时间序列分析——基于R(王燕)第四章
人大版时间序列分析基于R(第2版)习题答案

第一章习题答案略第二章习题答案2.1答案:(1)非平稳,有典型线性趋势(2)延迟1-6阶自相关系数如下:(3)典型的具有单调趋势的时间序列样本自相关图2.2(1)非平稳,时序图如下(2)1-24阶自相关系数如下(3)自相关图呈现典型的长期趋势与周期并存的特征2.3R命令答案(1)1-24阶自相关系数(2)平稳序列(3)非白噪声序列Box-Pierce testdata: rainX-squared = 0.2709, df = 3, p-value = 0.9654X-squared = 7.7505, df = 6, p-value = 0.257X-squared = 8.4681, df = 9, p-value = 0.4877X-squared = 19.914, df = 12, p-value = 0.06873X-squared = 21.803, df = 15, p-value = 0.1131X-squared = 29.445, df = 18, p-value = 0.04322.4答案:我们自定义函数,计算该序列各阶延迟的Q统计量及相应P值。
由于延迟1-12阶Q统计量的P值均显著大于0.05,所以该序列为纯随机序列。
2.5答案(1)绘制时序图与自相关图(2)序列时序图显示出典型的周期特征,该序列非平稳(3)该序列为非白噪声序列Box-Pierce testdata: xX-squared = 36.592, df = 3, p-value = 5.612e-08X-squared = 84.84, df = 6, p-value = 3.331e-162.6答案(1)如果是进行平稳性图识别,该序列自相关图呈现一定的趋势序列特征,可以视为非平稳非白噪声序列。
如果通过adf检验进行序列平稳性识别,该序列带漂移项的0阶滞后P值小于0.05,可以视为平稳非白噪声序列Box-Pierce testdata: xX-squared = 47.99, df = 3, p-value = 2.14e-10X-squared = 60.084, df = 6, p-value = 4.327e-11(2)差分序列平稳,非白噪声序列Box-Pierce testdata: yX-squared = 22.412, df = 3, p-value = 5.355e-05X-squared = 27.755, df = 6, p-value = 0.00010452.7答案(1)时序图和自相关图显示该序列有趋势特征,所以图识别为非平稳序列。
《时间序列分析》课程教学大纲

《时间序列分析》课程教学大纲课程编号:33330775课程名称:时间序列分析课程基本情况:1.学分:3 学时:51学时(课内学时:45 课内实验:6)2.课程性质:专业必修课3.适用专业:统计学适用对象:本科4.先修课程:概率论、数理统计、随机过程5.首选教材:王燕:《应用时间序列分析》,中国人民大学出版社,2008出版。
备选教材:王振龙等编著:《时间序列分析》,中国统计出版社,2000年。
6.考核形式:闭卷考试7.教学环境:多媒体教室及实验室一、教学目的与要求本课程是数理统计学的一个重要分支,先期需完成的课程有概率论、随机过程。
通过本课程的学习,使学生掌握时间序列数据的分析方法,包括时间序列简介、平稳时间序列分析、时间序列分解、非平稳序列的随机分析、多元时间序列分析。
利用Eviews软件进行本课程的实验教学。
二、教学内容及学时分配课程内容及学时分配表三、教学内容安排第一章时间序列分析简介【教学目的】1、了解时间序列的定义及常用分析方法;2、掌握时间序列的几个基本概念:随机过程、平稳随机过程、非平稳随机过程、自相关、记忆性。
【教学重点】时间序列的相关概念。
【教学难点】随机过程、系统自相关性。
【教学方法】课堂讲授【教学内容】第一节时间序列的定义第二节时间序列分析方法第三节时间序列分析软件EVIEWS简介第二章时间序列的预处理【教学目的】1、掌握平稳性检验的原理和方法;2、掌握纯随机性检验的原理和方法。
【教学重点】平稳时间序列的定义及统计性质。
【教学难点】时间序列的相关统计量。
【教学方法】课堂讲授【教学内容】第一节平稳性检验一、特征统计量二、平稳时间序列的定义三、平稳时间序列的统计性质四、平稳时间序列的意义五、平稳时间序列的检验第二节纯随机性检验一、纯随机序列的定义二、白噪声序列的定义三、纯随机性检验第三章平稳时间序列序列分析【教学目的】1、理解ARMA模型的定义及性质。
2、掌握平稳序列建模方法。
3、掌握平稳时间序列的预测【教学重点】平稳时间序列建模【教学难点】模型识别,参数估计,序列预测【教学方法】课堂讲授与上机实验【教学内容】第一节方法性工具一、差分运算二、延迟算子三、线性差分方程第二节 ARMA模型的性质一、AR模型二、MA模型三、ARMA模型第三节平稳序列建模一、建模步骤二、样本自相关系数与偏相关系数三、模型识别四、参数估计五、模型检验六、模型优化第四节序列预测一、线性预测函数二、预测方差最小原则三、线性最小方差预测的性质四、修正预测第四章非平稳序列的确定性分析【教学目的】1、理解时间序列的分解原理。
王燕-应用时间序列分析

宽平稳
平稳时间序列的统计定义
满足如下条件的序列称为严平稳序列
正整数m, t1 , t 2 , , t m T, 正整数, 有
Ft1 ,t 2 t m ( x1 , x 2 , , x m ) Ft1 ,t 2 t m ( x1 , x 2 , , x m )
推荐软件——SAS
第二章
时间序列的预处理
本章结构
平稳性检验 纯随机性检验
2.1平稳性检验
特征统计量 平稳时间序列的定义 平稳时间序列的统计性质 平稳时间序列的意义 平稳性的检验
概率分布
概率分布的意义
随机变量族的统计特性完全由它们的联合分布函数 或联合密度函数决定
G.U.Yule
1927年,AR模型 1931年,MA模型,ARMA模型
G.T.Walker
核心阶段
G.E.P.Box和 G.M.Jenkins
1970年,出版《Time Series Analysis Forecasting and Control》 提出ARIMA模型(Box—Jenkins 模型) Box—Jenkins模型实际上是主要运用于单变 量、同方差场合的线性模型
描述性时序分析案例
德国业余天文学家施瓦尔发现太阳黑子的活动具有11年左右的周期
统计时序分析
频域分析方法 时域分析方法
频域分析方法
原理
假设任何一种无趋势的时间序列都可以分解成若干不同频率 的周期波动 早期的频域分析方法借助富里埃分析从频率的角度揭示时间 序列的规律 后来借助了傅里叶变换,用正弦、余弦项之和来逼近某个函 数 20世纪60年代,引入最大熵谱估计理论,进入现代谱分析阶 段 非常有用的动态数据分析方法,但是由于分析方法复杂,结 果抽象,有一定的使用局限性
《时间序列分析——基于R》王燕,读书笔记

《时间序列分析——基于R》王燕,读书笔记笔记:⼀、检验:1、平稳性检验:图检验⽅法:时序图检验:该序列有明显的趋势性或周期性,则不是平稳序列⾃相关图检验:(acf函数)平稳序列具有短期相关性,即随着延迟期数k的增加,平稳序列的⾃相关系数ρ会很快地衰减向0(指数级指数级衰减),反之⾮平稳序列衰减速度会⽐较慢衰减构造检验统计量进⾏假设检验:单位根检验adfTest()——fUnitRoots包2、纯随机性检验、⽩噪声检验(Box.test(data,type,lag=n)——lag表⽰输出滞后n阶的⽩噪声检验统计量,默认为滞后1阶的检验统计量结果)1、Q统计量:type=“Box-Pierce”2、LB统计量:type=“Ljung-Box”⼆、模型1、ARMA平稳序列模型1.1平稳性检验1.2ARMA的p、q定阶——acf(),pacf(),auto.arima()⾃动定阶1.3建模arima()1.4模型显著性检验:残差的⽩噪声检验Box.test();参数显著性检验t分布2、⾮平稳确定性分析2.1趋势拟合:直线、曲线(⼀般是多项式,还有其它函数)2.2平滑法移动平均法:SMA()——TTR包指数平滑法:HoltWinters()3、⾮平稳随机性分析3.1ARIMA1平稳性检验,差分运算2拟合ARMA3⽩噪声检验3.2疏系数模型arima(p,d,f)3.3季节模型可以叠加的模型4、残差⾃回归模型:4.1建⽴线性模型4.2对滞后的因变量间拟合线性模型,对模型做残差⾃相关DW检验。
dwtest()——lmtest包,增加选项order.by指定延迟因变量4.3对残差建⽴ARIMA模型5、条件异⽅差模型:异⽅差检验:LM检验ArchTest()——FinTS包,⽤ARCH、GARCH模型建模第⼀章简介统计时序分析⽅法:1、频域分析⽅法2、时域分析⽅法步骤:1、观察序列特征2、根据序列特征选择模型3、确定模型的⼝径4、检验模型,优化模型5、推断序列其它统计性质或预测序列将来的发展时域分析研究的发展⽅向:1、AR,MA,ARMA,ARIMA(Box-Jenkins模型)2、异⽅差场合:ARCH,GARCH等(计量经济学)3、多变量场合:“变量是平稳”不再是必需条件,协整理论3、⾮线性场合:门限⾃回归模型,马尔科夫转移模型第⼆章时间序列的预处理预处理内容:对它的平稳性和纯随机性进⾏检验,最好是平稳⾮⽩噪声的序列1、特征统计量1.1概率分布分布函数或密度函数能够完整地描述⼀个随机变量的统计特征,同样⼀个随机变量族{Xt}的统计特性也完全由它们的联合分布函数或联合密度函数决定。
(完整word版)时间序列分析基于R__习题答案及解析

第一章习题答案略第二章习题答案2.1(1)非平稳(2)0.0173 0.700 0.412 0.148 -0.079 -0.258 -0.376(3)典型的具有单调趋势的时间序列样本自相关图2.2(1)非平稳,时序图如下(2)-(3)样本自相关系数及自相关图如下:典型的同时具有周期和趋势序列的样本自相关图2.3(1)自相关系数为:0.2023 0.013 0.042 -0.043 -0.179 -0.251 -0.094 0.0248 -0.068 -0.072 0.014 0.109 0.217 0.316 0.0070 -0.025 0.075 -0.141 -0.204 -0.245 0.066 0.0062 -0.139 -0.034 0.206 -0.010 0.080 0.118(2)平稳序列(3)白噪声序列2.4,序列LB=4.83,LB统计量对应的分位点为0.9634,P值为0.0363。
显著性水平=0.05不能视为纯随机序列。
2.5(1)时序图与样本自相关图如下(2) 非平稳 (3)非纯随机 2.6(1)平稳,非纯随机序列(拟合模型参考:ARMA(1,2)) (2)差分序列平稳,非纯随机第三章习题答案3.1 ()0t E x =,21() 1.9610.7t Var x ==-,220.70.49ρ==,220φ= 3.2 1715φ=,2115φ=3.3 ()0t E x =,10.15() 1.98(10.15)(10.80.15)(10.80.15)t Var x +==--+++10.80.7010.15ρ==+,210.80.150.41ρρ=-=,3210.80.150.22ρρρ=-=1110.70φρ==,2220.15φφ==-,330φ=3.4 10c -<<, 1121,1,2k k k c c k ρρρρ--⎧=⎪-⎨⎪=+≥⎩3.5 证明:该序列的特征方程为:32--c 0c λλλ+=,解该特征方程得三个特征根:11λ=,2c λ=3c λ=-无论c 取什么值,该方程都有一个特征根在单位圆上,所以该序列一定是非平稳序列。
人大版时间序列分析基于R(第2版)习题答案

第一章习题答案略第二章习题答案2.1答案:(1)非平稳,有典型线性趋势(2)延迟1-6阶自相关系数如下:(3)典型的具有单调趋势的时间序列样本自相关图2.2(1)非平稳,时序图如下(2)1-24阶自相关系数如下(3)自相关图呈现典型的长期趋势与周期并存的特征2.3R命令答案(1)1-24阶自相关系数(2)平稳序列(3)非白噪声序列Box-Pierce testdata: rainX-squared = 0.2709, df = 3, p-value = 0.9654X-squared = 7.7505, df = 6, p-value = 0.257X-squared = 8.4681, df = 9, p-value = 0.4877X-squared = 19.914, df = 12, p-value = 0.06873X-squared = 21.803, df = 15, p-value = 0.1131X-squared = 29.445, df = 18, p-value = 0.04322.4答案:我们自定义函数,计算该序列各阶延迟的Q统计量及相应P值。
由于延迟1-12阶Q统计量的P值均显著大于0.05,所以该序列为纯随机序列。
2.5答案(1)绘制时序图与自相关图(2)序列时序图显示出典型的周期特征,该序列非平稳(3)该序列为非白噪声序列Box-Pierce testdata: xX-squared = 36.592, df = 3, p-value = 5.612e-08X-squared = 84.84, df = 6, p-value = 3.331e-162.6答案(1)如果是进行平稳性图识别,该序列自相关图呈现一定的趋势序列特征,可以视为非平稳非白噪声序列。
如果通过adf检验进行序列平稳性识别,该序列带漂移项的0阶滞后P值小于0.05,可以视为平稳非白噪声序列Box-Pierce testdata: xX-squared = 47.99, df = 3, p-value = 2.14e-10X-squared = 60.084, df = 6, p-value = 4.327e-11(2)差分序列平稳,非白噪声序列Box-Pierce testdata: yX-squared = 22.412, df = 3, p-value = 5.355e-05X-squared = 27.755, df = 6, p-value = 0.00010452.7答案(1)时序图和自相关图显示该序列有趋势特征,所以图识别为非平稳序列。
时间序列分析基于-R——习题与答案

第一章习题答案略第二章习题答案2.1(1)非平稳(2)0.0173 0.700 0.412 0.148 -0.079 -0.258 -0.376(3)典型的具有单调趋势的时间序列样本自相关图2.2(1)非平稳,时序图如下(2)-(3)样本自相关系数及自相关图如下:典型的同时具有周期和趋势序列的样本自相关图2.3(1)自相关系数为:0.2023 0.013 0.042 -0.043 -0.179 -0.251 -0.094 0.0248 -0.068 -0.072 0.014 0.109 0.217 0.316 0.0070 -0.025 0.075 -0.141 -0.204 -0.245 0.066 0.0062 -0.139 -0.034 0.206 -0.010 0.080 0.118(2)平稳序列(3)白噪声序列2.4,序列LB=4.83,LB统计量对应的分位点为0.9634,P值为0.0363。
显著性水平=0.05不能视为纯随机序列。
2.5(1)时序图与样本自相关图如下(2) 非平稳 (3)非纯随机 2.6(1)平稳,非纯随机序列(拟合模型参考:ARMA(1,2)) (2)差分序列平稳,非纯随机第三章习题答案3.1 ()0t E x =,21() 1.9610.7t Var x ==-,220.70.49ρ==,220φ= 3.2 1715φ=,2115φ=3.3 ()0t E x =,10.15() 1.98(10.15)(10.80.15)(10.80.15)t Var x +==--+++10.80.7010.15ρ==+,210.80.150.41ρρ=-=,3210.80.150.22ρρρ=-=1110.70φρ==,2220.15φφ==-,330φ=3.4 10c -<<, 1121,1,2k k k c c k ρρρρ--⎧=⎪-⎨⎪=+≥⎩3.5 证明:该序列的特征方程为:32--c 0c λλλ+=,解该特征方程得三个特征根:11λ=,2λ=3λ=无论c 取什么值,该方程都有一个特征根在单位圆上,所以该序列一定是非平稳序列。
应用时间序列分析第4章答案

河南大学:姓名:汪宝班级:七班学号:1122314451 班级序号:685:我国1949年-2008年年末人口总数(单位:万人)序列如表4-8所示(行数据).选择适当的模型拟合该序列的长期数据,并作5期预测。
解:具体解题过程如下:(本题代码我是做一问写一问的)1:观察时序图:data wangbao4_5;input x@@;time=1949+_n_-1;cards;54167 55196 56300 57482 58796 60266 61465 6282864653 65994 67207 66207 65859 67295 69172 7049972538 74542 76368 78534 80671 82992 85229 8717789211 90859 92420 93717 94974 96259 97542 98705100072 101654 103008 104357 105851 107507 109300 111026112704 114333 115823 117171 118517 119850 121121 122389123626 124761 125786 126743 127627 128453 129227 129988130756 131448 132129 132802;proc gplot data=wangbao4_5;plot x*time=1;symbol1c=black v=star i=join;run;分析:通过时序图,我可以发现我国1949年-2008年年末人口总数(随时间的变化呈现出线性变化.故此时我可以用线性模型拟合序列的发展.X t=a+b t+I t t=1,2,3,…,60E(I t)=0,var(I t)=σ2其中,I t为随机波动;X t=a+b就是消除随机波动的影响之后该序列的长期趋势。
2:进行线性模型拟合:proc autoreg data=wangbao4_5;model x=time;output out=out p=wangbao4_5_cup;run;proc gplot data=out;plot x*time=1 wangbao4_5_cup*time=2/overlay ;symbol2c=red v=none i=join w=2l=3;run;分析:由上面输出结果可知:两个参数的p值明显小于0.05,即这两个参数都是具有显著非零,4:模型检验又因为Regress R-square=total R-square=0.9931,即拟合度达到99.31%所以用这个模型拟合的非常好。
人大 王燕 时间序列分析R语言程序

《应用时间序列分析》人民大学R-语言程序#例2.1 绘制1964——1999年中国年纱产量序列时序图(数据见附录1.2)Data1.2=read.csv("C:\\Users\\Administrator\\Desktop\\附录1.2.csv",header=T)#如果有标题,用T;没有标题用Fplot(Data1.2,type='o')#例2.1续tdat1.2=Data1.2[,2]a1.2=acf(tdat1.2)#例2.2绘制1962年1月至1975年12月平均每头奶牛产奶量序列时序图(数据见附录1.3)Data1.3=read.csv("C:\\Users\\Administrator\\Desktop\\附录1.3.csv",header=F)tdat1.3=as.vector(t(as.matrix(Data1.3)))[1:168]#矩阵转置转向量plot(tdat1.3,type='l')#例2.2续acf(tdat1.3) #把字去掉pacf(tdat1.3)#例2.3绘制1949——1998年北京市每年最高气温序列时序图Data1.4=read.csv("C:\\Users\\Administrator\\Desktop\\附录1.4.csv",header=T)plot(Data1.4,type='o')##不会定义坐标轴#例2.3续tdat1.4=Data1.4[,2]a1.4=acf(tdat1.4)#例2.3续Box.test(tdat1.4,type="Ljung-Box",lag=6)Box.test(tdat1.4,type="Ljung-Box",lag=12)#例2.4随机产生1000个服从标准正态分布的白噪声序列观察值,并绘制时序图Data2.4=rnorm(1000,0,1)Data2.4plot(Data2.4,type='l')#例2.4续a2.4=acf(Data2.4)#例2.4续Box.test(Data2.4,type="Ljung-Box",lag=6)Box.test(Data2.4,type="Ljung-Box",lag=12) #例2.5对1950——1998年北京市城乡居民定期储蓄所占比例序列的平稳性与纯随机性进行检验Data1.5=read.csv("C:\\Users\\Administrator\\Desktop\\附录1.5.csv",header=T)plot(Data1.5,type='o',xlim=c(1950,2010),ylim=c(60,100) )tdat1.5=Data1.5[,2]a1.5=acf(tdat1.5)#白噪声检验Box.test(tdat1.5,type="Ljung-Box",lag=6)Box.test(tdat1.5,type="Ljung-Box",lag=12)#例2.5续选择合适的ARMA模型拟合序列acf(tdat1.5)pacf(tdat1.5)#根据自相关系数图和偏自相关系数图可以判断为AR(1)模型#例2.5续P81 口径的求法在文档上#P83arima(tdat1.5,order=c(1,0,0),method="ML")#极大似然估计ar1=arima(tdat1.5,order=c(1,0,0),method="ML") summary(ar1)ev=ar1$residualsacf(ev)pacf(ev)#参数的显著性检验t1=0.6914/0.0989p1=pt(t1,df=48,lower.tail=F)*2#ar1的显著性检验t2=81.5509/ 1.7453p2=pt(t2,df=48,lower.tail=F)*2#残差白噪声检验Box.test(ev,type="Ljung-Box",lag=6,fitdf=1)Box.test(ev,type="Ljung-Box",lag=12,fitdf=1)#例2.5续P94预测及置信区间predict(arima(tdat1.5,order=c(1,0,0)),n.ahead=5)tdat1.5.fore=predict(arima(tdat1.5,order=c(1,0,0)),n.ahea d=5)U=tdat1.5.fore$pred+1.96*tdat1.5.fore$seL=tdat1.5.fore$pred-1.96*tdat1.5.fore$seplot(c(tdat1.5,tdat1.5.fore$pred),type="l",col=1:2)lines(U,col="blue",lty="dashed")lines(L,col="blue",lty="dashed")#例3.1.1 例3.5 例3.5续#方法一plot.ts(arima.sim(n=100,list(ar=0.8)))#方法二x0=runif(1)x=rep(0,1500)x[1]=0.8*x0+rnorm(1)for(i in 2:length(x)){x[i]=0.8*x[i-1]+rnorm(1)}plot(x[1:100],type="l")acf(x)pacf(x)##拟合图没有画出来#例3.1.2x0=runif(1)x=rep(0,1500)x[1]=-1.1*x0+rnorm(1)for(i in 2:length(x)){x[i]=-1.1*x[i-1]+rnorm(1)}plot(x[1:100],type="l")acf(x)pacf(x)#例3.1.3方法一plot.ts(arima.sim(n=100,list(ar=c(1,-0.5)))) #方法二x0=runif(1)x1=runif(1)x=rep(0,1500)x[1]=x1x[2]=x1-0.5*x0+rnorm(1)for(i in 3:length(x)){x[i]=x[i-1]-0.5*x[i-2]+rnorm(1)}plot(x[1:100],type="l")acf(x)pacf(x)#例3.1.4x0=runif(1)x1=runif(1)x=rep(0,1500)x[1]=x1x[2]=x1+0.5*x0+rnorm(1)for(i in 3:length(x)){x[i]=x[i-1]+0.5*x[i-2]+rnorm(1)}plot(x[1:100],type="l")acf(x)pacf(x)又一个式子x0=runif(1)x1=runif(1)x=rep(0,1500)x[1]=x1x[2]=-x1-0.5*x0+rnorm(1)for(i in 3:length(x)){x[i]=-x[i-1]-0.5*x[i-2]+rnorm(1)}plot(x[1:100],type="l")acf(x)pacf(x)#均值和方差smu=mean(x)svar=var(x)#例3.2求平稳AR(1)模型的方差例3.3mu=0mvar=1/(1-0.8^2) #书上51页#总体均值方差cat("population mean and var are",c(mu,mvar),"\n")#样本均值方差cat("sample mean and var are",c(mu,mvar),"\n")#例题3.4svar=(1+0.5)/((1-0.5)*(1-1-0.5)*(1+1-0.5))#例题3.6 MA模型自相关系数图截尾和偏自相关系数图拖尾#3.6.1法一:x=arima.sim(n=1000,list(ma=-2))plot.ts(x,type='l')acf(x)pacf(x)法二x=rep(0:1000)for(i in 1:1000){x[i]=rnorm[i]-2*rnorm[i-1]}plot(x,type='l')acf(x)pacf(x)#3.6.2法一:x=arima.sim(n=1000,list(ma=-0.5))plot.ts(x,type='l')acf(x)pacf(x)法二x=rep(0:1000)for(i in 1:1000){x[i]=rnorm[i]-0.5*rnorm[i-1]}plot(x,type='l')acf(x)pacf(x)##错误于rnorm[i] : 类别为'closure'的对象不可以取子集#3.6.3法一:x=arima.sim(n=1000,list(ma=c(-4/5,16/25)))plot.ts(x,type='l')acf(x)pacf(x)法二:x=rep(0:1000)for(i in 1:1000){x[i]=rnorm[i]-4/5*rnorm[i-1]+16/25*rnorm[i-2]}plot(x,type='l')acf(x)pacf(x)##错误于x[i] = rnorm[i] - 4/5 * rnorm[i - 1] + 16/25 * rnorm[i - 2] :##更换参数长度为零#例3.6续根据书上64页来判断#例 3.7拟合ARMA(1,1)模型,x(t)-0.5x(t-1)=u(t)-0.8*(u-1),并直观观察该模型自相关系数和偏自相关系数的拖尾性。
最新时间序列分析基于R——习题答案

第一章习题答案略第二章习题答案2.1(1)非平稳(2)0.0173 0.700 0.412 0.148 -0.079 -0.258 -0.376(3)典型的具有单调趋势的时间序列样本自相关图2.2(1)非平稳,时序图如下(2)-(3)样本自相关系数及自相关图如下:典型的同时具有周期和趋势序列的样本自相关图2.3(1)自相关系数为:0.2023 0.013 0.042 -0.043 -0.179 -0.251 -0.094 0.0248 -0.068 -0.072 0.014 0.109 0.217 0.316 0.0070 -0.025 0.075 -0.141 -0.204 -0.245 0.066 0.0062 -0.139 -0.034 0.206 -0.010 0.080 0.118(2)平稳序列(3)白噪声序列2.4,序列LB=4.83,LB统计量对应的分位点为0.9634,P值为0.0363。
显著性水平=0.05不能视为纯随机序列。
2.5(1)时序图与样本自相关图如下(2) 非平稳 (3)非纯随机 2.6(1)平稳,非纯随机序列(拟合模型参考:ARMA(1,2)) (2)差分序列平稳,非纯随机第三章习题答案3.1 ()0t E x =,21() 1.9610.7t Var x ==-,220.70.49ρ==,220φ= 3.2 1715φ=,2115φ=3.3 ()0t E x =,10.15() 1.98(10.15)(10.80.15)(10.80.15)t Var x +==--+++10.80.7010.15ρ==+,210.80.150.41ρρ=-=,3210.80.150.22ρρρ=-=1110.70φρ==,2220.15φφ==-,330φ=3.4 10c -<<, 1121,1,2k k k c c k ρρρρ--⎧=⎪-⎨⎪=+≥⎩3.5 证明:该序列的特征方程为:32--c 0c λλλ+=,解该特征方程得三个特征根:11λ=,2λ=3λ=无论c 取什么值,该方程都有一个特征根在单位圆上,所以该序列一定是非平稳序列。
第四章教案 时间序列分析

第四章时间序列分析(一)教学目的通过本章的学习,掌握时间序列的概念、类型,学会各种动态分析指标的计算方法。
(二)基本要求要求学会各种水平和速度指标的计算方法,并能对时间序列的长期趋势进行分析和预测。
(三)教学要点1、时间序列的概念与种类;2、动态分析指标的计算;3、长期趋势、季节变动的测定。
(四)教学时数7——10课时(五)教学内容本章共分四节:第四章时间数列分析本章前一部分利用时间数列,计算一系列分析指标,用以描述现象的数量表现。
后一部分根据影响事物发展变化因素,采用科学的方法,将时间数列受各类因素(长期趋势、季节变动、循环变动和不规则变动)的影响状况分别测定出来,研究现象发展变化的原因及其规律性,为预测未来和决策提供依据。
第一节时间数列分析概述一、时间数列的概念时间数列:亦称为动态数列或时间序列(Time Series),就是把反映某一现象的同一指标在不同时间上的取值,按时间的先后顺序排列所形成的一个动态数列。
时间数列的构成要素:1.现象所属的时间。
时间可长可短,可以以日为时间单位,也可以以年为时间单位,甚至更长。
2.统计指标在一定时间条件下的数值。
二、时间数列的分类时间数列的分类在时间数列分析中具有重要的意义。
因为,在很多情况下,时间数列的种类不同,则时间数列的分析方法就不同。
因此,为了能够保证对时间数列进行准确分析,则首先必须正确判断时间数列的类型。
而要正确判断时间数列的类型,其关键又在于对有关统计指标的分类进行准确理解。
由于时间数列是由统计指标和时间两个要素所构成,因此时间数列的分类实际上和统计指标的分类是一致的。
时间数列分为:总量指标时间数列、相对指标时间数列和平均指标时间数列。
(一)总量指标时间数列总量指标时间数列:又称为绝对数时间数列,是指由一系列同类的总量指标数值所构成的时间数列。
它反映事物在不同时间上的规模、水平等总量特征。
总量指标时间数列又分为时期数列和时点数列。
1.时期数列:是指由反映某种社会经济现象在一段时期内发展过程累计量的总量指标所构成的总量指标时间数列。
时间序列分析王燕答案

绝密★ 启用前2019 年普通高等学校招生全国统一考试理科综合能力测试注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。
回答非选择题时,将答案写在答题卡上,写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
可能用到的相对原子质量:H 1 C 12 N 14 O 16 Mg 24 S 32 Fe 56 Cu 64一、选择题:本题共13个小题,每小题6分。
共78分,在每小题给出的四个选项中,只有一项是符合题目要求的。
1.细胞凋亡是细胞死亡的一种类型。
下列关于人体中细胞凋亡的叙述,正确的是A •胎儿手的发育过程中不会发生细胞凋亡B •小肠上皮细胞的自然更新过程中存在细胞凋亡现象C.清除被病原体感染细胞的过程中不存在细胞凋亡现象D •细胞凋亡是基因决定的细胞死亡过程,属于细胞坏死2 .用体外实验的方法可合成多肽链。
已知苯丙氨酸的密码子是UUU ,若要在体外合成同位素标记的多肽链,所需的材料组合是①同位素标记的tRNA②蛋白质合成所需的酶③同位素标记的苯丙氨酸④人工合成的多聚尿嘧啶核苷酸⑤除去了DNA 和mRNA 的细胞裂解液A .①②④B .②③④C .③④⑤D .①③⑤3•将一株质量为20 g的黄瓜幼苗栽种在光照等适宜的环境中,一段时间后植株达到40 g,其增加的质量来自于A •水、矿质元素和空气B •光、矿质元素和水C.水、矿质元素和土壤D •光、矿质元素和空气4 •动物受到惊吓刺激时,兴奋经过反射弧中的传出神经作用于肾上腺髓质,使其分泌肾上腺素;兴奋还通过传出神经作用于心脏。
下列相关叙述错误的是A •兴奋是以电信号的形式在神经纤维上传导的B •惊吓刺激可以作用于视觉、听觉或触觉感受器C.神经系统可直接调节、也可通过内分泌活动间接调节心脏活动D •肾上腺素分泌增加会使动物警觉性提高、呼吸频率减慢、心率减慢5 •某种二倍体高等植物的性别决定类型为XY型。
时间序列分析-基于R(第四章作业)

时间序列分析第四章作业T1(p133第1题):程序(1):E4_1=read.table("C:\\Users\\DMXTC\\Documents\\E4_1.txt")# install.packages("aTSA")# library(aTSA)# install.packages("forecast")# library(forecast)par(mfrow=c(1,2))r4_1<-as.matrix(E4_1)d4_1<-as.vector(t(r4_1))T4_1<-ts(d4_1)# #绘制时序图#plot(T4_1,type = "o",col="blue",pch=13,main="表4-8时序图")adf.test(T4_1)#install.packages("caret", dependencies = c("Depends", "Suggests"))for (k in 1:2)print(Box.test(T4_1,lag=6*k))acf(T4_1)pacf(T4_1)fit1<-arima(T4_1,order=c(1,0,1))par(mfrow=c(1,1))fore1<-forecast::forecast(fit1,h=5)plot(fore1,lty=2)lines(fore1$fitted,col=4)fore1图形(1):(2)①时序图绘制如上,时序图显示该序列没有明显的趋势或周期特征,说明该序列没有显著的平稳特征。
进行ADF检验,其检验结果显示如下:> adf.test(T4_1)Augmented Dickey-Fuller Testalternative: stationaryType 1: no drift no trendlag ADF p.value[1,] 0 -3.60 0.01[2,] 1 -3.19 0.01[3,] 2 -3.30 0.01[4,] 3 -3.20 0.01Type 2: with drift no trendlag ADF p.value[1,] 0 -3.65 0.0100[2,] 1 -3.23 0.0256[3,] 2 -3.44 0.0165[4,] 3 -3.48 0.0148Type 3: with drift and trendlag ADF p.value[1,] 0 -3.70 0.0340[2,] 1 -3.29 0.0833[3,] 2 -3.64 0.0388[4,] 3 -3.94 0.0193----Note: in fact, p.value = 0.01 means p.value <= 0.01检验结果显示,该序列所有ADF检验统计量的P值均小于显著性水平(α=0.05),所以可以确定该系列为平稳序列;②对平稳序列进行纯随机性检验,其检验结果如下:Box-Pierce testdata: T4_1X-squared = 25.386, df = 6, p-value = 0.0002896Box-Pierce testdata: T4_1X-squared = 31.153, df = 12, p-value = 0.001867结果显示6阶和12阶延迟的LB统计量的P值都小于显著性水平(α=0.05),所以可以判断该系列为平稳非白噪声序列。
时间序列分析-王燕-习题4答案(2)

6、方法一:趋势拟合法income<-scan('习题4.6数据.txt')ts.plot(income)由时序图可以看出,该序列呈现二次曲线的形状。
于是,我们对该序列进行二次曲线拟合:t<-1:length(income)t2<-t^2z<-lm(income~t+t2)summary(z)lines(z$fitted.values, col=2)方法二:移动平滑法拟合选取N=5income.fil<-filter(income,rep(1/5,5),sides=1)lines(income.fil,col=3)7、(1)milk<-scan('习题4.7数据.txt')ts.plot(milk)从该序列的时序图中,我们看到长期递增趋势和以年为固定周期的季节波动同时作用于该序列,因此我们可以采用乘积模型和加法模型。
在这里以加法模型为例。
z<-scan('4.7.txt')ts.plot(z)z<-ts(z,start=c(1962,1),frequency=12)z.s<-decompose(z,type='additive') //运用加法模型进行分解z.1<-z-z.s$seas //提取其中的季节系数,并在z中减去(因为是加法模//型)该季节系数ts.plot(z.1)lines(z.s$trend,col=3)z.2<-ts(z.1)t<-1:length(z.2)t2<-t^2t3<-t^3r1<-lm(z.2~t)r2<-lm(z.2~t+t2)r3<-lm(z.2~t+t2+t3)summary(r1)summary(r2)summary(r3) ##发现3次拟合效果最佳,故选用三次拟合ts.plot(z.2)lines(r3$fitt,col=4)pt<-(length(z.2)+1) : (length(z.2)+12)pt1<-pt ##预测下一年序列pt2<-pt^2pt3<-pt^3pt<-matrix(c(pt1,pt2,pt3),byrow=T,nrow=3)/*为预测时间的矩阵。
时间序列分析——基于R答案

时间序列分析——基于R 王燕答案第一章时间序列分析简介略第二章时间序列的预处理#========================================## 2.5习题-1##========================================library(tseries)par(mfrow=c(1,2))x=rep(1:20)temp=ts(x)plot(temp)#不是平稳序列as.vector(acf(temp)$acf[1:6])#序列的自相关系数递减到零的速度相当缓慢,#在很长的延迟时期里,自相关系数一直为正,#而后又一直为负,在自相关图上显示出明显的#三角对称性,这是具有单调趋势的非平稳序列#的一种典型的自相关图形式。
这和该序列时序#图显示的显著的单调递增性是一致的。
#======================================== ## 2.5习题-2##======================================== library(tseries)par(mfrow=c(1,2))volcano.co2=read.table('习题2.2数据.txt',sep='\t',header=F) data=ts(as.vector(t(as.matrix(volcano.co2))),start=c(1975,1)) plot(data)#不是平稳序列as.vector(acf(data,lag.max=23)$acf)#序列自相关系数长期位于零轴的一边。
这是#具有单调趋势序列的典型特征,同时自相关#图呈现出明显的正弦波动规律,这是具有周#期变化规律的非平稳序列的典型特征。
自相#关图显示出来的这两个性质和该序列时序图#显示出的带长期递增趋势的周期性质是非常#吻合的。
#========================================## 2.5习题-3##======================================== library(tseries)par(mfrow=c(1,2))rain=read.table('习题2.3数据.txt',sep='\t',header=F) data=ts(as.vector(t(as.matrix(rain))),start=c(1945,1)) plot(data)#该序列为平稳序列as.vector(acf(data,lag.max = 23)$acf)#该序列的自相关系数一直都比较小,#基本控制在2倍的标准差范闹以内,#可以认为该序列自始至终都在零轴附#近波动,这是随机性非常强的平稳时#间序列通常具有的自相关图特征。
时间序列分析王燕答案

绝密★ 启用前2019 年普通高等学校招生全国统一考试理科综合能力测试注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。
回答非选择题时,将答案写在答题卡上,写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
可能用到的相对原子质量:H 1 C 12 N 14 O 16 Mg 24 S 32 Fe 56 Cu 64一、选择题:本题共13个小题,每小题6分。
共78分,在每小题给出的四个选项中,只有一项是符合题目要求的。
1.细胞凋亡是细胞死亡的一种类型。
下列关于人体中细胞凋亡的叙述,正确的是A •胎儿手的发育过程中不会发生细胞凋亡B •小肠上皮细胞的自然更新过程中存在细胞凋亡现象C.清除被病原体感染细胞的过程中不存在细胞凋亡现象D •细胞凋亡是基因决定的细胞死亡过程,属于细胞坏死2 .用体外实验的方法可合成多肽链。
已知苯丙氨酸的密码子是UUU ,若要在体外合成同位素标记的多肽链,所需的材料组合是①同位素标记的tRNA②蛋白质合成所需的酶③同位素标记的苯丙氨酸④人工合成的多聚尿嘧啶核苷酸⑤除去了DNA 和mRNA 的细胞裂解液A .①②④B .②③④C .③④⑤D .①③⑤3•将一株质量为20 g的黄瓜幼苗栽种在光照等适宜的环境中,一段时间后植株达到40 g,其增加的质量来自于A •水、矿质元素和空气B •光、矿质元素和水C.水、矿质元素和土壤D •光、矿质元素和空气4 •动物受到惊吓刺激时,兴奋经过反射弧中的传出神经作用于肾上腺髓质,使其分泌肾上腺素;兴奋还通过传出神经作用于心脏。
下列相关叙述错误的是A •兴奋是以电信号的形式在神经纤维上传导的B •惊吓刺激可以作用于视觉、听觉或触觉感受器C.神经系统可直接调节、也可通过内分泌活动间接调节心脏活动D •肾上腺素分泌增加会使动物警觉性提高、呼吸频率减慢、心率减慢5 •某种二倍体高等植物的性别决定类型为XY型。
王燕-应用时间序列分析

本章结构
方法性工具 ARMA模型 平稳序列建模 序列预测
3.1 方法性工具
Байду номын сангаас
差分运算 延迟算子 线性差分方程
差分运算
一阶差分
xt xt xt 1
p 阶差分
p xt p 1 xt p 1 xt 1
k 步差分
k xt xt k
发展过程
特点
时域分析方法
原理
事件的发展通常都具有一定的惯性,这种惯性用统 计的语言来描述就是序列值之间存在着一定的相关 关系,这种相关关系通常具有某种统计规律。 寻找出序列值之间相关关系的统计规律,并拟合出 适当的数学模型来描述这种规律,进而利用这个拟 合模型预测序列未来的走势 理论基础扎实,操作步骤规范,分析结果易于解 释,是时间序列分析的主流方法
宽平稳
平稳时间序列的统计定义
满足如下条件的序列称为严平稳序列
正整数m, t1 , t 2 , , t m T, 正整数, 有
Ft1 ,t 2 t m ( x1 , x 2 , , x m ) Ft1 ,t 2 t m ( x1 , x 2 , , x m )
G.U.Yule
1927年,AR模型 1931年,MA模型,ARMA模型
G.T.Walker
核心阶段
G.E.P.Box和 G.M.Jenkins
1970年,出版《Time Series Analysis Forecasting and Control》 提出ARIMA模型(Box—Jenkins 模型) Box—Jenkins模型实际上是主要运用于单变 量、同方差场合的线性模型
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第四章:非平稳序列的确定性分析题目一:()()()()()()()12312123121231ˆ14111ˆˆ2144451.1616T T T T T T T T T T T T T T T T T T T T T xx x x x xx x x x x x x x x x x x x x x -------------=+++⎡⎤=+++=++++++⎢⎥⎣⎦=+++ 题目二:因为采用指数平滑法,所以1,t t x x +满足式子()11t t t x x x αα-=+-,下面式子()()11111t t t t t tx x x x x x αααα-++=+-⎧⎪⎨=+-⎪⎩ 成立,由上式可以推导出()()11111t t t t x x x x αααα++-=+-+-⎡⎤⎣⎦,代入数据得:2=5α. 题目三:()()()21221922212020192001ˆ1210101113=11.251ˆ 1010111311.2=11.04.5ˆˆˆ10.40.6.i i i xxxx x x x x αα-==++++=++++===+-=⋅∑(1)(2)根据程序计算可得:22ˆ11.79277.x= ()222019181716161ˆ2525xx x x x x =++++(3)可以推导出16,0.425a b ==,则425b a -=-. 题目四:因为,1,2,3,t x t t ==,根据指数平滑的关系式,我们可以得到以下公式:()()()()()()()()()()()()()()()221221 11121111 1111311. 2t t t t t tt x t t t x t t αααααααααααααααααααα----=+-------=-+---+--+++2+, ++2+用(1)式减去(2)式得:()()()()()221=11111.t t tt x t αααααααααααα-------------所以我们可以得到下面的等式:()()()()()()122111=11111=.t t t tt x t t αααααααα+-----------------()111lim lim 1.ttt ttxt tααα+→∞→∞----==题目五:1. 运行程序:最下方。
2.分析:(1)分析时序图:该图是上升的趋势。
(2)A、进行二次函数曲线拟合和直线拟合,判断哪个方式最优:由于曲线拟合的残差平方和1956小于直线拟合的残差平方和2127,所以曲线拟合的效果更佳。
B、接着分析指数平滑法和Holt两参数指数平滑法哪个最优,因为周期为1,所以不建议使用Holt三参数指数平滑法,这本书指数平滑法和Holt两参数指数平滑法R语言的操作是用HoltWinter函数进行分析,但是没有对应的AIC等参考量,所以用ets函数。
由于Holt两参数指数平滑法的AIC指数986.0516小于指数平滑法的AIC指数1137.059,所以Holt两参数指数平滑法会比简单指数平滑法更佳。
最后Holt两参数指数平滑法的残差平方和455.3597小于曲线拟合的残差平方和1956,同时Holt两参数指数平滑法进行残差白噪声检验,p值均大于0.05,则该模型拟合效果较好,所以用Holt两参数指数平滑法进行5期预测,结果如下图:题目六:1. 运行程序:最下方。
2. 分析:(1)分析时序图:该直线呈上升趋势,初步判断趋于二次函数曲线拟合。
(3)A、进行二次函数曲线拟合和直线拟合,判断哪个方式最优:由于曲线拟合的残差平方和221小于直线拟合的残差平方和590.7,所以曲线拟合的效果更佳。
B、判断指数平滑法和Holt两参数指数平滑法哪个最优。
由于Holt两参数指数平滑法的AIC指数1384.786小于指数平滑法的AIC指数1679.092,所以Holt两参数指数平滑法会比简单指数平滑法更佳,最后Holt两参数指数平滑法的残差平方和19.3002小于曲线拟合的残差平方和221,同时Holt两参数指数平滑法进行残差白噪声检验,p值均大于0.05,所以Holt两参数指数平滑法效果最佳。
题目七:1. 运行程序:最下方。
2. 分析:(1)通过R语言绘制时序图,我们可以观察到时序图是有一定的周期性和上升趋势,则可以初步分析平均每头奶牛的月度产奶量是有季节因素和趋势因素的影响。
(2)对该变量分别进行加法模型因素分解方法和乘法模型因素分解方法,根据两个模型的残差白噪声检验,加法模型的残差平方和58.293小于乘法模型的残差平方和97.489,所以采用加法模型更优,残差白噪声检验如下:最后采用加法模型因素分解方法进行一期预测,下一年该地区奶牛的月度产奶量如下图:题目八:1. 运行程序:最下方。
2. 分析:(1)通过R语言绘制时序图,我们可以观察到时序图是有一定的周期性,则可以初步分析每月屠宰生猪数量有季节因素的影响。
(2)对该变量分别进行加法模型因素分解方法和乘法模型因素分解方法,根据两个模型的残差白噪声检验,加法模型的残差平方和31.051小于乘法模型的残差平方和32.885,所以采用加法模型更优,残差白噪声检验如下:最后采用加法模型因素分解方法进行预测,1995年9月至1997年9月该城市生猪屠宰数量如下图:程序如下:#题目三:用指数平滑法预测library(forecast) #加载程序包x<-c(10,11,12,10,11,14,12,13,11,15,12,14,13,12,14,12,10,10,11,13)x<-ts(x,frequency=3)x.fit<-HoltWinters(x,alpha=0.4,beta=F,gamma=F) #进行指数平滑法x.fore<-forecast(x.fit,h=2) #对简单指数平滑法进行预测x.fore#题目五:我国1949-2008年年末人口总数,选择适当的模型拟合该序列的长期趋势,并作5期预测a<-read.table("D:/ts/4.5.txt") #读取数据,并绘制时序图x<-ts(a,start=1949)plot(x)#曲线拟合模型#二次函数拟合t1<-c(1:60)x.fit1<-nls(x~a+b*t1+c*t1^2,start=list(a=1,b=1,c=1))summary(x.fit1)library(forecast)x.fit1<-predict(x.fit1)plot(x)lines(x.fit1,col=2)#直线拟合(最优)x.fit2<-lm(x~t1)summary(x.fit2)x<-ts(x)plot(x)abline(lm(x~t1),col=2)#指数平滑法:课本是用HoltWinter参数进行拟合和ets函数是一样的,建议用ets函数,可以求出AIC值看出哪个模型最优#移动指数平滑法library(forecast) #数据预测x.pre1<-ets(x,model="ANN") #采用ets函数x.pre1#Holt两参数移动指数平滑法(最优)library(forecast) #数据预测x.pre2<-ets(x,model="AAN") #采用ets函数x.pre2for (i in 1:2) print(Box.test(x.pre2$residual,lag=6*i))x.fore<-forecast(x.pre,h=5)x.fore#题目六:艾奥瓦州1948-1979年非农产品季度收入数据拟合长期趋势a<-read.table("D:/ts/4.6.txt") #读取数据x<-ts(a,start=1948)plot(x)#通过时序图,采用二次函数和直线拟合进行判断,结果二次函数曲线拟合效果最佳t<-c(1:128)x.fit1<-nls(x~a+b*t+c*t^2,start=list(a=1,b=1,c=1))summary(x.fit1)x.fit2<-lm(x~t)summary(x.fit2)#分析简单指数平滑法和Holt两参数指数平滑法哪个效果最佳(Holt两参数指数平滑法效果最优)library(forecast)x.pre1<-ets(x,model="ANN")x.pre1x.pre2<-ets(x,model="AAN")x.pre2for (i in 1:2) print(Box.test(x.pre2$residual,lag=6*i))#题目七:对1962年-1970年每头奶牛的月度产奶量进行预测a<-read.table("D:/ts/4.7.txt") #读取数据,并绘制时序图x<-ts(a,start=1962,frequency=12)plot(x)#判断加法模型和乘法模型哪个最优(加法模型)#进行加法模型综合分析x.fit1<-decompose(x)x.fit1for (i in 1:2) print(Box.test(x.fit1$random,lag=6*i))library(forecast)y<-ts(x.fit1$seasonal+x.fit1$trend+x.fit1$random,start=1962,frequency=12)x.fore<-forecast(y,h=18)x.fore#乘法模型进行综合分析x.fit2<-decompose(x,type="mult")x.fit2for (i in 1:2) print(Box.test(x.fit2$random,lag=6*i))#题目八:某城市1980年1月-1995年8月每月屠宰生猪数量a<-read.table("D:/ts/4.8.txt",sep="\t",header=F) #读取数据,并绘制时序图x<-ts(a,start=c(1980,1),frequency=12)plot(x)#判断加法模型和乘法模型哪个最优(加法模型)x.fit1<-decompose(x,type="mult") #乘法模型进行综合分析for (i in 1:2) print(Box.test(x.fit1$random,lag=6*i))x.fit2<-decompose(x,type="additive") #加法模型进行综合分析for (i in 1:2) print(Box.test(x.fit2$random,lag=6*i))library(forecast)y<-ts(x.fit2$seasonal+x.fit2$trend+x.fit2$random,start=1980,frequency=12) x.fore<-forecast(y,h=36)x.fore。