2012年中考数学试卷分析

合集下载

2012年黑龙江省哈尔滨市中考数学试卷及解析

2012年黑龙江省哈尔滨市中考数学试卷及解析

2012年黑龙江省哈尔滨市中考数学试卷及解析一、选择题(共10小题,每小题3分,满分30分)4.(3分)(2012•哈尔滨)如图所示的几何体是由六个小正方体组合而成的,它的左视图是()C=90°,AC=4,AB=5,则sinB的值是()5.(3分)(2012•哈尔滨)如图,在Rt△ABC中,∠B=6.(3分)(2012•哈尔滨)在10个外观相同的产品中,有2个不合格产品,现从中任意抽取1个进行检测,抽到不合格产品的概率是()7.(3分)(2012•哈尔滨)如果反比例函数y=的图象经过点(﹣1,﹣2),则k的值是()2=8.(3分)(2012•哈尔滨)将抛物线y=3x2向左平移2个单位,再向下平移1个单位,所得抛物线为9.(3分)(2012•哈尔滨)如图,⊙O是△ABC的外接圆,∠B=60°,OP⊥AC于点P,OP=2,则⊙O 的半径为()4 6所对的弧都为OP=2,.10.(3分)(2012•哈尔滨)李大爷要围成一个矩形菜园,菜园的一边利用足够长的墙,用篱笆围成的另外三边总长应恰好为24米,要围成的菜园是如图所示的矩形ABCD,设BC的边长为x米,AB 边的长为y米,则y与x之间的函数关系式是()二、填空题(共10小题,每小题3分,满分30分)11.(3分)(2012•哈尔滨)把16000 000用科学记数法表示为 1.6×107.12.(3分)(2006•河南)函数y=中,自变量x的取值范围是x≠5.13.(3分)(2012•哈尔滨)化简:=3.14.(3分)(2012•哈尔滨)把多项式a3﹣2a2+a分解因式的结果是a(a﹣1)2.15.(3分)(2012•哈尔滨)不等式组的解集是<x<2.16.(3分)(2012•哈尔滨)一个等腰三角形的两边分别为5和6,则这个等腰三角形的周长是16或17.17.(3分)(2012•哈尔滨)一个圆锥的母线长为4,侧面积为8π,则这个圆锥的底面圆的半径是2.=18.(3分)(2012•哈尔滨)方程的解是x=6.19.(3分)(2012•哈尔滨)如图,平行四边形ABCD绕点A逆时针旋转30°,得到平行四边形AB′C′D′(点B′与点B是对应点,点C′与点C是对应点,点D′与点D是对应点),点B′恰好落在BC边上,则∠C=105度.20.(3分)(2012•哈尔滨)如图,四边形ABCD是矩形,点E在线段CB的延长线上,连接DE交AB于点F,∠AED=2∠CED,点G是DF的中点,若BE=1,AG=4,则AB的长为.AB===三、解答题(共8小题,满分60分)21.(6分)(2012•哈尔滨)先化简,再求代数式的值,其中x=cos30°+.x=cos30 =•=•x=+=×+=+=222.(6分)(2012•哈尔滨)图1、图2是两张形状、大小完全相同的方格纸,方格纸中的每个小正方形的边长均为1,点A和点B在小正方形的顶点上.(1)在图1中画出△ABC(点C在小正方形的顶点上),使△ABC为直角三角形(画一个即可);(2)在图2中画出△ABD(点D在小正方形的顶点上),使△ABD为等腰三角形(画一个即可).23.(6分)(2012•哈尔滨)如图,点B在射线AE上,∠CAE=∠DAE,∠CBE=∠DBE.求证:AC=AD.24.(6分)(2012•哈尔滨)小磊要制作一个三角形的钢架模型,在这个三角形中,长度为x(单位:cm)的边与这条边上的高之和为40cm,这个三角形的面积S(单位:cm)的变化而变化.(1)请直接写出S与x之间的函数关系式(不要求写出自变量x的取值范围);(2)当x是多少时,这个三角形面积S最大?最大面积是多少?==,25.(8分)(2012•哈尔滨)虹承中学为做好学生“午餐工程”工作,学校工作人员搭配了A,B,C,D四种不同种类的套餐,学校决定围绕“在A,B,C,D四种套餐种类中,你最喜欢的套餐种类是什么?(必选且只选一种)”的问题,在全校范围内随机抽取部分学生进行问卷调查,将调查问卷适当整理后绘制成如图所示的不完整的条形统计图,其中最喜欢D中套餐的学生占被抽取人数的20%,请你根据以上信息解答下列问题:(1)在这次调查中,一共抽取了多少名学生?(2)通过计算,补全条形统计图;(3)如果全校有2000名学生,请你估计全校学生中最喜欢B中套餐的学生有多少名?×=50026.(8分)(2012•哈尔滨)同庆中学为丰富学生的校园生活,准备从军跃体育用品商店一次性购买若干个足球和篮球(每个足球的价格相同,每个篮球的价格相同),若购买3个足球和2个篮球共需310元,购买2个足球和5个篮球共需500元.(1)购买一个足球、一个篮球各需多少元?(2)根据同庆中学的实际情况,需从军跃体育用品商店一次性购买足球和篮球共96个,要求购买足球和篮球的总费用不超过5720元,这所中学最多可以购买多少个篮球?27.(10分)(2012•哈尔滨)如图,在平面直角坐标系中,点O为坐标原点,直线y=2x+4交x轴于点A,交y轴于点B,四边形ABCO是平行四边形,直线y=﹣x+m经过点C,交x轴于点D.(1)求m的值;(2)点P(0,t)是线段OB上的一个动点(点P不与0,B两点重合),过点P作x轴的平行线,分别交AB,OC,DC于点E,F,G,设线段EG的长为d,求d与t之间的函数关系式(直接写出自变量t的取值范围);(3)在(2)的条件下,点H是线段OB上一点,连接BG交OC于点M,当以OG为直径的圆经过点M时,恰好使∠BFH=∠ABO,求此时t的值及点H的坐标.相似,根据相似三角形对应边成比例可得=,根据等边对等角的性质可得∠=,∴,BGP=∴∴=,=,BGP=∴OF==,BH===,=== BE=∴==,=∴=,=,28.(10分)(2012•哈尔滨)已知:在△ABC中,∠ACB=90°,点P是线段AC上一点,过点A作AB 的垂线,交BP的延长线于点M,MN⊥AC于点N,PQ⊥AB于点Q,AQ=MN.(1)如图1,求证:PC=AN;(2)如图2,点E是MN上一点,连接EP并延长交BC于点K,点D是AB上一点,连接DK,∠DKE=∠ABC,EF⊥PM于点H,交BC延长线于点F,若NP=2,PC=3,CK:CF=2:3,求DQ的长.AQ=MN=MAN==,∴,∴=∴=2NTC==2 PKC=AQ=MN=∴=,∴,∴=,即,∴==∴==,EG==,,∴=BD==AQ=MN=∴=,=∴=ABC=BP==3PBC==PBC=((REF=EF==∴+(.。

2012年浙江省杭州市中考数学试卷(含解析版)

2012年浙江省杭州市中考数学试卷(含解析版)

2012年浙江省杭州市中考数学试卷一、仔细选一选(本题有10个小题,每小题3分,共30分)下面每小题给出四个选项中,只有一个是正确的.注意可以用多种不同的方法来选取正确的答案.1.(3分)计算(2﹣3)+(﹣1)的结果是()A.﹣2B.0C.1D.22.(3分)若两圆的半径分别为2cm和6cm,圆心距为4cm,则这两圆的位置关系是()A.内含B.内切C.外切D.外离3.(3分)一个不透明的盒子中装有2个红球和1个白球,它们除颜色外都相同.若从中任意摸出一个球,则下列叙述正确的是()A.摸到红球是必然事件B.摸到白球是不可能事件C.摸到红球与摸到白球的可能性相等D.摸到红球比摸到白球的可能性大4.(3分)已知平行四边形ABCD中,∠B=4∠A,则∠C=()A.18°B.36°C.72°D.144°5.(3分)下列计算正确的是()A.(﹣p2q)3=﹣p5q3B.(12a2b3c)÷(6ab2)=2abC.3m2÷(3m﹣1)=m﹣3m2D.(x2﹣4x)x﹣1=x﹣46.(3分)如图是杭州市区人口的统计图.则根据统计图得出的下列判断,正确的是()A.其中有3个区的人口数都低于40万B.只有1个区的人口数超过百万C.上城区与下城区的人口数之和超过江干区的人口数D.杭州市区的人口数已超过600万7.(3分)已知m=,则有()A.5<m<6B.4<m<5C.﹣5<m<﹣4D.﹣6<m<﹣5 8.(3分)如图,在Rt△ABO中,斜边AB=1.若OC∥BA,∠AOC=36°,则()A.点B到AO的距离为sin54°B.点B到AO的距离为tan36°C.点A到OC的距离为sin36°sin54°D.点A到OC的距离为cos36°sin54°9.(3分)已知抛物线y=k(x+1)(x﹣)与x轴交于点A,B,与y轴交于点C,则能使△ABC为等腰三角形的抛物线的条数是()A.2B.3C.4D.510.(3分)已知关于x,y的方程组,其中﹣3≤a≤1,给出下列结论:①是方程组的解;②当a=﹣2时,x,y的值互为相反数;③当a=1时,方程组的解也是方程x+y=4﹣a的解;④若x≤1,则1≤y≤4.其中正确的是()A.①②B.②③C.②③④D.①③④二、认真填一填(本题有6个小题,每小题4分,共24分)要注意认真看清题目的条件和要填写的内容,尽量完整的填写答案.11.(4分)数据1,1,1,3,4的平均数是;众数是.12.(4分)化简得;当m=﹣1时,原式的值为.13.(4分)某企业向银行贷款1000万元,一年后归还银行1065.6多万元,则年利率高于%.14.(4分)已知(a﹣)<0,若b=2﹣a,则b的取值范围是.15.(4分)已知一个底面为菱形的直棱柱,高为10cm,体积为150cm3,则这个棱柱的下底面积为cm2;若该棱柱侧面展开图的面积为200cm2,记底面菱形的顶点依次为A,B,C,D,AE是BC边上的高,则CE的长为cm.16.(4分)如图,平面直角坐标系中有四个点,它们的横纵坐标均为整数.若在此平面直角坐标系内移动点A,使得这四个点构成的四边形是轴对称图形,并且点A的横坐标仍是整数,则移动后点A的坐标为.三、全面答一答(本题有7个小题,共66分)解答应写出文字说明,证明过程或演算步骤.如果觉得有的题目有点困难,那么把自己能写出的解答写出一部分也可以.17.(6分)化简:2[(m﹣1)m+m(m+1)][(m﹣1)m﹣m(m+1)].若m是任意整数,请观察化简后的结果,你发现原式表示一个什么数?18.(8分)当k分别取﹣1,1,2时,函数y=(k﹣1)x2﹣4x+5﹣k都有最大值吗?请写出你的判断,并说明理由;若有,请求出最大值.19.(8分)如图,是数轴的一部分,其单位长度为a,已知△ABC中,AB=3a,BC=4a,AC=5a.(1)用直尺和圆规作出△ABC(要求:使点A,C在数轴上,保留作图痕迹,不必写出作法);(2)记△ABC的外接圆的面积为S圆,△ABC的面积为S△,试说明>π.20.(10分)有一组互不全等的三角形,它们的边长均为整数,每个三角形有两条边的长分别为5和7.(1)请写出其中一个三角形的第三边的长;(2)设组中最多有n个三角形,求n的值;(3)当这组三角形个数最多时,从中任取一个,求该三角形周长为偶数的概率.21.(10分)如图,在梯形ABCD中,AD∥BC,AB=CD,分别以AB,CD为边向外侧作等边三角形ABE和等边三角形DCF,连接AF,DE.(1)求证:AF=DE;(2)若∠BAD=45°,AB=a,△ABE和△DCF的面积之和等于梯形ABCD的面积,求BC的长.22.(12分)在平面直角坐标系内,反比例函数和二次函数y=k(x2+x﹣1)的图象交于点A (1,k)和点B(﹣1,﹣k).(1)当k=﹣2时,求反比例函数的解析式;(2)要使反比例函数和二次函数都是y随着x的增大而增大,求k应满足的条件以及x 的取值范围;(3)设二次函数的图象的顶点为Q,当△ABQ是以AB为斜边的直角三角形时,求k的值.23.(12分)如图,AE切⊙O于点E,AT交⊙O于点M,N,线段OE交AT于点C,OB ⊥AT于点B,已知∠EAT=30°,AE=3,MN=2.(1)求∠COB的度数;(2)求⊙O的半径R;(3)点F在⊙O上(是劣弧),且EF=5,把△OBC经过平移、旋转和相似变换后,使它的两个顶点分别与点E,F重合.在EF的同一侧,这样的三角形共有多少个?你能在其中找出另一个顶点在⊙O上的三角形吗?请在图中画出这个三角形,并求出这个三角形与△OBC的周长之比.2012年浙江省杭州市中考数学试卷参考答案与试题解析一、仔细选一选(本题有10个小题,每小题3分,共30分)下面每小题给出四个选项中,只有一个是正确的.注意可以用多种不同的方法来选取正确的答案.1.(3分)计算(2﹣3)+(﹣1)的结果是()A.﹣2B.0C.1D.2【考点】1B:有理数的加减混合运算.【专题】11:计算题.【分析】根据有理数的加减混合运算的法则进行计算即可得解.【解答】解:(2﹣3)+(﹣1)=﹣1+(﹣1)=﹣2故选:A.【点评】本题主要考查了有理数的加减混合运算,是基础题比较简单.2.(3分)若两圆的半径分别为2cm和6cm,圆心距为4cm,则这两圆的位置关系是()A.内含B.内切C.外切D.外离【考点】MJ:圆与圆的位置关系.【分析】两圆的位置关系有5种:①外离;②外切;③相交;④内切;⑤内含.若d>R+r则两圆相离,若d=R+r则两圆外切,若d=R﹣r则两圆内切,若R﹣r<d<R+r则两圆相交.本题可把半径的值代入,看符合哪一种情况.【解答】解:∵两圆的半径分别为2cm和6cm,圆心距为4cm.则d=6﹣2=4,∴两圆内切.故选:B.【点评】本题主要考查两圆的位置关系.两圆的位置关系有:外离(d>R+r)、内含(d <R﹣r)、相切(外切:d=R+r或内切:d=R﹣r)、相交(R﹣r<d<R+r).3.(3分)一个不透明的盒子中装有2个红球和1个白球,它们除颜色外都相同.若从中任意摸出一个球,则下列叙述正确的是()A.摸到红球是必然事件B.摸到白球是不可能事件C.摸到红球与摸到白球的可能性相等D.摸到红球比摸到白球的可能性大【考点】X1:随机事件;X2:可能性的大小.【分析】利用随机事件的概念,以及个数最多的就得到可能性最大分别分析即可.【解答】解:A.摸到红球是随机事件,故A选项错误;B.摸到白球是随机事件,故B选项错误;C.摸到红球比摸到白球的可能性相等,根据不透明的盒子中装有2个红球和1个白球,得出摸到红球比摸到白球的可能性大,故C选项错误;D.根据不透明的盒子中装有2个红球和1个白球,得出摸到红球比摸到白球的可能性大,故D选项正确;故选:D.【点评】此题主要考查了随机事件以及可能性大小,利用可能性大小的比较:只要总情况数目相同,谁包含的情况数目多,谁的可能性就大;反之也成立;若包含的情况相当,那么它们的可能性就相等得出是解题关键.4.(3分)已知平行四边形ABCD中,∠B=4∠A,则∠C=()A.18°B.36°C.72°D.144°【考点】JA:平行线的性质;L5:平行四边形的性质.【专题】11:计算题.【分析】关键平行四边形性质求出∠C=∠A,BC∥AD,推出∠A+∠B=180°,求出∠A的度数,即可求出∠C.【解答】解:∵四边形ABCD是平行四边形,∴∠C=∠A,BC∥AD,∴∠A+∠B=180°,∵∠B=4∠A,∴∠A=36°,∴∠C=∠A=36°,故选:B.【点评】本题考查了平行四边形性质和平行线的性质的应用,主要考查学生运用平行四边形性质进行推理的能力,题目比较好,难度也不大.5.(3分)下列计算正确的是()A.(﹣p2q)3=﹣p5q3B.(12a2b3c)÷(6ab2)=2abC.3m2÷(3m﹣1)=m﹣3m2D.(x2﹣4x)x﹣1=x﹣4【考点】4I:整式的混合运算;6F:负整数指数幂.【分析】根据幂的乘方,积的乘方、整式的乘法、同底数幂的乘法和除法分别进行计算,即可判断.【解答】解:A、(﹣p2q)3=﹣p6q3,故本选项错误;B、12a2b3c)÷(6ab2)=2abc,故本选项错误;C、3m2÷(3m﹣1)=,故本选项错误;D、(x2﹣4x)x﹣1=x﹣4,故本选项正确;故选:D.【点评】此题考查了整式的混合运算,用到的知识点是幂的乘方,积的乘方、整式的乘法、同底数幂的乘法和除法等,需熟练掌握运算法则,才不容易出错.6.(3分)如图是杭州市区人口的统计图.则根据统计图得出的下列判断,正确的是()A.其中有3个区的人口数都低于40万B.只有1个区的人口数超过百万C.上城区与下城区的人口数之和超过江干区的人口数D.杭州市区的人口数已超过600万【考点】VC:条形统计图.【分析】根据条形统计图可以看出每个区的人口数,根据每个区的人口数进行判断,可选出答案.【解答】解:A、只有上城区人口数都低于40万,故此选项错误;B、萧山区、余杭区两个区的人口超过100万,故此选项错误;C、上城区与下城区的人口数之和低于江干区的人口数,故此选项错误;D、杭州市区的人口数已超过600万,故此选项正确;故选:D.【点评】此题主要考查了条形统计图,关键是从图中获取正确信息,从条形统计图中很容易看出数据的大小,便于比较.7.(3分)已知m=,则有()A.5<m<6B.4<m<5C.﹣5<m<﹣4D.﹣6<m<﹣5【考点】2B:估算无理数的大小;75:二次根式的乘除法.【分析】求出m的值,求出2()的范围5<m<6,即可得出选项.【解答】解:m=(﹣)×(﹣2),=,=×3,=2=,∵<<,∴5<<6,即5<m<6,故选:A.【点评】本题考查了二次根式的乘法运算和估计无理数的大小的应用,注意:5<<6,题目比较好,难度不大.8.(3分)如图,在Rt△ABO中,斜边AB=1.若OC∥BA,∠AOC=36°,则()A.点B到AO的距离为sin54°B.点B到AO的距离为tan36°C.点A到OC的距离为sin36°sin54°D.点A到OC的距离为cos36°sin54°【考点】J5:点到直线的距离;JA:平行线的性质;T7:解直角三角形.【分析】根据图形得出B到AO的距离是指BO的长,过A作AD⊥OC于D,则AD的长是点A到OC的距离,根据锐角三角形函数定义得出BO=AB sin36°,即可判断A、B;过A作AD⊥OC于D,则AD的长是点A到OC的距离,根据锐角三角形函数定义得出AD=AO sin36°,AO=AB•sin54°,求出AD,即可判断C、D.【解答】解:B到AO的距离是指BO的长,∵AB∥OC,∴∠BAO=∠AOC=36°,∵在Rt△BOA中,∠BOA=90°,AB=1,∴sin36°=,∴BO=AB sin36°=sin36°,故A、B选项错误;过A作AD⊥OC于D,则AD的长是点A到OC的距离,∵∠BAO=36°,∠AOB=90°,∴∠ABO=54°,∵sin36°=,∴AD=AO•sin36°,∵sin54°=,∴AO=AB•sin54°,∵AB=1,∴AD=AB•sin54°•sin36°=1×sin54°•sin36°=sin54°•sin36°,故C选项正确,D 选项错误;故选:C.【点评】本题考查了对解直角三角形和点到直线的距离的应用,解此题的关键是①找出点A到OC的距离和B到AO的距离,②熟练地运用锐角三角形函数的定义求出关系式,题目较好,但是一道比较容易出错的题目.9.(3分)已知抛物线y=k(x+1)(x﹣)与x轴交于点A,B,与y轴交于点C,则能使△ABC为等腰三角形的抛物线的条数是()A.2B.3C.4D.5【考点】HA:抛物线与x轴的交点.【专题】17:推理填空题.【分析】整理抛物线解析式,确定出抛物线与x轴的一个交点A和y轴的交点C,然后求出AC的长度,再分①k>0时,点B在x轴正半轴时,分AC=BC、AC=AB、AB=BC三种情况求解;②k<0时,点B在x轴的负半轴时,点B只能在点A的左边,只有AC=AB一种情况列式计算即可.【解答】解:y=k(x+1)(x﹣)=(x+1)(kx﹣3),所以,抛物线经过点A(﹣1,0),C(0,﹣3),AC===,点B坐标为(,0),①k>0时,点B在x正半轴上,若AC=BC,则=,解得k=3,若AC=AB,则+1=,解得k==,若AB=BC,则+1=,解得k=;②k<0时,点B在x轴的负半轴,点B只能在点A的左侧,只有AC=AB,则﹣1﹣=,解得k=﹣=﹣,所以,能使△ABC为等腰三角形的抛物线共有4条.故选:C.【点评】本题考查了抛物线与x轴的交点问题,根据抛物线的解析式确定出抛物线经过的两个定点是解题的关键,注意分情况讨论.10.(3分)已知关于x,y的方程组,其中﹣3≤a≤1,给出下列结论:①是方程组的解;②当a=﹣2时,x,y的值互为相反数;③当a=1时,方程组的解也是方程x+y=4﹣a的解;④若x≤1,则1≤y≤4.其中正确的是()A.①②B.②③C.②③④D.①③④【考点】97:二元一次方程组的解;CB:解一元一次不等式组.【专题】16:压轴题.【分析】解方程组得出x、y的表达式,根据a的取值范围确定x、y的取值范围,逐一判断.【解答】解:解方程组,得,∵﹣3≤a≤1,∴﹣5≤x≤3,0≤y≤4,①不符合﹣5≤x≤3,0≤y≤4,结论错误;②当a=﹣2时,x=1+2a=﹣3,y=1﹣a=3,x,y的值互为相反数,结论正确;③当a=1时,x+y=2+a=3,4﹣a=3,方程x+y=4﹣a两边相等,结论正确;④当x≤1时,1+2a≤1,解得a≤0,且﹣3≤a≤1,∴﹣3≤a≤0∴1≤1﹣a≤4∴1≤y≤4结论正确,故选:C.【点评】本题考查了二元一次方程组的解,解一元一次不等式组.关键是根据条件,求出x、y的表达式及x、y的取值范围.二、认真填一填(本题有6个小题,每小题4分,共24分)要注意认真看清题目的条件和要填写的内容,尽量完整的填写答案.11.(4分)数据1,1,1,3,4的平均数是2;众数是1.【考点】W1:算术平均数;W5:众数.【分析】利用算术平均数的求法求平均数,众数的定义求众数即可.【解答】解:平均数为:(1+1+1+3+4)÷5=2;数据1出现了3次,最多,众数为1.故答案为2,1.【点评】本题考查了众数及算术平均数的求法,属于基础题,比较简单.12.(4分)化简得;当m=﹣1时,原式的值为1.【考点】64:分式的值;66:约分.【专题】11:计算题.【分析】先把分式的分子和分母分解因式得出,约分后得出,把m=﹣1代入上式即可求出答案.【解答】解:,=,=,当m=﹣1时,原式==1,故答案为:,1.【点评】本题主要考查了分式的约分,关键是找出分式的分子和分母的公因式,题目比较典型,难度适中.13.(4分)某企业向银行贷款1000万元,一年后归还银行1065.6多万元,则年利率高于6.56%.【考点】1G:有理数的混合运算.【分析】根据题意和年利率的概念列出代数式,再进行计算即可求出答案.【解答】解:因为向银行贷款1000万元,一年后归还银行1065.6多万元,则年利率是(1065.6﹣1000)÷1000=0.0656=6.56%,则年利率高于6.56%;故答案为:6.56.【点评】此题考查了有理数的混合运算,关键是根据年利率的概念列出代数式,进行计算.14.(4分)已知(a﹣)<0,若b=2﹣a,则b的取值范围是2﹣<b<2.【考点】72:二次根式有意义的条件;C2:不等式的性质.【分析】根据被开方数大于等于0以及不等式的基本性质求出a的取值范围,然后再求出2﹣a的范围即可得解.【解答】解:∵(a﹣)<0,∴>0,a﹣<0,解得a>0且a<,∴0<a<,∴﹣<﹣a<0,∴2﹣<2﹣a<2,即2﹣<b<2.故答案为:2﹣<b<2.【点评】本题考查了二次根式有意义的条件,不等式的基本性质,先确定出a的取值范围是解题的关键.15.(4分)已知一个底面为菱形的直棱柱,高为10cm,体积为150cm3,则这个棱柱的下底面积为15cm2;若该棱柱侧面展开图的面积为200cm2,记底面菱形的顶点依次为A,B,C,D,AE是BC边上的高,则CE的长为1或9cm.【考点】I1:认识立体图形;I6:几何体的展开图;L8:菱形的性质.【分析】由底面为菱形的直棱柱,高为10cm,体积为150cm3,由体积=底面积×高,即可求得这个棱柱的下底面积,又由该棱柱侧面展开图的面积为200cm2,即可求得底面菱形的周长与BC边上的高AE的长,由勾股定理求得BE的长,继而求得CE的长.【解答】解:∵底面为菱形的直棱柱,高为10cm,体积为150cm3,∴这个棱柱的下底面积为:150÷10=15(cm2);∵该棱柱侧面展开图的面积为200cm2,高为10cm,∴底面菱形的周长为:200÷10=20(cm),∴AB=BC=CD=AD=20÷4=5(cm),∴AE=S菱形ABCD÷BC=15÷5=3(cm),∴BE==4(cm),∴如图1:EC=BC﹣BE=5﹣4=1(cm),如图2:EC=BC+BE=5+4=9(cm),故答案为:15;1或9.【点评】此题考查了菱形的性质、直棱柱的性质以及勾股定理.此题难度不大,注意审题,掌握直棱柱体积与侧面积的求解方法.16.(4分)如图,平面直角坐标系中有四个点,它们的横纵坐标均为整数.若在此平面直角坐标系内移动点A,使得这四个点构成的四边形是轴对称图形,并且点A的横坐标仍是整数,则移动后点A的坐标为(﹣1,1),(﹣2,﹣2),(0,2),(﹣2,﹣3).【考点】P8:利用轴对称设计图案.【专题】16:压轴题.【分析】根据轴对称图形的定义:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴,把A进行移动可得到点的坐标,注意考虑全面.【解答】解:如图所示:A1(﹣1,1),A2(﹣2,﹣2),A3(0,2),A4(﹣2,﹣3),(﹣3,2)(此时不是四边形,舍去),故答案为:(﹣1,1),(﹣2,﹣2),(0,2),(﹣2,﹣3).【点评】此题主要考查了利用轴对称设计图案,关键是掌握轴对称图形的定义,根据3个定点所在位置,找出A的位置.三、全面答一答(本题有7个小题,共66分)解答应写出文字说明,证明过程或演算步骤.如果觉得有的题目有点困难,那么把自己能写出的解答写出一部分也可以.17.(6分)化简:2[(m﹣1)m+m(m+1)][(m﹣1)m﹣m(m+1)].若m是任意整数,请观察化简后的结果,你发现原式表示一个什么数?【考点】4J:整式的混合运算—化简求值.【分析】根据单项式乘以多项式法则先计算括号里的乘法,再去括号合并同类项,即可算出结果.【解答】解:2[(m﹣1)m+m(m+1)][(m﹣1)m﹣m(m+1)]=2(m2﹣m+m2+m)(m2﹣m﹣m2﹣m)=﹣8m3原式=﹣8m3,表示一个能被8整除的数.【点评】此题主要考查了整式的混合运算,关键是掌握计算顺序,先算乘法,后算加减,注意符号的变化,运用乘法分配律是不要漏乘.18.(8分)当k分别取﹣1,1,2时,函数y=(k﹣1)x2﹣4x+5﹣k都有最大值吗?请写出你的判断,并说明理由;若有,请求出最大值.【考点】H7:二次函数的最值.【专题】32:分类讨论.【分析】当k分别取﹣1,1,2时,函数y=(k﹣1)x2﹣4x+5﹣k表示不同类型的函数,需要分类讨论,最终确定函数的最值.【解答】解:k可取值﹣1,1,2(1)当k=1时,函数为y=﹣4x+4,是一次函数(直线),无最值;(2)当k=2时,函数为y=x2﹣4x+3,为二次函数.此函数开口向上,只有最小值而无最大值;(3)当k=﹣1时,函数为y=﹣2x2﹣4x+6,为二次函数.此函数开口向下,有最大值.因为y=﹣2x2﹣4x+6=﹣2(x+1)2+8,则当x=﹣1时,函数有最大值为8.【点评】本题考查了二次函数的最值.需要根据k的不同取值进行分类讨论,这是容易失分的地方.19.(8分)如图,是数轴的一部分,其单位长度为a,已知△ABC中,AB=3a,BC=4a,AC=5a.(1)用直尺和圆规作出△ABC(要求:使点A,C在数轴上,保留作图痕迹,不必写出作法);(2)记△ABC的外接圆的面积为S圆,△ABC的面积为S△,试说明>π.【考点】KQ:勾股定理;MA:三角形的外接圆与外心;N3:作图—复杂作图.【分析】(1)在数轴上截取AC=5a,再以A,C为圆心3a,4a为半径,画弧交点为B;(2)利用△ABC的外接圆的面积为S圆,根据直角三角形外接圆的性质得出AC为外接圆直径,求出的比值即可.【解答】解:(1)如图所示:(2)∵△ABC的外接圆的面积为S圆,∴S圆=π×()2=π,△ABC的面积S△ABC=×3a×4a=6a2,∴==π>π.【点评】此题主要考查了复杂作图以及直角三角形外接圆的性质,根据已知得出外接圆直径为AC是解题关键.20.(10分)有一组互不全等的三角形,它们的边长均为整数,每个三角形有两条边的长分别为5和7.(1)请写出其中一个三角形的第三边的长;(2)设组中最多有n个三角形,求n的值;(3)当这组三角形个数最多时,从中任取一个,求该三角形周长为偶数的概率.【考点】CE:一元一次不等式组的应用;K6:三角形三边关系;X4:概率公式.【分析】(1)设三角形的第三边为x,根据三角形的三边关系列出不等式组,再解不等式组即可;(2)求出x的所有整数值,即可求出n的值;(3)先求出该三角形周长为偶数的所有情况,再除以总的个数,即可求出答案.【解答】解:(1)设三角形的第三边为x,∵每个三角形有两条边的长分别为5和7,∴7﹣5<x<5+7,∴2<x<12,∴其中一个三角形的第三边的长可以为10.(2)∵2<x<12,它们的边长均为整数,∴x=3,4,5,6,7,8,9,10,11,∴组中最多有9个三角形,∴n=9;(3)∵当x=4,6,8,10时,该三角形周长为偶数,又∵有9个三角形,∴该三角形周长为偶数的概率是.【点评】此题考查了一元一次不等式组的应用,关键是根据三角形的三边关系列出不等式组,在解题时要注意x只能取整数.21.(10分)如图,在梯形ABCD中,AD∥BC,AB=CD,分别以AB,CD为边向外侧作等边三角形ABE和等边三角形DCF,连接AF,DE.(1)求证:AF=DE;(2)若∠BAD=45°,AB=a,△ABE和△DCF的面积之和等于梯形ABCD的面积,求BC的长.【考点】KD:全等三角形的判定与性质;KK:等边三角形的性质;LJ:等腰梯形的性质.【专题】2B:探究型.【分析】(1)根据等腰梯形的性质和等边三角形的性质以及全等三角形的判定方法证明△AED≌△DF A即可;(2)如图作BH⊥AD,CK⊥AD,利用给出的条件和梯形的面积公式即可求出BC的长.【解答】(1)证明:在梯形ABCD中,AD∥BC,AB=CD,∴∠BAD=∠CDA,而在等边三角形ABE和等边三角形DCF中,AB=AE,DC=DF,且∠BAE=∠CDF=60°,∴AE=DF,∠EAD=∠FDA,AD=DA,∴△AED≌△DF A(SAS),∴AF=DE;(2)解:如图作BH⊥AD,CK⊥AD,则有BC=HK,∵∠BAD=45°,∴∠HAB=∠KDC=45°,∴AB=BH=AH,同理:CD=CK=KD,∵S梯形ABCD=,AB=a,∴S梯形ABCD==,而S△ABE=S△DCF=a2,∴=2×a2,∴BC=a.【点评】本题综合性的考查了等腰梯形的性质、等边三角形的性质、全等三角形的判定、全等三角形的性质以及等于直角三角形的性质和梯形、三角形的面积公式,属于中档题目.22.(12分)在平面直角坐标系内,反比例函数和二次函数y=k(x2+x﹣1)的图象交于点A (1,k)和点B(﹣1,﹣k).(1)当k=﹣2时,求反比例函数的解析式;(2)要使反比例函数和二次函数都是y随着x的增大而增大,求k应满足的条件以及x 的取值范围;(3)设二次函数的图象的顶点为Q,当△ABQ是以AB为斜边的直角三角形时,求k的值.【考点】HF:二次函数综合题.【专题】16:压轴题.【分析】方法一:(1)当k=﹣2时,即可求得点A的坐标,然后设反比例函数的解析式为:y=,利用待定系数法即可求得答案;(2)由反比例函数和二次函数都是y随着x的增大而增大,可得k<0,又由二次函数y =k(x2+x﹣1)的对称轴为x=﹣,可得x<﹣时,才能使得y随着x的增大而增大;(3)由△ABQ是以AB为斜边的直角三角形,A点与B点关于原点对称,利用直角三角形斜边上的中线等于斜边的一半,即可得OQ=OA=OB,又由Q(﹣,﹣k),A(1,k),即可得=,继而求得答案.方法二:(1)略.(2)根据反比例函数及二次函数的增减性得出k及x的取值范围.(3)设参数Q点坐标,由于AB为斜边,得出AQ垂直BQ,利用黄金法则二列式便可求解.(4)列出A,B,C三点参数坐标,利用黄金法则二列式便可求解.【解答】方法一:解:(1)当k=﹣2时,A(1,﹣2),∵A在反比例函数图象上,∴设反比例函数的解析式为:y=,代入A(1,﹣2)得:﹣2=,解得:m=﹣2,∴反比例函数的解析式为:y=﹣;(2)∵要使反比例函数和二次函数都是y随着x的增大而增大,∴k<0,∵二次函数y=k(x2+x﹣1)=k(x+)2﹣k,对称轴为:直线x=﹣,要使二次函数y=k(x2+x﹣1)满足上述条件,在k<0的情况下,x必须在对称轴的左边,即x<﹣时,才能使得y随着x的增大而增大,∴综上所述,k<0且x<﹣;(3)由(2)可得:Q(﹣,﹣k),∵△ABQ是以AB为斜边的直角三角形,A点与B点关于原点对称,(如图是其中的一种情况)∴原点O平分AB,∴OQ=OA=OB,作BD⊥OC,QC⊥OC,∴OQ==,∵OB==,∴=,解得:k=±.方法二:(1)略.(2)略.(3)抛物线的顶点Q(﹣,﹣k),A(1,k),B(﹣1,﹣k),∵△ABQ是以AB为斜边的直角三角形,∴AQ⊥BQ,∴K AQ×K BQ=﹣1,∴,∴,k1=,k2=﹣,方法二追加第(4)问:点C为x轴上一动点,且C点坐标为(2k,0),当△ABC是以AB为斜边的直角三角形时,求K的值.(4)△ABC是以AB为斜边的直角三角形,∴AC⊥BC,∴K AC×K BC=﹣1,∵A(1,k),B(﹣1,﹣k),C(2k,0),∴,∴3k2=1,∴k1=,k2=﹣.【点评】此题考查了二次函数的性质、反比例函数的性质以及直角三角形的性质等知识.此题综合性较强,难度较大,注意掌握待定系数法求函数解析式,注意数形结合思想的应用.23.(12分)如图,AE切⊙O于点E,AT交⊙O于点M,N,线段OE交AT于点C,OB ⊥AT于点B,已知∠EAT=30°,AE=3,MN=2.(1)求∠COB的度数;(2)求⊙O的半径R;(3)点F在⊙O上(是劣弧),且EF=5,把△OBC经过平移、旋转和相似变换后,使它的两个顶点分别与点E,F重合.在EF的同一侧,这样的三角形共有多少个?你能在其中找出另一个顶点在⊙O上的三角形吗?请在图中画出这个三角形,并求出这个三角形与△OBC的周长之比.【考点】KO:含30度角的直角三角形;KQ:勾股定理;M2:垂径定理;MC:切线的性质;Q2:平移的性质;R2:旋转的性质;S9:相似三角形的判定与性质.【专题】11:计算题;16:压轴题.【分析】(1)由AE与圆O相切,根据切线的性质得到AE与CE垂直,又OB与AT垂直,可得出两直角相等,再由一对对顶角相等,利用两对对应角相等的两三角形相似可得出三角形AEC与三角形OBC相似,根据相似三角形的对应角相等可得出所求的角与∠A相等,由∠A的度数即可求出所求角的度数;(2)在直角三角形AEC中,由AE及tan A的值,利用锐角三角函数定义求出CE的长,再由OB垂直于MN,由垂径定理得到B为MN的中点,根据MN的长求出MB的长,在直角三角形OBM中,由半径OM=R,及MB的长,利用勾股定理表示出OB的长,在直角三角形OBC中,由表示出OB及cos30°的值,利用锐角三角函数定义表示出OC,用OE﹣OC=EC列出关于R的方程,求出方程的解得到半径R的值;(3)把△OBC经过平移、旋转和相似变换后,使它的两个顶点分别与点E,F重合,在EF的同一侧,这样的三角形共有3个.延长EO与圆交于点D,连接DF,如图所示,由第二问求出半径,的长直径ED的长,根据ED为直径,利用直径所对的圆周角为直角,得到三角形EFD为直角三角形,由∠FDE为30°,利用锐角三角函数定义求出DF的长,表示出三角形EFD的周长,再由第二问求出的三角形OBC的三边表示出三角形BOC的周长,即可求出两三角形的周长之比.【解答】解:(1)∵AE切⊙O于点E,∴AE⊥CE,又OB⊥AT,∴∠AEC=∠CBO=90°,又∠BCO=∠ACE,∴△AEC∽△OBC,又∠A=30°,∴∠COB=∠A=30°;(2)∵AE=3,∠A=30°,∴在Rt△AEC中,tan A=tan30°=,即EC=AE tan30°=3,∵OB⊥MN,∴B为MN的中点,又MN=2,∴MB=MN=,连接OM,在△MOB中,OM=R,MB=,∴OB==,在△COB中,∠BOC=30°,∵cos∠BOC=cos30°==,∴BO=OC,∴OC=OB=,又OC+EC=OM=R,∴R=+3,整理得:R2+18R﹣115=0,即(R+23)(R﹣5)=0,解得:R=﹣23(舍去)或R=5,则R=5;(3)以EF为斜边,有两种情况,以EF为直角边,有四种情况,所以六种,画直径FG,连接EG,延长EO与圆交于点D,连接DF,如图所示:∵EF=5,直径ED=10,可得出∠FDE=30°,∴FD=5,则C△EFD=5+10+5=15+5,由(2)可得C△COB=3+,∴C△EFD:C△COB=(15+5):(3+)=5:1.∵EF=5,直径FG=10,可得出∠FGE=30°,∴EG=5,则C△EFG=5+10+5=15+5,∴C△EFG:C△COB=(15+5):(3+)=5:1.【点评】此题考查了切线的性质,垂径定理,勾股定理,相似三角形的判定与性质,含。

聊城市2012年中考数学试题及试卷分析

聊城市2012年中考数学试题及试卷分析

聊城市2012年中考数学试题及试卷分析聊城市中考数学阅卷评价组聊城市2012年中考数学试题以《义务教育数学课程标准》及《聊城市2012年高中招生考试说明》的内容、范围、要求为依据。

依照“有利于推进课堂教学改革,培养学生的综合能力、创新精神与实践能力;有利于减轻学生课业负担,促进学生生动、活泼主动的学习;有利于高中中专学校选拔素质较高,能力较强的新生”的指导思想。

从我市的教学实际和学生的实际出发,立足于学生发展的需要,注重考察学生的教学基础知识、基本技能、基本能力和基本思想方法,思维能力,空间观念及利用教学知识分析和解决简单实际问题的能力。

坚持以能力立意,注重了时代性,应用性,探究性,综合性和教育性的考察。

为我市进一步推进新课改作出了正确的导向。

一﹑考试形式及试卷结构考试采用闭卷笔试形式,全卷满分120分,考试时间120分钟。

试卷分第Ⅰ卷和第Ⅱ卷两部分,第Ⅰ卷为选择题共12个小题,满分36分;第Ⅱ卷为非选择题,包括填空题5个,共15分,解答题8个,共69分。

从试题结构及呈现形式上看,以考察学生的基础知识掌握程度和推理运算能力为主,以知识立意的同时更加注重能力立意,实际应用及动手能力的考察,体现了稳中求新和考查学生的基本数学素养的素质教育要求,试题难度适中,合乎选拔性考试命题的要求,同时也考察了学生为进一步学习高中课程的主干基础知识。

二﹑主要知识点分布三﹑试题的主要特点1.关注双基教学,重视课本作用本卷全面考察了学生对基础知识、基本思想方法的理解和运用。

试题大部分来源于教材,但又高于教材。

题目知识覆盖面广,求新求活,很好的考察了学生的数学基本素养。

注重对基础知识基本能力,基本的思想方法理解和运用是数学教学的主要内容。

也为下一步教学,进一步指明了方向。

2.贴进生活,重视应用能力的培养数学课程标准明确提出:要培养学生的应用意识,使学生认识到现实生活中,蕴含着大量的数学信息,数学在现实世界中有着广泛的应用,面对实际问题能主动尝试,从数学的角度寻求解决问题的策略。

2012年北京中考数学试卷(含答案)

2012年北京中考数学试卷(含答案)

2012年中考数学卷精析版——北京卷(本试卷满分120分,考试时间120分钟)一、选择题(本题共32分,每小题4分)下面各题均有四个选项,其中只有一个是符合题意的.3.(2012北京市4分)正十边形的每个外角等于【】A.18︒B.36︒C.45︒D.60︒【答案】B。

【考点】多边形外角性质。

【分析】根据外角和等于3600的性质,得正十边形的每个外角等于3600÷10=360。

故选B。

4.(2012北京市4分)下图是某个几何体的三视图,该几何体是【】A.长方体B.正方体C.圆柱D.三棱柱【答案】D。

【考点】由三视图判断几何体。

【分析】主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形,由于主视图和左视图为矩形,可得为柱体,俯视图为三角形可得为三棱柱。

故选D。

5.(2012北京市4分)班主任王老师将6份奖品分别放在6个完全相同的不透明礼盒中,准备将它们奖给小英等6位获“爱集体标兵”称号的同学.这些奖品中3份是学习文具,2份是科普读物,1份是科技馆通票.小英同学从中随机取一份奖品,恰好取到科普读物的概率是【】A.16B.13C.12D.23【答案】B。

【考点】概率。

【分析】根据概率的求法,找准两点:①全部等可能情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率。

本题全部等可能情况的总数6,取到科普读物的情况是2。

∴取到科普读物的概率是2163=。

故选B。

6.(2012北京市4分)如图,直线AB,CD交于点O,射线OM平分∠AOD,若∠BOD=760,则∠BOM 等于【】A.38︒B.104︒C.142︒D.144︒【答案】C。

【考点】角平分线定义,对顶角的性质,补角的定义。

【分析】由∠BOD=760,根据对顶角相等的性质,得∠AOC=760,根据补角的定义,得∠BOC=1040。

由射线OM平分∠AOD,根据角平分线定义,∠COM=380。

∴∠BOM=∠COM+∠BOC=1420。

2012年河北省中考数学试卷(含解析版)

2012年河北省中考数学试卷(含解析版)

2012年河北省中考数学试卷满分为120分,考试时间为120分钟.卷Ⅰ(选择题,共30分)一、选择题(本大题共12个小题.1-6小题,每小题2分,7-12小题,每小题3分,共30分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.下列各数中,为负数的是( )A.0 B.-2 C.1 D.1 22.计算(ab)3的结果是( )A.ab3B.a3b C.a3b3D.3ab3.如图中几何体的主视图是( )A. B. C. D.4.下列各数中,为不等式组230,40xx->⎧⎨-<⎩的解的是( )A.-1 B.0 C.2 D.45.如图,CD是⊙O的直径,AB是弦(不是直径),AB⊥CD于点E,则下列结论正确的是( )A.AE>BE B.AD=BCC.∠D=12∠AEC D.△ADE∽△CBE6.掷一枚质地均匀的硬币10次,下列说法正确的是( )A .每两次必有1次正面向上B .可能有5次正面向上C .必有5次正面向上 D. 不可能有10次正面向上7.如图,点C 在∠A O B 的O B 边上,用尺规作出了C N ∥O A ,作图痕迹中,FG 是( )A .以点C 为圆心,OD 为半径的弧B .以点C 为圆心,DM 为半径的弧 C .以点E 为圆心,OD 为半径的弧 D .以点E 为圆心,DM 为半径的弧8.用配方法解方程x 2+4x +1=0,配方后的方程是( )A .(x+2)2=3B .(x -2)2=3C .(x -2)2=5D .(x+2)2=59.如图,在□ABCD 中,∠A =70°,将□ABCD 折叠,使点D ,C 分别落在点F ,E 处(点F ,E 都在AB 所在的直线上),折痕为MN ,则∠A MF 等于( )A .70°B .40°C .30°D .20° 10.化简的结果是22111x x ÷--( ) A .21x - B .321x - C .21x + D .2(x+1)11.如图,两个正方形的面积分别为16和9,两阴影部分的面积分别为a ,b (a >b ),则a-b 等于( )A.7 B.6 C.5 D.412.如图,抛物线y1=a(x+2)2-3与y2=12(x-3)2+1交于点A(1,3),过点A作x轴的平行线,分别交两条抛物线于点B,C.则以下结论:①无论x取何值,y2的值总是正数;②a=1;③当x=0时,y2-y1=4;④2AB=3AC.其中正确的结论是( )A.①②B.②③C.③④D.①④卷Ⅱ(非选择题,共90分)二、填空题(本大题共6个小是,每小题3分,共18分,把答案写在题中横线上)13.-5的相反数是___________.14.如图,AB、CD相交于点O,AC⊥CD于点C,若∠B O D=38°,则∠A等于_______°.15.已知y=x-1,则(x-y)2+(y-x)+1的值为_______.16.在1×2的正方形网格格点上放三枚棋子,按图所示的位置已放置了两枚棋子,若第三枚棋子随机放在其他格点上,则以这三枚棋子所在格点为顶点的三角形是直角三角形的概率为________.17.某数学活动小组的20位同学站成一列做报数游戏,规则是:从前面第一位同学开始,每位同学依次报自己顺序数的倒数加1,第1位同学报(11+1),第2位同学报(12+1),第3位同学报(13+1)……这样得到的20个数的积为________.18.用4个全等的正八边形进行拼接,使相邻的两个正八边形有一条公共边,围成一圈后中间形成一个正方形,如图1.用n个全等的正六边形按这种方式拼接,如图2,若围成一圈后中间也形成一个正多边形,则n的值为____________.三、解答题(本大题共8个小题,共72分,解答应写出文字说明、证明过程或演算步骤) 19.(本小题满分8分)计算:|-5|--3)0+6×(1132)+(-1)2.20.(本小题满分8分)如图,某市A,B两地之间有两条公路,一条是市区公路AB,另一条是外环公路AD-DC -CB.这两条公路围成等腰梯形ABCD,其中DC∥AB,AB:AD:DC=10:5:2.(1)求外环公路总长和市区公路长的比;(2)某人驾车从A地出发,沿市区公路去B地,平均速度是40km/h.返回时沿外环公路行驶,平均速度是80km/h,结果比去时少用了110h.求市区公路的长.某社区准备在甲、乙两位射箭爱好者中选出一人参加集训,两人各射了5箭,他们的总成绩(单位:环)相同.小宇根据他们的成绩绘制了如下尚不完整的统计图表,并计算了甲成绩的平均数和方差(见小宇的作业).甲、乙两人射箭成绩统计表(1)a =_______,x乙=________; (2)请完成图11中表示乙变化情况的折线;(3)①观察图11,可看出________的成绩比较稳定(填“甲”或“乙”).参照小宇的计算方法,计算乙成绩的方差,并验证你的判断.②请你从平均数和方差的角度分析,谁将被选中.如图,四边形ABCD是平行四边形,点A(1,0),B(3,1),C(3,3).反比例函数y=m x (x>0)的图象经过点D,点P是一次函数y=k x+3-3k(k≠0)的图象与该反比例函数图象的一个公共点.(1)求反比例函数的解析式;(2)通过计算,说明一次函数y=k x+3-3k(k≠0)的图象一定经过点C;(3)对于一次函数y=k x+3-3k(k≠0),当y随x的增大而增大时,确定点P横坐标的取值范围(不必写出过程).如图1,点E是线段BC的中点,分别以B,C为直角顶点的△EAB和△EDC均是等腰直角三角形,且在BC的同侧.(1)AE和ED的数量关系为_________,AE和ED的位置关系为__________;(2)在图1中,以点E为位似中心,作△E GF与△EAB位似,点H是BC所在直线上的一点,连接GH,H D,分别得到了图2和图3.①在图2中,点F在BE上,△E GF与△EAB的相似比为1:2,H是EC的中点.求证:GH=H D,GH⊥H D.②在图3中,点F在BE的延长线上,△E GF与△EAB的相似比是k:1,若BC=2,请直接写出C H的长为多少时,恰好使得GH=H D且GH⊥H D(用含k的代数式表示).某工厂生产一种合金薄板(其厚度忽略不计),这些薄板的形状均为正方形,变长(单位:cm)在5~50之间.每张薄板的成本价(单位:元)与它的面积(单位:cm 2)成正比例,每张薄板的出厂价(单位:元)由基础价和浮动价两部分组成,其中基础价与薄板的大小无关,是固定不变的,浮动价与薄板的边长成正比例.在营销过程中得到了表格中的数据.(1)求一张薄板的出厂价与边长之间满足的函数关系式;(2)已知出厂一张边长40cm 的薄板,获得的利润是26元;(利润=出厂价-成本价) ①求一张薄板的利润与边长之间满足的函数关系式.②当边长为多少时,出厂一张薄板获得的利润最大?最大利润是多少?参考公式:抛物线y =ax 2+bx +c(a ≠0)的顶点坐标是(2b a-,244ac b a-).如图,A(-5,0),B(-3,0),点C在y轴的正半轴上,∠CB O=45°,CD∥AB,∠CDA =90°.点P从点Q(4,0)出发,沿x轴向左以每秒1个单位长度的速度运动,运动时间为t秒.(1)求点C的坐标;(2)当∠BC P=15°时,求t的值;(3)以点P为圆心,P C为半径的⊙P随点P的运动而变化,当⊙P与四边形ABCD的边(或边所在的直线)相切时,求t的值.如图1和图2,在△ABC中,AB=13,BC=14,cos∠ABC=5.13探究如图1,A H⊥BC于点H,则A H=________,AC=________,△ABC的面积S△ABC =________.拓展如图2,点D在AC上(可与点A、C重合),分别过点A、C作直线BD的垂线,垂足为E,F.设BD=x,AE=m,C F=n.(当点D与点A重合时,我们认为S△ABD=0)(1)用含x,m或n的代数式表示S△ABD和S△CBD;(2)求(m+n)与x的函数关系式,并求(m+n)的最大值和最小值;(3)对给定的一个x的值,有时只能确定唯一的点D,指出这样的x的取值范围.发现请你确定一条直线,使得A,B,C三点到这条直线的距离之和最小(不必写出过程),并写出这个最小值.2012年河北省中考数学试卷参考答案与试题解析1.【答案】B【思路分析】考点解剖:本题考查负数的概念与有理数的分类,解题的关键掌握有理数的概念.【解题思路】直接根据负数的概念,可以确定其中的负数只有-2.解答过程:【解答】A、既不是正数,也不是负数,故选项错误;B、是负数,故选项正确;C、是正数,故选项错误;D、是正数,故选项错误.故选B.【规律总结】对提供的实数,确定其是正数还是负数时,往往先对其进行化简,再与0进行大小比较,大于零即为正数、小于零即为负数.2.【答案】C【思路分析】考点解剖:本题考查了幂的运算,解题的关键是正确掌握积的乘方法则.【解题思路】积的乘方等于把每一个因式分别乘方,再把所得的幂相乘.解答过程:【解答】把其中的因式a、b分别乘方,得a3b3,结果为a3b3, 故选C.【规律总结】进行幂的运算时,关键是要正确确定其中的运算法则,防止滥用公式,而导致出现错误.3.【答案】A【思路分析】考点解剖:本题考查了对几何体的三视图的认识,解题的关键是正确根据三视图的特征,确定平面图形.【解题思路】主视图也就是从几何体的正面观察,得到的平面图形.解答过程:【解答】从正面观察这个几何体,得到的平面图形是左、中、右三个矩形,其中左、右两个矩形的大小相同,中间一个是小于两边的矩形.因此,符合题意的主视图是A, 故选A.【规律总结】三个视图中,主视图反映了物体的长度和高度并反映上下、左右的位置关系;俯视图反映了物体的长度和宽度,并反映了物体左右、前后的位置关系;左视图反映了物体的高度和宽度,并反映了物体上下、前后的位置关系.三视图之间的对应关系:主、俯长相等;主、左高平齐;俯、左宽相等.4.【答案】C【思路分析】考点解剖:本题考查了不等式组的解法,解题的关键是正确解答不等式,并能够确定几个不等式组成不等式组的解集.【解题思路】分别求得几个不等式的解集,2x-3>0的解集为x>32、x-4<0的解集为x<4,再确定它们的公共部分为:32<x<4,,进而确定符合条件的特殊解.解答过程:【解答】分别求得几个不等式的解集,2x-3>0的解集为x>32、x-4<0的解集为x<4,再确定它们的公共部分为:32<x<4,则所给的数中是不等式的解的有2,故选C.【规律总结】确定不等式组的解集可采用口诀:(1)小小取小:都是小于号的取小于号后面较小的那个数;(2)大大取大:都是大于号的取大于号后面较大的那个数;(3)大小小大中间找:大于小的小于大的中间的部分即为解集;(4)大大小小无处找:大于大的小于小的不等式组无解.5.【答案】D【思路分析】考点解剖:本题考查了垂径定理、圆周角定理,解题的关键正确掌握垂径定理、圆周角定理.【解题思路】根据圆的垂径定理知道:点E是AB的中点、CD垂直平分AB所对的两条弧AB、ADB,∠AEC=90°、∠D的度数无法确定;根据圆周角性质,可以知道:∠D=∠B、∠A=∠C,因此,可以确定图形中隐含的三角形相似.解答过程:【解答】∵CD是⊙O的直径,AB是弦(不是直径),AB⊥CD于点E,∴AE=BE,AC BC,,故A、B错误;∵∠AEC不是圆心角,∴∠D≠12∠AEC,故C错误;∵∠CEB=∠AED,∠DAE=∠BCE,∴△ADE∽△CBE,故C正确.故选D.【规律总结】垂径定理往往隐含着图形中存在着的相等弧、相等的角.同弧所对的圆周角相等,为图形中构造三角形相似架设了桥梁.6.【答案】B【思路分析】考点解剖:本题考查了概率与频率之间的关系,解题的关键正确理解概率与频率之间的内在联系.【解题思路】掷一枚质地均匀的硬币1次,出现正面或反面朝上的概率都是12,因此,平均每两次中有1次正面向上或有1次反面向上.解答过程:【解答】因为一枚质地均匀的硬币只有正反两面,所以不管抛多少次,硬币正面朝上的概率都是12,所以掷一枚质地均匀的硬币10次,可能有5次正面向上;故选B.【规律总结】随机事件的频率,指此事件发生的次数与试验总次数的比值,当试验次数很多时,它具有一定的稳定性,即稳定在某一常数附近,而偏离的它可能性很小.为了说明这种规律,我们把这个常数称为这个随机事件的概率.它从数量上反映了随机事件发生的可能性的大小,而频率在大量重复试验的前提下可近似地作为这个事件的概率.7.【答案】D【思路分析】考点解剖:本题考查了平行线的判定、尺规作图,解题的关键正确掌握基本的尺规作图方法.【解题思路】先根据条件确定图形中相等的角,再用尺规作一个角等于已知角的方法解决问题.解答过程:【解答】由图形和条件可以知道:∠A O B=∠N CB,根据用尺规作一个角等于已知角的方法,即可知道FG是以点E为圆心,D M为半径的弧, 故选D.【规律总结】解答这类问题的一般步骤,往往是先根据问题条件,再确定隐含在图形中的边角之间的关系,从而解决问题.8.【答案】A【思路分析】考点解剖:本题考查了等式的性质和配方法,解题的关键正确理解等式的性质,并熟练掌握配方法的意义和一般方法.【解题思路】方法一:在方程的两边同时加上3,使方程的一边化为完全平方式;方法二:也可以先将方程中的常数项移至方程的另一边,再在方程的两边同时加上4.解答过程:【解答】方法一:在方程的两边同时加上3,得x 2+4x +4=3,即:(x +2)2=3;方法二:也可以先将方程中的常数项移至方程的另一边,得得x 2+4x =-1,再在方程的两边同时加上4,得得x 2+4x +4=-1+4,即:(x +2)2=3.故选A ﹒【规律总结】配方法的一般步骤:1.方程两边同除以二次项系数,化二次系数为1;2.移项,使方程左边为二次项和一次项,右边为常数项;3.配方,方程两边都加上一次项系数一半的平方,把原方程化为(x +a )2=b 的形式.9.【答案】B【思路分析】考点解剖:本题考查了平行四边形性质和轴对称图形的性质,解题的关键是熟练掌握灵活应用平行四边形性质和轴对称图形的性质将问题进行转化.【解题思路】根据题意知道∠D MN =∠FMN 、∠D =∠MF E ,再根据平行四边形的性质,可以得到∠MF A =∠A =70°.再应用三角形内角和定理可以求得∠A MF 的度数. 解答过程:【解答】根据题意知道四边形MF E N 与四边形M DC N 关于折痕MN 成轴对称,则∠D MN =∠FMN ,即∠D MF =2∠D MN 、∠MF E =∠D .又因为∠A +∠D =180°、∠MF A +∠MF E =180°,所以∠MF A =∠A =70°.因为∠A MF+∠MF A +∠A =180°,所以∠A MF =40°. 故选B .【规律总结】解答这类问题时,往往需要灵活应用轴对称图形隐含的边、角之间的相等关系解决问题.10.【答案】C【思路分析】考点解剖:本题考查了分式的运算,解题的关键熟练掌握因式分解和约分.【解题思路】先将除法运算转化为乘法运算,并把分子分母因式分解,再进行约分计算. 解答过程: 【解答】22111x x ÷--=2(1)(1)(1)x x x ⨯--+=21x +,故选择C. 【规律总结】分式的乘除法的法则:两个分式相乘,把分子相乘的积作为积的分子,把分母相乘的积作为积的分母;两个分式相除,把除式的分子和分母颠倒位置后再与被除式相乘.对于分子、分母是多项式的分式的乘除法的运算时,一般先分解因式,并在运算过程中约分,可以使运算简化.11.【答案】A【思路分析】考点解剖:本题考查了同学们整体、转化数学思想的形成,解题的关键是灵活地将陌生的数学问题转化为熟悉的问题.【解题思路】运用整体思想,把求a-b的问题转化为与已知的两个正方形的面积有关的计算.解答过程:【解答】令重叠部分的面积为m,则a-b=(16+m)-(9+m)=16-9=7.【规律总结】解答这类问题时,往往需要灵活地从整体出发,善于将待求的问题进行转化.12.【答案】D【思路分析】考点解剖:本题考查了二次函数的解析式确定、图象信息,解题的关键是正确从图象中获取相关信息,并结合问题条件进行解题.【解题思路】根据抛物线上的点A坐标,可以直接确定y1的解析式,即知道a值,进而确定点A、B、C的坐标以及当x=0时,y1、y2的值,从而解决问题.解答过程:【解答】由图象可以知道y2的图象全部在x轴上方,所以无论x取何值,y2的值总是正数.∵抛物线y1=a(x+2)2-3过点A(1,3),∴a(1+2)2-3=3,∴a=23,即y1=23(x+2)2-3,当x=0时,y1=-13、y2=112,则y2-y1=356;当y=3时,23(x+2)2-3=3,解得x1=-5、x2=1,即A(1,3)、B(-5,3),则AB=6;当y=3时,y2=12(x-3)2+1,解得x1=5、x2=1,即A(1,3)、C(5,3),则AC=4;∴2AB=3AC.因此,其中正确的有①④.故选D.【规律总结】解答这类问题,往往需要综合应用所学的数学知识,从二次函数的图象性质、解析式的求法角度灵活运用,正确获取相关信息进行解答.有时还需要应用淘汰法加以选择.13.【答案】5【思路分析】考点解剖:本题考查了实数的相关概念,解题的关键正确理解实数相反数的意义.【解题思路】直接相反数的意义确定,只有符号不同的两个数叫做互为相反数.解答过程:【解答】-5的相反数是5,故填5﹒【规律总结】正数的相反数是负数、负数的相反数是正数、0的相反数是0.14.【答案】52°【思路分析】考点解剖:本题考查了垂直定义、三角形内角和定理、对顶角性质,解题的关键是灵活应用垂直定义、三角形内角和定理和对顶角性质,使待求问题得以转化.【解题思路】根据垂直定义知道:∠AC O=90°,再根据对顶角性质可以知道∠A O C=∠B O D =38°,最后应用三角形内角和定理确定∠A的度数.解答过程:【解答】∵∠BOD=38°,∴∠AOC=38°,∵AC⊥CD于点C,∴∠A=90°﹣∠AOC=90°﹣38°=52°.故答案为52°.【规律总结】解答这类问题时,往往借助于三角形内角和、外角或平行线的相关性质,使问题得以转化.15.【答案】1【思路分析】考点解剖:本题考查了代数式的值,解题的关键是灵活对条件和问题进行适当变形.【解题思路】将y=x-1变形为x-y=1,再代入其中进行计算求得结果.解答过程:【解答】(x-y)2+(y-x)+1=(x-y)2-(x-y)+1=1-1+1=1,故填1﹒【规律总结】整体思想是指淡化问题的细节,将结构相同的部分看作一个整体的解题思想,它实质上是化归思想的一种具体的体现.恰当地使用整体思想解题,可以将复杂问题简单化,取到事半功倍的效果,但在使用前一定要将问题的细节分析清楚,以免弄巧成拙,产生错误..16.【答案】3 4【思路分析】考点解剖:本题考查了等可能条件下的概率,解题的关键正确理解等可能条件下的概率的意义.【解题思路】先确定这个等可能事件下共有多少种等可能的结果,再确定所要研究的事件可能出现的结果数目,从而应用概率计算公式求解.解答过程:【解答】因为第三个棋子可能落在其余四个位置的格点上,而以这枚棋子所在格点与已知格点为顶点的三角形的格点有3个,因此,以这三枚棋子所在格点为顶点的三角形是直角三角形的概率为34.故答案为:34﹒【规律总结】确定等可能条件下的概率时,一定确定好等可能事件下共有等可能发生的结果数目以及所要研究的事件可能出现的结果数.17.【答案】21【思路分析】考点解剖:本题考查了阅读理解能力和探索规律的能力,解题的关键正确阅读规则,确定其中隐含的内在规律.【解题思路】根据报数游戏规则,可以知道:第n位同学报(1n+1).不妨先求得到的第2个数的积、得到的第3个数的积、得到的第4个数的积,并从中发现隐含在其中的规律.解答过程:【解答】第2个数的积为(11+1)(12+1)=2×(12+1)=3、得到的第3个数的积为3×(13+1)=4、得到的第4个数的积为4×(14+1)=5、得到的第n个数的积为n×(1n+1)=n+1.因此,这样得到的第20个数的积为21.故答案为:21.【规律总结】解决有探索规律的问题,往往先从特殊的问题进行入手,再对其进行一般化,从而获取一般化的结论.18.【答案】6【思路分析】考点解剖:本题考查了正多边形的性质,解题的关键是熟练应用正多边形的边数与内角的数量关系进行解题.【解题思路】先求得正八边形的每个内角的度数,再确定所求的中间一个正多边形的内角度数,从而根据多边形的外角和为360°,进而确定其边数.解答过程:【解答】正六边形的每个内角都是120°,则所求的中间一个正多边形的内角度数360°-120°-120°=120°,则这个多边形的每个外角度数为180°-120°=60°,即n=360°÷60°=6,故答案为:6.【规律总结】解决与正多边形边、角有关的问题时,往往从其外角和以及每个外角的度数进行如手进行思考,较为简捷.19【答案】4【思路分析】考点解剖:本题考查了实数的混合运算,解题的关键是熟练掌握实数的混合运算法则.【解题思路】观察本题中的算式,不妨先对算式中的绝对值、乘方和乘法同时进行运算,再进行加减运算.解答过程:【解答】|-5|--3)0+6×(1132-)+(-1)2=5-1+(2-3)+1=4.【规律总结】实数混合运算的顺序:先算乘方和开方,再算乘除,最后算加减.如果遇到括号,则先进行括号里的运算.当然,计算时,还要根据具体的算式,确定恰当的运算顺序求得正确的计算结果.20.【答案】10【思路分析】考点解剖:本题考查了列代数式和列方程解决实际问题的能力,解题的关键是从实际问题中获取等量关系式.【解题思路】用含有相同参数的代数式分别表示外环公路总长、市区公路长,进而解决问题(1);问题(2)中,隐含着这样一个相等关系式:去时所用时间-返回时所用时间=110h ,进而建立方程解决问题.解答过程:【解答】(1)设AB =10x km ,则AD =5x km ,CD =2x km .∵四边形ABCD 是等腰梯形,DC ∥AB ,∴BC =AD =5x ,∴AD +DC +CB =12x ,∴外环公路总长和市区公路总长的比为12x :10x =6:5;(2)由(1)可知,市区公路的长为10x km ,外环公路的长为12x km .由题意,得10121408010x x =+,解这个方程,得x =1,∴10x =10.答:市区公路的长为10km .【规律总结】应用方程解决实际问题,其关键根据实际问题,寻找等量关系式建立恰当的方程.21.【答案】(1)见解析(2)见解析(3)见解析【思路分析】考点解剖:本题考查了从统计图表中获取信息,应用数据的集中程度、离散程度的知识进行解决实际问题.【解题思路】(1)根据他们的总成绩相同可以求得a值,并应用平均数的意义得到可以解决;(2)直接可以补全统计图;(3)只要求得乙成绩的方差,即可联系平均数确定应该是谁将被选中.解答过程:【解答】(1)由题意得:甲的总成绩是:9+4+7+4+6=30,则a=30﹣7﹣7﹣5﹣7=4,x乙=30÷5=6,故答案为:4,6;(2)如图所示:;(3)①乙,S2乙=15[(7-6)2+(5-6)2+(7-6)2+(4-6)2+(7-6)2]=1.6.由于S2乙<S2甲,所以上述判断正确;②因为两人成绩的平均水平(平均数)相同,乙的成绩比甲稳定,所以乙将被选中.【规律总结】确定谁被选中参加某项活动,往往从综合数据的集中程度和离散程度进行思考.一组数据的方差越大,这组数据越稳定.22.【答案】见解析【思路分析】考点解剖:本题考查了平行四边形性质、反比例函数、一次函数的图象性质,解题的关键是灵活应用待定系数法解决相关问题.【解题思路】(1)根据图形性质,可以看成是点D 由点A 平移而得,并应用待定系数法求得反比例函数解析式;(2)直接将点C 坐标代入其中,看是否符合一次函数解析式,从而进行说理;(3)由于一次函数是y 随x 的增大而增大,所以整个图象从左到右是呈上升趋势,即分别求得过点C 分别与x 、y 垂直时直线与双曲线相交时的点的横坐标.解答过程:【解答】(1)由题意,得AD =CB =2,故点D 的坐标为(1,2).∵反比例函数y =m x 的图象经过点D (1,2),∴2=1m .∴m =2,∴反比例函数的解析式为y =2x ;(2)当x =3时,y = k x +3-3k =3,∴一次函数y =k x +3-3k(k≠0)的图象一定过点C ;(3)设点P 的横坐标为a ,23<a <3.【规律总结】确定反比例函数解析式时,往往只需要知道图象上的一个点的坐标即可.确定一次函数系数的取值范围问题,往往通过y 与x 之间的增减性关系来确定.23.【答案】(1)见解析(2)见解析【思路分析】考点解剖:本题考查了三角形全等判定、性质和三角形相似的判定、性质以及条件探索能力,解题的关键是正确应用三角形全等、三角形相似的判定和性质解题.【解题思路】(1)直接知道其中的△EAB ≌△ECD ,从而可以得到AE =DE 、∠AED =90°;(2)①可以得到GF =H C 、∠GFH =∠C =90°、FH =CD ,则有△HGF ≌△D H C ,从而可以得到GH =H D ,GH ⊥H D ;②要使得GH =H D 且GH ⊥H D ,必须具备的条件是△HGF ≌△D H C ,即C H =GF =k 时,恰好有FH =CD .解答过程:【解答】(1)∵点E 是线段BC 的中点,分别BC 以为直角顶点的△EAB 和△EDC 均是等腰三角形,∴BE=EC=DC=AB ,∠B=∠C=90°,∴△ABE ≌△DCE ,∴AE=DE ,∠AEB=∠DEC=45°,∴∠AED=90°,∴AE ⊥ED .故答案为:AE=ED,AE⊥ED;(2)①证明:由题意,∠B=∠C=90°,AB=BE=EC=DC.∵△E GF与△EAB位似且相似比为1:2,∴∠GF E=∠B=90°,GF=12AB,E F=12EB,∴∠GF E=∠C.∵E H=H C=1 2EC,∴GF=H C,FH=F E+E H=12EB+12EC=12BC=EC=CD,∴△HGF≌△D H C,∴GH=H D,∠GHF=∠H DC.又∵∠H DC+∠D H C=90°,∴∠GHF+∠D H C=90°,∴∠GH D=90°,∴GH⊥H D;②根据题意得出:∵当GH=HD,GH⊥HD时,∴∠FHG+∠DHC=90°,∵∠FHG+∠FGH=90°,∴∠FGH=∠DHC,∴DH GHFGH DHCDCH GFH=⎧⎪∠=⎨⎪∠=⎩,∴△GFH≌△HCD,∴CH=FG,∵EF=FG,∴EF=CH,∵△EGF与△EAB的相似比是k:1,BC=2,∴BE=EC=1,∴EF=k,∴CH的长为k.【规律总结】这是一道融三角形全等、三角形相似和条件探索于一体的简单综合题.解答时,需要应用类比的方法、综合应用所学数学知识解决问题.24.【答案】(1)y=2x+10(2)见解析【思路分析】考点解剖:本题考查了应用一次函数、二次函数解决实际问题的能力,解题的关键是对于实际问题能够灵活地构建恰当的数学模型,并应用其相关性质加以解答.【解题思路】(1)由每张薄板的出厂价是薄板的边长一次函数,根据表格中的对应值即可求得其函数关系式;(2)由于利润=出厂价-成本价,即从(1)中的函数关系中减去成本价,可得一张薄板的利润与边长之间的二次函数关系式,进而可确定边长为某值时对应的函数的最大值. 解答过程:【解答】(1)设一张薄板的边长为x cm ,它的出厂价为y 元,基础价为n 元,浮动价为k x 元,则y =k x +n .由表格中的数据,得5020,7030.k n k n =+⎧⎨=+⎩ 解得2,10.k n =⎧⎨=⎩,所以y =2x +10;(2)①设一张薄板的利润为P 元,它的成本价为m x 2元,由题意, 得P =y -m x 2=2x +10-m x 2.将x =40,P =26代入P =2x +10-m x 2中, 得26=2×40+10-m×402,解得m =125,所以P =-125x 2+2x +10;②因为a =-125<0,所以,当x =-22512225ba=-=⎛⎫⨯- ⎪⎝⎭(在5~50之间)时,P 最大值=22141024253514425ac b a⎛⎫⨯-⨯- ⎪-⎝⎭==⎛⎫⨯- ⎪⎝⎭,即出厂一张边长为25cm 的薄板,获得的利润最大,最大利润是35元.【规律总结】对于生活中的实际问题,要能够抓住隐含中其中的数量关系,根据变量之间的变化关系确定适当的数学函数模型进行解答. 25.【答案】(1)(0,3)(2)(3)1或4或5.6【思路分析】考点解剖:本题考查了勾股定理、解直角三角形和直线与圆相切的性质,解题的关键灵活应用三角形中的边角关系构造直角三角形解决问题,并根据点的运动位置确定时直线与圆相切时的性质.【解题思路】(1)直接求得O C 的长度;(2)先求得OP 的长度,再确定运动的路程PQ 长度,进而求得时间t 的值;(3)⊙P 与四边形ABCD 的边(或边所在的直线)相切,其实质隐含了三种情况进行分类讨论. 解答过程:【解答】(1)∵∠BC O =∠CB O =45°,∴O C =O B =3.又∵点C 在y 轴的正半轴上,∴点C 的坐标为(0,3);(2)当点P 在点B 的右侧时,如图2.由∠BC P =15°,得∠P C O =30°,故OP =O C t a n30°。

2012年湖北省黄冈市中考数学试卷及解析

2012年湖北省黄冈市中考数学试卷及解析

2012年湖北省黄冈市中考数学试卷及解析一、选择题(本题个8个小题,每小题3分,共24分)2.(2012•黄冈)2012年5月25日有700多位来自全国各地的知名企业家聚首湖北共签约项目投资总额为909260000000元,将909260000000用科学记数法表示为表示(保留3个有效4.(2012•黄冈)如图,水平放置的圆柱体的三视图是()5.(2012•黄冈)若顺次连接四边形ABCD各边的中点所得四边形是矩形,则四边形ABCD6.(2012•黄冈)如图,AB为⊙O的直径,弦CD⊥AB于E,已知CD=12,BE=2,则⊙O的直径为()7.(2012•黄冈)下列说法中①若式子有意义,则x>1.②已知∠α=27°,则∠α的补角是153°.③已知x=2是方程x2﹣6x+c=0的一个实数根,则c的值为8.④在反比例函数y=中,若x>0时,y随x的增大增大,则k的取值范围是k>2.中,若8.(2012•黄冈)如图,在Rt△ABC中,∠C=90°,AC=BC=6cm,点P从点A出发,沿AB方向以每秒cm的速度向终点B运动;同时,动点Q从点B出发沿BC方向以每秒1cm的速度向终点C运动,将△PQC沿翻折,点P的对应点为点P′.设点Q运动的时间为t秒,若四边形QPCP′为菱形,则t的值为()=,再表示出∴=,t∴===,再表示出所需要的线段长代入即可.二、填空题(本题个8个小题,每小题3分,共24分)9.(2012•黄冈)﹣的倒数是﹣3.10.(2010•崇左)分解因式:x3﹣9x=x(x+3)(x﹣3).11.(2012•黄冈)化简的结果是.+)÷=[+]=+•====12.(2012•黄冈)如图,在△ABC中,AB=AC,∠A=36°,AB的垂直平分线交AC于点E,垂足为点D,连接BE,则∠EBC的度数为36°.C==7213.(2012•黄冈)已知实数x满足x+=3,则x2+的值为7.+2++=714.(2012•黄冈)如图,在梯形ABCD中,AD∥BC,AD=4,AB=CD=5,∠B=60°,则下底BC的长为9.15.(2012•黄冈)在平面直角坐标系中,△ABC的三个顶点的坐标是A(﹣2,3),B(﹣4,﹣1),C(2,0),将△ABC平移至△A1B1C1的位置,点ABC的对应点分别是A1B1C1,若点A1的坐标为(3,1).则点C1的坐标为(7,﹣2).16.(2012•黄冈)某物流公司的快递车和货车同时从甲地出发,以各自的速度匀速向乙地行驶,快递车到达乙地后缷完物品再另装货物共用45分钟,立即按原路以另一速度匀速返回,直至与货物相撞.已知货车的速度为60千米/时,两车之间的距离y(千米)与货车行驶时间x(小时)之间的函数图象如图所示,现有以下4个结论:①快递车从甲地到乙地的速度为100千米/时;②甲、乙两地之间的距离为120千米;③图中点B的坐标为(3,75);④快递车从乙地返回时的速度为90千米/时,以上4个结论正确的是①③④.三、解答题(本题个9个小题,72分)17.(2012•黄冈)解不等式组.18.(2012•黄冈)如图,在正方形ABCD中,对角线AC、BD相交于点O,E、F分别在OD、OC上,且DE=CF,连接DF、AE,AE的延长线交DF于点M.求证:AM⊥DF.19.(2012•黄冈)在一个口袋中有4个完全相同的小球,把它们分别标上1、2、3、4.小明先随机地摸出一个小球,小强再随机的摸出一个小球.记小明摸出球的标号为x,小强摸出的球标号为y.小明和小强在此基础上共同协商一个游戏规则:当x>y时小明获胜,否则小强获胜.①若小明摸出的球不放回,求小明获胜的概率.②若小明摸出的球放回后小强再随机摸球,问他们制定的游戏规则公平吗?请说明理由.==20.(2012•黄冈)为了全面了解学生的学习、生活及家庭的基本情况,加强学校、家庭的联系,梅灿中学积极组织全体教师开展“课外访万家活动”,王老师对所在班级的全体学生进行实地家访,了解到每名学生家庭的相关信息,先从中随机抽取15名学生家庭的年收入情况,要说明理由.21.(2012•黄冈)某服装厂设计了一款新式夏装,想尽快制作8800件投入市场,服装厂有AB两个制衣间,A车间每天加工的数量是B车间的1.2倍,A、B两车间共完成一半后,A 车间出现故障停产,剩下全部由B车间单独完成,结果前后共用了20天完成,求A、B两车间每天分别能加工多少件.+=20+=2022.(2012•黄冈)如图,在△ABC中,BA=BC,以AB为直径作半圆⊙O,交AC于点D,连接DB,过点D作DE⊥BC,垂足为点E.(1)求证:DE为⊙O的切线;(2)求证:BD2=AB•BE.∴=,∴=,23.(2012•黄冈)新星小学门口有一直线马路,为方便学生过马路,交警在路口设有一定宽度的斑马线,斑马线的宽度为4米,为安全起见,规定车头距斑马线后端的水平距离不得低于2米,现有一旅游车在路口遇红灯刹车停下,汽车里司机与斑马线前后两端的视角分别为∠FAE=15°和∠FAD=30°,司机距车头的水平距离为0.8米,试问该旅游车停车是否符合上述安全标准?(E、D、C、B四点在平行于斑马线的同一直线上)参考数据:tan15°=2﹣,sin15°=,cos15°=,≈1.732,≈1.414.EB=,在BD=EB==,BD==②∴4=,即(=2,CD=224.(2012•黄冈)某科技开发公司研制出一种新型的产品,每件产品的成本为2400元,销售单价定为3000元,在该产品的试销期间,为了促销,鼓励商家购买该新型产品,公司决定商家一次购买这种新型产品不超过10件时,每件按3000元销售;若一次购买该种产品超过10件时,每多购买一件,所购买的全部产品的销售单价均降低10元,但销售单价均不低于2600元.(1)商家一次购买这种产品多少件时,销售单价恰好为2600元?(2)设商家一次购买这种产品x件,开发公司所获得的利润为y元,求y(元)与x(件)之间的函数关系式,并写出自变量x的取值范围.(3)该公司的销售人员发现:当商家一次购买产品的件数超过某一数量时,会出现随着一次购买的数量的增多,公司所获得的利润反而减少这一情况.为使商家一次购买的数量越多,公司所获得的利润越大,公司应将最低销售单价调整为多少元?(其它销售条件不变)y=25.(2012•黄冈)如图,已知抛物线的方程C1:y=﹣(x+2)(x﹣m)(m>0)与x轴相交于点B、C,与y轴相交于点E,且点B在点C的左侧.(1)若抛物线C1过点M(2,2),求实数m的值;(2)在(1)的条件下,求△BCE的面积;(3)在(1)条件下,在抛物线的对称轴上找一点H,使BH+EH最小,并求出点H的坐标;(4)在第四象限内,抛物线C1上是否存在点F,使得以点B、C、F为顶点的三角形与△BCE 相似?若存在,求m的值;若不存在,请说明理由.m=(x+2BF==BE==±,m=+2(在抛物线上,∴EC==m=。

2012年福州市中考数学试题及答案

2012年福州市中考数学试题及答案

二○一二年福州市初中毕业会考、高级中等学校招生考试数学试卷答案解析一、选择题(共10小题,每题4分,满分40分;每小题只有一个正确的选项,请在答题卡的相应位置填涂)1.3的相反数是A .-3B .13C .3D .-132.今年参观“5·18”海交会的总人数约为489000人,将489000用科学记数法表示为 A .48.9×104 B .4.89×105 C .4.89×104 D .0.489×106 3.如图是由4个大小相同的正方体组合而成的几何体,其主视图是4.如图,直线a ∥b ,∠1=70°,那么∠2的度数是A .50°B .60°C .70°D .80°5.下列计算正确的是A .a +a =2aB .b 3·b 3=2b 3C .a 3÷a =a 3D .(a 5)2=a 76.式子x -1在实数范围内有意义,则x 的取值范围是A .x <1B .x ≤1C .x >1D .x ≥17.某射击运动员在一次射击练习中,成绩(单位:环)记录如下:8,9,8,7,10.这组数据的平均数和中位数分别是A .8,8B .8.4,8C .8.4,8.4D .8,8.48.⊙O 1和⊙O 2的半径分别是3cm 和4cm ,如果O 1O 2=7cm ,则这两圆的位置关系是 A .内含 B .相交 C .外切 D .外离9.如图,从热气球C 处测得地面A 、B 两点的俯角分别为30°、45°,如果此时热气球C 处的高度CD 为100米,点A 、D 、B 在同一直线上,则AB 两点煌距离是 A .200米 B .2003米 C .2203米 D .100(3+1)米故选D . 10.如图,过点C (1,2)分别作x 轴、y 轴的平行线,交直线y =-x +6于A 、B 两点,若反比例函数y =kx(x >0)的图像与△ABC 有公共点,则k 的取值范围是A .2≤k ≤9B .2≤k ≤8C .2≤k ≤5D .5≤k ≤8第3题图A B CD a 第4题图12b 第9题图 A B CD30° 45°二、填空题(共5小题,每题4分,满分20分;请将正确答案填在答题卡相应位置) 11.分解因式:x 2-16=_________________.12.一个袋子中装有3个红球和2个绿球,这些球除了颜色外都相同,从袋子中随机摸出一个球,则摸到红球的概率为__________________.13.若20n 是整数,则正整数n 的最小值为________________.14.计算:x -1x +1x=______________.15.如图,已知△ABC ,AB =AC =1,∠A =36°,∠ABC 的平分线BD 交AC 于点D ,则AD 的长是______,cos A 的值是______________.(结果保留根号) A B C D第15题图三、解答题(满分90分;请将正确答案及解答过程填在答题卡相应位置.作图或添辅助线用铅笔画完,再用黑色签字笔描黑) 16.(每小题7分,共14分)(1) 计算:|-3|+(π+1)0-4. (2) 化简:a (1-a )+(a +1)2-1.17.(每小题7分,共14分)(1) 如图,点E 、F 在AC 上,AB ∥CD ,AB =CD ,AE =CF .求证:△ABF ≌△CDE . (2) 如图,方格纸中的每个小方格是边长为1个单位长度的正方形. ① 画出将Rt △ABC 向右平移5个单位长度后的Rt △A 1B 1C 1; ② 再将Rt △A 1B 1C 1绕点C 1顺时针旋转90°,画出旋转后的Rt △A 2B 2C 1,并求出旋转过程中线段A 1C 1所扫过的面积(结果保留π).18.(满分12分)省教育厅决定在全省中小学开展“关注校车、关爱学生”为主题的交通安全教育宣传周活动.某中学为了了解本校学生的上学方式,在全校范围内随机抽查了部分学生,将收集的数据绘制成如下两幅不完整的统计图(如图所示),请根据图中提供的信息,解答下列问题.(1) m =_______%,这次共抽取__________名学生进行调查;并补全条形图; (2) 在这次抽样调查中,采用哪种上学方式的人最多?(3) 如果该校共有1500名学生,请你估计该校骑自行车上学的学生约有多少名? A B C D E F 第17(1)题图 第17(2)题图 A BC 学生上学方式扇形统计图 学生上学方式条形统计图19.(满分11分)某次知识竞赛共有20道题,每一题答对得5分,答错或不答都扣3分.(1) 小明考了68分,那么小明答对了多少道题?(2) 小亮获得二等奖(70~90分),请你算算小亮答对了几道题?20.(满分12分)如图,AB为⊙O的直径,C为⊙O上一点,AD和过C点的切线互相垂直,垂足为D,AD 交⊙O于点E.(1) 求证:AC平分∠DAB;(2) 若∠B=60º,CD=23,求AE的长.第20题图21.(满分13分)如图①,在Rt △ABC 中,∠C =90º,AC =6,BC =8,动点P 从点A 开始沿边AC 向点C 以每秒1个单位长度的速度运动,动点Q 从点C 开始沿边CB 向点B 以每秒2个单位长度的速度运动,过点P 作PD ∥BC ,交AB 于点D ,连接PQ .点P 、Q 分别从点A 、C 同时出发,当其中一点到达端点时,另一点也随之停止运动,设运动时间为t 秒(t ≥0).(1) 直接用含t 的代数式分别表示:QB =______,PD =______.(2) 是否存在t 的值,使四边形PDBQ 为菱形?若存在,求出t 的值;若不存在,说明理由.并探究如何改变点Q 的速度(匀速运动),使四边形PDBQ 在某一时刻为菱形,求点Q 的速度; (3) 如图②,在整个运动过程中,求出线段PQ 中点M 所经过的路径长.第21题图① B C D P Q 第21题图② B C D PQ22.(满分14分)如图①,已知抛物线y =ax 2+bx (a ≠0)经过A (3,0)、B (4,4)两点.(1) 求抛物线的解析式;(2) 将直线OB 向下平移m 个单位长度后,得到的直线与抛物线只有一个公共点D ,求m 的值及点D 的坐标; (3) 如图②,若点N 在抛物线上,且∠NBO =∠A BO ,则在(2)的条件下,求出所有满足△POD ∽△NOB 的点P 的坐标(点P 、O 、D 分别与点N 、O 、B 对应).A B D O x y 第22题图① A B D O x y 第22题图② N二○一二年福州市初中毕业会考、高级中等学校招生考试数学试卷答案解析一、选择题(共10小题,每题4分,满分40分;每小题只有一个正确的选项,请在答题卡的相应位置填涂)1.3的相反数是A .-3B .13C .3D .-13考点:相反数. 专题:存在型.分析:根据相反数的定义进行解答.解答:解:由相反数的定义可知,3的相反数是-3.故选A .点评:本题考查的是相反数的定义,即只有符号不同的两个数叫做互为相反数.2.今年参观“5·18”海交会的总人数约为489000人,将489000用科学记数法表示为 A .48.9×104 B .4.89×105 C .4.89×104 D .0.489×106 考点:科学记数法—表示较大的数.分析:科学记数法的表示形式为a ×10n 的形式,其中1≤|a |<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n 是负数. 解答:解:489000=4.89×105.故选B .点评:此题考查科学记数法的表示方法.科学记数法的表示形式为a ×10n 的形式,其中1≤|a |<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.3.如图是由4个大小相同的正方体组合而成的几何体,其主视图是考点:简单组合体的三视图.分析:从正面看到的图叫做主视图,从左面看到的图叫做左视图,从上面看到的图叫做俯视图.根据图中正方体摆放的位置判定则可.解答:解:从正面看,下面一行是横放3个正方体,上面一行中间是一个正方体.故选C .点评:本题考查了三种视图中的主视图,比较简单.4.如图,直线a ∥b ,∠1=70°,那么∠2的度数是 A .50° B .60° C .70° D .80° 考点:平行线的性质.分析:根据两角的位置关系可知两角是同位角,利用两直线平行同位角相等即可求得结果. 解答:解:∵ a ∥b ,∴ ∠1=∠2, ∵ ∠1=70°, ∴ ∠2=70°. 故选C .点评:本题考查了平行线的性质,根据两直线平行同位角相等即可得到答案,比较简单,属于基础题. 5.下列计算正确的是A .a +a =2aB .b 3·b 3=2b 3C .a 3÷a =a 3D .(a 5)2=a 7 考点:同底数幂的除法;合并同类项;同底数幂的乘法;幂的乘方与积的乘方. 专题:计算题.第3题图A B CD a 第4题图 12 b可.解答:解:A 、a +a =2a ,故本选项正确;B 、b 3•b 3=b 6,故本选项错误;C 、a 3÷a =a 2,故本选项错误;D 、(a 5)2=a 10,故本选项错误. 故选A .点评:本题考查的是合并同类项、同底数幂的除法与乘法、幂的乘方与积的乘方法则,熟知以上知识是解答此题的关键.6.式子x -1在实数范围内有意义,则x 的取值范围是A .x <1B .x ≤1C .x >1D .x ≥1 考点:二次根式有意义的条件.分析:根据二次根式有意义的条件列出关于x 的不等式,求出x 的取值范围即可. 解答:解:∵ 式子x -1在实数范围内有意义,∴ x -1≥0,解得x ≥1. 故选D .点评:本题考查的是二次根式有意义的条件,即被开方数大于等于0.7.某射击运动员在一次射击练习中,成绩(单位:环)记录如下:8,9,8,7,10.这组数据的平均数和中位数分别是A .8,8B .8.4,8C .8.4,8.4D .8,8.4 考点:中位数;算术平均数.分析:根据平均数公式求解即可,即用所有数据的和除以5即可;5个数据的中位数是排序后的第三个数.解答:解:8,9,8,7,10的平均数为:15×(8+9+8+7+10)=8.4.8,9,8,7,10排序后为7,8,8,9,10,故中位数为8. 故选B .点评:本题考查了中位数及算术平均数的求法,特别是中位数,首先应该排序,然后再根据数据的个数确定中位数.8.⊙O 1和⊙O 2的半径分别是3cm 和4cm ,如果O 1O 2=7cm ,则这两圆的位置关系是 A .内含 B .相交 C .外切 D .外离 考点:圆与圆的位置关系.分析:由⊙O 1、⊙O 2的半径分别是3cm 、4cm ,若O 1O 2=7cm ,根据两圆位置关系与圆心距d ,两圆半径R ,r 的数量关系间的联系即可得出⊙O 1和⊙O 2的位置关系. 解答:解:∵ ⊙O 1、⊙O 2的半径分别是3cm 、4cm ,O 1O 2=7cm ,又∵ 3+4=7,∴⊙O 1和⊙O 2的位置关系是外切. 故选C .点评:此题考查了圆与圆的位置关系.解题的关键是掌握两圆位置关系与圆心距d ,两圆半径R ,r 的数量关系间的联系.圆和圆的位置与两圆的圆心距、半径的数量之间的关系:① 两圆外离⇔d >R +r ;② 两圆外切⇔d =R +r ;③ 两圆相交⇔R -r <d <R +r (R ≥r );④ 两圆内切⇔d =R -r (R >r );⑤ 两圆内含⇔d <R -r (R >r ).9.如图,从热气球C 处测得地面A 、B 两点的俯角分别为30°、45°,如果此时热气球C 处的高度CD 为100米,点A 、D 、B 在同一直线上,则AB 两点煌距离是 A .200米 B .2003米 C .2203米 D .100(3+1)米考点:解直角三角形的应用-仰角俯角问题.分析:图中两个直角三角形中,都是知道已知角和对边,根据正切函数求出邻边后,相加求和即可. 解答:解:由已知,得∠A =30°,∠B =45°,CD =100,∵ CD ⊥AB 于点D .∴ 在Rt △ACD 中,∠CDA =90°,tan A =CDAD,∴ AD =CD tan A =1003=100 3第9题图A B CD30° 45°在Rt △BCD 中,∠CDB =90°,∠B =45°, ∴ DB =CD =100米,∴ AB =AD +DB =1003+100=100(3+1)米. 故选D .点评:本题考查了解直角三角形的应用,解决本题的关键是利用CD 为直角△ABC 斜边上的高,将三角形分成两个三角形,然后求解.分别在两三角形中求出AD 与BD 的长.10.如图,过点C (1,2)分别作x 轴、y 轴的平行线,交直线y =-x +6于A 、B 两点,若反比例函数y =kx (x >0)的图像与△ABC 有公共点,则k 的取值范围是A .2≤k ≤9B .2≤k ≤8C .2≤k ≤5D .5≤k ≤8 考点:反比例函数综合题.专题:综合题.分析:先求出点A 、B 的坐标,根据反比例函数系数的几何意义可知,当反比例函数图象与△ABC 相交于点C 时k 的取值最小,当与线段AB 相交时,k 能取到最大值,根据直线y =-x +6,设交点为(x ,-x +6)时k 值最大,然后列式利用二次函数的最值问题解答即可得解. 解答:解:∵ 点C (1,2),BC ∥y 轴,AC ∥x 轴,∴ 当x =1时,y =-1+6=5,当y =2时,-x +6=2,解得x =4,∴ 点A 、B 的坐标分别为A (4,2),B (1,5),根据反比例函数系数的几何意义,当反比例函数与点C 相交时,k =1×2=2最小, 设与线段AB 相交于点(x ,-x +6)时k 值最大, 则k =x (-x +6)=-x 2+6x =-(x -3)2+9, ∵ 1≤x ≤4,∴ 当x =3时,k 值最大, 此时交点坐标为(3,3),因此,k 的取值范围是2≤k ≤9. 故选A .点评:本题考查了反比例函数系数的几何意义,二次函数的最值问题,本题看似简单但不容易入手解答,判断出最大最小值的取值情况并考虑到用二次函数的最值问题解答是解题的关键. 二、填空题(共5小题,每题4分,满分20分;请将正确答案填在答题卡相应位置) 11.分解因式:x 2-16=_________________. 考点:因式分解——运用公式法.分析:运用平方差公式分解因式的式子特点:两项平方项,符号相反.直接运用平方差公式分解即可.a 2-b 2=(a +b )(a -b ).解答:解:x 2-16=(x +4)(x -4).点评:本题考查因式分解.当被分解的式子只有两项平方项;符号相反,且没有公因式时,应首要考虑用平方差公式进行分解.12.一个袋子中装有3个红球和2个绿球,这些球除了颜色外都相同,从袋子中随机摸出一个球,则摸到红球的概率为__________________. 考点:概率公式.分析:根据概率的求法,找准两点:① 全部情况的总数;② 符合条件的情况数目;二者的比值就是其发生的概率.解答:解;布袋中球的总数为:2+3=5,取到黄球的概率为:35.故答案为:35.点评:此题主要考查了概率的求法,如果一个事件有n 种可能,而且这些事件的可能性相同,其中事件A出现m 种结果,那么事件A 的概率P (A )=mn.13.若20n 是整数,则正整数n 的最小值为________________.专题:存在型.分析:20n 是正整数,则20n 一定是一个完全平方数,首先把20n 分解因数,确定20n 是完全平方数时,n 的最小值即可.解答:解:∵ 20n =22×5n .∴ 整数n 的最小值为5. 故答案是:5.点评:本题考查了二次根式的定义,理解20n 是正整数的条件是解题的关键.14.计算:x -1x +1x=______________.考点:分式的加减法. 专题:计算题.分析:直接根据同分母的分数相加减进行计算即可.解答:解:原式=x -1+1x=1.故答案为:1.点评:本题考查的是分式的加减法,同分母的分式相加减,分母不变,把分子相加减. 15.如图,已知△ABC ,AB =AC =1,∠A =36°,∠ABC 的平分线BD 交AC 于点D ,则AD 的长是______,cos A 的值是______________.(结果保留根号)考点:黄金分割;相似三角形的判定与性质;锐角三角函数的定义.分析:可以证明△ABC ∽△BDC ,设AD =x ,根据相似三角形的对应边的比相等,即可列出方程,求得x的值;过点D 作DE ⊥AB 于点E ,则E 为AB 中点,由余弦定义可求出cos A 的值. 解答:解:∵ △ABC ,AB =AC =1,∠A =36°,∴ ∠ABC =∠ACB =180°-∠A2=72°.∵ BD 是∠ABC 的平分线,∴ ∠ABD =∠DBC =12∠ABC =36°. ∴ ∠A =∠DBC =36°, 又∵ ∠C =∠C , ∴ △ABC ∽△BDC , ∴ AC BC =BC CD, 设AD =x ,则BD =BC =x .则1x =x1-x ,解得:x =5+12(舍去)或5-12.故x = 5-12.如右图,过点D 作DE ⊥AB 于点E , ∵ AD =BD ,∴E 为AB 中点,即AE =12AB =12.在Rt △AED 中,cos A =AEAD =125-12=5+14.故答案是:5-12;5+14.点评:△ABC 、△BCD 均为黄金三角形,利用相似关系可以求出线段之间的数量关系;在求cos A 时,注意构造直角三角形,从而可以利用三角函数定义求解.三、解答题(满分90分;请将正确答案及解答过程填在答题卡相应位置.作图或添辅助线用铅笔画完,再用黑色签字笔描黑) AB D 第15题图A B D E(1) 计算:|-3|+(π+1)0-4.(2) 化简:a (1-a )+(a +1)2-1.考点:整式的混合运算;实数的运算;零指数幂.专题:计算题.分析:(1) 原式第一项根据绝对值的代数意义:负数的绝对值等于它的相反数进行化简,第二项利用零指数公式化简,第三项利用a 2=|a |化简,合并后即可得到结果;(2) 利用乘法分配律将原式第一项括号外边的a 乘到括号里边,第二项利用完全平方数展开,合并同类项后即可得到结果.解答:解:(1) 解:|-3|+(π+1)0-4=3+1-2=2.(2) 解:a (1-a )+(a +1)2-1=a -a 2+a 2+2a +1-1=3a .点评:此题考查了整式的混合运算,以及实数的运算,涉及的知识有:绝对值的代数意义,零指数公式,二次根式的化简,完全平方公式,以及合并同类项法则,熟练掌握公式及法则是解本题的关键.17.(每小题7分,共14分)(1) 如图,点E 、F 在AC 上,AB ∥CD ,AB =CD ,AE =CF .求证:△ABF ≌△CDE .(2) 如图,方格纸中的每个小方格是边长为1个单位长度的正方形.① 画出将Rt △ABC 向右平移5个单位长度后的Rt △A 1B 1C 1;② 再将Rt △A 1B 1C 1绕点C 1顺时针旋转90°,画出旋转后的Rt △A 2B 2C 1,并求出旋转过程中线段A 1C 1所扫过的面积(结果保留π).考点:作图——旋转变换;全等三角形的判定;扇形面积的计算;作图——平移变换.分析:(1) 由AB ∥CD 可知∠A =∠C ,再根据AE =CF 可得出AF =CE ,由AB =CD 即可判断出△ABF ≌CDE ;(2) 根据图形平移的性质画出平移后的图形,再根据在旋转过程中,线段A 1C 1所扫过的面积等于以点C 1为圆心,以A 1C 1为半径,圆心角为90度的扇形的面积,再根据扇形的面积公式进行解答即可. 解答:证明:∵ AB ∥CD ,∴ ∠A =∠C .∵ AE =CF ,∴ AE +EF =CF +EF ,即 AF =CE . 又∵ AB =CD ,∴ △ABF ≌△CDE .(2) 解:① 如图所示; ② 如图所示;在旋转过程中,线段A 1C 1所扫过的面积等于90·π·42360=4π. 点评:本题考查的是作图-旋转变换、全等三角形的判定及扇形面积的计算,熟知图形平移及旋转不变性的性质是解答此题的关键.18.(满分12分)省教育厅决定在全省中小学开展“关注校车、关爱学生”为主题的交通安全教育宣传周活动.某中学为了了解本校学生的上学方式,在全校范围内随机抽查了部分学生,将收集的数据绘制成如下两幅不完整的统计图(如图所示),请根据图中提供的信息,解答下列问题.A B C D E F 第17(1)题图 第17(2)题图 A BC 学生上学方式扇形统计图 学生上学方式条形统计图(1) m =_______%,这次共抽取__________名学生进行调查;并补全条形图;(2) 在这次抽样调查中,采用哪种上学方式的人最多?(3) 如果该校共有1500名学生,请你估计该校骑自行车上学的学生约有多少名?考点:条形统计图;用样本估计总体;扇形统计图.分析:(1) 用1减去其他各种情况所占的百分比即可求m 的值,用乘公交的人数除以其所占的百分比即可求得抽查的人数; (2) 从扇形统计图或条形统计图中直接可以得到结果; (3) 用学生总数乘以骑自行车所占的百分比即可. 解答:解:(1) 1-14%-20%-40%=26%;20÷40%=50; 条形图如图所示; (2) 采用乘公交车上学的人数最多; (3) 该校骑自行车上学的人数约为: 150×20%=300(人).点评:本题考查了条形统计图、扇形统计图及用样本估计总数的知识,解题的关键是从统计图中整理出进一步解题的信息.19.(满分11分)某次知识竞赛共有20道题,每一题答对得5分,答错或不答都扣3分.(1) 小明考了68分,那么小明答对了多少道题?(2) 小亮获得二等奖(70~90分),请你算算小亮答对了几道题?考点:一元一次不等式组的应用;一元一次方程的应用.分析:(1) 设小明答对了x 道题,则有20-x 道题答错或不答,根据答对题目的得分减去答错或不答题目的扣分是68分,即可得到一个关于x 的方程,解方程即可求解;(2) 小明答对了x 道题,则有20-x 道题答错或不答,根据答对题目的得分减去答错或不答题目的扣分,就是最后的得分,得分满足大于或等于70小于或等于90,据此即可得到关于x 的不等式组,从而求得x 的范围,再根据x 是非负整数即可求解.解答:解:(1) 设小明答对了x 道题,依题意得:5x -3(20-x )=68.解得:x =16.答:小明答对了16道题. (2) 设小亮答对了y 道题, 依题意得:⎩⎨⎧5y -3(20-y )≥705y -3(20-y )≤90. 因此不等式组的解集为1614≤y ≤1834. ∵ y 是正整数,∴ y =17或18. 答:小亮答对了17道题或18道题.点评:本题考查了列方程解应用题,以及列一元一次不等式解决问题,正确列式表示出最后的得分是关键.20.(满分12分)如图,AB 为⊙O 的直径,C 为⊙O 上一点,AD 和过C 点的切线互相垂直,垂足为D ,AD交⊙O 于点E .(1) 求证:AC 平分∠DAB ;(2) 若∠B =60º,CD =23,求AE 的长.考点:切线的性质;圆周角定理;相似三角形的判定与性质;解直角三角形.专题:几何综合题.分析:(1) 连接OC ,由CD 为⊙O 的切线,根据切线的性质得到OC 垂直于CD ,由AD 垂直于CD ,可得出OC 平行于AD ,根据两直线平行内错角相等可得出∠1=∠2,再由OA =OC ,利用等边对等角得到∠2=∠3,等量代换可得出∠1=∠3,即AC 为角平分线;(2) 法1:由AB 为圆O 的直径,根据直径所对的圆周角为直角可得出∠ACB 为直角,在直角三角形ABC 中,由∠B 的度数求出∠3的度数为30°,可得出∠1的度数为30°,在直角三角形ACD 中,根据30°角所对的直角边等于斜边的一半,由CD 的长求出AC 的长,在直角三角形ABC 中,根据cos30°及AC 的长,利用锐角三角函数定义求出AB 的长,进而得出半径OE 的长,由∠EAO 为60°,及OE =OA ,得到三角形AEO 为等边三角形,可得出AE =OA =OE ,即可确定出AE 的长;第20题图 学生上学方式条形统计图法2:连接EC ,由AB 为圆O 的直径,根据直径所对的圆周角为直角可得出∠ACB 为直角,在直角三角形ABC 中,由∠B 的度数求出∠3的度数为30°,可得出∠1的度数为30°,在直角三角形ADC 中,由CD 及tan30°,利用锐角三角函数定义求出AD 的长,由∠DEC 为圆内接四边形ABCE 的外角,利用圆内接四边形的外角等于它的内对角,得到∠DEC =∠B ,由∠B 的度数求出∠DEC 的度数为60°,在直角三角形DEC 中,由tan60°及DC 的长,求出DE 的长,最后由AD -ED 即可求出AE 的长.解答:(1) 证明:如图1,连接OC ,∵ CD 为⊙O 的切线,∴ OC ⊥CD ,∴ ∠OCD =90°.∵ AD ⊥CD ,∴ ∠ADC =90°.∴ ∠OCD +∠ADC =180°,∴ AD ∥OC ,∴ ∠1=∠2,∵ OA =OC ,∴ ∠2=∠3,∴ ∠1=∠3,即AC 平分∠DAB .(2) 解法一:如图2,∵ AB 为⊙O 的直径, ∴ ∠ACB =90°. 又∵ ∠B =60°,∴ ∠1=∠3=30°. 在Rt △ACD 中,CD =23, ∴ AC =2CD =43.在Rt △ABC 中,AC =43,∴ AB =AC cos ∠CAB =43cos30°=8. 连接OE ,∵ ∠EAO =2∠3=60°,OA =OE ,∴ △AOE 是等边三角形,∴ AE =OA =12AB =4. 解法二:如图3,连接CE∵ AB 为⊙O 的直径,∴ ∠ACB =90°.又∵ ∠B =60°, ∴ ∠1=∠3=30°. 在Rt △ADC 中,CD =23, ∴ AD =CD tan ∠DAC =23tan30°=6. ∵ 四边形ABCE 是⊙O 的内接四边形,∴ ∠B +∠AEC =180°.又∵ ∠AEC +∠DEC =180°,∴ ∠DEC =∠B =60°.在Rt △CDE 中,CD =23,∴ DE =CD tan ∠DEC =23tan60°=2. ∴ AE =AD -DE =4.点评:此题考查了切线的性质,平行线的性质,等边三角形的判定与性质,锐角三角函数定义,圆内接四边形的性质,以及圆周角定理,利用了转化及数形结合的思想,遇到直线与圆相切,常常连接圆心图2图3与切点,利用切线的性质得到垂直,利用直角三角形的性质来解决问题.21.(满分13分)如图①,在Rt △ABC 中,∠C =90º,AC =6,BC =8,动点P 从点A 开始沿边AC 向点C 以每秒1个单位长度的速度运动,动点Q 从点C 开始沿边CB 向点B 以每秒2个单位长度的速度运动,过点P 作PD ∥BC ,交AB 于点D ,连接PQ .点P 、Q 分别从点A 、C 同时出发,当其中一点到达端点时,另一点也随之停止运动,设运动时间为t 秒(t ≥0).(1) 直接用含t 的代数式分别表示:QB =______,PD =______.(2) 是否存在t 的值,使四边形PDBQ 为菱形?若存在,求出t 的值;若不存在,说明理由.并探究如何改变点Q 的速度(匀速运动),使四边形PDBQ 在某一时刻为菱形,求点Q 的速度;(3) 如图②,在整个运动过程中,求出线段PQ 中点M 所经过的路径长.考点:相似三角形的判定与性质;一次函数综合题;勾股定理;菱形的判定与性质.专题:代数几何综合题.分析:(1) 根据题意得:CQ =2t ,P A =t ,由Rt △ABC 中,∠C =90°,AC =6,BC =8,PD ∥BC ,即可得tan A = PD P A =BC AC =43,则可求得QB 与PD 的值; (2) 易得△APD ∽△ACB ,即可求得AD 与BD 的长,由BQ ∥DP ,可得当BQ =DP 时,四边形PDBQ 是平行四边形,即可求得此时DP 与BD 的长,由DP ≠BD ,可判定▱PDBQ 不能为菱形;然后设点Q 的速度为每秒v 个单位长度,由要使四边形PDBQ 为菱形,则PD =BD =BQ ,列方程即可求得答案;(3) 设E 是AC 的中点,连接ME .当t =4时,点Q 与点B 重合,运动停止.设此时PQ 的中点为F ,连接EF ,由△PMN ∽△PQC .利用相似三角形的对应边成比例,即可求得答案.解答:解:(1) QB =8-2t ,PD =43t . (2) 不存在.在Rt △ABC 中,∠C =90°,AC =6,BC =8, ∴ AB =10.∵ PD ∥BC ,∴ △APD ∽△ACB , ∴ AD AB =AP AC ,即:AD 10=t 6, ∴ AD =53t , ∴ BD =AB -AD =10-53t . ∵ BQ ∥DP ,∴ 当BQ =DP 时,四边形PDBQ 是平行四边形,即8-2t =43t ,解得:t =125. 当t =125时,PD =43×125=165,BD =10-53×125=6, ∴ DP ≠BD ,∴ □PDBQ 不能为菱形.设点Q 的速度为每秒v 个单位长度,则BQ =8-vt ,PD =43t ,BD =10-53t . 要使四边形PDBQ 为菱形,则PD =BD =BQ ,第21题图① B C D P Q 第21题图② B C D P Q 图1 B C D P Q当PD =BD 时,即43t =10-53t ,解得:t =103. 当PD =BQ 时,t =103时,即43×103=8-103v ,解得:v =1615. (3) 解法一:如图2,以C 为原点,以AC 所在直线为x 轴,建立平面直角坐标系.依题意,可知0≤t ≤4,当t =0时,点M 1的坐标为(3,0);当t =4时,点M 2的坐标为(1,4). 设直线M 1M 2的解析式为y =kx +b , ∴ ⎩⎨⎧3k +b =0k +b =4,解得:⎩⎨⎧k =-2b =6. ∴ 直线M 1M 2的解析式为y =-2x +6. ∵ 点Q (0,2t ),P (6-t ,0), ∴ 在运动过程中,线段PQ 中点M 3的坐标为(6-t 2,t ). 把x =6-t 2,代入y =-2x +6,得y =-2×6-t 2+6=t . ∴ 点M 3在直线M 1M 2上.过点M 2作M 2N ⊥x 轴于点N ,则M 2N =4,M 1N =2.∴ M 1M 2=25.∴ 线段PQ 中点M 所经过的路径长为25单位长度.解法二:如图3,设E 是AC 的中点,连接ME .当t =4时,点Q 与点B 重合,运动停止.设此时PQ 的中点为F ,连接EF . 过点M 作MN ⊥AC ,垂足为N ,则MN ∥BC .∴ △PMN ∽△PDC .∴ MN QC =PN PC =PM PQ ,即:MN 2t =PN 6-t =12. ∴ MN =t ,PN =3-12t , ∴ CN =PC -PN =(6-t )-(3-12t )=3-12t . ∴ EN =CE -CN =3-(3-12t )= 12t . ∴ tan ∠MEN =MN EN=2. ∵ tan ∠MEN 的值不变,∴ 点M 在直线EF 上.过F 作FH ⊥AC ,垂足为H .则EH =2,FH =4.∴ EF =25.∵ 当t =0时,点M 与点E 重合;当t =4时,点M 与点F 重合,∴ 线段PQ 中点M 所经过的路径长为25单位长度.点评:此题考查了相似三角形的判定与性质、平行四边形的判定与性质、菱形的判定与性质以及一次函数的应用.此题综合性很强,难度较大,解题的关键是注意数形结合思想的应用.22.(满分14分)如图①,已知抛物线y =ax 2+bx (a ≠0)经过A (3,0)、B (4,4)两点.(1) 求抛物线的解析式;(2) 将直线OB 向下平移m 个单位长度后,得到的直线与抛物线只有一个公共点D ,求m 的值及点D 的坐标;(3) 如图②,若点N 在抛物线上,且∠NBO =∠A BO ,则在(2)的条件下,求出所有满足△POD ∽△NOB 的点P 的坐标(点P 、O 、D 分别与点N 、O 、B 对应).考点:二次函数综合题.分析:(1) 利用待定系数法求出二次函数解析式即可;(2) 根据已知条件可求出OB 的解析式为y =x ,则向下平移m 个单位长度后的解析式为:y =x -m .由于抛物线与直线只有一个公共点,意味着联立解析式后得到的一元二次方程,其根的判别式等于0,由此可求出m 的值和D 点坐标;(3) 综合利用几何变换和相似关系求解.A B C M 1 x y P N Q M 2 M 3 D 图2 AB C P N Q D 图3 E M F H方法一:翻折变换,将△NOB 沿x 轴翻折; 方法二:旋转变换,将△NOB 绕原点顺时针旋转90°. 特别注意求出P 点坐标之后,该点关于直线y =-x 的对称点也满足题意,即满足题意的P 点有两解答:解:(1) ∵ 抛物线y =ax 2+bx (a ≠0)经过点A (3,0)、B (4,4).∴ ⎩⎨⎧9a +3b =016a +4b =4,解得:⎩⎨⎧a =1b =-3. ∴ 抛物线的解析式是y =x 2-3x .(2) 设直线OB 的解析式为y =k 1x ,由点B (4,4),得:4=4k 1,解得k 1=1.∴ 直线OB 的解析式为y =x .∴ 直线OB 向下平移m 个单位长度后的解析式为:y =x -m .∵ 点D 在抛物线y =x 2-3x 上.∴ 可设D (x ,x 2-3x ).又点D 在直线y =x -m 上,∴ x 2-3x =x -m ,即x 2-4x +m =0.∵ 抛物线与直线只有一个公共点,∴ △=16-4m =0,解得:m =4.此时x 1=x 2=2,y =x 2-3x =-2,∴ D 点坐标为(2,-2).(3) ∵ 直线OB 的解析式为y =x ,且A (3,0),∴ 点A 关于直线OB 的对称点A'的坐标是(0,3).设直线A'B 的解析式为y =k 2x +3,过点B (4,4),∴ 4k 2+3=4,解得:k 2=14. ∴ 直线A'B 的解析式是y =14x +3. ∵ ∠NBO =∠ABO ,∴ 点N 在直线A'B 上,∴ 设点N (n ,14n +3),又点N 在抛物线y =x 2-3x 上, ∴ 14n +3=n 2-3n , 解得:n 1=-34,n 2=4(不合题意,会去), ∴ 点N 的坐标为(-34,4516). 方法一:如图1,将△NOB 沿x 轴翻折,得到△N 1OB 1, 则N 1(-34,-4516),B 1(4,-4), ∴ O 、D 、B 1都在直线y =-x 上.∵ △P 1OD ∽△NOB , ∴ △P 1OD ∽△N 1OB 1, 第22题图① 第22题图②∴ OP 1ON 1=OD OB 1=12, ∴ 点P 1的坐标为(-38,-4532). 将△OP 1D 沿直线y =-x 翻折,可得另一个满足条件的点P 2(4532,38). 综上所述,点P 的坐标是(-38,-4532)或(4532,38). 方法二:如图2,将△NOB 绕原点顺时针旋转90°,得到△N 2OB则N 2(4516,34),B 2(4,-4), ∴ O 、D 、B 2都在直线y =-x 上. ∵ △P 1OD ∽△NOB , ∴ △P 1OD ∽△N 2OB 2, ∴ OP 1ON 2=OD OB 2=12, ∴ 点P 1的坐标为(4532,38). 将△OP 1D 沿直线y =-x 翻折,可得另一个满足条件的点P 2(-38,-4532). 综上所述,点P 的坐标是(-38,-4532)或(4532,38). 点评:本题是基于二次函数的代数几何综合题,综合考查了待定系数法求抛物线解析式、一次函数(直线)的平移、一元二次方程根的判别式、翻折变换、旋转变换以及相似三角形等重要知识点.本题将初中阶段重点代数、几何知识熔于一炉,难度很大,对学生能力要求极高,具有良好的区分度,是一道非常好的中考压轴题.。

2012年昆明中考数学试卷及解析

2012年昆明中考数学试卷及解析

2012年云南省中考数学试卷一、选择题(共8小题,每小题3分,满分24分)1.(3分)(2012•云南)5的相反数是()A.B.﹣5C.D.52.(3分)(2012•云南)如图是由6个形同的小正方体搭成的一个几何体,则它的俯视图是()A.B.C.D.3.(3分)(2012•云南)下列运算正确的是()A.x2•x3=x6B.3﹣2=﹣6C.(x3)2=x5D.40=14.(3分)(2012•云南)不等式组的解集是()A.x<1B.x>﹣4C.﹣4<x<1D.x>15.(3分)(2012•云南)如图,在△ABC中,∠B=67°,∠C=33°,AD是△ABC的角平分线,则∠CAD的度数为()A.40°B.45°C.50°D.55°6.(3分)(2012•云南)如图,AB、CD是⊙O的两条弦,连接AD、BC.若∠BAD=60°,则∠BCD的度数为()A.40°B.50°C.60°D.70°7.(3分)(2012•云南)我省五个5A级旅游景区门票票价如下表所示(单位:元)关于这五个里边有景区门票票价,下列说法中错误的是()景区名称石林玉龙雪山丽江古城大理三塔文化旅游区西双版纳热带植物园票价(元)175 105 80 121 80A.平均数是120B.中位数是105C.众数是80D.极差是958.(3分)(2012•云南)若,,则a+b的值为()A.B.C.1D.2二、填空题(共6小题,每小题3分,满分18分)9.(3分)(2012•云南)国家统计局发布第六次全国人口普查主要数据公布报告显示:云南省常住人口约为45960000人.这个数据用科学记数法可表示为人.10.(3分)(2012•云南)写出一个大于2小于4的无理数:.11.(3分)(2012•云南)因式分解:3x2﹣6x+3=.12.(3分)(2014•攀枝花)函数中自变量x的取值范围是.13.(3分)(2014•绥化)一个扇形的圆心角为120°,半径为3,则这个扇形的面积为(结果保留π)14.(3分)(2012•云南)观察下列图形的排列规律(其中▲、■、★分别表示三角形、正方形、五角星).若第一个图形是三角形,则第18个图形是.(填图形的名称)▲■★■▲★▲■★■▲★▲…三、解答题(共9小题,满分58分)15.(5分)(2012•云南)化简求值:,其中.16.(5分)(2012•云南)如图,在△ABC中,∠C=90°,点D是AB边上的一点,DM⊥AB,且DM=AC,过点M作ME∥BC交AB于点E.求证:△ABC≌△MED.17.(6分)(2012•云南)某企业为严重缺水的甲、乙两所学校捐赠矿泉水共2000件.已知捐给甲校的矿泉水件数比捐给乙校件数的2倍少400件.求该企业分别捐给甲、乙两所学校的矿泉水各多少件?18.(7分)(2012•云南)某同学在学习了统计知识后,就下表所列的5种用牙不良习惯对全班每一个同学进行了问卷调查(每个被调查的同学必须选择而且只能在5种用牙不良习惯中选择一项),调查结果如下统计图所示.根据以上统计图提供的信息,回答下列问题:种类 A B C D E用牙开瓶盖常喝饮料嚼冰常吃生冷零食磨牙不良习惯睡前吃水果喝牛奶(1)这个班有多少名学生?(2)这个班中有C类用牙不良习惯的学生多少人?占全班人数的百分比是多少?(3)请补全条形统计图;(4)根据调查结果,估计这个年级850名学生中有B类用牙不良习惯的学生多少人?19.(7分)(2012•云南)现有5个质地、大小完全相同的小球上分别标有数字﹣1,﹣2,1,2,3.先将标有数字﹣2,1,3的小球放在第一个不透明的盒子里,再将其余小球放在第二个不透明的盒子里.现分别从两个盒子里各随即取出一个小球.(1)请利用列表或画树状图的方法表示取出的两个小球上数字之和所有可能的结果;(2)求取出的两个小球上的数字之和等于0的概率.20.(6分)(2012•云南)如图,某同学在楼房的A处测得荷塘的一端B处的俯角为30°,荷塘另一端D与点C、B在同一直线上,已知AC=32米,CD=16米,求荷塘宽BD为多少米?(取,结果保留整数)21.(6分)(2012•云南)如图,在平面直角坐标系中,O为原点,一次函数与反比例函数的图象相交于A(2,1)、B(﹣1,﹣2)两点,与x轴交于点C.(1)分别求反比例函数和一次函数的解析式(关系式);(2)连接OA,求△AOC的面积.22.(7分)(2012•云南)如图,在矩形ABCD中,对角线BD的垂直平分线MN与AD相交于点M,与BC相交于点N,连接BM,DN.(1)求证:四边形BMDN是菱形;(2)若AB=4,AD=8,求MD的长.23.(9分)(2012•云南)如图,在平面直角坐标系中,直线y=x+2交x轴于点P,交y 轴于点A.抛物线y=x2+bx+c的图象过点E(﹣1,0),并与直线相交于A、B两点.(1)求抛物线的解析式(关系式);(2)过点A作AC⊥AB交x轴于点C,求点C的坐标;(3)除点C外,在坐标轴上是否存在点M,使得△MAB是直角三角形?若存在,请求出点M的坐标;若不存在,请说明理由.2012年云南省中考数学试卷参考答案与试题解析一、选择题(共8小题,每小题3分,满分24分)1.(3分)【考点】相反数.【分析】根据相反数的定义,即只有符号不同的两个数互为相反数,进行求解.【解答】解:5的相反数是﹣5.故选B.【点评】此题考查了相反数的概念.求一个数的相反数,只需在它的前面加“﹣”号.2.(3分)【考点】简单组合体的三视图.【分析】根据俯视图是从上面看到的识图分析解答.【解答】解:从上面看,是1行3列并排在一起的三个正方形.故选A.【点评】本题考查了三视图的知识,俯视图是从物体的上面看得到的视图.3.(3分)【考点】负整数指数幂;同底数幂的乘法;幂的乘方与积的乘方;零指数幂.【分析】利用同底数幂、负指数、零指数以及幂的乘方的性质求解即可求得答案,注意排除法在解选择题中的应用.【解答】解:A、x2•x3=x5,故本选项错误;B、3﹣2==,故本选项错误;C、(x3)2=x6,故本选项错误;D、40=1,故本选项正确.故选D.【点评】此题考查了同底数幂、负指数、零指数以及幂的乘方的性质.注意掌握指数的变化是解此题的关键.4.(3分)【考点】解一元一次不等式组.【分析】先求出不等式组中每一个不等式的解集,再求出它们的公共部分,即可得到不等式组的解集.【解答】解:,由①得﹣x>﹣1,即x<1;由②得x>﹣4;∴可得﹣4<x<1.故选C.【点评】主要考查了一元一次不等式解集的求法,其简便求法就是用口诀求解,求不等式组解集的口诀:同大取大,同小取小,大小小大中间找,大大小小找不到(无解).5.(3分)【考点】三角形内角和定理.【分析】首先利用三角形内角和定理求得∠BAC的度数,然后利用角平分线的性质求得∠CAD的度数即可.【解答】解:∵∠B=67°,∠C=33°,∴∠BAC=180°﹣∠B﹣∠C=180°﹣67°﹣33°=80°∵AD是△ABC的角平分线,∴∠CAD=∠BAC=×80°=40°故选A.【点评】本题考查了三角形的内角和定理,属于基础题,比较简单.三角形内角和定理在小学已经接触过.6.(3分)【考点】圆周角定理.【分析】由在同圆或等圆中,同弧或等弧所对的圆周角相等,即可求得∠BCD的度数.【解答】解:∵∠BAD与∠BCD都是对的圆周角,∴∠BCD=∠BAD=60°.故选C.【点评】此题考查了圆周角定理.此题比较简单,注意掌握在同圆或等圆中,同弧或等弧所对的圆周角相等定理的应用,注意数形结合思想的应用.7.(3分)【考点】极差;算术平均数;中位数;众数.【分析】根据极差,中位数和众数的定义解答,找中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数;众数是一组数据中出现次数最多的数据,注意众数可以不止一个;极差就是这组数中最大值与最小值的差.【解答】解:A、平均数为(175+105+80+121+80)÷5=112.2,错误.B、从高到低排列后,为80,80,105,121,175,中位数是105,正确;C、80出现了两次,出现的次数最多,所以众数是80,正确;D、极差是175﹣80=95,正确.故选A.【点评】本题考查了极差、平均数、中位数、众数,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数),叫做这组数据的中位数.如果中位数的概念掌握得不好,不把数据按要求重新排列,就会出错.8.(3分)【考点】平方差公式.【分析】由a2﹣b2=(a+b)(a﹣b)与a2﹣b2=,a﹣b=,即可得(a+b)=,继而求得a+b 的值.【解答】解:∵a2﹣b2=,a﹣b=,∴a2﹣b2=(a+b)(a﹣b)=(a+b)=,∴a+b=.故选B.【点评】此题考查了平方差公式的应用.此题比较简单,注意掌握公式变形与整体思想的应用.二、填空题(共6小题,每小题3分,满分18分)9.(3分)【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:将45960000用科学记数法表示为:4.596×107.故答案为:4.596×107.【点评】此题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.10.(3分)【考点】实数大小比较;估算无理数的大小.【分析】根据算术平方根的性质可以把2和4写成带根号的形式,再进一步写出一个被开方数介于两者之间的数即可.【解答】解:∵2=,4=,∴写出一个大于2小于4的无理数是、、、π….故答案为:、、、π…(只要是大于小于无理数都可以)等.本题答案不唯一.【点评】此题考查了无理数大小的估算,熟悉算术平方根的性质是解题关键.11.(3分)【考点】提公因式法与公式法的综合运用.【分析】先提取公因式3,再对余下的多项式利用完全平方公式继续分解.【解答】解:3x2﹣6x+3,=3(x2﹣2x+1),=3(x﹣1)2.【点评】本题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.【考点】函数自变量的取值范围.【分析】根据二次根式的性质,被开方数大于等于0,就可以求解.【解答】解:依题意,得x﹣2≥0,解得:x≥2,故答案为:x≥2.【点评】本题主要考查函数自变量的取值范围,考查的知识点为:二次根式的被开方数是非负数.13.(3分)【考点】扇形面积的计算.【分析】根据扇形公式S扇形=,代入数据运算即可得出答案.【解答】解:由题意得,n=120°,R=3,故S扇形===3π.故答案为:3π.【点评】此题考查了扇形的面积计算,属于基础题,解答本题的关键是熟练掌握扇形的面积公式,另外要明白扇形公式中,每个字母所代表的含义.14.(3分)【考点】规律型:图形的变化类.【分析】本题是循环类问题,只要找到所求值在第几个循环,便可找出答案.【解答】解:根据题意可知,每6个图形一个循环,第18个图形经过了3个循环,且是第3个循环中的最后1个,即第18个图形是五角星.故答案为:五角星.【点评】此题考查了图形的变化类,是一道找规律的题目,这类题型在中考中经常出现.对于找规律的题目首先应找出哪些部分发生了变化,是按照什么规律变化的,主要培养学生的观察能力和归纳总结能力.三、解答题(共9小题,满分58分)15.(5分)【考点】分式的化简求值.【分析】根据乘法的分配律展开得出×(x+1)(x﹣1)+×(x+1)(x﹣1),求出结果是2x,代入求出即可.【解答】解:原式=×(x+1)(x﹣1)+×(x+1)(x﹣1)=x﹣1+x+1=2x,当x=时,原式=2×=1.【点评】本题考查了分式的化简求值的应用,主要考查学生的化简能力,题型较好,但是一道比较容易出错的题目.【考点】全等三角形的判定.【分析】根据平行线的性质可得出∠B=∠MED,结合全等三角形的判定定理可判断△ABC≌△MED.【解答】证明:∵MD⊥AB,∴∠MDE=∠C=90°,∵ME∥BC,∴∠B=∠MED,在△ABC与△MED中,,∴△ABC≌△MED(AAS).【点评】此题考查了全等三角形的判定,要求掌握三角形全等的判定定理,难度一般.17.(6分)【考点】二元一次方程组的应用.【分析】设该企业向甲学校捐了x件矿泉水,向乙学校捐了y件矿泉水,则根据总共捐赠2000件,及捐给甲校的矿泉水件数比捐给乙校件数的2倍少400件可得出方程,联立求解即可.【解答】解:设该企业向甲学校捐了x件矿泉水,向乙学校捐了y件矿泉水,由题意得,,解得:.答:该企业向甲学校捐了1200件矿泉水,向乙学校捐了800件矿泉水.【点评】此题考查了二元一次方程组的知识,属于基础题,解答本题的关键是设出未知数,根据题意的等量关系得出方程,难度一般.18.(7分)【考点】条形统计图;用样本估计总体;扇形统计图.【分析】(1)用A组的频数除以其所占的百分比即可求得总人数;(2)用单位1减去其他小组所占的百分比即可求得C小组所占的百分比;(3)小长方形的高等于其频数;(4)用总人数乘以B类所占的百分比即可求得用牙不良习惯的学生人数.【解答】解:(1)25÷50%=50…(1分)(2)1﹣50%﹣20%=30%…(2分)50×30%=15…(3分)(3)(4)850×10%=85…(6分)答:(1)这个班有50名学生;(2)这个班中有C类用牙不良习惯的学生15人占全班人数的百分比是30%;(4)根据调查结果,估计这个年级850名学生中有B类用牙不良习惯的学生85人.…(7分)【点评】此题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.19.(7分)【考点】列表法与树状图法.【分析】(1)首先根据题意列出表格,由表格即可求得取出的两个小球上数字之和所有等可能的结果;(2)首先根据(1)中的表格,求得取出的两个小球上的数字之和等于0的情况,然后利用概率公式即可求得答案.【解答】解:(1)列表得:﹣1 2﹣2 ﹣3 01 0 33 2 5则共有6种结果,且它们的可能性相同;…(3分)(2)∵取出的两个小球上的数字之和等于0的有:(1,﹣1),(﹣2,2),∴两个小球上的数字之和等于0的概率为:=.【点评】此题考查的是用列表法或树状图法求概率.注意树状图法与列表法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;注意概率=所求情况数与总情况数之比.20.(6分)【考点】解直角三角形的应用-仰角俯角问题.【分析】根据已知条件转化为直角三角形ABC中的有关量,然后选择合适的边角关系求得BD的长即可.【解答】解:由题意知:∠CAB=60°,△ABC是直角三角形,在Rt△ABC中,tan60°=,即=,∴BC=32∴BD=32﹣16≈39答:荷塘宽BD为39米.【点评】本题考查了解直角三角形的应用,解题的关键是利用仰俯角的定义将题目中的相关量转化为直角三角形ABC中的有关元素.21.(6分)【考点】反比例函数与一次函数的交点问题;待定系数法求一次函数解析式;待定系数法求反比例函数解析式;三角形的面积.【分析】(1)设一次函数解析式为y1=kx+b(k≠0);反比例函数解析式为y2=(a≠0),将A(2,1)、B(﹣1,﹣2)代入y1得到方程组,求出即可;将A(2,1)代入y2得出关于a的方程,求出即可;(2)求出C的坐标,根据三角形的面积公式求出即可.【解答】解:(1)设一次函数解析式为y1=kx+b(k≠0);反比例函数解析式为y2=(a≠0),∵将A(2,1)、B(﹣1,﹣2)代入y1得:,∴,∴y1=x﹣1;∵将A(2,1)代入y2得:a=2,∴;答:反比例函数的解析式是y2=,一次函数的解析式是y1=x﹣1.(2)∵y1=x﹣1,当y1=0时,x=1,∴C(1,0),∴OC=1,∴S△AOC=×1×1=.答:△AOC的面积为.【点评】本题考查了对一次函数与反比例函数的交点,三角形的面积,用待定系数法求一次函数、反比例函数的解析式的应用,通过做此题培养了学生的计算能力,题目具有一定的代表性,是一道比较好的题目.22.(7分)【考点】矩形的性质;线段垂直平分线的性质;勾股定理;平行四边形的判定;菱形的性质;菱形的判定.【分析】(1)根据矩形性质求出AD∥BC,推出∠MDO=∠NBO,∠DMO=∠BNO,证△DMO≌△BNO,推出OM=ON,得出平行四边形BMDN,推出菱形BMDN;(2)根据菱形性质求出DM=BM,在Rt△AMB中,根据勾股定理得出BM2=AM2+AB2,推出x2=x2﹣16x+64+16,求出即可.【解答】(1)证明:∵四边形ABCD是矩形,∴AD∥BC,∠A=90°,∴∠MDO=∠NBO,∠DMO=∠BNO,∵在△DMO和△BNO中,,∴△DMO≌△BNO(AAS),∴OM=ON,∵OB=OD,∴四边形BMDN是平行四边形,∵MN⊥BD,∴平行四边形BMDN是菱形.(2)解:∵四边形BMDN是菱形,∴MB=MD,设MD长为x,则MB=DM=x,在Rt△AMB中,BM2=AM2+AB2即x2=(8﹣x)2+42,解得:x=5,所以MD长为5.【点评】本题考查了矩形性质,平行四边形的判定,菱形的判定和性质,勾股定理等知识点的应用,对角线互相平分的四边形是平行四边形,对角线互相垂直的平行四边形是菱形.23.(9分)【考点】二次函数综合题.【分析】方法一:(1)首先求出A点坐标,然后利用待定系数法求出抛物线的解析式;(2)利用相似三角形(Rt△OCA∽Rt△OPA)比例线段之间的关系,求出线段OC的长度,从而得到C点的坐标,如题图所示;(3)存在所求的M点,在x轴上有3个,y轴上有2个,注意不要遗漏.求点M坐标的过程并不复杂,但要充分利用相似三角形比例线段之间的关系.方法二:(1)略.(2)利用黄金法则二,得出AC直线方程,令y=0求出点C坐标.(3)设参数点M,分类讨论三种位置关系,利用黄金法则二求出点M.【解答】方法一:解:(1)直线解析式为y=x+2,令x=0,则y=2,∴A(0,2),∵抛物线y=x2+bx+c的图象过点A(0,2),E(﹣1,0),∴,解得.∴抛物线的解析式为:y=x2+x+2.(2)∵直线y=x+2分别交x轴、y轴于点P、点A,∴P(6,0),A(0,2),∴OP=6,OA=2.∵AC⊥AB,OA⊥OP,∴Rt△OCA∽Rt△OPA,∠OAC=∠OPA,∴,∴OC=,又C点在x轴负半轴上,∴点C的坐标为C(,0).(3)抛物线y=x2+x+2与直线y=x+2交于A、B两点,令x2+x+2=x+2,解得x1=0,x2=,∴B(,).如答图①所示,过点B作BD⊥x轴于点D,则D(,0),BD=,DP=6﹣=.点M在坐标轴上,且△MAB是直角三角形,有以下几种情况:①当点M在x轴上,且BM⊥AB,如答图①所示.设M(m,0),则MD=﹣m.∵BM⊥AB,BD⊥x轴,∴,即,解得m=,∴此时M点坐标为(,0);②当点M在x轴上,且BM⊥AM,如答图①所示.设M(m,0),则MD=﹣m.∵BM⊥AM,易知Rt△AOM∽Rt△MDB,∴,即,化简得:m2﹣m+=0,解得:m1=,m2=,∴此时M点坐标为(,0),(,0);(说明:此时的M点相当于以AB为直径的圆与x轴的两个交点)③当点M在y轴上,且BM⊥AM,如答图②所示.此时M点坐标为(0,);④当点M在y轴上,且BM′⊥AB,如答图②所示.设M′(0,m),则AM=2﹣=,BM=,MM′=﹣m.易知Rt△ABM∽Rt△BM′M,∴,即,解得m=,∴此时M′点坐标为(0,).综上所述,除点C外,在坐标轴上存在点M,使得△MAB是直角三角形.符合条件的点M有5个,其坐标分别为:(,0)、(,0)、(,0)、(0,)或(0,).方法二:(1)略.(2)抛物线y=﹣x2+x+2与直线y=﹣x+2交于A、B两点,﹣x2+x+2=﹣x+2,解得:x1=0,x2=,∴B(,),∵AC⊥AB,∴K AC×K AB=﹣1,又K AB=﹣,∴K AC=3,∵A(0,2),∴l AC:y=3x+2,当y=0时,x=﹣,∴点C的坐标为(﹣,0).(3)①当M在y轴时,过B作y轴垂线得M1(0,),作BM⊥AB交y轴于M,∴K BM×K AB=﹣1,∴K AB=﹣,K BM=3,又B(,),∴l BM:y=3x﹣,∴M2(0,﹣).②当M在x轴时,当y=0,x=,∴M3(,0),∵AM⊥BM,∴K AM×K BM=﹣1,∵A(0,2),B(,),设M(t,0),∴=﹣1,∴t2﹣t+=0,∴t=或,∴M4(,0),M5(,0).【点评】本题综合考查了二次函数的图象与性质、待定系数法求函数解析式、一次函数、解一元二次方程、相似三角形的判定与性质等重要知识点.难点在于第(3)问,所求的M点有5个(x轴上有3个,y轴上有2个),需要分情况讨论,不要遗漏.。

2012年重庆市中考数学试卷分析

2012年重庆市中考数学试卷分析

2012年重庆市中考数学试卷分析一、试卷概述由于2012年重庆市中考联招区首次实行计算机网上阅卷,以往的手工阅卷一般只能是单评加抽样复查的方式,而计算机网上阅卷可以保证每份试卷都是双评,同时为这次网阅首次使用的答题卡设计合理,确保了阅卷更加客观、公正、高效、准确。

而为兼顾非联招区县沿用的是2011年的手工阅卷方式,除了答题卡外,也保留了2011年采用的答题卷格式的答卷。

当然由于是首次使用答题卡,考生答题时也出现些问题:解答题答错位;写字笔痕太轻,扫描出来效果不好;24题辅助线未作在答题卡的图形上及未标出∠1、∠2、∠3等,这些都只是极个别现象,只要考生仔细点,完全是可以回避的。

试卷所涉及考点及分值分布如下:2012年重庆市中考数学试卷共五道大题,26个小题,满分150分,考试时间120分钟。

全卷设计选择题10个,共40分,占总分的27%;填空题6个,共24分,占总分的16%;解答题10个,共86分,占总分的57%.二、试卷考法分析 试卷十分注意体现最新版(2011版)课标的评价理知识点 题型 题号 分值 分数 比例 数与代数 数与 式 有理数的基本概念 选择题 1 4分 74 49.3% 一元一次方程 选择题 7 4分规律观察 选择题 8 4分整式运算 选择题 3 4分 科学记数法 填空题 11 4分 数式运算 解答题 17 6分分式的化简 解答题 21 10分 方 程 与 函数 分式方程 解答题 18 6分 二次函数 选择题 10 4分 识别函数图像 选择题 9 4分 一次函数与反比例函数 解答题 22 10分 函数综合 解答题 25 10分 阅读理解 填空题 16 4分统计 概 率 统计的基本方法 选择题 4 4分22 14.7%统计的特征数 填空题 13 4分 综合概率 填空题 15 4分 统计与概率 解答题 23 10分几 何 图形 对称的基本概念 选择题 2 4分5436% 平行线与相交线 选择题 5 4分解直角三角形 解答题 20 6分 相似 填空题 12 4分 证明 解答题 24 10分 圆心角与圆周角 选择题 6 4分圆中的相关计算 填空题 14 4分 简单的几何证明 解答题 19 6分图形的运动与变换 解答题 26 12分念,注重考查双基和通过应用考查基本能力,突出考查建模能力与应用意识。

2012年山东省济宁市中考数学试卷解析

2012年山东省济宁市中考数学试卷解析

2012年山东省济宁市中考数学试卷解析一、单项选择题(每小题3分,共30分)1.(2012•济宁)在数轴上到原点距离等于2的点所标示的数是()A.﹣2 B.2C.±2 D.不能确定考点:数轴。

分析:先在数轴上标出到原点距离等于2的点,然后根据图示作出选择即可.解答:解:在数轴上到原点距离等于2的点如图所示:点A、B即为所求的点,即在数轴上到原点距离等于2的点所标示的数是﹣2和2;故选C.点评:本题考查了数轴.由于引进了数轴,我们把数和点对应起来,也就是把“数”和“形”结合起来,二者互相补充,相辅相成,把很多复杂的问题转化为简单的问题,在学习中要注意培养数形结合的数学思想.2.(2012•济宁)下列运算正确的是()A.﹣2(3x﹣1)=﹣6x﹣1 B.﹣2(3x﹣1)=﹣6x+1C.﹣2(3x﹣1)=﹣6x﹣2D.﹣2(3x﹣1)=﹣6x+2考点:去括号与添括号。

分析:利用去括号法则,将原式去括号,进而判断即可得出答案即可.解答:解:A.∵﹣2(3x﹣1)=﹣6x+2,∴﹣2(3x﹣1)=﹣6x﹣1错误,故此选项错误;B.∵﹣2(3x﹣1)=﹣6x+2,∴﹣2(3x﹣1)=﹣6x+1错误,故此选项错误;C.∵﹣2(3x﹣1)=﹣6x+2,∴﹣2(3x﹣1)=﹣6x﹣2错误,故此选项错误;D.﹣2(3x﹣1)=﹣6x+2,故此选项正确;故选:D.点评:此题主要考查了去括号法则,利用去括号法则:如果括号外的因数是正数,去括号后原括号内各项的符号与原来的符号相同;如果括号外的因数是负数,去括号后原括号内各项的符号与原来的符号相反得出是解题关键.3.空气是由多种气体混合而成的,为了简明扼要的介绍空气的组成情况,较好的描述数据,最适合使用的统计图是()A.扇形图B.条形图C.折线图D.直方图考点:统计图的选择。

分析:扇形统计图表示的是部分在总体中所占的百分比,但一般不能直接从图中得到具体的数据;折线统计图表示的是事物的变化情况;条形统计图能清楚地表示出每个项目的具体数目;频数分布直方图,清楚显示在各个不同区间内取值,各组频数分布情况,易于显示各组之间频数的差别.解答: 解:根据题意,得要求直观反映空气的组成情况,即各部分在总体中所占的百分比,结合统计图各自的特点,应选择扇形统计图. 故选A .点评: 此题考查扇形统计图、折线统计图、条形统计图各自的特点. 4.(2012•济宁)下列式子变形是因式分解的是( )A . x 2﹣5x+6=x (x ﹣5)+6B . x 2﹣5x+6=(x ﹣2)(x ﹣3) C . (x ﹣2)(x ﹣3)=x 2﹣5x+6 D . x 2﹣5x+6=(x+2)(x+3)考点: 因式分解的意义。

2012安徽中考数学试卷答案解析

2012安徽中考数学试卷答案解析

2012年安徽省初中毕业学业考试数学试题解析本试卷共8大题,计23小题,满分150分,考试时间120分钟。

一、选择题(本大题共10小题,每小题4分,满分40分) 每小题都给出代号为A 、B 、C 、D 的四个选项,其中只有一个是正确的,请把正确选项的代号写在题后的括号内,每一小题选对得4分,不选、选错或选出的代号超过一个的(不论是否写在括号内)一律得0分.1.(2012安徽,1,4分)下面的数中,与-3的和为0的是 ………………………….( )A.3B.-3C.31D.31- 1. 解析:根据有理数的运算法则,可以把选项中的数字和-3相加,进行筛选只有选项A 符合,也可以利用相反数的性质,根据互为相反数的两数和为0,必选-3的相反数3. 解答:A .点评:本题考查了有理数的运算、及其概念,理解有关概念,掌握运算法则,是解答此类题目的基础.2. (2012安徽,2,4分)下面的几何体中,主(正)视图为三角形的是( )A. B. C. D.2. 解析:根据这几个常见几何题的视图可知:圆柱的主视图是矩形,正方体的主视图是正方形,圆锥的主视图是三角形,三棱柱的主视图是宽相等两个靠着的矩形.解答:C .点评:此题是由立体图形到平面图形,熟悉常见几何体的三视图,如果要求画出几何体的三视图,要注意它们之间的尺寸大小,和虚实线.3. (2012安徽,3,4分)计算32)2(x -的结果是( )新课 标第 一网A.52x -B. 68x -C.62x -D.58x -3. 解析:根据积的乘方和幂的运算法则可得.解答:解:6323328)()2()2(x x x -=-=- 故选B .点评:幂的几种运算不要混淆,当底数不变时,指数运算要相应的降一级,还要弄清符号,这些都是易错的地方,要熟练掌握,关键是理解乘方运算的意义.4. (2012安徽,4,4分)下面的多项式中,能因式分解的是()A.n m +2B. 12+-m mC. n m -2D.122+-m m4. 解析:根据分解因式的方法,首先是提公因式,然后考虑用公式,如果项数较多,要分组分解,本题给出四个选项,问哪个可以分解,对照选项中的多项式,试用所学的方法分解.就能判断出只有D 项可以.解答:解:22)1(12-=+-m m m 故选D .得分评卷人点评:在进行因式分解时,首先是提公因式,然后考虑用公式,(两项考虑用平方差公式,三项用完全平方公式,当然符合公式才可以.)如果项数较多,要分组分解,最后一定要分解到每个因式不能再分为止.5. (2012安徽,5,4分)某企业今年3月份产值为a 万元,4月份比3月份减少了10%,5月份比4月份增加了15%,则5月份的产值是( )A.(a -10%)(a +15%)万元B. a (1-10%)(1+15%)万元C.(a -10%+15%)万元D. a (1-10%+15%)万元5. 解析:根据4月份比3月份减少10﹪,可得4月份产值是(1-10﹪)a , 5月份比4月份增加15﹪,可得5月份产值是(1-10﹪)(1+15﹪)a ,解答:A .点评:此类题目关键是弄清楚谁是“基准”,把“基准”看作“单位1”,在此基础上增加还是减少,就可以用这个基准量表示出来了.6. (2012安徽,6,4分)化简xx x x -+-112的结果是( ) A.x +1 B. x -1 C.—x D. x6. 解析:本题是分式的加法运算,分式的加减,首先看分母是否相同,同分母的分式加减,分母不变,分子相加减,如果分母不同,先通分,后加减,本题分母互为相反数,可以化成同分母的分式加减. 解答:解:x x x x x x x x x x x =--=--=---=1)1(11122 故选D . 点评:分式的一些知识可以类比着分数的知识学习,分式的基本性质是关键,掌握了分式的基本性质,可以利用它进行通分、约分,在进行分式运算时根据法则,一定要将结果化成最简分式.7. (2012安徽,7,4分)为增加绿化面积,某小区将原来正方形地砖更换为如图所示的正八边形植草砖,更换后,图中阴影部分为植草区域,设正八边形与其内部小正方形的边长都为a ,则阴影部分的面积为( )A.22aB. 32aC. 42aD.52a7. 解析:图案中间的阴影部分是正方形,面积是a 2,由于原来地砖更换成正八边形,四周一个阴影部分是对角线为a 的正方形的一半,它的面积用对角线积的一半来计算. 解答:解:222242121a a a =⨯⨯+ 故选A . 点评:本题考查了正多边形的性质,关键要找出正八边形和原来正方形的关系,尽量用所给数据来计算.8. (2012安徽,8,4分)给甲乙丙三人打电话,若打电话的顺序是任意的,则第一个打电话给甲的概率为( ) A.61 B. 31 C.21 D.32 8. 解析:第1个打电话给甲、乙、丙(因为次序是任意的)的可能性是相同的,所以第一个打电话给甲的概率是31.解答: 故选B .9. (2012安徽,9,4分)如图,A 点在半径为2的⊙O 上,过线段OA 上的一点P 作直线 ,与⊙O 过A 点的切线交于点B ,且∠APB=60°,设OP=x ,则△PAB 的面积y 关于x 的函数图像大致是( )9. 解析:利用AB 与⊙O 相切,△BAP 是直角三角形,把直角三角形的直角边表示出来,从而用x 表示出三角形的面积,根据函数解析式确定函数的图象.解答:解:∵AB 与⊙O 相切,∴∠BAP=90°,OP=x ,AP=2-x,∠BPA=60°,所以AB=)2(3x -,所以△APB 的面积2)2(23x y -=,(0≤x ≤2)故选D . 点评:此类题目一般都是根据图形性质,用字母表示出这个变量,把运动变化的问题转化成静止的.再根据函数的性质解答.有时变化过程的有几种情况,注意它们的临界值.10. (2012安徽,10,4分)在一张直角三角形纸片的两直角边上各取一点,分别沿斜边中点与这两点的连线剪去两个三角形,剩下的部分是如图所示的直角梯形,其中三边长分别为2、4、3,则原直角三角形纸片的斜边长是( )A.10B.54C. 10或54D.10或17210. 解析:考虑两种情况.要分清从斜边中点向哪个边沿着垂线段过去裁剪的. 解答:解:如下图,54)44()22(22=++⨯,1054)44()32(22=++⨯故选C .二、填空题(本大题共4小题,每小题5分,满分20分)11. (2012安徽,11,5分)2011年安徽省棉花产量约378000吨,将378000用科学计数法表示应是______________.11. 解析:科学记数法形式:a ×10n (1≤|a |<10,n 为整数)中n 的值是易错点,由于378 000有6位,所以可以确定n =6﹣1=5,所以378 000=3.78×105答案: 3.78×10512. (2012安徽,12,5分)甲乙丙三组各有7名成员,测得三组成员体重数据的平均数都是58,方差分别为362=甲S ,252=乙S ,162=丙S ,则数据波动最小的一组是___________________.12. 解析:平均数是反映数据集中趋势的特征量,方差反映数据离散程度的特征量,由于平均数相等,方差越大,说明数据越离散,波动越大,方差越小,说明数据越集中,波动越小.丙组方差最小,波动最小.答案:丙组13. (2012安徽,13,5分)如图,点A 、B 、C 、D 在⊙O 上,O 点在∠D 的内部,四边形OABC 为平行四边形,则∠OAD+∠OCD=_______________°.13. 解析:根据同圆中同弧所对的圆周角是圆心角的一半,所以∠AOC=2∠D ;又因为四边形OABC 是平行四边形,所以∠B=∠AOC ;圆内接四边形对角互补,∠B+∠D=180°,所以∠D= 60°,连接OD ,则OA=OD,OD=OC,∠OAD=∠ODA,∠OCD=∠ODC,即有∠OAD+∠OCD=60°. 答案:60.点评:本题是以圆为背景的几何综合题,在圆内圆周角和圆心角之间的关系非常重要,经常会利用它们的关系来将角度转化,另外还考查了平行四边形对角相等,圆内接四边形对角互补,以及等腰三角形的性质.解决此类题目除了数学图形的性质,还要学会识图,做到数形结合.14. (2012安徽,14,5分)如图,P 是矩形ABCD 内的任意一点,连接PA 、PB 、PC 、PD ,得到△PAB 、△PBC 、△PCD 、△PDA ,设它们的面积分别是S 1、S 2、S 3、S 4,给出如下结论:①S 1+S 2=S 3+S 4 ② S 2+S 4= S 1+ S 3③若S 3=2 S 1,则S 4=2 S 2 ④若S 1= S 2,则P 点在矩形的对角线上其中正确的结论的序号是_________________(把所有正确结论的序号都填在横线上).14. 解析:过点P 分别向AD 、BC 作垂线段,两个三角形的面积之和42S S +等于矩形面积的得分 评卷人一半,同理,过点P 分别向AB 、CD 作垂线段,两个三角形的面积之和31S S +等于矩形面积的一半. 31S S +=42S S +,又因为21S S =,则32S S +=ABCD S S S 2141=+,所以④一定成立答案:②④.点评:本题利用三角形的面积计算,能够得出②成立,要判断④成立,在这里充分利用所给条件,对等式进行变形.不要因为选出②,就认为找到答案了,对每个结论都要分析,当然感觉不一定对的,可以举反例即可.对于 ④这一选项容易漏选.三、(本大题共2小题,每小题8分,满分16分)15. (2012安徽,15,8分)计算:)2()1)(3(-+-+a a a a15. 解析:根据整式的乘法法则,多项式乘多项式时,用其中一个多项式的每一项乘另一个多项式的每一项,再把所得的积相加;单项式乘多项式,可以按照乘法分配率进行.最后再根据合并同类项法则进行整式加减运算.解:原式=a 2-a+3a -3+a 2-2a=2a 2-316. (2012安徽,16,8分)解方程:1222+=-x x x16. 解析:根据一元二次方程方程的几种解法,本题不能直接开平方,也不可用因式分解法.先将方程整理一下,可以考虑用配方法或公式法.解:原方程化为:x 2-4x=1配方,得x 2-4x+4=1+4整理,得(x -2)2=5∴x -2=5±,即521+=x ,522-=x .四、(本大题共2小题,每小题8分,满分16分)17. (2012安徽,17,8分)在由m ×n (m ×n >1)个小正方形组成的矩形网格中,研究它的一条对角线所穿过的小正方形个数f ,(1)当m 、n 互质(m 、n 除1外无其他公因数)时,观察下列图形并完成下表:猜想:当m 、n 互质时,在m ×n 的矩形网格中,一条对角线所穿过的小正方形的个数f 与m 、n 的关系式是______________________________(不需要证明);m n m n + f12 3 2 13 4 3 23 54 24 7 35 7解:(2)当m 、n 不互质时,请画图验证你猜想的关系式是否依然成立,17:解析:(1)通过题中所给网格图形,先计算出2×5,3×4,对角线所穿过的小正方形个数f ,再对照表中数值归纳f 与m 、n 的关系式.(2)根据题意,画出当m 、n 不互质时,结论不成立的反例即可.解:(1)如表:f=m+n-1(2)当m 、n 不互质时,上述结论不成立,如图2×42×418. (2012安徽,18,8分)如图,在边长为1个单位长度的小正方形组成的网格中,给出了格点△ABC (顶点是网格线的交点)和点A1.(1)画出一个格点△A1B1C1,并使它与△ABC 全等且A 与A1是对应点;(2)画出点B 关于直线AC 的对称点D ,并指出AD 可以看作由AB 绕A 点经过怎样的旋转而得到的.解:18.解析:(1)考查全等变化,可以通过平移、旋转、轴对称等来完成;(2)先作出图形,m n m nf 1 2 3 2 1 3 4 3 2 3 5 4 2 4 7 6 3 5 7 6因为要回答旋转角度,利用方格纸算出AB 、AD 、BD 的长度,再计算角度.解:(1)答案不唯一,如图,平移即可(2)作图如上,∵AB=10,AD=10,BD=52∴AB 2+AD 2=BD 2∴△ABD 是直角三角形,AD 可以看作由AB 绕A 点逆时针旋转90°得到的.点评:图形变换有两种,全等变换和相似变换,掌握每种变换的概念、性质是作图的基础,一般难度不大. www .xkb1.co m五、(本大题共2小题,每小题10分,满分20分)19. (2012安徽,19,10分)如图,在△ABC 中,∠A=30°,∠B=45°,AC=32,求AB 的长,解:19. 解析:本题在一个三角形中已知两个角和一边,求三角形的边.不是直角三角形,要利用三角函数必须构筑直角三角形,过点C 作CD ⊥AB 于D,利用构造的两个直角三角形来解答. 解:过点C 作CD ⊥AB 于D,在Rt △ACD 中,∠A=30°,AC=32∴CD=AC ×sinA=32×0.5=3, AD=AC ×cosA=32×23=3, 在Rt △BCD 中,∠B=45°,则BD=CD=3,∴AB=AD+BD=3+3点评:解直角三角形中,除了直角外,还知道两个元素(至少有一个是边),就能求出其余的边和角. 一般三角形中,知道三个元素(至少有一个是边),就能求出其余的边和角. 这45°30°C BA第19题图时将三角形转化为直角三角形时,注意尽量不要破坏所给条件.20. (2012安徽,20,10分)九(1)班同学为了解2011年某小区家庭月均用水情况,随机调查了该小区部分家庭,并将调查数据进行如下整理,月均用水量x (t) 频数(户) 频率05x <≤ 6 0.12510x <≤ 0.241015x <≤ 16 0.321520x <≤ 10 0.20 2025x <≤ 4 2530x <≤ 2 0.04 请解答以下问题:(1)把上面的频数分布表和频数分布直方图补充完整;(2)若该小区用水量不超过15t 的家庭占被调查家庭总数的百分比;解:(3)若该小区有1000户家庭,根据调查数据估计,该小区月均用水量超过20t 的家庭大约有多少户?解:20. 本题考查了数据的统计中的频数分布表和不完整的频数分布直方图.所有的频数和就是样本容量,所有频率和等于1,且有n数据总数频数频率=,新 课标第 一网 (1)数据总数5012.06===频率频数 ,50×0.24=12,4÷50=0.08, (2)用水量不超过15吨是前三组,(0.12+0.24+0.32)×100﹪=68﹪(3)用样本来估计总体,根据抽取的样本超过20吨的家庭数,来估计该小区的情况.. 解:(1)统计中的频数分布表和不完整的频数分布直方图,补充如下(2)用水量不超过15吨是前三组,(0.12+0.24+0.32)×100﹪=68﹪(3)1000×(0.04+0.08)=120(户)六、(本题满分12分)xkb1.co m21. (2012安徽,21,12分)甲、乙两家商场进行促销活动,甲商场采用“慢200减100”的促销方式,即购买商品的总金额满200元但不足400元,少付100元;满400元但不足600元,少付200元;……,乙商场按顾客购买商品的总金额打6折促销。

2012年河北省中考数学试题(解析版)

2012年河北省中考数学试题(解析版)

2012年河北省中考数学试题本试卷分卷Ⅰ和卷Ⅱ两部分;卷Ⅰ为选择题,卷Ⅱ为非选择题. 本试卷满分为120分,考试时间为120分钟.卷Ⅰ(选择题,共30分)2.计算3()ab 的结果是( )A .3abB .3a bC .33a b D .3ab[答案] C[考点] 幂的相关运算:积的乘方[解析] 幂的运算法则中:()nn nab a b =,依此得333()ab a b = 解: 333()ab a b =,故选C 。

3.图1中几何体的主视图是( )[答案] A[考点] 简单几何体的三视图:正视图[解析] 正视图是从正面看所得到的图形,从正面看所得到的图形。

解:正视看所得到的图形是A ,故选A. 4.下列各数中,为不等式组23040x x ->⎧⎨-<⎩解的是( )A .1- B.0 C.2 D.4 [答案] C[考点] 不等式:一元一次不等式组的解,[解析] 一元一次不等式组解,是使得不等式组中每一个不等式都成立的x 的值。

解:验证:1x =时,230x ->不成立,淘汰A ; 0x =时,230x ->不成立,淘汰B ; 4x =时,40x -<不成立,淘汰D,故选C.5.如图2,CD 是O ⊙的直径,AB 是弦(不是直径),AB CD ⊥于点E ,则下列结论正确的是( )A .AE BE >B .AD BC = C .12D AEC =∠∠ D .ADE CBE △∽△[答案] D[考点] 圆:圆周角定理、垂径定理、同弧上圆周角与圆心角的关系;相似三角形的判定。

[解析] 本题逐一排查费时,容易证明ADE CBE △∽△,直接证明即可。

解:在ADE CBE △和△中A C DB ∠=∠⎧⎪⎨⎪∠=∠⎩(圆内同弧所对的圆周角相等)ADE CBE ∴△∽△(两个角对应相等的两个三角形相似),故选D 。

6.掷一枚质地均匀的硬币10次,下列说法正确的是( )A.每2次必有1次正面向上 B .可能有5次正面向上 C .必有5次正面向上 D .不可能有10次正面向上 [答案] B[考点] 概率:随机事件[解析] 掷一枚质地均匀的硬币是随机事件,因此A 、C 、D 都错误,故选D 。

天津市2012年中考数学真题试题(带解析)

天津市2012年中考数学真题试题(带解析)

2012年中考数学精析系列——天津卷(本试卷满分120分,考试时间100分钟)一、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的)(1)(2012天津市3分)2cos60 的值等于【】(A)1 (B(C(D)2【答案】A。

【考点】特殊角的三角函数值。

【分析】根据cos60°=12进行计算即可得解:2cos60°=2×12=1。

故选A。

(2)(2012天津市3分)下列标志中,可以看作是中心对称图形的是【】【答案】B。

【考点】中心对称图形。

【分析】根据中心对称图形的概念:把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形,由此结合各图形的特点求解:A、C、D都不符合中心对称的定义。

故选B。

(3)(2012天津市3分)据某域名统计机构公布的数据显示,截至2012年5月21日,我国“.NET”域名注册量约为560 000个,居全球第三位.将560 000用科学记数法表示应为【】(A)560×103(B)56×104(C)5.6×105(D)0.56×106【答案】C。

【考点】科学记数法。

【分析】根据科学记数法的定义,科学记数法的表示形式为a×10n,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值。

在确定n的值时,看该数是大于或等于1还是小于1。

当该数大于或等于1时,n为它的整数位数减1;当该数小于1时,-n为它第一个有效数字前0的个数(含小数点前的1个0)。

560 000一共6位,从而560 000=5.6×105。

故选C。

(4)(2012天津市3的值在【】(D)(C)(B)(A)(A)2到3之间(B)3到4之间(C)4到5之间(D)5到6之间【答案】B。

【考点】估算无理数的大小。

【分析】利用”夹逼法“得出的范围:∵4 <6 < 9 23<。

2008-2012年河北省中考数学试卷分析与趋势

2008-2012年河北省中考数学试卷分析与趋势

2008—2012年河北省中考数学试卷变化特点与趋势
一、试题特点
1、注重双基,紧抓主干着重考查了学科知识体系的知识主干内容以及应用性较强的知识。

试题分值和题目位置的变化使考察重点向基础知识部分倾斜,同时压轴题又能起到很好的选拔性考试应有的区分度。

2、注重考察学生综合能力。

着力考查学生的阅读理解能力,应用探究能力,实践操作能力,综合创新能力。

试题在全面考查数学核心内容基础上,注重考查学生灵活运用数学知识解决问题的能力,关注对数学活动过程的考查,加强了探究性问题的设计与应用,注意考查学生的观察、实验猜想、推理能力。

3、突出对数学思想方法的考查,关注数学素养的培养。

如整体思想、数形结合思想、函数与方程思想、分类思想、转化思想、配方法、待定系数法、换元法等。

同时注重考察数学模型思想,注重考查建模过程和建模能力。

4、试题呈现形式简洁,减少无效的阅读量,文字材料向图像材料、表格材料、图片材料转换。

使题意直接明了,降低学生审题障碍和无关信息的干扰。

二、考查知识点分布
三、解答题类型。

2012年江西省南昌中考数学试卷(含答案、解析)

2012年江西省南昌中考数学试卷(含答案、解析)

2012年江西省南昌市中考数学试卷一.选择题(共12小题)1.(2012江西)﹣1的绝对值是()A. 1 B. 0 C.﹣1 D.±1考点:绝对值。

分析:根据绝对值的性质进行解答即可.解答:解:∵﹣1<0,∴|﹣1|=1.故选A.点评:本题考查的是绝对值的性质,即一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是零.2.(2012南昌)在下列表述中,不能表示代数式“4a”的意义的是()A. 4的a倍B. a的4倍C. 4个a相加D. 4个a相乘考点:代数式。

分析:说出代数式的意义,实际上就是把代数式用语言叙述出来.叙述时,要求既要表明运算的顺序,又要说出运算的最终结果.解答:解:A.4的a倍用代数式表示4a,故本选项正确;B.a的4倍用代数式表示4a,故本选项正确;C.4个a相加用代数式表示a+a+a+a=4a,故本选项正确;D.4个a相乘用代数式表示a•a•a•a=a4,故本选项错误;故选D.点评:本题考查了用语言表达代数式的意义,一定要理清代数式中含有的各种运算及其顺序.具体说法没有统一规定,以简明而不引起误会为出发点.3.(2012江西)等腰三角形的顶角为80°,则它的底角是()A. 20°B. 50°C. 60°D. 80°考点:等腰三角形的性质。

分析:根据三角形内角和定理和等腰三角形的性质,可以求得其底角的度数.解答:解:∵等腰三角形的一个顶角为80°∴底角=(180°﹣80°)÷2=50°.故选B.点评:考查三角形内角和定理和等腰三角形的性质的运用,比较简单.4.(2012江西)下列运算正确的是()A. a3+a3=2a6B. a6÷a﹣3=a3C. a3a3=2a3D.(﹣2a2)3=﹣8a6考点:同底数幂的除法;合并同类项;同底数幂的乘法;幂的乘方与积的乘方。

2012年河南省中考数学试卷分析

2012年河南省中考数学试卷分析

2012年河南省中考数学试卷分析巩义市第二初级中学李荣有一、命题的指导思想:2.本试卷结构:全卷共有三种题型,23个小题,其中选择题8个,填空题7个,解答题8个。

可以看出2012年中考数学试卷总体保持稳定,但稳中有变、变中有新,体现了义务教育课程改革的新理念,试题以能力考查为主线,以基础知识、基本能力、基本数学思想为辅,明显具有时代性、应用性、探究性、综合性的特点;贴近学生生活实际,适当设计新题型,考查了学生创新意识与实践能力,重视对学生数学素养的考查,尤其注意了考查学生对数学思想方法的领悟和数学思维能力的达成水平,实现了由知识意识向能力意识的过渡;没有生编硬套不合逻辑的题目,没有繁难的计算和证明题,杜绝了非数学本质的和似是而非的题目;试卷涵盖数与代数、空间与几何、概率与统计、函数等45个知识点,与课标要求的分值比例基本上一致。

整份试卷紧扣教材,内容丰富、立意新颖,不仅有利于高一级学校选拔合格新生,而且对初中数学教学有良好的指导作用。

3.具体特点有:(1)注重基础,突出对基础知识、基础技能及基本数学思想方法的考查,有较好的教学导向性。

在命题方向上,中考试题没有太多的起伏;从内容和知识点上看,试题覆盖面广,涉及到初中六册教材的核心内容,对这些知识点的考查,并不是对概念、性质的记忆上进行考查,而是对概念、性质的理解与运用上进行考查。

始终体现了“基础知识、基本技能”的基础要求,有利于引导学生摆脱题海,落实“减负”要求,试题设计循序渐进,坡度缓,有层次,有节奏,难易适中。

(2)注重数学思想和数学方法的理解及运用,着眼于考查学生基本数学能力。

数学思想、数学方法是数学的灵魂,是形成数学能力的基础,是学好数学的根本。

初中数学中最常见的思想方法有:分类、化归、数形结合、函数思想、方程思想和运动的思想等。

其中,数形结合思想、方程与函数思想、分类讨论思想等几乎是历年中考试卷考查的重点,今年的中考试题均有很好的体现。

2012年浙江宁波中考数学试卷(解析版)

2012年浙江宁波中考数学试卷(解析版)

2012年浙江宁波中考数学试卷(解析版)(本试卷满分120分,考试时间120分钟)参考公式:二次函数()20y ax bx c a =++≠)图象的顶点坐标是)442(2ab ac a b --,一.选择题(每小题3分,共36分,在每小题给出的四个选项中,只有一项符合题目要求) 1.(2012浙江宁波3分)(﹣2)0的值为【 】 A .﹣2 B .0 C .1 D .2 【答案】【考点】零指数幂。

【分析】根据零指数幂的定义:a 0=1(a≠0),直接得出结果:(﹣2)0=1。

故选C 。

2.(2012浙江宁波3分)下列交通标志图案是轴对称图形的是【 】A .B .C .D .【答案】B 。

【考点】轴对称图形。

3.(2012浙江宁波3分)一个不透明口袋中装着只有颜色不同的1个红球和2个白球,搅匀后从中摸出一个球,摸到白球的概率为【 】 A . B . C . D .1 【答案】A 。

【考点】概率公式。

【分析】根据题意,从袋中摸出一个球的所有等可能结果有3种,摸到白球的可能结果有2种,所以根据概率公式,摸到白球的概率是:23。

故选A 。

4.(2012浙江宁波3分)据宁波市统计局年报,去年我市人均生产总值为104485元,104485元用科学记数法表示为【 】A.1.04485×106元B.0.104485×106元C.1.04485×105元D.10.4485×104元【答案】C。

【考点】科学记数法。

5.(2012浙江宁波3分)我市某一周每天的最高气温统计如下:27,28,29,29,30,29,28(单位:℃),则这组数据的极差与众数分别为【】A.2,28B.3,29C.2,27D.3,28【答案】B。

【考点】极差,众数。

【分析】根据一组数据中的最大数据与最小数据的差叫做这组数据的极差的定义,这组数中,最大的数是30,最小的数是27,所以极差为30﹣27=3;众数是在一组数据中,出现次数最多的数据,这组数据中,29出现了3次,出现的次数最多,所以,众数是29。

2012年常州市中考数学试题及答案解析

2012年常州市中考数学试题及答案解析

江苏常州市2012年中考数学试题(本试卷满分150分,考试时间120分钟)一、选择题(本大题共8小题,每小题2分,共16分) 1.-3的相反数是【 】 A.-3 B.13- C. 13D.3 2.下列运算正确的是【 】A.3a +2a =a 5B.a 2·a 3= a 6C.(a +b )(a -b )= a 2-b 2D.(a +b )2= a 2+b 2 3.如图所示,由三个相同的小正方体组成的立体图形的主视图...是【 】4.为了参加中学生篮球运动会,某校篮球队准备购买10双运动鞋,经统计10双运动鞋的尺码(cm )如下表所示:尺码 25 25.5 26 26.5 27 购买量(双)24211则这10双运动鞋的众数和中位数分别为【 】A.25.5 cm 26 cmB.26 cm 25.5 cmC.26 cm 26 cmD.25.5 cm 25.5 cm 5.已知两圆半径分别为7,3,圆心距为4,则这两圆的位置关系为【 】 A.外离 B.内切 C.相交 D.内含6.已知三角形三边的长分别为4,9,则这个等腰三角形的周长为【 】 A.13 B.17 C.22 D.17或227.已知二次函数()()2y=a x 2+c a 0>-,当自变量x 23,0时,对应的值分别为123y y y ,,,则123y y y ,,的大小关系正确的是【 】A. 321y y y <<B. 123y y y <<C. 213y y y <<D. 312y y y <<8.已知a 、b 、c 、d 都是正实数,且a cb d<,给出下列四个不等式: ①a c a+b c+d <;②c a c+d a+b <;③d b c+d a+b <;④b da+b c+d<。

其中不等式正确的是【 】A. ①③B. ①④C. ②④D. ②③二、填空题(本大题共9小题,第9小题4分,其余8小题每小题2分,共20分)9.计算:∣-2∣= ▲ ,12--()= ▲ ,22-()= ▲ ,327=▲ 。

湖南省常德市2012年中考数学试卷及参考答案(word解析版)

湖南省常德市2012年中考数学试卷及参考答案(word解析版)

2012年湖南省常德市中考数学试卷一、填空题(本大题8个小题,每小题3分,满分24分﹚1.若向东走5米记作+5米,则向西走5米应记作_________米.2.我国南海海域的面积约为3500000km2,该面积用科学记数法应表示为_________km2.3.分解因式:m2﹣n2=_________.4.如图,在Rt△ABC中,∠C=90°,AD是∠BAC的平分线,DC=2,则D到AB边的距离是_________.5.在函数中,自变量x的取值范围是_________.6.已知甲、乙两种棉花的纤维长度的平均数相等,若甲种棉花的纤维长度的方差S2甲=1.3275,乙种棉花的纤维长度的方差S2乙=1.8775,则甲、乙两种棉花质量较好的是_________.7.若梯形的上底长是10厘米,下底长是30厘米,则它的中位线长为_________厘米.8.规定用符号[m]表示一个实数m的整数部分,例如:[]=0,[3.14]=3.按此规定[]的值为_________.二、选择题(本大题8个小题,每小题3分,满分24分﹚A.B.5C.﹣5 D.10.如图所给的三视图表示的几何体是()A.长方体B.圆柱C.圆锥D.圆台A.a3•a4=a12B.a10÷a2=a5C.a2+a3=a5D.4a﹣a=3a12.实数a,b在数轴上的位置如图所示,下列各式正确的是()A.a+b>0 B.a b>0 C.|a|+b<0 D.a﹣b>013.若两圆的半径分别为2和4,且圆心距为7,则两圆的位置关系为()A.外切B.内切C.外离D.相交14.对于函数,下列说法错误的是()A.它的图象分布在一、三象限B.它的图象既是轴对称图形又是中心对称图形C.当x>0时,y的值随x的增大而增大D.当x<0时,y的值随x的增大而减小15.若一元二次方程x2+2x+m=0有实数解,则m的取值范围是()A.m≤﹣1 B.m≤1 C.m≤4 D.16.若图1中的线段长为1,将此线段三等分,并以中间的一段为边作等边三角形,然后去掉这一段,得到图2,再将图2中的每一段作类似变形,得到图3,按上述方法继续下去得到图4,则图4中的折线的总长度为()A.2B.C.D.三、(本大题2个小题,每小题5分,满分10分)17.计算:.18.解方程组:四、(本大题2个小题,每小题6分,满分12分)19.化简:.20.在一个不透明的口袋中装有3个带号码的球,球号分别为2,3,4,这些球除号码不同外其它均相同.甲、乙、两同学玩摸球游戏,游戏规则如下:先由甲同学从中随机摸出一球,记下球号,并放回搅匀,再甲乙同学从中随机摸出一球,记下球号.将甲同学摸出的球号作为一个两位数的十位上的数,乙同学的作为个位上的数.若该两位数能被4整除,则甲胜,否则乙胜.问:这个游戏公平吗?请说明理由.五、(本大题2个小题,每小题7分,满分14分)21.如图,一天,我国一渔政船航行到A处时,发现正东方向的我领海区域B处有一可疑渔船,正在以12海里∕小时的速度向西北方向航行,我渔政船立即沿北偏东60°方向航行,1.5小时后,在我领海区域的C处截获可疑渔船.问我渔政船的航行路程是多少海里?(结果保留根号)A种产品B种产品成本(万元/件)0.6 0.9利润(万元/件)0.2 0.4六、(本大题2个小题,每小题8分,满分16分)23.某市把中学生学习情绪的自我控制能力分为四个等级,即A级:自我控制能力很强;B 级;自我控制能力较好;C级:自我控制能力一般;D级:自我控制能力较差.通过对该市农村中学的初中学生学习情绪的自我控制能力的随机抽样调查,得到下面两幅不完整的统计图,请根据图中的信息解决下面的问题.(1)在这次随机抽样调查中,共抽查了多少名学生?(2)求自我控制能力为C级的学生人数;(3)求扇形统计图中D级所占的圆心角的度数;(4)请你估计该市农村中学60000名初中学生中,学习情绪自我控制能力达B级及以上等级的人数是多少?24.如图,已知AB=AC,∠BAC=120°,在BC上取一点O,以O为圆心OB为半径作圆,且⊙O 过A点,过A作AD∥BC交⊙O于D,求证:(1)AC是⊙O的切线;(2)四边形BOAD是菱形.七、(本大题2个小题,每小题10分,满分20分)25.已知四边形ABCD是正方形,O为正方形对角线的交点,一动点P从B开始,沿射线BC运动,连接DP,作CN⊥DP于点M,且交直线AB于点N,连接OP,ON.(当P在线段BC上时,如图1:当P在BC的延长线上时,如图2)(1)请从图1,图2中任选一图证明下面结论:①BN=CP;②OP=ON,且OP⊥ON;(2)设AB=4,BP=x,试确定以O、P、B、N为顶点的四边形的面积y与x的函数关系.26.如图,已知二次函数的图象过点A(﹣4,3),B(4,4).(1)求二次函数的解析式:(2)求证:△ACB是直角三角形;(3)若点P在第二象限,且是抛物线上的一动点,过点P作PH垂直x轴于点H,是否存在以P、H、D为顶点的三角形与△ABC相似?若存在,求出点P的坐标;若不存在,请说明理由.2012年湖南省常德市中考数学试卷参考答案与试题解析一、填空题(本大题8个小题,每小题3分,满分24分﹚1.若向东走5米记作+5米,则向西走5米应记作﹣5米.考点:正数和负数。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2012年中考数学试卷分析
分值分析:
选择题6题,4分/题,难度系数A级,预防粗心,共24分;填空12题,4分/题,共48分,第18题难度B+,正确率为50%;计算题19题,10分;解方程20题,10分;21题解直角三角形,10分;22题一次函数的实际应用10分,23题简单的几何证明和计算10分;24题函数和平面直角坐标系的混合运用,难度系数C,12分;25题第一问较简单,难度系数A,第2问难度系数C,第3问难度系数C+,共14分。

知识点分析:
1、单项式和多项式,初一上册内容;2、概率和统计,中位数、众数和平均数;3、解不等式,解集的确定;4、二次根式、分母有理化、化简和求值;5、轴对称图形和中心对称图形;6圆与圆的位置关系;7、计算,求绝对值;8、因式分解-提取公因式法;9、函数的增减性;10、解根式方程;11、一元二次方程根的情况;12、函数的平移;13、概率的计算;14、频率分布和统计;15、向量的计算-三角形法则和平行四边形法则;16、相似三角形性质的运用;17、正三角形多心合一的问题及应用;18、平移和翻折的运用(画图能力);19、计算,细心,难度系数A-;20、解方程,难度系数A;21题解直角三角形的运用,建立直角三角形,难度系数A+;22、应用题或一次函数的运用,难度系数A+;23、三角形一边平行线、比例线段的运用和平心四边形,几何部分,难度系数B;24、函数。

平面直角坐标系和锐角三角比的综合运用,难度系数不是很大,但是因涉及知识点和计算较多,故定为B+或C,25、圆的综合运用,往往会和相似三角形混合运用,但是今年没有涉及到,圆的比重增加;
分数占比:初一上118分,初一下20分,初二上20分,初二下30分,初三上32分,初三下30分;难易比例为:2:8
做试卷要求:1-6必须全部正确;12-17全部正确,18题正确率50%,19-23全部正确,24,前两问,25题第一问,只要准确率保证,学员基本能考到130分。

解题技巧:前17题必须要十分的仔细,整体难度系数和含金量较低,但却是粗心学生
的噩梦;18题多解和画图能力;19-20,考验学生的基本功,技术含量低;21-23解题步骤的设置很重要。

24-25、先做前2问,最后一问哪怕不会做,也要写出相关的步骤。

25题侧重辅助线的作法.
重难点:
重点:函数、解方程、三角形的全等的证明和运用、函数、相似三角形、圆、四边形。

难点:旋转和翻折、三角形的相似的证明和运用。

圆与四边形的综合运用。

函数和几何的综合运用。

相关文档
最新文档