 1,才能配方,这是
关键
的一步.配方时,方程左右两边同时加上一次项系数一半的平方,目的是把方程化为
(mx + n)2 = P(P 0) 的形式,然后用直接开平方法求解.同时要注意一次项的符号决定了左
【典型例题】 类型一、用配方法解一元二次方程
1. 用配方法解方程: (1) x2 − 4x −1 = 0 ;
【答案与解析】 (1)移项,得 x2 − 4x = 1 .
(2) 2x2 + 7 x + 3 = 0 .

一元二次方程的解法—知识讲解

一元二次方程的解法—知识讲解

一元二次方程及其解法(一)直接开平方法—知识讲解(提高)【学习目标】1.理解一元二次方程的概念和一元二次方程根的意义,会把一元二次方程化为一般形式;2.掌握直接开平方法解方程,会应用此判定方法解决有关问题;3.理解解法中的降次思想,直接开平方法中的分类讨论与换元思想.【要点梳理】要点一、一元二次方程的有关概念1.一元二次方程的概念:通过化简后,只含有一个未知数(一元),并且未知数的最高次数是2(二次)的整式方程,叫做一元二次方程.要点诠释:识别一元二次方程必须抓住三个条件:(1)整式方程;(2)含有一个未知数;(3)未知数的最高次数是2.不满足其中任何一个条件的方程都不是一元二次方程,缺一不可.2.一元二次方程的一般形式:一般地,任何一个关于x的一元二次方程,都能化成形如,这种形式叫做一元二次方程的一般形式.其中是二次项,是二次项系数;bx是一次项,b是一次项系数;c是常数项.要点诠释:(1)只有当时,方程才是一元二次方程;(2)在求各项系数时,应把一元二次方程化成一般形式,指明一元二次方程各项系数时注意不要漏掉前面的性质符号.3.一元二次方程的解:使一元二次方程左右两边相等的未知数的值叫做一元二次方程的解,也叫做一元二次方程的根.4.一元二次方程根的重要结论(1)若a+b+c=0,则一元二次方程必有一根x=1;反之也成立,即若x=1是一元二次方程的一个根,则a+b+c=0.(2)若a-b+c=0,则一元二次方程必有一根x=-1;反之也成立,即若x=-1是一元二次方程的一个根,则a-b+c=0.(3)若一元二次方程有一个根x=0,则c=0;反之也成立,若c=0,则一元二次方程必有一根为0.要点二、一元二次方程的解法1.直接开方法解一元二次方程:(1)直接开方法解一元二次方程:利用平方根的定义直接开平方求一元二次方程的解的方法称为直接开平方法.(2)直接开平方法的理论依据:平方根的定义.(3)能用直接开平方法解一元二次方程的类型有两类:①形如关于x的一元二次方程,可直接开平方求解.若,则;表示为,有两个不等实数根;若,则x=O;表示为,有两个相等的实数根;若,则方程无实数根.②形如关于x的一元二次方程,可直接开平方求解,两根是.要点诠释:用直接开平方法解一元二次方程的理论依据是平方根的定义,应用时应把方程化成左边是含未知数的完全平方式,右边是非负数的形式,就可以直接开平方求这个方程的根.【典型例题】类型一、关于一元二次方程的判定1.判定下列方程是否关于x的一元二次方程:(1)a2(x2-1)+x(2x+a)=3x+a;(2)m2(x2+m)+2x=x(x+2m)-1.【答案与解析】(1)经整理,得它的一般形式(a2+2)x2+(a-3)x-a(a+1)=0,其中,由于对任何实数a都有a2≥0,于是都有a2+2>0,由此可知a2+2≠0,所以可以判定:对任何实数a,它都是一个一元二次方程.(2)经整理,得它的一般形式(m2-1)x2+(2-2m)x+(m3+1)=0,其中,当m≠1且m≠-1时,有m2-1≠0,它是一个一元二次方程;当m=1时方程不存在,当m=-1时,方程化为4x=0,它们都不是一元二次方程.【总结升华】对于含有参数的一元二次方程,要十分注意二次项系数的取值范围,在作为一元二次方程进行研究讨论时,必须确定对参数的限制条件.如在第(2)题,对参数的限定条件是m≠±1.例如,一个关于x的方程,若整理为(m-4)x2+mx-3=0的形式,仅当m-4≠0,即m≠4时,才是一元二次方程(显然,当m=4时,它只是一个一元一次方程4x-3=0).又如,当我们说:“关于x的一元二次方程(a-1)x2+(2a+1)x+a2-1=0……”时,实际上就给出了条件“a-1≠0”,也就是存在一个条件“a≠1”.由于这个条件没有直接注明,而是隐含在其他的条件之中,所以称它为“隐含条件”.类型二、一元二次方程的一般形式、各项系数的确定2. 已知关于y的一元二次方程m2(y2+m)-3my=y(8y-1)+1,求出它各项的系数,并指出参数m的取值范围.【答案与解析】将原方程整理为一般形式,得(m2-8)y2-(3m-1)y+m3-1=0,由于已知条件已指出它是一个一元二次方程,所以存在一个隐含条件m2-8≠0,即 m≠±.可知它的各项系数分别是a=m2-8(m≠±),b=-(3m-1),c=m3-1.参数m的取值范围是不等于±的一切实数.【总结升华】在含参数的方程中,要认定哪个字母表示未知数,哪个字母是参数,才能正确处理有关的问题.举一反三:【变式】关于x的方程的一次项系数是-1,则a .【答案】原方程化简为x2-ax+1=0,则-a=-1,a=1.类型三、一元二次方程的解(根)3. (2016•大庆)若x0是方程ax2+2x+c=0(a≠0)的一个根,设M=1﹣ac,N=(ax0+1)2,则M与N的大小关系正确的为()A.M>N B.M=N C.M<N D.不确定【思路点拨】把x0代入方程ax2+2x+c=0得ax02+2x0=﹣c,作差法比较可得.【答案】B;【解析】解:∵x0是方程ax2+2x+c=0(a≠0)的一个根,∴ax02+2x0+c=0,即ax02+2x0=﹣c,则N﹣M=(ax0+1)2﹣(1﹣ac)=a2x02+2ax0+1﹣1+ac=a(ax02+2x0)+ac=﹣ac+ac=0,∴M=N,故选:B.【总结升华】本题主要考查一元二次方程的解得概念及作差法比较大小,熟练掌握能使方程成立的未知数的值叫做方程的解是根本,利用作差法比较大小是解题的关键. 举一反三: 【变式】(1)x=1是的根,则a= .(2)已知关于x 的一元二次方程 22(1)210m x x m -++-=有一个根是0,求m 的值.【答案】(1)当x=1时,1-a+7=0,解得a=8. (2)由题意得类型四、用直接开平方法解一元二次方程4.解方程(x-3)2=49.【答案与解析】把x-3看作一个整体,直接开平方,得 x-3=7或x-3=-7. 由x-3=7,得 x=10. 由x-3=-7,得 x=-4.所以原方程的根为x=10或x=-4.【总结升华】应当注意,如果把x+m 看作一个整体,那么形如(x+m)2=n(n ≥0)的方程就可看作形如x 2=k 的方程,也就是可用直接开平方法求解的方程;这就是说,一个方程如果可以变形为这个形式,就可用直接开平方法求出这个方程的根.所以,(x+m)2=n 可成为任何一元二次方程变形的目标.举一反三:【变式】解方程: (1) (2014秋•宝安区期末)(3x+2)2=4(x ﹣1)2;(2) (2014•锡山区期中) (x-2)2=25.【答案】解:(1) 3x+2=±2(x ﹣1),∴3x+2=2x ﹣2或3x+2=﹣2x+2, ∴x 1=﹣4;x 2=0.(2) (x-2)=±5∴x-2=5或x-2=-5 ∴x 1=7,x 2=-3.一元二次方程的解法(二)配方法—知识讲解(提高)【学习目标】1.了解配方法的概念,会用配方法解一元二次方程; 2.掌握运用配方法解一元二次方程的基本步骤;3.通过用配方法将一元二次方程变形的过程,进一步体会转化的思想方法,并增强数学应用意识和能力。

一元二次方程全章复习与巩固—知识讲解

一元二次方程全章复习与巩固—知识讲解

《一元二次方程》全章复习与巩固—知识讲解(提高)【学习目标】1.了解一元二次方程及有关概念;2.掌握通过配方法、公式法、因式分解法降次──解一元二次方程;3.掌握依据实际问题建立一元二次方程的数学模型的方法.【知识网络】【要点梳理】要点一、一元二次方程的有关概念1.一元二次方程的概念:通过化简后,只含有一个未知数(一元),并且未知数的最高次数是2(二次)的整式方程,叫做一元二次方程.2.一元二次方程的一般式:3.一元二次方程的解:使一元二次方程左右两边相等的未知数的值叫做一元二次方程的解,也叫做一元二次方程的根.要点诠释:判断一个方程是否为一元二次方程时,首先观察其是否是整式方程,否则一定不是一元二次方程;其次再将整式方程整理化简使方程的右边为0,看是否具备另两个条件:①一个未知数;②未知数的最高次数为2.对有关一元二次方程定义的题目,要充分考虑定义的三个特点,不要忽视二次项系数不为0.要点二、一元二次方程的解法1.基本思想一元二次方程−−−→降次一元一次方程2.基本解法直接开平方法、配方法、公式法、因式分解法. 要点诠释:解一元二次方程时,根据方程特点,灵活选择解题方法,先考虑能否用直接开平方法和因式分解法,再考虑用公式法.要点三、一元二次方程根的判别式及根与系数的关系 1.一元二次方程根的判别式一元二次方程)0(02≠=++a c bx ax 中,ac b 42-叫做一元二次方程)0(02≠=++a c bx ax 的根的判别式,通常用“∆”来表示,即ac b 42-=∆.(1)当△>0时,一元二次方程有2个不相等的实数根;(2)当△=0时,一元二次方程有2个相等的实数根;(3)当△<0时,一元二次方程没有实数根.2.一元二次方程的根与系数的关系如果一元二次方程)0(02≠=++a c bx ax 的两个实数根是21x x ,,那么a b x x -=+21,ac x x =21.注意它的使用条件为a ≠0, Δ≥0. 要点诠释:1.一元二次方程 的根的判别式正反都成立.利用其可以解决以下问题:(1)不解方程判定方程根的情况; (2)根据参系数的性质确定根的范围; (3)解与根有关的证明题.2. 一元二次方程根与系数的应用很多:(1)已知方程的一根,不解方程求另一根及参数系数;(2)已知方程,求含有两根对称式的代数式的值及有关未知数系数;(3)已知方程两根,求作以方程两根或其代数式为根的一元二次方程.要点四、列一元二次方程解应用题1.列方程解实际问题的三个重要环节: 一是整体地、系统地审题; 二是把握问题中的等量关系;三是正确求解方程并检验解的合理性.2.利用方程解决实际问题的关键是寻找等量关系.3.解决应用题的一般步骤:审 (审题目,分清已知量、未知量、等量关系等);设 (设未知数,有时会用未知数表示相关的量);列 (根据题目中的等量关系,列出方程);解 (解方程,注意分式方程需检验,将所求量表示清晰);验 (检验方程的解能否保证实际问题有意义);答 (写出答案,切忌答非所问).4.常见应用题型数字问题、平均变化率问题、利息问题、利润(销售)问题、形积问题等.要点诠释:列方程解应用题就是先把实际问题抽象为数学问题(列方程),然后由数学问题的解决而获得对实际问题的解决.【典型例题】类型一、一元二次方程的有关概念1.已知(m-1)x|m|+1+3x-2=0是关于x的一元二次方程,求m的值.【答案与解析】依题意得|m|+1=2,即|m|=1,解得m=±1,又∵m-1≠0,∴m≠1,故m=-1.【总结升华】依题意可知m-1≠0与|m|+1=2必须同时成立,因此求出满足上述两个条件的m的值即可.特别是二次项系数应为非零数这一隐含条件要注意.举一反三:【变式】若方程2(2)310mm x mx---=是关于x的一元二次方程,求m的值.【答案】根据题意得22,20,mm⎧=⎪⎨-≠⎪⎩解得所以当方程2(2)310mm x mx--=是关于x的一元二次方程时,2m=-.类型二、一元二次方程的解法2.解下列一元二次方程.(1)224(3)25(2)0x x---=; (2)225(3)9x x-=-; (3)2(21)4(21)40x x++++=.【答案与解析】(1)原方程可化为:22[2(3)][5(2)]0x x---=,即(2x-6)2-(5x-10)2=0,∴ (2x-6+5x-10)(2x-6-5x+10)=0,即(7x-16)(-3x+4)=0,∴ 7x-16=0或-3x+4=0,∴116 7x=,24 3x=. (2)25(3)(3)(3)x x x-=+-,25(3)(3)(3)0x x x--+-=,∴ (x-3)[5(x-3)-(x+3)]=0,即(x-3)(4x-18)=0,∴ x-3=0或4x-18=0,∴13x=,292x=.(3)2(21)4(21)40x x++++=,∴2(212)0x++=.即2(23)0x+=,∴1232x x==-.【总结升华】 (1)方程左边可变形为22[2(3)][5(2)]x x---,因此可用平方差公式分解因式;(2)中方程右边分解后为(x-3)(x+3),与左边中的(x-3)2有公共的因式,可移项后提取公因式(x-3)后解题;(3)的左边具有完全平方公式的特点,可用公式变为(2x+1+2)2=0再求解.举一反三:【变式】解方程: (1)3x+15=-2x2-10x; (2)x2-3x=(2-x)(x-3).【答案】(1)移项,得3x+15+(2x2+10x)=0,∴ 3(x+5)+2x(x+5)=0,即(x+5)(3+2x)=0,∴ x+5=0或3+2x=0,∴15x=-,232x=-.(2)原方程可化为x(x-3)=(2-x)(x-3),移项,x(x-3)-(2-x)(x-3)=0,∴ (x-3)(2x-2)=0,∴ x-3=0或2x-2=0,∴13x=,21x=.类型三、一元二次方程根的判别式的应用3.关于x 的方程2(5)410a x x ---=有实数根.则a 满足( )A .a ≥1B .a >1且a ≠5C .a ≥1且a ≠5D .a ≠5【答案】A ;【解析】①当50a -=,即5a =时,有410x --=,14x =-,有实数根;②当50a -≠时,由△≥0得2(4)4(5)(1)0a --⨯-⨯-≥,解得1a ≥且5a ≠. 综上所述,使关于x 的方程2(5)410a x x ---=有实数根的a 的取值范围是1a ≥.答案:A【总结升华】注意“关于x 的方程”与“关于x 的一元二次方程”的区别,前者既可以是一元一次方程,也可以是一元二次方程,所以必须分类讨论,而后者隐含着二次项系数不能为0.4. k 为何值时,关于x 的二次方程2690kx x -+=(1)k 满足 时,方程有两个不等的实数根; (2)k 满足 时,方程有两个相等的实数根;(3)k 满足 时,方程无实数根. 【答案】(1)10k k ≠<,且;(2)1k =;(3)1k >. 【解析】求判别式,注意二次项系数的取值范围. 【总结升华】根据判别式ac b 42-=∆及k ≠0求解.类型四、一元二次方程的根与系数的关系5.已知关于x 的方程222(2)0x m x m --+=,试探求:是否存在实数m 使方程的两个实数根的平方和等于56,若存在,求出m 的值;若不存在,请说明理由.【答案与解析】存在.设方程两根为x 1、x 2,根据题意,得122(2)x x m +=-,212x x m =,221256x x +=, 而222121212()2x x x x x x +=+-,于是有[]222(2)256m m --=,整理得28200m m --=, 解这个方程得110m =, 22m =-,当10m =时,△= 2224[2(2)]41440b ac m m -=---=-<, 当2m =-时,△=2224[2(2)]4480b ac m m -=---=>, 所以符合条件的m 的值为-2.【总结升华】由两个实数根的平方和等于56,列出关系式,再由根与系数关系求出m的值,通过判别式去验证m值是否符合题意,从而得出结论.举一反三:【变式】已知关于x的方程2(1)(23)10k x k x k-+-++=有两个不相等的实数根1x、2x.(1)求k的取值范围;(2)是否存在实数k,使方程的两实数根互为相反数如果存在,求出k的值;如果不存在,请说明理由.【答案】(1)根据题意,得△=(2k-3)2-4(k-1)(k+1)=224129412130k k k k-+-=-+>,所以1312k<.由k-1≠0,得k≠1.当1312k<且k≠1时,方程有两个不相等的实数根;(2) 不存在.如果方程的两个实数根互为相反数,则12231kx xk -+=-=-,解得32k=.当32k=时,判别式△=-5<0,方程没有实数根.所以不存在实数k,使方程的两个实数根互为相反数.类型五、一元二次方程的应用6.甲、乙两人分别骑车从A、B两地相向而行,甲先行1小时后,乙才出发,又经过4小时两人在途中的C地相遇,相遇后两人按原来的方向继续前进.乙在由C 地到达A地的途中因故停了20分钟,结果乙由C地到达A地时比甲由C地到达B 地还提前了40分钟,已知乙比甲每小时多行驶4千米,求甲、乙两人骑车的速度.【答案与解析】设甲的速度为x千米/时,则乙的速度为(x+4)千米/时.根据题意,得54(4)2040460x xx x++=-+解之,得x1=16,x2=-2.经检验:x1=16,x2=-2都是原方程的根,但x2=-2不合题意,舍去.∴当x=16时,x+4=20.答:甲每小时行驶16千米,乙每小时行驶20千米.【总结升华】注意解题的格式,解分式方程应用题要双检验,即验根、符合题意.举一反三:【变式】某工程队在我市实施棚户区改造过程中承包了一项拆迁工程。

一元二次方程解法讲义(全4讲)

一元二次方程解法讲义(全4讲)

一元二次方程解法讲义(全四讲)第一讲 直接开平一、学习目标了解形如()()20x h k k +=≥的一元二次方程的解法——直接开平方法;能够熟练而准确的运用开平方法求一元二次方程的解.二、知识回顾1.什么叫做平方根?平方根有哪些性质?平方根的定义:如果一个数的平方等于a ,那么这个数就叫做a 的平方根.用式子表示:若x 2=a ,则x 叫做a 的平方根.记作x=如:9的平方根是3±;425的平方根是25±.平方根的性质:(1)一个正数有两个平方根,这两个平方根是互为相反数的; (2)0的平方根是0; (3)负数没有平方根.2.x 2=4,则x=±2.想一想:求x 2=4的解的过程,就相当于求什么的过程?三、新知讲解四、典例探究1.用直接开平方法求一元二次方程的解【例1】解方程:(1)2x 2﹣8=0;(2)(2x ﹣3)2=25.分析:(1)先变形得到x 2=4,然后利用直接开平方法求解;(2)首先两边直接开平方可得2x ﹣3=±5,再解一元一次方程即可.解答:解:(1)x 2=4,两边直接开平方,得x1=2,x2=﹣2.(2)两边直接开平方,得2x﹣3=±5,则2x﹣3=5,2x﹣3=﹣5,所以x=4,x=﹣1.点评:本题考查了解一元二次方程﹣直接开平方法:形如x2=p或(nx+m)2=p(p≥0)的一元二次方程可采用直接开平方的方法求解.总结:运用直接开平方法解一元二次方程,首先要将一元二次方程的左边化为含有未知数的完全平方式,右边化为非负数的形式,然后直接用开平方的方法求解.练1.(2015•东西湖区校级模拟)解方程:(2x+3)2﹣25=0分析:先移项,写成(x+a)2=b的形式,然后利用数的开方解答.解答:解:移项得,(2x+3)2=25,开方得,2x+3=±5,解得x1=1,x2=﹣4.点评:(1)用直接开方法求一元二次方程的解的类型有:x2=a(a≥0);ax2=b(a,b同号且a≠0);(x+a)2=b(b≥0);a(x+b)2=c(a,c同号且a≠0).法则:要把方程化为“左平方,右常数,先把系数化为1,再开平方取正负,分开求得方程解”.(2)运用整体思想,会把被开方数看成整体.(3)用直接开方法求一元二次方程的解,要仔细观察方程的特点.练2.(2014秋•昆明校级期中)解方程:9(x+1)2=4(x﹣2)2.分析:两边开方,即可得出两个一元一次方程,求出方程的解即可.解答:解:两边开方得:3(x+1)=±2(x﹣2),即3(x+1)=2(x﹣2),3(x+1)=﹣2(x﹣2),解得:x1=﹣7,x2=.点评:本题考查了解一元二次方程和解一元一次方程的应用,解此题的关键是能把一元二次方程转化成一元一次方程.2.用直接开平方法判断方程中字母参数的取值范围【例2】(2015春•南长区期末)若关于x的一元二次方程x2﹣k=0有实数根,则()A.k<0 B.k>0 C.k≥0 D.k≤0分析:根据直接开平方法的步骤得出x2=k,再根据非负数的性质得出k≥0即可.解答:解:∵x2﹣k=0,∴x2=k,∵一元二次方程x2﹣k=0有实数根,∴k≥0,故选:C..点评:此题考查了直接开平方法解一元二次方程,用直接开方法求一元二次方程的解的类型有:x2=a (a≥0);ax2=b(a,b同号且a≠0);(x+a)2=b(b≥0);a(x+b)2=c(a,c同号且a≠0).法则:要把方程化为“左平方,右常数,先把系数化为1,再开平方取正负,分开求得方程解”总结:先把方程化为“左平方,右常数”的形式,且把系数化为1,再根据一元二次方程有无解来求方程中字母参数的取值范围.练3.(2015春•利辛县校级月考)已知一元二次方程mx2+n=0(m≠0,n≠0),若方程有解,则必须()A.n=0 B.m,n同号 C.n是m的整数倍 D.m,n异号分析:首先求出x2的值为﹣,再根据x2≥0确定m、n的符号即可.解答:解:mx2+n=0,x2=﹣,∵x2≥0,∴﹣≥0,∴≤0,∵n≠0,∴mn异号,故选:D.点评:此题主要考查了直接开平方法解一元二次方程,关键是表示出x2的值,根据x2的取值范围确定m、n的符号.练4.(2015•岳阳模拟)如果关于x的方程mx2=3有两个实数根,那么m的取值范围是.解:∵关于x的方程mx2=3有两个实数根,∴m>0.故答案为:m>0.五、课后小测一、选择题1.(2015•石城县模拟)方程x2﹣9=0的解是()A.x=3 B.x=9 C.x=±3 D.x=±92.(2015•河北模拟)已知一元二次方程x2﹣4=0,则该方程的解为()A.x1=x2=2 B.x1=x2=﹣2 C.x1=﹣4,x2=4 D.x1=﹣2,x2=23.(2015•杭州模拟)关于x的方程a(x+m)2+n=0(a,m,n均为常数,m≠0)的解是x1=﹣2,x2=3,则方程a(x+m﹣5)2+n=0的解是()A.x1=﹣2,x2=3 B.x1=﹣7,x2=﹣2 C.x1=3,x2=﹣2 D.x1=3,x2=84.(2015•江岸区校级模拟)如果x=﹣3是一元二次方程ax2=c的一个根,那么该方程的另一个根是()A.3 B.﹣3 C.0 D.15.(2014•枣庄)x1、x2是一元二次方程3(x﹣1)2=15的两个解,且x1<x2,下列说法正确的是()A.x1小于﹣1,x2大于3 B.x1小于﹣2,x2大于3C.x1,x2在﹣1和3之间 D.x1,x2都小于36.(2014春•淮阴区校级月考)方程(1﹣x)2=2的根是()A.﹣1,3 B.1,﹣3 C., D.,7.(2012秋•内江期末)已知a2﹣2ab+b2=6,则a﹣b的值是()A. B.或 C.3 D.8.方程x2=0的实数根有()A.1个 B.2个 C.无数个 D.0个9.方程5y2﹣3=y2+3的实数根的个数是()A.0个 B.1个 C.2个 D.3个二、填空题10.(2015•泉州)方程x2=2的解是.11.(2014•怀化模拟)方程8x2﹣72=0解为.三、解答题12.(2014•祁阳县校级模拟)解方程:(x ﹣2)2﹣16=0.13.(2014秋•青海校级月考)解方程:.14.已知一元二次方程x 2﹣4x+1+m=5请你选取一个适当的m 的值,使方程能用直接开平方法求解,并解这个方程.(1)你选的m 的值是 ;(2)解这个方程.第二讲 配方法一、 学习目标1.掌握用配方法解一元二次方程的一般步骤; 2.学会利用配方法解一元二次方程. 二、知识回顾1.形如2()x m n +=(n ≥0)的一元二次方程,利用求平方根的方法,立即可得而解出方程的根,这种解一元二次方程的方法叫“直接开平方法”.2.如果方程能化成x 2=p 或(mx +n )2=p (p ≥0)的形式,那么利用直接开平方法可得xmx+n三、新知讲解 1.配方法的依据配方法解一元二次方程的依据是完全平方公式2222()a ab b a b ±+=±及直接开平方法.2.配方法的步骤(1)化—— 化二次项系数为1如果一元二次方程的二次项系数不是1,那么在方程的两边同时除以二次项系数,把二次项系数化为1. (2)移——移项通过移项使方程左边为 二次项 和 一次项 ,右边为 常数项 . (3)配——配方1.形如2()x m n +=(n ≥0)的一元二次方程,利用求平方根的方法,立即可得而解出方程的根,这种解一元二次方程的方法叫“直接开平方法”.在方程两边都加上 一次项系数一半的平方 ,根据完全平方公式把原方程变为2()x m n +=(n ≥0)的形式.(4)解——用直接开平方法解方程. 四、典例探究1.配方法解一元二次方程 【例1】(2015•科左中旗校级一模)用配方法解下列方程时,配方有错误的是( )A .x 2﹣2x ﹣99=0化为(x ﹣1)2=100B .x 2+8x+9=0化为(x+4)2=25 C .2t 2﹣7t ﹣4=0化为(t﹣)2=D .3x 2﹣4x ﹣2=0化为(x ﹣)2=【解析】配方法的一般步骤: (1)把常数项移到等号的右边; (2)把二次项的系数化为1;(3)等式两边同时加上一次项系数一半的平方.根据以上步骤进行变形即可.解:A 、∵x 2﹣2x ﹣99=0,∴x 2﹣2x=99,∴x 2﹣2x+1=99+1,∴(x ﹣1)2=100,故A 选项正确.B 、∵x 2+8x+9=0,∴x 2+8x=﹣9,∴x 2+8x+16=﹣9+16,∴(x+4)2=7,故B 选项错误. C 、∵2t 2﹣7t ﹣4=0,∴2t 2﹣7t=4,∴t 2﹣t=2,∴t 2﹣t+=2+,∴(t ﹣)2=,故C 选项正确. D 、∵3x 2﹣4x ﹣2=0,∴3x 2﹣4x=2,∴x 2﹣x=,∴x 2﹣x+=+,∴(x ﹣)2=.故D 选项正确.故选:B .点评:此题考查了配方法解一元二次方程,选择用配方法解一元二次方程时,最好使方程的二次项的系数为1,一次项的系数是2的倍数.练1用配方法解方程: x 2﹣2x ﹣24=0;(2)3x 2+8x-3=0;(3)x (x+2)=120.【解析】(1)移项,得x 2﹣2x=24,配方,得:x 2﹣2x+1=24+1,即:(x ﹣1)2=25, 开方,得:x ﹣1=±5, ∴x 1=6,x 2=﹣4.(2)两边除以3,得: 28103x x +-=, 移项,得:2813x x +=, 配方,得:222844()1()333x x ++=+,即:2245(x )()33+=,开方,得:4533x +=± ∴121,33x x ==- (3)整理,得:22120x x +=, 配方,得:2211201x x ++=+,即:2(1)121x +=,开方,得:111x +=±∴1210,12x x ==-点评:本题考查了解一元二次方程﹣﹣配方法.2.用配方法求多项式的最值【例2】(2015春•龙泉驿区校级月考)当x ,y 取何值时,多项式x 2+4x+4y 2﹣4y+1取得最小值,并求出最小值. 【解析】把所给代数式整理为两个完全平方式子与一个常数的和,最小值应为那个常数,从而确定最小值.解:x 2+4x+4y 2﹣4y+1=x 2+4x+4+4y 2﹣4y+1﹣4=(x+2)2+(2y ﹣1)2﹣4,又∵(x+2)2+(2y ﹣1)2的最小值是0,∴x 2+4x+4y 2﹣4y+1的最小值为﹣4. ∴当x=﹣2,y=时有最小值为﹣4.点评:本题考查配方法的应用;根据﹣4y ,4x 把所给代数式整理为两个完全平方式子的和是解决本题的关键.总结:配方法是求代数式的最值问题中最常用的方法.基本思路是:把代数式配方成完全平方式与常数项的和,根据完全平方式的非负性求代数式的最值.练2(2014•甘肃模拟)用配方法证明:二次三项式﹣8x 2+12x ﹣5的值一定小于0.【解析】将﹣8x 2+12x ﹣5配方,先把二次项系数化为1,然后再加上一次项系数一半的平方,然后根据配方后的形式,再根据a 2≥0这一性质即可证得.解:﹣8x 2+12x ﹣5=﹣8(x 2﹣x )﹣5=﹣8[x 2﹣x+()2]﹣5+8×()2=﹣8(x ﹣)2﹣, ∵(x ﹣)2≥0, ∴﹣8(x ﹣)2≤0, ∴﹣8(x ﹣)2﹣<0,即﹣8x 2+12﹣5的值一定小于0. 点评:此题考查了学生的应用能力,解题时要注意配方法的步骤.注意在变形的过程中不要改变式子的值.练3(2014秋•崇州市期末)已知a 、b 、c 为△ABC 三边的长.(1)求证:a2﹣b2+c2﹣2ac<0.(2)当a2+2b2+c2=2b(a+c)时,试判断△ABC的形状.【解析】(1)将不等式的左边因式分解后根据三角形三边关系判断代数式的符号即可;(2)将等式右边的项移至左边,然后配方即可.解:(1)a2﹣b2+c2﹣2ac=(a﹣c)2﹣b2=(a﹣c+b)(a﹣c﹣b)∵a、b、c为△ABC三边的长,∴(a﹣c+b)>0,(a﹣c﹣b)<0,∴a2﹣b2+c2﹣2ac<0.(2)由a2+2b2+c2=2b(a+c)得:a2﹣2ab+b2+b2﹣2bc+c2=0配方得:(a﹣b)2+(b﹣c)2=0∴a=b=c∴△ABC为等边三角形.点评:本题考查了配方法的应用,解题的关键是对原式正确的配方.五、课后小测一、选择题1.(2015•延庆县一模)若把代数式x2﹣2x+3化为(x﹣m)2+k形式,其中m,k为常数,结果为()A.(x+1)2+4 B.(x﹣1)2+2C.(x﹣1)2+4 D.(x+1)2+22.(2015•东西湖区校级模拟)一元二次方程x2﹣8x﹣1=0配方后为()A.(x﹣4)2=17 B.(x+4)2=15C.(x+4)2=17 D.(x﹣4)2=17或(x+4)2=17二、填空题3.(2015春•盐城校级期中)一元二次方程x2﹣6x+a=0,配方后为(x﹣3)2=1,则a= .4.(2014秋•营山县校级月考)当x= 时,代数式3x2﹣6x的值等于12.三、解答题5.(2015•东西湖区校级模拟)用配方法解方程:x2﹣2x﹣4=0.6.(2013秋•安龙县校级期末)试说明:不论x,y取何值,代数式x2+4y2﹣2x+4y+5的值总是正数.你能求出当x,y取何值时,这个代数式的值最小吗?7.(2014秋•蓟县期末)阅读下面的材料并解答后面的问题:小李:能求出x2+4x﹣3的最小值吗?如果能,其最小值是多少?小华:能.求解过程如下:因为x2+4x﹣3=x2+4x+4﹣4﹣3=(x2+4x+4)﹣(4+3)=(x+2)2﹣7而(x+2)2≥0,所以x2+4x﹣3的最小值是﹣7.问题:(1)小华的求解过程正确吗?(2)你能否求出x2﹣3x+4的最小值?如果能,写出你的求解过程.8.(2014秋•安陆市期末)阅读下面的解答过程,求y2+4y+8的最小值.解:y2+4y+8=y2+4y+4+4﹣(y+2)2+4∵(y+2)2≥0∴(y+2)2+4≥4∴y2+4y+8的最小值为4仿照上面的解答过程,求m2+m+4的最小值和4﹣2x﹣x2的最大值.9.(2014春•乳山市期末)已知代数式x2﹣2mx﹣m2+5m﹣5的最小值是﹣23,求m的值.10.(2014秋•江阴市期中)配方法可以用来解一元二次方程,还可以用它来解决很多问题.例如:因为3a2≥0,所以3a2+1≥1,即:3a2+1有最小值1,此时a=0;同样,因为﹣3(a+1)2≤0,所以﹣3(a+1)2+6≤6,即﹣3(a+1)2+6有最大值6,此时 a=﹣1.①当x= 时,代数式﹣2(x﹣1)2+3有最(填写大或小)值为.②当x= 时,代数式﹣x2+4x+3有最(填写大或小)值为.③矩形花园的一面靠墙,另外三面的栅栏所围成的总长度是16m,当花园与墙相邻的边长为多少时,花园的面积最大?最大面积是多少?第三讲公式法一、学习目标了解掌握一元二次方程根的判别式,不解方程能判定一元二次方程根的情况;理解一元二次方程求根公式的推导过程;掌握公式结构,知道使用公式前先将方程化为一般形式,通过判别式判断根的情况;学会利用求根公式解简单数字系数的一元二次方程.二、知识回顾1.什么是配方法?配方法解一元二次方程的一般步骤是什么?配方法:通过配方,先把方程的左边配成一个含有未知数的完全平方式,右边是一个非负数,然后运用直接开平方法求解,这种解一元二次方程的方法叫做配方法.配方法解一元二次方程的一般步骤:(1)移常数项到方程右边; (2)化二次项系数为1;(3)方程两边同时加上一次项系数一半的平方; (4)化方程左边为完全平方式;(5)若方程右边为非负数,则利用直接开平方法解得方程的根.2.怎样用配方法解形如一般形式ax 2+bx +c =0(a ≠0)的一元二次方程? 解:移项,得2,ax bx c +=-二次项系数化为1,得2,b c x x a a +=-配方,得222()(),22b b c bx x a a a a++=-+ 即:222424b b ac x a a -⎛⎫+= ⎪⎝⎭, 因为0,a ≠所以当240b ac ->时,2b x a-=;当240;2b b ac a -==-12时,x =x240b ac -=当时,原方程无解.三、新知讲解一元二次方程根的判别式24b ac -叫做一元二次方程ax 2+bx +c =0(a ≠0)根的判别式,通常用希腊字母∆表示它,即24b ac ∆=-.一元二次方程根的情况与判别式的关系(1)240b ac ∆=->⇔方程有两个不相等的实数根; (2)240b ac ∆=-=⇔方程有两个相等的实数根; (3)240b ac ∆=-<⇔方程没有实数根. 公式法解一元二次方程一般地,对于一般形式的一元二次方程ax 2+bx +c =0(a ≠0),当240b ac -≥时,它的两个根分别是1x =,2x =,这里,()2402b x b ac a-±=-≥叫做一元二次方程的求根公式,利用它解一元二次方程的方法叫做公式法.公式法解一元二次方程的一般步骤把方程化成一般形式:ax 2+bx +c =0(a ≠0);确定a ,b ,c 的值;求出24b ac -的值,并判断方程根的情况:当240b ac ->时,方程有两个不相等的实数根; 当240b ac -=时,方程有两个相等的实数根; 当240b ac -<时,方程没有实数根.当240b ac -≥时,将a ,b ,c 和24b ac -的值代入公式2b x a-=(注意符号).四、典例探究1.根据根的判别式判断一元二次方程根的情况【例1】(2015•重庆)已知一元二次方程2x 2﹣5x+3=0,则该方程根的情况是( ) A .有两个不相等的实数根 B .有两个相等的实数根 两个根都是自然数 D .无实数根分析:判断方程的根的情况,只要看根的判别式△=b 2﹣4ac 的值的符号就可以了. 解答:解:∵a=2,b=﹣5,c=3,∴△=b 2﹣4ac=(﹣5)2﹣4×2×3=1>0, ∴方程有两个不相等的实数根. 故选:A .点评:此题主要考查了一元二次方程根的判别式,要熟练掌握一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.总结:求根的判别式时,应该先将方程化为一般形式,正确找出a ,b ,c 的值.根的判别式与一元二次方程根的情况的关系如下:当240b ac ->时,方程有两个不相等的实数根;当240b ac -=时,方程有两个相等的实数根;当240b ac -<时,方程没有实数根.练1.(2015•铜仁市)已知关于x 的一元二次方程3x 2+4x ﹣5=0,下列说法不正确的是( ) A .方程有两个相等的实数根 B .方程有两个不相等的实数根 C .没有实数根 D .无法确定 分析:先求出△的值,再判断出其符号即可.解答:解:∵△=42﹣4×3×(﹣5)=76>0, ∴方程有两个不相等的实数根. 故选B .点评:本题考查的是根的判别式,熟知一元二次方程ax 2+bx+c=0(a≠0)的根与△的关系是解答此题的关键.练2.(2015•泰州)已知:关于x 的方程x 2+2mx+m 2﹣1=0 (1)不解方程,判别方程根的情况; (2)若方程有一个根为3,求m 的值. 分析:(1)找出方程a ,b 及c 的值,计算出根的判别式的值,根据其值的正负即可作出判断; (2)将x=3代入已知方程中,列出关于系数m 的新方程,通过解新方程即可求得m 的值.解答:解:(1)∵a=1,b=2m ,c=m 2﹣1,∵△=b 2﹣4ac=(2m )2﹣4×1×(m 2﹣1)=4>0,∴方程x2+2mx+m2﹣1=0有两个不相等的实数根;(2)∵x2+2mx+m2﹣1=0有一个根是3,∴32+2m×3+m2﹣1=0,解得,m=﹣4或m=﹣2.点评:此题考查了根的判别式,一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.也考查了一元二次方程的解的定义:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.即用这个数代替未知数所得式子仍然成立.2.根据一元二次方程根的情况求参数的值或取值范围【例2】(2015•温州)若关于x的一元二次方程4x2﹣4x+c=0有两个相等实数根,则c的值是()A.﹣1 B.1 C.﹣4 D.4分析:根据方程根的情况与判别式的关系知△=42﹣4×4c=0,然后解一次方程即可.解答:解:∵一元二次方程4x2﹣4x+c=0有两个相等实数根,∴△=42﹣4×4c=0,∴c=1,故选B.点评:本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式△=b2﹣4ac:当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.总结:已知方程根的情况求字母的值或取值范围时:先计算根的判别式;再根据方程根的情况列出关于根的判别式的等式或不等式求解;若二次项系数出现了字母,应注意“二次项系数不为0”.练3.(2015•凉山州)关于x的一元二次方程(m-2)x2+2x+1=0有实数根,则m的取值范围是()A.m≤3 B.m<3 C.m<3且m≠2 D.m≤3且m≠2分析:根据一元二次方程ax2+bx+c=0(a≠0)的根的判别式△=b2-4ac的意义得到m-2≠0且△≥0,即22-4×(m-2)×1≥0,然后解不等式组即可得到m的取值范围.解答:解:∵关于x的一元二次方程(m-2)x2+2x+1=0有实数根,∴m-2≠0且△≥0,即22-4×(m-2)×1≥0,解得m≤3,∴m的取值范围是 m≤3且m≠2.故选:D.点评:本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式△=b2-4ac:当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.3.用公式法解一元二次方程【例3】用公式法解下列方程:(1)x2+2x﹣2=0;(2)y2﹣3y+1=0;(3)x2+3=2x.分析:(1)求出b2﹣4ac的值,代入公式x=求出即可;(2)求出b2﹣4ac的值,代入公式y=求出即可;(3)求出b2﹣4ac的值是负数,即可得出原方程无解.解答:解:(1)这里a=1,b=2,c=﹣2,∵b2﹣4ac=22﹣4×1×(﹣2)=12>0,∴x==﹣1,∴x1=﹣1+,x2=﹣1﹣;(2)这里a=1,b=﹣3,c=1.∵b2﹣4ac=(﹣3)2﹣4×1×1=5>0,y=,∴y1=,y2=;(3)移项,得x2﹣2x+3=0,这里a=1,b=﹣2,c=3.∵b2﹣4ac=(﹣2)2﹣4×1×3=﹣4<0.∴原方程没有实数根.点评:本题主要考查学生运用公式法正确解方程的能力,前提是先判断判别式的符号,再根据情况代入求根公式求解.总结:公式法的实质是配方法,只不过省去了配方的过程,而直接利用了配方的结论;运用公式法求解一元二次方程要注意两个前提:(1)先将一元二次方程化为一般形式,即确定a,b,c的值;(2)必须保证b2-4ac≥0.练4.(2014•锦江区模拟)解方程:x(x﹣2)=3x+1.分析:整理后求出b2﹣4ac的值,再代入公式求出即可.解答:解:x(x﹣2)=3x+1,整理得:x2﹣5x﹣1=0,b2﹣4ac=(﹣5)2﹣4×1×(﹣1)=29,x=,x1=,x2=.点评:本题考查了解一元二次方程的应用,能正确运用公式法解一元二次方程是解此题的关键,难度适中.练5.当x是何值时,3x2+4x﹣8的值和2x2﹣1的值相等?分析:根据3x2+4x﹣8的值和2x2﹣1的值相等,即可列出方程,然后利用公式法即可求解.解答:解:根据题意得:3x2+4x﹣8=2x2﹣1,即x2+4x﹣7=0,a=1,b=4,c=﹣7,△=b2﹣4ac=16+28=44>0,则x==﹣2.点评:本题考查了公式法解一元二次方程,注意公式运用的条件:判别式△≥0.五、课后小测一、选择题1.(2015•云南)下列一元二次方程中,没有实数根的是()A.4x2﹣5x+2=0 B.x2﹣6x+9=0 C.5x2﹣4x﹣1=0 D.3x2﹣4x+1=02.(2015•贵港)若关于x的一元二次方程(a﹣1)x2﹣2x+2=0有实数根,则整数a的最大值为()A.﹣1 B.0 C.1 D.23.(2015•烟台)等腰直角三角形边长分别为a,b,2,且a,b是关于x的一元二次方程x2﹣6x+n﹣1=0的两根,则n的值为()A.9 B.10 C.9或10 D.8或104.(2015•株洲)有两个一元二次方程M:ax2+bx+c=0;N:cx2+bx+a=0,其中a•c≠0,a≠c.下列四个结论中,错误的是()A.如果方程M有两个相等的实数根,那么方程N也有两个相等的实数根B.如果方程M的两根符号相同,那么方程N的两根符号也相同C.如果5是方程M的一个根,那么是方程N的一个根D.如果方程M和方程N有一个相同的根,那么这个根必是x=15.(2013•日照)已知一元二次方程x2﹣x﹣3=0的较小根为x1,则下面对x1的估计正确的是()A.﹣2<x1<﹣1 B.﹣3<x1<﹣2 C.2<x1<3 D.﹣1<x1<0二、填空题6.(2011秋•册亨县校级月考)用公式法解方程2x2﹣7x+1=0,其中b2﹣4ac= ,x1= ,x2= .三、解答题7.(2014秋•通山县期中)用公式法解方程:2x2﹣4x=5.8.(2014秋•金溪县校级月考)解方程:2x2﹣2x﹣5=0.9.(2013春•石景山区期末)用公式法解方程:x(x)=4.10.(2015•梅州)已知关于x的方程x2+2x+a﹣2=0.(1)若该方程有两个不相等的实数根,求实数a的取值范围;(2)当该方程的一个根为1时,求a的值及方程的另一根.11.(2015•咸宁)已知关于x的一元二次方程mx2﹣(m+2)x+2=0.(1)证明:不论m为何值时,方程总有实数根;(2)m为何整数时,方程有两个不相等的正整数根.12.(2015•昆山市一模)已知关于x的一元二次方程x2+(m+3)x+m+1=0.(1)求证:无论m取何值,原方程总有两个不相等的实数根;(2)若x1、x2是原方程的两根,且|x1﹣x2|=2,求m的值.13.(2015•南充一模)已知关于x的一元二次方程kx2﹣2(k﹣1)x+k﹣2=0(k≠0)(1)小明考查后说,它总有两个不相等的实数根.(2)小华补充说,其中一个根与k无关.请你说说其中的道理.第四讲因式分解法一、学习目标1.会用因式分解法解一元二次方程;2.会用换元法解一元二次方程;3.灵活选用简便的方法解一元二次方程.二、知识回顾1.分解因式的常用方法有哪些?(1)提取公因式法:am+bm+cm= m(a+b+c)(2)公式法:22()()-2(-)++=+222a ab b a b+=,a b a b a ba ab b a b-=+-,2222()(3)十字相乘法:2()()()+++=++x a b x ab x a x b三、新知讲解1.因式分解法把一个多项式分解成几个整式乘积的形式叫做分解因式.当一元二次方程的一边是0,而另一边易于分解成两个一次因式的乘积时,我们可以使两个一次式分别等于0,从而实现降次. 这种解一元二次方程的方法称为因式分解法.2.因式分解法解一元二次方程的步骤:①把方程的右边化为0;②用提公因式法、公式法(这里指因式分解中的公式法)或十字相乘法把方程左边化成两个一次因式乘积的形式;③令每一个因式分别等于0,得到两个一元一次方程;④解这两个一元一次方程,它们的解就是原方程的解.3.因式分解法的条件、理论依据因式分解法解一元二次方程的条件是:方程右边等于0,而左边易于分解;理论依据是:如果两个因式的积等于零,那么至少有一个因式等于零.四、典例探究1.用因式分解法解一元二次方程【例1】用因式分解法解方程:(1)2(2x -1)2=(1-2x );(2)4(y +2)2=(y -3)2. 【解析】(1)移项,提取公因式;(2)移项并利用平方差公式分解因式求解.解:(1)2(2x -1)2=(1-2x )移项,得2(2x -1)2-(1-2x )=0,即:2(2x -1)2+(2x -1)=0,因式分解,得(2x-1)[2(2x-1)+1]=0, 整理,得(2x-1)(4x-1)=0, 解得x 1=12,x 2=14;(2)4(y +2)2=(y -3)2移项,得4(y +2)2-(y -3)2=0因式分解,得[2(y+2)+(y-3)][2(y+2)-(y-3)]=0 整理,得(3y+1)(y+7)=0 解得y 1=-13,y 2=-7.总结:用因式分解法解一元二次方程,是利用了“当ab=0时,必有a=0或者b=0”的结论. 因式分解法解一元二次方程的步骤: (1)把方程的右边化为0;(2)用提公因式法、公式法(这里指因式分解中的公式法)或十字相乘法把方程左边化成两个一次因式乘积的形式;(3)令每一个因式分别等于0,得到两个一元一次方程; (4)解这两个一元一次方程,它们的解就是原方程的解.练1(2014秋•赵县期末)用因式分解法解方程:x 2﹣6x+9=(5﹣2x )2解:x 2﹣6x+9=(5﹣2x )2,(x ﹣3)2﹣(5﹣2x )2=0, 因式分解得:(x ﹣3+5﹣2x )(x ﹣3﹣5+2x )=0, 整理得:(2﹣x )(3x ﹣8)=0, 解得:x 1=2,x 2=.点评:此题主要考查了因式分解法解一元二次方程,正确分解因式是解题关键.2.用换元法解一元二次方程【例2】(2014•山西校级模拟)解方程(x ﹣1)2﹣5(x ﹣1)+4=0时,我们可以将x ﹣1看成一个整体,设x ﹣1=y ,则原方程可化为y 2﹣5y+4=0,解得y 1=1,y 2=4.当y=1时,即x ﹣1=1,解得x=2;当y=4时,即x ﹣1=4,解得x=5,所以原方程的解为x 1=2,x 2=5.利用这种方法求方程(2x+5)2﹣4(2x+5)+3=0的解.【解析】先设2x+5=y ,则方程即可变形为y 2﹣4y+3=0,解方程即可求得y (即2x+5)的值,进一步可求出x 的值.解:设x ﹣1=y ,则原方程可化为y 2﹣4y+3=0, 所以(y ﹣1)(y ﹣3)=0 解得y 1=1,y 2=3.当y=1时,即2x+5=1, 解得x=﹣2;当y=3时,即2x+5=3, 解得x=﹣1,所以原方程的解为:x1=﹣2,x2=﹣1.点评:本题运用换元法解一元二次方程.总结:换元法在解特殊一元二次方程的时候用的较多,运用了整体思想.在一元二次方程中,某个代数式几次出现,用一个字母来代替它可以简化问题时,我们可以考虑用换元法来解.解高次方程时,通过换元的方法达到降次的目的.练2(2015•呼和浩特)若实数a、b满足(4a+4b)(4a+4b﹣2)﹣8=0,则a+b=_______.【解析】设a+b=x,则原方程转化为关于x的一元二次方程,通过解该一元二次方程来求x(即a+b)的值.解:设a+b=x,则由原方程,得4x(4x﹣2)﹣8=0,整理,得(2x+1)(x﹣1)=0,解得x1=﹣,x2=1.则a+b 的值是﹣或1.故答案是:﹣或1.点评:本题主要考查了换元法,即把某个式子看作一个整体,用一个字母去代替它,实行等量替换.练3解方程:(x2-3)2-5(3-x2)+4=0.【解析】设x2-3=y,则原方程转化为关于y的一元二次方程,通过解该一元二次方程来求y(即x2-3)的值.解:设x2-3=y,则原方程可化为y2-5(-y)+4=0,即:y2+5y+4=0,因式分解得:(y+1)(y+4)=0,解得y1=-1,y2=-4.当y1=-1时,x2-3=-1,即x2=2,解得x=当y2=-4时,x2-3=-4,即x2-3=-1,方程无实数根.综上,x=3.灵活选用方法解一元二次方程【例3】(2014秋•漳县校级期中)选择适当方法解下列方程:(1)x2﹣5x+1=0;(2)3(x﹣2)2=x(x﹣2);(3)2x2﹣2x﹣5=0;(4)(y+2)2=(3y﹣1)2.【解析】(1)利用配方法得到(x ﹣)2=,然后根据直接开平方法求解;(2)先变形得到3(x﹣2)2﹣x(x﹣2)=0,然后利用因式分解法解方程;(3)先计算判别式的值,然后利用求根公式法求解;(4)先变形得到(y+2)2﹣(3y﹣1)2=0,然后利用因式分解法解方程.解:(1)x2﹣5x=﹣1,x2﹣5x+()2=﹣1+()2,(x﹣)2=,x﹣=±,所以x1=,x2=;(2)3(x﹣2)2﹣x(x﹣2)=0,(x﹣2)(3x﹣6﹣x)=0,所以x1=2,x2=3;(3)△=(﹣2)2﹣4×2×(﹣5)=48x===,所以x1=,x2=;(4)(y+2)2﹣(3y﹣1)2=0,(y+2+3y﹣1)(y+2﹣3y+1)=0,y+2+3y﹣1=0或y+2﹣3y+1=0,所以y1=﹣,y2=.点评:本题考查了一元二次方程的四种常见解法.总结:解一元二次方程常用的方法有直接开平方法、配方法、公式法和因式分解法,根据一元二次方程的特征,灵活选用解方程的方法,可以起到事半功倍的作用.(1)一般地,当一元二次方程一次项系数为0时,即形如ax2+c=0形式的一元二次方程,应选用直接开平方法.(2)若常数项为0,即形如ax2+bx=0的形式,应选用因式分解法.(3)若一次项系数和常数项都不为0,即形如ax2+bx+c=0的形式,看左边的整式是否能够因式分解,如果能,则宜选用因式分解法;不然选用公式法;不过当二次项系数是1,且一次项系数是偶数时,用配方法也较简单.(4)公式法虽然是万能的,对任何一元二次方程都适用,但不一定是最简单的. 因此在解方程时,我们首先考虑能否应用直接开平方法、因式分解法等简单方法,若不行,则再考虑公式法(适当也可考虑配方法).练4(2015春•无锡校级期中)选择合适的方法解下列方程.(1)x2﹣5x﹣6=0;(2)3x2﹣4x﹣1=0;(3)x(x﹣1)=3﹣3x;【解析】(1)根据因式分解法,可得方程的解;(2)根据公式法,可得方程的解;(3)根据因式分解法,可得方程的解;(4)根据公式法,可得方程的解.解:(1)因式分解,得 (x ﹣1)(x ﹣6)=0,解得x 1=6,x 2=﹣1; (2)a=3,b=﹣4,c=﹣1,x 1=,x 2=;(3)方程化简得x 2+2x ﹣3=0, 因式分解,得(x+3)(x ﹣1)=0, 解得x 1=1,x 2=﹣3;(4)a=1,b=﹣2,c=1,x 1=1+,x 2=﹣1+.点评:本题考查了解一元二次方程,根据方程的特点选择适当的方法是解题关键.五、课后小测 一、选择题1.方程(x-16)(x+8)=0的根是( )A. x 1=-16,x 2=8B. x 1=16,x 2=-8C. x 1=16,x 2=8D. x 1=-16,x 2=-8 2. 方程5x(x+3)=3(x+3)的解为( ) A.123,35x x == B.35x = C.123,35x x =-=- D.123,35x x ==-3.(2015•滕州市校级模拟)方程x 2﹣2x=3可以化简为( )A .(x ﹣3)(x+1)=0B .(x+3)(x ﹣1)=0C .(x ﹣1)2=2D .(x ﹣1)2+4=0 二、填空题4.(2015•丽水)解一元二次方程x 2+2x ﹣3=0时,可转化为解两个一元一次方程,请写出其中的一个一元一次方程 . 5.(2014•杭州模拟)方程x (x+1)=2(x+1)的解是 .6.(2013秋•苏州期末)已知(x 2+y 2+1)(x 2+y 2+2)=6,则x 2+y 2的值为 . 三、解答题 7.(2014秋•静宁县期末)解下列方程:(1)x 2﹣2x+1=0(2)x 2﹣2x ﹣2=0(3)(x ﹣3)2+2(x ﹣3)=0. 8.(2014秋•沧浪区校级期末)解下列方程:(1)x 2﹣4x ﹣3=0(2)(x ﹣2)2=3(x ﹣2) (3)2(﹣x )2﹣(x ﹣)﹣1=0.9.(2014秋•宛城区校级期中)为了解方程(x 2﹣1)2﹣5(x 2﹣1)+4=0,我们可以将x 2﹣1看作一个整体,然后设x 2﹣1=y ,则(x 2﹣1)2=y 2,那么原方程可化为y 2﹣5y+4=0,解得y 1=1,y 2=4.当y=1时,x 2﹣1=1,x 2=2,x=±.。

一元二次方程求根公式及讲解

一元二次方程求根公式及讲解

主讲:黄冈中学高级教师一、一周知识概述1、一元二次方程的求根公式将一元二次方程ax2+bx+c=0(a≠0)进行配方,当b2-4ac≥0时的根为.该式称为一元二次方程的求根公式,用求根公式解一元二次方程的方法称为求根公式法,简称公式法.说明:(1)一元二次方程的公式的推导过程,就是用配方法解一般形式的一元二次方程ax2+bx+c=0(a≠0);(2)由求根公式可知,一元二次方程的根是由系数a、b、c的值决定的;(3)应用求根公式可解任何一个有解的一元二次方程,但应用时必须先将其化为一般形式.2、一元二次方程的根的判别式(1)当b2-4ac>0时,方程有两个不相等的实数根;(2)当b2-4ac=0时,方程有两个相等的实数根;(3)当b2-4ac<0时,方程没有实数根.二、重难点知识总结1、对于一元二次方程的各种解法是重点,难点是对各种方法的选择,突破这一难点的关键是在对四种方法都会使用的基础上,熟悉各种方法的优缺点。

(1) “开平方法”一般解形如“”类型的题目,如果用“公式法”就显得多余的了。

(2)“因式分解法”是一种常用的方法,一般是首先考虑的方法。

(3) “配方法”是一种非常重要的方法,一般不使用,但若能恰当地使用,往往能起到简化作用,思考于“因式分解法”之后,“公式法”之前。

如方程;用因式分解,则6391这个数太大,不易分解;用公式法,也太繁;若配方,则方程化为,就易解,若一次项系数中有偶因数,一般也应考虑运用。

(4)“公式法”是一般方法,只要明确了二次项系数、一次项系数及常数项,若方程有实根,就一定可以用求根公式求出根,但因为要代入(≥0)求值,所以对某些特殊方程,解法又显得复杂了。

2、在运用b2-4ac的符号判断方程的根的情况时,应注意以下三点:(1)b2-4ac是一元二次方程的判别式,即只有确认方程为一元二次方程时,才能确定a、b、c,求出b2-4ac;(2)在运用上述结论时,必须先将方程化为一般形式,以便确认a、b、c;(3)根的判别式是指b2-4ac,而不是三、典型例题讲解例1、解下列方程:(1);(2);(3).分析:用求根公式法解一元二次方程的关键是找出a、b、c的值,再代入公式计算,解:(1)因为a=1,,c=10所以所以(2)原方程可化为因为a=1,,c=2所以所以.(3)原方程可化为因为a=1,,c=-1所以所以;所以.总结:(1)用求根公式法解一元二次方程首先将方程化为一般形式;如果二次项系数为负数,通常将其化为正数;如果方程的系数含有分母,通常先将其化为整数,求出的根要化为最简形式;(2)用求根公式法解方程按步骤进行.例2、用适当方法解下列方程:① ②③ ④⑤ ⑥⑦分析:要合理地选用适当的方法解一元二次方程,就必须熟悉各种方法的优缺点,处理好特殊方法和一般方法的关系。

一元二次方程的讲解

一元二次方程的讲解

一元二次方程的讲解一元二次方程是数学中常见的一类方程,形式为ax^2 + bx + c = 0,其中a、b、c为已知数,且a ≠ 0。

一元二次方程的求解是解析几何、物理学等学科中的重要基础知识之一。

本文将从一元二次方程的定义、求解方法和应用等方面进行讲解。

一、一元二次方程的定义一元二次方程是指只含有一个未知数的二次方程。

它的一般形式为ax^2 + bx + c = 0,其中a、b、c为已知数,且a ≠ 0。

其中,a 称为二次项系数,b称为一次项系数,c称为常数项。

二、一元二次方程的求解方法1. 因式分解法:当一元二次方程可以进行因式分解时,可以通过将方程两边的式子分解成乘积的形式,令每个因式等于0,再求解得到方程的根。

2. 完全平方公式法:对于一元二次方程ax^2 + bx + c = 0,如果a=1,可以使用完全平方公式 x = (-b ± √(b^2 - 4ac))/(2a)来求解方程的根。

3. 直接开平方法:对于一元二次方程ax^2 + bx + c = 0,如果方程的解可以通过开方得到,可以直接进行开平方运算求解。

4. 公式法:一元二次方程的解也可以通过求解一元二次方程的根公式 x = (-b ± √(b^2 - 4ac))/(2a)来得到。

三、一元二次方程的应用一元二次方程在实际问题中具有广泛的应用,下面介绍几个常见的应用场景。

1. 抛物线的建模:一元二次方程可以用来建立抛物线的数学模型。

抛物线的形状由方程中的二次项决定,常数项则决定了抛物线的平移。

2. 物体运动的轨迹:一元二次方程可以用来描述物体在抛体运动中的轨迹。

通过解一元二次方程,可以求得物体的落地时间、最高点高度等相关信息。

3. 经济学问题的分析:一元二次方程可以用来分析经济学中的一些问题,如成本、收益、利润等的关系。

4. 工程问题的求解:一元二次方程在工程问题的求解中也有重要应用,如电路中的电压、电流关系的建立等。

专题08一元二次方程(含解析)讲解

专题08一元二次方程(含解析)讲解

专题08 一元二次方程一、解读考点二、考点归纳归纳 1:一元二次的有关概念基础知识归纳:1. 一元二次方程:只含有一个未知数(一元),并且未知数的最高次数是2(二次)的整式方程,叫做一元二次方程.2. 一般形式:ax2+bx+c=0(其中a、b、c为常数,a≠0),其中ax2、bx、c分别叫做二次项、一次项和常数项,a、b分别称为二次项系数和一次项系数.3.一元二次方程的解:使方程左右两边相等的未知数的值就是这个一元二次方程的解,一元二次方程的解也叫做一元二次方程的根.基本方法归纳:一元二次方程必须具备三个条件:(1)必须是整式方程;(2)必须只含有1个未知数;(3)所含未知数的最高次数是2.注意问题归纳:在一元二次方程的一般形式中要注意a ≠0.因为当a =0时,不含有二次项,即不是一元二次方程.【例1】若x =﹣2是关于x 的一元二次方程225x ax a 02-+=的一个根,则a 的值为( )A . 1或4B . ﹣1或﹣4C . ﹣1或4D . 1或﹣4【答案】B .考点:一元二次方程的解和解一元二次方程. 归纳 2:一元一次方程的解法 基础知识归纳: 一元二次方程的解法1、直接开平方法:利用平方根的定义直接开平方求一元二次方程的解的方法叫做直接开平方法。

直接开平方法适用于解形如b a x =+2)(的一元二次方程。

根据平方根的定义可知,a x +是b 的平方根,当0≥b 时,b a x ±=+,b a x ±-=,当b <0时,方程没有实数根.2、配方法:配方法是一种重要的数学方法,它不仅在解一元二次方程上有所应用,而且在数学的其他领域也有着广泛的应用。

配方法的理论根据是完全平方公式222)(2b a b ab a +=+±,把公式中的a 看做未知数x ,并用x 代替,则有222)(2b x b bx x ±=+±.3、公式法:公式法是用求根公式解一元二次方程的解的方法,它是解一元二次方程的一般方法. 一元二次方程)0(02≠=++a c bx ax 的求根公式:)04(2422≥--±-=ac b aac b b x4、因式分解法:因式分解法就是利用因式分解的手段,求出方程的解的方法,这种方法简单易行,是解一元二次方程最常用的方法.基本方法归纳:(1)若一元二次方程缺少常数项,且方程的右边为0,可考虑用因式分解法求解;(2)若一元二次方程缺少一次项,可考虑用因式分解法或直接开平方法求解;(3)若一元二次方程的二次项系数为1,且一次项的系数是偶数时或常数项非常大时,可考虑用配方法求解; (4)若用以上三种方法都不容易求解时,可考虑用公式法求解.注意问题归纳:用公式法求解时必须化为一般形式;用配方法求解时必须两边同时加上一次项的系数一半的平方.【例2】用配方法解关于x的一元二次方程ax2+bx+c=0.x x(其中b2﹣4ac≥0).【答案】12【解析】试题分析:应用配方法解一元二次方程,要把左边配成完全平方式,右边化为常数.考点:解一元二次方程-配方法.归纳 3:一元二次方程的根的判别式基础知识归纳:一元二次方程的根的判别式对于一元二次方程ax2+bx+c=0(a≠0):(1)b2-4ac>0⇔方程有两个不相等的实数根;(2)b2-4ac=0⇔方程有两个的实数根;(3)b2-4ac<0⇔方程没有实数根.基本方法归纳:若只是判断方程解得情况则根据一元二次方程的根的判别式判断即可.注意问题归纳:一元二次方程的根的判别式应用时必须满足a≠0;一元二次方程有解分两种情况:1、有两个相等的实数根;2、有两个不相等的实数根.【例3】下列方程没有实数根的是()A.x2+4x=10 B.3x2+8x-3=0C.x2-2x+3=0 D.(x-2)(x-3)=12【答案】C.【解析】试题分析:A、方程变形为:x2+4x-10=0,△=42-4×1×(-10)=56>0,所以方程有两个不相等的实数根,故A选项不符合题意;B、△=82-4×3×(-3)=100>0,所以方程有两个不相等的实数根,故B选项不符合题意;C、△=(-2)2-4×1×3=-8<0,所以方程没有实数根,故C选项符合题意;D、方程变形为:x2-5x-6=0,△=52-4×1×(-6)=49>0,所以方程有两个不相等的实数根,故D选项不符合题意.故选C.考点:根的判别式.归纳 4:根与系数的关系基础知识归纳:一元二次方程的根与系数的关系若一元二次方程ax2+bx+c=0(a≠0)的两根分别为x1,x2,则有x1+x2=ba,x1x2=ca.基本方法归纳:一元二次方程问题中,出现方程的解得和与积时常运用根与系数的关系.注意问题归纳:运用根与系数的关系时需满足:1、方程有解;2、a≠0.【例4】若α、β是一元二次方程x2+2x-6=0的两根,则α2+β2=()A. -8B. 32C. 16D. 40【答案】C.考点:根与系数的关系.归纳 5:一元二次方程的应用基础知识归纳:1、一元二次方程的应用1. 列一元二次方程解应用题的步骤和列一元一次方程(组)解应用题的步骤相同,即审、设、列、解、验答五步.2. 列一元二次方程解应用题中,经济类和面积类问题是常考类型,解决这些问题应掌握以下内容:(1)增长率等量关系:A.增长率=×100%;B.设a为原来量,m为平均增长率,n为增长次数,b为增长后的量,则a(1+m)n=b;当m为平均下降率,n 为下降次数,b为下降后的量时,则有a(1-m)n=b.(2)利润等量关系:A.利润=售价-成本;B.利润率=利润成本×100%.(3)面积问题3、解应用题的书写格式:设→根据题意→解这个方程→答.基本方法归纳:解题时先理解题意找到等量关系列出方程再解方程最后检验即可.注意问题归纳:找对等量关系最后一定要检验.【例5】如图,某小区规划在一个长30m、宽20m的长方形ABCD上修建三条同样宽的通道,使其中两条与AB平行,另一条与AD平行,其余部分种花草。

一元二次方程 的要点

一元二次方程 的要点

一元二次方程 一元二次方程要点要点一:1.一元二次方程的定义及一般形式定义:只含有一个未知数,并且未知数的最高次数是2的整式方程叫做一元二次方程. 一元二次方程的一般式是)0(02≠=++a c bx ax ,其中2ax 叫做 ,a 叫做二次项系数,bx 叫做一次项, 叫做一次项系数,c 叫做常数项.2.一元二次方程的解的定义能使一元二次方程左右两边相等的 叫做一元二次方程的解(或根).例题1 下列方程中,属于关于x 的一元二次方程的是 ( ) A.()()12122+=-x x B.2XC.02=++c bx ax D.()()0712=+--x x x例题2 一元二次方程x x 642=-的一般形式是 ,二次项系数是 , 一次项系数是 ,常数项是 . 要点二:一元二次方程的四种解法 1.直接开平方法利用平方根的定义直接开平方求一元二次方程的解的方法叫做直接平方法.把方程变为形如())0(2≥=+b b a x 的方程可用直接开平方法求解,两边直接开平方得b a x b a x -=+=+或,.,21b a x b a x --=+-=∴例3 解方程:()212=-x2.因式分解法如果一元二次方程经过因式分解能化成0=∙b a 的形式,且a 与b 都是含未知数的一次式,那么它就可以化成两个一元一次方程0=a 或0=b ,根据这种思想解一元二次方程的方法,就是因式分解法.例4 解方程:(1)0862=+-x x (2)()()03432=-+-x x x3.配方法通过配方把一元二次方程)0(02≠=++a c bx ax 变形为=⎪⎭⎫ ⎝⎛+22a b x 的形式,再利用直接开方法解之,这就是配方法.用配方法解一元二次方程的一般步骤:(1)化二次项系数为1:可在方程两边都除以二次项系数;(2)移项:使方程左边是二次项和一次项,右边为常数项(移项时注意变号);(3)配方:方程的两边都加上一次项系数一半的平方,使左边配成一个完全平方式,把方程化为()()02≥=+n n m x 的形式;(4)如果方程右边的幂数为非负数,用直接开平方法解变形后的方程. 例5解方程:(1)0522=-+x x (2)03832=-+x x(3)()()0453422=----x x (4)x x 7322=+4.公式法公式法就是利用求根公式求出一元二次方程解的方法,它是解一元二次方程的一般方法,具有通用性.应用配方法导出一元二次方程 )0(02≠=++a c bx ax 的求根公式 ()042≥-ac b 用公式法解一元二次方程的一般步骤:(1)化方程为一般形式,即 )0(02≠=++a c bx ax ; (2)确定a 、b 、c 的值(注意符号),并计算ac b 42-的值;(3)当 042≥-ac b 时,将a 、b 、c 及ac b 42-的值代入求根公式,得出方程的根aac b b x 242-±-=;当ac b 42-<0时,原方程无实数解. 例5 解方程:(1) (2)()62342=+-x x(3)0132=++x x (4)01432=-+x x要点三 一元二次方程根的判别式及应用1.一元二次方程根的判别式的概念及定理内容概念:我们知道,一元二次方程)0(02≠=++a c bx ax 是否有实数根,完全取决于ac b 42-与零的关系,因此,我们把ac b 42-叫一元二次方程的根的判别式.用“△”表示,即 注意:(1)△=ac b 42-只适用于一元二次方程.只有确认是一元二次方程时,才确定a 、b 、c ,求出△.(2)使用时,要先将一元二次方程化为一般形式,才能确定a 、b 、c ,求出△. (3)当△0≥时,方程有两个实数根. (4)当△>0时,方程有两个不等实数根 . (5)当△=0时,方程有两个相等实数根. (6)当△<0时,方程无实数根.2.一元二次方程根的判别式主要有一下应用:①不解一元二次方程,判断根的情况;②根据方程根的情况,确定方程中字母系数的取值范围;③证明字母系数方程有实数根或无实数根.例6 下列关于x 的一元二次方程中,有两个不相等的实数根的方程是 ( ) A.012=+x B.012=-+x xC.0322=++x xD.01442=+-x x例7 关于x 的一元二次方程()012132=-+--m x m mx ,其根的判别式的值为1,求m 的值及该方程的根.例8 已知关于x 的一元二次方程02=--m x x 有两个不相等的实数根,求实数m 的取值范围.例9 关于x 的方程()01452=---x x a 有实数根,则a 满足 ( )A.1≥aB.51≠>a a 且 B.C.51≠≥a a 且D.5≠a例10 若关于x 的一元二次方程0122=--x kx 有两个不相等的实数根,则k 的取值范围是( )A.1->kB.01≠->k k 且C.1<kD.01≠<k k 且 要点四 一元二次方程根与系数的关系及应用如果1x 、2x 是一元二次方程)0(02≠=++a c bx ax 的两根,那么1x 、2x 与系数a 、b 、c 有何关系?答:如果方程02=++c bx ax 的两个根是1x 、2x ,那么a b x x -=+21,ac x x =∙21. 推论:以1x 、2x 两个数为根的一元二次方程(二次项系数1)是()021212=∙++-x x x x x x . 例10 已知1x 、2x 是关于x 的一元二次方程()03222=++-m x m x 的两个不相等的实数根,且满足221m x x =+,则m 的值是 ( ) A.-1 B.3C. 3或-1D.-3或1例11 已知方程062=-+kx x 的一根是2,则另一根为 ,k= 例12 已知关于x 的一元二次方程0162=++-k x x 的两个实数根是1x 、2x ,且,则k 的值是 ( ) A.8 B.-7 C.6 D.5例13 关于x 的一元二次方程()0552=-+-m mx x 的两个正实数根分别为1x 、2x ,且7221=+x x ,则m 的值是 ( ) A.2 B.6 C.2或6 D.7例14 设1x 、2x 是一元二次方程0342=-+x x 的两个根,()23522221=+-+a x x x ,则a =例15 已知关于x 的一元二次方程()01222=+-+m x m x 有两个实数根1x 和2x(1)求实数m 的取值范围; (2)当02221=-x x 时,求m 的值.能力提高例题方法一 根据方程根的基本意义来求参数的值例1 已知m 、n 是方程0122=--x x 的两根,且()()876314722=--+-n n a m m ,则a 的值等于 ( ) A.-5 B.5 C.-9 D.9例2 若()0≠n n 是关于x 的方程022=++n mx x 的根,则n m +的值为 ( )A.1B.2C.-1D.-2 方法二 根与系数的关系结合“△判别法”求解字母参数的取值例 3 关于x 的方程()()012132=++--a x a ax 有两个不相等的实根1x 、2x ,且有a x x x x -=+⋅-12211,则a 的值是 ( ) A.1 B.-1 C.1或-1 D.2方法三 分类讨论思想例4 已知实数m 、n 满足0272=+-m m ,0272=+-n n ,则=+nmm n 变式练习已知实数a 、b 满足a a 222-=,b b 222-=,求baa b +的值一元二次方程应用题例题讲解:1.某水果批发商场经销一种高档水果,如果每千克盈利10元,每天可售出500千克. 经市场调查发现,在进货价不变的情况下,若每千克涨价1元,日销售量将减少20千克. 现该商场要保证每天盈利6000元,同时又要使顾客得到实惠,那么每千克应涨价多少元? 设每千克应涨价x 元,则:6000)20500)(10(=-+x x2.某商场销售某种彩电,每台进价为2500元,市场调配表明:当销售价为2900元时,平均每天能售出8台;而当售价每降50元时,平均每天就能多售出4台,商场要想使这种彩电的销售利润平均每天达到5000元,每台的售价应定为多少元?5000450290082500=⋅-+⋅-)()(xx 3.某商场销售一批衬衫,当每件盈利40元时,平均每天可售出20件,为扩大盈利,商场决定采取降价促销,经调查发现,每降价1元,就能多卖出2件。

一元二次方程知识要点讲解学习

一元二次方程知识要点讲解学习

元二次方程知识要占八、、一元二次方程1. 一元二次方程的一般形式a 丰0时,aX+bx+c=0H 一元二次方程的一般形式,研究一元二 次方程的有关问题时,多数习题要先化为一般形式,目的是确定一般形式中白@、b 、 c ;其中a 、b,、c 可能是具体数,也可能是含待定字母或特定式子的代数式2. 一元二次方程的解法一元二次方程的四种解法要求灵活运用,其中直接开平方法虽然 简单,但是适用范围较小;公式法虽然适用范围大,但计算较繁,易发生计算错误;因式 分解法适用范围较大,且计算简便,是首选方法;配方法使用较少3. 一元二次方程根的判别式 当aX+bx+c=0 (a 0)时,在b~4ac 叫一元二次方程根的判别式 请注意以下等价命题:△为 <=> 有两个不等的实根; 在0 <=>有两个相等的实根; △ <0 <=>无实根;△始 <=> 有两个实根(等或不等).4. 一元二次方程的根系关系:当aX+bx+c=0 (芋0)时,如△始,有下歹U 公式: 一、b b 2 3 4 5 4acb(1) x i,2------------- ------------- ; (2) x i X 2-,2a a米5 .当aX+bx+c=0 (芋0)时,有以下等价命题:(以下等价关系要求会用公式x i x 2- , x i x 2a^=1且^始a a-=0且-丈0aa-=0且-=0aa c =0c=0;a(7)两根异号,正根绝对值大丁负根绝对值c <0且->02 两根互为倒数3 只有一个零根4 有两个零根 5至少有一个零根(1)两根互为相反数 -=0且^始 b = 0且^莞); a(6)两根异号 —< 0 a 、c 异号; acx 〔x 2-;在b-4ac 分析,不要求背记) ac 且^莞); c = 0 且 b^0; c = 0 且 b=0a 、c 异号且a 、b 异号; a 、c 异号且a 、b 同号;(9) 有两个正根 (10) 有两个负根a a(8)两根异号,负根绝对值大丁正根绝对值c<0且-<0a ac>0, - >0且^免a、c同号,a、b异号且△始;a a->0, b<0且^始a、c同号,a、b同号且△弟.a a6.求根法因式分解二次三项式公式:注意:当^<0时,二次三项式在实数范围内不能分解.aX+bx+c=a(x-X(x-x 分或ax2+bx+c=a x —_———4^ x2a7.求一元二次方程的公式:x2- (x i+x) x + x i x2= 0. 注意:所求出方程的系数应化为整数8 .平均增长率问题——应用题的类型题之一(设增长率为x):(1)第一年为a ,第二年为a(1+x),第三年为a(1+xj.(2)常利用以下相等关系列方程:第三年=第三年或第一年哪二年哪三年=总和.9.分式方程的解法:,一一两边同乘晶简⑴去分母法公分母验增根代入最简公分母(或原方程的每个分母)(2)换元法痿匕设兀'验增根代入原方程每个分母,值换兀.10.二元二次方程组的解法:(2)分解降次法方程组中含有能分解为( )( )0的方程;⑶注意:(1 )( 2)0应分组为(1) 0 (2) 0 (1) 0⑵0.(3 )( 4 ) 0 (3) 0 (4 ) 0 (4) 0 (3) 0淤11.几个常见转化:2 2 2 2 2 2 1 , 1、2 (1) x1 x2 (x1 x2) 2x1x2 ; (x1 x2) (x1 x2) 4x1x2;x — (x —) 2;x2xX2 x(x1 x2)21.分类为x〔x2 2和x〔x2 2(2) x1 x2 2 、(x〔x2)2 4x1x2 (x〔x2),方程组中含有一个二元一次方(1)代入消元法程;b b2 4ac2^ 0.B 90 时,由公式 sin 5 6 A cos 2 A 1, cosA sin B:x 1 0, x 2 0.(5) x 1,x 2若为几何图形中线段长 时,可利用图形中的相等关 系(例如几何定理,相似形,面积(6)如题目中给出特殊的直 角三角形、三角函数、比例式、等积式等条件,可把它们转化为某些线段的比,并且 引入“辅助未知元k”.(7)方程个数等于未知数个 数时,一般可求出未知数的值;方程个数比未知数个数 少一个时, 般求不出未知数的值,但总可求出任何两个未知数的关系.解三角形1.三角函数的定义:在RMAB 此,如ZC=90 ,那么正余互化公式加Z AV B=90那么:tanA=cotB ; cotA=tanB.sin 2A+co 2A =1; tanA - ctA =1. 淤 tanA=sin A 淤 cotA=cos A4. 函数的增减性:在锐角的条件下,正弦,正切函数随角的增大,函数值增大;余弦,余切函数随角的增大,函数值反而减小5. 特殊角的三角函数值:如图:这是两个特殊的直角三角形,通过设k,它可以推出特殊角的直角三角函数5 余角三角函数关系------sinA=cosBcosA=sinB ;6 同角三角函数关系:. A 对sinA=—;cosA= 对斜 c 斜 A对a邻tanA=— —: cotA=邻 b '对(3)x i4 (或农 3 X 2(1)(2) 分类为和土 1x 2 3 x 2 3 ;两边平方一般不用,因为增加次数.(4)如 x 1 sin A, x 2可推出X 12 X 2sin B1.注意隐含条件值,要熟练记忆它们.0.7.解直角三角形:对丁直角三角形中的五个元素,可以“知二可求三”,但“知二”中至少应该 有一个是边.米8.关丁直角三角形的两个公式:Rt^AB 此: 若Z C=90r:内切圆半径,R:外接圆半径, m :斜边上中线. c东 南偏东7012.解斜三角形:已知SASSSSASAAAS 条件的任意三角形都可以经过“斜化直”求出其 余的边和角.Z A 0 0 30°45060° 90° sinA 0 1 2~2笠~21 cosA 1 史"2-21 2 0 tanA1 J 3不存 在 cotA 不存在V31笠3A 米6.函数值的甲噩90° 时K 正弦函数值走我范围:在0:2K30^v03K * B余弦函愁值范围:12K正切函数值超围: 数值范旅无穷大无穷大;余切函a b c c 〜r ----------- ; R — m9.坡度:i = 1:m = h/l = tana ;坡角:a10.方位角:北偏西3011.仰角与俯角:铅垂线仰角水平线h次13.解符合“SSA条件的三角形:若三角形存在且符合SSA条件,则可分三种情况:(1) ZQ90° ,图形唯一可解;(2) ZAV90° , △的对边大丁或等丁它的已知邻边,图形唯一可解;⑶ZA<90° ,△的对边小丁它的已知邻边,图形分两类可解14.解三角形的基本思路:(1)“斜化直,一般化特殊------ 加辅助线的依据;(2)合理设“辅助T T ,并利用进一步转化是分析三角形问题的常用方法-----转化思想;(3)三角函数的定义,几何定理,公式,相似形等都存在着大量的相等关系,利用其列方程(或方程组)是解决数学问题的常用方法------方程思想.函数及其图象一函数基本概念1.函数定义:设在某个变化过程中,有两个变量x,、y,如对x的每一个值,y都有唯一的值与它对应,那么就说y是x的函数,x是自变量.淤2.相同函数三个条件:(1)自变量范围相同;⑵函数值范围相同;(3)相同的自变量值所对应的函数值也相同淤3.函数的确定:对丁y=以(k丰0),如x是自变量,这个函数是二次函数;如x2是自变量,这个函数是一次函数中的正比例函数4.平面直角坐标系:(1)平面上点的坐标是一对有序实数,表示为M (x,y) , x叫横坐标,y日迎咔邨-⑵ 一点,两轴,(四半轴),四象限,象限中点的坐标符号规律如右图:(3) x轴上的点纵坐标为0, y轴上的点横坐标为0;即“x轴上的点纵为0, y轴上的点横为0” ;反之也成立;(4)象限角平■分线上点M(x,y)的坐标特征x=y <=> M在一三象限角平■分线上;x=-y <=> M 在二四象限角平■分线上(5)对称两点M(xy1), N(x 2,y2)的坐标特征:关丁y轴对称的两点<=> 横相反,纵相同;y关丁x轴对称的两点<=> 纵相反,横相同;11P关丁原点对称的两点 <=> 横、纵都相反十F—^x5.坐标系中常用的距离几个公式——“点求距”Q(1)如图,轴上两点M N之间的距离:MN=|冰2|=x为x小,PQ=|y-y2|=y大-y小.(2)如图,象限上的点M (x,y):M(x,y)到y 轴距离:dy=|x| ; 到x 轴距离:d x =|y| ;至顺点的距离:r ・.,x 2—y 2 .y(3)如图,轴上的点M (0,y)、N (x,0)到原点的距离:"M(0,yMO=|y| ; NO=|x|.'^^ 一淤4)如图,平面上任意两点M 3,y 2)、N (x^y 2)之间的距离:M(x,y) y^4^ xd .. (x 〔 x 2)2 (y i v 扩.淤6.几个直线方程:y 轴 <=> 直线x=0 ; x 轴 <=> 直线y=0 ;与y 轴平行,距离为la I 的直线 <=> 直线x=a ; 与x 轴平行,距离为lb I 的直线 <=> 直线y=b. 7. 函数的图象:(1)把自变量x 的一个值作为点的横坐标,把与它对应的函数而作为点的纵坐标,组成 一对有序实数对,在平■面坐标系中找出点的位置,这样取得的所有的点组成的图形叫 函数的图象;⑵ 图象上的点都适合函数解析式,适合函数解析式的点都在函数图象上;由此可得“图象 上的点就能代入'-------重要代入!⑶ 坐标平■面上,横轴叫自变量轴,纵轴叫函数轴;利用已知的图象,可由自变量值查出 函数值,也可由函数值查出自变量值;可由自变量取值范围查出对应函数值取值范 围,也可由函数值取值范围查出对应自变量取值范围;⑷ 函数的图象由左至右如果是上坡,那勾随x 增大而增大(叫递增函数);函数的图 象由左至右如果是下坡,那么y 随x 增大而减小(叫递减函数). 8. 自变量取值范围与函数取值范围:N(x,y)y一次函数1. 一次函数的一般形式:y=kx+b . (k^0)2. 关丁一次函数的几个概念:y=kx+b (炉0)的图象是一条直线,所以也叫直By=kx+k>B 象必过y 轴上的点(0,b )和x 轴上的点(-b/k,0 ); 注意:如图,这两个点也是画直线图象时应取的两个点b 叫直线y=kx+b (炉0)在y 轴上 的截距,b 的本质是直线与y 轴交点的纵坐标,知道截距即知道解析式中b 的值 3.y=kx+b (E0)中,k, b 符号与图象位置的关系:%图象过一二 三象限,图 象上坡.4.两直线平■行:两直线平■行<=> k i =k?※两直线垂直<=> kk 2=-1.5. 直线的平■移:若e0,n>0,那么一次函数y=kx+tffl 象向上平■移"单位长度得 y=kx+b+m 向下平■移n 个单位长度得y=kx+b-n (直线平■移时,k 值不变). 6. 函数习题的四个基本功:⑴ 式求点:已知某直线的具体解析式,设y=0,可求出直线与x 轴的交点坐标(x 0,0);设x=Q 可求出直线与y 轴的交点坐标(0,y 0);已知两条直线的具体解析式,可通过列二 元一次方程组求出两直线的交点坐机x 0,y 0);交点坐标的本质是一个方程组的公共解; ⑵点求式:已知一次函数图象上的两个点,可设这个函数>=kx+b 然后代入这两个点的坐标,得到关丁 k 、b 的两个方程,通过解方程组求出k 、b,从而求出解析式------ 待定系数法;x 0 -b/k, y b 0 (x,y)(0,b)(-b/k, 0)k>0, b>0即取点 对角0图象过一二 四象限,图 象下坡.⑶ 距求点:已知点M(x,y 0)至U x 轴,y 轴的距离和所在象限,可求出点M 的坐标;已知坐标 轴上的点P 到原点的距离和所在半轴,可求出点P 的坐标;⑷ 点求距:函数题经常和几何相结合,利用点的坐标与它所在的象限或半轴特征可求有关 线段的长,从而使得函数问题几何化正比例函数1.正比例函数的一般形式:y=kx (k^0); 届丁一次函数的特殊情况;(即b=0的一次函 数)它的图象是一条过原点的直线;也叫直W=kx.2.画正比例函数的图象:正比例函数y=kx (k^0)的图象必过(0,0)点和(1, k)点,注意:如图,这两个点也是画正比例 函数图象时应取的两个点,即列表如右:3.y=kx (k^0)中,k 的符号与图象位置的关系:k >0y "%/图象过一三7 x =>象限,图象 / 上坡.4.求正比例函数解析式:已知正比例函数图象上的一点,可设这个正比例函数>=kx,JE 已 知点的坐标代入后,可求k,从而求出具体的函数解析式------待定系数法二次函数1. 二次函数的一般形式:y=a^+bx+c.(萨0)2. 关丁二次函数的几个概念:二次函数的图象是抛物线,所以也叫抛物^=a 〈+bx+c 抛物 线关丁对称轴对称且以对称轴为界,一半图象上坡,另一半图象下坡;其*叫二次函数 在y 轴上的截距,即二次函数图象必过(0, c)点.3. y=ax 2 (a 丰0)的特性:当y=aj(+bx+c (萨0)中的b=0且c=0时二次函数为y=a£ (a 丰0);这个二次函数是一个特殊的二次函数,有下列特性:2(1)图象美丁y 轴对称;⑵顶点(0, 0) ; (3) y=ax (a 丰0)可以经过补。

初三数学一元二次方程知识点讲解

初三数学一元二次方程知识点讲解

初三数学一元二次方程知识点解说学好数学的要点就在于要合时适合地进行总结归类,接下来小编就为大家整理了这篇初三数学一元二次方程知识点解说,希望可以对大家有所帮助。

1.一元二次方程的一般形式 : a0 时,ax2+bx+c=0 叫一元二次方程的一般形式,研究一元二次方程的有关问题时,多数习题要先化为一般形式,目的是确定一般形式中的 a、 b、 c; 其中a 、 b,、c 可能是详尽数,也可能是含待定字母或特定式子的代数式 .2.一元二次方程的解法 : 一元二次方程的四种解法要求灵活运用,其中直接开平方法诚然简单,但是适用范围较小;公式法诚然适用范围大,但计算较繁,易发生计算错误;因式分解法适用范围较大,且计算简略,是首选方法;配方法使用较少 .3. 一元二次方程根的鉴识式: 当 ax2+bx+c=0 (a0) 时,=b2-4ac 叫一元二次方程根的鉴识式.请注意以低等价命题:0 有两个不等的实根; =0 有两个相等的实根;课本、报刊杂志中的成语、名言警句等俯首皆是,但学生写作文运用到文章中的甚少,即使运用也很难做到恰到利处。

为什么?还是没有完整“记死”的缘故。

要解决这个问题,方法很简单,每日花3-5 分钟左右的时间记一条成语、一则名言警句即可。

可以写在后黑板的“积累专栏”上每日一换 ,可以在每日课第1页/共3页前的 3 分钟让学生轮流解说 ,也可让学生个人采集 ,每日往笔录本上抄写,教师如期检查等等。

这样,一年即可记300 多条成语、300 多则名言警句 ,日新月异 ,终究会成为一笔不小的财富。

这些成语典故“储蓄”在学生脑中 ,自然会出口成章,写作时便会为非作歹地“提取”出来,使文章添色添辉。

0无实根 ; 0 有两个实根 (等或不等 ).4. 一元二次方程的根系关系:当 ax2+bx+c=0 (a0) 时,如 0,有以下公式:语文课本中的文章都是精选的比较优秀的文章,还有很多名家名篇。

若是有选择次序渐进地让学生背诵一些优秀篇目、优秀段落 ,对提高学生的水平会大有裨益。

一元二次方程知识点总结

一元二次方程知识点总结

21章一元二次方程知识点一、一元二次方程1、一元二次方程概念:等号两边是整式,含有一个未知数,并且未知数的最高次数是2的方程叫做一元二次方程。

注意:(1)一元二次方程必须是一个整式方程;(2)只含有一个未知数;(3)未知数的最高次数是2 ;(4)二次项系数不能等于02、一元二次方程的一般形式:,它的特征是:等式左边是一个关于未知数x的二次三项式,等式右边是零,其中叫做二次项,a叫做二次项系数;bx叫做一次项,b叫做一次项系数;c叫做常数项.注意:(1)二次项、二次项系数、一次项、一次项系数,常数项都包括它前面的符号。

(2)要准确找出一个一元二次方程的二次项系数、一次项系数和常数项,必须把它先化为一般形式。

(3)形如不一定是一元二次方程,当且仅当时是一元二次方程.二、一元二次方程的解使方程左、右两边相等的未知数的值叫做方程的解,如:当时,所以是方程的解。

一元二次方程的解也叫一元二次方程的根.一元二次方程有两个根(相等或不等)三、一元二次方程的解法1、直接开平方法:直接开平方法理论依据:平方根的定义。

利用平方根的定义直接开平方求一元二次方程的解的方法叫做直接开平方法。

根据平方根的定义可知,是b的平方根,当时,,,当b<0时,方程没有实数根。

三种类型:(1)的解是;(2)的解是;(3)的解是.2、配方法:配方法的理论根据是完全平方公式,把公式中的a看做未知数x,并用x代替,则有。

(一)用配方法解二次项系数为1的一元二次方程用配方法解二次项系数为1的一元二次方程的步骤:(1)把一元二次方程化成一般形式(2)在方程的左边加上一次项系数绝对值的一半的平方,再减去这个数;(3)把原方程变为的形式。

(4)若,用直接开平方法求出的值,若n﹤0,原方程无解。

(二)用配方法解二次项系数不是1的一元二次方程当一元二次方程的形式为时,用配方法解一元二次方程的步骤:(1)把一元二次方程化成一般形式(2) 先把常数项移到等号右边,再把二次项的系数化为1:方程的左、右两边同时除以二项的系数;(3)在方程的左、右两边加上一次项系数绝对值的一半的平方把原方程化为的形式;(4)若,用直接开平方法或因式分解法解变形后的方程.3、公式法公式法是用求根公式解一元二次方程的解的方法,它是解一元二次方程的一般方法。

《一元二次方程》全章复习与巩固—知识讲解(提高)--初中数学【名校学案+详细解答】

《一元二次方程》全章复习与巩固—知识讲解(提高)--初中数学【名校学案+详细解答】

《一元二次方程》全章复习与巩固—知识讲解(提高)【学习目标】1.了解一元二次方程及有关概念;2.掌握通过配方法、公式法、因式分解法降次──解一元二次方程;3.掌握依据实际问题建立一元二次方程的数学模型的方法.【知识网络】【要点梳理】要点一、一元二次方程的有关概念1.一元二次方程的概念:通过化简后,只含有一个未知数(一元),并且未知数的最高次数是2(二次)的整式方程,叫做一元二次方程.2.一元二次方程的一般式:3.一元二次方程的解:使一元二次方程左右两边相等的未知数的值叫做一元二次方程的解,也叫做一元二次方程的根. 要点诠释:判断一个方程是否为一元二次方程时,首先观察其是否是整式方程,否则一定不是一元二次方程;其次再将整式方程整理化简使方程的右边为0,看是否具备另两个条件:①一个未知数;②未知数的最高次数为2.对有关一元二次方程定义的题目,要充分考虑定义的三个特点,不要忽视二次项系数不为0.要点二、一元二次方程的解法1.基本思想一元二次方程−−−→降次一元一次方程 2.基本解法直接开平方法、配方法、公式法、因式分解法.要点诠释:解一元二次方程时,根据方程特点,灵活选择解题方法,先考虑能否用直接开平方法和因式分解 法,再考虑用公式法.要点三、一元二次方程根的判别式及根与系数的关系1.一元二次方程根的判别式一元二次方程)0(02≠=++a c bx ax 中,ac b 42-叫做一元二次方程)0(02≠=++a c bx ax 的根的判别式,通常用“∆”来表示,即ac b 42-=∆.(1)当△>0时,一元二次方程有2个不相等的实数根;(2)当△=0时,一元二次方程有2个相等的实数根;(3)当△<0时,一元二次方程没有实数根.2.一元二次方程的根与系数的关系如果一元二次方程)0(02≠=++a c bx ax 的两个实数根是21x x ,, 那么a b x x -=+21,ac x x =21. 注意它的使用条件为a ≠0, Δ≥0.要点诠释:1.一元二次方程 的根的判别式正反都成立.利用其可以解决以下问题:(1)不解方程判定方程根的情况;(2)根据参系数的性质确定根的范围;(3)解与根有关的证明题.2. 一元二次方程根与系数的应用很多:(1)已知方程的一根,不解方程求另一根及参数系数;(2)已知方程,求含有两根对称式的代数式的值及有关未知数系数;(3)已知方程两根,求作以方程两根或其代数式为根的一元二次方程.要点四、列一元二次方程解应用题1.列方程解实际问题的三个重要环节:一是整体地、系统地审题;二是把握问题中的等量关系;三是正确求解方程并检验解的合理性.2.利用方程解决实际问题的关键是寻找等量关系.3.解决应用题的一般步骤:审 (审题目,分清已知量、未知量、等量关系等);设 (设未知数,有时会用未知数表示相关的量);列 (根据题目中的等量关系,列出方程);解 (解方程,注意分式方程需检验,将所求量表示清晰);验 (检验方程的解能否保证实际问题有意义);答 (写出答案,切忌答非所问).4.常见应用题型数字问题、平均变化率问题、利息问题、利润(销售)问题、形积问题等.要点诠释:列方程解应用题就是先把实际问题抽象为数学问题(列方程),然后由数学问题的解决而获得对实际问题的解决.【典型例题】类型一、一元二次方程的有关概念1.已知(m -1)x |m|+1+3x -2=0是关于x 的一元二次方程,求m 的值.【答案与解析】依题意得|m|+1=2,即|m|=1,解得m =±1,又∵m -1≠0,∴m ≠1,故m =-1.【总结升华】依题意可知m -1≠0与|m|+1=2必须同时成立,因此求出满足上述两个条件的m 的值即可.特别是二次项系数应为非零数这一隐含条件要注意.举一反三:【变式】若方程2(2)310m m x mx ---=是关于x 的一元二次方程,求m 的值.【答案】 根据题意得22,20,m m ⎧=⎪⎨-≠⎪⎩ 解得所以当方程2(2)310m m x mx ---=是关于x 的一元二次方程时,2m =-.类型二、一元二次方程的解法2.解下列一元二次方程.(1)224(3)25(2)0x x ---=; (2)225(3)9x x -=-; (3)2(21)4(21)40x x ++++=.【答案与解析】(1)原方程可化为:22[2(3)][5(2)]0x x ---=,即(2x-6)2-(5x-10)2=0,∴ (2x-6+5x-10)(2x-6-5x+10)=0,即(7x-16)(-3x+4)=0,∴ 7x-16=0或-3x+4=0,∴ 1167x =,243x =. (2)25(3)(3)(3)x x x -=+-,25(3)(3)(3)0x x x --+-=, ∴ (x-3)[5(x-3)-(x+3)]=0,即(x-3)(4x-18)=0,∴ x-3=0或4x-18=0,∴ 13x =,292x =. (3)2(21)4(21)40x x ++++=,∴ 2(212)0x ++=.即2(23)0x +=,∴ 1232x x ==-. 【总结升华】 (1)方程左边可变形为22[2(3)][5(2)]x x ---,因此可用平方差公式分解因式;(2)中方程右边分解后为(x-3)(x+3),与左边中的(x-3)2有公共的因式,可移项后提取公因式(x-3)后解题;(3)的左边具有完全平方公式的特点,可用公式变为(2x+1+2)2=0再求解.举一反三:【变式】解方程: (1)3x+15=-2x 2-10x ; (2)x 2-3x =(2-x)(x-3).【答案】(1)移项,得3x+15+(2x 2+10x)=0,∴ 3(x+5)+2x(x+5)=0,即(x+5)(3+2x)=0,∴ x+5=0或3+2x =0,∴ 15x =-,232x =-. (2)原方程可化为x(x-3)=(2-x)(x-3),移项,x(x-3)-(2-x)(x-3)=0,∴ (x-3)(2x-2)=0,∴ x-3=0或2x-2=0,∴ 13x =,21x =.类型三、一元二次方程根的判别式的应用3.关于x 的方程2(5)410a x x ---=有实数根.则a 满足( )A .a ≥1B .a >1且a ≠5C .a ≥1且a ≠5D .a ≠5【答案】A ;【解析】①当50a -=,即5a =时,有410x --=,14x =-,有实数根; ②当50a -≠时,由△≥0得2(4)4(5)(1)0a --⨯-⨯-≥,解得1a ≥且5a ≠.综上所述,使关于x 的方程2(5)410a x x ---=有实数根的a 的取值范围是1a ≥.答案:A【总结升华】注意“关于x 的方程”与“关于x 的一元二次方程”的区别,前者既可以是一元一次方程,也可以是一元二次方程,所以必须分类讨论,而后者隐含着二次项系数不能为0.4. k 为何值时,关于x 的二次方程2690kx x -+=(1)k 满足 时,方程有两个不等的实数根;(2)k 满足 时,方程有两个相等的实数根;(3)k 满足 时,方程无实数根.【答案】(1)10k k ≠<,且;(2)1k =;(3)1k >.【解析】求判别式,注意二次项系数的取值范围.【总结升华】根据判别式ac b 42-=∆及k ≠0求解.类型四、一元二次方程的根与系数的关系5.关于x 的一元二次方程x 2+(2k+1)x+k 2+1=0有两个不等实根x 1,x 2. (1)求实数k 的取值范围.(2)若方程两实根x 1,x 2满足|x 1|+|x 2|=x 1•x 2,求k 的值.【答案与解析】解:(1)∵原方程有两个不相等的实数根,∴△=(2k+1)2﹣4(k 2+1)=4k 2+4k+1﹣4k 2﹣4=4k ﹣3>0,解得:k >;(2)∵k >,∴x 1+x 2=﹣(2k+1)<0,又∵x 1•x 2=k 2+1>0,∴x 1<0,x 2<0,∴|x 1|+|x 2|=﹣x 1﹣x 2=﹣(x 1+x 2)=2k+1,∵|x 1|+|x 2|=x 1•x 2,∴2k+1=k 2+1,∴k 1=0,k 2=2,又∵k >,∴k=2.【总结升华】本题主要考查了根的判别式以及根与系数关系的知识,解答本题的关键是利用根的判别式△=b 2﹣4ac >0求出k 的取值范围.举一反三:【变式】已知关于x 的方程2(1)(23)10k x k x k -+-++=有两个不相等的实数根1x 、2x .(1)求k 的取值范围;(2)是否存在实数k ,使方程的两实数根互为相反数?如果存在,求出k 的值;如果不存在,请说明理由.【答案】(1)根据题意,得△=(2k-3)2-4(k-1)(k+1)=224129412130k k k k -+-=-+>, 所以1312k <.由k-1≠0,得k ≠1. 当1312k <且k ≠1时,方程有两个不相等的实数根; (2) 不存在.如果方程的两个实数根互为相反数,则122301k x x k -+=-=-,解得32k =. 当32k =时,判别式△=-5<0,方程没有实数根. 所以不存在实数k ,使方程的两个实数根互为相反数.类型五、一元二次方程的应用6.随着青奥会的临近,青奥特许商品销售逐渐火爆.甲、乙两家青奥商品专卖店一月份销售额分别为10万元和15万元,三月份销售额甲店比乙店多10万元.已知甲店二、三月份销售额的月平均增长率是乙店二、三月份月平均增长率的2倍,求甲店、乙店这两个月的月平均增长率各是多少?【答案与解析】解:设乙店销售额月平均增长率为x ,由题意得:10(1+2x )2﹣15(1+x )2=10,解得 x 1=60%,x 2=﹣1(舍去).2x=120%.答:甲、乙两店这两个月的月平均增长率分别是120%、60%.【总结升华】此题考查了一元二次方程的应用,为运用方程解决实际问题的应用题型.举一反三:【变式】某工程队在我市实施棚户区改造过程中承包了一项拆迁工程。

九年级数学讲义一元二次方程定义和基本解法

九年级数学讲义一元二次方程定义和基本解法

九年级数学讲义一元二次方程定义和基本解法一、基础知识:1、一元一次方程知识回顾:(1)什么是一元一次方程?(2)如何解一元一次方程?2、一元二次方程的一般形式:(其中x 是未知数,a 、b 、c 是已知数,a≠0)02=++c bx ax 3、思考:如何解一元二次方程?二、例题解析与跟进训练:例1 判断下列关于x 的方程是不是一元二次方程?(1); ( ) 0232=-+x x(2); ( )1)1(2-=-x(3); ( ) 022=-+ax x**(4);( )是常数)a x ax (0232=-+ **(5); () 0122=+-+x x x 归纳总结:①“变元”的个数是一个;参数不影响;②方程是整式方程; ③含有未知数的最高次项的次数是二次;④与有没有实根无关;【链接中考】会判断是否为一元二次方程;含有参数问题1.下列方程中是关于x 的一元二次方程的是( )A. B.ax 2+bx+c=0 C.(x﹣1)(x+2)=1 D.3x 2﹣2xy﹣5y 2=00122=+x x 2.方程(m+2)x |m|+3mx+1=0是关于x 的一元二次方程,则( )A.m=±2B.m=2C.m=﹣2D.m≠±23.方程5x 2﹣4x﹣1=0的二次项系数和一次项系数分别为( )A.5和4B.5和﹣4C.5和﹣1D.5和14.将方程3x (x﹣1)=5(x+2)化为一元二次方程的一般式,正确的是( )A.4x 2﹣4x+5=0B.3x 2﹣8x﹣10=0C.4x 2+4x﹣5=0D.3x 2+8x+10=05.若n (n≠0)是关于x 的方程x 2+mx+3n=0的一个根,则m+n 的值是( )A.﹣3B.﹣1C.1D.3例2 解一元二次方程的方法方法一:直接开方法 适用类型: (a 为常数)a x =2练习解下列方程,并归纳出解此类型方程的一般方法:(1); (2); (3);12=x 1)1(2=-x 1)1)(1(=+-x x (4);(5); **(6);02=x 12-=x 04322=+-x x解法归纳:类型:a x =2(1)当,两个不等实数根;a x a x a =-=>21,0时,(2)当时,,两个相等实数根;0=a 021==x x(3)当时,方程没有实数根;0<a (4)不是上面类型的,可以考虑用配方的方式,化为,再解答;a x =2【链接中考】直接开平方法1.一元二次方程x 2﹣2x+1=0的根为 .2.关于x 的一元二次方程x 2﹣2x﹣1=0的两根是 .3.解一元二次方程:(x﹣1)2=4.4.解方程:(x﹣3)2﹣9=0. 5.在实数范围内定义运算“⊕”,其法则为:a ⊕b=a 2﹣b 2,求方程(4⊕3)⊕x=24的解.6.(2x+3)2=x 2﹣6x+9.方法二: 配方法 适用类型: )0(02≠=++a c bx ax 练习解下列方程,并归纳出解此类型方程的一般方法:(1);(讲解) (2);(讲解)0122=-+x x 03622=+-x x (3); (4);2)3)(1(=+-x x 053212=+-x x解法归纳:对于,可以通过配方的方式,化为类型,)0(02≠=++a c bx ax a x =2 c a b a b x a -=+42(22⇒22244)2(a ac b a b x -=+ 然后针对方程右边的正负情况,进行具体解答。

一元二次方程(讲义)

一元二次方程(讲义)

是一元二次方程的重要组成部分。

方程,只有当时,才叫做一元二次方程。

如果且,它就是一元二次方程了。

解题时遇到字母系数的方程可能出现以下情况:(1)一元二次方程的条件是确定的,如方程(),把它化成一般形式为,由于,所以,符合一元二次方程的定义。

(2)条件是用“关于的一元二次方程”这样的语句表述的,那么它就隐含了二次项系数不为零的条件。

如“关于的一元二次方程”,这时题中隐含了的条件,这在解题中是不能忽略的。

(3)方程中含有字母系数的项,且出现“关于的方程”这样的语句,就要对方程中的字母系数进行讨论。

如:“关于的方程”,这就有两种可能,当时,它是一元一次方程;当时,它是一元二次方程,解题时就会有不同的结果。

ax2+bx+c=0 (a≠0)1).提问a=0时方程还是一无二次方程吗?为什么?(如果a=0、b≠就成了一元一次方程了)。

2).讲解方程中ax2、bx、c各项的名称及a、b的系数名称.3).强调:一元二次方程的一般形式中“=”的左边最多三项、其中一次项、常数项可以不出现、但二次项必须存在、而且左边通常按x的降幂排列:特别注意的是“=”的右边必须整理成0。

1.说出下列一元二次方程的二次项系数、一次项系数、常数项:(1)x2十3x十2=O (2)x2—3x十4=0; (3)3x2-5=0(4)4x2十3x—2=0; (5)3x2—5=0; (6)6x2—x=0。

2.把下列方程先化成二元二次方程的一般形式,再写出它的二次项系数、一次项系数、常数项:(1)6x2=3-7x; (3)3x(x-1)=2(x十2)—4;(5)(3x十2)2=4(x-3)2一、关于一元二次方程概念的题目(一)选择题1.下列方程中有()是一元二次方程(1)(2)(3)(4)(5)(6)(A)(1)(5)(6)(B)(1)(4)(5)(C)(1)(3)(4)(D)(2)(4)(5)2.若方程是关于的一元二次方程,则的取值范围是()(A)(B)(C)或(D)且(二)填空题已知关于的方程当时,方程为一元二次方程,当时,方程为一元一次方程。

一元二次方程总复习知识点梳理(学生)

一元二次方程总复习知识点梳理(学生)

一元二次方程总复习考点1:一元二次方程的概念一元二次方程:只含有一个未知数,未知数的最高次数是2,且系数不为 0,这样的方程叫一元二次方 程.一般形式:ax 2+bx+c=0(a ≠0)。

注意:判断某方程是否为一元二次方程时,应首先将方程化为一般形式。

考点2:一元二次方程的解法1.直接开平方法:对形如(x+a )2=b (b ≥0)的方程两边直接开平方而转化为两个一元一次方程的方法。

X+a=±b∴1x =-a+b 2x =-a-b2.配方法:用配方法解一元二次方程:ax 2+bx+c=0(k ≠0)的一般步骤是:①化为一般形式;②移项,将常数项移到方程的右边;③化二次项系数为1,即方程两边同除以二次项系数;④配方,即方程两边都加上一次项系数的一半的平方;化原方程为(x+a )2=b 的形式;⑤如果b ≥0就可以用两边开平方来求出方程的解;如果b ≤0,则原方程无解.3.公式法:公式法是用求根公式求出一元二次方程的解的方法.它是通过配方推导出来的.一元二次方程的求根公式是aac b b x 242-±-=(b 2-4ac ≥0)。

步骤:①把方程转化为一般形式;②确定a ,b ,c 的值;③求出b 2-4ac 的值,当b 2-4ac ≥0时代入求根公式。

4.因式分解法:用因式分解的方法求一元二次方程的根的方法叫做因式分解法.理论根据:若ab=0,则a=0或b=0。

步骤是:①将方程右边化为0;②将方程左边分解为两个一次因式的乘积;③令每个因式等于0,得到两个一元一次方程,解这两个一元一次方程,它们的解就是原一元二次方程的解.因式分解的方法:提公因式、公式法、十字相乘法。

5.一元二次方程的注意事项:⑴ 在一元二次方程的一般形式中要注意,强调a ≠0.因当a=0时,不含有二次项,即不是一元二次方程.⑵ 应用求根公式解一元二次方程时应注意:①先化方程为一般形式再确定a ,b ,c 的值;②若b 2-4ac <0,则方程无解.⑶ 利用因式分解法解方程时,方程两边绝不能随便约去含有未知数的代数式.如-2(x +4)2 =3(x +4)中,不能随便约去x +4。

一元二次方程概念讲义

一元二次方程概念讲义

8. 试判断关于x 的方程x k x kx x =+--)(122是不是一元二次方程,如果是,指出其二次项系数、一次项系数及常数项课后作业 A 组习题:1.下列方程中的一元二次方程是( ).A .3(x +1)2=2(x -1)B .21x+x 1-2=0 C .ax 2+bx +c =0 D .x 2+2x =(x +1)(x -1)2.把方程-5x 2+6x+3=0的二次项系数化为1,方程可变为( ).A .x 2+56x +53=0 B .x 2-6x -3=0 C .x 2-56x -53=0 D .x 2-56x +53=0 3.将方程3x 2=2x -1化成一元二次方程的一般形式后,二次项系数、一次项系数和常数项系数可以是( ) .A . 3,2,-1B .3,-2,-1C .3,-2,1D . -3,-2,14.把一元二次方程(x +2)(x -3)= 4化成一般形式,得( ).A .x 2+x -10=0B .x 2-x -6=4C .x 2-x -10=0D .x 2-x -6=05. 方程x 2+3x -x +1=0的一次项系数是( ).A .3B .-1C .3-1D .3x -x6.已知方程(m +2)x 2+(m +1)x -m =0,当m 满足__________时,它是一元一次方程;当m 满足___________时,它是一元二次方程.7.一元二次方程226x x -=的二次项系数、一次项系数及常数之和为 .8.关于x 的方程2322+-=-mx x x mx 是一元二次方程,m 应满足什么条件?B 组练习:把方程2226332kx x k x kx -+=--整理为20ax bx c ++=的形式,并指出各项的系数.签字确认学员 教师 班主任。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《一元二次方程》全章复习与巩固—知识讲解(提高)
【学习目标】
1.了解一元二次方程及有关概念;
2.掌握通过配方法、公式法、因式分解法降次──解一元二次方程;
3.掌握依据实际问题建立一元二次方程的数学模型的方法.
【知识网络】
【要点梳理】
要点一、一元二次方程的有关概念
1.一元二次方程的概念:
通过化简后,只含有一个未知数(一元),并且未知数的最高次数是2(二次)的整式方程,叫做一元二次方程.
2.一元二次方程的一般式:
3.一元二次方程的解:
使一元二次方程左右两边相等的未知数的值叫做一元二次方程的解,也叫做一元二次方程的根. 要点诠释:
判断一个方程是否为一元二次方程时,首先观察其是否是整式方程,否则一定不是一元二次方程;其次再将整式方程整理化简使方程的右边为0,看是否具备另两个条件:①一个未知数;②未知数的最高次数为2.
对有关一元二次方程定义的题目,要充分考虑定义的三个特点,不要忽视二次项系数不为0.
要点二、一元二次方程的解法
1.基本思想
一元二次方程−−−
→降次一元一次方程 2.基本解法
直接开平方法、配方法、公式法、因式分解法.
要点诠释:
解一元二次方程时,根据方程特点,灵活选择解题方法,先考虑能否用直接开平方法和因式分解 法,再考虑用公式法.
要点三、一元二次方程根的判别式及根与系数的关系
1.一元二次方程根的判别式
一元二次方程)0(02≠=++a c bx ax 中,ac b 42-叫做一元二次方程)0(02≠=++a c bx ax 的根的判别式,通常用“∆”来表示,即ac b 42-=∆.
(1)当△>0时,一元二次方程有2个不相等的实数根;
(2)当△=0时,一元二次方程有2个相等的实数根;
(3)当△<0时,一元二次方程没有实数根.
2.一元二次方程的根与系数的关系
如果一元二次方程)0(02≠=++a c bx ax 的两个实数根是21x x ,, 那么a b x x -=+21,a
c x x =21. 注意它的使用条件为a ≠0, Δ≥0.
要点诠释:
1.一元二次方程 的根的判别式正反都成立.利用其可以解决以下问题: (1)不解方程判定方程根的情况;
(2)根据参系数的性质确定根的范围;
(3)解与根有关的证明题.
2. 一元二次方程根与系数的应用很多:
(1)已知方程的一根,不解方程求另一根及参数系数;
(2)已知方程,求含有两根对称式的代数式的值及有关未知数系数;
(3)已知方程两根,求作以方程两根或其代数式为根的一元二次方程.
要点四、列一元二次方程解应用题
1.列方程解实际问题的三个重要环节:
一是整体地、系统地审题;
二是把握问题中的等量关系;
三是正确求解方程并检验解的合理性.
2.利用方程解决实际问题的关键是寻找等量关系.
3.解决应用题的一般步骤:
审 (审题目,分清已知量、未知量、等量关系等);
设 (设未知数,有时会用未知数表示相关的量);
列 (根据题目中的等量关系,列出方程);
解 (解方程,注意分式方程需检验,将所求量表示清晰);
验 (检验方程的解能否保证实际问题有意义);
答 (写出答案,切忌答非所问).
4.常见应用题型
数字问题、平均变化率问题、利息问题、利润(销售)问题、形积问题等.
要点诠释:
列方程解应用题就是先把实际问题抽象为数学问题(列方程),然后由数学问题的解决而获得对实际问题的解决.
【典型例题】
类型一、一元二次方程的有关概念
1.已知(m -1)x |m|+1+3x -2=0是关于x 的一元二次方程,求m 的值.
【答案与解析】
依题意得|m|+1=2,即|m|=1,
解得m =±1,
又∵m -1≠0,∴m ≠1,
故m =-1.
【总结升华】依题意可知m -1≠0与|m|+1=2必须同时成立,因此求出满足上述两个条件的m 的值即可.
特别是二次项系数应为非零数这一隐含条件要注意.
举一反三:
【变式
】若方程2(310m m x mx --=是关于x 的一元二次方程,求m 的值.
【答案】
根据题意得22,0,
m m ⎧=⎪⎨-≠⎪⎩ 解得
所以当方程2(310m m x mx ---=是关于x
的一元二次方程时,m =.
类型二、一元二次方程的解法
2.解下列一元二次方程.
(1)224(3)25(2)0x x ---=; (2)225(3)9x x -=-; (3)2
(21)4(21)40x x ++++=.
【答案与解析】
(1)原方程可化为:22[2(3)][5(2)]0x x ---=,
即(2x-6)2-(5x-10)2=0,
∴ (2x-6+5x-10)(2x-6-5x+10)=0,
即(7x-16)(-3x+4)=0,
∴ 7x-16=0或-3x+4=0,∴ 1167x =,243
x =. (2)25(3)(3)(3)x x x -=+-,
25(3)(3)(3)0x x x --+-=, ∴ (x-3)[5(x-3)-(x+3)]=0,
即(x-3)(4x-18)=0,∴ x-3=0或4x-18=0,
∴ 13x =,292x =
. (3)2(21)4(21)40x x ++++=,
∴ 2(212)0x ++=.即2(23)0x +=,
∴ 1232
x x ==-. 【总结升华】 (1)方程左边可变形为22[2(3)][5(2)]x x ---,因此可用平方差公式分解因式;
(2)中方程右边分解后为(x-3)(x+3),与左边中的(x-3)2有公共的因式,
可移项后提取公因式(x-3)后解题;
(3)的左边具有完全平方公式的特点,可用公式变为(2x+1+2)2=0再求解.
举一反三:
【变式】解方程: (1)3x+15=-2x 2-10x ; (2)x 2-3x =(2-x)(x-3).
【答案】
(1)移项,得3x+15+(2x 2+10x)=0,∴ 3(x+5)+2x(x+5)=0,
即(x+5)(3+2x)=0,∴ x+5=0或3+2x =0,
∴ 15x =-,232
x =-. (2)原方程可化为x(x-3)=(2-x)(x-3),移项,x(x-3)-(2-x)(x-3)=0,
∴ (x-3)(2x-2)=0,∴ x-3=0或2x-2=0,
∴ 13x =,21x =.
类型三、一元二次方程根的判别式的应用
3.关于x 的方程2(5)410a x x ---=有实数根.则a 满足( )
A .a ≥1
B .a >1且a ≠5
C .a ≥1且a ≠5
D .a ≠5
【答案】A ;
【解析】①当50a -=,即5a =时,有410x --=,14x =-
,有实数根; ②当50a -≠时,由△≥0得2(4)4(5)(1)0a --⨯-⨯-≥,解得1a ≥且5a ≠.
综上所述,使关于x 的方程2
(5)410a x x ---=有实数根的a 的取值范围是1a ≥.
答案:A
【总结升华】注意“关于x 的方程”与“关于x 的一元二次方程”的区别,前者既可以是一元一次方程,
也可以是一元二次方程,所以必须分类讨论,而后者隐含着二次项系数不能为0.
4. k 为何值时,关于x 的二次方程2690kx x -+=
(1)k 满足 时,方程有两个不等的实数根;
(2)k 满足 时,方程有两个相等的实数根;
(3)k 满足 时,方程无实数根.
【答案】(1)10k k ≠<,且;(2)1k =;(3)1k >.
【解析】求判别式,注意二次项系数的取值范围.
【总结升华】根据判别式ac b 42-=∆及k ≠0求解.
类型四、一元二次方程的根与系数的关系
5.(2016•凉山州)已知x 1、x 2是一元二次方程3x 2=6﹣2x 的两根,则x 1﹣x 1x 2+x 2的值是( )
A .
B .
C .
D .
【思路点拨】由x 1、x 2是一元二次方程3x 2=6﹣2x 的两根,结合根与系数的关系可得出x 1+x 2=﹣,
x 1•x 2=﹣2,将其代入x 1﹣x 1x 2+x 2中即可算出结果.
【答案】D .
【解析】
解:∵x 1、x 2是一元二次方程3x 2=6﹣2x 的两根,
∴x 1+x 2=﹣=﹣,x 1•x 2==﹣2,
∴x 1﹣x 1x 2+x 2=﹣﹣(﹣2)=.
故选D .
【总结升华】本题考查了根与系数的关系,解题的关键是得出x 1+x 2=﹣,x 1•x 2=﹣2.本题属于基础题,难度不大,解决该题型题目时,根据根与系数的关系得出两根之和与两根之积是关键.
举一反三:
【变式】已知关于x 的方程2(1)(23)10k x k x k -+-++=有两个不相等的实数根1x 、2x .
(1)求k 的取值范围;
(2)是否存在实数k ,使方程的两实数根互为相反数?如果存在,求出k 的值;如果不存在,
请说明理由.。

相关文档
最新文档