天津 《几个常用函数的导数》同步教学设计
合集下载
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
§1.2.1几个常用函数的导数
教学目标:
1.使学生应用由定义求导数的三个步骤推导四种常见函数 、 、 、 的导数公式;
2.掌握并能运用这四个公式正确求函数的导数.
教学重点:四种常见函数 、 、 、 的导数公式及应用
教学难点:四种常见函数 、 、 、 的导数公式
教学过程:
一.创设情景
我们知道,导数的几何意义是曲线在某一点处的切线斜率,物理意义是运动物体在某一时刻的瞬时速度.那么,对于函数 ,如何求它的导数呢?
2.函数 的导数
因为
所以
函数
导数
表示函数 图像(图3.2-2)上每一点处的切线的斜率都为1.若 表示路程关于时间的函数,则 可以解释为某物体做瞬时速度为1的匀速运动.
3.函数 的导数
因为
所以
函数
导数
表示函数 图像(图3.2-3)上点 处的切线的斜率都为 ,说明随着 的变化,切线的斜率也在变化.另一方面,从导数作为函数在一点的瞬时变化率来看,表明:当 时,随着 的增加,函数 减少得越来越慢;当 时,随着 的增加,函数 增加得越来越快.若 表示路程关于时间的函数,则 可以解释为某物体做变速运动,它在时刻 的瞬时速度为 .
4.函数 的导数
因为
所以
函数
导数
5.函数 的导数
因为
所以
函数
导数
(2)推广:若 ,则
三.பைடு நூலகம்堂练习
1.课本P13探究1
2.课本P13探究2
四.回顾总结
函数
导数
五.布置作业
由导数定义本身,给出了求导数的最基本的方法,但由于导数是用极限来定义的,所以求导数总是归结到求极限这在运算上很麻烦,有时甚至很困难,为了能够较快地求出某些函数的导数,这一单元我们将研究比较简捷的求导数的方法,下面我们求几个常用的函数的导数.
二.新课讲授
1.函数 的导数
根据导数定义,因为
所以
函数
导数
表示函数 图像(图3.2-1)上每一点处的切线的斜率都为0.若 表示路程关于时间的函数,则 可以解释为某物体的瞬时速度始终为0,即物体一直处于静止状态.
教学目标:
1.使学生应用由定义求导数的三个步骤推导四种常见函数 、 、 、 的导数公式;
2.掌握并能运用这四个公式正确求函数的导数.
教学重点:四种常见函数 、 、 、 的导数公式及应用
教学难点:四种常见函数 、 、 、 的导数公式
教学过程:
一.创设情景
我们知道,导数的几何意义是曲线在某一点处的切线斜率,物理意义是运动物体在某一时刻的瞬时速度.那么,对于函数 ,如何求它的导数呢?
2.函数 的导数
因为
所以
函数
导数
表示函数 图像(图3.2-2)上每一点处的切线的斜率都为1.若 表示路程关于时间的函数,则 可以解释为某物体做瞬时速度为1的匀速运动.
3.函数 的导数
因为
所以
函数
导数
表示函数 图像(图3.2-3)上点 处的切线的斜率都为 ,说明随着 的变化,切线的斜率也在变化.另一方面,从导数作为函数在一点的瞬时变化率来看,表明:当 时,随着 的增加,函数 减少得越来越慢;当 时,随着 的增加,函数 增加得越来越快.若 表示路程关于时间的函数,则 可以解释为某物体做变速运动,它在时刻 的瞬时速度为 .
4.函数 的导数
因为
所以
函数
导数
5.函数 的导数
因为
所以
函数
导数
(2)推广:若 ,则
三.பைடு நூலகம்堂练习
1.课本P13探究1
2.课本P13探究2
四.回顾总结
函数
导数
五.布置作业
由导数定义本身,给出了求导数的最基本的方法,但由于导数是用极限来定义的,所以求导数总是归结到求极限这在运算上很麻烦,有时甚至很困难,为了能够较快地求出某些函数的导数,这一单元我们将研究比较简捷的求导数的方法,下面我们求几个常用的函数的导数.
二.新课讲授
1.函数 的导数
根据导数定义,因为
所以
函数
导数
表示函数 图像(图3.2-1)上每一点处的切线的斜率都为0.若 表示路程关于时间的函数,则 可以解释为某物体的瞬时速度始终为0,即物体一直处于静止状态.