流体力学第四章 流动阻力和能量损失
合集下载
《流体力学》第四章 流动阻力和能量损失4.8-4.9
ζ:局部阻力系数
2
实验研究表明:局部损失和沿程损失一样,不 同的流态遵循不同的规律。
如果流体以层流经过局部阻碍,而且受干扰后仍能 保持层流的话,局部阻力系数为: B
z=
Re
要使局部阻碍处受边壁强烈干扰的流动仍能保 持层流,只有当Re远小于2000才有可能。因此, 以紊流的局部损失讨论为主。
局部阻碍的种类很多,但按其流动特性 来分,主要是过流断面的扩大或收缩、流动 方向的改变、流量的合入与分出三种基本形 式以及这几种形式的不同组合。
2 a 1v12 a 2 v2 hm = 2g 2g v2 + (a 02 v2 - a 01v1 ) g
av a v v2 hm = + (a 02 v2 - a 01v1 ) 2g 2g g
(v1 - v2 ) hm = 2g
2
2 1 1
2 2 2
(取动能、动量修正系数均为1)
突然扩大的水头损失等于以平 均流速差计算的流速水头。 断面突然扩大时的水流图形
gQ p1 A2 - p2 A2 + g A2 ( Z1 - Z 2 ) = (a 02 v2 - a 01v1 ) g
Q = v2 A2 p1 p2 v2 ( Z1 + ) - ( Z 2 + ) = (a 02v2 - a 01v1 ) g g g
将上式代入能量方程
2 p1 a 1v12 p2 a 2 v2 hm = ( Z1 + + ) - (Z2 + + ) g 2g g 2g
Re=1000000时弯管的局部阻力系数
序号 断面形状 R/d(R/b) 1 圆形 方形 h/b=1.0 矩形 h/b=0.5 矩形 h/b=2.0
2
实验研究表明:局部损失和沿程损失一样,不 同的流态遵循不同的规律。
如果流体以层流经过局部阻碍,而且受干扰后仍能 保持层流的话,局部阻力系数为: B
z=
Re
要使局部阻碍处受边壁强烈干扰的流动仍能保 持层流,只有当Re远小于2000才有可能。因此, 以紊流的局部损失讨论为主。
局部阻碍的种类很多,但按其流动特性 来分,主要是过流断面的扩大或收缩、流动 方向的改变、流量的合入与分出三种基本形 式以及这几种形式的不同组合。
2 a 1v12 a 2 v2 hm = 2g 2g v2 + (a 02 v2 - a 01v1 ) g
av a v v2 hm = + (a 02 v2 - a 01v1 ) 2g 2g g
(v1 - v2 ) hm = 2g
2
2 1 1
2 2 2
(取动能、动量修正系数均为1)
突然扩大的水头损失等于以平 均流速差计算的流速水头。 断面突然扩大时的水流图形
gQ p1 A2 - p2 A2 + g A2 ( Z1 - Z 2 ) = (a 02 v2 - a 01v1 ) g
Q = v2 A2 p1 p2 v2 ( Z1 + ) - ( Z 2 + ) = (a 02v2 - a 01v1 ) g g g
将上式代入能量方程
2 p1 a 1v12 p2 a 2 v2 hm = ( Z1 + + ) - (Z2 + + ) g 2g g 2g
Re=1000000时弯管的局部阻力系数
序号 断面形状 R/d(R/b) 1 圆形 方形 h/b=1.0 矩形 h/b=0.5 矩形 h/b=2.0
流体力学第四章:流体阻力及能量损失
减小摩擦阻力的方法
优化物体表面粗糙度、使用润滑剂、改变流体的流速和方 向等。
形状阻力
形状阻力
由于物体形状的不同,流体在绕过物体时产生的阻力。
形状阻力公式
$F_s = frac{1}{2} rho u^2 A C_s$,其中$C_s$为形状阻力系数, 与物体形状、流体性质和流速有关。
减小形状阻力的方法
详细描述
汽车设计中的流体阻力优化主要包括车身形 状设计和空气动力学套件的应用。设计师会 采用流线型设计来减小空气阻力,同时也会 采用导流板、扰流板等空气动力学套件来调 整汽车周围的空气流动,以提高汽车的行驶
稳定性、减小风噪,并降低燃油消耗。
THANKS FOR WATCHING
感谢您的观看
详细描述
船舶航行中的流体阻力主要来自船体与水之间的摩擦力以及水对船体的冲击力。为了减小流体阻力, 船舶设计师通常会采用流线型设计,优化船体表面的光滑度,以及减少不必要的突出物,从而提高航 行效率。
管道流动中的能量损失
总结词
管道中流体流动时,由于流体与管壁之 间的摩擦以及流体内部的湍流等效应, 会产生能量损失。
根据伯努利方程、欧拉方程等计算公式,结合物体的形状、速度和流体密度等 参数进行计算。
02 流体阻力现象
摩擦阻力
摩擦阻力
由于流体与物体表面的相对运动产生摩擦而形成的阻力。
摩擦阻力公式
$F_f = frac{1}{2} rho u^2 A C_f$,其中$rho$为流体密 度,$u$为流速,$A$为流体与物体接触的表面积,$C_f$ 为摩擦阻力系数。
流体力学第四章流体阻力及能量损 失
目录
• 流体阻力的概念 • 流体阻力现象 • 能量损失原理 • 流体阻力的减小方法 • 实际应用案例
优化物体表面粗糙度、使用润滑剂、改变流体的流速和方 向等。
形状阻力
形状阻力
由于物体形状的不同,流体在绕过物体时产生的阻力。
形状阻力公式
$F_s = frac{1}{2} rho u^2 A C_s$,其中$C_s$为形状阻力系数, 与物体形状、流体性质和流速有关。
减小形状阻力的方法
详细描述
汽车设计中的流体阻力优化主要包括车身形 状设计和空气动力学套件的应用。设计师会 采用流线型设计来减小空气阻力,同时也会 采用导流板、扰流板等空气动力学套件来调 整汽车周围的空气流动,以提高汽车的行驶
稳定性、减小风噪,并降低燃油消耗。
THANKS FOR WATCHING
感谢您的观看
详细描述
船舶航行中的流体阻力主要来自船体与水之间的摩擦力以及水对船体的冲击力。为了减小流体阻力, 船舶设计师通常会采用流线型设计,优化船体表面的光滑度,以及减少不必要的突出物,从而提高航 行效率。
管道流动中的能量损失
总结词
管道中流体流动时,由于流体与管壁之 间的摩擦以及流体内部的湍流等效应, 会产生能量损失。
根据伯努利方程、欧拉方程等计算公式,结合物体的形状、速度和流体密度等 参数进行计算。
02 流体阻力现象
摩擦阻力
摩擦阻力
由于流体与物体表面的相对运动产生摩擦而形成的阻力。
摩擦阻力公式
$F_f = frac{1}{2} rho u^2 A C_f$,其中$rho$为流体密 度,$u$为流速,$A$为流体与物体接触的表面积,$C_f$ 为摩擦阻力系数。
流体力学第四章流体阻力及能量损 失
目录
• 流体阻力的概念 • 流体阻力现象 • 能量损失原理 • 流体阻力的减小方法 • 实际应用案例
流体力学流动阻力及能量损失
d
4 144 1.( 27 m/s) 2 3600 3.14 0.2
由式
l V 2 64 l V 2 64 1000 1.27 2 hf 16.57 (m 油柱) d 2 g Re d 2 g 1587 .5 0.2 2 9.806
d ,管长 l 【例 】 输送润滑油的管子直径 8mm 15m ,如图所示。 2/s,流量 3/s,求油箱的水头 油的运动黏度 12cmQ m 15 106 (不计局部损失)。 h
第四节 圆管中的层流运动
一、恒定 1.恒定均匀流的沿程水头损失 列1-1和2-2截面的 B Bernoulli 方程: 均匀流, v1=v2
第四节 圆管中的层流运动
一.流动特性 层流(laminar flow),亦称片流:是指流 体质点不相互混杂,流体作有序的成层流动。 特点: (1)有序性。水流呈层状流动,各层的质点互 不混掺,质点作有序的直线运动。 (2)粘性占主要作用,遵循牛顿内摩擦定律。 (3)能量损失与流速的一次方成正比。 (4)在流速较小且雷诺数Re较小时发生。
4Q 4 12104 (m/s) V 2 0 . 239 d 3.14 0.0082
雷诺数
Re Vd 0.239 0.008 127.5 2000 6 1510
为层流列截面1-1和2-2的伯努利方程
图6-12 润滑油管路
pa pa V12 V 22 h 1 0 2 hf g 2g g 2g
第一节
流动阻力及水头损失 的 分类与计算
一.流体阻力和水头损失的分类 沿层阻力: 几何边界不变的管段上产生的 阻力hf 沿层损失: 由沿层阻力引起的能量损失 局部阻力: 几何边界发生急剧变化的管 段上产生的阻力hm 局部损失: 由沿层阻力引起的能量损失 ∑ hl= ∑ hf+ ∑ hm
流体力学 第4章流动阻力和能量损失
雷诺的实验装置如图 4.1 所示,水箱 A 内水位保持不变,阀门 C 用于调节流量,容器 D 内盛有容重与相近的颜色水,容器 E 水位也保持不变,经细管 E 流入玻璃管 B,用以演 示水流流态,阀门 F 用于控制颜色水流量。
图 4.1 雷诺实验装置 ·73·
·74·
流体力学
当 B 管内流速较小时,管内颜色水成一股细直的流速,这表明各液层间毫不相混。这 种分层有规则的流动状态称为层流。如图 4.1(a)所示。当阀门 C 逐渐开大流速增加到某一 临界流速 vk 时,颜色水出现摆动,如图 4.1(b)所示。继续增大 B 管内流速,则颜色水迅速 与周围清水相混,如图 4.1(c)所示。这表明液体质点的运动轨迹是极不规则的,各部分流体 互相剧烈掺混,这种流动状态称为紊流或湍流。 能量损失在不同的流动状态下规律如何呢?雷诺在上述装置的管道 B 的两个相距为 L 的断面处加设两根测压管,定量测定不同流速时两测压管液面之差。根据伯努利方程,测 压管液面之差就是两断面管道的沿程损失,实验结果如图 4.2 所示。
流体力学
Z1 +
由均匀流的性质:
p1
γ
+
ห้องสมุดไป่ตู้
α 1v12
2g
=
= Z2 +
2 α 2 v2
p2
γ
+
2 α 2 v2
2g
+ hl1−2
α 1v12
2g
代入上式,得:
2g
hl = h f
⎛ p1 ⎞ ⎛ p2 ⎞ (4-11) ⎜ + Z1 ⎟ ⎟−⎜ ⎜ ⎟ + Z2 ⎟ hf = ⎜ ⎝γ ⎠ ⎝ γ ⎠ 上式说明,在均匀流条件下,两过流断面间的沿程水头损失等于两过流断面测压管水 头的差值,即流体用于克服阻力所消耗的能量全部由势能提供。考虑所取流段在流向上的 受力平衡条件。设两断面间的距离为 L,过流断面面积 A1=A2=A,在流向上,该流段所受 的作用力有:重力分量 γ Alcosα、断面压力 p1A 和 p2A、管壁切力 τ0.l.2πr0(τ0 为管壁切应力, r0 为圆管半径)。
《流体力学》第四章 流动阻力和能量损失4.6-4.7
第七节
非圆管的沿程损失
怎么把非圆管折合成圆管? 水力半径 当量直径 A R 水力半径:过流断面面积和湿周之比。
1 2 d d 对于圆管: R A 4 d 4
de = 4 R
2ab 对于矩形管: d e = a+ b
对于方形管:
de = a
非圆管流中的流态判断的临界雷诺
λ计算公式
紊流光滑区: 1 2 lg Re 2.51 (尼古拉兹 光滑区公式)
紊流粗糙区: (尼古拉兹 粗糙区公式)
0.3164 0.25 Re
(布拉修斯公式)
K 0.11 d
0.25
1
3.7d 2 lg K
(希弗林松公式)
半经验公式
纯经验公式
紊流过渡区
0.06 0.04 A
Ⅱ
Ⅴ Ⅲ Ⅳ
B A
0.02
2×103 5 104
C 2 5
2
l
曲线的比较
5
105
106
A:尼古拉兹曲线 B:2英寸镀锌钢管 C:5英寸新焊接钢管
在光滑区工业管道的实验曲线和尼古拉兹曲线是重叠 的,因此,流动位于阻力光滑区时,工业管道λ的计算 可以采用尼古拉兹的实验结果。
在粗糙区,工业管道和尼古拉兹的实验曲线都是 与横坐标轴平行。这就存在用尼古拉兹粗糙区公式 计算工业管道的可能性。问题在于如何确定工业管 道的K值。 当量糙粒高度:和工业管道粗糙区λ值相等的同 直径尼古拉兹粗糙管的糙粒高度。
数仍为2000。 应用当量直径计算非圆管的能量损 失,并不适用于所有情况。
对矩形、方形、三角形结果接近, 但对长缝形和星形断面差别较大。 应用于层流时,误差较大。
《工程流体力学》第四章 流动损失
1、运动参数的脉动: 紊流特征:旋涡结构 紊流运动:旋涡迁移掺混的随机运动
精密测速仪测定流场中M点瞬时速度:随机变化曲线 运动参数的脉动(脉动现象):在足够长时段T内,随机 值具有围绕某一“平均值”而上下变动的现象
紊流脉动:各空间点的速度、压强等物理量,随时间围 绕某一“平均值”作不规则变化的流动现象。
(b)继续开大阀门C:B管中流速增大,有色液体的流动并 无变化,仍为层流。
当B管中平均流速达到某一值时,层流开始转变紊流 —— 临界状态(临界区)。
临界状态:流束发生动荡、分散、个别地方出现中断。
(c)再稍开大阀门C:B管中流速超过临界值VK’,则有色 液体不再呈现流束动荡和分散中断,而破碎掺混变成一种 紊乱的流动状态,有色流体质点布满B管中—紊流。
管中水流为紊流。
(2)保持层流的最大流速就是临界流速:
流态分析:
层流:各流层互不掺混,只有粘性引起的各流层间的滑动 摩擦阻力。
紊流:许多大大小小的涡体动荡于各流层间,有粘性阻力, 惯性阻力。(由质点掺混,互相碰撞所引起的)
紊流阻力>>层流阻力
层流到紊流的转变过程:
假设流体原来作直线层流运动,由于某种原因干扰,流层 发生波动。
水力半径:截面面积A与流体湿周长c之比 水力半径表征截面的流通能力: A增加,c变小,则流体流通能力增加。
几种断面的水力半径:
当量直径de:当非圆管的水力半径 = 圆管的水力半径时, 这时圆管的直径就是非圆管的当量直径。 如当非圆管的水力半径R = 圆管的水力半径d/4时, 则圆管的直径d = 4R为非圆管的当量直径de。
上临界速度VK’不稳定:受试验设备,周围环境影响很大 (1)当管壁光滑,入口平滑,周围干扰较小时:VK’可达到 较高值。即速度较大时,层流才转变为紊流 (2)当管壁粗糙,周围干扰较大时, VK’可达到的值较小。 即速度较小时,层流就转变为紊流
流体力学-第四章-流动阻力和能量损失(章结)
K(mm) 管道材料 K(mm)
表面光滑砖风道
4.0
度锌钢管
0.15
矿渣混凝土板风道 1.5
钢管
0.046
钢丝网抹灰风道 10~15
铸铁管
0.25
胶合板风道
1.0
混凝土管
0.3~3.0
墙内砌砖风道
5~10 木条拼合圆管 0.18~0.9
确定沿程阻力系数的方法:
(1)经验公式 (2)莫迪图 (3)查相关手册
二、等效过程
(1)用实验方法对某种材料的管道进行沿程损 失实验,测出 和 hf ;
(2)再用达西公式计算出λ;
hf
l d
2
2g
(3)用尼古拉兹阻力平方区公式计算出绝对
粗糙度K。
1
(1.74 2 lg d )2
2K
此时的K值在阻力的效果上是与人工粗糙管的管 道粗糙度相当的,故称其为当量粗糙度。
莫迪(Mood渐扩管 (d)减缩管
(e)折弯管
(f)圆弯管
(g)锐角合流三通
(h)圆角分流三通
在局部阻碍范围内损失的能量,只占局部损失中 的一部分,另一部分是在局部阻碍下游一定长度的 管段上损耗掉的,这段长度称为局部阻碍的影响长 度。受局部阻碍干扰的流动,经过影响长度后,流 速分布和紊流脉动才能达到均匀流动的正常状态。
核心问题2 水力半径、湿周、当量直径
以上讨论的都是圆管,圆管是最常用的断面形式。 但工程上也常用到非圆管的情况。例如通风系统 中的风道,有许多就是矩形的。如果设法把非圆 管折合成圆管来计算,那么根据圆管制定的上述 公式和图表,也就适用于非圆管了。这种由非圆 管折合到圆管的方法是从水力半径的概念出发, 通过建立非圆管的当量直径来实现的。
流体力学4
下临界流速 vk :紊流状态改变为层流状态时的 速度。
实验证明: vk << vk
层流 过渡流 紊流
vk
流速
vk
二、流动状态与水头损失的关系
在雷诺实验中,用测压管测定两点间的水头损失hf, 并测定管中流体均速v,作出hf-v的关系图 结论:v < vk 时,层流,沿程损失 hf与v的关系为OA直线;hf=k1v
或
0 =Ri 计算均匀流动水头损失的基本公式
式中:τ0—流段表面单位面积上所受摩擦力; R—过水断面的水力半径; i-水力坡度。
i hf / l
水力坡度:单位长度的沿程损失。
第四节 流体在圆管中的层流运动
一、均匀流动中内摩擦力的分布规律
均匀流动水头损失:
0 =Ri
设过水断面最大半径为r0,则水力半径 R=r0/2,
四、圆管层流中的沿程损失
由圆管平均速度公式 得:
32 i v 2 d0
i hf l
v
i 2 d0 32
又由水力半径
得:
hf
32 l v k1 v 2 d0
式中: k 32 l 1 d 02
,为常量。
以速度水头的形式表示hf,则:
hf
32 l 32 l v 2 64 l v 2 v v 2 2 d0 ( g) d 0 2 v v d 02 2g
则: 0 = r0 i
2
取半径为r的圆柱形流段,设其表面切应力为τ,则
r = i 2
∴
r = 0 r0
均匀流动中内摩擦切应力的分布规律 物理意义:圆管均匀流的过水断面上,切应力呈直线分 布,管壁处切应力为最大值τ0,管轴处切应力为零。
实验证明: vk << vk
层流 过渡流 紊流
vk
流速
vk
二、流动状态与水头损失的关系
在雷诺实验中,用测压管测定两点间的水头损失hf, 并测定管中流体均速v,作出hf-v的关系图 结论:v < vk 时,层流,沿程损失 hf与v的关系为OA直线;hf=k1v
或
0 =Ri 计算均匀流动水头损失的基本公式
式中:τ0—流段表面单位面积上所受摩擦力; R—过水断面的水力半径; i-水力坡度。
i hf / l
水力坡度:单位长度的沿程损失。
第四节 流体在圆管中的层流运动
一、均匀流动中内摩擦力的分布规律
均匀流动水头损失:
0 =Ri
设过水断面最大半径为r0,则水力半径 R=r0/2,
四、圆管层流中的沿程损失
由圆管平均速度公式 得:
32 i v 2 d0
i hf l
v
i 2 d0 32
又由水力半径
得:
hf
32 l v k1 v 2 d0
式中: k 32 l 1 d 02
,为常量。
以速度水头的形式表示hf,则:
hf
32 l 32 l v 2 64 l v 2 v v 2 2 d0 ( g) d 0 2 v v d 02 2g
则: 0 = r0 i
2
取半径为r的圆柱形流段,设其表面切应力为τ,则
r = i 2
∴
r = 0 r0
均匀流动中内摩擦切应力的分布规律 物理意义:圆管均匀流的过水断面上,切应力呈直线分 布,管壁处切应力为最大值τ0,管轴处切应力为零。
第一篇 流体力学第四章 阻力损失与管路计算
• 有了当量直径,只要用de 代替d,就可利用圆管的计算公式来进行非圆 管沿程损失的计算,即
上一页
返回
第四节 局部损失的计算
• 局部损失可按下式计算:
• 局部损失的计算可以转化为求局部阻力系数ζ 的问题.对于不同的局部 阻碍,有不同的局部阻力系数ζ 值,其多数通过试验确定,并编制成专用 计算图、表,供计算时查用.表4-1列出了各种常用管件的局部阻力系 数ζ值.应当注意,表4-1中的ζ 值都是针对某一过流断面的平均流速而 言的,查表时必须与指定的断面流速相对应,凡未注明的,均应采用局部 阻碍以后断面的平均流速.
• 根据流体的边界情况,将流动阻力和能量损失分为两种形式:一种是沿 程阻力与沿程能量损失;另一种是局部阻力与局部能量损失.
下一页 返回
第一节 流动阻力与能量损失
• 如图4-1所示,水箱侧壁上连接一根由三段不同直径的管段所组成的 管路.在边壁沿程不变的管段上(1-2、2-3、3-4、4-5段), 阻碍流体流动的阻力沿程基本不变,这类阻力称为沿程阻力.为克服沿 程阻力而产生的能量损失称为沿程能量损失.沿程损失以水柱高度表 示时,称为沿程水头损失,用符号hf 表示.图中的hf12、hf23、hf34、 hf45就是相应1-2、2-3、3-4、4-5各管段的沿程水头 损失.图中整个管路的沿程水头损失等于各管段的沿程水头损失之和, 即
• 人们很早以前就发现沿程损失与流速之间存在着某种关系,但直到1 883年,英国物理学家雷诺在他做的试验中揭示了流体运动存在着 两种流态,这才认识到沿程损失与流速的关系与流态密切相关.
• 雷诺试验的装置如图4-2所示,水箱A 中水位恒定,水流通过玻璃管B 恒定出流,阀门K 用来调节管内流量,容器D 中盛有颜色水,颜色水可以 经过细管E 注入玻璃管B 中.
上一页
返回
第四节 局部损失的计算
• 局部损失可按下式计算:
• 局部损失的计算可以转化为求局部阻力系数ζ 的问题.对于不同的局部 阻碍,有不同的局部阻力系数ζ 值,其多数通过试验确定,并编制成专用 计算图、表,供计算时查用.表4-1列出了各种常用管件的局部阻力系 数ζ值.应当注意,表4-1中的ζ 值都是针对某一过流断面的平均流速而 言的,查表时必须与指定的断面流速相对应,凡未注明的,均应采用局部 阻碍以后断面的平均流速.
• 根据流体的边界情况,将流动阻力和能量损失分为两种形式:一种是沿 程阻力与沿程能量损失;另一种是局部阻力与局部能量损失.
下一页 返回
第一节 流动阻力与能量损失
• 如图4-1所示,水箱侧壁上连接一根由三段不同直径的管段所组成的 管路.在边壁沿程不变的管段上(1-2、2-3、3-4、4-5段), 阻碍流体流动的阻力沿程基本不变,这类阻力称为沿程阻力.为克服沿 程阻力而产生的能量损失称为沿程能量损失.沿程损失以水柱高度表 示时,称为沿程水头损失,用符号hf 表示.图中的hf12、hf23、hf34、 hf45就是相应1-2、2-3、3-4、4-5各管段的沿程水头 损失.图中整个管路的沿程水头损失等于各管段的沿程水头损失之和, 即
• 人们很早以前就发现沿程损失与流速之间存在着某种关系,但直到1 883年,英国物理学家雷诺在他做的试验中揭示了流体运动存在着 两种流态,这才认识到沿程损失与流速的关系与流态密切相关.
• 雷诺试验的装置如图4-2所示,水箱A 中水位恒定,水流通过玻璃管B 恒定出流,阀门K 用来调节管内流量,容器D 中盛有颜色水,颜色水可以 经过细管E 注入玻璃管B 中.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
P1 P2 T G cos 0 式中: P1 p1 A, P2 p2 A
T 0 l, G Al cos z1 z2
l
3. 联立(1) 、(2),可得定常均匀流基本方程
hf
0
l R
or
0
R
hf l
RJ
上式对层流、紊流均适用。
(2) (3)
二、过流断面上切应力τ的分布
仿上述推导,可得任意r处的切应力:
四、流态分析
雷诺数之所以能判别流态,是因为它反映了流体运 动时惯性力与粘滞力的对比关系:
惯性力 ma ρ L3 L/T2 ρ L3 V2 /L
粘性力
μAddyu
μL2
V/L
惯性力 粘性力
ρ L3 V2 /L μL2 V/L
ρ VL μ
Re
当Re较小时,粘性力作用大,对质点运动起约束作 用,流体质点表现为有秩序互不掺混的层流状态;
从管进口到附面层在管中心汇合处的截面间的一段距离L*称 为层流(紊流)的起始段。以下将证明,在起始段以后的各管 截面上的速度分布均为抛物线分布(对数曲线)。起始段以后 的管段称为层流(紊流)的充分发展段。
局部损失:是发生在流动状态急剧变化的 急变流中的能量损失。是主要由流体微团的 碰撞、流体中的涡流等造成的损失。
弯头 渐缩
发生位置 变径管 阀门
…
渐扩 突缩 突扩
计算公式:h j ζ2Vg2
局部阻力系 数由试验确
定。
V:断面平均速度, ζ:局部阻力系数。
若为管路系统,能量损失应是各段沿程损失和
局部损失之和,即
hL
hf
hj
λdL
V2 2g
ζ2Vg2
第二节 流体的流动状态
一、雷诺实验 两种流态
1.层流
流体分层运动,各层间互不干扰、互不相混 的流动状态。
2.紊流
流体质点运动彼此混杂、互相干扰,完全无 规则的流动状态。
3.上临界速度和下临界速度:
随着水流速度的增大,水流将由层流状态过渡到紊流状态。由
层流过渡到紊流的临界状态下的流体速度称为上临界速度,用
Vcr′表示。
当玻璃管内的水流已经是紊流运动,此时逐渐关小阀门K,使 水流速度逐渐减小,当水流速度减小到一定程度时,紊乱的红 色液体又将重新成为一条明晰的红色直线流,即紊流又转变为 层流。但是,由紊流转变为层流的临界速度比上临界速Vcr′更 低,称为下临界速度,用Vcr表示。
说明
(1)当流体的流速超过上临界速度(V>Vcr′), 管内 水流一定是紊流状态;
第四章 流动阻力和流动损失
流动阻力和能量损失
主
流体的运动状态
要
内
均匀流基本方程
容
圆管中紊流流动及沿程损失
沿程阻力损失实验研究 管道流动的局部损失
第一节 流动阻力与能量损失
一、沿程损失
-----沿流程上流体与壁面以及流体本身内部摩擦 而产生的能量损失(用hf来表示)。
沿程损失,是发生在缓变流整个流程中的能 量损失,是由流体的粘滞力造成的损失。
状态有无扰动等因素。
二、沿程损失和平均流速的关系
hf p g lg hf lg k m lg v
hf kvm
v vcr
层流状态 m=1 沿程损失和平均流速的关系图
v vcr
紊流状态 m=1.75~2
vcr v vcrห้องสมุดไป่ตู้可能是层流,也可能是紊流
三、流态的判别——临界雷诺数
实验发现,判别流体的流动状态,仅靠临界速度很不方便, 因为随着流体的粘度、密度以及流道线尺寸的不同,临界 速度在变化,很难确定。雷诺根据大量的实验归纳出一个 无因次综合量作为判别流体流动状态的准则,称为雷诺准 则或雷诺准数,简称雷诺数,用Re表示,即
Re vdρ/μ
式中V为流体的特征流速,d为流体通道的特征尺寸。对于 直径为d的圆截面管道,有
Re vd vd
对应于临界速度的雷诺数称为临界雷诺数, 用Recr表示,
Re cr
vcr d
vcr d
流体的流动状态是层流还是紊流,对于流场的速度分布、产生 阻力的方式和大小,以及对传热传质过程和动量传递规律等都 各不相同,所以在研究这些问题之前,首先需要判别流体的流 动是属于哪一种状态。
计算公式:hf
λL d
V2 2g
(达西-魏斯巴赫公式)
L:管长,d:管径,V:管断面平均速度,λ:沿程 阻力系数。
影响因素
影响因素
流动状态:层流、紊流 流速 管道的长度、内径 流体的粘度 管壁粗糙程度
二、局部损失
-----流动中,由于边界急剧变化(如管径突然变大或 变小;弯管引起流速方向改变;或阀门、三通等)而 产生的局部能量损失(一般用hj表示)。
当Re>Recr,惯性力起主导作用,粘性力控制减弱, 不足以控制和约束外界扰动,惯性力将微小扰动不断 扩大,形成紊流。
第三节 均匀流基本方程
一、恒定均匀流基本方程推导
1. 对如图所示定常均匀有压管流,由1→2建立伯努利方程,得:
hf
(z1
p1
)
(
z
2
p2 )
(1)
2. 在s方向列动量方程,得:
说明
实验结果表明,对于光滑的圆截面直管,不论流体的性质和管 径如何变化,其下临界雷诺数一般均为Recr=2100~2300, 而上临界雷诺数Recr′可达12000~13800,甚至更高些, 但这时流动处在极不稳定的状态,稍有扰动层流瞬即被破坏而 转变为紊流。因此,上临界雷诺数在工程上没有实用意义,通 常用下临界雷诺数来判别流体的流动状态,即取圆管内流动的 临界雷诺数为Recr=2300。对于圆截面管道,当Re≤2300 时为层流,Re>2300时为紊流。
RJ
考虑到 R d r0 ,有 R r
42
2
故
0
r r0
(线性分布)
第四节 圆管中的层流流动
一、圆管内层流流动的起始段
d
L
层流边界层
充分发展的流动
紊流边界层
d
L
粘性底层
由于流体的粘性作用,自圆管入口起,在管壁附近形成一层 有速度梯度存在的流体薄层,该流体薄层内壁面上流体的速 度为零,薄层外边界上的流速为u (x)。这一有速度梯度存在 的流体层称为附面层或边界层。
(2)当流体的流速低于下临界速度时(V<Vcr) ,管 内水流一定是层流状态;
(3)当流体的流速介于上临界速度和下临界速度之间时 (Vcr<V<Vcr′),管内水流可能是层流,也可能是紊 流。如果流速是由小增大时,流动是层流,如果流速 是由大变小时,则流动是紊流。
实验表明,这两种情况下的流动状态都不稳定,并且取决于实验的起始
T 0 l, G Al cos z1 z2
l
3. 联立(1) 、(2),可得定常均匀流基本方程
hf
0
l R
or
0
R
hf l
RJ
上式对层流、紊流均适用。
(2) (3)
二、过流断面上切应力τ的分布
仿上述推导,可得任意r处的切应力:
四、流态分析
雷诺数之所以能判别流态,是因为它反映了流体运 动时惯性力与粘滞力的对比关系:
惯性力 ma ρ L3 L/T2 ρ L3 V2 /L
粘性力
μAddyu
μL2
V/L
惯性力 粘性力
ρ L3 V2 /L μL2 V/L
ρ VL μ
Re
当Re较小时,粘性力作用大,对质点运动起约束作 用,流体质点表现为有秩序互不掺混的层流状态;
从管进口到附面层在管中心汇合处的截面间的一段距离L*称 为层流(紊流)的起始段。以下将证明,在起始段以后的各管 截面上的速度分布均为抛物线分布(对数曲线)。起始段以后 的管段称为层流(紊流)的充分发展段。
局部损失:是发生在流动状态急剧变化的 急变流中的能量损失。是主要由流体微团的 碰撞、流体中的涡流等造成的损失。
弯头 渐缩
发生位置 变径管 阀门
…
渐扩 突缩 突扩
计算公式:h j ζ2Vg2
局部阻力系 数由试验确
定。
V:断面平均速度, ζ:局部阻力系数。
若为管路系统,能量损失应是各段沿程损失和
局部损失之和,即
hL
hf
hj
λdL
V2 2g
ζ2Vg2
第二节 流体的流动状态
一、雷诺实验 两种流态
1.层流
流体分层运动,各层间互不干扰、互不相混 的流动状态。
2.紊流
流体质点运动彼此混杂、互相干扰,完全无 规则的流动状态。
3.上临界速度和下临界速度:
随着水流速度的增大,水流将由层流状态过渡到紊流状态。由
层流过渡到紊流的临界状态下的流体速度称为上临界速度,用
Vcr′表示。
当玻璃管内的水流已经是紊流运动,此时逐渐关小阀门K,使 水流速度逐渐减小,当水流速度减小到一定程度时,紊乱的红 色液体又将重新成为一条明晰的红色直线流,即紊流又转变为 层流。但是,由紊流转变为层流的临界速度比上临界速Vcr′更 低,称为下临界速度,用Vcr表示。
说明
(1)当流体的流速超过上临界速度(V>Vcr′), 管内 水流一定是紊流状态;
第四章 流动阻力和流动损失
流动阻力和能量损失
主
流体的运动状态
要
内
均匀流基本方程
容
圆管中紊流流动及沿程损失
沿程阻力损失实验研究 管道流动的局部损失
第一节 流动阻力与能量损失
一、沿程损失
-----沿流程上流体与壁面以及流体本身内部摩擦 而产生的能量损失(用hf来表示)。
沿程损失,是发生在缓变流整个流程中的能 量损失,是由流体的粘滞力造成的损失。
状态有无扰动等因素。
二、沿程损失和平均流速的关系
hf p g lg hf lg k m lg v
hf kvm
v vcr
层流状态 m=1 沿程损失和平均流速的关系图
v vcr
紊流状态 m=1.75~2
vcr v vcrห้องสมุดไป่ตู้可能是层流,也可能是紊流
三、流态的判别——临界雷诺数
实验发现,判别流体的流动状态,仅靠临界速度很不方便, 因为随着流体的粘度、密度以及流道线尺寸的不同,临界 速度在变化,很难确定。雷诺根据大量的实验归纳出一个 无因次综合量作为判别流体流动状态的准则,称为雷诺准 则或雷诺准数,简称雷诺数,用Re表示,即
Re vdρ/μ
式中V为流体的特征流速,d为流体通道的特征尺寸。对于 直径为d的圆截面管道,有
Re vd vd
对应于临界速度的雷诺数称为临界雷诺数, 用Recr表示,
Re cr
vcr d
vcr d
流体的流动状态是层流还是紊流,对于流场的速度分布、产生 阻力的方式和大小,以及对传热传质过程和动量传递规律等都 各不相同,所以在研究这些问题之前,首先需要判别流体的流 动是属于哪一种状态。
计算公式:hf
λL d
V2 2g
(达西-魏斯巴赫公式)
L:管长,d:管径,V:管断面平均速度,λ:沿程 阻力系数。
影响因素
影响因素
流动状态:层流、紊流 流速 管道的长度、内径 流体的粘度 管壁粗糙程度
二、局部损失
-----流动中,由于边界急剧变化(如管径突然变大或 变小;弯管引起流速方向改变;或阀门、三通等)而 产生的局部能量损失(一般用hj表示)。
当Re>Recr,惯性力起主导作用,粘性力控制减弱, 不足以控制和约束外界扰动,惯性力将微小扰动不断 扩大,形成紊流。
第三节 均匀流基本方程
一、恒定均匀流基本方程推导
1. 对如图所示定常均匀有压管流,由1→2建立伯努利方程,得:
hf
(z1
p1
)
(
z
2
p2 )
(1)
2. 在s方向列动量方程,得:
说明
实验结果表明,对于光滑的圆截面直管,不论流体的性质和管 径如何变化,其下临界雷诺数一般均为Recr=2100~2300, 而上临界雷诺数Recr′可达12000~13800,甚至更高些, 但这时流动处在极不稳定的状态,稍有扰动层流瞬即被破坏而 转变为紊流。因此,上临界雷诺数在工程上没有实用意义,通 常用下临界雷诺数来判别流体的流动状态,即取圆管内流动的 临界雷诺数为Recr=2300。对于圆截面管道,当Re≤2300 时为层流,Re>2300时为紊流。
RJ
考虑到 R d r0 ,有 R r
42
2
故
0
r r0
(线性分布)
第四节 圆管中的层流流动
一、圆管内层流流动的起始段
d
L
层流边界层
充分发展的流动
紊流边界层
d
L
粘性底层
由于流体的粘性作用,自圆管入口起,在管壁附近形成一层 有速度梯度存在的流体薄层,该流体薄层内壁面上流体的速 度为零,薄层外边界上的流速为u (x)。这一有速度梯度存在 的流体层称为附面层或边界层。
(2)当流体的流速低于下临界速度时(V<Vcr) ,管 内水流一定是层流状态;
(3)当流体的流速介于上临界速度和下临界速度之间时 (Vcr<V<Vcr′),管内水流可能是层流,也可能是紊 流。如果流速是由小增大时,流动是层流,如果流速 是由大变小时,则流动是紊流。
实验表明,这两种情况下的流动状态都不稳定,并且取决于实验的起始