直线的参数方程练习题有答案

合集下载

(压轴题)高中数学高中数学选修4-4第二章《参数方程》测试题(包含答案解析)(1)

(压轴题)高中数学高中数学选修4-4第二章《参数方程》测试题(包含答案解析)(1)

一、选择题1.在直角坐标系xOy 中,曲线C :22x ty t⎧=⎪⎨=⎪⎩(t 为参数)上的点到直线l :230x y -+=的距离的最小值为( )A .23B .223C .233D .22.已知22451x y +=,则25x y +的最大值是( ) A .2 B .1C .3D .93.在参数方程cos sin x a t y b t θθ=+⎧⎨=+⎩,(0θπ<,t 为参数)所表示的曲线上有,B C 两点,它们对应的参数值分别为1t ,2t ,则线段BC 的中点M 对应的参数值是( ) A .122t t - B .122t t + C .122t t - D .122t t + 4.曲线的离心率是( )A .B .C .2D .5.已知点()1,2A -,()2,0B ,P 为曲线2334y x =-上任意一点,则AP AB ⋅的取值范围为( ) A .[]1,7B .[]1,7-C .1,33⎡+⎣D .1,323⎡-+⎣6.在直角坐标系xOy 中,直线l 的参数方程为()y 4t?x t t 为参数=⎧⎨=+⎩,以原点O 为极点,以x 轴的正半轴为极轴建立极坐标系,曲线C 的极坐标方程为=424πρθ⎛⎫+ ⎪⎝⎭,则直线l 和曲线C 的公共点有 A .0个B .1个C .2个D .无数个7.已知抛物线的参数方程为2x 4t y 4t ⎧=⎨=⎩,若斜率为1的直线经过抛物线的焦点,且与抛物线相交于A ,B 两点,则线段AB 的长为( )A .22B .42C .8D .48.若曲线2sin301sin30x t y t =-︒⎧⎨=-+︒⎩(t 为参数)与曲线22ρ=相交于B ,C 两点,则BC 的值为( )A .27B .60C .72D .309.已知点(),P x y 在曲线2cos sin x y θθ=-+⎧⎨=⎩(θ为参数,且[),2θππ∈)上,则点P 到直线21x t y t =+⎧⎨=--⎩(t 为参数)的距离的取值范围是( )A .3232,22⎡⎤-⎢⎥⎣⎦ B .0tan 60x = C .(2,22⎤⎦D .:::2x r r q q q e αα==10.圆ρ=r 与圆ρ=-2rsin (θ+4π)(r >0)的公共弦所在直线的方程为( ) A .2ρ(sin θ+cos θ)=r B .2ρ(sin θ+cos θ)=-rC .2ρ(sin θ+cos θ)=rD .2ρ(sin θ+cos θ)=-r 11.在极坐标系下,已知圆的方程为,则下列各点在圆上的是 ( )A .B .C .D .12.极坐标cos ρθ=和参数方程12x ty t=--⎧⎨=+⎩(t 为参数)所表示的图形分别是A .直线、直线B .直线、圆C .圆、圆D .圆、直线二、填空题13.在平面直角坐标系xOy 中,O 的参数方程为cos sin x y θθ=⎧⎨=⎩,(θ为参数),过点(02)且倾斜角为α的直线l 与O 交于A ,B 两点.则α的取值范围为_________14.已知点B 在圆O :2216x y +=上,()2,2,A OM OA OB =+,若存在点N 使得MN 为定长,则点N 的坐标是______. 15.直线1413x ty t=+⎧⎨=--⎩(t 为参数)的斜率为______.16.点(),M x y 是椭圆222312x y +=上的一个动点,则2m x y =+的最大值为______17.设直线315:{45x tl y t=+=(t 为参数),曲线1cos :{sin x C y θθ==(θ为参数),直线l 与曲线1C 交于,A B 两点,则AB =__________.18.已知椭圆C 的方程为2212x y +=,若F 为C 的右焦点,B 为C 的上顶点,P 为C 上位于第一象限内的动点,则四边形OBPF 的面积的最大值为__________. 19.曲线1C 的极坐标方程2cos sin ρθθ=,曲线2C 的参数方程为31x ty t =-⎧⎨=-⎩,以极点为原点,极轴为x 轴正半轴建立直角坐标系,则曲线1C 上的点与曲线2C 上的点最近的距离为__________.20.设(,0)M p 是一定点,01p <<,点(,)A a b 是椭圆2214xy +=上距离M 最近的点,则()==a f p ________.三、解答题21.已知直线5:12x l y t ⎧=⎪⎪⎨⎪=⎪⎩(t 为参数),坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,曲线C 的坐标方程为2cos ρθ=. (1)将曲线C 的极坐标方程化为直角坐标方程;(2)设点M的直角坐标为(,直线l 与曲线C 的交点为A 、B ,求AB 的值.22.已知直线l的参数方程为12{2x ty ==(t 为参数),曲线C 的参数方程为4cos {4sin x y θθ==(θ为参数). (1)将曲线C 的参数方程化为普通方程;(2)若直线l 与曲线C 交于,A B 两点,求线段AB 的长.23.在平面直角坐标系xOy 中,已知直线l的参数方程:1221x t y ⎧=-⎪⎪⎨⎪=⎪⎩(t 为参数),以原点为极点,x 轴非负半轴为极轴(取相同单位长度)建立极坐标系,圆C 的极坐标方程为:2cos 0ρθ+=.(1)将直线l 的参数方程化为普通方程,圆C 的极坐标方程化为直角坐标方程; (2)求圆C 上的点到直线l 的距离的最小值,并求出此时点的坐标. 24.已知曲线C 的参数方程为2cos 3sin x y ϕϕ=⎧⎨=⎩(ϕ为参数),以直角坐标系的原点o 为极点,x 轴的正半轴为极轴,建立极坐标系,直线l 的极坐标方程是:12cos sin 6θθρ+=(Ⅰ)求曲线C 的普通方程和直线l 的直角坐标方程:(Ⅱ)点P 是曲线C 上的动点,求点P 到直线l 距离的最大值与最小值.25.在平面直角坐标系xOy 中,直线1l :cos ,sin x t y t αα=⎧⎨=⎩(t 为参数,π02α<<),曲线1C :2cos 4+2sin x y ββ=⎧⎨=⎩,(β为参数),1l 与1C 相切于点A ,以坐标原点为极点,x 轴的非负半轴为极轴建立极坐标系.(1)求1C 的极坐标方程及点A 的极坐标; (2)已知直线2l :()6R πθρ=∈与圆2C:2cos 20ρθ-+=交于B ,C 两点,记AOB ∆的面积为1S ,2COC ∆的面积为2S ,求1221S S S S +的值. 26.在直角坐标系xOy 中,直线l的参数方程为32t x y ⎧=-+⎪⎪⎨⎪=⎪⎩.(t 为参数).以坐标原点O为极点,x 轴的正半轴为极轴建立极坐标系,曲线C 的极坐标方程为24cos 30p ρθ-+=.(1)求l 的普通方程及C 的直角坐标方程; (2)求曲线C 上的点P 到l 距离的取值范围.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【分析】设曲线C上点的坐标为()2t ,利用点到直线的距离公式表示出距离,即可求出最小值. 【详解】设曲线C上点的坐标为()2t , 则C 上的点到直线l的距离2233d===,即C 上的点到直线1. 故选:C. 【点睛】本题考查参数方程的应用,属于基础题.2.A解析:A 【分析】设1cos 2x y αα⎧=⎪⎪⎨⎪=⎪⎩,则2cos sin 4x πααα⎛⎫=+=+ ⎪⎝⎭,利用三角函数有界性得到最值.【详解】22451x y +=,则设1cos 2x y αα⎧=⎪⎪⎨⎪=⎪⎩ ,则2cos sin 4x πααα⎛⎫=+=+ ⎪⎝⎭当4πα=,即4x y ⎧=⎪⎪⎨⎪=⎪⎩故选:A 【点睛】本题考查了求最大值,利用参数方程1cos 25x y αα⎧=⎪⎪⎨⎪=⎪⎩是解题的关键. 3.D解析:D 【解析】 【分析】根据参数的几何意义求解即可。

参数方程与答案

参数方程与答案

参数方程一、单项选择题:本大题共148小题,从第1小题到第148小题每题分小计分;共计分。

一、参数方程中, 参数t的几何意义是[ ]A.定点M0(x0,y0)到原点距离.B.动点M(x,y)到原点距离.C.有向线段的数量.D.有向线段长度.二、直线(t为参数)上两点A、B对应的参数别离为t1和t2,│AB│等于[ ]A. |t1-t2|B.│t1-t2│C.D.3、假设直线参数方程为(t为参数)那么直线的倾斜角为[ ] (-)B.π-arctanD.π-arctan4、直线的参数方程为(t为参数)那么此直线的倾斜角是[ ]五、设为平面上两个定点, 方程(λ≠-1,λ为参数)表示的曲线是[ ]A.以为端点的线段B.直线C.直线除去点D.直线除去点六、参数方程(t是参数)所表示的图形是[ ] A.直线 B.射线 C.线段 D.圆锥曲线7、已知P1,P2是直线(t为参数)上的两点它们所对应的参数别离为t1、t2, 那么线段P1P2的中点P到(1,-2)的距离是 [ ]A.|t1+t2|B.|t1-t2|C.│t1│+│t2│D.八、直线 (t为参数)的倾角为[ ]九、过点(1,-2)倾角为150°的直线l的以t为参数的方程为 [ ]A.B.C.D.10、直线与圆x2+y2=16相交所得的弦长为[ ]1一、已知直线l1的参数方程为(t为参数) l2: ρsin(θ-)=2, 那么直线l1与l2的夹角为[ ]1二、直线(t为参数)与直线x+y-2=0交于P点, 那么点M(7,5)必然[ ]A.在P点上方,│PM│=2B.在P点下方,│PM│=2C.在P点上方,│PM│=2D.在P点下方,│PM│=213、直线(t为参数)上有参数别离为t1,t2的对应点为A和B, 那么A,B两点之间的距离为[ ] A.|t1+t2| B.|t1-t2|C.|t1|+|t2|D.|t1|-|t2|14、直线(t为参数)的倾斜角是[ ] °°°°1五、已知直线(t为参数)与双曲线x2-2y2-8=0相交于P1、P2两点, 那么|P1P2|的长为[ ]1六、已知直线(t为参数)与椭圆x2+2y2=8交A,B两点, 那么│AB│值为[ ] B.D.17、已知一直线方程是(t为参数), 另一直线方程是x-y-2=0, 那么两直线交点与P(1,-5)间的距离是[ ]C.1八、假设直线mx+4y=8与3x+2y=8的交点在第一象限, 那么m的取值范围是[ ]<3 <6 >6 <m<61九、动直线(2k-1)x+(k+l)y-(k-5)=0(k∈R)恒过定点是 [ ]A.(5,2)B.(2,-3)C.(5,9)D.(-,3)20、直线上到点(-2,3)的距离等于的点的坐标是[ ] A.(-4,5) B.(-3,4)C.(-4,5)或(0,1)D.以上结果都不对2一、直线(t为参数)的倾斜角是[ ] A. 20° B. 70° C. 110° D. 160°2二、已知直线方程(t为参数), 那么以下说法中错误的是[ ]A. 直线的斜率是B. 直线过点(3,-4)C. 直线不通过第二象限D. 当t=1时, 直线方程所确信的点到(3,-4)点的距离是123、设直线的参数方程为(t为参数)那么此直线在y轴上截距是[ ]C.24、若是直线的参数方程为(t为参数)那么此直线截抛物线=3x所得弦长是[ ]2五、直线(t为参数)上到点(-2,3)距离等于的点的坐标是[ ] A.(-4,5) B.(-3,4)C.(-4,5)和(0,1)D.(-3,4)和(-1,2)2六、已知:,那么方程(λ为参数,且λ≠-1)表示的曲线是[ ] A.线段 B.直线C.直线,但不含点D.直线,但不含点27、直线(t为参数)的倾角是[ ]2八、直线(t为参数)被圆截得的线段长度是[ ]D.与α有关的数值2九、直线(t为参数)的倾斜角等于[ ]30、直线(t为参数)与圆相交弦的长是[ ]3一、假设点P在过点M(1,5)且斜率为的直线1上运动,那么以的数量t为参数的1的方程为[ ]3二、直线(t为参数)的倾斜角是[ ]33、假设方程(k为参数)与(t为参数),表示同一条直线,那么t与k之间的关系是:[ ]34、直线(t为参数)与直线的交点到点M(1,5)的距离是[ ]3五、通过点P(4,1),且倾角为的直线ι,被圆所截得的弦长是[ ]3六、已知P、Q是直线(t为参数)与曲线的两个交点那么M(1,-)到P、Q两点距离之差为[ ]37、直线(t为参数)被双曲线所截得弦长是[ ]3八、直线(t为参数)与直线10x+5y+7=0交于B,又有点A(-2,1).那么有向线段AB的数量是[ ]D.3九、直线l的参数方程为(t为参数)那么以下参数方程(t为参数)表示的直线与直线l不同是[ ]40、直线l过点M(-1,2),倾角.l上动点为P(x,y).假设以PM=t为参数,那么l的参数方程是[ ]4一、直线(t为参数)的倾斜角为[ ]4二、直线(t为参数)(ab≠0)上有一点P(x,y),它对应的参数t=T,那么P与点Q的距离是[ ]43、参数方程(t为参数)表示的曲线是[ ] A.椭圆 B.圆,但除去(1,0)C.圆D.圆,但除去(-1,0)44、设直线l过点(1,5),倾斜角为,M为直线l上任意一点,以有向线段的数量t为参数,那么它的参数方程为[ ] A.B.C.D.4五、己知直线(t为参数),以下命题中错误的选项是[ ] A.直线过点(7,-1)B.直线的倾斜角为C.直线只是第二象限D.|t|是定点(3,-4)到该直线上对应点M的距离4六、方程中,t为非零常数,θ为变量,那么方程表示的曲线是[ ] A.直线B.圆C.椭圆D.双曲线47、若表示的曲线是[ ] A.线段B.四分之一个圆C.半圆D.圆4八、直线(t为参数)与圆(θ为参数)相交所得的弦长为[ ] A .B .C .D .4九、椭圆9x2+4y2-36=0的参数方程为[]A. x=2sinθy=3cosθB. x=2cosθy=3sinθC. x=2sinθy=3secθD.x=2cscθy=3cosθ50、假设方程x2sinα+y2cosα=1表示椭圆且核心在y轴上, 那么α∈ []5一、参数方程(θ为参数)表示的图形是[ ] A.中心为(-1,2)的椭圆 B.一条直线C.中心为(-1,2)的半个椭圆D.一条线段5二、圆锥曲线(ψ为参数)的焦距等于[ ] B.D.53、当│t│≤1时,动点M(sin(arcsint), cos(arcsint))的轨迹是 [ ]A.直线B.圆C.椭圆D.半圆54、线段AB的长为2,端点A,B别离在x,y轴上滑动, 假设P分AB的比值为-, 那么点P轨迹的一般方程是[ ] A.+y2=1 B.+y=1=1 =15五、椭圆的两个核心坐标是[ ] A. (-3,5), (-3,-3) B. (3,3), (3,-5)C. (1,1), (-7,1)D. (7,-1), (-1,-1)5六、椭圆的参数方程为(θ为参数),那么它的核心坐标是[ ] A.(-5,3)和(1,3)B.(-1,-3)和(5,-3)C.(-1,0)和(5,0)D.(3,0)和(-3,0)57、已知:A={(x,y)|(x-1)2+y2=1}B={(x,y)│=-1}D={(x,y)│(θ为参数)θ≠kπ,k∈Z}那么正确的选项是[ ]A. A=BB. B=DC. C=AD. B=C5八、交于A,B两点那么AB中点所对应的参数值为[ ]5九、参数方程(t为参数.t∈R)代表的曲线是[ ] A.直线 B.射线 C.椭圆 D.双曲线60、参数方程(θ是参数)表示的图形是[ ] A.中心为(1,-2)的椭圆 B.一条直线C.一条线段D.中心为(1,-2)的半个椭圆6一、方程(t为参数)的图形是[ ]6二、以下各点中在曲线上的点是[ ] A.(0,2) B.(-1,6) C.(1,3) D.(3,4)63、曲线(t为参数)与(θ为参数,0≤θ<2π)的交点对应于参数θ的值是[ ]64、已知集合M={(x,y) │(0<θ<π)}与集合N={(x,y)│y=x+b}知足M∩N≠φ,那么b知足[ ] ≤b≤3≤b≤3<b≤3<b≤36五、直线x+2y=0与椭圆x2+4y2-4mx-8my=0 (m为参数,m≠0)的位置关系是[ ]A.无公共点.B.只有一个公共点.C.总有两个公共点.D.公共点的多少与m有关.6六、[ ]67、那么直线与圆的位置关系是[ ] A.过圆心 B.相交而只是圆心C.相切D.相离6八、以下参数方程(t为参数)中与方程y2=x表示同一曲线的是[ ]6九、曲线的参数方程是(t是参数,t≠0),它的一般方程是[ ] A. (x-1)2(y-1)=1B. y=C. y=-1D. y=+170、以下各组方程中, 表示同一条曲线的是[ ]B. xy=1与(α∈(0,))7一、曲线(t为参数,t∈R)与(θ是参数,0≤θ<2π)交点对应的参数θ值是[ ]7二、已知:方程①当t是参数②λ是参数③θ是参数;那么以下结论中成立的是[ ]A.①②③均为直线B.只能②是直线C.①②是直线,③是圆锥曲线D.①是直线,①③是圆锥曲线73、直线(t为参数)上不同两点A、B对应的参数别离是、,那么|AB|等于[ ]]74、假设抛物线(p>0,t为参数)上两点E、F所对应的参数知足.那么E、F两点间距离等于[ ]7五、已知曲线(t为参数)上的A、B两点对应的参数别离为。

(完整word版)参数方程直线、圆专题练习

(完整word版)参数方程直线、圆专题练习

参数方程直线、圆专题练习.。

评卷人得分一.选择题(共9小题)1.曲线C的参数方程为(θ为参数),直线l的方程为x﹣y﹣2=0,P、M分别为曲线C和直线l上的点,则|PM|的最小值为()A.0 B.C. D.22.直线l的参数方程为(t为参数),则l的倾斜角大小为()A. B. C.D.3.直线(t为参数)与曲线(θ为参数)相交的弦长为()A.1 B.2 C.3 D.44.已知曲线的参数方程为(0≤t≤5),则曲线为( )A.线段B.双曲线的一支 C.圆弧D.射线5.参数方程(t为参数,且0≤t≤3)所表示的曲线是( )A.直线B.圆弧C.线段D.双曲线的一支6.椭圆的参数方程为(θ为参数),则它的两个焦点坐标是()A.(±4,0) B.(0,±4) C.(±5,0) D.(0,±3)7.已知α是锐角,则直线(t为参数)的倾斜角是( )A.αB.α﹣C.α+D.α+8.已知M为曲线C:(θ为参数)上的动点.设O为原点,则|OM|的最大值是()A.1 B.2 C.3 D.49.已知椭圆的参数方程(t为参数),点M在椭圆上,对应参数t=,点O为原点,则直线OM的斜率为()A. B.﹣C.2D.﹣2评卷人得分二.填空题(共16小题)10.参数方程(α为参数)化成普通方程为.11.已知椭圆的参数方程为,则该椭圆的普通方程是.12.椭圆(θ为参数)的右焦点坐标为13.已知圆C的参数方程为(θ为参数),以原点为极点,x轴的正半轴为极轴建立极坐标系,直线l的极坐标方程为ρsinθ+ρcosθ=1,则直线l截圆C所得的弦长是.14.若直线(t为参数)与曲线(θ为参数)相切,则实数m的值为.15.设点A是曲线是参数)上的点,则点A到坐标原点的最大距离是.16.直线(t为参数)与曲线(θ为参数)的公共点个数为.17.参数方程(θ为参数)化为普通方程是.:18.直角坐标系xOy中,以原点为极点,x轴的正半轴为极轴建立极坐标系,已知曲线C1 (θ为参数),曲线C:ρcos(θ+)=t,若两曲线有公共点,则t的取值范围2是.19.直线(t为参数)对应的普通方程是.20.直线(t为参数)的倾斜角的大小为.21.将参数方程(t为参数)化为普通方程是.22.直线(t为参数)被圆(θ为参数)所截得的弦长为.23.直线(t为参数)与曲线(θ为参数)的交点个数是.24.已知直线C1:(t为参数),C2:(θ为参数),当α=时,则C1与C2的交点坐标为.25.若直线l的参数方程为,t∈R,则直线l在y轴上的截距是.评卷人得分三.解答题(共5小题)26.在直角坐标系xOy中,曲线C1:(t为参数).以坐标原点O为极点,x轴正半轴为极轴建立极坐标系,曲线C2:ρ2﹣10ρcosθ﹣6ρsinθ+25=0.(Ⅰ)求C1的普通方程与曲线C2的直角坐标方程,并说明方程所表示的曲线名称;(Ⅱ)判断曲线C1与曲线C2的位置关系,若相交,求出弦长.27.已知直线l参数方程:(t为参数),曲线C1:.(1)求直线l的直角坐标方程和曲线C1的参数方程;(2)若点M在曲线C1上运动,求M到直线l距离的最小值.28.已知直线l:(t为参数),曲线C1:,(θ为参数).(1)设l与C1相交于A,B两点,求|AB|;(2)曲线C2为(θ为参数),点P是曲线C2上的一个动点,求它到直线l的距离的最小值.29.在平面直角坐标系xOy中,⊙O的参数方程为,(θ为参数),过点(0,﹣)且倾斜角为α的直线l与⊙O交于A,B两点.(1)求α的取值范围;(2)求AB中点P的轨迹的参数方程.30.在直角坐标系xOy中,曲线C的参数方程为,(θ为参数),直线l的参数方程为,(t为参数).(1)求C和l的直角坐标方程;(2)若曲线C截直线l所得线段的中点坐标为(1,2),求l的斜率.参数方程直线、圆专题练习参考答案与试题解析一.选择题(共9小题)1.曲线C的参数方程为(θ为参数),直线l的方程为x﹣y﹣2=0,P、M分别为曲线C和直线l上的点,则|PM|的最小值为()A.0 B.C. D.2【分析】直接利用三角函数关系式的恒等变变换和正弦型函数的性质及点到直线的距离公式的应用求出结果.【解答】解:曲线C的参数方程为(θ为参数),设P(2c osθ,sinθ),则:点P到直线x﹣y﹣2=0的距离d==,当sin(θ+α)=1时,|PM|的最小值为.故选:B.【点评】本题考查的知识要点:点到直线的距离公式的应用,三角函数关系式的恒等变变换,正弦型函数性质的应用.2.直线l的参数方程为(t为参数),则l的倾斜角大小为( )A. B. C.D.【分析】根据题意,将直线的参数方程变形为普通方程,由直线的方程形式分析可得答案.【解答】解:根据题意,直线l的参数方程为(t为参数),则到直线的方程为,所以直线的斜率为,倾斜角为,故选:C.【点评】本题考查直线的参数方程及倾斜角,注意将直线的参数方程变形为普通方程.3.直线(t为参数)与曲线(θ为参数)相交的弦长为()A.1 B.2 C.3 D.4【分析】分别化直线与圆的参数方程为普通方程,再由圆心在直线上可得弦长.【解答】解:由,得x﹣,由,得(x﹣1)2+y2=1.∴圆(x﹣1)2+y2=1的圆心坐标为(1,0),半径为1.而圆心(1,0)在直线x﹣上,∴直线与曲线相交的弦长为2.故选:B.【点评】本题考查参数方程化普通方程,考查直线与圆位置关系的应用,是基础题.4.已知曲线的参数方程为(0≤t≤5),则曲线为()A.线段B.双曲线的一支 C.圆弧D.射线【分析】曲线的参数方程消去参数t,得x﹣3y=5.再由0≤t≤5,得﹣1≤y≤24.从而求出该曲线是线段.【解答】解:由(0≤t≤5),消去参数t,得x﹣3y=5.又0≤t≤5,故﹣1≤y≤24.故该曲线是线段.故选:A.【点评】本题考查曲线形状的判断,考查极坐标方程、参数方程、直角坐标方程的互化等基础知识,考查推理论证能力、运算求解能力,考查函数与方程思想、化归与转化思想,是基础题.5.参数方程(t为参数,且0≤t≤3)所表示的曲线是()A.直线B.圆弧C.线段D.双曲线的一支【分析】根据题意,由参数方程中t的范围分析可得x、y的范围,结合参数方程消去参数可得x ﹣3y=10,结合x、y的范围分析可得答案.【解答】解:根据题意,参数方程,若0≤t≤3,则有:4≤x≤31,﹣2≤y≤7,又由参数方程,则y+2=(x﹣4),即x﹣3y=10,又由4≤x≤31,﹣2≤y≤7,则参数方程表示的是线段;故选:C.【点评】本题考查参数方程与普通方程的转化,注意t的取值范围.6.椭圆的参数方程为(θ为参数),则它的两个焦点坐标是()A.(±4,0) B.(0,±4)C.(±5,0)D.(0,±3)【分析】根据题意,将椭圆的参数方程变形为普通方程,分析a、b的值,计算可得c的值,即可得答案.【解答】解:根据题意,椭圆的参数方程为(θ为参数),则其普通方程为+=1,其中a=5,b=3,则c==4,其它的两个焦点坐标是(±4,0);故选:A.【点评】本题考查椭圆的参数方程,关键是将椭圆的方程变形为普通方程.7.已知α是锐角,则直线(t为参数)的倾斜角是()A.αB.α﹣C.α+D.α+【分析】设直线的倾斜角为θ,则tanθ==,α锐角,化简即可得出.【解答】解:设直线的倾斜角为θ,则tanθ====,α锐角.∴θ=,故选:C.【点评】本题考查了直线的倾斜角与斜率之间的关系、诱导公式的应用,考查了推理能力与计算能力,属于中档题.8.已知M为曲线C:(θ为参数)上的动点.设O为原点,则|OM|的最大值是( ) A.1 B.2 C.3 D.4【分析】直接把圆的参数方程转化为直角坐标方程,进一步利用两点间的距离公式求出结果.【解答】解:曲线C:(θ为参数)转化为:(x﹣3)2+y2=1,则:圆心(3,0)到原点(0.0)的距离为3,故点M到原点的最大值为:3+1=4.故选:D.【点评】本题考查的知识要点:参数方程和直角坐标方程的转化,两点间的距离公式的应用.9.已知椭圆的参数方程(t为参数),点M在椭圆上,对应参数t=,点O为原点,则直线OM的斜率为()A. B.﹣C.2D.﹣2【分析】将点对应的参数代入椭圆的参数方程得到M的坐标,再利用直线的斜率公式即可求出答案.【解答】解:当t=时,点M的坐标为(2cos,4sin),即M(1,2),∴OM的斜率为k=2.故选:C.【点评】本题主要考查了椭圆的参数方程,直线的斜率等基本知识,属于基础题.二.填空题(共16小题)10.参数方程(α为参数)化成普通方程为x2+(y﹣1)2=1 .【分析】欲将参数方程(α为参数)化成普通方程,只须消去参数即可,利用三角函数的同角公式中的平方关系即得.【解答】解:∵(α为参数)∴x2+(y﹣1)2=cos2α+sin2α=1.即:参数方程(α为参数)化成普通方程为:x2+(y﹣1)2=1.故答案为:x2+(y﹣1)2=1.【点评】本小题主要考查参数方程的概念的应用、圆的参数方程的概念、三角函数的同角公式等基础知识,考查运算求解能力、化归与转化思想.属于基础题.11.已知椭圆的参数方程为,则该椭圆的普通方程是.【分析】根据题意,由椭圆的参数方程可得=cosα,=sinα,进而可得,即可得答案.【解答】解:根据题意,椭圆的参数方程为,则有=cosα,=sinα,则有,即该椭圆的普通方程为:,故答案为:.【点评】本题考查椭圆的参数方程,注意椭圆的参数方程的形式,属于基础题.12.椭圆(θ为参数)的右焦点坐标为(1,0)【分析】根据题意,将椭圆的参数方程变形为标准方程,分析可得a、b的值,计算可得c的值,即可得椭圆的右焦点坐标,即可得答案.【解答】解:根据题意,椭圆(θ为参数)的普通方程为+=1,其中a=2,b=,则c=1;故椭圆的右焦点坐标为(1,0);故答案为:(1,0)【点评】本题考查椭圆的参数方程,注意将椭圆的参数方程变形为普通方程.13.已知圆C的参数方程为(θ为参数),以原点为极点,x轴的正半轴为极轴建立极坐标系,直线l的极坐标方程为ρsinθ+ρcosθ=1,则直线l截圆C所得的弦长是.【分析】利用弦长=,(其中d为弦心距)公式即可计算出.【解答】解:直线l的极坐标方程为ρsinθ+ρcosθ=1,化为直角坐标系下的普通方程为y+x=1;由圆C的参数方程为(θ为参数),消去参数θ化为普通方程x2+(y﹣2)2=1,其圆心C(0,2),半径r=1.直线l截圆C所得的弦长=2=.故答案为.【点评】熟练弦长、弦心距及半径三者之间的关系是解题的关键.14.若直线(t为参数)与曲线(θ为参数)相切,则实数m的值为﹣3或7 .【分析】把参数方程化为普通方程,根据圆心到直线的距离等于半径,求得m的值.【解答】解:直线l:(t为参数)即 2x﹣y+m﹣2=0.曲线C:曲线(θ为参数) 即 x2+y2=5,表示以(0,0)为圆心,半径等于的圆.再根据圆心到直线的距离等于半径,可得==,求得 m=﹣3或7,故答案为:﹣3或7.【点评】本题主要考查把参数方程化为普通方程的方法,点到直线的距离公式的应用,直线和圆的位置关系,属于基础题.15.设点A是曲线是参数)上的点,则点A到坐标原点的最大距离是 3 .【分析】设A(,1+sinθ),原点O(0,0),|AO|==,由此能求出点A到坐标原点取最大距离.【解答】解:∵点A是曲线是参数)上的点,∴设A(,1+sinθ),原点O(0,0),|AO|===,∴当sin()=1时,点A到坐标原点取最大距离3.故答案为:3.【点评】本题考查两点间距离的最大值的求法,考查勇数方程、两点间距离公式、三角函数的性质等基础知识,考查运算求解能力,考查函数与方程思想,是中档题.16.直线(t为参数)与曲线(θ为参数)的公共点个数为 2 .【分析】直线消去参数t,得x﹣2y=0,曲线消去参数,得(x﹣2)2+y2=1,联立,能求出交点个数.【解答】解:直线(t为参数)消去参数t,得x﹣2y=0,曲线(θ为参数)消去参数,得(x﹣2)2+y2=1,联立,得或.∴直线(t为参数)与曲线(θ为参数)的公共点个数为2.故答案为:2.【点评】本题考查直线与曲线的交点个数的求法,考查参数方程、直角坐标方程、极坐标方程的互化等基础知识,考查运算求解能力,考查函数与方程思想,是中档题.17.参数方程(θ为参数)化为普通方程是(x﹣3)2+y2=1 .【分析】由参数方程可得,结合sin2θ+cos2θ=1可得答案.【解答】解:由参数方程可得,两边平方作和得(x﹣3)2+y2=1.故答案为:(x﹣3)2+y2=1.【点评】本题主要考查参数方程与普通方程的相互转化,属于基础题.:18.直角坐标系xOy中,以原点为极点,x轴的正半轴为极轴建立极坐标系,已知曲线C1(θ为参数),曲线C:ρcos(θ+)=t,若两曲线有公共点,则t的取值范围是2t<﹣1或t>3 .【分析】分别化直线和圆的方程为普通方程,由直线和圆的位置关系可得t的不等式,解不等式可得.【解答】解:由C:可得cosθ=x﹣1,sinθ=y,1两式平方相加可得(x﹣1)2+(y)2=1,整理可得(x﹣2)2+y2=4,表示圆心为(2,0)半径为2的圆,:ρcos(θ+)=t可得ρcosθ﹣ρsinθ=t,由C2即x﹣y=t,即x﹣y﹣2t=0,表示一条直线,由两曲线有公共点可得直线与圆相离,∴圆心到直线的距离d大于半径,即>2,解得t<﹣1或t>3故答案为:t<﹣1或t>3【点评】本题考查圆的参数方程和直线的极坐标方程,化为普通方程并利用直线和圆的位置关系是解决问题的关键,属基础题.19.直线(t为参数)对应的普通方程是x+y﹣1=0 .【分析】利用加减消元法消去参数t,即可得到直线的普通方程.【解答】解:两个方程相加得x+y﹣1=0,故答案为:x+y﹣1=0.【点评】本题考查了参数方程与普通方程的转化,属于基础题.20.直线(t为参数)的倾斜角的大小为.【分析】化参数方程为普通方程,求出斜率,即可求得倾斜角.【解答】解:(t为参数)化参数方程为普通方程,两方程相加可得x+y=2,则直线的斜率为﹣1,故倾斜角为.故答案为:.【点评】本题考查直线的斜率与倾斜角的关系,解题的关键是化参数方程为普通方程,属于基础题.21.将参数方程(t为参数)化为普通方程是2x+y﹣3=0 .【分析】2x=2+2,与y=1﹣2相加即可得出.【解答】解:2x=2+2,与y=1﹣2相加可得:2x+y=3.故答案为:2x﹣y﹣3=0.【点评】本题考查了参数方程化为普通方程,考查了推理能力与计算能力,属于基础题.22.直线(t为参数)被圆(θ为参数)所截得的弦长为.【分析】分别化直线与圆的参数方程为普通方程,由点到直线的距离公式求出圆心到直线的距离,再由垂径定理得答案.【解答】解:由,得x+y﹣8=0,由,得,两式平方作和得:(x﹣3)2+(y+1)2=25.∴圆心坐标为(3,﹣1),半径为5.圆心到直线的距离d=.∴直线被圆所截弦长为2.故答案为:.【点评】本题考查参数方程化普通方程,考查了直线与圆位置关系的应用,考查垂径定理的应用,是基础题.23.直线(t为参数)与曲线(θ为参数)的交点个数是 2 .【分析】直线与曲线的参数方程,化为普通方程,联立可得13x2﹣18x﹣27=0,即可得出结论.【解答】解:直线(t为参数)与曲线(θ为参数),普通方程分别为x+y﹣1=0,=1,联立可得13x 2﹣18x ﹣27=0,△=(﹣18)2﹣4×13×(﹣27)>0, ∴交点个数是2, 故答案为:2.【点评】本题考查直线的参数方程与普通方程的转化,考查方程思想,比较基础.24.已知直线C 1:(t 为参数),C 2:(θ为参数),当α=时,则C 1与C 2的交点坐标为 (1,0),(,﹣) .【分析】先消去参数将曲线C 1与C 2的参数方程化成普通方程,再联立方程组求出交点坐标即可. 【解答】解:(Ⅰ)当α=时,C 1的普通方程为y=(x ﹣1),C 2的普通方程为x 2+y 2=1. 联立方程组,解得C 1与C 2的交点为(1,0),(,﹣).故答案为(1,0),(,﹣).【点评】本题主要考查直线与圆的参数方程,参数方程与普通方程的互化,比较基础.25.若直线l 的参数方程为,t ∈R ,则直线l 在y 轴上的截距是 1 .【分析】令x=0,可得t=1,y=1,即可得出结论. 【解答】解:令x=0,可得t=1,y=1, ∴直线l 在y 轴上的截距是1. 故答案为1.【点评】本题考查参数方程的运用,考查学生的计算能力,比较基础.三.解答题(共5小题)26.在直角坐标系xOy中,曲线C1:(t为参数).以坐标原点O为极点,x轴正半轴为极轴建立极坐标系,曲线C2:ρ2﹣10ρcosθ﹣6ρsinθ+25=0.(Ⅰ)求C1的普通方程与曲线C2的直角坐标方程,并说明方程所表示的曲线名称;(Ⅱ)判断曲线C1与曲线C2的位置关系,若相交,求出弦长.【分析】(Ⅰ)直接利用转换关系,把参数方程直角坐标方程和极坐标方程之间进行转换.(Ⅱ)利用点到直线的距离公式的应用求出结果.【解答】解:(Ⅰ)曲线C1:(t为参数).转换为直角坐标方程为:x﹣2y﹣4=0.(x≥2).故该曲线表示一条射线.曲线C2:ρ2﹣10ρcosθ﹣6ρsinθ+25=0.转换为直角坐标方程为:x2+y2﹣10x﹣6y+25=0,整理得:(x﹣5)2+(y﹣3)2=9,该曲线表示以(5,3)为圆心,3为半径的圆.(Ⅱ)由于该圆是以(5,3)为圆心,3为半径,所以与射线x﹣2y﹣4=0.(x≥2)有两个交点.圆心到射线的距离d=,所以弦长l=2=4.【点评】本题考查的知识要点:参数方程直角坐标方程和极坐标方程之间的转换,点到直线的距离公式的应用.27.已知直线l参数方程:(t为参数),曲线C1:.(1)求直线l的直角坐标方程和曲线C1的参数方程;(2)若点M在曲线C1上运动,求M到直线l距离的最小值.【分析】(1)直接利用转换关系式,把参数方程和极坐标方程与直角坐标方程进行转化.(2)利用三角函数关系式的恒等变换和点到直线的距离公式求出结果.【解答】解:(1)直线l参数方程:(t为参数),转化为直角坐标方程为:x+2y﹣10=0.曲线C1:.转换为参数方程为:(θ为参数),(2)设M(3cosθ,2sinθ)到直线l的距离d==.当sin(θ+α)=1时,.【点评】本题考查的知识要点:参数方程和极坐标方程与直角坐标方程的转化,三角函数关系式的恒等变换,点到直线的距离公式的应用.28.已知直线l:(t为参数),曲线C1:,(θ为参数).(1)设l与C1相交于A,B两点,求|AB|;(2)曲线C2为(θ为参数),点P是曲线C2上的一个动点,求它到直线l的距离的最小值.【分析】(1)转化hi街利用转换关系式,把参数方程和极坐标方程与直角坐标方程进行转化,进一步求出弦长.(2)利用三角函数关系式的恒等变换,进一步利用点到直线的距离公式求出结果.【解答】解:(1)直线l:(t为参数,转化为直角坐标方程为:,曲线C1:,(θ为参数).转化为直角坐标方程为:x2+y2=1,则:,解得交点的坐标A(1,0),B(,).所以:|AB|=1.(2)曲线C2为(θ为参数),点P是曲线C2上的一个动点,则点P的坐标是(),从而点P到直线l的距离是=,当时,d取得最小值,且最小值为.【点评】本题考查的知识要点:参数方程和极坐标方程与直角坐标方程的转化,点到直线的距离公式的应用.29.在平面直角坐标系xOy中,⊙O的参数方程为,(θ为参数),过点(0,﹣)且倾斜角为α的直线l与⊙O交于A,B两点.(1)求α的取值范围;(2)求AB中点P的轨迹的参数方程.【分析】(1)⊙O的普通方程为x2+y2=1,圆心为O(0,0),半径r=1,当α=时,直线l的方程为x=0,成立;当α≠时,过点(0,﹣)且倾斜角为α的直线l的方程为y=tanα•x+,从而圆心O(0,0)到直线l的距离d=<1,进而求出或,由此能求出α的取值范围.(2)设直线l的方程为x=m(y+),联立,得(m2+1)y2+2+2m2﹣1=0,由此利用韦达定理、中点坐标公式能求出AB中点P的轨迹的参数方程.【解答】解:(1)∵⊙O的参数方程为(θ为参数),∴⊙O的普通方程为x2+y2=1,圆心为O(0,0),半径r=1,当α=时,过点(0,﹣)且倾斜角为α的直线l的方程为x=0,成立;当α≠时,过点(0,﹣)且倾斜角为α的直线l的方程为y=tanα•x﹣,∵倾斜角为α的直线l与⊙O交于A,B两点,∴圆心O(0,0)到直线l的距离d=<1,∴tan2α>1,∴tanα>1或tanα<﹣1,∴或,综上α的取值范围是(,).(2)由(1)知直线l的斜率不为0,设直线l的方程为x=m(y+),设A(x1,y1),(B(x2,y2),P(x3,y3),联立,得(m2+1)y2+2+2m2﹣1=0,,=﹣+2,=,=﹣,∴AB中点P的轨迹的参数方程为,(m为参数),(﹣1<m<1).【点评】本题考查直线直线的倾斜角的取值范围的求法,考查线段的中点的参数方程的求法,考查参数方程、直角坐标方和、韦达定理、中点坐标公式等基础知识,考查数形结合思想的灵活运用,考查运算求解能力,考查函数与方程思想,是中档题.30.在直角坐标系xOy中,曲线C的参数方程为,(θ为参数),直线l的参数方程为,(t为参数).(1)求C和l的直角坐标方程;(2)若曲线C截直线l所得线段的中点坐标为(1,2),求l的斜率.【分析】(1)直接利用转换关系,把参数方程和极坐标方程与直角坐标方程进行转化.(2)利用直线和曲线的位置关系,在利用中点坐标求出结果.【解答】解:(1)曲线C的参数方程为(θ为参数),转换为直角坐标方程为:.直线l的参数方程为(t为参数).转换为直角坐标方程为:sinαx﹣cosαy+2cosα﹣sinα=0.(2)把直线的参数方程代入椭圆的方程得到:+=1整理得:(4cos2α+sin2α)t2+(8cosα+4sinα)t﹣8=0,则:,由于(1,2)为中点坐标,①当直线的斜率不存时,x=1.②当直线的斜率存在时,利用中点坐标公式,,则:8cosα+4sinα=0,解得:tanα=﹣2,即:直线l的斜率为﹣2.【点评】本题考查的知识要点:参数方程和极坐标方程与直角坐标方程的转化,直线和曲线的位置关系的应用,中点坐标的应用.。

极坐标与参数方程测试题(有详解答案)

极坐标与参数方程测试题(有详解答案)

极坐标与参数方程测试题一、选择题1.直线12+=x y 的参数方程是( )A 、⎩⎨⎧+==1222t y t x (t 为参数) B 、⎩⎨⎧+=-=1412t y t x (t 为参数)C 、 ⎩⎨⎧-=-=121t y t x (t 为参数) D 、⎩⎨⎧+==1sin 2sin θθy x (t 为参数) 2.已知实数x,y 满足02cos 3=-+x x ,022cos 83=+-y y ,则=+y x 2( )A .0B .1C .-2D .83.已知⎪⎭⎫ ⎝⎛-3,5πM ,下列所给出的不能表示点的坐标的是( )A 、⎪⎭⎫⎝⎛-3,5πB 、⎪⎭⎫ ⎝⎛34,5πC 、⎪⎭⎫⎝⎛-32,5π D 、⎪⎭⎫ ⎝⎛--35,5π 4.极坐标系中,下列各点与点P (ρ,θ)(θ≠k π,k ∈Z )关于极轴所在直线对称的是( )A .(-ρ,θ)B .(-ρ,-θ)C .(ρ,2π-θ)D .(ρ,2π+θ)5.点()3,1-P ,则它的极坐标是( )A 、⎪⎭⎫⎝⎛3,2π B 、⎪⎭⎫ ⎝⎛34,2πC 、⎪⎭⎫⎝⎛-3,2πD 、⎪⎭⎫ ⎝⎛-34,2π 6.直角坐标系xoy 中,以原点为极点,x 轴的正半轴为极轴建极坐标系,设点A,B 分别在曲线13cos :sin x C y θθ=+⎧⎨=⎩ (θ为参数)和曲线2:1C ρ=上,则AB 的最小值为( ).A.1B.2C.3D.47.参数方程为1()2x t t t y ⎧=+⎪⎨⎪=⎩为参数表示的曲线是( )A .一条直线B .两条直线C .一条射线D .两条射线8.()124123x tt x ky k y t=-⎧+==⎨=+⎩若直线为参数与直线垂直,则常数( )A.-6B.16-C.6D.169.极坐标方程4cos ρθ=化为直角坐标方程是( )A .22(2)4x y -+= B.224x y += C.22(2)4x y +-= D.22(1)(1)4x y -+-=10.柱坐标(2,32π,1)对应的点的直角坐标是( ). A.(1,3,1-) B.(1,3,1-) C.(1,,1,3-) D.(1,1,3-)11.已知二面角l αβ--的平面角为θ,P 为空间一点,作PA α⊥,PB β⊥,A ,B 为垂足,且4PA =,5PB =,设点A 、B 到二面角l αβ--的棱l 的距离为别为,x y .则当θ变化时,点(,)x y 的轨迹是下列图形中的12.曲线24sin()4x πρ=+与曲线12221222x ty t ⎧=-⎪⎪⎨⎪=+⎪⎩的位置关系是( )。

高三数学直线方程试题答案及解析

高三数学直线方程试题答案及解析

高三数学直线方程试题答案及解析1.过点且斜率为的直线与抛物线相交于,两点,若为中点,则的值是.【答案】【解析】直线,设,,则由有B为AC中点,则,∴,则带入直线中,有,∴.【考点】直线方程、中点坐标公式.2.直线l经过点(3,0),且与直线l′:x+3y-2=0垂直,则l的方程是______________.【答案】3x-y-9=0【解析】直线l′:x+3y-2=0的斜率为k′=-,由题意,得k′k=k=-1,则k=3.所以l 的方程为y=3(x-3),即3x-y-9=0.3.求经过点A(2,m)和B(n,3)的直线方程.【答案】当n≠2时,y-m=(x-2),当n=2时x=2.【解析】(解法1)利用直线的两点式方程.直线过点A(2,m)和B(n,3).①当m=3时,点A的坐标是A(2,3),与点B(n,3)的纵坐标相等,则直线AB的方程是y=3.②当n=2时,点B的坐标是B(2,3),与点A(2,m)的横坐标相等,则直线AB的方程是x=2.③当m≠3,n≠2时,由直线的两点式方程得.(解法2)利用直线的点斜式方程.①当n=2时,点A、B的横坐标相同,直线AB垂直于x轴,则直线AB的方程为x=2.②当n≠2时,过点A,B的直线的斜率是k=.又∵过点A(2,m),∴由直线的点斜式方程y-y1=k(x-x1),得过点A,B的直线的方程是y-m=(x-2).4.直线l经过点(3,2),且在两坐标轴上的截距相等,求直线l的方程.【答案】2x-3y=0或x+y-5=0.【解析】解法1:(借助点斜式求解)由于直线l在两轴上有截距,因此直线不与x、y轴垂直,斜率存在,且k≠0.设直线方程为y-2=k(x-3),令x=0,则y=-3k+2;令y=0,则x=3-.由题设可得-3k+2=3-,解得k=-1或k=.故l的方程为y-2=-(x-3)或y-2=(x-3).即直线l的方程为x+y-5=0或2x-3y=0.解法2:(利用截距式求解)由题设,设直线l在x、y轴的截距均为a.若a=0,则l过点(0,0).又过点(3,2),∴l的方程为y=x,即l:2x-3y=0.若a≠0,则设l为=1.由l过点(3,2),知=1,故a=5.∴l的方程为x+y-5=0.综上可知,直线l的方程为2x-3y=0或x+y-5=0.5. 已知直线l :+4-3m =0.(1)求证:不论m 为何实数,直线l 恒过一定点M ;(2)过定点M 作一条直线l 1,使夹在两坐标轴之间的线段被M 点平分,求直线l 1的方程. 【答案】(1)见解析(2)2x +y +4=0 【解析】(1)证明:∵m +2x +y +4=0, ∴由题意得∴直线l 恒过定点M.(2)解:设所求直线l 1的方程为y +2=k(x +1),直线l 1与x 轴、y 轴交于A 、B 两点,则A,B(0,k -2).∵AB 的中点为M ,∴解得k =-2.∴所求直线l 1的方程为2x +y +4=0.,6. 已知直线的点斜式方程为y -1=- (x -2),则该直线另外三种特殊形式的方程为______________,______________,______________. 【答案】y =-x +,,【解析】将y -1=- (x -2)移项、展开括号后合并,即得斜截式方程y =-x +. 因为点(2,1)、均满足方程y -1=- (x -2),故它们为直线上的两点.由两点式方程得,即.由y =-x +知,直线在y 轴上的截距b =,又令y =0,得x =.故直线的截距式方程为7. 将直线y =3x 绕原点逆时针旋转90°,再向右平移1个单位,所得到的直线方程为________________________________________________________________________. 【答案】y =-x +【解析】将直线y =3x 绕原点逆时针旋转90°得到直线y =-x ,再向右平移1个单位,所得到的直线方程为y =- (x -1),即y =-x +.8. 直线ax +y +1=0与连结A(2,3)、B(-3,2)的线段相交,则a 的取值范围是________. 【答案】(-∞,-2]∪[1,+∞)【解析】直线ax +y +1=0过定点C(0,-1),当直线处在AC 与BC 之间时,必与线段AB 相交,即应满足-a≥或-a≤,得a≤-2或a≥1.9. 点A (1,3)关于直线y =kx +b 对称的点是B (-2,1),则直线y =kx +b 在x 轴上的截距是( ) A .-B .C .-D .【答案】D【解析】由题意知,解得k=-,b=,∴直线方程为y=-x+,其在x轴上的截距为.10.平面直角坐标系中直线y=2x+1关于点(1,1)对称的直线方程是()A.y=2x-1B.y=-2x+1C.y=-2x+3D.y=2x-3【答案】D【解析】在直线y=2x+1上任取两个点A(0,1),B(1,3),则点A关于点(1,1)对称的点为M(2,1),点B 关于点(1,1)对称的点为N(1,-1).由两点式求出对称直线MN的方程为=,即y=2x-3,故选D.11.过点A(2,3)且垂直于直线2x+y-5=0的直线方程为()A.x-2y+4=0B.2x+y-7=0C.x-2y+3=0D.x-2y+5=0【答案】A【解析】方法一,设所求直线方程为x-2y+C=0,将点A代入得2-6+C=0,所以C=4,所以所求直线方程为x-2y+4=0,选A.方法二,直线2x+y-5=0的斜率为-2,设所求直线的斜率为k,则k=,代入点斜式方程得直线方程为y-3= (x-2),整理得x-2y+4=0,选A.12.直线过点(-1,2)且在两坐标上的截距相等,则的方程是________.【答案】或【解析】当过原点时,设直线方程为:,又因为过点,则,∴直线方程为;当直线不过原点时,设直线方程为:,代点得,则直线方程为.【考点】直线的截距式方程.13.若直线与幂函数的图象相切于点,则直线的方程为 .【答案】【解析】幂函数的图象相切于点,则,解得,所以,则,故直线的方程为,化简得.【考点】1.直线的切线方程.14.已知两条直线,且,则=A.B.C.-3D.3【答案】C【解析】根据题意,由于两条直线,且,则可知3+a=0,a=-3,故可知答案为选C.【考点】两直线的垂直点评:根据两条直线垂直的充要条件,就是,这是解题的关键,属于基础题。

直线的参数方程练习题(带答案)

直线的参数方程练习题(带答案)

直线的参数方程练习题(带答案)1、若直线l 的参数方程为13{24x ty t=+=- (t 为参数),则直线l 的倾斜角的余弦值为( )A.45-B.45C.35-D.35答案:C解析:方法一:直线l 的参数方程13{24x ty t=+=- (t 为参数)可转化为31'{524'x t y t ⎛⎫=+- ⎪⎝⎭=-('5t t =-为参数),故直线l 的倾斜角的余弦值为35-.方法二:由直线l 的参数方程取得普通方程为43100x y +-=,故斜率4tan 3k α==-,所以3cos 5α=- (α为倾斜角).2、若圆的方程12cos ,{32sin x y θθ=-+=+ (θ为参数),直线的方程为21,{61x t y t =-=- (t 为参数),则直线与圆的位置关系是( )A.相交过圆心B.相交而不过圆心C.相切D.相离 答案:B解析:圆的圆心坐标是(1,3)-,半径是2,直线的普通方程是320x y -+=,圆心到25==<,故直线与圆相交而不过圆心. 3、直线11,2{2x t y =+=- (t 为参数)和圆2216x y +=交于,A B 两点,则AB 的中点坐标为( )A.(3,3)-B.()C.)3-D.(3,答案:D解析:将直线方程代入圆的方程得2211162t⎛⎫⎛⎫++-=⎪⎪ ⎪⎝⎭⎝⎭,整理得28120t t-+=,所以128t t+=,1242t t+=,依据t的几何意义可知中点坐标为114,422⎛⎫+⨯-⎪⎪⎝⎭,即(3,.4、直线21y x=+的参数方程是( )A.22{21x ty t==+(t为参数) B.21{41x ty t=-=+(t为参数)C.1{21x ty t=-=-(t为参数) D.sin{2sin1xyθθ==+(θ为参数)答案:C解析:选项A中20t≥,选项D中sin[1,1]θ∈-,因此不会是A,D.B中消掉参数得23y x=+,故只有C正确.5、已知O为原点,P为椭圆4cos,{xyαα==(α为参数)上第一象限内一点,OP的倾斜角为3π,则点P坐标为( )A.()2,3 B.()4,3C.(D.(,55答案:D解析:椭圆4cos,{xyαα==(α为参数)化为普通方程,得2211612x y+=.由题意可得直线OP的方程为y= (0x>).由22(0),{11612y xx y=>+=解得x y==.∴点P的坐标为(,55.故选D.6、直线1cos 2sin x t y t αα=+⎧⎨=-+⎩ (α为参数,0a π≤<)必过点( )A.()1,2-B.()1,2-C.()2,1-D.()2,1- 答案:A解析:直线表示过点()1,2-的直线.7、下列可以作为直线210x y -+=的参数方程的是( )A.13x t y t =+⎧⎨=+⎩ (t 为参数)B.152x t y t =-⎧⎨=-⎩(t 为参数)C.12x t y t =-⎧⎨=-⎩ (t 为参数) D.255x y t⎧=⎪⎪⎨⎪=+⎪⎩ (t 为参数) 答案:C解析:题目所给的直线的斜率为2,选项A 中直线斜率为1,选项D 中直线斜率为12,所以可排除选项A 、D.而选项B 中直线的普通方程为230x y -+=,故选C.8、极坐标方程cos ρθ=和参数方程12x ty t =--⎧⎨=+⎩ (t 为参数)所表示的图形分别是( )A.直线、直线B.直线、圆C.圆、圆D.圆、直线 答案:D解析:∵cos ρθ=,∴2cos ρρθ=,即22x y x +=,即221124x y ⎛⎫-+= ⎪⎝⎭,∴cos ρθ=所表示的图形是圆.由12x ty t =--⎧⎨=+⎩(t 为参数)消参得:1x y +=,表示直线.10、在平面直角坐标系 xOy 中,若直线:{x tl y t a==- (t 为参数)过椭圆3cos :{2sin x C y ϕϕ== (ϕ为参数)的右顶点,则常数a 的值为__________.答案:3解析:由直线l 的参数方程:{x tl y t a==- (t 为参数)消去参数t ,得直线l 的一般方程为y x a =-, 由椭圆的参数方程可知其右顶点为(3,0).因为直线l 过椭圆的右顶点,所以30a -=,即 3a =. 11、在平面直角坐标系 xOy 中,若直线121,:{x s l y s=+= ( s 为参数)和直线2,:{21x at l y t ==- (t 参数)平行,则常数a 的值为__________.答案:4解析:将直线方程化为平面直角坐标方程,得1l 的方程是210x y --=,2l 的方程是022a a x y --=.因为两直线平行,所以22a -=-,且12a-≠-,所以4a =. 12、化直线l的参数方程31x t y =-+⎧⎪⎨=⎪⎩,(t 为参数)为普通方程,并求倾斜角,说明t的几何意义.答案:由31x ty =-+⎧⎪⎨=+⎪⎩消去参数t ,得直线l10y -+=.故斜率tan k α==,由于0απ≤<,即3πα=.因此直线l 的倾斜角为3π.又31x t y +=⎧⎪⎨-=⎪⎩得()()222314x y t ++-=,∴t =故t 是t 对应点M 到定点()03,1M -的向量2M M 的模的一半.13、在直角坐标系中,参数方程为212x y t ⎧=+⎪⎪⎨⎪=⎪⎩ (t 为参数)的直线l 被以原点为极点,x 轴的正半轴为极轴,极坐标方程为2cos ρθ=的曲线C 所截,求截得的弦长.答案:参数方程为212x y t ⎧=+⎪⎪⎨⎪=⎪⎩ (t 为参数)表示的直线l 是过点()2,0A ,倾斜角为30,极坐标方程2cos ρθ=表示的曲线C 为圆2220x y x +-=. 此圆的圆心为()1,0,半径为1,且圆C 也过点()2,0A ;设直线l 与圆C 的另一个交点为B ,在Rt OAB ∆中,2cos30AB =︒=。

直线的参数方程练习题有答案

直线的参数方程练习题有答案

直线的参数方程1.设直线l 过点A (2,-4),倾斜角为56π,则直线l 的参数方程是____________.解析:直线l的参数方程为⎩⎨⎧x =2+t cos 56π,y =-4+t sin 56π(t 为参数), 即⎩⎨⎧x =2-32ty =-4+12t,(t 为参数).答案:⎩⎨⎧x =2-32ty =-4+12t,(t 为参数)2.设直线l 过点(1,-1),倾斜角为5π6,则直线l 的参数方程为____________.解析:直线l的参数方程为⎩⎨⎧x =1+t cos5π6y =-1+t sin 5π6,(t 为参数), 即⎩⎨⎧x =1-32t y =-1+12t,(t 为参数)答案:⎩⎨⎧x =1-32ty =-1+12t,(t 为参数)3.已知直线l 经过点P (1,1),倾斜角α=π6.写出直线l 的参数方程;解:①直线l 的参数方程为⎩⎨⎧x =1+32ty =1+12t,(t 是参数).4.已知直线l 经过点P ⎝⎛⎭⎫12,1,倾斜角α=π6, 写出直线l 的参数方程.[解] (1)直线l 的参数方程为⎩⎨⎧x =12+t cos π6y =1+t sin π6,(t 为参数),即⎩⎨⎧x =12+32t y =1+12t ,(t 为参数).2分5.已知直线l 的斜率k =-1,经过点M 0(2,-1).点M 在直线上,则直线l 的参数方程为____________.解析:∵直线的斜率为-1, ∴直线的倾斜角α=135°. ∴cos α=-22,sin α=22. ∴直线l 的参数方程为⎩⎨⎧x =2-22ty =-1+22t,(t为参数).答案:⎩⎨⎧x =2-22ty =-1+22t,(t 为参数)6.已知直线l :⎩⎨⎧x =-3+32t y =2+12t,(t 为参数) ,求直线l 的倾斜角;解:(1)由于直线l :⎩⎨⎧x =-3+t cos π6,y =2+t sin π6(t为参数)表示过点M 0(-3,2)且斜率为tan π6的直线,故直线l 的倾斜角α=π6.7.若直线的参数方程为⎩⎨⎧x =3+12ty =3-32t,(t 为参数),则此直线的斜率为( )A.3 B .- 3C.33D .-33解析:选 B.直线的参数方程⎩⎨⎧x =3+12ty =3-32t,(t 为参数)可化为标准形式⎩⎨⎧x =3+⎝⎛⎭⎫-12(-t )y =3+32(-t ),(-t 为参数).∴直线的斜率为- 3.8.化直线l 的参数方程⎩⎪⎨⎪⎧x =1+3t ,y =3+6t (t 为参数)为参数方程的标准形式.解:由⎩⎪⎨⎪⎧x =1+3t ,y =3+6t ,得令t ′=32+(6)2 t ,得到直线l 的参数方程的标准形式为⎩⎨⎧x =1+155t ′y =3+105t ′,(t ′为参数).9.化直线l 的参数方程⎩⎪⎨⎪⎧x =2-3ty =1+t (t 为参数)为参数方程的标准形式.解:10.已知直线l 经过点P (1,1),倾斜角α=π6.①写出直线l 的参数方程;②设l 与圆x 2+y 2=4相交于A ,B 两点,求点P 到A ,B 两点的距离之积.解:①直线l 的参数方程为⎩⎨⎧x =1+32ty =1+12t,(t 是参数).②把直线l 的参数方程⎩⎨⎧x =1+32t ,y =1+12t代入圆x 2+y 2=4,整理得t 2+(3+1)t -2=0,t 1,t 2是方程的根,t 1·t 2=-2.∵A ,B 都在直线l 上,设它们对应的参数分别为t 1和t 2,∴|PA |·|PB |=|t 1|·|t 2|=|t 1t 2|=2. 11.已知在直角坐标系xOy 中,曲线C 的参数方程为⎩⎪⎨⎪⎧x =1+4cos θy =2+4sin θ,(θ为参数),直线l 经过定点P (3,5),倾斜角为π3.(1)写出直线l 的参数方程和曲线C 的标准方程;(2)设直线l 与曲线C 相交于A ,B 两点,求|PA |·|PB |的值.解:(1)曲线 C :(x -1)2+(y -2)2=16,直线l :⎩⎨⎧x =3+12ty =5+32t,(t 为参数).(2)将直线l 的参数方程代入圆C 的方程可得t 2+(2+33)t -3=0,设t 1,t 2是方程的两个根,则t 1t 2=-3,所以|PA ||PB |=|t 1||t 2|=|t 1t 2|=3.12.已知曲线C 的极坐标方程为ρ=1,以极点为平面直角坐标系原点,极轴为x 轴正半轴,建立平面直角坐标系,直线l 的参数方程是⎩⎪⎨⎪⎧x =-1+4t y =3t ,(t 为参数),则直线l 与曲线C 相交所截得的弦长为________.解析:曲线C 的直角坐标方程为x 2+y 2=1,将⎩⎪⎨⎪⎧x =-1+4t y =3t ,代入x 2+y 2=1中得25t 2-8t =0,解得t 1=0,t 2=825.故直线l 与曲线C 相交所截得的弦长l =42+32·|t 2-t 1|=5×825=85. 答案:8513.已知斜率为1的直线l 过椭圆x 24+y 2=1的右焦点,交椭圆于A ,B 两点,求弦AB 的长度.解:因为直线l 的斜率为1,所以直线l 的倾斜角为π4.椭圆x 24+y 2=1的右焦点为(3,0),直线l的参数方程为⎩⎨⎧x =3+22t y =22t,(t 为参数),代入椭圆方程x 24+y 2=1,得⎝⎛⎭⎫3+22t 24+⎝⎛⎭⎫22t 2=1,整理,得5t 2+26t -2=0. 设方程的两实根分别为t 1,t 2, 则t 1+t 2=-265,t 1·t 2=-25,|t 1-t 2|=(t 1+t 2)2-4t 1t 2 =⎝⎛⎭⎫-2652+85=85, 所以弦长AB 的长为85.14.已知直线l 经过点P ⎝⎛⎭⎫12,1,倾斜角α=π6,圆C 的极坐标方程为ρ=2·cos ⎝⎛⎭⎫θ-π4. (1)写出直线l 的参数方程,并把圆C 的方程化为直角坐标方程;(2)设l 与圆C 相交于A ,B 两点,求点P 到A ,B 两点的距离之积.[解] (1)直线l 的参数方程为⎩⎨⎧x =12+t cos π6y =1+t sin π6,(t 为参数),即⎩⎨⎧x =12+32t y =1+12t ,(t 为参数).2分由ρ=2cos ⎝⎛⎭⎫θ-π4得ρ=cos θ+sin θ, 所以ρ2=ρcos θ+ρsin θ, 得x 2+y 2=x +y ,即圆C 的直角坐标方程为⎝⎛⎭⎫x -122+⎝⎛⎭⎫y -122=12.5分 (2)把⎩⎨⎧x =12+32t ,y =1+12t代入⎝⎛⎭⎫x -122+⎝⎛⎭⎫y -122=12,得t 2+12t -14=0,7分 设A 、B 两点对应的参数分别为t 1、t 2,则t 1t 2=-14,所以|PA |·|PB |=|t 1·t 2|=14.10分15.(2016·高考江苏卷)在平面直角坐标系xOy中,已知直线l 的参数方程为⎩⎨⎧x =1+12t ,y =32t(t 为参数),椭圆C 的参数方程为⎩⎪⎨⎪⎧x =cos θy =2sin θ(θ为参数).设直线l 与椭圆C 相交于A ,B 两点,求线段AB 的长.[解] 椭圆C 的普通方程为x 2+y 24=1.将直线l 的参数方程⎩⎨⎧x =1+12t ,y =32t代入x 2+y 24=1,得(1+12t )2+⎝⎛⎭⎫32t 24=1,即7t 2+16t =0,解得t 1=0,t 2=-167.所以AB =|t 1-t 2|=167. 16.直线⎩⎪⎨⎪⎧x =2+3ty =-1+t ,(t 为参数)上对应t =0,t =1两点间的距离是( )A .1B.10C .10D .2 2解析:选B.将t =0,t =1代入参数方程可得两点坐标为(2,-1)和(5,0)∴d =(2-5)2+(-1-0)2=10. 17.在直角坐标系中,以原点为极点,x 轴的正半轴建立极坐标系,已知曲线C :ρsin 2θ=2a cos θ(a >0),过点P (-2,-4)的直线l 的参数方程为:⎩⎨⎧x =-2+22ty =-4+22t ,(t 为参数),直线l 与曲线C 分别交于M ,N 两点.(1)写出曲线C 的直角坐标方程和直线l 的普通方程;(2)若|PM |,|MN |,|PN |成等比数列,求a 的值.解:(1)曲线的极坐标方程变为ρ2sin 2θ=2aρcos θ,化为直角坐标方程为y 2=2ax ,直线⎩⎨⎧x =-2+22ty =-4+22t,(t 为参数)化为普通方程为y =x -2.(2)将⎩⎨⎧x =-2+22t y =-4+22t,代入y 2=2ax 得t 2-22(4+a )t +8(4+a )=0.则有t 1+t 2=22(4+a ),t 1t 2=8(4+a ), 因为|MN |2=|PM |·|PN |, 所以(t 1-t 2)2=t 1·t 2,即(t 1+t 2)2-4t 1t 2=t 1t 2,(t 1+t 2)2-5t 1t 2=0,故8(4+a )2-40(4+a )=0, 解得a =1或a =-4(舍去). 故所求a 的值为1.18.已知直线l 1:⎩⎪⎨⎪⎧x =1+3t y =2-4t ,(t 为参数)与直线l 2:2x -4y =5相交于点B ,且点A (1,2),则|AB |=________.解析:将⎩⎪⎨⎪⎧x =1+3ty =2-4t ,代入2x -4y =5,得t =12,则B ⎝⎛⎭⎫52,0.而A (1,2),得|AB |=52. 答案:5219.如图所示,已知直线l 过点P (2,0),斜率为43,直线l 和抛物线y 2=2x 相交于A ,B 两点,设线段AB 的中点为M ,求: ①P ,M 间的距离|PM |;②点M 的坐标解:①由题意,知直线l 过点P (2,0),斜率为43, 设直线l 的倾斜角为α,则tan α=43,cos α=35,sin α=45,∴直线l 的参数方程的标准形式为⎩⎨⎧x =2+35ty =45t ,(t 为参数).(*) ∵直线l 和抛物线相交,∴将直线l 的参数方程代入抛物线方程y 2=2x 中,整理得8t 2-15t -50=0,Δ=152+4×8×50>0.设这个二次方程的两个根为t 1,t 2, 由根与系数的关系得t 1+t 2=158,t 1t 2=-254. 由M 为线段AB 的中点, 根据t 的几何意义,得|PM |=⎪⎪⎪⎪t 1+t 22=1516. ②因为中点M 所对应的参数为t M =1516,将此值代入直线l 的参数方程的标准形式(*),得⎩⎨⎧x =2+35×1516=4116,y =45×1516=34,即M ⎝⎛⎭⎫4116,34.20.以直角坐标系原点O 为极点,x 轴正半轴为极轴,并在两种坐标系中取相同的长度单位,已知直线l 的参数方程为⎩⎪⎨⎪⎧x =12+t cos αy =t sin α,(t 为参数,0<α<π),曲线C 的极坐标方程ρ=2cos θsin 2θ. (1)求曲线C 的直角坐标方程;(2)设直线l 与曲线C 相交于A ,B 两点,当α变化时,求|AB |的最小值.解:(1)由ρ=2cos θsin 2θ得ρ2sin 2θ=2ρcos θ,所以曲线C 的直角坐标方程为y 2=2x .(2)将直线l 的参数方程代入y 2=2x ,得t 2sin 2α-2t cos α-1=0,设A ,B 两点对应的参数分别为t 1,t 2, 则t 1+t 2=2cos αsin 2α,t 1·t 2=-1sin 2α,所以|AB |=|t 1-t 2| =(t 1+t 2)2-4t 1t 2 =4cos 2αsin 4α+4sin 2α=2sin 2α, 当α=π2时,|AB |取得最小值2。

直线参数方程课堂练习

直线参数方程课堂练习
例 1 已知直线 l 的参数方程是:
x 3 4t 5
y 2 3 t 5
(t
R)
求过点 (4,1) 且与 l 平行的直线 m 在 y 轴截距.
例 2 一个小虫从 P(1,2) 出发,已知它在 x 轴方向的分速度是 3 厘米/秒,在 y 轴方向的分速度是 4 厘米/秒,求小虫 3 秒后 的位置 Q.(本例中的时间单位为“秒”,距离单位为“厘米”)
4、直线
l
过点
P(1,2),其参数方程为xy
=1 =2
−t, +t (t
是参数),
直线 l 与直线 2x +y −2 =0 交于点 Q,求 PQ.
例 3 据气象预报,现在在气象台 A 处向东 400 千米 B 处的 海面上有一个台风中心形成,测得台风以 40 千米/小时的速 度向西北方向移动,距中心不超过 300 气象台受到台风影响的时间大约是多少?(结果精确到 0.1小 时)

高考数学常考题型:直线参数方程(含详解答案)

高考数学常考题型:直线参数方程(含详解答案)

高考数学常考题型:直线参数方程1.已知直线l 的参数方程为1324x ty t=+⎧⎨=+⎩(t 为参数),则点()10,,到直线l 的距离是( )A .15B .25C .45D .652.在平面直角坐标系xOy 中,直线l的参数方程为2cos sin x t y t ϕϕ=+⎧⎪⎨=⎪⎩(t 为参数,03πϕ⎡⎤∈⎢⎥⎣⎦,),直线l与22:20C x y x +--=交于, M N 两点,当ϕ变化时,求弦长||MN 的取值范围_______3.在直角坐标系xOy 中,直线l的参数方程为212x y t ⎧=⎪⎪⎨⎪=+⎪⎩(t 为参数),以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,曲线C 的极坐标方程为2cos 4sin ρθθ=,l 与C 交于,A B 两点,则AB =_______.4.已知P 1,P 2是直线1122x t y ⎧=+⎪⎪⎨⎪=-⎪⎩(t 为参数)上的两点,它们所对应的参数分别为t 1,t 2,则线段P 1P 2的中点到点P (1,-2)的距离是________.5.直线l :12x aty t=⎧⎨=-⎩(t 为参数),圆C :4sin 4cos ρθθ=-(极轴与x 轴的非负半轴重合,且单位长度相同),若圆C 上恰有三个点到直线l,则实数a =_______.6.以平面直角坐标系xOy 的原点为极点,x 轴的正半轴为极轴,建立极坐标系,两种坐标系中取相同的长度单位,直线l的参数方程为221x y ⎧=+⎪⎪⎨⎪=+⎪⎩(t 为参数),圆C 的极坐标方程为()4sin cos ρθθ=+.设曲线C 与直线l 交于A 、B 两点,若P 点的直角坐标为()2,1,则PA PB -的值=______. 7.已知直线l 的参数方程为34x ty t m=⎧⎨=+⎩(t 为参数),圆C 的极坐标方程为2cos ρθ=若直线l 与圆C,则m 的值为________________.8.已知直线参数方程为355435x t y t ⎧=-⎪⎪⎨⎪=-+⎪⎩(t 为参数),直线与圆5ρ=交于B 、C 两点,则线段BC 中点直角坐标________.9.在直角坐标系中,以原点为极点,x 轴的正半轴为极轴,以相同的长度单位建立极坐标系.已知直线l 的直角坐标方程为10x y +-=,曲线C 的极坐标方程为(1cos 2)ρθ+2sin (0)a a θ=>(1)设t为参数,若12x t =-,求直线l 的参数方程及曲线C 的普通方程; (2)已知直线l 与曲线C 交于,A B ,设(1,0)P ,且,,PA AB PB 依次成等比数列,求实数a 的值.10.在平面直角坐标系xOy 中,以原点O 为极点,x 轴的正半轴为极轴,建立极坐标系,曲线C 的极坐标方程为(1cos 2)8cos ρθθ-=. (1)求曲线C 的普通方程; (2)直线l 的参数方程为1cos sin x t y t αα=+⎧⎨=⎩,(t 为参数),直线l 与x 轴交于点F ,与曲线C 的交点为A ,B ,当||||FA FB ⋅取最小值时,求直线l 的直角坐标方程. 11.在平面直角坐标系xOy 中,不过原点的动直线l :y=x+m 交抛物线C :x 2=2py (p >0)于A 、B 两点,且22OA OB m m ⋅=-. (1)求抛物线C 的方程;(2)设直线y=x 与C 的异于原点的交点为P ,直线l 与C 在点P 处的切线的交点为D ,设2||PD t DA DB=⋅,问:t 是否为定值?若为定值,求出该定值;若不为定值,试说明理由.12.在直角坐标系xOy 中,曲线C 的参数方程为3cos 3sin x y θθ=⎧⎨=⎩,(θ为参数).以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,直线l 的极坐标方程为(cos sin )1ρθθ-=.(1)求C 和l 的直角坐标方程;(2)已知直线l 与y 轴交于点M ,且与曲线C 交于A ,B 两点,求11||||MA MB -的值.13.在直角坐标系xOy 中,直线1C的参数方程为323x t y t ⎧=-⎪⎪⎨⎪=+⎪⎩(其中t 为参数).以坐标原点O 为极点,x 轴非负半轴为极轴建立极坐标系,曲线2C 的极坐标方程为2cos 3sin ρθθ=.(1)求1C 和2C 的直角坐标方程;(2)设点()0,2P ,直线1C 交曲线2C 于,M N 两点,求22PMPN +的值.14.在直角坐标系xOy 中,曲线C 的参数方程为:22t tt te e x e e y --⎧+=⎪⎪⎨-⎪=⎪⎩(其中t 为参数),直线l的参数方程为2x y ⎧=⎪⎪⎨⎪=⎪⎩(其中m 为参数)(1)以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,求曲线C 的极坐标方程; (2)若曲线C 与直线l 交于,A B 两点,点P 的坐标为()2,0,求PA PB ⋅的值.15.在平面直角坐标系xOy 中,已知直线l的参数方程是22x y ⎧=⎪⎪⎨⎪=+⎪⎩(t 为参数),以O 为极点,x 轴正半轴为极轴的极坐标系中,圆C 的极坐标方程为2cos 4πρθ⎛⎫=+ ⎪⎝⎭. (1)求直线l 的普通方程和圆C 的直角坐标方程; (2)由直线l 上的点向圆C 引切线,求切线长的最小值.16.选修4-4:坐标系与参数方程已知曲线C的参数方程为()2cos x y θθθ=⎧⎪⎨=⎪⎩为参数,在同一平面直角坐标系中,将曲线C上的点按坐标变换12x x y y ⎧=⎪⎪⎨=''⎪⎪⎩得到曲线C ',以原点为极点,x 轴的正半轴为极轴,建立极坐标系.(Ⅰ)求曲线C '的极坐标方程;(Ⅱ)若过点3(,)2A π(极坐标)且倾斜角为6π的直线l 与曲线C '交于,M N 两点,弦MN 的中点为P ,求||||||AP AM AN ⋅的值.参考答案1.D2.4⎤⎦将直线l 的参数方程代入圆C 的方程可得:22cos 30t t ϕ+-=,12122cos 3t t t t ϕ∴+=-=-,,12MN t t ∴=-==03πϕ⎡⎤∈⎢⎥⎣⎦,,1cos 12ϕ⎡⎤∴∈⎢⎥⎣⎦,,21cos 14ϕ⎡⎤∴∈⎢⎥⎣⎦,,MN ⎤∴∈⎦43.8 4.122t t +因为12,P P 对应的参数分别为12,t t 故其中点所对应的参数为122t t +, 又()1,2P -对应的参数为0t =,根据直线的参数方程中t 的几何意义可知:12P P 中点到点P 的距离为12121022t t t t+-=+ 5.4-±l 的一般方程为20xay a +-=, ∵34πρθ⎛⎫=-+⎪⎝⎭,∴24sin 4cos ρρθρθ=-, ∴圆的直角坐标方程为2244x y y x +=-,即()()22228x y ++-=,∴圆心为()2,2C -,半径r =∵圆C 上恰有三个点到直线l, ∴圆心C 到直线l=,解得4a =-±6解:圆C 的极坐标方程为4πρθ⎛⎫=+⎪⎝⎭,即4sin 4cos ρθθ=+, 则24sin 4cos ρρθρθ=+,圆C 的直角坐标系方程为22440x y x y +--=, 点()2,1P 在直线l 上,且在圆C 内,由已知直线l 的参数方程是2212x t y t ⎧=+⎪⎪⎨⎪=+⎪⎩(t 为参数)代入22440x y x y +--=,得270t -=,设两个实根为1t ,2t,则12t t +=1270t t =-<,即1t ,2t 异号,所以1212PA PB t t t t -=-=+=7.12m =-或136m =-. 由参数方程可得:3344x t y m t ==-, 整理可得直线l 的直角坐标方程为4330x y m -+=,圆C 的极坐标方程即222222cos ,2,(1)1x y x x y ρρθ=+=-+=, 设圆心到直线的距离为d ,由弦长公式可得:==解得:12d =, 结合点到直线距离公式可得:403152m -+=,解得:12m =-或136m =-. 8.4433,2525⎛⎫ ⎪⎝⎭直线参数方程为355435x t y t⎧=-⎪⎪⎨⎪=-+⎪⎩(t 为参数),转化为普通方程:11433y x =-,圆5ρ=转化为普通方程为2225x y += ,将直线方程代入圆的方程中,整理得225881040x x --= , 设交点为()()1122,,,x y x y ,中点坐标()00,x y ,则1208844252225x x x +===, ()1212012114114112333333223325x x y y y x x -+-+===-+= , 即则线段BC 中点直角坐标为4433,2525⎛⎫⎪⎝⎭.9.(1)l的参数方程为122x y ⎧=-⎪⎪⎨⎪=⎪⎩(t 为参数),C 的普通方程为2(0)x ay a =>;(22. (1)由题意将1x =-代入10x y +-=,得y = 所以l的参数方程为12x y ⎧=⎪⎪⎨⎪=⎪⎩(t 为参数); 由(1cos2)2sin (0)a a ρθθ+=>和余弦的二倍角公式,可得22cos sin a ρθρθ=,令cos sin x y ρθρθ=⎧⎨=⎩代入化简可得:2(0)x ay a =>,所以曲线C 的普通方程为:2(0)x ay a =>.(2)将直线的参数方程代入2(0)x ay a =>整理得:2)20t t -+= 设,A B 对应的参数为分别为12,t t ,且为上述方程的两实根,则有:1212,2t t t t +=⨯=由题知P 点在直线上并且,,PA AB PB 依次成等比数列可得:2AB PA PB =⋅ 则可得21212t t t t -=,由()221212124t t t t t t -=+-⨯,代入整理得:2410a a +-=,又0a >,则解得2a =-.10.(1)24y x =(2)1x =(1)由题意得(1cos 2)8sin ρθθ+=,得22cos 8sin ρθθ=,得22cos 4sin ρθρθ=,cos x ρθ=,sin y ρθ=,24y x ∴=,即曲线C 的普通方程为24y x =.(2)由题意可知,直线l 与x 轴交于点(1,0)F ,即为抛物线C 的焦点,令1||FA t =,2||FB t =,将直线l 的参数方程1cos sin x t y t αα=+⎧⎨=⎩,代入C 的普通方程24y x =中,整理得22sin 4cos 40t t αα--=,由题意得sin 0α≠,根据根与系数的关系得,1224cos sin t t αα+=,1224sin t t α-=, 121224||||4sin FA FB t t t t α∴===≥(当且仅当2sin 1α=时,等号成立), ∴当||||FA FB ⋅取得最小值时,直线l 的直角坐标方程为1x =.11.(1)22x y =;(2)见解析(1)联立22y x m x py=+⎧⎨=⎩消去y 并整理得:2220x px pm --=,设1(A x ,1)y ,2(B x ,2)y ,则122x x p +=,122x x pm =-,22212121212()()()22y y x m x m x x m x x m pm pm m m ∴=++=+++=-++=,∴22121222OA OB x x y y pm m m m =+=-+=-,22pm m ∴=,又因为0m ≠,1p ∴=,抛物线C 的方程为:22x y =.(2)由22y xx y =⎧⎨=⎩可得(2,2)P ,由22x y =求导得y x '=,所以C 在点P 处的切线为:22(2)y x -=-,即220x y --=,联立220x y y x m--=⎧⎨=+⎩可得(2,22)D m m ++,2222||(22)(222)5PD m m m ∴=+-++-=,又直线l的参数方程为:22(222x m t y m t ⎧=++⎪⎪⎨⎪=++⎪⎩为参数), 将直线l 的参数方程代入到22x y =得22(220t m m +++=, 设A ,B 对应的参数为1t ,2t , 则221212|||||||||||2|2DA DB t t t t m m ====, 222||55||||22PD m t DA DB m ∴===为定值.12.(1)直线l 的直角坐标方程为10x y --=,C 的普通方程229x y +=;(2. 解:(1)因为直线l 的极坐标方程为()cos sin 1ρθθ-=,所以直线l 的直角坐标方程为10x y --=.因为曲线C 的参数方程为33x cos y sin θθ=⎧⎨=⎩(θ为参数),所以曲线C 的普通方程229x y +=.(2)由题可知()0,1M -,所以直线l的参数方程为212x t y ⎧=⎪⎪⎨⎪=-+⎪⎩,(t 为参数),代入229x y +=,得280t --=. 设A ,B 两点所对应的参数分别为1t ,2t ,则12t t +=128t t =-.11MA MB -=12128MB MA t t MA MB t t -+==. 13.(1)1C20y +-=,2C :23x y =(2)90(1)直线1C的参数方程为32x y ⎧=-⎪⎪⎨⎪=+⎪⎩(其中t 为参数),消去t20y +-=;由2cos 3sin ρθθ=,得22cos 3sin ρθρθ=,则曲线2C 的直角坐标方程为23x y =.(2)将直线1C的参数方程323x y t ⎧=-⎪⎪⎨⎪=+⎪⎩代入23x y =,得2180t --=,设,M N 对应的参数分别为12,t t,则121218t t t t ⎧+=⎪⎨=-⎪⎩()2221212290PM PN t t t t +=+-=.14.(1)2cos 21((,))44ππρθθ=∈-(2)5解:(1)曲线C :22t t t t e e x e e y --⎧+=⎪⎪⎨-⎪=⎪⎩消去参数t 得到:221(1)x y x -=≥, 由cos x ρθ=,sin y ρθ=, 得2222cos sin 1((,))44ππρθρθθ-=∈-所以2cos 21((,))44ππρθθ=∈-(2)2x y ⎧=⎪⎪⎨⎪=⎪⎩代入221x y -=,23305m m ∴-= 设1PA m =,2PB m =,由直线的参数方程参数的几何意义得:215PA PB m m ∴⋅==15.(1)圆C的直角坐标方程为220x y+-+=,直线l的普通方程为x y-+=(2)(1)2cos cos2sin sin44ππρθθθθ=-=2cos sinρθθ∴=,即22x y+=∴圆C的直角坐标方程为:220x y+-+=由xy⎧=⎪⎪⎨⎪=+⎪⎩消去t得:y x-=∴直线l的普通方程为:0x y-+(2)由(1)知,圆C的圆心为22⎛-⎝⎭,半径1r=∴圆心到直线l距离5d==∴直线l上的点向圆C=16.(1)曲线C'的极坐标方程为:1Cρ'=(2)APAM AN=⋅(I)曲线C的参数方程为()2x cosyθθθ=⎧⎪⎨=⎪⎩为参数,利用平方关系即可化为普通方程.利用变换公式代入即可得出曲线C'的直角坐标方程,利用互化公式可得极坐标方程.(II)点A的直角坐标是3,02A⎛⎫-⎪⎝⎭,将l的参数方程3266x tcosy tsinππ⎧=-+⎪⎪⎨⎪=⎪⎩(t为参数)代入曲线C'的直角坐标方程可得2450t-+=,利用根与系数的关系即可得出.试题解析:(Ⅰ)222::143x cos x y C C y θθ=⎧⎪⇒+=⎨=⎪⎩,将122x x x x y y y ⎧=⎪=⎧⎪⎪⇒⎨⎨=⎪⎩⎪''⎪'=⎩',代入C 的普通方程可得221x y ''+=,即22:1C x y +=',所以曲线C '的极坐标方程为:1C ρ'=(Ⅱ)点A 的直角坐标是3,02A ⎛⎫- ⎪⎝⎭,将l 的参数方程3266x tcos y tsin ππ⎧=-+⎪⎪⎨⎪=⎪⎩(t 为参数) 代入221x y +=,可得2450t -+=, ∴t 1+t2=,t 1•t 254=,所以12122t t AP AM AN t t +==⋅。

极坐标与参数方程经典题型(附含详细解答)

极坐标与参数方程经典题型(附含详细解答)

专题:极坐标与参数方程1、已知在直角坐标系xOy 中,曲线C 的参数方程为14cos 24sin x y θθ=+⎧⎨=+⎩(θ为参数),直线l 经过定点(3,5)P ,倾斜角为3π. (1)写出直线l 的参数方程和曲线C 的标准方程;(2)设直线l 与曲线C 相交于A ,B 两点,求||||PA PB 的值.2、在直角坐标系中,以坐标原点为极点,轴的正半轴为极轴建立极坐标系,已知曲线2:sin 2cos C ρθθ=,过点(2,1)P -的直线2cos 45:1sin 45x t l y t ⎧=+⎪⎨=-+⎪⎩(t 为参数)与曲线C 交于,M N 两点.(1)求曲线C 的直角坐标方程和直线l 的普通方程;(2)求22||||PM PN +的值.3、在平面直角坐标系xOy 中,已知曲线:23cos 3sin x y αα⎧=+⎪⎨=⎪⎩(α为参数),以平面直角坐标系xOy 的原点O 为极点,x 轴的正半轴为极轴,取相同的单位长度建立极坐标系,已知直线l :(cos sin )6ρθθ-=.(1)求曲线C 上点P 到直线l 距离的最大值;(2)与直线l 平行的直线1l 交C 于,A B 两点,若||2AB =,求1l 的方程.4、在平面直角坐标系xOy 中,以原点为极点,轴的正半轴为极轴,建立极坐标系,曲线1C 的参数方程为22cos 2sin x y θθ⎧=⎪⎨=⎪⎩(为参数),曲线 2C 的极坐标方程为cos 2sin 40ρθρθ--=.(1)求曲线1C 的普通方程和曲线 2C 的直角坐标方程;(2)设P 为曲线1C 上一点,Q 为曲线2C 上一点,求||PQ 的最小值.5.在平面直角坐标系xOy 中,曲线1C 的参数方程为2cos sin x y ϕϕ=⎧⎨=⎩(ϕ为参数),在以原点为极点,轴的正半轴为极轴,建立的极坐标系中,曲线2C 是圆心为3,2π⎛⎫⎪⎝⎭,半径为1的圆.(1)求曲线1C 的普通方程,2C 的直角坐标方程;(2)设M 为曲线1C 上的点,N 为曲线2C 上的点,求||MN 的取值范围.6. 在平面直角坐标系xOy 中,曲线1C 的参数方程为2cos sin x y ϕϕ⎧=⎪⎨=⎪⎩(ϕ为参数),曲线2C :2220x y y +-=,以原点为极点,轴的正半轴为极轴,建立极坐标系,射线():0l θαρ=≥与曲线1C ,2C 分别交于,A B (均异于原点O ).(1)求曲线1C ,2C 的极坐标方程; (2)当02πα<<时,求22||||OA OB +的取值范围.7. 在平面直角坐标系xOy 中,曲线1C 过点(,1)P a ,其参数方程为212x a ty t ⎧=+⎪⎨=+⎪⎩(t 为参数,a R ∈),以原点为极点,轴的正半轴为极轴,建立极坐标系,曲线2C 的极坐标方程为2cos 4cos 0ρθθρ+-=.(1)求曲线1C 的普通方程和2C 的直角坐标方程;(2)已知曲线1C 与2C 交于,A B 两点,且||2||PA PB =,求实数a 的值.8. 在平面直角坐标系xOy 中,以原点为极点,轴的正半轴为极轴,建立极坐标系,直线l 的极坐标方程为(sin 3cos )43ρθθ+=,若射线6πθ=,3πθ=,分别与l 交于,A B两点.(1)求||AB ;(2)设点P 是曲线2219y x +=上的动点,求ABP ∆面积的最大值.极坐标与参数方程——练习1.在平面直角坐标系xOy 中,已知直线l 的参数方程为⎩⎪⎨⎪⎧x =1+12t ,y =32t ,(t 为参数),椭圆C 的参数方程为⎩⎪⎨⎪⎧x =cos θ,y =2sin θ(θ为参数).设直线l 与椭圆C 相交于A,B 两点,求线段AB 的长.2.在直角坐标系xOy 中,曲线C 1:⎩⎪⎨⎪⎧x =tcos α,y =tsin α(t 为参数,t≠0),其中0≤α<π,在以O 为极点,x 轴正半轴为极轴的极坐标系中,曲线C 2:ρ=2sin θ,C 3:ρ=23cos θ.(1)求C 2与C 3交点的直角坐标;(2)若C 1与C 2相交于点A,C 1与C 3相交于点B ,求|AB |的最大值.3.在直角坐标系xOy 中,直线l 的参数方程为⎩⎪⎨⎪⎧x =3+12t ,y =32t(t 为参数).以原点为极点,x轴正半轴为极轴建立极坐标系,⊙C 的极坐标方程为ρ=23sin θ.(1)写出⊙C 的直角坐标方程;(2)P 为直线l 上一动点,当P 到圆心C 的距离最小时,求P 的直角坐标.4.在平面直角坐标系xOy 中,曲线C 的方程为x 2-2x +y 2=0,以原点为极点,x 轴正半轴为极轴建立极坐标系,直线l 的极坐标方程为θ=π4(ρ∈R ).(1)写出C 的极坐标方程,并求l 与C 的交点M,N 的极坐标; (2)设P 是椭圆x 23+y 2=1上的动点,求△PMN 面积的最大值.5.直线l 的参数方程为⎩⎪⎨⎪⎧x =1+12t ,y =32t(t 为参数),曲线C 的极坐标方程为(1+sin 2θ)ρ2=2. (1)写出直线l 的普通方程与曲线C 的直角坐标方程.(2)设直线l 与曲线C 相交于A ,B 两点,若点P 为(1,0),求1|PA |2+1|PB |2的值.6. 在直角坐标系xoy 中,直线l 的参数方程为325:45x t C y t ⎧=-+⎪⎪⎨⎪=⎪⎩(t 为参数),以原点O 为极点,x 轴正半轴为极轴建立极坐标系,圆C 的极坐标方程为sin a ρθ=. (1)若2a =,求圆C 的直角坐标方程与直线 l 的普通方程; (2)设直线l 截圆C 的弦长等于圆Ca 的值.7. 在直角坐标系xOy 中,直线1C :y =,曲线2C 的参数方程是cos 2sin x y ϕϕ⎧=⎪⎨=-+⎪⎩(ϕ为参数),以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系.(1)求1C 的极坐标方程和2C 的普通方程; (2)把1C 绕坐标原点沿顺时针方向旋转3π得到直线3C ,3C 与2C 交于A ,B 两点,求||AB .8.将圆x 2+y 2=1上每一点的横坐标保持不变,纵坐标变为原来的2倍,得曲线C. (1)写出C 的参数方程;(2)设直线l :2x +y -2=0与C 的交点为P 1,P 2,以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,求过线段P 1P 2的中点且与l 垂直的直线的极坐标方程.极坐标与参数方程参考答案1.【解答】解:(1)∵曲线C的参数方程为(θ为参数),消去参数θ,得曲线C的普通方程:(x﹣1)2+(y﹣2)2=16;∵直线l经过定点P(3,5),倾斜角为,∴直线l的参数方程为:,t为参数.(2)将直线l的参数方程代入曲线C的方程,得t2+(2+3)t﹣3=0,设t1、t2是方程的两个根,则t1t2=﹣3,∴|PA|•|PB|=|t1|•|t2|=|t1t2|=3.2.【解答】解:(1)曲线C:ρsin2θ=2cosθ,即ρ2sin2θ=2ρcosθ,∴曲线C的直角坐标方程为y2=2x;直线l:(t为参数),消去t,可得直线l的普通方程x﹣y﹣3=0;(2)将直线l:代入曲线C的标准方程:y2=2x得:t2﹣4t﹣6=0,∴|PM|2+|PN|2=|t1|2+|t2|2=(t1﹣t2)2+2t1t2=32.3、【解答】(1)直线l :(cos sin )6ρθθ-=化成普通方程为60x y --=.曲线化成普通方程为22(2)3x y -+=∴圆心(2,0)C 到直线l 的距离为d ==∴曲线C 上点P 到直线l 距离的最大值为(2)设直线1l 的方程为0x y λ-+=, (2,0)C 到直线1l 的距离为d === ∴或∴直线1l 的方程为或4.【解答】(1)由曲线C 1的参数方程为(θ为参数),消去参数θ得,曲线C 1的普通方程得+=1.由ρcos θ﹣ρsin θ﹣4=0得,曲线C 2的直角坐标方程为x ﹣y ﹣4=0…(2)设P (2cos θ,2sin θ),则点P 到曲线C 2的距离为d==,当cos (θ+45°)=1时,d 有最小值0,所以|PQ|的最小值为0.5.【解答】解:(1)消去参数φ可得C1的直角坐标方程为+y2=1,∵曲线C2是圆心为(3,),半径为1的圆曲线C2的圆心的直角坐标为(0,3),∴C2的直角坐标方程为x2+(y﹣3)2=1;(2)设M(2cosφ,sinφ),则|MC2|====,∴﹣1≤sinφ≤1,∴由二次函数可知2≤|MC2|≤4,由题意结合图象可得|MN|的最小值为2﹣1=1,最大值为4+1=5,∴|MN|的取值范围为[1,5]6.【解答】解:(1)∵,∴,由得曲线C1的极坐标方程为,∵x2+y2﹣2y=0,∴曲线C2的极坐标方程为ρ=2sinθ;(2)由(1)得,|OB|2=ρ2=4sin2α,∴∵,∴1<1+sin2α<2,∴,∴|OA|2+|OB|2的取值范围为(2,5).7.【解答】解:(1)曲线C1参数方程为,∴其普通方程x﹣y﹣a+1=0,由曲线C2的极坐标方程为ρcos2θ+4cosθ﹣ρ=0,∴ρ2cos2θ+4ρcosθ﹣ρ2=0∴x2+4x﹣x2﹣y2=0,即曲线C2的直角坐标方程y2=4x.(2)设A、B两点所对应参数分别为t1,t2,联解得要有两个不同的交点,则,即a>0,由韦达定理有根据参数方程的几何意义可知|PA|=2|t1|,|PB|=2|t2|,又由|PA|=2|PB|可得2|t1|=2×2|t2|,即t1=2t2或t1=﹣2t2∴当t1=2t2时,有t1+t2=3t2=,t1t2=2t22=,∴a=>0,符合题意.当t1=﹣2t2时,有t1+t2=﹣t2=,t1t2=﹣2t22=,∴a=>0,符合题意.综上所述,实数a的值为或.8.【解答】解:(1)直线,令,解得,∴,令,解得ρ=4,∴又∵,∴,∴|AB|=2.(2)∵直线,曲线,∴=当且仅当,即时,取“=”,∴,∴△ABP面积的最大值为3.极坐标与参数方程——练习参考答案1.【解答】解:由,由②得,代入①并整理得,.由,得,两式平方相加得.联立,解得或.∴|AB|=.2.【解答】解:(1)曲线C2:ρ=2sinθ得ρ2=2ρsinθ,即x2+y2=2y,①C 3:ρ=2cosθ,则ρ2=2ρcosθ,即x2+y2=2x,②由①②得或,即C2与C3交点的直角坐标为(0,0),(,);(2)曲线C1的直角坐标方程为y=tanαx,则极坐标方程为θ=α(ρ∈R,ρ≠0),其中0≤a<π.因此A得到极坐标为(2sinα,α),B的极坐标为(2cosα,α).所以|AB|=|2sinα﹣2cosα|=4|sin(α)|,当α=时,|AB|取得最大值,最大值为4.3.【解答】解:(1)由⊙C的极坐标方程为ρ=2sinθ.∴ρ2=2,化为x2+y2=,配方为=3.(2)设P,又C.∴|PC|==≥2,因此当t=0时,|PC|取得最小值2.此时P(3,0).4.【解答】解:(1)因为x=ρcosθ,y=ρsinθ,所以C的极坐标方程为ρ=2cosθ,直线l的直角坐标方程为y=x,联立方程组,解得或,所以点M,N的极坐标分别为(0,0),(,).(2)由(1)易得|MN|=因为P是椭圆+y2=1上的点,设P点坐标为(cosθ,sinθ),则P到直线y=x的距离d=,所以S△PMN==≤1,当θ=kπ﹣,k∈Z时,S△PMN取得最大值1.5.【解答】解:(1)直线l的参数方程为(t为参数),消去参数t得直线l的普通方程为x﹣y﹣=0,曲线C的极坐标方程ρ2+ρ2sin2θ=2,化成直角坐标方程为x2+2y2=2,即+y2=1.(2)将直线l的参数方程代入曲线C:x2+2y2=2,得7t2+4t﹣4=0.设A,B两点在直线l的参数方程中对应的参数分别为t1,t2,则t1+t2=﹣,t1t2=﹣,∴+=+==.6.【解答】解:(1)当a=2时,ρ=asinθ转化为ρ=2sinθ整理成直角坐标方程为:x2+(y﹣1)2=1直线的参数方程(t为参数).转化成直角坐标方程为:4x+3y﹣8=0 (2)圆C的极坐标方程转化成直角坐标方程为:直线l截圆C的弦长等于圆C的半径长的倍,所以:2|3a﹣16|=5|a|,利用平方法解得:a=32或.7.【解答】解:(1)∵直线,∴直线C1的极坐标方程为,∵曲线C2的参数方程是(θ为参数),∴消去参数θ,得曲线C2的普通方程为.(2)∵把C1绕坐标原点沿逆时针方向旋转得到直线C3,∴C3的极坐标方程为,化为直角坐标方程为.圆C2的圆心(,2)到直线C3:的距离:.∴.8.【解答】解:(1)在曲线C上任意取一点(x,y),由题意可得点(x,)在圆x2+y2=1上,∴x2+=1,即曲线C的方程为x2+=1,化为参数方程为(0≤θ<2π,θ为参数).(2)由,可得,,不妨设P1(1,0)、P2(0,2),则线段P1P2的中点坐标为(,1),再根据与l垂直的直线的斜率为,故所求的直线的方程为y﹣1=(x﹣),即x﹣2y+ =0.再根据x=ρcosα、y=ρsinα可得所求的直线的极坐标方程为ρcosα﹣2ρsinα+=0,即ρ=.。

参数方程练习题

参数方程练习题

参数方程一、选择题1.直线34x t y t =-⎧⎨=+⎩,(t 为参数)上与点(3,4)P 的距离等于 )A .)3,4(B .)5,4(-或)1,0(C .)5,2(D .)3,4(或)5,2(2.已知直线t ty t x (12⎩⎨⎧+=+=为参数)与曲线C :03cos 42=+-θρρ交于B A ,两点, )A .1 BC 3.曲线θθθ(sin 2cos 1⎩⎨⎧+=+-=y x 为参数)的对称中心( )A 、在直线y=2x 上B 、在直线y=-2x 上C 、在直线y=x-1上D 、在直线y=x+1上4.曲线的参数方程为⎩⎨⎧-=+=12322t y t x (t 是参数),则曲线是( ) C 、圆 D 、射线二、解答题5.选修4-4:坐标系与参数方程在直角坐标系xOy 中,圆C 的参数方程1cos (sin x y ϕϕϕ=+⎧⎨=⎩为参数).以O 为极点,x 轴的非负半轴为极轴建立极坐标系.(Ⅰ)求C 的极坐标方程;(Ⅱ)直线l 的极坐标方程是记射线OM :与C 分别交于点O ,P ,与l 交于点Q ,求PQ 的长.6.选修4−4:坐标系与参数方程在直角坐标系xOy 中,圆C 的方程为(x+6)2+y 2=25.(Ⅰ)以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,求C 的极坐标方程;(Ⅱ)直线l 的参数方程是cos ,sin ,x t y t αα=⎧⎨=⎩(t 为参数),l 与C 交于A ,B 两点,∣AB ∣l 的斜率.7.选修4-4:坐标系与参数方程在直角坐标系xOy 中,曲线C 1的参数方程为cos 1sin x a ty a t =⎧⎨=+⎩(t 为参数,a >0).在以坐标原点为极点,x 轴正半轴为极轴的极坐标系中,曲线C 2:ρ=4cos θ.(Ⅰ)说明C 1是哪种曲线,并将C 1的方程化为极坐标方程;(Ⅱ)直线C 3的极坐标方程为θ=α0,其中α0满足tan α0=2,若曲线C 1与C 2的公共点都在C 3上,求a. 8.选修4-4:坐标系与参数方程.已知直线l 的参数方程为431x t ay t =-+⎧⎨=-⎩(t 为参数),在直角坐标系xOy 中,以O 点为极点,x 轴的非负半轴为极轴,以相同的长度单位建立极坐标系,设圆M 的方程为26sin 8ρρθ-=-.(1)求圆M 的直角坐标方程;(2)若直线l 截圆M 所得弦长为,求实数a 的值. 9.(本小题满分10分)已知在直角坐标系xOy 中,圆C 的参数方程为12cos (2sin x y θθθ=+⎧⎨=⎩为参数). (1)以原点为极点、x 轴正半轴为极轴建立极坐标系,求圆C 的极坐标方程; (2)直线l 的坐标方程是,且直线l 与圆C 交于,A B 两点,试求弦AB 的长.10.(2014•大武口区校级一模)已知直线的极坐标方程为,圆M 的参数方程为(其中θ为参数).(Ⅰ)将直线的极坐标方程化为直角坐标方程; (Ⅱ)求圆M 上的点到直线的距离的最小值.11.以直角坐标系的原点O 为极点,x 轴的正半轴为极轴,且两个坐标系取相等的长度单位,已知直线 l 的参数方程为 1cos sin x t y t αα=+⎧⎨=⎩(t 为参数, 0απ<<),曲线C 的极坐标方程为2sin 4cos ρθθ=.(Ⅰ)求曲线C 的直角坐标方程。

高三数学参数方程试题答案及解析

高三数学参数方程试题答案及解析

高三数学参数方程试题答案及解析1.在平面直角坐标系中,曲线(为参数)的普通方程为___________.【答案】【解析】联立消可得,故填.【考点】参数方程2.直线与直线为参数)的交点到原点O的距离是()A.1B.C.2D.2【答案】C【解析】将直线化普通方程为.解得两直线交点为,此交点到原点的距离为.故C正确.【考点】1参数方程和普通方程间的互化;2两点间的距离公式.3.在平面直角坐标系xOy中,曲线C1和C2的参数方程分别为和,则曲线C1与C2的交点坐标为_______。

【答案】【解析】由参数方程知: 曲线C1与C2的普通方程分别为,,所以解方程组可得交点坐标为.【考点】本题考查直线与圆的参数方程与普通方程的互化,以及它们交点坐标的求解.4.在平面直角坐标系中,直线经过点P(0,1),曲线的方程为,若直线与曲线相交于,两点,求的值.【答案】1【解析】利用直线的参数方程的几何意义,可简便解决有关线段乘积问题. 设直线的参数方程为(为参数,为倾斜角)设,两点对应的参数值分别为,.将代入,整理可得.所以.【解】设直线的参数方程为(为参数,为倾斜角)设,两点对应的参数值分别为,.将代入,整理可得. 5分(只要代入即可,没有整理成一般形式也可以)所以. 10分【考点】直线的参数方程5.如图,以过原点的直线的倾斜角为参数,则圆的参数方程为 .【答案】(为参数)【解析】x2+y2-x=0圆的半径为,圆心为C(,0).连接CP,则∠PCx=2所以P点的坐标为:(为参数)6.在极坐标系中,圆上的点到直线的距离的最小值为________.【答案】1【解析】圆的直角坐标方程为,直线的直角坐标方程为,圆心到直线的距离,圆上的点到直线的距离的最小值为.【考点】直角坐标与极坐标、距离公式.7.已知曲线的参数方程为(为参数),在同一平面直角坐标系中,将曲线上的点按坐标变换得到曲线.(1)求曲线的普通方程;(2)若点在曲线上,点,当点在曲线上运动时,求中点的轨迹方程.【答案】(1);(2).【解析】本题主要考查参数方程与普通方程的互化、中点坐标公式等基础知识,考查学生的转化能力、分析能力、计算能力.第一问,将曲线C的坐标直接代入中,得到曲线的参数方程,再利用参数方程与普通方程的互化公式,将其转化为普通方程;第二问,设出P、A点坐标,利用中点坐标公式,得出,由于点A在曲线上,所以将得到的代入到曲线中,得到的关系,即为中点的轨迹方程.试题解析:(1)将代入,得的参数方程为∴曲线的普通方程为. 5分(2)设,,又,且中点为所以有:又点在曲线上,∴代入的普通方程得∴动点的轨迹方程为. 10分【考点】参数方程与普通方程的互化、中点坐标公式.8.若直线的参数方程为,(t为参数),求直线的斜率.【答案】-【解析】k=.∴直线的斜率为-.9.将参数方程化为普通方程,并说明它表示的图形.【答案】y=1-2x2,抛物线的一部分.【解析】由可得即+x2=1,化简得y=1-2x2.又-1≤x2=sin2θ≤1,则-1≤x≤1,则普通方程为y=1-2x2,在时此函数图象为抛物线的一部分.10.已知点P(x,y)是圆x2+y2=2y上的动点.(1)求2x+y的取值范围;(2)若x+y+a≥0恒成立,求实数a的取值范围.【答案】(1)-+1≤2x+y≤+1.(2)a≥-1【解析】(1)设圆的参数方程为2x+y=2cosθ+sinθ+1=sin(θ+φ)+1,∴-+1≤2x+y≤+1.(2)x+y+a=cosθ+sinθ+1+a≥0,∴a≥-(cosθ+sinθ)-1=-sin-1,∴a≥-1.11.在椭圆=1上找一点,使这一点到直线x-2y-12=0的距离最小.【答案】(2,-3)【解析】设椭圆的参数方程为,d=,当cos=1时,dmin=,此时所求点为(2,-3)12.在平面直角坐标系xOy中,若直线l1: (s为参数)和直线l2: (t为参数)平行,则常数a的值为________.【答案】a=4【解析】由消去参数s,得x=2y+1. 由消去参数t,得2x=ay+a.∵l1∥l2,∴=,∴a=4.13.已知点P是曲线为参数,上一点,O为原点.若直线OP的倾斜角为,则点的直角坐标为.【答案】【解析】不妨设点(),则由两点斜率的计算公式得,由题知(),则,故填【考点】参数方程倾斜角14.在平面直角坐标系xOy中,动点P到直线l:x=2的距离是到点F(1,0)的距离的倍.(1)求动点P的轨迹方程;(2)设直线FP与(1)中曲线交于点Q,与l交于点A,分别过点P和Q作l的垂线,垂足为M,N,问:是否存在点P使得△APM的面积是△AQN面积的9倍?若存在,求出点P的坐标;若不存在,说明理由.【答案】(1)x2+2y2=2(2)存在点P为(0,±1)【解析】(1)设点P的坐标为(x,y).由题意知=|2-x|,化简,得x2+2y2=2,所以动点P的轨迹方程为x2+2y2=2.(2)设直线FP的方程为x=ty+1,点P(x1,y1),Q(x2,y2),因为△AQN∽△APM,所以有PM=3QN,由已知得PF=3QF,所以有y1=-3y2,①由得(t2+2)y2+2ty-1=0,Δ=4t2+4(t2+2)=8>0y 1+y2=-②,y1·y2=-③,由①②③得t=-1,y1=1,y2=-或t=1,y1=-1,y2=,所以存在点P为(0,±1).15.过点M(3,4),倾斜角为的直线与圆C:(为参数)相交于A、B两点,试确定的值.【答案】15【解析】将过点M(3,4),倾斜角为的直线写成参数方程.再将圆的参数方程写成一般方程,联立后求得含t的一元二次方程.将的值转化为韦达定理的根的乘积关系.即可得结论.本小题主要就是考查直线的参数方程中t的几何意义.试题解析:直线l的参数方程为.代入C:.方程得到:.设为方程两根,则.【考点】1.直线的参数方程.2.圆的参数方程.16.将参数方程(为参数,)化成普通方程为 ______ .【答案】【解析】由已知得,将两式平方相加有,,所以普通方程为.【考点】参数方程与普通方程的互化.17.已知直线l过点P(2,0),斜率为直线l和抛物线y2=2x相交于A、B两点,设线段AB的中点为M,求:(1)|PM|; (2)|AB|.【答案】(1);(2)【解析】(1)写出过点P(2,0)的直线方程的参数方程,联立抛物线的方程得到一个含参数t 二次方程.通过韦达定理即定点到中点的距离可得故填.(2)弦长公式|AB|=|t2-t1|再根据韦达定理可得故填.本题主要知识点是定点到弦所在线段中点的距离.弦长公式.这两个知识点都是参数方程中的长测知识点.特别是到中点的距离的计算要理解清楚.试题解析:(1)∵直线l过点P(2,0),斜率为设直线的倾斜角为α,tanα=sinα=cosα=∴直线l的参数方程为 (t为参数)(*) 1分∵直线l和抛物线相交,将直线的参数方程代入抛物线方程y2=2x中,整理得8t2-15t-50=0,且Δ=152+4×8×50>0,设这个一元二次方程的两个根为t1、t2,由根与系数的关系,得t1+t2=t1t2= 3分由M为线段AB的中点,根据t的几何意义,得 4分(2)|AB|=|t2-t1|= 7分【考点】1.直线的参数方程的表示.2.定点到中的距离公式.3.弦长公式.18.在直角坐标系xOy中,过椭圆(为参数)的右焦点,斜率为的直线方程为【答案】【解析】由,即,所以右焦点坐标为(4,0).又斜率为,故易得所求直线方程为.即.【考点】参数方程、直线的点斜式方程19.已知在直角坐标系中,曲线的参数方程为为参数).在极坐标系(与直角坐标取相同的长度单位,且以原点为极点,轴的非负半轴为极轴)中,曲线的方程为.(Ⅰ)求曲线直角坐标方程;(Ⅱ)若曲线、交于A、B两点,定点,求的值.【答案】(Ⅰ)曲线直角坐标方程为;(Ⅱ).【解析】(Ⅰ)由已知,两边都乘以,得,结合即可求得曲线的直角坐标方程(普通方程);(Ⅱ)由已知条件,把的参数方程为参数)代入,得由韦达定理可得:,进一步可计算出的值.试题解析:(Ⅰ)由已知,得,.3分(Ⅱ)把的参数方程代入,得.5分.7分【考点】直线的参数方程与极坐标方程.20.(坐标系与参数方程选做题)在极坐标系中,圆的圆心到直线的距离是 .【答案】.【解析】化圆的方程为直角坐标方程为,化为标准方程为,圆心坐标为,直线的直角坐标方程为,它的一般方程为,故圆的圆心到直线的距离是.【考点】1.极坐标方程与直角坐标方程之间的转化;2.点到直线的距离21.(坐标系与参数方程选做题)圆的极坐标方程为,则圆的圆心的极坐标是.【答案】【解析】圆的圆心为,半径为的圆的极坐标方程为.因为,所以此圆的圆心坐标为.【考点】圆的极坐标方程22.在平面直角坐标系中,过椭圆的右焦点,且与直线(为参数)平行的直线截椭圆所得弦长为.【答案】【解析】椭圆的普通方程为,则右焦点为(1,0);直线的普通方程为,过(1,0)与直线平行的直线为,由得,所以所求的弦长为.【考点】1.参数方程与普通方程的互化;2.两点间的距离公式和弦长公式.23.以坐标原点O为极点,轴的正半轴为极轴建立极坐标系,曲线C1的极坐标方程为:,曲线C2的参数方程为:,点N的极坐标为.(Ⅰ)若M是曲线C1上的动点,求M到定点N的距离的最小值;(Ⅱ)若曲线C1与曲线C2有有两个不同交点,求正数的取值范围.【答案】(Ⅰ)2;(Ⅱ).【解析】分别将极坐标方程与参数方程转化为普通方程,根据点与圆的几何意义求的最小值;根据曲线C1与曲线C2有有两个不同交点的几何意义,求正数的取值范围.试题解析:解:(Ⅰ)在直角坐标系xOy中,可得点,曲线为圆,圆心为,半径为1,∴=3,∴的最小值为.(5分)(Ⅱ)由已知,曲线为圆,曲线为圆,圆心为,半径为t,∵曲线与曲线有两个不同交点,,解得,∴正数t的取值范围是.(10分)【考点】极坐标与普通方程的互化,参数方程与普通方程的互化.24.以坐标原点O为极点,轴的正半轴为极轴建立极坐标系,曲线C1的极坐标方程为:,曲线C2的参数方程为:,点N的极坐标为.(Ⅰ)若M是曲线C1上的动点,求M到定点N的距离的最小值;(Ⅱ)若曲线C1与曲线C2有有两个不同交点,求正数的取值范围.【答案】(Ⅰ)2;(Ⅱ).【解析】分别将极坐标方程与参数方程转化为普通方程,根据点与圆的几何意义求的最小值;根据曲线C1与曲线C2有有两个不同交点的几何意义,求正数的取值范围.试题解析:解:(Ⅰ)在直角坐标系xOy中,可得点,曲线为圆,圆心为,半径为1,∴=3,∴的最小值为.(5分)(Ⅱ)由已知,曲线为圆,曲线为圆,圆心为,半径为t,∵曲线与曲线有两个不同交点,,解得,∴正数t的取值范围是.(10分)【考点】极坐标与普通方程的互化,参数方程与普通方程的互化.25.在平面直角坐标系中,曲线的参数方程为(为参数),以坐标原点为极点,轴的非负半轴为极轴建立极坐标系,得曲线的极坐标方程为()(Ⅰ)求曲线的普通方程和曲线的直角坐标方程;(Ⅱ)直线: (为参数)过曲线与轴负半轴的交点,求与直线平行且与曲线相切的直线方程【答案】(Ⅰ)、;(Ⅱ)或【解析】(Ⅰ) 利用参数方程化普通方程、极坐标方程化直角坐标方程来求;(Ⅱ)利用点到直线的距离来求试题解析:(Ⅰ)曲线的普通方程为:; 2分由得,∴曲线的直角坐标方程为: 4分(或:曲线的直角坐标方程为: )(Ⅱ)曲线:与轴负半轴的交点坐标为,又直线的参数方程为:,∴,得,即直线的参数方程为:得直线的普通方程为:, 6分设与直线平行且与曲线相切的直线方程为: 7分∵曲线是圆心为,半径为的圆,得,解得或 9分故所求切线方程为:或 10分【考点】参数方程化普通方程、极坐标方程转化为直角坐标方程,考查学生分析问题、解决问题的能力26.已知圆的参数方程为(为参数),以坐标原点O为极点,x轴的正半轴为极轴建立极坐标系,圆的极坐标方程为.(1)将圆的参数方程化为普通方程,将圆的极坐标方程化为直角坐标方程;(2)圆,是否相交?若相交,请求出公共弦长,若不相交,请说明理由.【答案】(1),;(2)相交,两圆的相交弦长为.【解析】本题考查坐标系与参数方程、极坐标与直角坐标方程的互化,考查学生的转化能力和计算能力.第一问,利用互化公式将参数方程化为普通方程,将极坐标方程化为直角坐标方程;第二问,通过数形结合,利用几何性质求相交弦长.试题解析:(1)由(为参数),得,由,得,即,整理得,. 5分(2)由于圆表示圆心为原点,半径为2的圆,圆表示圆心为,半径为2的圆,又圆的圆心在圆上,由几何性质易知,两圆的相交弦长为. 10分【考点】1.参数方程与普通方程的互化;2.极坐标方程与直角坐标方程的互化;3.相交弦问题.27.在直角坐标系中,已知曲线的参数方程是(是参数),若以为极点,轴的正半轴为极轴,则曲线的极坐标方程可写为________________.【答案】或【解析】曲线的标准方程为,令,得到极坐标方程为,也可转化为.【考点】圆的参数方程和极坐标方程.28.已知直线的参数方程为:(为参数),圆的极坐标方程为,那么,直线与圆的位置关系是 ( )A.直线平分圆B.相离C.相切D.相交【答案】D【解析】先把参数方程化为,再把圆的极坐标方程化成,再利用圆心到直线的距离.【考点】1.参数方程;2.极坐标.29.在平面直角坐标系中,直线的参数方程为,(为参数),曲线的参数方程为,(为参数),试求直线和曲线的普通方程,并求它们的公共点的坐标.【答案】.【解析】因为直线的参数方程为,(为参数),由,得代入得到直线的普通方程为.同理得曲线的普通方程为.联立方程组,解得公共点的坐标为,.【考点】本小题主要考查参数方程与普通方程的互化以及直线与抛物线的位置关系等基础知识,考查转化问题的能力.30.(坐标系与参数方程)在平面直角坐标系xOy中,直线的参数方程是(t为参数)。

直线的参数方程练习题(带答案)

直线的参数方程练习题(带答案)

直线的参数方程练习题(带答案)1、直线l的参数方程为x=1+3t,y=2-4t,求直线l的倾斜角的余弦值。

解析:方法一:将直线l的参数方程{(t为参数)}转化为{ x=1-3t',y=2-4t',其中t'=-5t为参数,则直线l的倾斜角的余弦值为-3/5.方法二:由直线l的参数方程得到普通方程为4x+3y-10=0,斜率k=tanα=-4/3,所以cosα=-3/5 (α为倾斜角)。

2、已知圆的方程为x=-1+2cosθ,y=3+2sinθ,直线的方程为y=6t-1,则直线与圆的位置关系是相交而不过圆心。

解析:圆的圆心坐标是(-1,3),半径是2,直线的普通方程是3x-y+2=0,圆心到直线的距离是<2,故直线与圆相交而不过圆心。

3、已知直线x=1+t/2,y=-3+3t/2的参数方程和圆x^2+y^2=16相交于A、B两点,求AB的中点坐标。

解析:将直线方程代入圆的方程得到(1+t/2)^2+(-3+3t/2)^2=16,整理得到t^2+4t-8=0,所以t1=-2+2√3,t2=-2-2√3.依据t的几何意义可知中点坐标为(3,-3)。

4、已知直线y=2x+1,求其参数方程。

解析:直线y=2x+1的参数方程为{x=t,y=2t+1}。

5、已知O为原点,P为椭圆x=4cosα,y=2/3sinα上第一象限内一点,OP的倾斜角为π/3,则点P坐标为(2,3)。

解析:OP的斜率为tan(π/3)=√3,O为原点,P为第一象限内的点,故P的坐标为(2,3)。

解析:根据题目所给的椭圆参数方程,可以化为普通方程,得到 $16x^2+12y^2=9$,同时得到直线 $OP$ 的方程为$y=3x(x>0)$。

根据直线和椭圆的交点为点 $P$,可以解得$x=\frac{4}{\sqrt{5}}。

y=\frac{3}{\sqrt{5}}$,所以答案为D。

解析:根据直线的一般式 $2x-y+1=0$,可以得到其斜率为 $2$,所以排除选项 A 和 D。

高二数学参数方程试题

高二数学参数方程试题

高二数学参数方程试题1.直线的参数方程是()A.(t为参数)B.(t为参数)C.(t为参数)D.(为参数)【答案】C.【解析】A:这与直线方程中矛盾,故A错误,同理选项D中也错误,而B消去参数后可得:,∴B错误,C消去参数后可得:,正确.【考点】直线的参数方程.2.在极坐标系中,曲线:与曲线:的一个交点在极轴上,则=_______.【答案】【解析】∵曲线的极坐标方程为:,∴曲线的普通方程是x+y 1=0,∵曲线的极坐标方程为ρ=a(a>0)∴曲线的普通方程是∵曲线:与曲线:ρ=a(a>0)的一个焦点在极轴上∴令y=0则x=,点(,0)在圆上解得a=,故答案为: .【考点】简单曲线的极坐标方程.3.在平面直角坐标系中,以坐标原点为极点,轴的正半轴为极轴建立极坐标系,已知曲线的极坐标方程为,过点的直线的参数方程为(为参数),直线与曲线相交于两点.(1)写出曲线的直角坐标方程和直线的普通方程;(2)若,求的值.【答案】(1)直角坐标方程为,普通方程为;(2).【解析】(1)由得,极坐标方程得,将参数方程中的参数消去可得的普通方程;(2)将参数方程代入直角坐标方程化为关于的一元二次方程,结合条件利用韦达定理解出.试题解析:(1)由得∴曲线的直角坐标方程为直线的普通方程为(2)将直线的参数方程代入曲线的直角坐标方程中,得设两点对应的参数分别为则有∵∴即∴解之得:或 (舍去)∴的值为.【考点】1.参数方程;2.极坐标方程;3.一元二次方程的解法.4.参数方程(为参数)化成普通方程是A.B.C.D.【答案】D【解析】因为,所以由,可得,消去,得,,且,即,故选D。

【考点】本题主要考查参数方程与普通方程的互化,三角函数倍半公式。

点评:小综合题,通过消去参数,可以得到普通方程。

消参数的方法有:代入法、加减法、平方关系法等,要结合具体题目灵活选择。

5.参数方程(0≤t≤5)表示的曲线(形状)是【答案】线段【解析】消去t2得,x-2=3(y-1)是直线,又由0≤t≤5,得2≤x≤77,故为线段。

专题:参数方程试卷

专题:参数方程试卷

数学选修4-4《参数方程》答题卷(文科)班级:_________ 姓名:___________ 学号: ___________一、选择题(共4题,各5分,共20分)1.直线12+=x y 的参数方程是( C )A ⎩⎨⎧+==1222t y t x (t 为参数)B ⎩⎨⎧+=-=1412t y t x (t 为参数) C ⎩⎨⎧-=-=121t y t x (t 为参数) D⎩⎨⎧+==1sin 2sin θθy x (t 为参数) 2.方程⎪⎩⎪⎨⎧=+=21y t t x (t 为参数)表示的曲线是( B )。

A 一条直线 B 两条射线 C 一条线段 D 抛物线的一部分3.参数方程⎩⎨⎧+-=+=θθ2cos 1sin 22y x (θ为参数)化为普通方程是( D )。

A042=+-y x B 042=-+y x C 042=+-y x ]3,2[∈x D 042=-+y x ]3,2[∈x4.若圆的方程为⎩⎨⎧+=+-=θθsin 23cos 21y x (θ为参数),直线的方程为⎩⎨⎧-=-=1612t y t x (t 为参数), 则直线与圆的位置关系是( B )。

A 相交过圆心B 相交而不过圆心C 相切D 相离二、填空题(共12题,各5分,共60分)5.已知椭圆的参数方程为4cos ,5sin ,x y θθ=⎧⎨=⎩(R θ∈),则该椭圆的焦距为 .6 6.参数方程cos ,1sin x y αα=⎧⎨=+⎩(α为参数)化成普通方程为 .x 2+(y -1)2=1. 7.设直线参数方程为⎪⎪⎩⎪⎪⎨⎧+=+=t y t x 23322(t 为参数),则它的斜截式方程为 .8.直线)(23212为参数t t y t x ⎪⎪⎩⎪⎪⎨⎧=+=被双曲线122=-y x 截得的弦长为 9.若P 是极坐标方程为()3R πθρ=∈的直线与参数方程为2cos 1cos2x y θθ=⎧⎨=+⎩(θ为参数,且R θ∈)的曲线的交点,则P 点的直角坐标为 .【解析】直线的方程为y =,曲线的方程为[]()212,22y x x =∈-,联立解方程组得,006x x y y ⎧=⎧=⎪⎨⎨==⎪⎩⎩或x的范围应舍去6x y ⎧=⎪⎨=⎪⎩,故P 点的直角坐标为P ()0,0。

参数方程

参数方程

一、选择题1.与参数方程为⎩⎨⎧x =t ,y =21-t(t 为参数)等价的普通方程为( )A .x 2+y 24=1 B .x 2+y 24=1(0≤x ≤1) C .x 2+y 24=1(0≤y ≤2) D .x 2+y24=1(0≤x ≤1,0≤y ≤2) 【答案】 D2.直线3x -4y -9=0与圆⎩⎨⎧x =2cos θ,y =2sin θ(θ为参数)的位置关系是( )A .相切B .相离C .直线过圆心D .相交但直线不过圆心【解析】 依题意有圆的圆心为(0,0),半径r =2, ∴圆心到直线的距离d =|9|32+42=95,0<d <2,故选D .【答案】 D3.若直线的参数方程为⎩⎨⎧x =1+2t ,y =2-3t (t 为参数),则直线的斜率为( )A.23 B .-23 C.32 D .-32【解析】 y =2-3·x -12=-32x +72,即斜率为-32,故选D .【答案】 D4.抛物线x 2-2y -6x sin θ-9cos 2θ+8cos θ+9=0的顶点的轨迹是(其中θ∈R )( )A .圆B .椭圆C .抛物线D .双曲线【解析】 原方程变形为:y =12(x -3sin θ)2+4cos θ.设抛物线的顶点为(x ,y ),则⎩⎨⎧x =3sin θy =4cos θ,消去参数θ得轨迹方程为x 29+y 216=1.它是椭圆. 【答案】 B5.(2013·皖南八校联考)已知直线l 的参数方程是⎩⎪⎨⎪⎧x =1+12t ,y =32t (t 为参数),以原点O 为极点,x 轴正半轴为极轴建立极坐标系,圆C 的极坐标方程为ρ=2cos θ+4sin θ,则直线l 被圆所截得的弦长为( )A .1B .2C .3D .4【解析】 由题意知,直线l 的普通方程为3x -y -3=0, 由极坐标系与直角坐标系的关系知, 圆C 的标准方程为(x -1)2+(y -2)2=5. 设直线l 与圆C 交于A 、B 两点, 设AB 的中点为M ,在Rt △AMC 中, AC =5,CM =|3-2-3|3+1=1,∴AM =5-1=2,∴AB =2AM =4. 故截得的弦长为4. 【答案】 D6.已知点P (x ,y )满足(x -4cos θ)2+(y -4sin θ)2=4(θ∈R ),则点P (x ,y )所在区域的面积为( )A .36πB .32πC .20πD .16π【解析】 圆心坐标为(4cos θ,4sin θ),显然圆心在以原点为圆心、半径等于4的圆上,圆(x -4cos θ)2+(y -4sin θ)2=4(θ∈R )绕着上述圆旋转一周得到的图形是一个圆环,圆环的外径是6,内径是2,S =62π-22π=32π,故选B.【答案】 B 二、填空题7.已知两曲线参数方程分别为⎩⎨⎧x =5cos θ,y =sin θ(0≤θ<π)和⎩⎪⎨⎪⎧x =54t 2,y =t (t ∈R ),它们的交点坐标为________.【解析】 将两曲线的参数方程化为普通方程分别为x 25+y 2=1 (0≤y ≤1,-5<x ≤5)和y 2=45x ,联立解得交点为⎝⎛⎭⎪⎫1,255.8. 已知直线l 的参数方程为⎩⎨⎧x =4-2t ,y =t -2(t 为参数),P 是椭圆x 24+y 2=1上的任意一点,则点P 到直线l 的距离的最大值为________.【解析】 由于直线l 的参数方程为⎩⎨⎧x =4-2t ,y =t -2(t 为参数),故直线l 的普通方程为x +2y =0.因为P 为椭圆x 24+y 2=1上的任意一点, 故可设P (2cos θ,sin θ),其中θ∈R . 因此点P 到直线l 的距离是d =|2cos θ+2sin θ|12+22=22sin ⎝⎛⎭⎪⎫θ+π45.所以当θ=k π+π4,k ∈Z 时,d 取得最大值2105.【答案】 21059.(2013·唐山模拟)已知点P (x ,y )在曲线⎩⎨⎧x =-2+cos θ,y =sin θ(θ为参数,θ∈[π,2π])上,则yx 的取值范围是________.【解析】 由条件可知点P 在圆(x +2)2+y 2=1的下半圆周上,如图. 设k =y x =y -0x -0,则k =k PO ,yx 的取值范围即为直线PO 与半圆有公共点时斜率的取值范围.又直线与圆相切时k =33. ∴y x ∈⎣⎢⎡⎦⎥⎤0,33.【答案】 ⎣⎢⎡⎦⎥⎤0,3310.在直角坐标平面内,以坐标原点O 为极点,x 轴的正半轴为极轴,建立极坐标系.曲线C 的极坐标方程是ρ=4cos θ,直线l 的参数方程是⎩⎪⎨⎪⎧x =-3+32t ,y =12t(t 为参数),M ,N 分别为曲线C 、直线l 上的动点,则|MN |的最小值为________.【解析】 化极坐标方程ρ=4cos θ为直角坐标方程x 2+y 2-4x =0,所以曲线C 是以(2,0)为圆心,2为半径的圆.化参数方程⎩⎪⎨⎪⎧x =-3+32t ,y =12t (t 为参数)为普通方程x -3y +3=0.圆心到直线l的距离d =|2+3|1+3=52, ∵d >2,∴直线与圆相离,故|MN |的最小值为52-2=12. 【答案】 12 三、解答题11.已知直线l 经过点P (1,1),倾斜角α=π6. (1)写出直线l 的参数方程;(2)设l 与圆⎩⎨⎧x =2cos θ,y =2sin θ(θ是参数)相交于两点A 、B ,求点P 到A 、B 两点的距离之积.【解析】(1)直线的参数方程是⎩⎪⎨⎪⎧x =1+32t ,y =1+12t(t 是参数).(2)∵点A 、B 都在直线上,∴可设点A 、B 对应的参数分别为t 1和t 2, 则点A 、B 的坐标分别为 A ⎝ ⎛⎭⎪⎫1+32t 1,1+12t 1,B ⎝⎛⎭⎪⎫1+32t 2,1+12t 2,将直线l 的参数方程代入圆的方程x 2+y 2=4, 整理得t 2+(3+1)t -2=0.① ∵t 1和t 2是方程①的解,从而t 1t 2=-2,∴|P A |·|PB |=|t 1t 2|=|-2|=2.12.已知直线l 的参数方程为⎩⎪⎨⎪⎧x =3+12t ,y =2+32t (t 为参数),曲线C 的参数方程为⎩⎨⎧x =4cos θ,y =4sin θ(θ为参数). (1)将曲线C 的参数方程化为普通方程;(2)若直线l 与曲线C 交于A 、B 两点,求线段AB 的长. 【解析】 (1)由题意可知x 2+y 2=16cos 2θ+16sin 2θ=16, 则曲线C 的普通方程为x 2+y 2=16.(2)将⎩⎪⎨⎪⎧x =3+12t ,y =2+32t代入x 2+y 2=16,整理得t 2+33t -9=0. 设A 、B 对应的参数为t 1、t 2, 则t 1+t 2=-33,t 1t 2=-9.|AB |=|t 1-t 2|=(t 1+t 2)2-4t 1t 2=37.13.已知曲线C 1:⎩⎨⎧x =cos θ,y =sin θ(θ为参数)曲线C 2:⎩⎪⎨⎪⎧x =22t -2,y =22t(t 为参数).(1)指出C 1,C 2各是什么曲线,并说明C 1与C 2公共点的个数;(2)若把C 1,C 2上各点的纵坐标都压缩为原来的一半,分别得到曲线C ′1,C ′2.写出C ′1,C ′2的参数方程.C ′1与C ′2公共点的个数和C 1与C 2公共点的个数是否相同?说明你的理由.【解析】 (1)C 1是圆,C 2是直线,C 1的普通方程为x 2+y 2=1,圆心C 1(0,0),半径r =1.C 2的普通方程为x -y +2=0. 因为圆心到直线x -y +2=0的距离为1, 所以C 1与C 2只有一个公共点. (2)压缩后的参数方程分别为C ′1:⎩⎪⎨⎪⎧x =cos θ,y =12sin θ(θ为参数),C ′2:⎩⎪⎨⎪⎧x =22t -2,y =24t (t 为参数).化为普通方程为:C ′1:x 2+4y 2=1,C ′2:y =12x +22,联立消元得2x 2+22x +1=0,其判别式Δ=(22)2-4×2×1=0, 所以压缩后C ′1与C ′2仍然只有一个公共点,和C 1与C 2公共点个数相同.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

直线的参数方程1.设直线l 过点A (2,-4),倾斜角为56π,则直线l 的参数方程是____________.解析:直线l 的参数方程为⎩⎨⎧x =2+t cos 56π,y =-4+t sin 56π(t 为参数),即⎩⎨⎧x =2-32t y =-4+12t ,(t 为参数).答案:⎩⎨⎧x =2-32t y =-4+12t,(t 为参数)2.设直线l 过点(1,-1),倾斜角为5π6,则直线l 的参数方程为____________.解析:直线l 的参数方程为⎩⎨⎧x =1+t cos5π6y =-1+t sin 5π6,(t 为参数),即⎩⎨⎧x =1-32t y =-1+12t ,(t 为参数)答案:⎩⎨⎧x =1-32t y =-1+12t,(t 为参数)3.已知直线l 经过点P (1,1),倾斜角α=π6. 写出直线l 的参数方程;解:①直线l 的参数方程为⎩⎪⎨⎪⎧x =1+32ty =1+12t,(t 是参数).4.已知直线l 经过点P ⎝⎛⎭⎫12,1,倾斜角α=π6, 写出直线l 的参数方程. [解] (1)直线l 的参数方程为⎩⎨⎧x =12+t cos π6y =1+t sin π6,(t 为参数),即⎩⎨⎧x =12+32t y =1+12t ,(t 为参数).2分5.已知直线l 的斜率k =-1,经过点M 0(2,-1).点M 在直线上,则直线l 的参数方程为____________.解析:∵直线的斜率为-1, ∴直线的倾斜角α=135°. ∴cos α=-22,sin α=22. ∴直线l 的参数方程为⎩⎨⎧x =2-22ty =-1+22t ,(t 为参数).答案:⎩⎨⎧x =2-22t y =-1+22t ,(t 为参数)6.已知直线l :⎩⎨⎧x =-3+32ty =2+12t,(t 为参数) , 求直线l 的倾斜角;解:(1)由于直线l :⎩⎨⎧x =-3+t cos π6,y =2+t sinπ6(t 为参数)表示过点M 0(-3,2)且斜率为tan π6的直线,故直线l 的倾斜角α=π6.7.若直线的参数方程为⎩⎨⎧x =3+12ty =3-32t,(t 为参数),则此直线的斜率为( )A.3 B .- 3 C.33D .-33解析:选B.直线的参数方程⎩⎨⎧x =3+12ty =3-32t,(t为参数)可化为标准形式⎩⎨⎧x =3+⎝⎛⎭⎫-12(-t )y =3+32(-t ),(-t 为参数).∴直线的斜率为- 3.8.化直线l 的参数方程⎩⎨⎧x =1+3t ,y =3+6t(t 为参数)为参数方程的标准形式.解:由⎩⎨⎧x =1+3t ,y =3+6t ,得⎩⎪⎨⎪⎧x =1+332+(6)2(32+(6)2 t ),y =3+632+(6)2(32+(6)2 t ).令t ′=32+(6)2 t ,得到直线l 的参数方程的标准形式为⎩⎨⎧x =1+155t ′y =3+105t ′,(t ′为参数). 9.化直线l 的参数方程⎩⎪⎨⎪⎧x =2-3t y =1+t (t 为参数)为参数方程的标准形式.解:10.已知直线l 经过点P (1,1),倾斜角α=π6.①写出直线l 的参数方程;②设l 与圆x 2+y 2=4相交于A ,B 两点,求点P 到A ,B 两点的距离之积.解:①直线l 的参数方程为⎩⎨⎧x =1+32ty =1+12t,(t 是参数).②把直线l 的参数方程⎩⎨⎧x =1+32t ,y =1+12t代入圆x 2+y 2=4,整理得t 2+(3+1)t -2=0,t 1,t 2是方程的根,t 1·t 2=-2.∵A ,B 都在直线l 上,设它们对应的参数分别为t 1和t 2,∴|P A |·|PB |=|t 1|·|t 2|=|t 1t 2|=2.11.已知在直角坐标系xOy 中,曲线C 的参数方程为⎩⎪⎨⎪⎧x =1+4cos θy =2+4sin θ,(θ为参数),直线l 经过定点P (3,5),倾斜角为π3.(1)写出直线l 的参数方程和曲线C 的标准方程;(2)设直线l 与曲线C 相交于A ,B 两点,求|PA |·|PB |的值.解:(1)曲线 C :(x -1)2+(y -2)2=16,直线l :⎩⎨⎧x =3+12ty =5+32t ,(t 为参数).(2)将直线l 的参数方程代入圆C 的方程可得t 2+(2+33)t -3=0,设t 1,t 2是方程的两个根,则t 1t 2=-3,所以|P A ||PB |=|t 1||t 2|=|t 1t 2|=3.12.已知曲线C 的极坐标方程为ρ=1,以极点为平面直角坐标系原点,极轴为x 轴正半轴,建立平面直角坐标系,直线l 的参数方程是⎩⎪⎨⎪⎧x =-1+4t y =3t ,(t 为参数),则直线l与曲线C 相交所截得的弦长为________.解析:曲线C 的直角坐标方程为x 2+y 2=1,将⎩⎪⎨⎪⎧x =-1+4t y =3t,代入x 2+y 2=1中得25t 2-8t =0,解得t 1=0,t 2=825.故直线l 与曲线C 相交所截得的弦长l =42+32·|t 2-t 1|=5×825=85.答案:8513.已知斜率为1的直线l 过椭圆x 24+y 2=1的右焦点,交椭圆于A ,B 两点,求弦AB的长度.解:因为直线l 的斜率为1,所以直线l 的倾斜角为π4.椭圆x 24+y 2=1的右焦点为(3,0),直线l 的参数方程为⎩⎨⎧x =3+22ty =22t,(t 为参数),代入椭圆方程x 24+y 2=1,得⎝⎛⎭⎫3+22t 24+⎝⎛⎭⎫22t 2=1, 整理,得5t 2+26t -2=0. 设方程的两实根分别为t 1,t 2, 则t 1+t 2=-265,t 1·t 2=-25,|t 1-t 2|=(t 1+t 2)2-4t 1t 2 =⎝⎛⎭⎫-2652+85=85,所以弦长AB 的长为85.14.已知直线l 经过点P ⎝⎛⎭⎫12,1,倾斜角α=π6,圆C 的极坐标方程为ρ=2·cos ⎝⎛⎭⎫θ-π4. (1)写出直线l 的参数方程,并把圆C 的方程化为直角坐标方程; (2)设l 与圆C 相交于A ,B 两点,求点P 到A ,B 两点的距离之积.[解] (1)直线l 的参数方程为⎩⎨⎧x =12+t cos π6y =1+t sin π6,(t 为参数),即⎩⎨⎧x =12+32t y =1+12t ,(t 为参数).2分由ρ=2cos ⎝⎛⎭⎫θ-π4得ρ=cos θ+sin θ, 所以ρ2=ρcos θ+ρsin θ, 得x 2+y 2=x +y ,即圆C 的直角坐标方程为⎝⎛⎭⎫x -122+⎝⎛⎭⎫y -122=12.5分(2)把⎩⎨⎧x =12+32t ,y =1+12t代入⎝⎛⎭⎫x -122+⎝⎛⎭⎫y -122=12,得t 2+12t -14=0,7分 设A 、B 两点对应的参数分别为t 1、t 2,则t 1t 2=-14,所以|P A |·|PB |=|t 1·t 2|=14.10分15.(2016·高考卷)在平面直角坐标系xOy 中,已知直线l 的参数方程为⎩⎨⎧x =1+12t ,y =32t(t为参数),椭圆C 的参数方程为⎩⎪⎨⎪⎧x =cos θy =2sin θ(θ为参数).设直线l 与椭圆C 相交于A ,B两点,求线段AB 的长.[解] 椭圆C 的普通方程为x 2+y 24=1. 将直线l 的参数方程⎩⎨⎧x =1+12t ,y =32t代入x 2+y 24=1,得(1+12t )2+⎝⎛⎭⎫32t 24=1,即7t 2+16t =0,解得t 1=0,t 2=-167.所以AB =|t 1-t 2|=167.16.直线⎩⎪⎨⎪⎧x =2+3ty =-1+t ,(t 为参数)上对应t =0,t =1两点间的距离是( )A .1 B.10 C .10D .2 2解析:选B.将t =0,t =1代入参数方程可得两点坐标为(2,-1)和(5,0) ∴d =(2-5)2+(-1-0)2=10.17.在直角坐标系中,以原点为极点,x 轴的正半轴建立极坐标系,已知曲线C :ρsin 2θ=2a cos θ(a >0),过点P (-2,-4)的直线l 的参数方程为:⎩⎨⎧x =-2+22ty =-4+22t ,(t为参数),直线l 与曲线C 分别交于M ,N 两点.(1)写出曲线C 的直角坐标方程和直线l 的普通方程; (2)若|PM |,|MN |,|PN |成等比数列,求a 的值.解:(1)曲线的极坐标方程变为ρ2sin 2θ=2aρcos θ,化为直角坐标方程为y 2=2ax ,直线⎩⎨⎧x =-2+22ty =-4+22t ,(t 为参数)化为普通方程为y =x -2.(2)将⎩⎨⎧x =-2+22t y =-4+22t ,代入y 2=2ax 得t 2-22(4+a )t +8(4+a )=0.则有t 1+t 2=22(4+a ),t 1t 2=8(4+a ), 因为|MN |2=|PM |·|PN |, 所以(t 1-t 2)2=t 1·t 2,即(t 1+t 2)2-4t 1t 2=t 1t 2,(t 1+t 2)2-5t 1t 2=0, 故8(4+a )2-40(4+a )=0, 解得a =1或a =-4(舍去). 故所求a 的值为1.18.已知直线l 1:⎩⎪⎨⎪⎧x =1+3t y =2-4t ,(t 为参数)与直线l 2:2x -4y =5相交于点B ,且点A (1,2),则|AB |=________.解析:将⎩⎪⎨⎪⎧x =1+3ty =2-4t ,代入2x -4y =5,得t =12,则B ⎝⎛⎭⎫52,0.而A (1,2),得|AB |=52.答案:5219.如图所示,已知直线l 过点P (2,0),斜率为43,直线l 和抛物线y 2=2x 相交于A ,B 两点,设线段AB 的中点为M ,求: ①P ,M 间的距离|PM |;②点M 的坐标解:①由题意,知直线l 过点P (2,0),斜率为43,设直线l 的倾斜角为α,则tan α=43,cos α=35,sin α=45,∴直线l 的参数方程的标准形式为⎩⎨⎧x =2+35ty =45t ,(t 为参数).(*) ∵直线l 和抛物线相交,∴将直线l 的参数方程代入抛物线方程y 2=2x 中,整理得8t 2-15t -50=0,Δ=152+4×8×50>0. 设这个二次方程的两个根为t 1,t 2, 由根与系数的关系得t 1+t 2=158,t 1t 2=-254. 由M 为线段AB 的中点, 根据t 的几何意义,得|PM |=⎪⎪⎪⎪t 1+t 22=1516. ②因为中点M 所对应的参数为t M =1516,将此值代入直线l 的参数方程的标准形式(*),得⎩⎨⎧x =2+35×1516=4116,y =45×1516=34,即M ⎝⎛⎭⎫4116,34.20.以直角坐标系原点O 为极点,x 轴正半轴为极轴,并在两种坐标系中取相同的长度单位,已知直线l 的参数方程为⎩⎪⎨⎪⎧x =12+t cos αy =t sin α,(t 为参数,0<α<π),曲线C 的极坐标方程ρ=2cos θsin 2θ.(1)求曲线C 的直角坐标方程;(2)设直线l 与曲线C 相交于A ,B 两点,当α变化时,求|AB |的最小值. 解:(1)由ρ=2cos θsin 2θ得ρ2sin 2θ=2ρcos θ,所以曲线C 的直角坐标方程为y 2=2x .(2)将直线l 的参数方程代入y 2=2x ,得t 2sin 2α-2t cos α-1=0, 设A ,B 两点对应的参数分别为t 1,t 2, 则t 1+t 2=2cos αsin 2α,t 1·t 2=-1sin 2α,所以|AB |=|t 1-t 2| =(t 1+t 2)2-4t 1t 2 =4cos 2αsin 4α+4sin 2α=2sin 2α,π当α=2时,|AB|取得最小值2。

相关文档
最新文档