圆柱的体积说课.PPT课件

合集下载

圆柱的体积ppt课件

圆柱的体积ppt课件

通过侧面积的一半和高计算
总结词
这种方法可以用来验证圆柱体积的计 算结果。
详细描述
侧面积是圆的周长乘以高(2πrh), 通过除以2得到侧面积的一半。然后使 用公式“侧面积的一半 x 高”计算得 出圆柱体积。
通过底面积和高的乘积计算
总结词
这种方法只适用于一些特定形状的圆柱,如球形的一部分。
详细描述
通过测量圆柱的底面积(πr²)和高,然后使用公式“底面积 x 高”计算得出圆 柱体积。这个方法只适用于底面是圆形的圆柱,对于其他形状的圆柱不适用。
THANKS
感谢观看
在物理学中,圆柱体积的概念可以用来描述一些物理现象, 例如液体或气体的流动。当液体或气体在管道中流动时,其 流速和流量可以通过圆柱体积的概念来描述。
另外,圆柱体积的概念也可以用来计算一些物理量,例如物 体的质量和重力等。
在日常生活中的应用
在日常生活中,圆柱体积的概念也有很多应用场景。例如,在购买饮料或食品时,商家会根据圆柱体 积的公式来计算价格,因为这些产品的包装通常是圆柱形的。
形状不同,圆柱是平面的圆形围 绕一个轴旋转而成,而球体是半
圆形旋转而成。
异同点二
表面积和体积计算方式不同,圆 柱的表面积和体积分别通过底面 积和高度计算,而球体的表面积 和体积则是通过4个圆形的面积
总和和高度计算。
异同点三
应用场景不同,圆柱体积常用于 计算圆柱形物体的体积,而球体 积常用于计算球形物体的体积。
圆柱体积的现实意义
圆柱体积在现实生活中的意义在于, 它表示了圆柱形物体的体积大小,对 于计算物体的存储空间、体积移动等 具有实际应用价值。
例如,在计算液体存储量、管道流量 等场合,圆柱体积公式具有重要应用 。

圆柱的体积ppt课件

圆柱的体积ppt课件

鼓励参与
老师对参与挑战和互动的 同学表示肯定和鼓励,激 发更多学生积极参与课堂 互动。
06
知识拓展:相关公式推导 过程
圆柱表面积公式推导
圆柱侧面积
圆柱的侧面积等于底圆的周长乘 以高,即 $S_{侧} = 2\pi rh$。
圆柱底面积
圆柱的底面积等于圆的面积,即 $S_{底} = \pi r^{2}$。
优秀学生作品欣赏
作品1
该同学的作品内容丰富、条理清晰,公式推 导和实例计算均准确无误,同时注重课件美 观性,整体效果非常好。
作品2
该同学的作品在公式推导方面非常详细,每 一个步骤都有解释和说明,便于理解和记忆 。同时,该同学还加入了一些实际应用的例 子,使课件更加生动有趣。
05
互动环节:现场挑战题目
现场出题并邀请学生解答
01
02
03
邀请学生上台
选择1-2名学生上台参与挑战,确保学生 自愿参与。
现场出题
学生解答
给出一个与圆柱体积相关的实际问题,如 计算某个圆柱形容器的体积等。
要求上台的学生现场进行解答,可以使用 公式或口算,鼓励多种方法解答。
分享解题思路和方法
01
02
03
学生分享
邀请上台解答问题的学生 分享他们的解题思路和方 法,以及遇到的问题和困 难。
VS
注意事项
注意侧面积公式中的$\pi$和公式中的 $\pi$是同一个数值,避免在计算中出现 错误。
例题三:综合问题,涉及多个参数
解题思路
需先根据题目所给条件列出方程或方程组,解出未知量后再代入圆柱体积公式求解体积。
注意事项
多个参数之间可能有关联,需仔细审题并理清各参数之间的关系。

《圆柱体积》课件

《圆柱体积》课件

05
圆柱体积的扩展知识
圆柱的表面积计算
总结词
圆柱的表面积由底面和顶面的面积以及侧面面积组成。
详细描述
圆柱的底面和顶面都是圆形,其面积计算公式为πr²,其中r为圆的半径。侧面是一个矩 形,其面积为2πrh,其中h为圆柱的高。因此,圆柱的总表面积为2πr²+2πrh。
圆柱的侧面积计算
要点一
总结词
圆柱的侧面积等于底面周长乘以高。
在科学实验中的实际应用
化学反应中溶液的量取
在化学实验中,经常需要使用圆柱形容 器来量取一定量的溶液。通过圆柱体积 公式,可以精确地计算出所需的溶液量 ,保证实验结果的准确性和可靠性。
VS
生物实验中细胞的计数
在生物学实验中,经常需要对细胞进行计 数和分析。利用圆柱体积公式,可以计算 出细胞培养液的体积,进而推算出细胞的 数量,为实验提供重要的数据支持。
因此,该圆柱的体积为1570cm^3。
计算中的注意事项
确保底面半径和高度的单位一致 ,以便准确计算体积。
在计算过程中,需要注意π的取 值精度,以保证计算结果的准确
性。
对于不规则形状的圆柱,需要先 进行近似处理,再使用公式进行
计算。
03
圆柱体积与圆锥体积的关系
圆锥体积的计算公式
圆锥体积的计算公式是:V = (1/3) * π * r² * h,其中r是 底面半径,h是高。
要点二
详细描述
圆柱的底面是一个圆,其周长(也称为圆的周长)计算公 式为2πr。因此,圆柱的侧面积为2πr乘以高h,即2πrh。
圆柱的展开图
总结词
将圆柱的侧面展开,可以得到一个长方形。
详细描述
展开后的长方形的一边长度等于圆柱的底面 周长,另一边长度等于圆柱的高。这个长方 形的面积等于圆柱的侧面积,即2πrh。通 过这种方式,可以更直观地理解圆柱的侧面 积和表面积的计算方法。

《圆柱的体积》讲解PPT课件

《圆柱的体积》讲解PPT课件

16
3、一个圆柱形粮囤,从里面量得底面半径是 1.5m,高2m。如果每立方米玉米约重750kg, 这个粮囤能装多少吨玉米?
3.14×1.5×1.5×2=14.13(m³)
14.13×750=10597.5(kg) 10597.5kg= 10.5975吨
答:这个粮囤能装10.5975吨玉米。
2021
圆柱的体积圆柱的体积书洋中心小学长方体的体积长方体的体积高高正方体的体积正方体的体积高高棱棱长长高高宽宽高高宽宽棱棱长长棱棱长长棱棱长长长正方体的体积长正方体的体积底面积底面积高高观察
圆柱的体积
书洋中心小学 沈飘渊
圆的面积公式推导过程:
圆的面积公式推导过程:
S=π r 2
r
πr
S=πr ×r =π r 2
如果能把底面转化成长、正方形就好了。
2021
5
小组合作要求: 1、把圆柱体拼凑成学过的立体图形。
我把圆柱体拼凑成了

2、观察、比较:圆柱体和长方体
我发现:圆柱体拼凑成长方体 变了, 没变。
所以:
的体积=
的体积
3、摸一摸、比一比、量一量
圆柱体的底面积相当于长方体的

圆柱体的高相当于长方体的

4、因为:长方体的体积= 底面积 × 高
(1)圆柱体的底面积越大,它的体积越大。(× )
(2)圆柱体的高越长,它的体积越大。( × )
(3)圆柱体的体积等于长方体的体积。( ×)
2、计算下面各圆柱的体积。(单位:cm)
5
8
12 8
4
2021
15
1.5米=150厘米
20×150=3000(立方厘米)
1
17

(赛课课件)六年级下册数学《圆柱的体积》 (共26张PPT)

(赛课课件)六年级下册数学《圆柱的体积》 (共26张PPT)


17、一个人即使已登上顶峰,也仍要 自强不 息。2021/4/292021/4/292021/4/292021/4/29
谢谢大家
返回

9、 人的价值,在招收诱惑的一瞬间被决定 。2021/4/292021/4/29T hursday, April 29, 2021

10、低头要有勇气,抬头要有低气。2021/4/292021/4/292021/4/294/29/2021 8:52:03 PM
长方体(正方体)的体积=底面积×高
V=Sh
返回
怎样求它 们的体积呢?
返回
返回
返回
返回
返回
圆柱体积
长方体体积
返回
圆柱体积 底面积
长方体体积 底面积
返回
圆柱体积 底面积 高
长方体体积 底面积 高
返回
圆柱体积 = 底面积 × 高
长方体体积 = 底面积 × 高
返回
圆柱体积=底面积× 高
V=Sh
返回
二、填表。
底面积s (平方米)
高h (米)
圆柱体积 v (立方米)
15
3
45
40
4
160
返回
三、判断对错。
1、圆柱体体积与长方体体积相等。( × )
2、长方体、正方体、圆柱体的体积都可以用
底面积乘高的方法来计算。
( √)
3、圆的面积公式是S=π r 2 ( √ )
返回
四、求下面圆柱的体积。(只列式不计算。)
圆柱体积
圆面积
长方体
例题
练习
总结
延伸
返回
将圆分成16等份
返回
将圆分成16等份

《圆柱的体积》PPT课件

《圆柱的体积》PPT课件
圆柱的体积
叶县保安镇中心小学 马军辉
5 什么叫物体的体积?你会计算下面哪些图形的体积?


2.5cm 4cm
5cm
V长=abh
4cm
V正=a3
V=Sh
能将圆柱转化成一种学过的图形, 计算出它的体积吗?
பைடு நூலகம் 把圆柱的底面平均分的份数越多,切拼成的立体图 形越接近长方体。
Thank You
在别人的演说中思考,在自己的故事里成长
Thinking In Other People‘S Speeches,Growing Up In Your Own Story
讲师:XXXXXX XX年XX月XX日
V (d)2 h
2
知道S和h: V=Sh
知道r和h: V=πr2×h
知道d和h: V (d )2 h
2
知道C和h: V=(C÷π÷2)2×h
3.14×(8÷2)2×10 =3.14×16×10 =3.14×160 =502.4(cm3) =502.4(ml)
502.4 ml>498ml
答:能装下这袋奶。
练习 三
21 22.4
写在最后
经常不断地学习,你就什么都知道。你知道得越多,你就越有力量 Study Constantly, And You Will Know Everything. The More
You Know, The More Powerful You Will Be
把圆柱的底面平均分的份数越多,切拼成的立体图 形越接近长方体。
=
长方体的底面积等于圆柱的 底面积 , 高等于圆柱的 高 。
长方体体积==底底面面积积××高高
圆柱体积 V=Sh
V=Sh
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2.巧设疑问,体现两“主”
3.运用迁移,深化提高
4
-
说教学过程
(一)复习旧知识,为引入新知识作准备
1.求下面各圆的面积(口算),单位为厘米 (1)半径为1厘米;(2)直径为4厘米;(3) 周长为62、8厘米。
2.圆的面积公式是怎么推导的? 什么叫做体积?你能指出你手中圆柱的体积吗? 怎样计算长方体的体积?
2
知道C和h: V=(C÷π÷2)2×h
13
-
巩固练习,检验目标
14
-
15
-
圆柱的体积
说课教师:王东平
1
-
说教材
教学目标
(1)知道圆柱体积计算公式的推导过程, 会应用该公式计算圆柱的体积。
(2)初步建立空间观念和逻辑推理能力。 (3)知道知识间是可以互相转化的。
2
-
重点和难点
圆柱体积和应用是本节课教学重点。 推导圆柱体积公式的过程是本节课
的难点。
3
-
说教法、学法 1.直观演示,操作发现 Nhomakorabea5
-
(二)直观演示,探究新知
6
-
能将圆柱转化成一种学过的图形, 计算出它的体积吗?
7
-
8
-
9
-
10
-
11
-
长方体的底面积等于圆柱的 底面积 , 高等于圆柱的 高 。
长方体体积=底面积×高
=
圆柱体积
12
V=Sh
-
知道S和h: V=Sh
知道r和h: V=πr2×h
知道d和h: V (d)2 h
相关文档
最新文档