运筹学第六章 图与网络模型 第3节 最短路问题

合集下载

运筹学课件 第六章图与网络分析(清华大学出版社)

运筹学课件  第六章图与网络分析(清华大学出版社)
w(P ) = min w(P) 0
P
路P0的权称为从vs到vt的距离,记为:d( vs,vt )
OR3 12
– 最短路算法
Dijkstra算法 :有向图 ,wij≥0 一般结论:
vs到 j的 短 v 最 路
vs ,...,vi ,...,vj ⇒ vs ,...,vi
vs到 i的 短 v 最 路
OR3 17
4 )
标号的点,考察弧( v 4 为刚得到 P 标号的点,考察弧( v 4 , v 6),( v 4 , v 7)的端点 v 6,v 7: T ( v ) = min [T ( v ), P ( v ) + l ] = min [13 , 9 + 9 ] = 13 46 6 6 4 T ( v ) = min [T ( v ), P ( v ) + l ] = min [14 , 9 + 7 ] = 14 47 7 7 4 标号, 最小, 比较所有 T 标号, T ( v ) 最小,所以令 P ( v ) = 13 。 6 6 此时 P 标号的点集 S = { , , , v , v , v } v1 v 2 v 3 5 4 6 。 6 7)v 为刚得到 P 标号的点,考察弧( 标号的点,考察弧( v 6 , v 7),( v 6 , v 8)的端点 v 7, 8: v 6 T ( v ) = min [T ( v ), P ( v ) + l ] = min [14 ,13 + 5 ] = 14 67 7 7 6 T ( v ) = min [T ( v ), P ( v ) + l ] = min [+ ∞ ,13 + 4 ] = 17 68 8 8 6 标号, 最小, 比较所有 T 标号, T ( v ) 最小,所以令 P ( v ) = 14 。 7 7 此时 P 标号的点集 S = { , , , v , v , v , v } v1 v 2 v 3 5 4 6 7 。 7

运筹学——.图与网络分析-最短路

运筹学——.图与网络分析-最短路

可选择的最短路为
(v5 , v6 ), (v5 , v7 ).
min{ k24, k34, k56, k57} min{9,10,13,14} 9
① 给(v2 , v4 )
划成粗
线②。给v4 标号(9)。
③ 划第5个弧。
v2 (4) 5 v4(9) 9 v6 (13)
4 4
v1 (0)
1
75
v2 (4)
5
v4
9
v6
4
1
v1 (0)
4
75
5
v8

64
1

v3(6)
7 v5 6
v7

3)接着往下考察,有三条路可走:(v1, v3 ), (v2, v4 ), (v2 , v5 ).
可选择的最短路为
min{ k13, k24, k25} min{l13, l12 d24,l12 d25} min{ 6,4 5,4 4} 6
第6章 图与网络分析
本章内容重点
图的基本概念与基本定理 树和最小支撑树 最短路问题 网络最大流


图论是应用非常广泛的运筹学分 支,它已经广泛地应用于物理学控制论,信 息论,工程技术,交通运输,经济管理,电 子计算机等各项领域。对于科学研究,市场 和社会生活中的许多问题,可以同图论的理 论和方法来加以解决。例如,各种通信线路 的架设,输油管道的铺设,铁路或者公路交 通网络的合理布局等问题,都可以应用图论 的方法,简便、快捷地加以解决。
若已知设备在各年的购买费,及不同机器役龄时的残值与 维修费,如表2所示.
项目 购买费 机器役龄 维修费 残值
第1年 11 0-1 5 4

运筹学(第6章 图与网络分析)

运筹学(第6章 图与网络分析)
a1 (v1) 赵
(v2)钱
a2 a3 a4 a14 a15
a8 a9
a7 (v4) 李
(v3)孙
a5 (v5) 周 a6 a10 (v6)吴
图6-3
a12 a11 a13
(v7)陈

定义: 图中的点用v表示,边用e表示。对每条边可用它
所连接的点表示,记作:e1=[v1,v1]; e2=[v1,v2];
树是图论中结构最简单但又十分重要的图。在自然和社会领 域应用极为广泛。 例6.2 乒乓求单打比赛抽签后,可用图来表示相遇情况,如 下图所示。
运动员 A
B C
D
E
F G
H

例6.3 某企业的组织机构图也可用树图表示。
厂长
人事科
财务科
总工 程师
生产副 厂长
经营副 厂长
开发科
技术科
生产科
设备科
供应科
动力科
e2
(v1) 赵
e1
e3
e4 孙(v3) 李(v4)
周(v5)
图6-2
e5 吴(v6) 陈(v7)
(v2)钱
如果我们把上面例子中的“相互认识”关系改为“认识” 的关系,那么只用两点之间的联线就很难刻画他们之间的关 系了,这是我们引入一个带箭头的联线,称为弧。图6-3就是 一个反映这七人“认识”关系的图。相互认识用两条反向的 弧表示。
端点,关联边,相邻 若有边e可表示为e=[vi,vj],称vi和
e2 v2 e6 e1 e4 v1 e3 v3 e8
vj是边e的端点,反之称边e为点vi
或vj的关联边。若点vi、vj与同一条 边关联,称点vi和vj相邻;若边ei和
e5
e7

运筹学:第6章 图与网络分析

运筹学:第6章  图与网络分析
给图中的点和边赋以具体的含义和权值,我们称 这样的图为网络图(赋权图)
2021/4/18
6
图中的点用 v 表示,边用 e 表示,对每条边可用
它所联结的点表示,如图,则有:
e1 = [v1 , v1], e2 = [v1 , v2]或e2= [v2 , v1]
2021/4/18
7
用点和点之间的线所构成的图,反映实际生产和 生活中的某些特定对象之间的特定关系。
第一种解法:
1. 在点集中任选一点,不妨取 S,令 V={S} 2. 找到和 S 相邻的边中,权值最小的 [S , A] 。
2021/4/18
22
3.V={S , A} 4. 重复第2,3步,找到下一个点。
2021/4/18
23
第二种做法求解过程:
2021/4/18
24
破圈法求解步骤:
1. 从图 N 中任取一回路,去掉这个回路中边 权最大的边,得到原图的一个子图 N1。
Dijkstra 算法假设:
1.设 dij 表示图中两相邻点 i 与 j 的距离,若 i 与 j 不相邻,令 dij =∞,显然 dii =0。 2. 设 Lsi 表示从 s 点到 i 点的最短距离。
2021/4/18
31
求从起始点 s 到终止点 t 的最短路径。 Dijkstra 算法步骤:
1.对起始点 s ,因 Lss =0 ,将 0 标注在 s 旁的小 方框内,表示 s 点已标号;
终点重合的链称为圈,起点和终点重合的路称为回
路,若在一个图中,每一对顶点之间至少存在一条
链,称这样的图为连通图,否则称该图为不连通的。
2021/4/18
12
2021/4/18

运筹学图与网络分析-最短路

运筹学图与网络分析-最短路

(P0
)
min P
(P)
路P0的权称为从vs到vt的距离,记为d(vs,vt)。
求网络上的一点到其它点 的最短路
Dinkstra标号法
这是解决网络中某一点到其它点的最 短路问题时目前认为的最好方法。
适用于有向图权值非负的情况
有向图权值非负---- Dijkstra算法
Dijkstra算法的基本步骤(权值非负) 1、给顶点v1标号(0),v1称为已标号点,记标号点集为
(1,2)
2
2
0
1
2
5
7
(2,4)
3 5 55
7
3
1 (4,4) 3 1
4
6
7
(1,3)
5
④重复上述步骤,直至全部的
点都标完。
(1,2)
2
2
0
1
2
5
7
(2,4)
3 5 55
7
1
3
3
1
4
6
7
(1,3)
5
7
(1,2)
2
2
0
2
7
1
5
(2,4)
35
55
7
1
3
3
1
4
6
7
(1,3)
5
(3,7)
(1,2)
2
2
0
2
7
1
5 3 5 55 7
3
1
3 1
34 5 6
7
④重复上述步骤,直至全部的
(1,2)
点都标完。
2
2
0
2
7
1
5 3 5 55 7

第6章最短路问题

第6章最短路问题

最短路问题
X={1,2,4,6,7}
p1=0 p2=2 2 1 p4=1 4 5 6 p6=3 4 2 7 10 p3=8
1
2
5
6 p5=6 5 3 8 4 9
3
3
7
6
8
p7=3
min {c23,c53,c58,c78}=min {2+6,6+9,6+4,3+8}=min {8,15,10,11}=8
17 v5 31 23 18 v6
16 v3 17 22 30
W56 =13+5=18
最短路问题
最终得到下图,可知,v1到v6的距离是53,最短路径有两条: v1→v3→v6和 v1→v4→v6
59 22 V1 (0,s) 16 30 41 (30,1) v4 23 41 17 31 18 (41,1) v5 v6 (53,3) (53,4) 23
设备每年年初的价格表 年份 年初价格 1 11 2 11 3 12 4 12 5 13
最短路问题
设备维修费如下表
使用年数
每年维修费用
0-1
5
1-2
6
2-3
8
3-4
11
4-5
18
解:将问题转化为最短路问题,如下图:用vi表示“第i年年 初购进一台新设备”,弧(vi,vj)表示第i年年初购进的设备一 直使用到第j年年初。
最短路问题
例6.7 求从1到8的最短路径
1
1 2 10 4 5 6 4 2 7
2
5
6 9 5 3 8 4
3
3
7
6
8
最短路问题
X={1}, w1=0
p1=0

运筹学6(图与网络分析)

运筹学6(图与网络分析)

定义7:子图、生成子图(支撑子图)
图G1={V1、E1}和图G2={V2,E2}如果 V1 V2和E1 E2 称G1是G2的一个子图。
若有 V1=V2,E1 E2 则称 G1是G2的一 个支撑子图(部分图)。
图8-2(a)是图 6-1的一个子图,图8-2 (b)是图 8-1的支撑子图,注意支撑子图 也是子图,子图不一定是支撑子图。 e1
v2 ▲如果链中所有的顶点v0,v1,…,vk也不相
e1 e2 e4 v1 e3
v3 e5
同,这样的链称初等链(或路)。
e6
▲如果链中各边e1,e2…,ek互不相同称为简单链。
e7
e8
▲当v0与vk重合时称为回路(或圈),如果边不 v4
v5
重复称为简单回路,如果边不重复点也不重复
则称为初等回路。
图8-1中, μ1={v5,e8,v3,e3,v1,e2,v2,e4,v3,e7,v5}是一条链,μ1中因顶 点v3重复出现,不能称作路。
e1
e2 e4 v1 e3
v2
v3
e5
e6
e7
e8
v4
v5
定理1 任何图中,顶点次数的总和等于边数的2倍。
v1
v3
v2
定理2 任何图中,次为奇数的顶点必为偶数个。
e1
e2 e4 v1 e3
v2
v3
e5
e6
e7
e8
v4
v5
定义4 有向图: 如果图的每条边都有一个方向则称为有向图
定义5 混合图: 如何图G中部分边有方向则称为混合图 ② ⑤ ④
定理4 有向连通图G是欧拉图,当且仅当G中每个顶点的出 次等于入次。
② 15
9 10

运筹学第六章图与网络分析

运筹学第六章图与网络分析

S
2
4
7
2 A
0 5
S
5 45 B
98
14
5
13
D
T
C
E
4
4
4
7
最短路线:S AB E D T
最短距离:Lmin=13
2.求任意两点间最短距离的矩阵算法
⑴ 构造任意两点间直接到达的最短距离矩阵D(0)= dij(0)
S A B D(0)= C D E T
SABCDET 0 25 4 2 02 7 5 20 1 5 3 4 1 0 4 75 0 15 3 41 0 7 5 7 0
e1 v1
e5
v0 e2
e3
v2
e4
e6 e7
v3
v4
(4)简单图:无环、无多重边的图称为简单图。
(5)链:点和边的交替序列,其中点可重复,但边不能 重复。
(6)路:点和边的交替序列,但点和边均不能重复。
(7)圈:始点和终点重合的链。
(8)回路:始点和终点重合的路。
(9)连通图:若一个图中,任意两点之间至少存在一条 链,称这样的图为连通图。 (10)子图,部分图:设图G1={V1,E1}, G2={V2,E2}, 如果有V1V2,E1E2,则称G1是G2的一个子图;若 V1=V2,E1E2,则称G1是G2的一个部分图。 (11)次:某点的关联边的个数称为该点的次,以d(vi)表示。
步骤:
1. 两两连接所有的奇点,使之均成为偶点;
2. 检查重复走的路线长度,是否不超过其所在 回路总长的一半,若超过,则调整连线,改 走另一半。
v1
4
v4
4
1
4
v2
v5
5

第三节 最短路问题

第三节 最短路问题

作业
195页
习题8
8.4题
( X , X ) { (V1 ,V4 ) ,(V2 ,V4 ) ,(V5 ,V4 ) ,(V5 ,V9 )} 1、 2、K14 K 24 8 K54 5 3 8 K59 1 3 4
3、 (V5 ,V9 ) V9 ( 4 ,
5)
第五轮: V1 (0,0) V2 (2,1) V5 (3,2) V9 (4,5) V7 (7,9) 1、 ( X , X ) { (V1 ,V4 ) ,(V2 ,V4 ) ,(V5 ,V4 ),(V9 ,V6 ),(V9 ,V7 ),(V9 ,V8 )} 2、 K14 K24 K54 8 3、 (V9 ,V7 ) V7 ( 7 ,
V1
(i , i )
V2
5
7
1
V4
6
2 2
V3
1
V5
第三步: 找出第二步中 K ij 最小的那条弧,给它的终 点以标号
(V1 ,V3 ) V3 (2,1)
8
如果有几个 K ij 都取最小值,就同时标号
以后每一轮都重复第二轮的三个步骤, 从而使某个顶点获得标号; 当终点获得标号后,计算结束; 然后逆向追踪获得最短路.
( X , X ) { (V1 ,V4 ) ,(V2 ,V4 ) ,(V5 ,V4 ) ,(V5 ,V9 )} 1、 2、K14 K 24 8 K54 3 5 8 K59 3 1 4
3、 (V5 ,V9 ) V9 ( 4 ,
5)
第三轮: V1 (0,0) V2 (2,1) V5 (3,2)
9)
1)
V4 (8,1) V1 V2 (2,1) V5 (3,2) V9 (4,5) V7 (7,9) V6 (10,9)

运筹学第六章

运筹学第六章

(0) 9 V1
8
V4 7
(11) 3 7
§4网络的最大流
4-1网络最大流的有关概念
1、有向图和容量网络 有向图:D(V,A)
A是弧的集合aij=(vi,vj)
容量网络:网络上的每条弧都给出一个最大通行
能力,称为该弧的容量,记为cij=c(vi,vj)
容量网络中的点:
• 发点s
• 收点t
• 中间点
简单图:无环无多重边的图
链:点边序列u=(v1, e1 , v2, e2 , …, en-1,vn),其
中e1, e2 , …, en互不相同,ei =(vi,vi+1)
u=(v4, e7 , v3, e4 , v2)
u=(v4, e7 , v3, e4 , v2, e6,v4)
圈:起点和终点重合的链
2、流和可行流
流:网络各条弧上的负载量,记为fij=f(vi,vj)
可行流:
• 容量限制0≤fij ≤cij • 中间点平衡∑fai = ∑fja
一定存在可行流 吗?
v(f)=∑fsj = ∑fjt
网络最大流
部分图
子图
§2树和图的最小部分树 2-1树的概念与性质 例
山东建筑大学 管理学院 土木学院
土管 工业工程 …

教务处

定义 连通且无圈的图称为树
性质1 任何树中必存在次为1的点
性质2 具有n个顶点的树的边数恰好为(n-1)
性质3 任何具弱的连通图
A 2
5 C B 1 3 4
2 S 4
7 5 D 5 7 T
1 E
2 S 4
A 2
5 C B 1 3 4
7 5 D 5 7 T

运筹学6-3

运筹学6-3

b( f ) b( f ) bij bij b( ),b( f ) b( f ) b( )
故称 b( ) b( f ) b( f ) 为关于增广链 的费用。
费用最小增广链: * : b( * ) min b( )
(2) 结论:
待解决问题:如何找费 用最小增广链 ?
3. 找费用最小增广链方法
(1) 产生一个关于当前流f { f ij } 的增广网络
D( f ) (V , A( f ),W ( f )) :
(i) 将 D 中每条弧 (vi , v j ) 变成两条弧(vi , v j ) 及 (v j , vi ),
例如,下图弧旁的数字 为 (bij , wij , f ij ) vt v1 (1,7,5)
vs
(2,5,5) (6,2,0) (3,10,0)
v1
<
6 3 -2
1 -1
vt
v0
v3

vs
-1
f 1 , v( f 1 ) 5
v0
D( f1 )
v3
图 6.19 (b)
图 6.19 (c)
(2) 找费用最小增广链等价 于在 D( f ) 中 找vs 到 vt 的一条 最短路, 形成最小增广链。
最短路可用 (vi ) 逆向追踪,如 P {v1 , v2 , v3 , v6 }.
* 6
注意 :
1. 以上 Dijkstra 算法仅适用于wij 0, 将 wij 非负化再求解? 2. 可否类似于对策论,
(不可以!为什么?)
3. 对于有负权的网络的最 短路方法, 可用Warshall Floyd方法(P166 ~ 167 略)。

图与网络分析-最短路

图与网络分析-最短路
① 给 (v1 , v2 ) 划成粗线。
② 给 v2 标号(4)。
③ 划第二个弧。
v2 (4)
4
5
4
v4
7
9
5
v6
1
v1 (0)


5
v8
1
6
4
v3
7
v5
6
v7
表明走出 v1 后走向 v8 的最短路目前看是 (v1 , v2 ) ,最优距离 是4 。 现已考察完毕第二个圈内的路,或者说,已完成 v1 , v2 的标号。
v1 v3 v6
59 40 28 30
21
v1 (0)

12
19 13
v2 (12)
② ③
v3 (19)14 20
v4 (28) 15
29

15 v5 (40)
22
v6
41

最短路路长为49。 即:在第一年、第三年初各购买一台新设备为最优决策。 这时5年的总费用为49。
例3 (选址问题 ) 已知某地区的交通网络如图所示, 其中点代表居民小区,边代表公路,边权为小区间公路距离, 问区中心医院应建在哪个小区,可使离医院最远的小区居民就 诊时所走的路程最近? 解 求中心的问题。 解决方法:先求出 vi 到 其它各点的最短路长 d j
min{ 24 , k34 , k56 , k57 } min{ ,10,13,14} 9 k 9
① 给 (v2 , v4 ) 划成粗线。 ② 给 v4 标号(9)。 ③ 划第5个弧。
v2 (4)
4
5
4
v4(9)
7
9
5
v6 (13)
1
v1 (0)

第3节 最短路问题__运筹学__胡运权__清华大学出版社

第3节 最短路问题__运筹学__胡运权__清华大学出版社

0000
v2 6 0
2
-1 -5 -5 -5
v3
-3 0 -5
1
-2 -2 -2 -2
v4 8
0
2
3 -7 -7 -7
v5
-1
0
1 -3 -3
v6
1017
-1 -1 -1
v7
-1
0
5 -5 -5
v8
-3
-5 0
66
最短路算法—Warshall-Flod方法
v2
-1
-5
6
2
-1 -3
0 v1
-2
v3
2 [3, v1]
3
v3 6
12
v4
10
[1, v1]
[6, v2]
v5 2 v9
6 4 10 3
3
v8
v6 2
[10, v5]
4
v7
[9, v5]
[5, v3]
[6, v2]
[0, v1]
v1
16 v22 [3 v1]3v3 6
12
v5 2 v9
6 4 10 3
3 [12, v5]
v8
4
v4
10
v[34,v2/
v4]
5
[8,v5]
v6 5
[0,v1] 3
13
1
7
v4
5
[3,v1]
v5[7,v3]
[13,v6]
v7
[课堂练习] 无向图情形
答案(2):
v2 [2,v1]
v1
2
2
5
7
v[34,v2/
v4]
5
[8,v5]

第六章物流运筹学——图与网络分析.

第六章物流运筹学——图与网络分析.
L( )
( vi ,v j )
l
ij
最小的 。
Dijkstra算法
算法的基本步骤: (1)给 v s 以 P 标号, P(vs ) 0 ,其余各点均给 T 标号, T (vi ) 。 (2)若 vi 点为刚得到 P 标号的点,考虑这样的点 v j: (vi , v j ) E ,且 v j 为 T 标号,对 v j 的 T 标号进行如下的更改:
v2
(4,3)
v4
(3,3)
(5,3) (1,1) (1,1) (3,0)
vs
(5,1)
vt
(2,1)
v1
(2,2)
v3
图 6-14
运输线路图
第四节 最小费用最大流问题
在容量网络 G (V , E, C ) ,每一条边 (vi , v j ) E 上,除了已 给容量 cij 外,还给了一个单位流量的费用 bij 0 ,记此时的容 量网络为 G (V , E, C , B) 。 所谓最小费用最大流问题就是要求一个最大流 f ,使流的 总运输费用 b( f )
定理 6-1 任何图中顶点次数的总和等于边数的 2 倍。 推论 6-1 任何图中,次为奇数的顶点必有偶数个。 图 G (V , E ) 和图 H (V , E ) ,若 V V且E E ,则 称 H 是 G 的子图,记作: H G ;特别的,当 V V 时, 称 H 为 G 的生成子图。
容量网络g若?为网络中从sv到tv的一条链给?定向为从sv到tv?上的边凡与?同向称为前向边凡与?反向称为后向边其集合分别用??和??表示??ijff?是一个可行流如果满足??????0ijijijijiijjffcvv??????????c???0ijijijfvv????则称?为从sv到tv的关于f的可增广链

运筹学第六章图与网络分析(ppt文档)

运筹学第六章图与网络分析(ppt文档)

§6.1 图的基本概念和模型
一、概念
(1)图:点V和边E的集合,用以表示对某种现实事物
的抽象。记作 G={V,E}, V={v1,v2,···,vn}, 点:表示所研究的事物对象; E={e1,e2,···,em}
边:表示事物之间的联系。
e0
(2)若边e的两个端点重 合,则称e为环。
(3)多重边:若某两端点之 间多于一条边,则称为多重边。
D 8 64 5 0 15
E 7 53 4 1 0 6
T 14 11 9 10 5 6 0
i
dir(1)
r
drj(1)
j
⑷ 构造任意两点间最多可经过7个中间点到达的最短距 离矩阵 D(3)= dij(3)
其中
dij(3)=
min
r
{
dir(2)+
drj(2)
}
SABCDET
S 0 2 4 4 8 7 13
dir(0)
r i
drj(0)
j
⑶ 构造任意两点间最多可经过3个中间点到达的最短距 离矩阵 D(2)= dij(2)
其中
dij(2)=
min
r
{
dir(1)+
drj(1)}
SABCDET
S 0 2 4 4 8 7 14
A 2 0 2 3 6 5 11
B 4 20 1 43 9 D(2)= C 4 3 1 0 5 4 10
2. 破圈法:
⑴ 任取一圈,去掉其中一条最长的边, ⑵ 重复,至图中不存在任何的圈为止。
2. 破圈法
A
S
5 × B 5× D 5 T
C
4× E
最小部分树长Lmin=14

运筹学第6章图与网络分析

运筹学第6章图与网络分析
2020/7/14
A
C
D
B
哥尼斯堡七空桥
2020/7/14
A
C B
D
一笔画问题
哈密尔顿(Hamilton)回路是十九世纪 英国数学家哈密顿提出,给出一个正12 面体图形,共有20个顶点表示20个城市, 要求从某个城市出发沿着棱线寻找一条 经过每个城市一次而且仅一次,最后回 到原处的周游世界线路(并不要求经过 每条边)。
其链长为 n ,其中 v0 ,vn 分别称为链的起点和终点 。 若链中所含的边均不相同,则称此链为简单链;所含的点 均不相同的链称为初等链 , 也称通路。
v2
e1
v1
e2
e3
v3
e4
v4
e5 e7
e9
e8
v6
e10
e6
v5
11、图中任意两点之间均至少有一条通路,则称此图为 连通图,否则称为不连通图。
3、如果一个图是由点和弧所构成的,那么称它为有向图,记作
D=(V, A),其中V 表示有向图D 的点集合,A 表示有向图D 的弧 集合。一条方向从vi指向vj 的弧,记作(vi , vj)。
V = {v1 , v2 , v3 , v4 , v5 , v6 },
v2
A = {(v1 , v3 ) , (v2 , v1) , (v2 , v3 ) , v1

E构成{ek的} 二元组,记为G =(V,E),其中 V 中的
元素 叫做顶点v j ,V 表示图 G 的点集合;E 中的元素
叫做边,Ee表k 示图 G 的边集合。

v1
V v 1 ,v 2 ,v 3 ,v 4 ,v 5 ,v 6
E { e 1 , e 2 ,e 3 ,e 4 ,e 5 ,e 6 ,e 7 ,e 8 ,e 9 ,e 1 } 0e10

第6章最短路问题

第6章最短路问题
为从vs 到vn-1的最短路。
假定v1→v2 →v3 →v4是v1 →v4的最短路,则v1 →v2 →v3一定是v1 →v3的最短 路,v2 →v3 →v4也一定是v2 →v4的最短路。
v2 v1
v4 v3
v5
最短路问题
• 求网络图的最短路,设图的起点是vs,终点是vt ,以vi为起点vj为终点 的弧记为 (i, j) 距离为dij
此游戏转化为在下面的二部图中求从 v1 到 u1 的最短路问题。
v1
v2
v3
v4
v5
u5
u4
u3
u2
u1
最短路问题
• 求最短路有两种算法:
狄克斯屈拉(Dijkstra)标号算法 逐次逼近算法
最短路问题
• 狄克斯屈拉(Dijkstra)标号算法的基本思路: • 若序列{ vs,v1…..vn-1,vn }是从vs到vn间的最短路,则序列{ vs,v1…..vn-1 } 必
P标号(点标号):b(j) —起点vs到点vj的最短路长; T标号(边标号): k(i,j)=b(i)+dij, 步骤:
1. 令起点的标号;b(s)=0。
2. 找出所有vi已标号vj未标号的弧集合 B={(i, j)} 如果这样的弧不存在或vt已标号则 计算结束;
3. 计算集合B中弧k(i,j)=b(i)+dij的标号
5
9
3
4
7
5
6
5
2
6
7
4
3
4
8 8
min {c12,c14,c16}=min {0+2,0+1,0+3}=min {2,1,3}=1 X={1,4}, p4=1

网络数学实验6图与网络分析-最短路问题

网络数学实验6图与网络分析-最短路问题

实验六:图与网络分析-最短路问题
一、实验目的:掌握不同问题的输入方法,求解网络模型,观察求解步骤,显示并读出结果。

二、内容和要求:用WinQSB软件求解最短路问题,并对结果进行简单分析。

例:求下图的最短路。

三、操作步骤:
1.“开始”菜单→“winQSB”→“Network Modeling”(网络模型)。

2.建立新问题:File→New Problem,出现下面界面。

选择Shortest Path Problem、Minimization、输入问题标题、节点的个数,然后单击“OK”。

3.修改节点名称:菜单“Edit”→“Node Names”,编辑完点“OK”,如下图。

4.按下图输入图的权矩阵,本例是无向图,每一条边必须输入两次。

5.菜单“Solve and Analyze”→“Solve the Problem”,出现以下对话框,
6.然后选择起点v1和终点v10,点“Solve”按键,出现下图:
从图中可以看到v1到v10的最短路径为v1→v3→v7→v10,总长为6,另外从v1到其他各点的最短距离也都计算了出来。

7.实例求解:有九个城市v1,v2…,v9,其公路网如下图,弧旁数字是该段公路的长度,有一批货物从v1运到v9,试用Dijkstra方法求出走哪条路最短?
自己先用标号法求出最短路,然后用winWSB软件进行验证。

8.思考题:教育部门打算在某新建城区建一所学校,让附近七个居民区的学生就近入学。

七个居民区之间的道路如下图所示,学校应建在哪个居民区,才能使大学都方便?(图中距离单位:百米)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档