七年级数学下册期中试卷及答案(最新整理)

合集下载

完整版人教(完整版)七年级数学下册期中试卷及答案 - 百度文库

完整版人教(完整版)七年级数学下册期中试卷及答案 - 百度文库

完整版人教(完整版)七年级数学下册期中试卷及答案 - 百度文库一、选择题1.下列说法正确的是()A .4的平方根是2-B .16的平方根是4±C .2是4-的算术平方根D .6-是36的算术平方根2.在下列现象中,属于平移的是( ).A .荡秋千运动B .月亮绕地球运动C .操场上红旗的飘动D .教室可移动黑板的左右移动3.已知点P 的坐标为P (3,﹣5),则点P 在第( )象限.A .一B .二C .三D .四4.下列四个说法:①连接两点之间的线段叫做这两点间的距离;②经过直线外一点,有且只有一条直线与这条直线平行;③a 2的算术平方根是a ;④64的立方根是4.其中假命题的个数有( )A .1个B .2个C .3个D .4个5.如图,直线//EF MN ,点A ,B 分别是EF ,MN 上的动点,点G 在MN 上,ACB m ∠=︒,AGB ∠和CBN ∠的角平分线交于点D ,若52D ∠=︒,则m 的值为( ).A .70B .74C .76D .806.下列说法正确的是( )A .一个数的立方根有两个,它们互为相反数B .负数没有立方根C .任何一个数都有平方根和立方根D .任何数的立方根都只有一个7.如图,//AB CD ,EF 交AB 于点G ,EM 平分CEF ∠,80FGB ∠=︒,则GME ∠的度数为( ).A .60°B .55°C .50°D .45°8.如图,已知A 1(1,0),A 2(1,1),A 3(﹣1,1),A 4(﹣1,﹣1),A 5(2,﹣1)……则点A 2021的坐标为( )A .(505,﹣504)B .(506,﹣505)C .(505,﹣505)D .(﹣506,506)二、填空题9.16的算术平方根是 _____.10.点P 关于y 轴的对称点是(3,﹣2),则P 关于原点的对称点是__.11.若点A (9﹣a ,3﹣a )在第二、四象限的角平分线上,则A 点的坐标为_____. 12.如图,//a b ,直角三角板直角顶点在直线b 上.已知150∠=︒,则2∠的度数为______°.13.如图,在ABC 中,1841B C ∠=︒∠=︒,,点D 是BC 的中点,点E 在AB 上,将BDE 沿DE 折叠,若点B 的落点B '在射线CA 上,则BA 与B D '所夹锐角的度数是________.14.已知,a b 为两个连续的整数,且 15a b <<,则a b +=_______ 15.若点P(2-m ,m+1)在x 轴上,则P 点坐标为_____.16.如图,每一个小正方形的边长为1个单位长,一只蚂蚁从格点.A 出发,沿着A →B →C →D →A →B →...路径循环爬行,当爬行路径长为2020个单位长时,蚂蚁所在格点坐标为___.三、解答题17.计算:(1)3116+84-; (2)32|32|--.18.已知6a b +=,4ab =-,求下列各式的值:(1)22a b +;(2)22a ab b -+.19.已知一个角的两边与另一个角的两边分别平行,结合图1,探索这两个角之间的关系.(1)如图1,已知ABC ∠与DEF ∠中,//AB FE ,//BC DE ,AB 与DE 相交于点G .问:ABC ∠与DEF ∠有何关系?①请完成下面的推理过程.理由://AB FE ,AGE DEF ∴∠+∠= ( ).//BC DE ,AGE ABC ∴∠=∠( ).ABC DEF ∴∠+∠= .②结论:ABC ∠与DEF ∠关系是 .(2)如图2,已知//AB FE ,//BC ED ,则ABC ∠与DEF ∠有何关系?请直接写出你的结论.(3)由(1)、(2)你得出的结论是:如果一个角的两边与另一个角的两边分别平行,那么 .20.如图,在平面直角坐标系中,已知P(a,b)是△ABC的边AC上一点,△ABC经平移后点P的对应点为P1(a+6,b+2).(1)请画出上述平移后的△A1B1C1,并写出点A1,C1的坐标;(2)写出平移的过程;(3)求出以A,C,A1,C1为顶点的四边形的面积.21.阅读下面的对话,解答问题:事实上:小慧的表示方法有道理,因为2的整数部分是1,将这个数减去其整数部分,差就是小数部分.又例如:∵479<<,∴7的整数部分为2,小数<<,即273部分为72-.请解答:(1)15的整数部分_____,小数部分可表示为________.(2)已知:10-3=x+y,其中x是整数,且0<y<1,求x-y的相反数.22.教材中的探究:如图,把两个边长为1的小正方形沿对角线剪开,用所得到的4个直角三角形拼成一个面积为2的大正方形.由此,得到了一种能在数轴上画出无理数对应点的方法(数轴的单位长度为1).(1)阅读理解:图1中大正方形的边长为________,图2中点A表示的数为________;(2)迁移应用:请你参照上面的方法,把5个小正方形按图3位置摆放,并将其进行裁剪,拼成一个大正方形.①请在图3中画出裁剪线,并在图3中画出所拼得的大正方形的示意图.②利用①中的成果,在图4的数轴上分别标出表示数-0.5以及 35-+ 的点,并比较它们的大小.23.(1)(问题)如图1,若//AB CD ,40AEP ∠=︒,130PFD ∠=︒.求EPF ∠的度数; (2)(问题迁移)如图2,//AB CD ,点P 在AB 的上方,问PEA ∠,PFC ∠,EPF ∠之间有何数量关系?请说明理由;(3)(联想拓展)如图3所示,在(2)的条件下,已知EPF α∠=,PEA ∠的平分线和PFC ∠的平分线交于点G ,用含有α的式子表示G ∠的度数.【参考答案】一、选择题1.B解析:B【分析】根据平方根和算术平方根的定义判断即可.【详解】解:A .4的平方根是±2,故错误,不符合题意;B .16的平方根是±4,故正确,符合题意;C .-4没有算术平方根,故错误,不符合题意;D .-6是36的一个平方根,故错误,不符合题意;故选B .【点睛】本题考查了平方根和算术平方根的概念,解题关键是熟悉相关概念,准确进行判断. 2.D【分析】根据平移的性质依次判断,即可得到答案.【详解】A 、荡秋千运动是旋转,故本选项错误;B 、月亮绕地球运动是旋转,故本选项错误;C、操场上红旗的飘动不是平移,故本选项错误;D、教室解析:D【分析】根据平移的性质依次判断,即可得到答案.【详解】A、荡秋千运动是旋转,故本选项错误;B、月亮绕地球运动是旋转,故本选项错误;C、操场上红旗的飘动不是平移,故本选项错误;D、教室可移动黑板的左右移动是平移,故本选项正确.故选:D.【点睛】本题考查了平移的知识;解题的关键是熟练掌握平移性质,从而完成求解.3.D【分析】直接利用第四象限内的点横坐标大于0,纵坐标小于0解答即可.【详解】解:∵点P的坐标为P(3,﹣5),∴点P在第四象限.故选D.【点睛】本题主要考查了点的坐标,各象限坐标特点如下:第一象限(+,+),第二象限(-,+)第三象限(-,-)第一象限(+,-).4.C【分析】利用两点间的距离的定义、平行线的判定、算术平方根的定义及立方根的求法分别判断后即可确定正确的选项.【详解】解:①连接两点之间的线段的长度叫做这两点间的距离,故原命题错误,是假命题,符合题意;②经过直线外一点,有且只有一条直线与这条直线平行,正确,是真命题,不符合题意;③a2的算术平方根是a(a≥0),故原命题错误,是假命题,符合题意;2,故原命题错误,是假命题,符合题意;假命题有3个,故选:C.【点睛】本题主要考查真假命题,两点见的距离,平行线的判定,算术平方根,立方根的求法等知识点,熟知相关定义以及运算法则是解题的关键.5.C【分析】先由平行线的性质得到∠ACB=∠5+∠1+∠2,再由三角形内角和定理和角平分线的定义求出m即可.【详解】解:过C作CH∥MN,∴∠6=∠5,∠7=∠1+∠2,∵∠ACB=∠6+∠7,∴∠ACB=∠5+∠1+∠2,∵∠D=52°,∴∠1+∠5+∠3=180°−52°=128°,由题意可得GD为∠AGB的角平分线,BD为∠CBN的角平分线,∴∠1=∠2,∠3=∠4,∴m°=∠1+∠2+∠5=2∠1+∠5,∠4=∠1+∠D=∠1+52°,∴∠3=∠4=∠1+52°,∴∠1+∠5+∠3=∠1+∠5+∠1+52°=2∠1+∠5+52°=m°+52°,∴m°+52°=128°,∴m°=76°.故选:C.【点睛】本题主要考查平行线的性质和角平分线的定义,关键是对知识的掌握和灵活运用.6.D【分析】根据负数没有平方根,一个正数的平方根有两个且互为相反数,一个数的立方根只有一个,结合选项即可作出判断.【详解】A、一个数的立方根只有1个,故本选项错误;B、负数有立方根,故本选项错误;C、负数只有立方根,没有平方根,故本选项错误;D、任何数的立方根都只有一个,故本选项正确.故选:D.【点睛】本题考查了平方根、算术平方根、立方根的概念,解决本题的关键是熟记平方根、算术平方根、立方根的概念.7.C【分析】根据两直线平行的性质定理,进行角的转换,再根据平角求得CEF ∠,进而求得GME ∠.【详解】//AB CD ,FED FGB ∴∠=∠,CEM GME ∠=∠又∵80FGB ∠=︒80FED ∴∠=︒18080100CEF ∴∠=-︒=︒, EM 平分CEF ∠,1502CEM CEF ∴∠=∠=︒, 50GME ∴∠=︒故选:C .【点睛】本题主要考查的是平行线的性质,角平分线的定义等知识点,根据条件数形结合是解题切入点.8.B【分析】求在平面直角坐标系中的位置,经观察分析所有点,除外,其他所有点按一定的规律分布在四个象限,且每个象限的点满足:角标÷4=循环次数+余数,余数0,1,2,3确定相应的象限,由此确定点在第解析:B【分析】求2021A 在平面直角坐标系中的位置,经观察分析所有点,除1A 外,其他所有点按一定的规律分布在四个象限,且每个象限的点满足:角标÷4=循环次数+余数,余数0,1,2,3确定相应的象限,由此确定点2021A 在第四象限,根据推导可得出结论;【详解】由题可知,第一象限的点:2A ,6A …角标除以4余数为2;第二象限的点:3A ,7A ,…角标除以4余数为3;第三象限的点:4A ,8A ,…角标除以4余数为0;第四象限的点:5A ,9A ,…角标除以4余数为1;由上规律可知:20214=5051÷,∴点2021A 在第四象限,又∵5(2,1)A -,9(3,2)A -,即横坐标为正数,数字为角标除以4的商加1;纵坐标为负数,数字为角标除以4的商, ∴2021(506,505)A -.故选:B .【点睛】本题主要考查了点的坐标规律,准确理解是解题的关键.二、填空题9.2【详解】∵,的算术平方根是2,∴的算术平方根是2.【点睛】这里需注意:的算术平方根和的算术平方根是完全不一样的;因此求一个式子的平方根、立方根和算术平方根时,通常需先将式子化简,然后再去 解析:2【详解】 ∵,4的算术平方根是2,∴ 2.【点睛】16的算术平方根是完全不一样的;因此求一个式子的平方根、立方根和算术平方根时,通常需先将式子化简,然后再去求,避免出错. 10.【分析】直接利用关于y 轴对称点的性质得出P 点坐标,再利用关于原点对称点的性质得出答案.【详解】解:∵点P 关于y 轴的对称点是,∴点,则P 关于原点的对称点是.故答案为:.【点睛】本题考解析:()3,2【分析】直接利用关于y 轴对称点的性质得出P 点坐标,再利用关于原点对称点的性质得出答案.【详解】解:∵点P 关于y 轴的对称点是()3,-2,∴点()3,2P --,则P 关于原点的对称点是()3,2.故答案为:()3,2.【点睛】本题考查关于x 轴、y 轴对称的点的坐标求法、关于原点对称的点的坐标求法,牢记相关性质是解题关键.11.(3,﹣3).【分析】根据第二、四象限角平分线上点的坐标特征得到9﹣a+3﹣a =0,然后解方程即可.【详解】∵点P 在第二、四象限角平分线上,∴9﹣a+3﹣a =0,∴a =6,∴A 点的坐标解析:(3,﹣3).【分析】根据第二、四象限角平分线上点的坐标特征得到9﹣a+3﹣a =0,然后解方程即可.【详解】∵点P 在第二、四象限角平分线上,∴9﹣a+3﹣a =0,∴a =6,∴A 点的坐标为(3,﹣3).故答案为:(3,﹣3).【点睛】本题考查了坐标与图形性质:解题的关键是利用坐标特征判断线段与坐标轴的位置关系;记住坐标轴和第一、三象限角平分线、第二、四象限角平分线上点的坐标特征. 12.40【分析】根据a ∥b ,可以得到∠1=∠DAE ,∠2=∠CAB ,再根据∠DAC=90°,即可求解.【详解】解:如图所示∵a ∥b∴∠1=∠DAE ,∠2=∠CAB∵∠DAC=90°∴∠D解析:40【分析】根据a ∥b ,可以得到∠1=∠DAE ,∠2=∠CAB ,再根据∠DAC =90°,即可求解.【详解】解:如图所示∵a ∥b∴∠1=∠DAE ,∠2=∠CAB∵∠DAC =90°∴∠DAE +∠CAB =180°-∠DAC =90°∴∠1+∠2=90°∴∠2=90°-∠1=40°故答案为:40.【点睛】本题主要考查了平行线的性质,解题的关键在于能够熟练掌握平行线的性质.13..【分析】根据折叠可得三角形全等,根据全等三角形的性质以及中点的性质可得, ,由等腰三角形性质以及三角形外角定理求得度数,在中根据内角和即可求得与所夹锐角的度数.【详解】如下图,连接DE ,与解析:80︒.【分析】根据折叠可得三角形全等,根据全等三角形的性质以及中点的性质可得BD B D '=, DC DB '=,由等腰三角形性质以及三角形外角定理求得BDB '∠度数,在BOD 中根据内角和即可求得BA 与B D '所夹锐角的度数.【详解】如下图,连接DE ,BA 与B D '相交于点O ,将 △BDE 沿 DE 折叠,BDE B DE '∴△≌△,BD B D '∴=,又∵D 为BC 的中点,BD DC =,BD B D '∴=,41DB C C '∴==︒∠∠,BDB DB C C =''∴=+︒∠∠∠82,18080BOD B BDB '∴=︒--=︒∠∠∠,即BA 与B D '所夹锐角的度数是80︒.故答案为:80︒.【点睛】本题考察了轴对称的性质、全等三角形的性质、中点的性质、三角形的外角以及内角和定理,综合运用以上性质定理是解题的关键.14.7【分析】由无理数的估算,先求出a 、b 的值,再进行计算即可.【详解】解:∵,∴,∵、为两个连续的整数,,∴,,∴;故答案为:7.【点睛】本题考查了无理数的估算,解题的关键是正确解析:7【分析】由无理数的估算,先求出a 、b 的值,再进行计算即可.【详解】解:∵91516 ∴3154<,∵a、b为两个连续的整数,a b<,b=,∴3a=,4a b+=+=;∴347故答案为:7.【点睛】本题考查了无理数的估算,解题的关键是正确求出a、b的值,从而进行解题.15.(3,0)【分析】根据x轴上的点的坐标纵坐标为0列方程可求出m的值,即可得出点P坐标.【详解】∵点P(2-m,m+1)在x轴上,∴m+1=0,解得:m=-1,∴2-m=3,∴P点坐标解析:(3,0)【分析】根据x轴上的点的坐标纵坐标为0列方程可求出m的值,即可得出点P坐标.【详解】∵点P(2-m,m+1)在x轴上,∴m+1=0,解得:m=-1,∴2-m=3,∴P点坐标为(3,0),故答案为:(3,0)【点睛】本题考查了点的坐标,熟记x轴上的点的纵坐标等于0是解题的关键.16.(2,2)【分析】由格点确定点A、B、C的坐标,从而得出AB、BC的长度,从而可找出爬行一圈的长度,再根据2020=126×16+4,即可得出当蚂蚁爬了2020个单位时,它所处位置的坐标.【详解析:(2,2)【分析】由格点确定点A、B、C的坐标,从而得出AB、BC的长度,从而可找出爬行一圈的长度,再根据2020=126×16+4,即可得出当蚂蚁爬了2020个单位时,它所处位置的坐标.【详解】解:∵A点坐标为(−2,2),B点坐标为(3,2),C点坐标为(3,−1),∴AB=3−(−2)=5,BC=2−(−1)=3,∴从A→B→C→D→A→B→…一圈的长度为2(AB+BC)=16.∵2020=126×16+4,∴当蚂蚁爬了2020个单位时,它所处位置在点A右边4个单位长度处,即(2,2).故答案为:(2,2).【点睛】本题考查了规律型中点的坐标以及矩形的性质,根据蚂蚁的运动规律找出蚂蚁每运动16个单位长度是一圈.三、解答题17.(1)5;(2)4﹣.【分析】(1)直接利用二次根式以及立方根的性质分别化简得出答案;(2)直接去绝对值进而计算得出答案.【详解】(1)原式=4+2﹣=5;(2)原式=3﹣(﹣)=3解析:(1)51;(2)2【分析】(1)直接利用二次根式以及立方根的性质分别化简得出答案;(2)直接去绝对值进而计算得出答案.【详解】(1)原式=4+2﹣12;=512(2)原式===【点睛】此题主要考查了实数运算,正确化简各数是解题关键.18.(1)44;(2)48【分析】(1)把a+b=6两边平方,利用完全平方公式化简,将ab的值代入计算即可求出原式的值;(2)将a2+b2与ab 的值代入原式计算即可求出值.【详解】解:(1)把解析:(1)44;(2)48【分析】(1)把a +b =6两边平方,利用完全平方公式化简,将ab 的值代入计算即可求出原式的值;(2)将a 2+b 2与ab 的值代入原式计算即可求出值.【详解】解:(1)把6a b +=两边平方得:()222236a b a b ab +=++=,把4ab =-代入得:()222436a b ++⨯-=, ∴2244a b +=;(2)∵2244a b +=,4ab =-,∴22a ab b -+=22a b ab +-=()444--=48.【点睛】此题考查了完全平方公式,熟练掌握完全平方公式是解本题的关键.19.(1)①180°;两直线平行,同旁内角互补;两直线平行,同位角相等;180°;②互补;(2)(相等);(3)这两个角相等或互补.【分析】(1)如图1,根据,,即可得与的关系;(2)如图2,根据解析:(1)①180°;两直线平行,同旁内角互补;两直线平行,同位角相等;180°;②互补;(2)ABC DEF ∠=∠(相等);(3)这两个角相等或互补.【分析】(1)如图1,根据//AB FE ,//BC ED ,即可得ABC ∠与DEF ∠的关系;(2)如图2,根据//AB FE ,//BC ED ,即可得ABC ∠与DEF ∠的关系;(3)由(1)(2)即可得出结论.【详解】解:(1)①理由://AB FE ,180AGE DEF ∴∠+∠=︒(两直线平行,同旁内角互补),//BC DE ,AGE ABC ∴∠=∠ (两直线平行,同位角相等),180ABC DEF ∴∠+∠=︒.②结论:ABC ∠与DEF ∠关系是互补.故答案为:①180︒;两直线平行,同旁内角互补;两直线平行,同位角相等;180︒;②相等.(2)ABC DEF ∠=∠,理由如下://AB FE ,DGA DEF ∴∠=∠,//BC DE ,DGA ABC ∴∠=∠,ABC DEF ∴∠=∠.(3)由(1)、(2)你得出的结论是:如果一个角的两边与另一个角的两边分别平行,那么这两个角互补或相等,故答案为:这两个角互补或相等.【点睛】本题考查了平行线的性质,解题的关键是熟练掌握平行线的性质定理.20.(1)图见详解;;(2)平移过程为先向右平移6个单位长度,再向上平移2个单位长度;(3)以A ,C ,A1,C1为顶点的四边形的面积为14.【分析】(1)根据点P 的对应点P1(a+6,b+2)可分别解析:(1)图见详解;()()113,4,4,2A C ;(2)平移过程为先向右平移6个单位长度,再向上平移2个单位长度;(3)以A ,C ,A 1,C 1为顶点的四边形的面积为14.【分析】(1)根据点P 的对应点P 1(a +6,b +2)可分别得出A 、B 、C 的对应点A 1,B 1,C 1的坐标,然后连接即可得出图象;(2)由(1)可直接进行求解;(3)由(1)的图象可直接利用割补法进行求解面积.【详解】解:(1)由点P 的对应点P 1(a +6,b +2)可得如图所示图象:∴由图象可得()()113,4,4,2A C ;(2)由图象可得:平移过程为先向右平移6个单位长度,再向上平移2个单位长度; (3)连接11,,AA CC ,如图所示:∵点()()13,2,4,2A C -,∴点1,A C 在同一条直线上,且与x 轴平行, ∴1111272142AC C ACC A S S =⨯=⨯=四边形.【点睛】本题主要考查平移的性质及坐标与图形,熟练掌握坐标的平移是解题的关键. 21.(1)3,;(2)【分析】(1)先根据二次根式的性质求出的整数部分,则小数部分可求;(2)先根据二次根式的性质确定的整数部分,得出10- 的整数部分,即x 值,则其小数部分可求,即y 值,则x-解析:(1)3153;(2) 63-【分析】(115(233x 值,则其小数部分可求,即y 值,则x-y 值可求.【详解】解:(1)∵91516 ∴3154<,∴整数部分是3,15.故答案为:315.(2)解:∵ 132<∴8 <39∵x 是整数,且0<y<1,∴x=8,38=23 ,∴x-y=(82363-= ∵63的相反数为:(6363-=-∴x-y的相反数是63--.【点睛】本题主要考查了估算无理数的大小,代数式求值.解题的关键是确定无理数的整数部分即可解决问题.22.(1);(2)①见解析;②见解析,【分析】(1)设正方形边长为a,根据正方形面积公式,结合平方根的运算求出a值,则知结果;(2)① 根据面积相等,利用割补法裁剪后拼得如图所示的正方形;②解析:(1)2,2-;(2)①见解析;②见解析,350.5-+<-【分析】(1)设正方形边长为a,根据正方形面积公式,结合平方根的运算求出a值,则知结果;(2)① 根据面积相等,利用割补法裁剪后拼得如图所示的正方形;②由题(1)的原理得出大正方形的边长为5,然后在数轴上以-3为圆心,以大正方形的边长为半径画弧交数轴的右方与一点M,再把N点表示出来,即可比较它们的大小.【详解】解:设正方形边长为a,∵a2=2,∴a=2±,故答案为:2,2-;(2)解:①裁剪后拼得的大正方形如图所示:②设拼成的大正方形的边长为b,∴b2=5,∴b=±5,在数轴上以-3为圆心,以大正方形的边长为半径画弧交数轴的右方与一点M,则M表示的数为-3+5,看图可知,表示-0.5的N点在M点的右方,∴比较大小:350.5-+<-.【点睛】本题主要考查平方根与算术平方根的应用及实数的大小比较,熟练掌握平方根与算术平方根的意义及实数的大小比较是解题的关键.23.(1)90°;(2)∠PFC=∠PEA+∠P;(3)∠G=α【分析】(1)根据平行线的性质与判定可求解;(2)过P点作PN∥AB,则PN∥CD,可得∠FPN=∠PEA+∠FPE,进而可得∠PF解析:(1)90°;(2)∠PFC=∠PEA+∠P;(3)∠G=12α【分析】(1)根据平行线的性质与判定可求解;(2)过P点作PN∥AB,则PN∥CD,可得∠FPN=∠PEA+∠FPE,进而可得∠PFC=∠PEA+∠FPE,即可求解;(3)令AB与PF交点为O,连接EF,根据三角形的内角和定理可得∠GEF+∠GFE=1 2∠PEA+12∠PFC+∠OEF+∠OFE,由(2)得∠PEA=∠PFC-α,由∠OFE+∠OEF=180°-∠FOE=180°-∠PFC可求解.【详解】解:(1)如图1,过点P作PM∥AB,∴∠1=∠AEP.又∠AEP=40°,∴∠1=40°.∵AB∥CD,∴PM∥CD,∴∠2+∠PFD=180°.∵∠PFD=130°,∴∠2=180°-130°=50°.∴∠1+∠2=40°+50°=90°.即∠EPF=90°.(2)∠PFC=∠PEA+∠P.理由:过P点作PN∥AB,则PN∥CD,∴∠PEA=∠NPE,∵∠FPN=∠NPE+∠FPE,∴∠FPN=∠PEA+∠FPE,∵PN∥CD,∴∠FPN=∠PFC,∴∠PFC=∠PEA+∠FPE,即∠PFC=∠PEA+∠P;(3)令AB与PF交点为O,连接EF,如图3.在△GFE中,∠G=180°-(∠GFE+∠GEF),∵∠GEF=12∠PEA+∠OEF,∠GFE=12∠PFC+∠OFE,∴∠GEF+∠GFE=12∠PEA+12∠PFC+∠OEF+∠OFE,∵由(2)知∠PFC=∠PEA+∠P,∴∠PEA=∠PFC-α,∵∠OFE+∠OEF=180°-∠FOE=180°-∠PFC,∴∠GEF+∠GFE=12(∠PFC−α)+12∠PFC+180°−∠PFC=180°−12α,∴∠G=180°−(∠GEF+∠GFE)=180°−180°+12α=12α.【点睛】本题主要考查平行线的性质与判定,灵活运用平行线的性质与判定是解题的关键.。

2023-2024学年安徽省芜湖市七年级(下)期中数学试卷+答案解析

2023-2024学年安徽省芜湖市七年级(下)期中数学试卷+答案解析

2023-2024学年安徽省芜湖市七年级(下)期中数学试卷一、选择题:本题共10小题,每小题4分,共40分。

在每小题给出的选项中,只有一项是符合题目要求的。

1.下列命题中,是真命题的是()A.内错角相等B.同角的余角相等C.相等的角是对顶角D.互补的角是邻补角2.2的算术平方根是()A. B.2 C. D.3.如图,根据下列某个条件,可以得到,则这个条件应该是()A.B.C.D.4.如图,在同一平面内,,,垂足为O,则OA与OB重合的理由是()A.两点确定一条直线B.垂线段最短C.同一平面内,过一点有且只有一条直线与已知直线垂直D.已知直线的垂线只有一条5.已知点P在第四象限,且到x轴的距离为3,到y轴的距离为2,则点P的坐标一定是()A. B. C. D.6.若整数x满足,则x的值是()A.8B.9C.10D.117.如图是一个无理数生成器的工作流程图,根据该流程图,下面说法:①当输出值y为时,输入值x为3或9;②当输入值x为16时,输出值y为;③对于任意的正无理数y,都存在正整数x,使得输入x后能够输出y;④存在这样的正整数x,输入x之后,该生成器能够一直运行,但始终不能输出y值.其中错误的是()A.①②B.②④C.①④D.①③8.如图,直线,分别与直线l交于点A,B,把一块含角的三角尺按如图所示的位置摆放,若,则的度数是()A.B.C.D.9.有一列数按一定规律排列:,…,则第n个数是()A. B.C. D.10.如图,在平面直角坐标中,动点M从点出发,按图中箭头所示方向依次运动,第1次运动到点,第2次运动到点,第3次运动到点,…,按这样的运动规律,动点M第2024次运动到点()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。

11.在平面直角坐标系中,将点向下平移3个单位长度,得到的点的坐标为______.12.比较大小:______填“>”,“<”或“=”13.已知一个角的两边分别垂直于另一个角的两边,且这两个角的差是,则这两个角的度数分别是______.14.已知,请完成以下问题:如图1,、、、、的度数之间的等量关系是______;如图2,,,,,则______.三、计算题:本大题共1小题,共8分。

最新七年级下册期中数学试题(有答案)

最新七年级下册期中数学试题(有答案)

七年级(下)期中数学试卷一、选择题(每小题2分,共20分)下列各小题均有四个答案,其中只有一个是正确的1.下列方程中,不是一元一次方程的是()A.2x﹣3=5B.3a﹣6=4a﹣8C.x=0D.+1=02.方程3x+1=m+4的解是x=2,则m的值是()A.4B.5C.6D.73.把方程﹣去分母,正确的是()A.3x﹣(x﹣1)=1B.3x﹣x﹣1=1C.3x﹣x﹣1=6D.3x﹣(x﹣1)=64.方程kx+3y=5有一组解是,则k的相反数是()A.1B.﹣1C.0D.25.若单项式2a x﹣2b与﹣3a3b3﹣y是同类项,则x、y分别是()A.5和3B.5和2C.4和3D.4和26.若a<b,则下面可能错误的变形是()A.6a<6b B.a+3<b+4C.ac+3<bc+3D.﹣7.一个两位数,十位数字与个位数字和为6,这样的两位数中,是正整数的有()A.6个B.5个C.3个D.无数个8.某班学生分组,若每组7人,则有2人分不到组里;若每组8人,则最后一组差4人,若设计划分x组,则可列方程为()A.7x+2=8x﹣4B.7x﹣2y=8x+4C.7x+2=8x+4D.7x﹣2y=8x﹣49.如图所示,小刚手拿20元钱正在和售货员对话,请你仔细看图,1听果奶、1听可乐的单价分别是()A.3元,3.5元B.3.5元,3元C.4元,4.5元D.4.5元,4元10.在如图的2018年4月的月历表中任意框出表中竖上的三个相邻的数和横排中三个相邻的数.这六个数的和可能是()星期一星期二星期三星期四星期五星期六星期日123456789101112131415161718192021222324252627282930A.98B.99C.100D.101二、填空题(每小题3分,共24分)11.若代数式4x+13的值不小于代数式2x﹣1的值,则x的取值范围是.12.在2x+3y=3中,若用y表示x,则x=.13.不等式5x+14≥0的负整数解是.14.方程mx+ny=10有两组解和,则2m﹣n2=.15.若方程组的解也是x+y=1的一个解,则a=.16.如图所示,8个相同的长方形地砖拼成一个大长方形,则每块小长方形地砖的周长是.17.用白铁皮做罐头盒,每张铁皮可制盒身25个,或制盒底40个,一个盒身可以和两个盒底可制成一个罐头盒.现有36张白铁皮,设用x张制盒身,y张制盒底,恰好配套制成罐头盒,根据题意,可列方程组.18.已知方程组和方程组有相同的解,则a2﹣b2的值为.三、解答题(本大题共8小题满分56分)19.(6分)解方程:.20.(6分)解不等式3(x﹣1)<4(x﹣)﹣3,并把它的解集在数轴上表示出来.21.(6分)某商场把一个双肩背的书包按进价提高60%标价,然后再按8折(标价的80%)出售,这样商场每卖出一个书包就可赢利14元.这种书包的进价是多少元?22.(6分)解方程组:.23.(7分)满足方程组的x和y的值之和是2,求k的值.24.(8分)若不等式5(x﹣2)+8≤6(x﹣1)+7的最小整数解是方程3x﹣ax=﹣3的解,求﹣|10﹣a2|的值.25.(8分)去年,某学校积极组织捐款支援地震灾区,七年级(1)班55名同学共捐款274元,捐款情况如下表.表中捐款2元和5元的人数不小心被墨水污染看不清楚,请你用所学方程的知识求出捐款2元和5元的人数.26.(9分)合肥某单位计划组织员工外出旅游,人数估计在10~25人之间.甲、乙两旅行社的服务质量都较好,且旅游的价格都是每人200元.该单位联系时,甲旅行社表示可以给予每位旅客7.5折优惠,乙旅行社表示可免去一带队领导的旅游费用,其他游客8折优惠.问该单位怎样选择,可使其支付的旅游总费用较少?七年级(下)期中数学试卷参考答案与试题解析一、选择题(每小题2分,共20分)下列各小题均有四个答案,其中只有一个是正确的1.下列方程中,不是一元一次方程的是()A.2x﹣3=5B.3a﹣6=4a﹣8C.x=0D.+1=0【分析】根据一元一次方程的定义判断即可;【解答】解:A、该方程符合一元一次方程的定义,故本选项正确;B、该方程化简后符合一元一次方程的定义,故本选项正确;C、该方程符合一元一次方程的定义,故本选项正确;D、该方程为分式方程,故本选项错误;故选:D.【点评】本题主要考查了一元一次方程的一般形式,只含有一个未知数,且未知数的指数是1.2.方程3x+1=m+4的解是x=2,则m的值是()A.4B.5C.6D.7【分析】由x=2为方程的解,将x=2代入方程即可求出m的值.【解答】解:将x=2代入方程得:6+1=m+4,解得:m=6.故选:C.【点评】此题考查了一元一次方程的解,方程的解即为能使方程左右两边相等的未知数的值.3.把方程﹣去分母,正确的是()A.3x﹣(x﹣1)=1B.3x﹣x﹣1=1C.3x﹣x﹣1=6D.3x﹣(x﹣1)=6【分析】去分母的方法是方程两边同时乘以各分母的最小公倍数6,在去分母的过程中注意分数线起到括号的作用,以及去分母时不能漏乘没有分母的项.【解答】解:方程两边同时乘以6得:3x﹣(x﹣1)=6.故选:D.【点评】在去分母的过程中注意分数线起到括号的作用,并注意不能漏乘没有分母的项.4.方程kx+3y=5有一组解是,则k的相反数是()A.1B.﹣1C.0D.2【分析】将x=2、y=1代入kx+3y=5求出k的值,从而得出答案.【解答】解:将x=2、y=1代入kx+3y=5,得:2k+3=5,解得:k=1,所以k的相反数为﹣1,故选:B.【点评】本题主要考查二元一次方程的解,解题的关键是掌握使二元一次方程两边的值相等的两个未知数的值,叫做二元一次方程的解.5.若单项式2a x﹣2b与﹣3a3b3﹣y是同类项,则x、y分别是()A.5和3B.5和2C.4和3D.4和2【分析】根据同类项的定义建立方程求解即可得出结论.【解答】解:∵单项式2a x﹣2b与﹣3a3b3﹣y是同类项,∴x﹣2=3,3﹣y=1,∴x=5,y=2,故选:B.【点评】此题主要考查了同类项的意义,解简单的一次方程,建立方程求解是解本题的关键.6.若a<b,则下面可能错误的变形是()A.6a<6b B.a+3<b+4C.ac+3<bc+3D.﹣【分析】根据不等式的基本性质对各选项分析后利用排除法求解.【解答】解:A、不等号的方向不变,故本选项正确;B、不等式小的一边加上3,大的一边加上4,不等号方向改变,故本选项正确;C、对不等式两边都乘以c,再加上3,不等式不一定还成立,故本选项错误;D、不等式两边都除以﹣2,不等号方向改变,故本选项正确.故选:C.【点评】主要考查不等式的基本性质,需要熟练掌握并灵活运用.7.一个两位数,十位数字与个位数字和为6,这样的两位数中,是正整数的有()A.6个B.5个C.3个D.无数个【分析】可以设两位数的个位数为x,十位为y,根据两数之和为6,且xy为整数,分别讨论两未知数的取值即可.注意不要漏解.【解答】解:设两位数的个位数为x,十位为y,根据题意得:x+y=6,∵xy都是整数,∴当x=0时,y=6,两位数为60;当x=1时,y=5,两位数为51;当x=2时,y=4,两位数为42;当x=3时,y=3,两位数为33;当x=4时,y=2,两位数为24;当x=5时,y=1,两位数为15;则此两位数可以为:60、51、42、33、24、15,共6个,故选:A.【点评】本题考查了二元一次方程的应用,解题的关键在于根据未知数的整数性质讨论未知数的具体值,注意不要漏掉两位数的个位数可以为0的情况.8.某班学生分组,若每组7人,则有2人分不到组里;若每组8人,则最后一组差4人,若设计划分x组,则可列方程为()A.7x+2=8x﹣4B.7x﹣2y=8x+4C.7x+2=8x+4D.7x﹣2y=8x﹣4【分析】等量关系为:7×组数+2=8×组数﹣4,把相关数值代入即可.【解答】解:若每组有7人,实际人数为7x+2;若每组有8人,实际人数为8x﹣4,∴可列方程为7x+2=8x﹣4.故选:A.【点评】考查列一元一次方程;根据学生的实际人数得到等量关系是解决本题的关键.9.如图所示,小刚手拿20元钱正在和售货员对话,请你仔细看图,1听果奶、1听可乐的单价分别是()A.3元,3.5元B.3.5元,3元C.4元,4.5元D.4.5元,4元【分析】设1听果奶为x元,1听可乐y元,由题意可得等量关系:①1听果奶的费用+4听可乐的费用=17元,②1听可乐的费用﹣1听果奶的费用=0.5元,根据等量关系列出方程组,再解即可.【解答】解:设1听果奶为x元,1听可乐y元,由题意得:,解得:,故选:A.【点评】此题主要考查了二元一次方程组的应用,关键是正确理解题意,找出题目中的等量关系,设出未知数,列出方程组.10.在如图的2018年4月的月历表中任意框出表中竖上的三个相邻的数和横排中三个相邻的数.这六个数的和可能是()星期一星期二星期三星期四星期五星期六星期日123456789101112131415161718192021222324252627282930A.98B.99C.100D.101【分析】设竖上的三个相邻的数分别为x﹣7,x,x+7,横排中三个相邻的数分别为y﹣1,y,y+1,则这六个数的和为3x+3y,然后对各选项进行判断.【解答】解:设竖上的三个相邻的数分别为x﹣7,x,x+7,横排中三个相邻的数分别为y﹣1,y,y+1,则这六个数的和为3x+3y,即3(x+y),99为3的整数倍,而98,100,101不是,故选:B.【点评】本题考查了一次方程(组)的应用:利用表中数据的排列规律合理设未知数是解决问题的关键.二、填空题(每小题3分,共24分)11.若代数式4x+13的值不小于代数式2x﹣1的值,则x的取值范围是x≥﹣7.【分析】先根据题意列出关于x的不等式,移项,合并同类项,把x的系数化为1即可.【解答】解:∵代数式4x+13的值不小于代数式2x﹣1的值,∴4x+13≥2x﹣1,移项得,4x﹣2x≥﹣1﹣13,合并同类项得,2x≥﹣14,把x的系数化为1得,x≥﹣7.故答案为:x≥﹣7.【点评】本题考查的是解一元一次不等式,熟知解一元一次不等式的基本步骤是解答此题的关键.12.在2x+3y=3中,若用y表示x,则x=.【分析】根据移项、系数化为1,可得答案.【解答】解:2x+3y=3,移项,得2x=3﹣3y,系数化为1,得x=.故答案为:.【点评】本题考查的是方程的基本运算技能:移项、合并同类项、系数化为1等,表示谁就该把谁放到等号的一边,其他的项移到另一边,然后合并同类项、系数化1就可用含y的式子表示x的形式.13.不等式5x+14≥0的负整数解是﹣2,﹣1.【分析】先求出不等式的解集,再求出符合条件的负整数解即可.【解答】解:移项得,5x≥﹣14,系数化为1得,x≥﹣,在数轴上表示为:由数轴上x的取值范围可知,不等式5x+14≥0的负整数解是﹣2,﹣1共两个.【点评】此题比较简单,解答此题的关键是正确求出不等式的解集,借助于数轴便可直观解答.14.方程mx+ny=10有两组解和,则2m﹣n2=﹣80.【分析】把x与y的两对值代入方程得到关于m与n的方程组,求出方程组的解得到m与n的值,代入原式计算即可.【解答】解:根据题意得:,解得:,则2m﹣n2=20﹣100=﹣80.故答案为:﹣80.【点评】此题考查了二元一次方程的解,方程的解即为能使方程左右两边相等的未知数的值.15.若方程组的解也是x+y=1的一个解,则a=﹣.【分析】利用二元一次方程组的解的定义得到方程组的解也是方程组的解,然后解方程组后把x、y的值代入9﹣2a=10中可求出a的值,【解答】解:∵方程组的解也是x+y=1的一个解,∴方程组的解也是方程组的解,解方程组得,把x=3,y=﹣2代入3x+ay=10得9﹣2a=10,解得a=﹣.故答案为﹣.【点评】本题考查了解二元一次方程组:熟练掌握代入消元法和加减消元法解二元一次方程组.16.如图所示,8个相同的长方形地砖拼成一个大长方形,则每块小长方形地砖的周长是72cm.【分析】设小长方形的长为xcm,宽为ycm,由图形可列方程组,可求出x,y的值,即可求每块小长方形地砖的周长.【解答】解:设小长方形的长为xcm,宽为ycm根据题意可得:解得:∴小长方形地砖的周长=2(27+9)=72cm故答案为:72cm【点评】本题考查了二元一次方程组的应用,根据题意列出正确的方程组是本题的关键.17.用白铁皮做罐头盒,每张铁皮可制盒身25个,或制盒底40个,一个盒身可以和两个盒底可制成一个罐头盒.现有36张白铁皮,设用x张制盒身,y张制盒底,恰好配套制成罐头盒,根据题意,可列方程组.【分析】根据题意可以找出题目中的等量关系,列出相应的方程组,从而可以解答本题.【解答】解:由题意可得,,故答案为:.【点评】本题考查由实际问题抽象出二元一次方程组,解答本题的关键是明确题意,列出相应的方程组.18.已知方程组和方程组有相同的解,则a2﹣b2的值为﹣5.【分析】根据方程组同解得出,解之求得x、y的值,代入另外两个方程得出a+b、a﹣b 的值,代入计算可得.【解答】解:根据题意,得:,解得:,则,∴a2﹣b2=(a+b)(a﹣b)=1×(﹣5)=﹣5,故答案为:﹣5.【点评】此题考查了二元一次方程组的解,二元一次方程组的两个方程的公共解叫做二元一次方程组的解.二元一次方程组的解必须同时满足方程组中的两个方程.三、解答题(本大题共8小题满分56分)19.(6分)解方程:.【分析】这是一个带分母的方程,所以要先去分母,再去括号,最后移项,化系数为1,从而得到方程的解.【解答】解:去分母得:3(1﹣3x)=2﹣6x,去括号得:3﹣9x=2﹣6x,移项合并得:﹣3x=﹣1,系数化为1得:得x=.【点评】本题考查了解带分母的一元一次方程.去分母时,方程两端同乘各分母的最小公倍数时,不要漏乘没有分母的项,同时要把分子(如果是一个多项式)作为一个整体加上括号.20.(6分)解不等式3(x﹣1)<4(x﹣)﹣3,并把它的解集在数轴上表示出来.【分析】去括号、移项、合并同类项,化系数为1,依此求解不等式,再把它的解集在数轴上表示出来即可.【解答】解:3(x﹣1)<4(x﹣)﹣3,去括号:3x﹣3<4x﹣2﹣3,移项得:3x﹣4x<﹣2﹣3+3,合并同类项得﹣x<﹣2,未知数的系数化为1:x>2,所以原不等式的解是:x>2,在数轴上表示为:【点评】考查了解一元一次不等式,在数轴上表示不等式的解集,根据不等式的性质解一元一次不等式的步骤:①去分母;②去括号;③移项;④合并同类项;⑤化系数为1.21.(6分)某商场把一个双肩背的书包按进价提高60%标价,然后再按8折(标价的80%)出售,这样商场每卖出一个书包就可赢利14元.这种书包的进价是多少元?【分析】设这种书包的进价是x元,其标价是(1+60%)x元,根据“按标价8折(标价的80%)出售,这样商场每卖出一个书包就可赢利14元”,列出关于x的一元一次方程,解之即可.【解答】解:设这种书包的进价是x元,其标价是(1+60%)x元,由题意得:(1+60%)x•80%﹣x=14,解得:x=50,答:这种书包的进价是50元.【点评】本题考查一元一次方程的应用,正确找出等量关系,列出一元一次方程是解题的关键.22.(6分)解方程组:.【分析】方程组整理后,利用加减消元法求出解即可.【解答】解:方程组整理得:,②﹣①得:3y=﹣3,即y=﹣1,把y=﹣1代入②得:x=4,则方程组的解为.【点评】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.23.(7分)满足方程组的x和y的值之和是2,求k的值.【分析】方程组消去k表示出x+y,代入x+y=2中计算即可求出k的值.【解答】解:,②×2﹣①得:x+y=5﹣5k,代入x+y=2得:5﹣5k=2,解得:k=.【点评】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.24.(8分)若不等式5(x﹣2)+8≤6(x﹣1)+7的最小整数解是方程3x﹣ax=﹣3的解,求﹣|10﹣a2|的值.【分析】解不等式求出x的范围,从而得出不等式的最小整数解,代入方程求得a的值,最后代入代数式求值即可.【解答】解:去括号,得:5x﹣10+8≤6x﹣6+7,移项,得:5x﹣6x≤﹣6+7+10﹣8,合并同类项,得:﹣x≤3,系数化为1,得:x≥﹣3,则该不等式的最小整数解为x=﹣3,根据题意,将x=﹣3代入方程3x﹣ax=﹣3,得:﹣9+3a=﹣3,解得:a=2,则原式=﹣|10﹣4|=﹣6.【点评】本题考查的是解一元一次不等式和一元一次方程及代数式的求值,正确求出每一个不等式解集是基础得出a的值是解答此题的关键.25.(8分)去年,某学校积极组织捐款支援地震灾区,七年级(1)班55名同学共捐款274元,捐款情况如下表.表中捐款2元和5元的人数不小心被墨水污染看不清楚,请你用所学方程的知识求出捐款2元和5元的人数.【分析】设捐款2元和5元的学生人数分别为x人、y人,根据总人数是55人,捐款数是274元,列出方程组,求出方程组的解即可.【解答】解:设捐款2元和5元的学生人数分别为x人、y人,依题意得:,,解方程组,得,答:捐款2元的有4人,捐款5元的有38人.【点评】此题考查了二元一次方程组的应用,解题关键是弄清题意,合适的等量关系,列出方程组,本题的等量关系是总人数=1元的人数+2元的人数+5元的人数+10元的人数,总钱数=捐1元的总数+捐2元的总数+捐5元的总数+捐10元的总数.26.(9分)合肥某单位计划组织员工外出旅游,人数估计在10~25人之间.甲、乙两旅行社的服务质量都较好,且旅游的价格都是每人200元.该单位联系时,甲旅行社表示可以给予每位旅客7.5折优惠,乙旅行社表示可免去一带队领导的旅游费用,其他游客8折优惠.问该单位怎样选择,可使其支付的旅游总费用较少?【分析】设人数为x,则可得10≤x≤25,从而可得甲旅行社需要花费:200x×0.75,乙旅行社:200(x﹣1)×0.8,让两式相等可求出人数x为何值时两家相等,从而据此讨论x取其他值的情况.【解答】解:设该单位有x人外出旅游,则选择甲旅行社的总费用为0.75×200x=150x(元),选择乙旅行社的总费用为0.8×200(x﹣1)=(160x﹣160)(元).①当150x<160x﹣160时,解得x>16,即当人数在17~25人时,选择甲旅行社总费用较少;②当150x=160x﹣160时,解得x=16,即当人数为16人时,选择甲、乙旅行社总费用相同;③当150x>160x﹣160时,解得x<16,即当人数为10~15人时,选择乙旅行社总费用较少.【点评】本题考查一元一次不等式的应用,与实际结合得比较紧密,解答本题需要先了解两家花费一样的人数的值,这是关键.。

新部编版七年级数学下册期中试卷及答案【可打印】

新部编版七年级数学下册期中试卷及答案【可打印】

新部编版七年级数学下册期中试卷及答案【可打印】 班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.若m >n ,则下列不等式正确的是( )A .m ﹣2<n ﹣2B .44m n >C .6m <6nD .﹣8m >﹣8n2.某种衬衫因换季打折出售,如果按原价的六折出售,那么每件赔本40元;按原价的九折出售,那么每件盈利20元,则这种衬衫的原价是( )A .160元B .180元C .200元D .220元3.如图,直线,a b 被,c d 所截,且//a b ,则下列结论中正确的是( )A .12∠=∠B .34∠=∠C .24180∠+∠=D .14180∠+∠=4.若关于x 的不等式3x-2m ≥0的负整数解为-1,-2,则m 的取值范围是( )A .96m 2-≤<-B .96m 2-<≤-C .9m 32-≤<-D .9m 32-<≤- 5.已知点P(a+5,a-1)在第四象限,且到x 轴的距离为2,则点P 的坐标为( )A .(4,-2)B .(-4,2)C .(-2,4)D .(2,-4)6.当1<a<2时,代数式|a -2|+|1-a|的值是( )A .-1B .1C .3D .-37.如图,AB ∥CD ,点E 在线段BC 上,若∠1=40°,∠2=30°,则∠3的度数是( )A .70°B .60°C .55°D .50°8.已知20192019a x =+,20192020b x =+,20192021c x =+,则222a b c ab ac bc ++---的值为( )A .0B .1C .2D .39.如图,a ,b ,c 在数轴上的位置如图所示,化简22()a a c c b -++-的结果是( )A .2c ﹣bB .﹣bC .bD .﹣2a ﹣b10.等腰三角形的一个角是80°,则它的顶角的度数是( )A .80°B .80°或20°C .80°或50°D .20°二、填空题(本大题共6小题,每小题3分,共18分)1.若a ,b 互为相反数,则a 2﹣b 2=________.2.如图,已知AB ∥CD ,BE 平分∠ABC ,DE 平分∠ADC ,∠BAD =70°,∠BCD =40°,则∠BED 的度数为________.3.有4根细木棒,长度分别为2cm 、3cm 、4cm 、5cm ,从中任选3根,恰好能搭成一个三角形的概率是__________.4.分解因式:23m m -=________.5.如图,所有三角形都是直角三角形,所有四边形都是正方形,已知S 1=4,S 2=9,S 3=8,S 4=10,则S=________.6.利用1个a ×a 的正方形,1个b ×b 的正方形和2个a ×b 的矩形可拼成一个正方形(如图所示),从而可得到因式分解的公式________.三、解答题(本大题共6小题,共72分)1.解方程组:10216x y x y +=⎧⎨+=⎩2.已知x =3是方程3[(3x +1)+()14m x -]=2的解,n 满足关系式|2n +m |=1,求m +n 的值.3.如图,在四边形OBCA 中,OA ∥BC ,∠B=90°,OA=3,OB=4.(1)若S 四边形AOBC =18,求BC 的长;(2)如图1,设D 为边OB 上一个动点,当AD ⊥AC 时,过点A 的直线PF 与∠ODA 的角平分线交于点P ,∠APD=90°,问AF 平分∠CAE 吗?并说明理由;(3)如图2,当点D 在线段OB 上运动时,∠ADM=100°,M 在线段BC 上,∠DAO 和∠BMD 的平分线交于H 点,则点D 在运动过程中,∠H 的大小是否变化?若不变,求出其值;若变化,说明理由.4.如图,在三角形ABC中,CD平分∠ACB,DE∥BC,∠AED=80°,求∠EDC的度数.5.学校开展“书香校园”活动以来,受到同学们的广泛关注,学校为了解全校学生课外阅读的情况,随机调查了部分学生在一周内借阅图书的次数,并制成如图不完整的统计表.学生借阅图书的次数统计表借阅图书的次数0次1次2次3次4次及以上人数7 13 a 10 3请你根据统计图表中的信息,解答下列问题:()1a=______,b=______.()2该调查统计数据的中位数是______,众数是______.()3请计算扇形统计图中“3次”所对应扇形的圆心角的度数;()4若该校共有2000名学生,根据调查结果,估计该校学生在一周内借阅图书“4次及以上”的人数.6.某天小明骑自行车上学,途中因自行车发生故障,修车耽误了一段时间后继续骑行,按时赶到了学校,如图所示是小明从家到学校这一过程中所走的路程s(米)与时间 t(分)之间的关系.(1)小明从家到学校的路程共米,从家出发到学校,小明共用了分钟;(2)小明修车用了多长时间?(3)小明修车以前和修车后的平均速度分别是多少?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、B2、C3、B4、D5、A6、B7、A8、D9、A10、B二、填空题(本大题共6小题,每小题3分,共18分)1、02、55°3、3 44、(3)m m-5、316、a2+2ab+b2=(a+b)2三、解答题(本大题共6小题,共72分)1、64 xy=⎧⎨=⎩2、0或-13、(1)6;(2)略;(3)略.4、∠EDC=40°5、()117、20;()22次、2次;()372;()4120人.6、(1)2000米,20分钟;(2)5;(3) 100(m/min),200(m/min)。

完整版(完整版)七年级数学下册期中试卷及答案 - 百度文库

完整版(完整版)七年级数学下册期中试卷及答案 - 百度文库

完整版(完整版)七年级数学下册期中试卷及答案 - 百度文库 一、选择题 1.化简4的结果为()A .16B .4C .2D .2±2.下列四种汽车车标,可以看做是由某个基本图案经过平移得到的是( )A .B .C .D .3.在平面直角坐标系中位于第二象限的点是( )A .()2,3B .()2,3-C .()2,3-D .()2,3-- 4.下列命题:①过直线外一点有且只有一条直线与已知直线平行;②在同一平面内,过一点有且只有一条直线与已知直线垂直;③图形平移的方向一定是水平的;④内错角相等.其中真命题为( )A .①②B .①④C .①②③D .①②④ 5.如果,直线//AB CD ,65A ∠=︒,则EFC ∠等于( )A .105︒B .115︒C .125︒D .135︒ 6.下列运算正确的是( ) A .32-=﹣6 B .31182-=- C .4=±2 D .25×32=5107.如图,AB //CD ,AD ⊥AC ,∠ACD =53°,则∠BAD 的度数为( )A .53°B .47°C .43°D .37°8.在平面直角坐标系xOy 中,对于点(,)P x y ,我们把点(1,1)P y x -++叫做点P 的伴随点,已知点1A 的伴随点为2A ,点2A 的伴随点为3A ,点3A 的伴随点为4A ,…,这样依次得点A 1,A 2,A 3,…,n A ,…,若点1A 的坐标为(3)1,,则点A 2021的坐标为( ) A .(0,2)- B .(0)4, C .(3)1, D .(3,1)-二、填空题9.若102.0110.1=,则± 1.0201=_________.10.点A (2,4)关于x 轴对称的点的坐标是_____.11.如图,点D 是△ABC 三边垂直平分线的交点,若∠A =64°,则∠D =_____°.12.如图,AB ∥DE ,AD ⊥AB ,AE 平分∠BAC 交BC 于点F ,如果∠CAD =24°,则∠E =___°.13.如图,将一条对边互相平行的长方形纸带进行两次折叠,折痕分别为AB 、CD ,若//CD BE ,且156∠=︒,则2∠=_____.14.已知M 是满足不等式36a <<N 是满足不等式372-大整数,则M +N 的平方根为________.15.第二象限内的点()P x,y 满足x =9,2y =4,则点P 的坐标是___. 16.如图,在平面直角坐标系中,将正方形①依次平移后得到正方形②,③,④…;相应地,顶点A 依次平移得到A 1,A 2,A 3,…,其中A 点坐标为(1,0),A 1坐标为(0,1),则A20的坐标为__________.三、解答题17.计算:(1)31 81624-+-;(2)1333⎛⎫+⎪⎝⎭.18.已知a+b=5,ab=2,求下列各式的值.(1)a2+b2;(2)(a﹣b)2.19.如图,已知∠1+∠AFE=180°,∠A=∠2,求证:∠A=∠C+∠AFC证明:∵∠1+∠AFE=180°∴ CD∥EF(,)∵∠A=∠2 ∴()(,)∴AB∥CD∥EF(,)∴∠A= ,∠C= ,(,)∵∠AFE =∠EFC+∠AFC,∴ = .20.在如图的方格中,每个小方格都是边长为1个单位长度的正方形,三角形ABC的三个顶点都在格点(小方格的顶点)上,(1)请建立适当的平面直角坐标系,使点A,C的坐标分别为(﹣2,﹣1),(1,﹣1),并写出点B的坐标;(2)在(1)的条件下,将三角形ABC先向右平移4个单位长度,再向上平移2个单位长度后可得到三角形A'B'C',请在图中画出平移后的三角形A'B'C',并分别写出点A',B',C'的坐标.21.已知55-的整数部分为a,小数部分为b.(1)求a,b的值:(2)若c是一个无理数,且乘积bc是一个有理数,你能写出数c的值吗?并说明理由.22.(1)如图,分别把两个边长为1cm的小正方形沿一条对角线裁成4个小三角形拼成一个大正方形,则大正方形的边长为_______cm;π,设圆的周长为C圆,正方形的周长(2)若一个圆的面积与一个正方形的面积都是22cm为C正,则C圆_____C正(填“=”或“<”或“>”号);(3)如图,若正方形的面积为2400cm,李明同学想沿这块正方形边的方向裁出一块面积为2300cm的长方形纸片,使它的长和宽之比为3:2,他能裁出吗?请说明理由?23.阅读下面材料:小亮同学遇到这样一个问题:已知:如图甲,AB//CD,E为AB,CD之间一点,连接BE,DE,得到∠BED.求证:∠BED=∠B+∠D.(1)小亮写出了该问题的证明,请你帮他把证明过程补充完整.证明:过点E作EF//AB,则有∠BEF=.∵AB//CD,∴//,∴∠FED=.∴∠BED=∠BEF+∠FED=∠B+∠D.(2)请你参考小亮思考问题的方法,解决问题:如图乙,已知:直线a//b,点A,B在直线a上,点C,D在直线b上,连接AD,BC,BE平分∠ABC,DE平分∠ADC,且BE,DE所在的直线交于点E.①如图1,当点B在点A的左侧时,若∠ABC=60°,∠ADC=70°,求∠BED的度数;②如图2,当点B在点A的右侧时,设∠ABC=α,∠ADC=β,请你求出∠BED的度数(用含有α,β的式子表示).【参考答案】一、选择题1.C解析:C【分析】根据算术平方根的的性质即可化简.【详解】4=2故选C.【点睛】此题主要考查算术平方根,解题的关键是熟知算术平方根的性质.2.B【分析】根据平移变换的性质,逐一判断选项,即可得到答案.【详解】A. 可以经过轴对称变换得到,不能经过平移变换得到,故本选项不符合题意;B. 可以经过平移变换得到,故本选项符合题意;C解析:B【分析】根据平移变换的性质,逐一判断选项,即可得到答案.【详解】A. 可以经过轴对称变换得到,不能经过平移变换得到,故本选项不符合题意;B. 可以经过平移变换得到,故本选项符合题意;C. 可以经过轴对称变换得到,不能经过平移变换得到,故本选项不符合题意;D. 可以经过轴对称变换得到,不能经过平移变换得到,故本选项不符合题意;故选B.【点睛】本题主要考查平移变换的性质,掌握平移变换的性质,是解题的关键.3.B【分析】第二象限的点的横坐标小于0,纵坐标大于0,据此解答即可.【详解】解:根据第二象限的点的坐标的特征:横坐标符号为负,纵坐标符号为正,各选项中只有B (-2,3)符合,故选:B .【点睛】本题主要考查了平面直角坐标系中各象限的点的坐标的符号特点,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-). 4.A【分析】根据两直线的位置关系即可判断.【详解】①过直线外一点有且只有一条直线与已知直线平行,正确;②在同一平面内,过一点有且只有一条直线与已知直线垂直,正确;③图形平移的方向不一定是水平的,故错误;④两直线平行,内错角才相等,故错误.故①②正确,故选A.【点睛】此题主要考查两直线的位置关系,解题的关键是熟知两直线的位置关系.5.B【分析】先求∠DFE 的度数,再利用平角的定义计算求解即可.【详解】∵AB ∥CD ,∴∠DFE =∠A =65°,∴∠EFC =180°-∠DFE =115°,故选B .【点睛】本题考查了平行线的性质,平角的定义,熟练掌握平行线的性质是解题的关键. 6.B【分析】分别根据负整数指数幂的运算、立方根和算术平方根的定义及二次根式的乘法法则逐一计算可得.【详解】A 、3311228-==,此选项计算错误;B 12-,此选项计算正确;C 2=,此选项计算错误;D 、故选:B .【点睛】本题考查了负整数指数幂、立方根和算术平方根及二次根式的乘法,熟练掌握相关的运算法则是解题的关键.7.D【分析】因为AD ⊥AC ,所以∠CAD =90°.由AB //CD ,得∠BAC =180°﹣∠ACD ,进而求得∠BAD 的度数.【详解】解:∵AB //CD ,∴∠ACD +∠BAC =180°.∴∠CAB =180°﹣∠ACD =180°﹣53°=127°.又∵AD ⊥AC ,∴∠CAD =90°.∴∠BAD =∠CAB ﹣∠CAD =127°﹣90°=37°.故选:D .【点睛】本题考查了平行线的性质,垂线的定义,掌握平行线的性质是解题的关键. 8.C【分析】根据“伴随点”的定义依次求出各点,得出每4个点为一个循环组依次循环,用2021除以4,根据余数的情况确定点A2021的坐标即可.【详解】解:∵点的坐标为,∴点的伴随点的坐标为,即解析:C【分析】根据“伴随点”的定义依次求出各点,得出每4个点为一个循环组依次循环,用2021除以4,根据余数的情况确定点A 2021的坐标即可.【详解】解:∵点1A 的坐标为(3)1,, ∴点1A 的伴随点2A 的坐标为(11,31)-++,即(0,4) ,同理得:345(3,1),(0,2),(3,1),A A A --∴每4个点为一个循环组依次循环,∵202145051÷=,∴A2021的坐标与A的坐标相同,1即A2021的坐标为(3)1,,故选:C.【点睛】本题主要考查平面直角坐标系中探索点的变化规律问题,解题关键是读懂题目,理解“伴随点”的定义,并能够得出每4个点为一个循环组依次循环.二、填空题9.±1.01【分析】根据算术平方根的意义,把被开方数的小数点进行移动(每移动两位,结果移动一位),进行填空即可.【详解】解:∵,∴,故答案为±1.01.【点睛】本题考查了算术平方根的移解析:±1.01【分析】根据算术平方根的意义,把被开方数的小数点进行移动(每移动两位,结果移动一位),进行填空即可.【详解】解:∵10.1=,∴ 1.01=±,故答案为±1.01.【点睛】本题考查了算术平方根的移动规律的应用,能根据移动规律填空是解此题的关键.10.(2,﹣4)【分析】根据关于x轴对称的点的坐标特点:横坐标不变,纵坐标互为相反数,可直接得到答案.【详解】点A(2,4)关于x轴对称的点的坐标是(2,﹣4),故答案为(2,﹣4).【点睛解析:(2,﹣4)【分析】根据关于x轴对称的点的坐标特点:横坐标不变,纵坐标互为相反数,可直接得到答案.【详解】点A(2,4)关于x轴对称的点的坐标是(2,﹣4),故答案为(2,﹣4).【点睛】此题主要考查了关于x轴对称的点的坐标,关键是掌握点的坐标的变化规律.11.128°【解析】【分析】由点D为三边垂直平分线交点,得到点D为△ABC的外心,根据同弧所对的圆周角等于圆心角的一半即可得到结果【详解】∵D为△ABC三边垂直平分线交点,∴点D为△ABC的解析:128°【解析】【分析】由点D为三边垂直平分线交点,得到点D为△ABC的外心,根据同弧所对的圆周角等于圆心角的一半即可得到结果【详解】∵D为△ABC三边垂直平分线交点,∴点D为△ABC的外心,∴∠D=2∠A∵∠A=64°∴∠D=128°故∠D的度数为128°【点睛】此题考查线段垂直平分线的性质,解题关键在于根据同弧所对的圆周角等于圆心角的一半来解答12.33【分析】由题意易得∠BAD=90°,则有∠BAC=66°,然后根据角平分线的定义可得∠BAE=33°,进而根据平行线的性质可求解.【详解】解:∵AD⊥AB,∴∠BAD=90°,∵∠C解析:33【分析】由题意易得∠BAD=90°,则有∠BAC=66°,然后根据角平分线的定义可得∠BAE=33°,进而根据平行线的性质可求解.【详解】解:∵AD⊥AB,∴∠BAD=90°,∵∠CAD=24°,∴∠BAC=66°,∵AE平分∠BAC,∴∠BAE=∠CAE=33°,∵AB∥DE,∴∠E=∠BAE=33°,故答案为33.【点睛】本题主要考查平行线的性质、角平分线的定义及垂线的定义,熟练掌握平行线的性质、角平分线的定义及垂线的定义是解题的关键.13.68°【分析】利用平行线的性质以及翻折不变性即可得到∠5=∠DCF=∠4=∠3=∠1=56°,进而得出∠2=68°.【详解】解:如图,延长BC到点F,∵纸带对边互相平行,∠1=56°,解析:68°【分析】利用平行线的性质以及翻折不变性即可得到∠5=∠DCF=∠4=∠3=∠1=56°,进而得出∠2=68°.【详解】解:如图,延长BC到点F,∵纸带对边互相平行,∠1=56°,∴∠4=∠3=∠1=56°,由折叠可得,∠DCF=∠5,∵CD∥BE,∴∠DCF=∠4=56°,∴∠5=56°,∴∠2=180°-∠DCF-∠5=180°-56°-56°=68°,故答案为:68°.【点睛】本题考查平行线的判定和性质,解题的关键是熟练掌握:两直线平行,同位角相等;两直线平行,内错角相等.14.±2【分析】首先估计出a的值,进而得出M的值,再得出N的值,再利用平方根的定义得出答案.【详解】解:∵M是满足不等式-的所有整数a的和,∴M=-1+0+1+2=2,∵N是满足不等式x≤的解析:±2【分析】首先估计出a的值,进而得出M的值,再得出N的值,再利用平方根的定义得出答案.【详解】解:∵M36a<a的和,∴M=-1+0+1+2=2,∵N是满足不等式x372-∴N=2,∴M+N的平方根为:4±2.故答案为:±2.【点睛】此题主要考查了估计无理数的大小,得出M ,N 的值是解题关键.15.(-9, 2)【分析】点在第二象限内,那么其横坐标小于,纵坐标大于,进而根据所给的条件判断具体坐标.【详解】∵点在第二象限,∴,,又∵,,∴,,∴点的坐标是.【点睛】本题主要考查解析:(-9, 2)【分析】点在第二象限内,那么其横坐标小于0,纵坐标大于0,进而根据所给的条件判断具体坐标.【详解】∵点()P x y ,在第二象限,∴0x <,0y >,又∵9x =,24y =,∴9x =-,2y =,∴点P 的坐标是()92-,. 【点睛】本题主要考查了绝对值的性质和有理数的乘方以及平面直角坐标系中第二象限的点的坐标的符号特点,记住各象限内点的坐标的符号是解决的关键.16.(-19,8)【分析】求出A3,A6,A9的坐标,观察得出A3n 横坐标为1−3n ,可求出A18的坐标,从而可得结论.【详解】解:观察图形可知:A3(−2,1),A6(−5,2),A9(−8,解析:(-19,8)【分析】求出A3,A6,A9的坐标,观察得出A3n横坐标为1−3n,可求出A18的坐标,从而可得结论.【详解】解:观察图形可知:A3(−2,1),A6(−5,2),A9(−8,3),•••,∵−2=1−3×1,−5=1−3×2,−8=1−3×3,∴A3n横坐标为1−3n,∴A18横坐标为:1−3×6=−17,∴A18(−17,6),把A18向左平移2个单位,再向上平移2个单位得到A20,∴A20(−19,8).故答案为:(−19,8).【点睛】本题主要考查坐标系中点、线段的平移规律.在平面直角坐标系中,图形的平移与图形上某点的平移相同.平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.三、解答题17.(1)0.5;(2)4【分析】(1)根据立方根,算术平方根的定义对各项进行化简,最后相加减即可;(2)根据实数的混合运算法则进行求解.【详解】解:(1);(2).【点睛】本题考查实数解析:(1)0.5;(2)4【分析】(1)根据立方根,算术平方根的定义对各项进行化简,最后相加减即可;(2)根据实数的混合运算法则进行求解.【详解】解:(13242=-+-0.5=;(231=+4=.【点睛】本题考查实数的运算,熟练掌握立方根,算术平方根的定义是解题的关键.18.(1)21;(2)17【分析】(1)根据完全平方公式变形,得到a2+b2=(a+b )2﹣2ab ,即可求解; (1)根据完全平方公式变形,得到(a ﹣b )2=a2+b2-2ab ,即可求解.【详解】解析:(1)21;(2)17【分析】(1)根据完全平方公式变形,得到a 2+b 2=(a +b )2﹣2ab ,即可求解;(1)根据完全平方公式变形,得到(a ﹣b )2=a 2+b 2-2ab ,即可求解.【详解】解:(1)∵a +b =5,ab =2,∴a 2+b 2=(a +b )2﹣2ab =52﹣2×2=21;(2))∵a +b =5,ab =2,∴(a ﹣b )2=a 2+b 2-2ab =21-2×2=17.【点睛】本题主要考查了完全平方公式,熟练掌握()2222a b a ab b +=±+ 及其变形公式是解题的关键.19.同旁内角互补两直线平行;AB ∥CD ;同位角相等,两直线平行;两条直线都与第三条直线平行,则这两直线也互相平行;∠AFE ,∠EFC ;两直线平行,内错角相等;∠A ,∠C+∠AFC .【分析】根据同旁解析:同旁内角互补两直线平行;AB ∥CD ;同位角相等,两直线平行;两条直线都与第三条直线平行,则这两直线也互相平行;∠AFE ,∠EFC ;两直线平行,内错角相等;∠A ,∠C +∠AFC .【分析】根据同旁内角互补,两直线平行可得 CD ∥EF ,根据∠A=∠2利用同位角相等,两直线平行,AB ∥CD ,根据平行同一直线的两条直线平行可得AB ∥CD ∥EF 根据平行线的性质可得∠A =∠AFE ,∠C =∠EFC ,根据角的和可得 ∠AFE =∠EFC +∠AFC 即可.【详解】证明:∵ ∠1+∠AFE =180°∴ CD ∥EF (同旁内角互补,两直线平行),∵∠A=∠2 ,∴( AB ∥CD ) (同位角相等,两直线平行),∴ AB ∥CD ∥EF (两条直线都与第三条直线平行,则这两直线也互相平行)∴ ∠A = ∠AFE ,∠C = ∠EFC ,(两直线平行,内错角相等)∵ ∠AFE =∠EFC +∠AFC ,∴ ∠A = ∠C +∠AFC .故答案为同旁内角互补两直线平行;AB∥CD;同位角相等,两直线平行;两条直线都与第三条直线平行,则这两直线也互相平行;∠AFE,∠EFC;两直线平行,内错角相等;∠A,∠C+∠AFC.【点睛】本题考查平行线的性质与判定,角的和差,掌握平行线的性质与判定是解题关键.20.(1)坐标系见解析,B(0,1);(2)画图见解析,A′(2,1),B′(4,3),C′(5,1)【分析】(1)根据A,C两点的坐标确定平面直角坐标系即可,根据点B的位置写出点B的坐标即可.(解析:(1)坐标系见解析,B(0,1);(2)画图见解析,A′(2,1),B′(4,3),C′(5,1)【分析】(1)根据A,C两点的坐标确定平面直角坐标系即可,根据点B的位置写出点B的坐标即可.(2)分别作出A′,B′,C′即可解决问题.【详解】解:(1)平面直角坐标系如图所示:B(0,1).(2)△A′B′C′如图所示.A′(2,1),B′(4,3),C′(5,1).【点睛】本题考查作图-平移变换,平面直角坐标系等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.21.(1);(2)或【分析】(1)先判断在哪两个整数之间,再得出整数部分和小数部分.(2)由的值,由平方差公式,得出的有理化因式即为.【详解】解:(1),,;(2),或.【点睛】本解析:(1)2,3==2)33a b--【分析】(15(2)由b的值,由平方差公式,得出b的有理化因式即为c.【详解】解:(1)23<,∴253<,∴2,3==a b(2)3b=-∴c=33c=-【点睛】本题考查了估计无理数的大小和有理数乘以无理数,是基础知识要熟练掌握.22.(1);(2);(3)不能裁剪出,详见解析【分析】(1)根据所拼成的大正方形的面积为2即可求得大正方形的边长;(2)由圆和正方形的面积公式可分别求的圆的半径及正方形的边长,进而可求得圆和正方形解析:(12)<;(3)不能裁剪出,详见解析【分析】(1)根据所拼成的大正方形的面积为2即可求得大正方形的边长;(2)由圆和正方形的面积公式可分别求的圆的半径及正方形的边长,进而可求得圆和正方形的周长,利用作商法比较这两数大小即可;(3)利用方程思想求出长方形的长边,与正方形边长比较大小即可;【详解】解:(1)∵小正方形的边长为1cm,∴小正方形的面积为1cm2,∴两个小正方形的面积之和为2cm2,即所拼成的大正方形的面积为2 cm2,∴,(2)∵22=,rππ∴r=∴2=2C r π=圆设正方形的边长为a∵22a π=, ∴a∴=4C a =正∴1C C =<圆正故答案为:<;(3)解:不能裁剪出,理由如下:∵长方形纸片的长和宽之比为3:2,∴设长方形纸片的长为3x ,宽为2x ,则32300x x ⋅=,整理得:250x =,∴22(3)9950450x x ==⨯=,∵450>400,∴22(3)20x >,∴320x >,∴长方形纸片的长大于正方形的边长,∴不能裁出这样的长方形纸片.【点睛】本题通过圆和正方形的面积考查了对算术平方根的应用,主要是对学生无理数运算及比较大小进行了考查.23.(1)∠B ,EF ,CD ,∠D ;(2)①65°;②180°﹣【分析】(1)根据平行线的判定定理与性质定理解答即可;(2)①如图1,过点E 作EF ∥AB ,当点B 在点A 的左侧时,根据∠ABC =60°,解析:(1)∠B ,EF ,CD ,∠D ;(2)①65°;②180°﹣1122a β+ 【分析】(1)根据平行线的判定定理与性质定理解答即可;(2)①如图1,过点E 作EF ∥AB ,当点B 在点A 的左侧时,根据∠ABC =60°,∠ADC =70°,参考小亮思考问题的方法即可求∠BED 的度数;②如图2,过点E 作EF ∥AB ,当点B 在点A 的右侧时,∠ABC =α,∠ADC =β,参考小亮思考问题的方法即可求出∠BED 的度数.【详解】解:(1)过点E 作EF ∥AB ,则有∠BEF =∠B ,∵AB ∥CD ,∴EF ∥CD ,∴∠FED =∠D ,∴∠BED =∠BEF +∠FED =∠B +∠D ;故答案为:∠B ;EF ;CD ;∠D ;(2)①如图1,过点E 作EF ∥AB ,有∠BEF =∠EBA .∵AB ∥CD ,∴EF ∥CD .∴∠FED =∠EDC .∴∠BEF +∠FED =∠EBA +∠EDC .即∠BED =∠EBA +∠EDC ,∵BE 平分∠ABC ,DE 平分∠ADC ,∴∠EBA =12∠ABC =30°,∠EDC =12∠ADC =35°,∴∠BED =∠EBA +∠EDC =65°.答:∠BED 的度数为65°;②如图2,过点E 作EF ∥AB ,有∠BEF +∠EBA =180°.∴∠BEF =180°﹣∠EBA ,∵AB ∥CD , ∴EF ∥CD . ∴∠FED =∠EDC . ∴∠BEF +∠FED =180°﹣∠EBA +∠EDC .即∠BED =180°﹣∠EBA +∠EDC ,∵BE 平分∠ABC ,DE 平分∠ADC ,∴∠EBA =12∠ABC =12α,∠EDC =12∠ADC =12β, ∴∠BED =180°﹣∠EBA +∠EDC =180°﹣1122a β+. 答:∠BED 的度数为180°﹣1122a β+.【点睛】本题考查了平行线的判定与性质,解决本题的关键是熟练掌握平行线的判定与性质.。

2023-2024学年江苏省南京市七年级(下)期中数学试卷+答案解析

2023-2024学年江苏省南京市七年级(下)期中数学试卷+答案解析

2023-2024学年江苏省南京市七年级(下)期中数学试卷一、选择题:本题共6小题,每小题3分,共18分。

在每小题给出的选项中,只有一项是符合题目要求的。

1.计算的结果是()A. B. C. D.2.将一把直尺与一块三角板如图放置,若,则的度数是()A. B. C. D.3.在长方形ABCD中,放入5个形状大小相同的小长方形空白部分,其中,求阴影部分图形的总面积()A. B. C. D.4.一个多边形的边数每增加一条,这个多边形的()A.内角和增加B.外角和增加C.对角线增加一条D.内角和增加5.某市为了方便市民绿色出行,推出了共享单车服务.图①是某品牌共享单车放在水平地面的实物图,图②是其示意图,其中AB,CD都与地面l平行,,当为度时,AM与CB平行.()A.16B.60C.66D.1146.如图,直线,点E在CD上,点O、点F在AB上,的角平分线OG交CD于点G,过点F作于点H,已知,则的度数为()A. B. C. D.二、填空题:本题共10小题,每小题3分,共30分。

7.若有意义,则m取值范围是___.8.如图所示,的外角等于,,则的度数是______.9.如图,直角三角形ABC的周长为2022,在其内部有5个小直角三角形,则这5个小直角三角形周长的和是_____.10.中国古代人民在生产生活中发现了许多数学问题,在《孙子算经》中记载了这样一个问题,大意为:有若干人乘车,若每车乘坐3人,则2辆车无人乘坐;若每车乘坐2人,则9人无车可乘,问共有多少辆车,多少人,设共有x辆车,y人,则可列方程组为______.11.比较大小:_12.已知的乘积项中不含和x项,则_____.13.将沿着平行于BC的直线折叠,点A落到点,若,,则的度数为_____.14.在一个数学九宫格中,当处于同一横行,同一竖行,同一斜对角线上的3个数之积都相等时称之为“积的九宫归位”.在如图的九宫格中,已填写了一些数或式子,为了完成“积的九宫归位”,则x的值为_____.15.定义运算,下面给出了关于这种运算的四个结论:①;②;③若,则;④若,则其中正确结论的序号是__________填写你认为所有正确的结论的序号16.已知关于x,y的方程组的解为,则关于m、n的方程组的解为_____;三、计算题:本大题共3小题,共18分。

完整版(完整版)七年级数学下册期中试卷及答案 - 百度文库

完整版(完整版)七年级数学下册期中试卷及答案 - 百度文库

完整版(完整版)七年级数学下册期中试卷及答案 - 百度文库一、选择题1.下列各式中,正确的是()A .4=±2B .±16=4C .2(4)-=-4D .38-=-2 2.下列图形中,能将其中一个图形平移得到另一个图形的是 ( )A .B .C .D . 3.在平面直角坐标系中,点(﹣3,2)在( )A .第一象限B .第二象限C .第三象限D .第四象限 4.下列说法中不正确的个数为( ).①在同一平面内,两条直线的位置关系只有两种:相交和垂直.②有且只有一条直线垂直于已知直线.③如果两条直线都与第三条直线平行,那么这两条直线也互相平行.④从直线外一点到这条直线的垂线段,叫做这点到这条直线的距离.⑤过一点,有且只有一条直线与已知直线平行.A .2个B .3个C .4个D .5个 5.如图所示,//CD AB ,OE 平分∠AOD ,80EOF ∠=︒,60D ∠=︒,则∠BOF 为( )A .35︒B .40︒C .25︒D .20︒ 6.下列各组数中,互为相反数的是( ) A .2-与2 B .2-与12- C .()23-与23- D .38-与38-7.如图,//AB CD ,EF 分别交AB ,CD 于点G ,H ,若139∠=︒,则2∠的度数为( )A .51︒B .39︒C .129︒D .78︒8.某校数学课外小组,在坐标纸上为学校的一块空地设计植树方案如下:第k 棵树种植在点(),k k k P x y 处,其中11x =,11y =,当2k ≥时,111215551255k k k k k k x x k k y y --⎧⎛⎫--⎡⎤⎡⎤=+--⎪ ⎪⎢⎥⎢⎥⎪⎣⎦⎣⎦⎝⎭⎨--⎡⎤⎡⎤⎪=+-⎢⎥⎢⎥⎪⎣⎦⎣⎦⎩,[]a 表示非负实数a 的整数部分,例如[]2.82=,[]0.30=.按此方案,第2021棵树种植点的坐标为( ).A .()1,405B .()2,403C .()2,405D .()1,403二、填空题9.如果,a 的平方根是3±,则317a -=__________.10.平面直角坐标系中,点(3,2)A -关于x 轴的对称点是__________.11.已知点A (3a+5,a ﹣3)在二、四象限的角平分线上,则a=__________.12.如图,把一张长方形纸片ABCD 沿EF 折叠后,D 、C 分别落在D ,C '的位置上,ED '与BC 交于G 点,若56EFG ∠=︒,则AEG ∠=______.13.如图,将一张长方形纸条折成如图的形状,若170∠=︒,则2∠的度数为____.14.现定义一种新运算:对任意有理数a 、b ,都有a ⊗b=a 2﹣b ,例如3⊗2=32﹣2=7,2⊗(﹣1)=_____.15.下列四个命题:①直角坐标系中的点与有序实数对一一对应;②若a 大于0,b 不小于0,则点(),P a b --在第三象限;③过一点有且只有一条直线与已知直线平行;④若()214=--y x ,则x y 的算术平方根是12.其中,是真命题的有______.(写出所有真命题的序号)16.如图,在平面直角坐标系中,x AB //EG //轴,BC DE HG AP y ////////轴,点D 、C 、P 、H 在x 轴上,()1,2A ,()1,2B -,()3,0D -,()3,2E --,()3,2G -.把一条长为2018个单位长度且没有弹性的细线(线的粗细忽略不计)的一端固定在A 处,并按A B C D E F G H P A -------⋅⋅⋅-⋅⋅⋅的规律紧绕在图形“凸”的边上,则细线的另一端所在位置的点的坐标是_______.三、解答题17.计算:(1)23272-;(2)432+-.18.已知3a b +=,4ab =-,求下列各式的值()21()a b -;()2225a ab b -+19.如图,BD 平分∠ABC ,F 在AB 上,G 在AC 上,FC 与BD 相交于点H ,∠3+∠4=180°,试说明∠1=∠2(请通过填空完善下列推理过程)解:∵∠3+∠4=180°(已知),∠FHD =∠4( ).∴∠3+∠FHD =180°(等量代换).∴FG ∥BD ( ).∴∠1= (两直线平行,同位角相等).∵BD 平分∠ABC ,∴∠ABD = (角平分线的定义).∴∠1=∠2(等量代换).20.如图①,在平面直角坐标系中,点A 、B 在x 轴上,AB BC ⊥,2AO BO ==,3BC =.(1)写出点A 、B 、C 的坐标.(2)如图②,过点B 作//BD AC 交y 轴于点D ,求CAB BDO ∠+∠的大小.(3)如图③,在图②中,作AE 、DE 分别平分CAB ∠、ODB ∠,求AED ∠的度数. 21.阅读下面的文字,解答问题. 大家知道2是无理数,面无理数是无限不循环小数,因此2的小数部分我们不可能全部地写出来,但是由于122<<,所以2的整数部分为1.将2减去其整数部分1,差就是小数部分21-.根据以上的内容,解答下面的问题:(1)5的整数部分是___________,小数部分是___________;(2)若设23+整数部分是x ,小数部分是y ,求x y -的值.22.动手试一试,如图1,纸上有10个边长为1的小正方形组成的图形纸.我们可以按图2的虚线,AB BC 将它剪开后,重新拼成一个大正方形ABCD .(1)基础巩固:拼成的大正方形ABCD 的面积为______,边长AD 为______;(2)知识运用:如图3所示,将图2水平放置在数轴上,使得顶点B 与数轴上的1-重合.以点B 为圆心,BC 边为半径画圆弧,交数轴于点E ,则点E 表示的数是______; (3)变式拓展:①如图4,给定55⨯的方格纸(每个小正方形边长为1),你能从中剪出一个面积为13的正方形吗?若能,请在图中画出示意图;②请你利用①中图形在数轴上用直尺和圆规.....表示面积为13的正方形边长所表示的数.23.已知//AB CD ,点E 在AB 与CD 之间.(1)图1中,试说明:BED ABE CDE ∠=∠+∠;(2)图2中,ABE ∠的平分线与CDE ∠的平分线相交于点F ,请利用(1)的结论说明:2BED BFD ∠=∠.(3)图3中,ABE ∠的平分线与CDE ∠的平分线相交于点F ,请直接写出BED ∠与BFD ∠之间的数量关系.【参考答案】一、选择题1.D解析:D【分析】依据算术平方根、平方根、立方根的性质求解即可.【详解】解:A42=,故选项错误;B、164±,故选项错误;C2-=,故选项错误;(4)4D382-=-,故选项正确;故选D.【点睛】本题主要考查的是立方根、平方根、算术平方根的定义,熟练掌握相关知识是解题的关键.2.A【分析】根据平移的性质,结合图形对选项进行一一分析,选出正确答案.【详解】解:A、图形的形状和大小没有变化,符合平移的性质,属于平移得到;B、图形由轴对称得到,不属于平移得到,不属于平移解析:A【分析】根据平移的性质,结合图形对选项进行一一分析,选出正确答案.【详解】解:A 、图形的形状和大小没有变化,符合平移的性质,属于平移得到;B 、图形由轴对称得到,不属于平移得到,不属于平移得到;C 、图形由旋转变换得到,不符合平移的性质,不属于平移得到;D 、图形的大小发生变化,不属于平移得到;故选:A .【点睛】本题考查平移的基本性质,平移不改变图形的形状、大小和方向.掌握平移的性质是解题的关键.3.B【分析】根据各象限内点的坐标特征解答即可.【详解】解:点(3,2)P -在第二象限,故选:B .【点睛】本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(,)++;第二象限(,)-+;第三象限(,)--;第四象限(,)+-.4.C【分析】根据在同一平面内,根据两条直线的位置关系、垂直的性质、平行线平行公理及推论、点到直线的距离等逐一进行判断即可.【详解】∵在同一平面内,两条直线的位置关系只有两种:相交和平行,故①不正确; ∵过直线外一点有且只有一条直线垂直于已知直线.故②不正确;如果两条直线都与第三条直线平行,那么这两条直线也互相平行.故③正确;从直线外一点到这条直线的垂线段的长度,叫做这点到这条直线的距离.故④不正确; 过直线外一点,有且只有一条直线与已知直线平行.故⑤不正确;∴不正确的有①②④⑤四个.故选:C .【点睛】本题考查了直线的知识;解题的关键是熟练掌握直线相交、直线垂直、直线平行以及垂线的性质,从而完成求解.5.B【分析】由平行线的性质和角平分线的定义,求出60BOD D ∠=∠=︒,20DOF ∠=︒,然后即可求出∠BOF 的度数.【详解】解:∵//CD AB ,60D ∠=︒∴60BOD D ∠=∠=︒,18060120AOD ∠=︒-︒=︒,∵OE 平分∠AOD , ∴1120602DOE ∠=⨯︒=︒, ∴806020DOF EOF DOE ∠=∠-∠=︒-︒=︒;∴602040BOF BOD DOF ∠=∠-∠=︒-︒=︒;故选:B .【点睛】本题考查了平行线的性质,角平分线的定义,以及角的和差关系,解题的关键是熟练掌握所学的知识,正确的求出角的度数.6.C【分析】根据绝对值运算、有理数的乘方运算、立方根、相反数的定义逐项判断即可得.【详解】A 、B 、2-与12-不是相反数,此项不符题意; C 、()223399,--=-=,则()23-与23-互为相反数,此项符合题意;D 2,2=--故选:C .【点睛】本题考查了绝对值运算、有理数的乘方运算、立方根、相反数的定义,熟记各运算法则和定义是解题关键.7.B【分析】根据平行线的性质和对顶角相等即可得∠2的度数.【详解】解:∵//AB CD ,∴∠2=∠FHD ,∵∠FHD =∠1=39°,∴∠2=39°.故选:B .【点睛】本题考查了平行线的性质,解决本题的关键是掌握平行线的性质. 8.A【分析】根据所给的xk 、yk 的关系式找到种植点的横坐标和纵坐标的变化规律,然后将2021代入求解即可.【详解】解:由题意可知,,,,,……,将以上等式相加,得:,当k=20解析:A【分析】根据所给的x k、y k的关系式找到种植点的横坐标和纵坐标的变化规律,然后将2021代入求解即可.【详解】解:由题意可知,11x=,2110 15555x x ⎡⎤⎡⎤-=-+⎢⎥⎢⎥⎣⎦⎣⎦,3221 15555x x ⎡⎤⎡⎤-=-+⎢⎥⎢⎥⎣⎦⎣⎦,4332 15555x x ⎡⎤⎡⎤-=-+⎢⎥⎢⎥⎣⎦⎣⎦,……112 1555k k k kx x---⎡⎤⎡⎤-=-+⎢⎥⎢⎥⎣⎦⎣⎦,将以上等式相加,得:155kkx k-⎡⎤=-⎢⎥⎣⎦,当k=2021时,20212020 202152021540415x⎡⎤=-=-⨯=⎢⎥⎣⎦;11y=,2110 55y y ⎡⎤⎡⎤-=-⎢⎥⎢⎥⎣⎦⎣⎦,3221 55y y ⎡⎤⎡⎤-=-⎢⎥⎢⎥⎣⎦⎣⎦,4332 55y y ⎡⎤⎡⎤-=-⎢⎥⎢⎥⎣⎦⎣⎦,……112 55k k k ky y---⎡⎤⎡⎤-=-⎢⎥⎢⎥⎣⎦⎣⎦,将以上等式相加,得:11+5kky-⎡⎤=⎢⎥⎣⎦,当k=2021时,202120201+4055y⎡⎤==⎢⎥⎣⎦,∴第2021棵树种植点的坐标为()1,405,故选:A.【点睛】本题考查点的坐标规律探究,根据题意,找出点的横坐标和纵坐标的变化规律是解答的关键.二、填空题9.-4【分析】根据题意先求出,再代入,即可.【详解】解:∵的平方根是,∴,∴,∴,故答案为:【点睛】本题主要考查了平方根、算术平方根、立方根的定义,解题的关键求出的值.解析:-4【分析】根据题意先求出a,即可.【详解】解:∵3±,∴2(3)9=±=,∴81a=,∴4==-,故答案为:4-【点睛】本题主要考查了平方根、算术平方根、立方根的定义,解题的关键求出a的值.10.【分析】根据平面直角坐标系中,关于坐标轴对称的点的坐标特征,即可完成解答.【详解】解:点关于轴的对称点的坐标是(3,2).【点睛】本题考查了根据平面直角坐标系中关于坐标轴对称的点的坐标特解析:()3,2【分析】根据平面直角坐标系中,关于坐标轴对称的点的坐标特征,即可完成解答.【详解】解:点(3,2)A-关于x轴的对称点的坐标是(3,2).【点睛】本题考查了根据平面直角坐标系中关于坐标轴对称的点的坐标特征,即关于x轴对称的点的坐标横坐标不变,纵坐标变为相反数;关于y轴对称的点的坐标纵坐标不变,横坐标变为相反数;11.﹣【详解】∵点A(3a+5,a-3)在二、四象限的角平分线上,且二、四象限的角平分线上的点的横坐标与纵坐标之和为0,∴3a+5+a-3=0,∴a=﹣.故答案是:﹣.解析:﹣12【详解】∵点A(3a+5,a-3)在二、四象限的角平分线上,且二、四象限的角平分线上的点的横坐标与纵坐标之和为0,∴3a+5+a-3=0,∴a=﹣12.故答案是:﹣1 2 .12.68°【分析】先根据平行线的性质求得∠DEF的度数,再根据折叠求得∠DEG的度数,最后计算∠AEG的大小.【详解】解:∵AD//BC,,∴∠DEF=∠EFG=56°,由折叠可得,∠GEF解析:68°【分析】先根据平行线的性质求得∠DEF 的度数,再根据折叠求得∠DEG 的度数,最后计算∠AEG 的大小.【详解】解:∵AD //BC ,56EFG ∠=︒,∴∠DEF =∠EFG =56°,由折叠可得,∠GEF =∠DEF =56°,∴∠DEG =112°,∴∠AEG =180°-112°=68°.故答案为:68°.【点睛】本题考查了折叠问题,平行线的性质,解题时注意:长方形的对边平行,且折叠时对应角相等.13.55°【分析】依据平行线的性质以及折叠的性质,即可得到∠2的度数.【详解】解:如图所示,∵∠1=70°,∴∠3+∠4=180°-∠1=110°,又∵折叠,∴∠3=∠4=55°,解析:55°【分析】依据平行线的性质以及折叠的性质,即可得到∠2的度数.【详解】解:如图所示,∵∠1=70°,∴∠3+∠4=180°-∠1=110°,∴∠3=∠4=55°,∵AB //DE ,∴∠2=∠3=55°,故答案为:55°.【点睛】本题主要考查了平行线的性质,解题时注意:两条平行线被第三条直线所截,内错角相等.14.5【解析】利用题中的新定义可得:2⊗(﹣1)=4﹣(﹣1)=4+1=5.故答案为:5.点睛:此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键. 解析:5【解析】利用题中的新定义可得:2⊗(﹣1)=4﹣(﹣1)=4+1=5.故答案为:5.点睛:此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.15.①④【分析】根据平面直角坐标系,平行线,算术平方根的概念进行判断【详解】解:①直角坐标系中的点与有序实数对一一对应;正确;故此命题是真命题; ②若大于0,不小于0,则>0,≥0,点在第三象限解析:①④【分析】根据平面直角坐标系,平行线,算术平方根的概念进行判断【详解】解:①直角坐标系中的点与有序实数对一一对应;正确;故此命题是真命题; ②若a 大于0,b 不小于0,则a >0,b ≥0,点(),P a b --在第三象限或x 轴的负半轴上;故此命题是假命题;③过直线外一点有且只有一条直线与已知直线平行;故此命题是假命题;④若4=y ,则x =1,y =4,则x y的算术平方根是12,正确,故此命题是真命题.故答案为:①④【点睛】此题主要考查了命题与定理,正确掌握相关定义是解题关键. 16.(1,0)先求出凸形ABCDEFGHP的周长为20,得到2018÷20的余数为18,由此即可解决问题.【详解】解:∵A(1,2),B(-1,2),D(-3,0),E(-3,-2),G解析:(1,0)【分析】先求出凸形ABCDEFGHP的周长为20,得到2018÷20的余数为18,由此即可解决问题.【详解】解:∵A(1,2),B(-1,2),D(-3,0),E(-3,-2),G(3,-2),∴“凸”形ABCDEFGHP的周长为20,2018÷20的余数为18,∴细线另一端所在位置的点在P处,坐标为(1,0).故答案为:(1,0).【点睛】本题考查规律型:点的坐标,解题的关键是理解题意,求出“凸”形的周长,属于中考常考题型.三、解答题17.(1)-1;(2).【分析】(1)按照立方根的定义与平方的含义分别计算,再求差即可;(2)按照算术平方根的含义与绝对值的应用先化简,再合并即可.【详解】解:(1)原式.(2)原式.【点解析:(1)-1;(2)43.【分析】(1)按照立方根的定义与平方的含义分别计算,再求差即可;(2)按照算术平方根的含义与绝对值的应用先化简,再合并即可.【详解】=-=-.解:(1)原式341(2)原式224=+【点睛】本题考查的是立方根,乘方,算术平方根,绝对值的运算,实数的加减运算,掌握运算法则是解题关键.18.(1)25;(2)37【分析】(1)利用完全平方差公式求解.(2)先配方,再求值.【详解】解:(1)(2)【点睛】本题考查完全平方公式及其变形式,根据公式特征进行变形是求解解析:(1)25;(2)37【分析】(1)利用完全平方差公式求解.(2)先配方,再求值.【详解】解:(1)22()()4a b a b ab -=+-()2344=-⨯-25.=(2)2222527a ab b a ab b ab -+=++-2()7a b ab =+-()928=--37.=【点睛】本题考查完全平方公式及其变形式,根据公式特征进行变形是求解本题的关键. 19.对顶角相等,∠FHD ,同旁内角互补,两直线平行,∠ABD ,两直线平行,同位角相等,∠2.【分析】求出∠3+∠FHD=180°,根据平行线的判定得出FG ∥BD ,根据平行线的性质得出∠1=∠ABD ,解析:对顶角相等,∠FHD ,同旁内角互补,两直线平行,∠ABD ,两直线平行,同位角相等,∠2.【分析】求出∠3+∠FHD =180°,根据平行线的判定得出FG ∥BD ,根据平行线的性质得出∠1=∠ABD ,根据角平分线的定义得出∠ABD =∠2即可.【详解】解:∵∠3+∠4=180°(已知),∠FHD =∠4(对顶角相等),∴∠3+∠FHD =180°(等量代换),∴FG ∥BD (同旁内角互补,两直线平行),∴∠1=∠ABD (两直线平行,同位角相等),∵BD 平分∠ABC ,∴∠ABD =∠2(角平分线的定义),∴∠1=∠2(等量代换),故答案为:对顶角相等,∠FHD ,同旁内角互补,两直线平行,∠ABD ,两直线平行,同位角相等,∠2.【点睛】本题主要考查了平行线的性质和判定,角平分线的定义,能灵活运用平行线的性质和判定定理进行推理是解此题的关键.20.(1),,;(2)90°;(3)45°【分析】(1)根据图形和平面直角坐标系,可直接得出答案;(2)根据两直线平行,内错角相等可得,则∠;(3)根据角平分线的定义可得,过点作,然后根据平行解析:(1)()2,0A -,()2,0B ,()2,3C ;(2)90°;(3)45°【分析】(1)根据图形和平面直角坐标系,可直接得出答案;(2)根据两直线平行,内错角相等可得ABD BAC ∠=∠,则∠90CAB BDO ABD BDO +∠=∠+∠=︒;(3)根据角平分线的定义可得CAE BDE ∠+∠45=︒,过点E 作//EF AC ,然后根据平行线的性质得出, 45AED CAE BDE ∠=∠+∠=︒.【详解】解:(1)依题意得:()2,0A -,()2,0B ,()2,3C ;(2)∵//BD AC ,∴ABD BAC ∠=∠,∴90CAB BDO ABD BDO +∠=∠+∠=︒;(3)∵//BD AC ,∴ABD BAC ∠=∠,∵AE ,DE 分别平分CAB ∠,ODB ∠, ∴111()()90222CAE BDE BAC BDO ABD BDO ∠+∠=∠+∠=∠+∠=⨯︒ 45=︒,过点E 作//EF AC ,则CAE AEF ∠=∠,BDE DEF ∠=∠,∴45AED AEF DEF CAE BDE ∠=∠+∠=∠+∠=︒.【点睛】本题考查了坐标与图形的性质,平行线的性质,熟记以上性质,并求出A ,B ,C 的坐标是解题的关键,(3)作出平行线是解题的关键.21.(1)2,;(2).【分析】(1)利用求解;(2)由于,则,,然后计算.【详解】解:(1)的整数部分是2,小数部分是;(2),而整数部分是,小数部分是,,,.【点睛】本题考查了解析:(1)252;(2)43.【分析】(1)利用253<求解;(2)由于132<<,则3x =,23331y ==,然后计算x y -.【详解】解:(15252;(2)132<<, 而23x ,小数部分是y ,3x ∴=,23331y ==,3(31)33143x y .【点睛】本题考查了估算无理数的大小,熟悉相关性质是解题得关键.22.(1)10,;(2);(3)见解析;(4)见解析【分析】(1)易得10个小正方形的面积的和,那么就得到了大正方形的面积,求得面积的算术平方根即可为大正方形的边长;(2)根据大正方形的边长结合实解析:(1)10,10;(2)101-;(3)见解析;(4)见解析【分析】(1)易得10个小正方形的面积的和,那么就得到了大正方形的面积,求得面积的算术平方根即可为大正方形的边长;(2)根据大正方形的边长结合实数与数轴的关系可得结果;(3)以2×3的长方形的对角线为边长即可画出图形;(4)得到①中正方形的边长,再利用实数与数轴的关系可画出图形.【详解】解:(1)∵图1中有10个小正方形,∴面积为10,边长AD为10;(2)∵BC=10,点B表示的数为-1,∴BE=10,∴点E表示的数为101-;(3)①如图所示:②∵正方形面积为13,∴13如图,点E表示面积为13的正方形边长.【点睛】本题考查了图形的剪拼,正方形的面积,算术平方根,实数与数轴,巧妙地根据网格的特点画出正方形是解此题的关键.23.(1)说明过程请看解答;(2)说明过程请看解答;(3)∠BED=360°-2∠BFD.【分析】(1)图1中,过点E作EG∥AB,则∠BEG=∠ABE,根据AB∥CD,EG∥AB,所以CD∥EG,解析:(1)说明过程请看解答;(2)说明过程请看解答;(3)∠BED=360°-2∠BFD.【分析】(1)图1中,过点E作EG∥AB,则∠BEG=∠ABE,根据AB∥CD,EG∥AB,所以CD∥EG,所以∠DEG=∠CDE,进而可得∠BED=∠ABE+∠CDE;(2)图2中,根据∠ABE的平分线与∠CDE的平分线相交于点F,结合(1)的结论即可说明:∠BED=2∠BFD;(3)图3中,根据∠ABE的平分线与∠CDE的平分线相交于点F,过点E作EG∥AB,则∠BEG+∠ABE=180°,因为AB∥CD,EG∥AB,所以CD∥EG,所以∠DEG+∠CDE=180°,再结合(1)的结论即可说明∠BED与∠BFD之间的数量关系.【详解】解:(1)如图1中,过点E作EG∥AB,则∠BEG=∠ABE,因为AB∥CD,EG∥AB,所以CD∥EG,所以∠DEG=∠CDE,所以∠BEG+∠DEG=∠ABE+∠CDE,即∠BED=∠ABE+∠CDE;(2)图2中,因为BF平分∠ABE,所以∠ABE=2∠ABF,因为DF平分∠CDE,所以∠CDE=2∠CDF,所以∠ABE+∠CDE=2∠ABF+2∠CDF=2(∠ABF+∠CDF),由(1)得:因为AB∥CD,所以∠BED=∠ABE+∠CDE,∠BFD=∠ABF+∠CDF,所以∠BED=2∠BFD.(3)∠BED=360°-2∠BFD.图3中,过点E作EG∥AB,则∠BEG+∠ABE=180°,因为AB∥CD,EG∥AB,所以CD∥EG,所以∠DEG+∠CDE=180°,所以∠BEG+∠DEG=360°-(∠ABE+∠CDE),即∠BED=360°-(∠ABE+∠CDE),因为BF平分∠ABE,所以∠ABE=2∠ABF,因为DF平分∠CDE,所以∠CDE=2∠CDF,∠BED=360°-2(∠ABF+∠CDF),由(1)得:因为AB∥CD,所以∠BFD=∠ABF+∠CDF,所以∠BED=360°-2∠BFD.【点睛】本题考查了平行线的性质,解决本题的关键是掌握平行线的性质.。

仁爱版七年级下册《数学》期中考试卷及答案【可打印】

仁爱版七年级下册《数学》期中考试卷及答案【可打印】

仁爱版七年级下册《数学》期中考试卷一、选择题(每题3分,共30分)1. 下列数中,不是有理数的是()A. 2/3B. 5C. √3D. 0.52. 下列各式中,正确的是()A. 2^3 = 8^2B. (2)^3 = 8^2C. 3^2 = 9^2D. (3)^2 =9^23. 下列关于绝对值的概念,正确的是()A. 绝对值是一个数的正数部分B. 绝对值是一个数的负数部分C. 绝对值是一个数的正数或0D. 绝对值是一个数的负数或04. 下列关于相反数的概念,正确的是()A. 相反数是一个数的相反数B. 相反数是一个数的绝对值C. 相反数是一个数的相反数的绝对值D. 相反数是一个数的相反数的相反数5. 下列关于因数和倍数的关系,正确的是()A. 一个数的因数一定小于这个数B. 一个数的倍数一定大于这个数C. 一个数的因数和倍数之间没有必然联系D. 一个数的因数和倍数之间有必然联系6. 下列关于质数和合数的关系,正确的是()A. 质数是只有1和它本身两个因数的数B. 合数是只有1和它本身两个因数的数C. 质数和合数之间没有必然联系D. 质数和合数之间有必然联系7. 下列关于分数的概念,正确的是()A. 分数是一个数除以另一个数的商B. 分数是一个数除以另一个数的余数C. 分数是一个数除以另一个数的积D. 分数是一个数除以另一个数的和8. 下列关于分数的运算,正确的是()A. 分数相加,分母不变,分子相加B. 分数相减,分母不变,分子相减C. 分数相乘,分子相乘,分母相乘D. 分数相除,分子相除,分母相除9. 下列关于分数的大小比较,正确的是()A. 分子相同,分母大的分数大B. 分母相同,分子大的分数大C. 分子分母都相同,分数相等D. 分子分母都不相同,无法比较10. 下列关于分数的化简,正确的是()A. 分子分母同时除以它们的最大公约数B. 分子分母同时除以它们的最大公倍数C. 分子分母同时除以它们的和D. 分子分母同时除以它们的差二、填空题(每题3分,共30分)1. 一个数的绝对值是它本身的相反数,这个数是()。

(完整版)七年级数学下册期中试卷及答案

(完整版)七年级数学下册期中试卷及答案

(完整版)七年级数学下册期中试卷及答案一、选择题1.“9的平方根”这句话用数学符号表示为()A .9B .±9C .3D .±3 2.下列现象属于平移的是() A .投篮时的篮球运动B .随风飘动的树叶在空中的运动C .刹车时汽车在地面上的滑动D .冷水加热过程中小气泡变成大气泡 3.在平面直角坐标系中,点A (1,﹣2021)在( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限 4.下列四个命题:①4±是64的立方根;②5是25的算术平方根;③如果两条直线都与第三条直线平行,那么这两条直线也互相平行;④在平面直角坐标系中,与两坐标轴距离都是2的点有且只有2个.其中真命题有( )个A .1B .2C .3D .45.如图,将一条对边互相平行的纸带进行两次折叠,折痕分别为AB ,CD ,若//CD BE ,若1∠=α,则2∠的度数是( )A .3αB .1803α︒-C .4αD .1804︒-α 6.下列说法错误的是( )A .9的平方根是3±B .16的值是8C .127的立方根是13D .38-的值是2- 7.如图,ABC 中,AE 平分BAC ∠,BE AE ⊥于点E ,//ED AC ,34BAE ∠=︒,则BED ∠的度数为( )A .134°B .124°C .114°D .104°8.如图,在平面直角坐标系中有点()2,0A ,点A 第一次向左跳动至()11,1A -,第二次向右跳动至()22,1A ,第三次向左跳动至()32,2A -,第四次向右跳动至()43,2A ,…依照此规律跳动下去,点A 第2020次跳动至2020A 的坐标为( )A .()1011,1010B .()1012,1010C .()1010,1009-D .()2020,2021二、填空题9.计算:36的结果为_____.10.点(,1)a 关于x 轴的对称点的坐标为(5,)b ,则+a b 的值是______.11.如图,已知OB 、OC 为△ABC 的角平分线,DE ∥BC 交AB 、AC 于D 、E ,△ADE 的周长为12,BC 长为5,则△ABC 的周长__.12.如图,现将一块含有60°角的三角板的顶点放在直尺的一边上,若∠1=∠2,那么∠1的度数为__________.13.如图,将一张长方形纸条折成如图的形状,若170∠=︒,则2∠的度数为____.14.定义一种新运算“”规则如下:对于两个有理数a ,b ,a b ab b =-,若()()521x -=-,则x =______15.如图,若“马”所在的位置的坐标为()2,2-,“象”所在位置的坐标为()1,4-,则“将"所在位置的坐标为_______.16.如图所示,动点P 在平面直角坐标系中,按箭头所示方向呈台阶状移动,第一次从原点运动到点(0,1),第二次接着运动到点(1,1),第三次接着运动到点(1,2),…,按这样的运动规律,经过2021次运动后,动点P 的坐标是________.三、解答题17.计算:(1)|﹣2|+(﹣3)24(223252(3)220183|3|27(4)(1)-+---.18.求下列各式中的x 值(1)x 2﹣614= (2)12(2x ﹣1)3=﹣4 19.完成下面的证明:如图,点D 、E 、F 分别是三角形ABC 的边BC 、CA 、AB 上的点,连接DE ,DF ,//DE AB ,BFD CED ∠=∠,连接BE 交DF 于点G ,求证:180EGF AEG ∠+∠=︒.证明:∵//DE AB (已知)∴A CED ∠=∠(_______________)又∵BFD CED ∠=∠(已知)∴A BFD ∠=∠(______________)∴//DF AC (_____________)∴180EGF AEG ∠+∠=︒(______________)20.如图,在平面直角坐标系中,已知P (a ,b )是△ABC 的边AC 上一点,△ABC 经平移后点P 的对应点为P 1(a +6,b +2).(1)请画出上述平移后的△A 1B 1C 1,并写出点A 1,C 1的坐标;(2)写出平移的过程;(3)求出以A ,C ,A 1,C 1为顶点的四边形的面积.21.阅读下面的文字,解答问题. 22的小数部分我们不可能全部地写出来,但是由于122<<2 1.21,差就是21.根据以上的内容,解答下面的问题:(15___________,小数部分是___________;(2)若设23+x ,小数部分是y ,求x y -的值.22.动手试一试,如图1,纸上有10个边长为1的小正方形组成的图形纸.我们可以按图2的虚线,AB BC 将它剪开后,重新拼成一个大正方形ABCD .(1)基础巩固:拼成的大正方形ABCD的面积为______,边长AD为______;(2)知识运用:如图3所示,将图2水平放置在数轴上,使得顶点B与数轴上的1-重合.以点B为圆心,BC边为半径画圆弧,交数轴于点E,则点E表示的数是______;(3)变式拓展:⨯的方格纸(每个小正方形边长为1),你能从中剪出一个面积为13的①如图4,给定55正方形吗?若能,请在图中画出示意图;②请你利用①中图形在数轴上用直尺和圆规.....表示面积为13的正方形边长所表示的数.23.已知:如图(1)直线AB、CD被直线MN所截,∠1=∠2.(1)求证:AB//CD;(2)如图(2),点E在AB,CD之间的直线MN上,P、Q分别在直线AB、CD上,连接PE、EQ,PF平分∠BPE,QF平分∠EQD,则∠PEQ和∠PFQ之间有什么数量关系,请直接写出你的结论;(3)如图(3),在(2)的条件下,过P点作PH//EQ交CD于点H,连接PQ,若PQ平分∠EPH,∠QPF:∠EQF=1:5,求∠PHQ的度数.【参考答案】一、选择题1.B解析:B【分析】b≥),那么a就叫做b的平方根,解答即可.根据平方根的定义:如果2a b=(0【详解】解:∵(29=∴“9的平方根”这句话用数学符号表示为:,故选B.【点睛】本题考查了平方根的定义,是基础概念题,熟记概念是解题的关键.2.C【分析】判断是否是平移现象,要根据平移的性质进行,即图形平移前后的形状和大小没有变化,只是位置发生变化.【详解】解:A. 投篮时的篮球运动,不是沿直线运动,此选项不是平移现象;B解析:C【分析】判断是否是平移现象,要根据平移的性质进行,即图形平移前后的形状和大小没有变化,只是位置发生变化.【详解】解:A. 投篮时的篮球运动,不是沿直线运动,此选项不是平移现象;B. 随风飘动的树叶在空中的运动,在空中不是沿直线运动,此选项不是平移现象;C. 刹车时汽车在地面上的滑动,此选项是平移现象;D. 冷水加热过程中小气泡变成大气泡,大小发生了变化,此选项不是平移现象.故选:C.【点睛】本题考查的知识点是平移的概念,掌握平移的性质是解此题的关键.3.D【分析】根据各象限内点的坐标特征解答.【详解】解:∵点A(1,-2021),∴A点横坐标是正数,纵坐标是负数,∴A点在第四象限.故选:D.【点睛】本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).4.B【分析】根据立方根和算术平方根的定义、平行线的性质、点到直线的距离逐项判断即可.【详解】64的立方根是4,故①是假命题; 25的算数平方根是5,故②是真命题;如果两条直线都与第三条直线平行,那么这两条直线也互相平行,故③是真命题;与两坐标轴距离都是2的点有(2,2)、(2,-2)、(-2,2)、(-2,-2)共4点,故④是假命题.故选:B.【点睛】本题考查命题真、假的判断.正确掌握相关定义、性质与判定是解题关键.5.D【分析】由折叠的性质可知∠1=∠BAG,2∠BDC+∠2=180°,根据BE∥AG,得到∠CFB=∠CAG=2∠1,从而根据平行线的性质得到∠CDB=2∠1,则∠2=180°-4∠1.【详解】解:由题意得:AG∥BE∥CD,CF∥BD,∴∠CFB=∠CAG,∠CFB+∠DBF=180°,∠DBF+∠CDB=180°∴∠CFB=∠CDB∴∠CAG=∠CDB由折叠的性质得∠1=∠BAG,2∠BDC+∠2=180°∴∠CAG=∠CDB=∠1+∠BAG=2α∴∠2=180°-2∠BDC=180°-4α故选D.【点睛】本题主要考查了平行线的性质与折叠的性质,解题的关键在于能够熟练掌握相关知识进行求解.6.B【分析】根据算术平方根与平方根、立方根的性质逐项判断即可得.【详解】A、9的平方根是3 ,此项说法正确;B4,此项说法错误;C、127的立方根是13,此项说法正确;D2-,此项说法正确;故选:B.【点睛】本题考查了算术平方根与平方根、立方根的性质,熟练掌握算术平方根与平方根、立方根的性质是解题关键.7.B【分析】已知AE平分∠BAC,ED∥AC,根据两直线平行,同旁内角互补可知∠DEA的度数,再由周角为360°,求得∠BED的度数即可.【详解】解:∵AE平分∠BAC,∴∠BAE=∠CAE=34°,∵ED∥AC,∴∠CAE+∠AED=180°,∴∠DEA=180°-34°=146°,∵BE⊥AE,∴∠AEB=90°,∵∠AEB+∠BED+∠AED=360°,∴∠BED=360°-146°-90°=124°,故选:B.【点睛】本题考查了平行线的性质和周角的定义,熟记两直线平行,同旁内角互补是解题的关键.8.A【分析】根据图形观察发现,第偶数次跳动至点的坐标,横坐标是次数的一半加上1,纵坐标是次数的一半,奇数次跳动与该偶数次跳动的横坐标的相反数加上1,纵坐标相同,然后写出即可.【详解】解:如图,解析:A【分析】根据图形观察发现,第偶数次跳动至点的坐标,横坐标是次数的一半加上1,纵坐标是次数的一半,奇数次跳动与该偶数次跳动的横坐标的相反数加上1,纵坐标相同,然后写出即可.【详解】解:如图,观察发现,第2次跳动至点2A 的坐标是(2,1),第4次跳动至点4A 的坐标是(3,2),第6次跳动至点6A 的坐标是(4,3),第8次跳动至点8A 的坐标是(5,4),⋯第2n 次跳动至点2n A 的坐标是(1,)n n +,则第2020次跳动至点2020A 的坐标是(1011,1010),故选:A .【点睛】本题考查了规律型:点的坐标,坐标与图形的性,结合图形得到偶数次跳动的点的横坐标与纵坐标的变化情况是解题的关键.二、填空题9.6【分析】根据算术平方根的定义即可求解.【详解】解:的结果为6.故答案为6【点睛】考查了算术平方根,非负数a 的算术平方根a 有双重非负性:①被开方数a 是非负数;②算术平方根a 本身是非负数解析:6【分析】根据算术平方根的定义即可求解.【详解】6.故答案为6【点睛】考查了算术平方根,非负数a 的算术平方根a 有双重非负性:①被开方数a 是非负数;②算术平方根a 本身是非负数.10.4【分析】根据横坐标不变,纵坐标相反,确定a,b 的值,计算即可.【详解】∵点关于轴的对称点的坐标为,∴a=5,b= -1,∴a+b= 5-1=4,故答案为:4.【点睛】本题考查了坐解析:4【分析】根据横坐标不变,纵坐标相反,确定a,b的值,计算即可.【详解】∵点(,1)a关于x轴的对称点的坐标为(5,)b,∴a=5,b= -1,∴a+b= 5-1=4,故答案为:4.【点睛】本题考查了坐标系中轴对称问题,熟练掌握轴对称的坐标变化特点是解题的关键.11.17【详解】∵0B、OC为△ABC的角平分线,∴∠ABO=∠OBC,∠ACO=∠BCO,∵DE∥BC,∴∠DOB=∠OBC,∠EOC=∠OCB,∴∠ABO=∠DOB,∠ACO=∠EOC,解析:17【详解】∵0B、OC为△ABC的角平分线,∴∠ABO=∠OBC,∠ACO=∠BCO,∵DE∥BC,∴∠DOB=∠OBC,∠EOC=∠OCB,∴∠ABO=∠DOB,∠ACO=∠EOC,∴BD=OD,EC=OE,∴DE=OD+OE=BD+EC;∵△ADE的周长为12,∴AD+DE+AE=AD+OD+OE+AE=AD+BD+CE+AE=AB+AC=12,∵BC=7,∴△ABC的周长为:AB+AC+BC=12+5=17.故答案为17.12.【分析】根据题意知:,得出,从而得出,从而求算∠1.解:如图:∵∴又∵∠1=∠2,∴,解得:故答案为:【点睛】本题考查平行线的性质,掌握两直线平行,同位角相等是解析:60︒【分析】根据题意知://AB CD ,得出2GFD ∠=∠,从而得出21+60=180∠︒︒,从而求算∠1.【详解】解:如图:∵//AB CD∴2GFD ∠=∠又∵∠1=∠2,60HFG ∠=︒∴21+60=180∠︒︒,解得:1=60︒∠故答案为:60︒【点睛】本题考查平行线的性质,掌握两直线平行,同位角相等是解题关键.13.55°【分析】依据平行线的性质以及折叠的性质,即可得到∠2的度数.【详解】解:如图所示,∵∠1=70°,∴∠3+∠4=180°-∠1=110°,又∵折叠,∴∠3=∠4=55°,【分析】依据平行线的性质以及折叠的性质,即可得到∠2的度数.【详解】解:如图所示,∵∠1=70°,∴∠3+∠4=180°-∠1=110°,又∵折叠,∴∠3=∠4=55°,∵AB//DE,∴∠2=∠3=55°,故答案为:55°.【点睛】本题主要考查了平行线的性质,解题时注意:两条平行线被第三条直线所截,内错角相等.14.【分析】根据给定新运算的运算法则可以得到关于x的方程,解方程即可得到解答.【详解】解:由题意得:(5x-x)⊙(−2)=−1,∴-2(5x-x)-(-2)=-1,∴-8x+2=-1,解之得解析:38【分析】根据给定新运算的运算法则可以得到关于x的方程,解方程即可得到解答.【详解】解:由题意得:(5x-x)⊙(−2)=−1,∴-2(5x-x)-(-2)=-1,∴-8x+2=-1,解之得:38x ,故答案为38.【点睛】本题考查新定义下的实数运算,通过阅读题目材料找出有关定义和运算法则并应用于新问题的解决是解题关键 .15.【分析】结合题意,根据坐标的性质分析,即可得到答案.【详解】∵“马”所在的位置的坐标为,“象”所在位置的坐标为∴棋盘中每一格代表1∴“将"所在位置的坐标为,即故答案为:.【点睛】本解析:()1,4【分析】结合题意,根据坐标的性质分析,即可得到答案.【详解】∵“马”所在的位置的坐标为()2,2-,“象”所在位置的坐标为()1,4-∴棋盘中每一格代表1∴“将"所在位置的坐标为()12,4-+,即()1,4故答案为:()1,4.【点睛】本题考查了坐标的知识;解题的关键是熟练掌握坐标的性质,从而完成求解. 16.(1010,1011)【分析】仔细观察图形,找到图形变化的规律,利用规律求解即可.【详解】解:观察发现:第一次运动到点(0,1),第二次运动到点(1,1);第三次运动到点(1,2),第四解析:(1010,1011)【分析】仔细观察图形,找到图形变化的规律,利用规律求解即可.【详解】解:观察发现:第一次运动到点(0,1),第二次运动到点(1,1);第三次运动到点(1,2),第四次运动到点(2,2);第五次运动到点(2,3),第六次运动到点(3,3),…,当n 为奇数时,第n 次运动到点(12n -,12n +), 当n 为偶数时,第n 次运动到点(2n ,2n ), 所以经过2021次运动后,动点P 的坐标是(1010,1011),故答案为:(1010,1011).【点睛】本题主要考查了点坐标的变化规律,解决本题的关键是正确读懂题意,能够正确确定点运动的顺序,确定运动的距离,从而可以得到每个对应点的坐标.三、解答题17.(1)9;(2)-;(3)-3.【解析】【分析】根据运算法则和运算顺序,依次计算即可.【详解】解:(1)原式=2+9﹣2=9,(2)原式=(1+3﹣5) =﹣ ,(3)原式=3﹣3﹣4解析:【解析】【分析】根据运算法则和运算顺序,依次计算即可.【详解】解:(1)原式=2+9﹣2=9,(2)原式=(1+3﹣5,(3)原式=3﹣3﹣4+1=﹣3.【点睛】本题考查了实数的运算,熟练掌握相关运算法则是解题关键.18.(1);(2).【分析】(1)根据平方根的定义解答即可;(2)根据立方根的定义解答即可.【详解】(1)x2﹣6,移项得:,开方得:x ,解得:;(2)(2x﹣1)3=﹣4,变形得:解析:(1)52x=±;(2)12x=-.【分析】(1)根据平方根的定义解答即可;(2)根据立方根的定义解答即可.【详解】(1)x2﹣614 =,移项得:2125644x=+=,开方得:x=解得:52x=±;(2)12(2x﹣1)3=﹣4,变形得:(2x﹣1)3=﹣8,开立方得:212x-=-,∴2x=﹣1,解得:12x=-.【点睛】本题考查了立方根及平方根的应用,注意一个正数的平方根有两个,且互为相反数,一个数的立方根只有一个.19.两直线平行,同位角相等;等量代换;同位角相等,两直线平行;两直线平行,同旁内角互补【分析】根据平行线的性质与判定进行证明即可得到答案.【详解】证明:∵(已知)∴(两直线平行,同位角相等)解析:两直线平行,同位角相等;等量代换;同位角相等,两直线平行;两直线平行,同旁内角互补【分析】根据平行线的性质与判定进行证明即可得到答案.【详解】证明:∵//DE AB(已知)∴A CED ∠=∠(两直线平行,同位角相等)又∵BFD CED ∠=∠(已知)∴A BFD ∠=∠(等量代换)∴//DF AC (同位角相等,两直线平行)∴180EGF AEG ∠+∠=.(两直线平行,同旁内角互补)【点睛】本题主要考查了平行线的性质与判定,解题的关键在于能够熟练掌握相关知识进行求解. 20.(1)图见详解;;(2)平移过程为先向右平移6个单位长度,再向上平移2个单位长度;(3)以A ,C ,A1,C1为顶点的四边形的面积为14.【分析】(1)根据点P 的对应点P1(a+6,b+2)可分别解析:(1)图见详解;()()113,4,4,2A C ;(2)平移过程为先向右平移6个单位长度,再向上平移2个单位长度;(3)以A ,C ,A 1,C 1为顶点的四边形的面积为14.【分析】(1)根据点P 的对应点P 1(a +6,b +2)可分别得出A 、B 、C 的对应点A 1,B 1,C 1的坐标,然后连接即可得出图象;(2)由(1)可直接进行求解;(3)由(1)的图象可直接利用割补法进行求解面积.【详解】解:(1)由点P 的对应点P 1(a +6,b +2)可得如图所示图象:∴由图象可得()()113,4,4,2A C ;(2)由图象可得:平移过程为先向右平移6个单位长度,再向上平移2个单位长度; (3)连接11,,AA CC ,如图所示:∵点()()13,2,4,2A C -,∴点1,A C 在同一条直线上,且与x 轴平行, ∴1111272142AC C ACC A S S =⨯=⨯=四边形.【点睛】本题主要考查平移的性质及坐标与图形,熟练掌握坐标的平移是解题的关键. 21.(1)2,;(2).【分析】(1)利用求解;(2)由于,则,,然后计算.【详解】解:(1)的整数部分是2,小数部分是;(2),而整数部分是,小数部分是,,,.【点睛】本题考查了解析:(1)252;(2)43.【分析】(1)利用253<求解;(2)由于132<<,则3x =,23331y ==,然后计算x y -.【详解】解:(15252;(2)132<<, 而23x ,小数部分是y ,3x ∴=,23331y ==,x y.3(31)33143【点睛】本题考查了估算无理数的大小,熟悉相关性质是解题得关键.22.(1)10,;(2);(3)见解析;(4)见解析【分析】(1)易得10个小正方形的面积的和,那么就得到了大正方形的面积,求得面积的算术平方根即可为大正方形的边长;(2)根据大正方形的边长结合实解析:(1)10,10;(2)101-;(3)见解析;(4)见解析【分析】(1)易得10个小正方形的面积的和,那么就得到了大正方形的面积,求得面积的算术平方根即可为大正方形的边长;(2)根据大正方形的边长结合实数与数轴的关系可得结果;(3)以2×3的长方形的对角线为边长即可画出图形;(4)得到①中正方形的边长,再利用实数与数轴的关系可画出图形.【详解】解:(1)∵图1中有10个小正方形,∴面积为10,边长AD为10;(2)∵BC=10,点B表示的数为-1,∴BE=10,∴点E表示的数为101-;(3)①如图所示:②∵正方形面积为13,∴13如图,点E表示面积为13的正方形边长.【点睛】本题考查了图形的剪拼,正方形的面积,算术平方根,实数与数轴,巧妙地根据网格的特点画出正方形是解此题的关键.23.(1)见解析;(2)∠PEQ+2∠PFQ=360°;(3)30°【分析】(1)首先证明∠1=∠3,易证得AB//CD;(2)如图2中,∠PEQ+2∠PFQ=360°.作EH//AB.理由平行线解析:(1)见解析;(2)∠PEQ+2∠PFQ=360°;(3)30°【分析】(1)首先证明∠1=∠3,易证得AB//CD;(2)如图2中,∠PEQ+2∠PFQ=360°.作EH//AB.理由平行线的性质即可证明;(3)如图3中,设∠QPF=y,∠PHQ=x.∠EPQ=z,则∠EQF=∠FQH=5y,想办法构建方程即可解决问题;【详解】(1)如图1中,∵∠2=∠3,∠1=∠2,∴∠1=∠3,∴AB//CD.(2)结论:如图2中,∠PEQ+2∠PFQ=360°.理由:作EH//AB.∵AB//CD,EH//AB,∴EH//CD,∴∠1=∠2,∠3=∠4,∴∠2+∠3=∠1+∠4,∴∠PEQ=∠1+∠4,同法可证:∠PFQ=∠BPF+∠FQD,∵∠BPE=2∠BPF,∠EQD=2∠FQD,∠1+∠BPE=180°,∠4+∠EQD=180°,∴∠1+∠4+∠EQD+∠BPE=2×180°,即∠PEQ+2(∠FQD+∠BPF)=360°,∴∠PEQ+2∠PFQ=360°.(3)如图3中,设∠QPF=y,∠PHQ=x.∠EPQ=z,则∠EQF=∠FQH=5y,∵EQ//PH,∴∠EQC=∠PHQ=x,∴x+10y=180°,∵AB//CD,∴∠BPH=∠PHQ=x,∵PF平分∠BPE,∴∠EPQ+∠FPQ=∠FPH+∠BPH,∴∠FPH=y+z﹣x,∵PQ平分∠EPH,∴Z=y+y+z﹣x,∴x=2y,∴12y=180°,∴y=15°,∴x=30°,∴∠PHQ=30°.【点睛】本题考查了平行线的判定与性质,角平分线的定义等知识.(2)中能正确作出辅助线是解题的关键;(3)中能熟练掌握相关性质,找到角度之间的关系是解题的关键.。

2023年人教版七年级数学下册期中试卷(及答案)

2023年人教版七年级数学下册期中试卷(及答案)

2023年人教版七年级数学下册期中试卷(及答案) 班级: 姓名: 一、选择题(本大题共10小题,每题3分,共30分)1.计算12+16+112+120+130+……+19900的值为( ) A .1100 B .99100 C .199 D .100992.如图,已知点E 在正方形ABCD 内,满足∠AEB=90°,AE=6,BE=8,则阴影部分的面积是( )A .48B .60C .76D .803.已知x+y =﹣5,xy =3,则x 2+y 2=( )A .25B .﹣25C .19D .﹣194.互联网“微商”经营已成为大众创业新途径,某微信平台上一件商品标价为200元,按标价的五折销售,仍可获利20元,则这件商品的进价为( )A .120元B .100元C .80元D .60元5.若数a 使关于x 的不等式组232x a x a ->⎧⎨-<-⎩无解,且使关于x 的分式方程5355ax x x-=---有正整数解,则满足条件的整数a 的值之积为( ) A .28 B .﹣4 C .4 D .﹣26.如图,四个有理数在数轴上的对应点M ,P ,N ,Q ,若点M ,N 表示的有理数互为相反数,则图中表示绝对值最小的数的点是( )A .点MB .点NC .点PD .点Q7.下列各组数中,能作为一个三角形三边边长的是( )A .1,1,2B .1,2,4C .2,3,4D .2,3,58.用图象法解某二元一次方程组时,在同一直角坐标系中作出相应的两个一次函数的图象(如图所示),则所解的二元一次方程组是 ( )A .20{3210x y x y +-=--=, B .210{3210x y x y --=--=, C .210{3250x y x y --=+-=, D .20{210x y x y +-=--=, 9.如图,将矩形ABCD 沿对角线BD 折叠,点C 落在点E 处,BE 交AD 于点F ,已知∠BDC =62°,则∠DFE 的度数为( )A .31°B .28°C .62°D .56°10.如图,在菱形ABCD 中,AC=62,BD=6,E 是BC 边的中点,P ,M 分别是AC ,AB 上的动点,连接PE ,PM ,则PE+PM 的最小值是( )A .6B .3C .6D .4.5二、填空题(本大题共6小题,每小题3分,共18分)1.已知关于x 的代数式()2x -1x 9a ++是完全平方式,则a =_________.2.如图,DA ⊥CE 于点A ,CD ∥AB ,∠1=30°,则∠D=________.3.如图,有两个正方形夹在AB 与CD 中,且AB//CD,若∠FEC=10°,两个正方形临边夹角为150°,则∠1的度数为________度(正方形的每个内角为90°)4.同一温度的华氏度数y(℉)与摄氏度数x(℃)之间的函数解析式是y =95x +32.若某一温度的摄氏度数值与华氏度数值恰好相等,则此温度的摄氏度数为__ ______℃.5.对于任意实数a 、b ,定义一种运算:a ※b=ab ﹣a+b ﹣2.例如,2※5=2×5﹣2+5﹣2=ll .请根据上述的定义解决问题:若不等式3※x <2,则不等式的正整数解是________.6.已知|x|=3,则x 的值是________.三、解答题(本大题共6小题,共72分)1.解方程组:(1)32137x y x y +=⎧⎨-=-⎩ (2)()45113812x y y x y ⎧+=+⎪⎨+=⎪⎩2.已知关于x 、y 的二元一次方程组21222x y m x y m +=+⎧⎨+=-⎩的解满足不等式组81x y x y -<⎧⎨+>⎩则m 的取值范围是什么?3.已知:如图,∠1=∠2,∠3=∠E.求证:AD∥BE.4.如图1,△ABD,△ACE都是等边三角形,(1)求证:△ABE≌△ADC;(2)若∠ACD=15°,求∠AEB的度数;(3)如图2,当△ABD与△ACE的位置发生变化,使C、E、D三点在一条直线上,求证:AC∥BE.5.为弘扬中华传统文化,我市某中学决定根据学生的兴趣爱好组建课外兴趣小组,因此学校随机抽取了部分同学的兴趣爱好进行调查,将收集的数据整理并绘制成下列两幅统计图,请根据图中的信息,完成下列问题:(1)学校这次调查共抽取了名学生;(2)补全条形统计图;(3)在扇形统计图中,“戏曲”所在扇形的圆心角度数为;(4)设该校共有学生2000名,请你估计该校有多少名学生喜欢书法?6.某数学兴趣小组研究我国古代《算法统宗》里这样一首诗:我问开店李三公,众客都来到店中,一房七客多七客,一房九客一房空.诗中后两句的意思是:如果每一间客房住7人,那么有7人无房可住;如果每一间客房住9人,那么就空出一间房.(1)求该店有客房多少间?房客多少人?(2)假设店主李三公将客房进行改造后,房间数大大增加.每间客房收费20钱,且每间客房最多入住4人,一次性订客房18间以上(含18间),房费按8折优惠.若诗中“众客”再次一起入住,他们如何订房更合算?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、B2、C3、C4、C5、B6、C7、C8、D9、D10、C二、填空题(本大题共6小题,每小题3分,共18分)1、5或-72、60°3、70.4、-405、16、±3三、解答题(本大题共6小题,共72分)1、(1)12xy=-⎧⎨=⎩;(2)14xy⎧=⎪⎨⎪=⎩2、0<m<3.3、略4、(1)略(2) ∠AEB=15°(3) 略5、(1)100;(2)补全图形见解析;(3)36°;(4)估计该校喜欢书法的学生人数为500人.6、(1)该店有客房8间,房客63人;(2)诗中“众客”再次一起入住,他们应选择一次性订房18间更合算.。

2024年最新人教版初一数学(下册)期中考卷及答案(各版本)

2024年最新人教版初一数学(下册)期中考卷及答案(各版本)

2024年最新人教版初一数学(下册)期中考卷一、选择题(每题3分,共30分)1. 下列哪个数是正数?A. 3B. 0C. 1/2D. 1/22. 一个数的绝对值是它本身的数是?A. 正数B. 负数C. 零D. 正数和零3. 下列哪个数是分数?A. 0.5B. 3/4C. 0.333D. 14. 下列哪个数是无理数?A. 3B. 2/3C. √2D. 0.255. 下列哪个数是整数?A. 1/2B. 0.5C. 3D. 0.3336. 下列哪个数是正整数?A. 0B. 1C. 1D. 1/27. 下列哪个数是负整数?A. 0B. 1C. 1D. 1/28. 下列哪个数是奇数?A. 0B. 2C. 3D. 49. 下列哪个数是偶数?A. 1B. 2C. 3D. 410. 下列哪个数是质数?A. 0B. 1C. 2D. 4二、填空题(每题4分,共20分)1. 5的绝对值是______。

2. 2的相反数是______。

3. 3/4的倒数是______。

4. 5的平方是______。

5. 2的立方根是______。

三、解答题(每题10分,共50分)1. 解方程:2x 3 = 7。

2. 解不等式:3x + 4 > 11。

3. 解方程组:x + y = 5, x y = 1。

4. 解不等式组:x > 2, x < 5。

5. 计算下列表达式的值:(3 + 4) × (5 2) ÷ 2。

四、应用题(每题15分,共30分)1. 小明买了5本书,每本书的价格是8元。

他付了50元,应该找回多少元?2. 一个长方形的长是6厘米,宽是4厘米。

求这个长方形的面积。

五、附加题(每题10分,共20分)1. 证明:对于任意实数a,a的平方总是非负的。

2. 解析几何:在平面直角坐标系中,点A(2, 3),点B(5, 1)。

求线段AB的长度。

选择题答案:1. C2. D3. B4. C5. C6. C7. C8. C9. B10. C填空题答案:1. 52. 23. 4/34. 255. 1.2599210498948732(约等于1.26)解答题答案:1. x = 52. x > 33. x = 3, y = 24. 2 < x < 55. 13应用题答案:1. 找回的金额为10元。

2023-2024学年全国初中七年级下数学人教版期中考试试卷(含答案解析)

2023-2024学年全国初中七年级下数学人教版期中考试试卷(含答案解析)

20232024学年全国初中七年级下数学人教版期中考试试卷一、选择题(每题2分,共20分)1.下列各数中,是整数的是()A. 0.5B. 2C. 3/4D. 1.52.下列各数中,是负数的是()A. 0B. 3C. 2D. 1/23.下列各数中,是正数的是()A. 3B. 0C. 1/2D. 1.54.下列各数中,是正分数的是()A. 3/4B. 0C. 1/2D. 1.55.下列各数中,是负分数的是()A. 3/4B. 0C. 1/2D. 1.56.下列各数中,是正整数的是()A. 2B. 0C. 1/2D. 37.下列各数中,是负整数的是()A. 2B. 0C. 1/2D. 38.下列各数中,是正无理数的是()A. √2B. 0C. √3D. 1.59.下列各数中,是负无理数的是()A. √2B. 0C. √3D. 1.510.下列各数中,是分数的是()A. √2B. 0C. 3/4D. 1.5二、填空题(每题2分,共20分)1.若a是正数,b是负数,则a+b的值()2.若a是正数,b是负数,则ab的值()3.若a是正数,b是负数,则ab的值()4.若a是正数,b是负数,则a/b的值()5.若a是正数,b是负数,则a+b的绝对值()6.若a是正数,b是负数,则ab的绝对值()7.若a是正数,b是负数,则ab的绝对值()8.若a是正数,b是负数,则a/b的绝对值()9.若a是正数,b是负数,则a+b的平方()10.若a是正数,b是负数,则ab的平方()三、解答题(每题5分,共30分)1.解方程:3x5=2x+72.解方程:2x+3=5x43.解方程:4x3=2x+94.解方程:5x+4=3x85.解方程:6x5=4x+76.解方程:7x+6=5x9四、应用题(每题10分,共20分)1.某水果店有苹果和香蕉两种水果,苹果每斤5元,香蕉每斤3元。

小明想买3斤苹果和2斤香蕉,一共需要多少钱?2.某学校组织了一次运动会,参加跑步的学生有男生和女生两种,男生有20人,女生有15人。

七年级数学下册期中考试试卷(附带答案)

七年级数学下册期中考试试卷(附带答案)

七年级数学下册期中考试试卷(附带答案)(试卷满分:150分;考试时间:120分钟)学校:___________姓名:___________班级:___________考号:___________注意事项:本试题共6页,满分为150分.考试时间为120分钟.答卷前,请考生务必将自己的姓名、座号和准考证号填写在答题卡上,并同时将考点、姓名、准考证号和座号填写在试卷规定的位置上.答选择题时,必须使用2B铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号;答非选择题时,用0.5mm黑色签字笔在答题卡上题号所提示的答题区域作答,答案写在试卷上无效.第I卷(选择题共40分)一.选择题(本大题共10个小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.下列运算正确的是()A.a2·a4=a8B.a4+a4=a8C.(ab)3= a³b3D.(a2)4=a62.泉城广场鲜花盛放,数郁金香最为耀眼,某品种郁金香花粉直径约为0,000000032米,数据0.000000032用科学记数法表示为()A.0.32x10-7B.3.2x10-8C.3.2x10-7D.32x10-93.研究表明,雾霾的程度随城市中心区立体绿化面积的增大而减小,在这个问题中,自变量是()A.雾霾的程度B.城市中心C.雾霾D.城市中心区立体绿化面积4.在下列四组线段中,能组成三角形的是( )A.2,2,5B.3,7,10C.3,5,9D.4,5,75.如图AB ∥CD,若∠1=40°,则∠2=()A.100°B.120°C.140°D.150°(第5题图)(第6题图)(第9题图)(第10题图)6.如图,从人行横道线上的点P处过马路,沿线路PB行走距离最短,其依据的几何学原理是()A.垂线段最短B.两点之间线段最短C.两点确定一条直线D.在同一平面内,过一点有且只有一条直线与已知直线垂直7.下列各式中,可以用平方差公式计算的是( )A.(a-b)(a-b)B.(3a+2b)(3a-2b)C.(a+b)(2a-b)D.(2a+b)(-2a-b )8.已知x2+mx+25是一个完全平方式,则m的值为( )A.±5B.10C.﹣10D.±109.如图:OB=OD,添加下列条件后不能保证△AOB≌△COD的是()A.OA=OCB.AB=CDC.∠A=∠CD.∠B=∠D10.甲、乙两人在笔直的湖边公路上同起点、同终点、同方向匀速步行2400米,先到终点的人原地休息,已知甲先出发4分钟,在整个步行过程中,甲、乙两人的距离y(米)与甲出发的时间t(分)之间的关系如图所示,下列结论:①甲步行的速度为60米/分:②乙走完全程用了36分钟:③乙用16分钟追上甲:④乙到达终点时,甲离终点还有300米.其中正确的结论有()A.1个B.2个C.3个D.4个第II卷(非选择题共110分)二.填空题(本大题共6个小题,每小题4分,共24分)11.若一个角是38°,则这个角的余角为.12.4m2n÷(-2m)= .13.在△ABC中,∠A:∠B:∠C=5:6:7,则△ABC是(填入"锐鱼三角形"、"直角三角形"或"钝角三角形").14.农村"雨污分流"工程是"美丽乡村"战略的重要组成部分,我县某村要铺设一条全长为1000米的"雨污分流"管道,现在工程队铺设管道施工x天与铺设管道y米之间的关系用表格表示如下,则施工8天后,未铺设的管道长度为米.15.如图,AD是△ABC的中线,已知△ABD的周长为16cm,AB比AC长3cm,则△ACD的周长为。

完整版(完整版)七年级数学下册期中试卷及答案 - 百度文库

完整版(完整版)七年级数学下册期中试卷及答案 - 百度文库

完整版(完整版)七年级数学下册期中试卷及答案 - 百度文库一、选择题1.一个有理数的平方等于36,则这个数是()A .6B .6或6-C .36D .6-2.下列汽车商标图案中,可以由一个“基本图案”通过连续平移得到的是( ) A . B . C . D . 3.已知点P 的坐标为(2,4)P -,则点P 在第( )象限.A .一B .二C .三D .四4.下列命题中,是假命题的是( )A .经过一个已知点能画一条且只能画一条直线与已知直线平行B .从直线外一点到这条直线的垂线段的长度叫做这点到直线的距离C .在同一平面内,一条直线的垂线可以画无数条D .连接直线外一点与直线上各点的所有线段中,垂线段最短5.如图,//AB CD ,将一个含30角的直角三角尺按如图所示的方式放置,若1∠的度数为25︒,则2∠的度数为( )A .35︒B .65︒C .145︒D .155︒ 6.下列运算正确的是( ) A .164=± B .()3327-= C .42= D .393= 7.如图:AB ∥CD ,OE 平分∠BOC ,OF ⊥OE ,OP ⊥CD ,∠ABO =40°,则下列结论:①OF 平分∠BOD ;②∠POE =∠BOF ;③∠BOE =70°;④∠POB =2∠DOF ,其中结论正确的序号是( )A .①②③B .①②④C .①③④D .①②③④ 8.如图,在平面直角坐标系中,有若干个整数点,其顺序按图中“→”方向排列,如(1,0)、(2,0)、(2,1)、(3,2)、(3,1)、(3,0)、(4,0),……,根据这个规律探索可得,第20个点的坐标为( )A .(6,4)B .(6,5)C .(7,3)D .(7,5)二、填空题9.4的算术平方根是_____.10.若过点()()3,7,5M a N --、的直线与x 轴平行,则点M 关于y 轴的对称点的坐标是_________.11.如图,AD ∥BC ,∠ABC 的角平分线BP 与∠BAD 的角平分线AP 相交于点P ,作PE ⊥AB 于点E .若PE =2,则两平行线AD 与BC 间的距离为_____.12.如图,//AB DE ,70ABC ∠=︒,140CDE ∠=︒,则BCD ∠的度数为___________︒.13.如图,将一张长方形纸条折成如图的形状,若170∠=︒,则2∠的度数为____.14.a ※b 是新规定的这样一种运算法则:a ※b=a+2b ,例如3※(﹣2)=3+2×(﹣2)=﹣1.若(﹣2)※x=2+x ,则x 的值是_____.15.点()2,1P -关于y 轴的对称点Q 的坐标是_______.16.在平面直角坐标系xoy 中,对于点(,)P x y 我们把(1,1)P y x -++叫做点P 的伴随点,已知1A 的伴随点为2A ,点2A 的伴随点为3A ,点3A 的伴随点为4A ,这样依次得到123,,,n A A A A ⋯,若点1A 的坐标为(3,1),则点2021A 的坐标为_______三、解答题17.(1310.0484-(2)计算:2231(3)0.125(4)64----+--- 18.求下列各式中的x :(1)3641250x -=; (2)3(1)8x +=; (3)3(21)270x -+=.19.补全下面的证明过程和理由:如图,AB 和CD 相交于点O ,EF ∥AB ,∠C =∠COA ,∠D =∠BOD .求证:∠A =∠F .证明:∵∠C =∠COA ,∠D =∠BOD ,( )又∵∠COA =∠BOD ,( )∴∠C = .( )∴AC ∥DF ( ).∴∠A = ( ).∵EF ∥AB ,∴∠F = ( ).∴∠A =∠F ( ).20.在由边长为1个单位长度的小正方形组成的网格中建立如图所示平面直角坐标系,原点O 及△ABC 的顶点都在格点上.(1)将△ ABC 先向下平移2个单位长度,再向右平移5个单位长度得到△ A 1B 1C 1,画出△ A 1B 1C 1.(2)求△ A 1B 1C 1的面积.21.已知某正数的两个不同的平方根是3a ﹣14和a +2;b +11的立方根为﹣3;c 6的整数部分;(1)求a +b +c 的值;(2)求3a ﹣b +c 的平方根.22.学校要建一个面积是81平方米的草坪,草坪周围用铁栅栏围绕,现有两种方案:有人建议建成正方形,也有人建议建成圆形,如果从节省铁栅栏费用的角度考虑(栅栏周长越小,费用越少),你选择哪种方案?请说明理由.(π取3)23.如图1,点A 在直线MN 上,点B 在直线ST 上,点C 在MN ,ST 之间,且满足MAC ACB SBC ∠+∠+∠360=︒.(1)证明://MN ST ;(2)如图2,若60ACB ∠=︒,//AD CB ,点E 在线段BC 上,连接AE ,且2DAE CBT ∠=∠,试判断CAE ∠与CAN ∠的数量关系,并说明理由;(3)如图3,若180ACB n︒∠=(n 为大于等于2的整数),点E 在线段BC 上,连接AE ,若MAE n CBT ∠=∠,则:CAE CAN ∠∠=______.【参考答案】一、选择题1.B解析:B【分析】根据一个数a ,如果2a b =,那么a 就叫做b 的平方根求解即可.【详解】解:∵()2636±=,∴36的平方根为6或-6,故选B .【点睛】本题主要考查了平方根,解题的关键在于能够熟练掌握平方根的定义. 2.B【分析】根据旋转变换,平移变换,轴对称变换对各选项分析判断后利用排除法求解.【详解】解:A 、可以由一个“基本图案”旋转得到,故本选项错误;B 、可以由一个“基本图案”平移得到,故把本选项正解析:B【分析】根据旋转变换,平移变换,轴对称变换对各选项分析判断后利用排除法求解.【详解】解:A、可以由一个“基本图案”旋转得到,故本选项错误;B、可以由一个“基本图案”平移得到,故把本选项正确;C、是轴对称图形,不是基本图案的组合图形,故本选项错误;D、是轴对称图形,不是基本图案的组合图形,故本选项错误.故选:B.【点睛】本题考查了生活中的平移现象,仔细观察各选项图形是解题的关键.3.B【分析】直接利用第二象限内的点:横坐标小于0,纵坐标大于0,即可得出答案.【详解】解:∵点P的坐标为P(-2,4),∴点P在第二象限.故选:B.【点睛】此题主要考查了点的坐标,正确掌握各象限内点的坐标特点是解题关键.4.A【分析】分别利用平行线以及点到直线的距离以及垂线以及垂线段最短的定义分别分析得出即可.【详解】解:A、在同一平面内,经过一点(点不在已知直线上)能画一条且只能画一条直线与已知直线平行,故选项错误,符合题意;B、从直线外一点到这条直线的垂线段的长叫做点到直线的距离,正确,不符合题意;C、一条直线的垂线可以画无数条,正确,不符合题意;D、连接直线外一点与直线上各点的所有线段中,垂线段最短,正确,不符合题意;故选:A.【点评】此题主要考查了平行线、垂线以及垂线段和点到直线的距离等定义,正确把握相关定义是解题关键.5.A【分析】过三角板60°角的顶点作直线EF∥AB,则EF∥CD,利用平行线的性质,得到∠3+∠4=∠1+∠2=60°,代入计算即可.【详解】如图,过三角板60°角的顶点作直线EF∥AB,∵AB∥CD,∴EF∥CD,∴∠3=∠1,∠4=∠2,∵∠3+∠4=60°,∴∠1+∠2=60°,∵∠1=25°,∴∠2=35°,故选A.【点睛】本题考查了平行线的辅助线构造,平行线的判定与性质,三角板的意义,熟练掌握平行线的判定与性质是解题的关键.6.C【分析】利用立方根和算术平方根的定义,以及二次根式的化简得到结果,即可做出判断.【详解】解:A164=,故本选项错误;-=-,故本选项错误;B、()3327C42,故本选项正确;D393,故本选项错误;故选:C.【点睛】此题考查了立方根和算术平方根,以及二次根式的化简,熟练掌握立方根和算术平方根的定义,二次根式的化简方法是解本题的关键.7.A【分析】根据AB∥CD可得∠BOD=∠ABO=40°,利用平角得到∠COB=140°,再根据角平分线的定义得到∠BOE=70°,则③正确;利用OP⊥CD,AB∥CD,∠ABO=40°,可得∠POB=50°,∠BOF=20°,∠FOD=20°,进而可得OF平分∠BOD,则①正确;由∠EOB=70°,∠POB=50°,∠POE=20°,由∠BOF=∠POF-∠POB=20°,进而可得∠POE=∠BOF,则②正确;由②可知∠POB=50°,∠FOD=20°,则④不正确.【详解】③∵AB∥CD,∴∠BOD=∠ABO=40°,∴∠COB=180°-40°=140°,又∵OE平分∠BOC,∴∠BOE=12∠COB=12×140°=70°,故③正确;①∵OP⊥CD,∴∠POD=90°,又∵AB∥CD,∴∠BPO=90°,又∵∠ABO=40°,∴∠POB=90°-40°=50°,∴∠BOF=∠POF-∠POB=70°-50°=20°,∠FOD=40°-20°=20°,∴OF平分∠BOD,故①正确;②∵∠EOB=70°,∠POB=90°-40°=50°,∴∠POE=70°-50°=20°,又∵∠BOF=∠POF-∠POB=70°-50°=20°,∴∠POE=∠BOF,故②正确;④由①可知∠POB=90°-40°=50°,∠FOD=40°-20°=20°,故∠POB≠2∠DOF,故④不正确.故结论正确的是①②③,故选A.【点睛】本题考查了平行线的性质,解题的关键是要注意将垂直、平行、角平分线的定义结合应用,弄清图中线段和角的关系,再进行解答.8.A【分析】横坐标为1的点有1个,纵坐标只是0;横坐标为2的点有2个,纵坐标是0或1;横坐标为3的点有3个,纵坐标分别是0,1,横坐标为奇数,纵坐标从大数开始数;横坐标为偶数,则从0开始数.【详解析:A【分析】横坐标为1的点有1个,纵坐标只是0;横坐标为2的点有2个,纵坐标是0或1;横坐标为3的点有3个,纵坐标分别是0,1,2 横坐标为奇数,纵坐标从大数开始数;横坐标为偶数,则从0开始数.解:把第一个点(1,0)作为第一列,(2,1)和(2,0)作为第二列,依此类推,则第一列有一个数,第二列有2个数,第n 列有n 个数.则n 列共有(1)2n n +个数,并且在奇数列点的顺序是由上到下,偶数列点的顺序由下到上.因为123615+++⋯+=,则第20个数一定在第6列,由下到上是第4个数.因而第20个点的坐标是(6,4).故选:A .【点睛】本题考查了学生的观察图形的能力和理解能力,解此题的关键是根据图形得出规律,题目比较典型,但是一道比较容易出错的题目. 二、填空题9.【详解】试题分析:∵,∴4算术平方根为2.故答案为2.考点:算术平方根.解析:【详解】试题分析:∵224=,∴4算术平方根为2.故答案为2.考点:算术平方根.10.【分析】根据MN 与x 轴平行可以求得M 点坐标,进一步可以求得点M 关于y 轴的对称点的坐标.【详解】解:∵MN 与x 轴平行,∴两点纵坐标相同,∴a=-5,即M 为(-3,-5) ∴点M 关于y 轴的对解析:()3,5-【分析】根据MN 与x 轴平行可以求得M 点坐标,进一步可以求得点M 关于y 轴的对称点的坐标.【详解】解:∵MN 与x 轴平行,∴两点纵坐标相同,∴a=-5,即M 为(-3,-5)∴点M 关于y 轴的对称点的坐标为:(3,-5)故答案为(3,-5).【点睛】本题考查图形及图形变化的坐标表示,熟练掌握各种图形及图形变化的坐标特征是解题关键.11.4根据角平分线的性质以及平行线的性质即可得出PM=PE=2,PE=PN=2,即可得出答案.【详解】解:过点P作MN⊥AD,∵AD∥BC,∠ABC的角平分线BP与∠BAD的角平分线A解析:4【分析】根据角平分线的性质以及平行线的性质即可得出PM=PE=2,PE=PN=2,即可得出答案.【详解】解:过点P作MN⊥AD,∵AD∥BC,∠ABC的角平分线BP与∠BAD的角平分线AP相交于点P,PE⊥AB于点E,∴AP⊥BP,PN⊥BC,∴PM=PE=2,PE=PN=2,∴MN=2+2=4.故答案为4.12.30【分析】过点C作CF∥AB,根据平行线的传递性得到CF∥DE,根据平行线的性质得到∠BCF=∠ABC,∠CDE+∠DCF=180°,根据已知条件等量代换得到∠BCF=70°,由等式性质得到∠解析:30【分析】过点C作CF∥AB,根据平行线的传递性得到CF∥DE,根据平行线的性质得到∠BCF=∠ABC,∠CDE+∠DCF=180°,根据已知条件等量代换得到∠BCF=70°,由等式性质得到∠DCF=30°,于是得到结论.【详解】解:过点C作CF∥AB,∵AB∥DE,∴CF∥DE,∴∠BCF=∠ABC=70°,∠DCF=180°-∠CDE=40°,∴∠BCD=∠BCF-∠DCF=70°-40°=30°.故答案为:30【点睛】本题主要考查平行线的性质,掌握平行线的性质和判定是解题的关键,即①同位角相等⇔两直线平行,②内错角相等⇔两直线平行,③同旁内角互补⇔两直线平行.13.55°【分析】依据平行线的性质以及折叠的性质,即可得到∠2的度数.【详解】解:如图所示,∵∠1=70°,∴∠3+∠4=180°-∠1=110°,又∵折叠,∴∠3=∠4=55°,解析:55°【分析】依据平行线的性质以及折叠的性质,即可得到∠2的度数.【详解】解:如图所示,∵∠1=70°,∴∠3+∠4=180°-∠1=110°,又∵折叠,∴∠3=∠4=55°,∵AB//DE,∴∠2=∠3=55°,故答案为:55°.【点睛】本题主要考查了平行线的性质,解题时注意:两条平行线被第三条直线所截,内错角相等.14.4【解析】根据题意可得(﹣2)※x=﹣2+2x ,进而可得方程﹣2+2x=2+x ,解得:x=4.故答案为:4.点睛:此题是一个阅读理解型的新运算法则题,解题关键是明确新运算法则的特点,然后直接根解析:4【解析】根据题意可得(﹣2)※x=﹣2+2x ,进而可得方程﹣2+2x=2+x ,解得:x=4. 故答案为:4.点睛:此题是一个阅读理解型的新运算法则题,解题关键是明确新运算法则的特点,然后直接根据新定义的代数式计算即可.15.【分析】根据点关于轴的对称点的坐标的特征,即可写出答案.【详解】解:∵点关于轴的对称点为,∴点的纵坐标与点的纵坐标相同,点的横坐标是点的横坐标的相反数,故点的坐标为:,故答案为:.解析:()2,1--【分析】根据点关于y 轴的对称点的坐标的特征,即可写出答案.【详解】解:∵点()2,1P -关于y 轴的对称点为Q ,∴点Q 的纵坐标与点P 的纵坐标相同,点Q 的横坐标是点P 的横坐标的相反数,故点Q 的坐标为:()2,1--,故答案为:()2,1--.【点睛】本题考查了与直角坐标系相关的知识,理解点关于y 轴的对称点的坐标的特征(纵坐标相等,横坐标是其相反数)是解题的关键.16.【分析】根据“伴随点”的定义依次求出各点,不难发现,每4个点为一个循环组依次循环,用2021除以4,根据商和余数的情况确定点A2021的坐标即可.【详解】解:∵A1的坐标为(3,1),∴A3,1解析:()【分析】根据“伴随点”的定义依次求出各点,不难发现,每4个点为一个循环组依次循环,用2021除以4,根据商和余数的情况确定点A2021的坐标即可.【详解】解:∵A1的坐标为(3,1),∴A2(0,4),A3(−3,1),A4(0,−2),A5(3,1),…,依此类推,每4个点为一个循环组依次循环,∵2021÷4=505…1,∴2021A的坐标与A1的坐标相同,为(3,1).故答案是:(3,1).【点睛】考查点的坐标规律,读懂题目信息,理解“伴随点”的定义并求出每4个点为一个循环组依次循环是解题的关键.三、解答题17.(1);(2)【分析】(1)先根据算术平方根、立方根的定义化简各项,然后进行加减计算即可;(2)先根据算术平方根、立方根、平方的定义,绝对值的性质化简各项,然后进行加减计算即可.【详解】解解析:(1) 2.3;(2)1【分析】(1)先根据算术平方根、立方根的定义化简各项,然后进行加减计算即可;(2)先根据算术平方根、立方根、平方的定义,绝对值的性质化简各项,然后进行加减计算即可.【详解】解:(11=+--0.2(2)2=-;2.3(6-(2)2113()4622=---+- 1= .【点睛】本题主要考查了实数的运算,解题的关键是熟练掌握算术平方根、立方根、平方的定义,绝对值的性质及实数运算法则.18.(1);(2)1;(3)-1.【分析】(1)根据立方根的定义解方程即可;(2)根据立方根的定义解方程即可;(3)根据立方根的定义解方程即可.【详解】解:(1),∴ ,∴,∴;(2解析:(1)54;(2)1;(3)-1. 【分析】(1)根据立方根的定义解方程即可;(2)根据立方根的定义解方程即可;(3)根据立方根的定义解方程即可.【详解】解:(1)3641250x -=,∴ ()334=5x , ∴4=5x , ∴5=4x ; (2)3(1)8x +=∴33(1)2x +=∴12x +=∴1x =;(3)3(21)270x -+=,∴()33(21)3x -=-, ∴213x -=-,∴1x =-.【点睛】本题考查了利用立方根的含义解方程,熟知立方根的定义是解决问题的关键.19.见解析【分析】根据对顶角相等结合已知得出∠C=∠D,从而得出AC∥DF,由平行线的性质得出∠A=∠ABD,∠F=∠ABD,即可得出结论.【详解】解:∵∠C=∠COA,∠D=∠BOD(已知),解析:见解析【分析】根据对顶角相等结合已知得出∠C=∠D,从而得出AC∥DF,由平行线的性质得出∠A=∠ABD,∠F=∠ABD,即可得出结论.【详解】解:∵∠C=∠COA,∠D=∠BOD(已知),又∵∠COA=∠BOD(对顶角相等),∴∠C=∠D(等量代换).∴AC∥DF(内错角相等,两直线平行).∴∠A=∠ABD(两直线平行,内错角相等).∵EF∥AB,∴∠F=∠ABD(两直线平行,内错角相等).∴∠A=∠F(等量代换).故答案为:已知,对顶角相等;∠D,等量代换;内错角相等,两直线平行;∠ABD,两直线平行,内错角相等;∠ABD,两直线平行,同位角相等,等量代换.【点睛】本题考查了平行线的判定与性质;熟练掌握平行线的判定与性质是解题的关键.20.(1)见解析;(2)【分析】(1)直接利用平移的性质得出对应点位置进而得出答案;(2)依据割补法进行计算,即可得到三角形ABC的面积.【详解】解:(1)如图所示,三角形A1B1C1即为所求解析:(1)见解析;(2)11 2【分析】(1)直接利用平移的性质得出对应点位置进而得出答案;(2)依据割补法进行计算,即可得到三角形ABC的面积.【详解】解:(1)如图所示,三角形A1B1C1即为所求;(2)如图所示,△A1B1C1的面积=11134132314222⨯-⨯⨯-⨯⨯-⨯⨯=112.【点睛】本题考查了根据平移变换作图,解答本题的关键是根据网格结构作出对应点的位置,然后顺次连接.21.(1)-33;(2)【分析】(1)由平方根的性质知3a-14和a+2互为相反数,可列式,解之可得a=3,根据立方根定义可得b的值,根据可得c的值;(2)分别将a,b,c的值代入3a-b+c,可解析:(1)-33;(2)7±【分析】(1)由平方根的性质知3a-14和a+2互为相反数,可列式,解之可得a=3,根据立方根定义可得b的值,根据263<<可得c的值;(2)分别将a,b,c的值代入3a-b+c,可解答.【详解】解:(1)∵某正数的两个平方根分别是3a-14和a+2,∴(3a-14)+(a+2)=0,∴a=3,又∵b+11的立方根为-3,∴b+11=(-3)3=-27,∴b=-38,又∵469<<,∴263<,又∵c6的整数部分,∴c=2;∴a+b+c=3+(-38)+2=-33;(2)当a=3,b=-38,c=2时,3a-b+c=3×3-(-38)+2=49,∴3a-b+c的平方根是±7.【点睛】本题主要考查了立方根、平方根及无理数的估算,解题的关键是熟练掌握平方根和立方根的定义.22.选择建成圆形草坪的方案,理由详见解析【分析】根据正方形的面积公式、算术平方根的概念求出正方形的边长,求出正方形的周长,根据圆的面积公式、算术平方根的概念求出圆的半径,求出圆的周长,比较大小得到答解析:选择建成圆形草坪的方案,理由详见解析【分析】根据正方形的面积公式、算术平方根的概念求出正方形的边长,求出正方形的周长,根据圆的面积公式、算术平方根的概念求出圆的半径,求出圆的周长,比较大小得到答案.【详解】解:选择建成圆形草坪的方案,理由如下:设建成正方形时的边长为x米,由题意得:x2=81,解得:x=±9,∵x>0,∴x=9,∴正方形的周长为4×9=36,设建成圆形时圆的半径为r米,由题意得:πr2=81.r解得:=∵r>0.∴=r∴圆的周长=2π≈∵56<,∴3036<,∴建成圆形草坪时所花的费用较少,故选择建成圆形草坪的方案.【点睛】本题考查的是算术平方根的应用,掌握算术平方根概念是解题的关键.23.(1)见解析;(2)见解析;(3)n-1【分析】(1)连接AB,根据已知证明∠MAB+∠SBA=180°,即可得证;(2)作CF ∥ST ,设∠CBT=α,表示出∠CAN ,∠ACF ,∠BCF ,根据解析:(1)见解析;(2)见解析;(3)n -1【分析】(1)连接AB ,根据已知证明∠MAB +∠SBA =180°,即可得证;(2)作CF ∥ST ,设∠CBT =α,表示出∠CAN ,∠ACF ,∠BCF ,根据AD ∥BC ,得到∠DAC =120°,求出∠CAE 即可得到结论;(3)作CF ∥ST ,设∠CBT =β,得到∠CBT =∠BCF =β,分别表示出∠CAN 和∠CAE ,即可得到比值.【详解】解:(1)如图,连接AB ,,360MAC ACB SBC ∠+∠+∠=︒,180ACB ABC BAC ∠+∠+∠=︒,180MAB SBA ∴∠+∠=︒,//MN ST ∴(2)2CAE CAN ∠=∠,理由:作//CF ST ,则////,MN CF ST 如图,设CBT α∠=,则2DAE α∠=.BCF CBT α∠=∠=,60CAN ACF α∠=∠=︒-,//AD BC ,180120DAC ACB ∠=︒-∠=︒,12012022(60)2CAE DAE CAN αα∴∠=︒-∠=︒-=︒-=∠.即2CAE CAN ∠=∠.(3)作//CF ST ,则////,MN CF ST 如图,设CBT β∠=,则MAE n β∠=.//CF ST ,CBT BCF β∴∠=∠=, 180180n ACF CAN n nββ︒︒-∠=∠=-=, 1801180180(180)n CAE MAE CAN n n n n βββ︒-∠=︒-∠-∠=︒--+=︒-, 11::1n CAE CAN n n n -∠∠==-, 故答案为1n -.【点睛】本题主要考查平行线的性质和判定,解题关键是角度的灵活转换,构建数量关系式.。

完整版(完整版)七年级数学下册期中试卷及答案 - 百度文库

完整版(完整版)七年级数学下册期中试卷及答案 - 百度文库

完整版(完整版)七年级数学下册期中试卷及答案 - 百度文库一、选择题1.下列各数是无理数的是()A .2.7B .227C .3.1415926D .﹣π2.下列所示的车标图案,其中可以看作由基本图案经过平移得到的是( )A .B .C .D . 3.点()3,5A -在平面直角坐标系中所在的象限是( )A .第一象限B .第二象限C .第三象限D .第四象限 4.下列四个命题:①4±是64的立方根;②5是25的算术平方根;③如果两条直线都与第三条直线平行,那么这两条直线也互相平行;④在平面直角坐标系中,与两坐标轴距离都是2的点有且只有2个.其中真命题有( )个A .1B .2C .3D .4 5.如图所示,//CD AB ,OE 平分∠AOD ,80EOF ∠=︒,60D ∠=︒,则∠BOF 为( )A .35︒B .40︒C .25︒D .20︒ 6.下列语句中正确的是( )A .-9的平方根是-3B .9的平方根是3C .9的立方根是3±D .9的算术平方根是3 7.如图,AB ∥CD ,将一块三角板(∠E =30°)按如图所示方式摆放,若∠EFH =25°,求∠HGD 的度数( )A .25°B .30°C .55°D .60°8.如图,在平面直角坐标系中,A (1,1),B (﹣1,1),C (﹣1,﹣2),D (1,﹣2),把一条长为2021个单位长度且没有弹性的细线(线的粗细忽略不计)的一端固定在点A 处,并按A ﹣B ﹣C ﹣D ﹣A …的规律绕在四边形ABCD 的边上,则细线另一端所在位置的点的坐标是( )A .(﹣1,0)B .(0,2)C .(﹣1,﹣2)D .(0,1)二、填空题9.若102.0110.1=,则± 1.0201=_________.10.点A (2,4)关于x 轴对称的点的坐标是_____.11.如图,AE 是△ABC 的角平分线,AD ⊥BC 于点D ,若∠BAC =130°,∠C =30°,则∠DAE 的度数是__________.12.如图,将三角板与两边平行的直尺(//EF HG )贴在一起,使三角板的直角顶点C (90ACB ∠︒=)在直尺的一边上,若255∠︒=,则1∠的度数等于________.13.如图,四边形ABCD 中,点M 、N 分别在AB 、BC 上,将△BMN 沿MN 翻折,得△FMN ,若MF ∥AD ,FN ∥DC ,则∠D 的度数为 ___.14.用⊕表示一种运算,它的含义是:1(1)(1)x A B A B A B ⊕=++++,如果5213⊕=,那么45⊕=__________.15.若点P (2x ,x-3)到两坐标轴的距离之和为5,则x 的值为____________.16.如图,一个点在第一象限及x 轴、y 轴上运动,在第一秒钟,它从原点()0,0运动到()0,1,然后接着按图中箭头所示方向运动,即()()()()0,00,11,11,0→→→,…,且每秒运动一个单位,到()1,1点用时2秒,到()2,2点用时6秒,到()3,3点用时12秒,…,那么第421秒时这个点所在位置的坐标是____.三、解答题17.计算下列各题: (1)2213-12; (2)-318×16; (3)-3216+3125+()2-3. 18.求下列各式中x 的值:(1)225x =;(2)2810x -=;(3)22536x =.19.阅读并完成下列的推理过程.如图,在四边形ABCD 中,E 、F 分别在线段AB 、AD 上,连结ED 、EF ,已知∠AFE =∠CDF ,∠BCD +∠DEF =180°.证明BC ∥DE ;证明:∵∠AFE =∠CDF (已知)∴EF ∥CD ( )∴∠DEF =∠CDE ( )∵∠BCD +∠DEF =180°( )∴ ( )∴BC ∥DE ( )20.如图,在平面直角坐标系中,三角形OBC 的顶点都在网格格点上,一个格是一个单位长度.(1)将三角形OBC 先向下平移3个单位长度,再向左平移2个单位长度(点1C 与点C 是对应点),得到三角形111O B C ,在图中画出三角形111O B C ;(2)直接写出三角形111O B C 的面积为____________.21.对于实数a ,我们规定:用符号[]表示不大于的最大整数,称[]为a 的根整数,例如:[]=3,[]=3. (1)仿照以上方法计算:[]= ;[]= . (2)若[]=1,写出满足题意的x 的整数值 . (3)如果我们对a 连续求根整数,直到结果为1为止.例如:对10连续求根整数2次[]=3→[]=1,这时候结果为1.对145连续求根整数, 次之后结果为1. 22.如图,纸上有五个边长为1的小正方形组成的图形纸,我们可以把它剪开拼成一个正方形.(1)拼成的正方形的面积与边长分别是多少?(2)如图所示,以数轴的单位长度的线段为边作一个直角三角形,以数轴的-1点为圆心,直角三角形的最大边为半径画弧,交数轴正半轴于点A ,那么点A 表示的数是多少?点A 表示的数的相反数是多少?(3)你能把十个小正方形组成的图形纸,剪开并拼成正方形吗?若能,请画出示意图,并求它的边长23.如图①,将一张长方形纸片沿EF 对折,使AB 落在''A B 的位置;(1)若1∠的度数为a ,试求2∠的度数(用含a 的代数式表示);(2)如图②,再将纸片沿GH 对折,使得CD 落在''C D 的位置.①若//'EF C G ,1∠的度数为a ,试求3∠的度数(用含a 的代数式表示);②若''B F C G ⊥,3∠的度数比1∠的度数大20︒,试计算1∠的度数.【参考答案】一、选择题1.D解析:D【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.【详解】解:A .2.7是循环小数,属于有理数,故本选项不合题意;B .227是分数,属于有理数,故本选项不合题意; C .3.1415926是有限小数,属于有理数,故本选项不合题意;D .﹣π是无理数,故本选项符合题意;故选:D .【点睛】本题考查无理数、实数的分类等知识,是基础考点,掌握相关知识是解题关键. 2.C【分析】根据平移的概念:在平面内,把一个图形整体沿某一的方向移动,这种图形的平行移动,叫做平移变换,简称平移,即可选出答案.【详解】解:根据平移的概念,观察图形可知图案B 通过平移后可以得到解析:C【分析】根据平移的概念:在平面内,把一个图形整体沿某一的方向移动,这种图形的平行移动,叫做平移变换,简称平移,即可选出答案.【详解】解:根据平移的概念,观察图形可知图案B 通过平移后可以得到.故选C .【点睛】本题考查生活中的平移现象,仔细观察各选项图形是解题的关键.3.B【分析】根据坐标的特点即可求解.【详解】点()3,5A -在平面直角坐标系中所在的象限是第二象限故选B .【点睛】此题主要考查坐标所在象限,解题的关键是熟知直角坐标系的特点.4.B【分析】根据立方根和算术平方根的定义、平行线的性质、点到直线的距离逐项判断即可.【详解】64的立方根是4,故①是假命题; 25的算数平方根是5,故②是真命题;如果两条直线都与第三条直线平行,那么这两条直线也互相平行,故③是真命题;与两坐标轴距离都是2的点有(2,2)、(2,-2)、(-2,2)、(-2,-2)共4点,故④是假命题.故选:B .【点睛】本题考查命题真、假的判断.正确掌握相关定义、性质与判定是解题关键.5.B【分析】由平行线的性质和角平分线的定义,求出60BOD D ∠=∠=︒,20DOF ∠=︒,然后即可求出∠BOF 的度数.【详解】解:∵//CD AB ,60D ∠=︒∴60BOD D ∠=∠=︒,18060120AOD ∠=︒-︒=︒,∵OE 平分∠AOD ,∴1120602DOE ∠=⨯︒=︒, ∴806020DOF EOF DOE ∠=∠-∠=︒-︒=︒;∴602040BOF BOD DOF ∠=∠-∠=︒-︒=︒;故选:B .【点睛】本题考查了平行线的性质,角平分线的定义,以及角的和差关系,解题的关键是熟练掌握所学的知识,正确的求出角的度数.6.D【分析】根据平方根、立方根、算术平方根的定义逐一进行判断即可.【详解】A. 负数没有平方根,故A 选项错误;B. 9的平方根是±3,故B 选项错误;C. 9C 选项错误;D. 9的算术平方根是3,正确,故选D.【点睛】本题考查了平方根、立方根、算术平方根等知识,熟练掌握相关概念以及求解方法是解题的关键.7.C【分析】先根据三角形外角可求∠EHB =∠EFH +∠E =55°,根据平行线性质可得∠HGD =∠EHB =55°即可.【详解】解:∵∠EHB 为△EFH 的外角,∠EFH =25°,∠E =30°,∴∠EHB =∠EFH +∠E =25°+30°=55°,∵AB ∥CD ,∴∠HGD =∠EHB =55°.故选C .【点睛】本题考查三角形外角性质,平行线性质,掌握三角形外角性质,平行线性质是解题关键. 8.D【分析】根据题意可得,从A→B→C→D→A 一圈的长度为2(AB+BC )=10,据此分析即可得细线另一端在绕四边形第202圈的第1个单位长度的位置,从而求得细线另一端所在位置的点的坐标.【详解【分析】根据题意可得,从A→B→C→D→A一圈的长度为2(AB+BC)=10,据此分析即可得细线另一端在绕四边形第202圈的第1个单位长度的位置,从而求得细线另一端所在位置的点的坐标.【详解】解:∵A点坐标为(1,1),B点坐标为(﹣1,1),C点坐标为(﹣1,﹣2),∴AB=1﹣(﹣1)=2,BC=2﹣(﹣1)=3,∴从A→B→C→D→A一圈的长度为2(AB+BC)=10.2021÷10=202…1,∴细线另一端在绕四边形第202圈的第1个单位长度的位置,即细线另一端所在位置的点的坐标是(0,1).故选:D.【点睛】本题考查了坐标规律探索,找到规律是解题的关键.二、填空题9.±1.01【分析】根据算术平方根的意义,把被开方数的小数点进行移动(每移动两位,结果移动一位),进行填空即可.【详解】解:∵,∴,故答案为±1.01.【点睛】本题考查了算术平方根的移解析:±1.01【分析】根据算术平方根的意义,把被开方数的小数点进行移动(每移动两位,结果移动一位),进行填空即可.【详解】解:∵10.1=,∴ 1.01=±,故答案为±1.01.【点睛】本题考查了算术平方根的移动规律的应用,能根据移动规律填空是解此题的关键.10.(2,﹣4)根据关于x轴对称的点的坐标特点:横坐标不变,纵坐标互为相反数,可直接得到答案.【详解】点A(2,4)关于x轴对称的点的坐标是(2,﹣4),故答案为(2,﹣4).【点睛解析:(2,﹣4)【分析】根据关于x轴对称的点的坐标特点:横坐标不变,纵坐标互为相反数,可直接得到答案.【详解】点A(2,4)关于x轴对称的点的坐标是(2,﹣4),故答案为(2,﹣4).【点睛】此题主要考查了关于x轴对称的点的坐标,关键是掌握点的坐标的变化规律.11.5°【分析】根据直角三角形两锐角互余求出∠CAD,再根据角平分线定义求出∠CAE,然后根据∠DAE=∠CAE-∠CAD,代入数据进行计算即可得解.【详解】∵AD⊥BC,∠C=30°,∴∠C解析:5°【分析】根据直角三角形两锐角互余求出∠CAD,再根据角平分线定义求出∠CAE,然后根据∠DAE=∠CAE-∠CAD,代入数据进行计算即可得解.【详解】∵AD⊥BC,∠C=30°,∴∠CAD=90°-30°=60°,∵AE是△ABC的角平分线,∠BAC=130°,∴∠CAE=12∠BAC=12×130°=65°,∴∠DAE=∠CAE-∠CAD=65°-60°=5°.故答案为:5°.【点睛】本题考查了三角形的内角和定理,三角形的角平分线,高线的定义,准确识图,找出各角度之间的关系并求出度数是解题的关键.12.35根据平行线的性质和直角三角形两锐角互余即可求得【详解】故答案为:35°.【点睛】本题考查了平行线的性质和直角三角形两锐角互余,熟练以上知识是解题的关键.解析:35【分析】根据平行线的性质和直角三角形两锐角互余即可求得【详解】//EF HG ,255∠︒=255FCD ∴∠=∠=︒190FCD ACB ∠+∠=∠=︒1905535∴∠=︒-︒=︒故答案为:35°.【点睛】本题考查了平行线的性质和直角三角形两锐角互余,熟练以上知识是解题的关键. 13.95°【分析】首先利用平行线的性质得出∠BMF =100°,∠FNB =70°,再利用翻折变换的性质得出∠FMN =∠BMN =50°,∠FNM =∠MNB =35°,进而求出∠B 的度数以及得出∠D 的度数.解析:95°【分析】首先利用平行线的性质得出∠BMF =100°,∠FNB =70°,再利用翻折变换的性质得出∠FMN =∠BMN =50°,∠FNM =∠MNB =35°,进而求出∠B 的度数以及得出∠D 的度数.【详解】解:∵MF ∥AD ,FN ∥DC ,∠A =100°,∠C =70°,∴∠BMF =100°,∠FNB =70°,∵将△BMN 沿MN 翻折,得△FMN ,∴∠FMN =∠BMN =50°,∠FNM =∠MNB =35°,∴∠F =∠B =180°−50°−35°=95°,∴∠D =360°−100°−70°−95°=95°.故答案为:95°.【点睛】此题主要考查了平行线的性质以及多边形内角和定理以及翻折变换的性质,得出∠FMN =∠BMN ,∠FNM =∠MNB 是解题关键.14.【分析】按照新定义的运算法先求出x ,然后再进行计算即可.【详解】解:由解得:x=8故答案为.【点睛】本题考查了新定义运算和一元一次方程,解答的关键是根据定义解一元一次方程,求得x 的 解析:1745【分析】按照新定义的运算法先求出x ,然后再进行计算即可.【详解】 解:由1521=21(21)(11)3x ⊕=++++ 解得:x=818181745==45(41)(51)93045⊕=+++++ 故答案为1745. 【点睛】本题考查了新定义运算和一元一次方程,解答的关键是根据定义解一元一次方程,求得x 的值.15.或【详解】【分析】分x<0,0≤x<3,x≥3三种情况分别讨论即可得.【详解】当x<0时,2x<0,x-3<0,由题意则有-2x-(x-3)=5,解得:x=, 当0≤x<3时,2x≥0,x-3解析:2或2-3【详解】【分析】分x<0,0≤x<3,x≥3三种情况分别讨论即可得.【详解】当x<0时,2x<0,x-3<0,由题意则有-2x-(x-3)=5,解得:x=23-, 当0≤x<3时,2x≥0,x-3<0,由题意则有2x-(x-3)=5,解得:x=2,当x≥3时,2x>0,x-3≥0,由题意则有2x+x-3=5,解得:x=83<3(不合题意,舍去),综上,x的值为2或23 -,故答案为2或2 3 -.【点睛】本题考查了坐标与图形的性质,根据x的取值范围分情况进行讨论是解题的关键. 16.【分析】由题目中所给的点运动的特点找出规律,即可解答.【详解】由题意可知这点移动的速度是1个单位长度/每秒,设这点为(x,y)到达(1,0)时用了3秒,到达(2,0)时用了4秒,从(2,解析:()19,20【分析】由题目中所给的点运动的特点找出规律,即可解答.【详解】由题意可知这点移动的速度是1个单位长度/每秒,设这点为(x,y)到达(1,0)时用了3秒,到达(2,0)时用了4秒,从(2,0)到(0,2)有四个单位长度,则到达(0,2)时用了4+4=8秒,到(0,3)时用了9秒;从(0,3)到(3,0)有六个单位长度,则到(3,0)时用9+6=15秒;依此类推到(4,0)用16秒,到(0,4)用16+8=24秒,到(0,5)用25秒,到(6,0)用36秒,到(6,6)时用36+6=42秒…,可得在x轴上,横坐标为偶数时,所用时间为x2秒,在y轴上时,纵坐标为奇数时,所用时间为y2秒,∵20×20=400∴第421秒时这个点所在位置的坐标为(19,20),故答案为:(19,20).【点睛】本题主要考查了点的坐标的变化规律,得出运动变化的规律是解决问题的关键.三、解答题17.(1)5;(2)-2;(3)2【解析】【分析】根据实数的性质进行化简,再求值.【详解】解:(1)==5;(2)-× =-×4=-2;(3)-++=-6+5+3=2.【点睛】此题主要解析:(1)5;(2)-2;(3)2【解析】【分析】根据实数的性质进行化简,再求值.【详解】解12×4=-2;【点睛】此题主要考查实数的计算,解题的关键是熟知实数的性质. 18.(1);(2);(3)【分析】直接根据平方根的定义逐个解答即可.【详解】解:(1)∵,∴;(2)∵,∴,∴;(3)∵,∴,∴.【点睛】此题主要考查了平方根的定义,熟练掌握平解析:(1)x=5±;(2)x=9±;(3)x=65±【分析】直接根据平方根的定义逐个解答即可.【详解】解:(1)∵225x=,∴5x=±;(2)∵2810x-=,∴281x=,x=±;∴9(3)∵2x=,2536∴236x=,25∴6x=±.5【点睛】此题主要考查了平方根的定义,熟练掌握平方根的定义是解题关键.19.同位角相等,两直线平行;两直线平行,内错角相等;已知;∠BCD+∠CDE=180°;等量代换;同旁内角互补,两直线平行.【分析】根据平行线的性质与判定填空即可【详解】证明:∵∠AFE=∠CD解析:同位角相等,两直线平行;两直线平行,内错角相等;已知;∠BCD+∠CDE=180°;等量代换;同旁内角互补,两直线平行.【分析】根据平行线的性质与判定填空即可【详解】证明:∵∠AFE=∠CDF(已知)∴EF∥CD(同位角相等,两直线平行)∴∠DEF=∠CDE(两直线平行,内错角相等)∵∠BCD+∠DEF=180°(已知)∴∠BCD+∠CDE=180°(等量代换)∴BC∥DE(同旁内角互补,两直线平行)故答案为:同位角相等,两直线平行;两直线平行,内错角相等;已知;∠BCD+∠CDE=180°;等量代换;同旁内角互补,两直线平行【点睛】本题考查了平行线的性质与判定,掌握平行线的性质与判定是解题的关键.20.(1)见解析;(2)5【分析】(1)根据平移的性质先确定O、B、C的对应点O1、B1、C1的坐标,然后顺次连接O1、B1、C1即可;(2)根据的面积=其所在的长方形面积减去周围三个三角形的面积解析:(1)见解析;(2)5【分析】(1)根据平移的性质先确定O 、B 、C 的对应点O 1、B 1、C 1的坐标,然后顺次连接O 1、B 1、C 1即可;(2)根据111O B C 的面积=其所在的长方形面积减去周围三个三角形的面积进行求解即可.【详解】解:(1)如图所示,111O B C 即为所求;(2)由题意得:11111143421313=5222O B C S =⨯-⨯⨯-⨯⨯-⨯⨯△. 【点睛】本题主要考查了平移作图,三角形面积,解题的关键在于能够熟练掌握平移作图的方法. 21.(1)4;4;(2)1,2,3;(3)3【解析】【分析】根据题中的新定义计算即可求出值.【详解】解:(1)仿照以上方法计算:[16]=4;[24]=4;(2)若[x]=1,写出满足题意的解析:(1)4;4;(2)1,2,3;(3)3【解析】【分析】根据题中的新定义计算即可求出值.【详解】解:(1)仿照以上方法计算:; (2)若[]=1,写出满足题意的x 的整数值1,2,3; (3)对145连续求根整数,第1次之后结果为12,第2次之后结果为3,第3次之后结果为1.故答案为:(1)4;4;(2)1,2,3;(3)3【点睛】考查了估算无理数的大小,以及实数的运算,弄清题中的新定义是解本题的关键.22.(1)5;;(2);;(3)能,.【分析】(1)易得5个小正方形的面积的和,那么就得到了大正方形的面积,求得面积的算术平方根即可为大正方形的边长.(2)求出斜边长即可.(3)一共有10个小正解析:(1)5;5;(2)51-;(3)能,10.-;15【分析】(1)易得5个小正方形的面积的和,那么就得到了大正方形的面积,求得面积的算术平方根即可为大正方形的边长.(2)求出斜边长即可.(3)一共有10个小正方形,那么组成的大正方形的面积为10,边长为10的算术平方根,画图.【详解】试题分析:解:(1)拼成的正方形的面积与原面积相等1×1×5=5,边长为5,如图(1)(2)斜边长=22+=,2222故点A表示的数为:222-;点A表示的相反数为:222-(3)能,如图拼成的正方形的面积与原面积相等1×1×10=1010考点:1.作图—应用与设计作图;2.图形的剪拼.23.(1);(2)① ;②【分析】(1)由平行线的性质得到,由折叠的性质可知,∠2=∠BFE,再根据平角的定义求解即可;(2) ①由(1)知,,根据平行线的性质得到 ,再由折叠的性质及平角的定义解析:(1)1902a ︒- ;(2)①1454a ︒+ ;②50︒ 【分析】(1)由平行线的性质得到4'B FC a ∠=∠=,由折叠的性质可知,∠2=∠BFE ,再根据平角的定义求解即可;(2) ①由(1)知,1902BFE a ∠=︒-,根据平行线的性质得到1BFE C'GB 902a ∠=∠=︒- ,再由折叠的性质及平角的定义求解即可;②由(1)知,∠BFE = 19012EFB '∠=︒-∠,由''B F C G ⊥可知:''90B FC FGC ∠+∠=︒,再根据条件和折叠的性质得到''11402190B FC FGC +=∠+∠=∠︒-∠︒,即可求解.【详解】解:(1)如图,由题意可知'//'A E B F ,∴14a ∠=∠=,∵//AD BC ,∴4'B FC a ∠=∠=,180BFB a '∴∠=︒-,∴由折叠可知1129022BFE BFB a '∠=∠=∠=︒-.(2)①由题(1)可知1902BFE a ∠=︒- , ∵//'EF C G ,1902BFE C'GB a ∴∠=∠=︒-, 再由折叠可知:113180*********HGC C GB a a ⎛⎫∠+∠=︒-∠=︒-︒-=︒+ ⎪⎝⎭', 13454HGC a ∴∠=∠=︒+;②由''B F C G ⊥可知:''90B FC FGC ∠+∠=︒,由(1)知19012BFE ∠=︒-∠, 11802180290112B FC BFE ⎛⎫'∴∠=︒-∠=︒-︒-∠=∠ ⎪⎝⎭, 又3∠的度数比1∠的度数大20︒,∴3=1+20∠∠︒,()18023180212014021FGC '∴∠=︒-∠=︒-∠+︒=︒-∠,''11402190B FC FGC +=∴∠+∠=∠︒-∠︒,1=50∴∠︒.【点睛】此题考查了平行线的性质,属于综合题,有一定难度,熟记“两直线平行,同位角相等”、“两直线平行,内错角相等”及折叠的性质是解题的关键.。

华师大版七年级下册数学期中考试试卷及答案

华师大版七年级下册数学期中考试试卷及答案

华师大版七年级下册数学期中考试试题一、单选题1.下列方程,是一元一次方程的是()A .32x x-=B .2x y +=C .2210x x ++=D .11x x+=2.下列四则选项中,不一定成立的是()A .若x=y,则2x=x+yB .若ac=bc,则a=bC .若a=b,则a 2=b 2D .若x=y,则2x=2y3.若关于 x 的方程 23x a +=与 27x a +=的解相同,则 a 的值为()A .23-B .113C .113-D .234.下列方程变形中正确的是()A .由32a =,得32a =B .由233x x -=,得3x =C .由310.9x -=,得1030109x -=D .由232a b=+,得2312a b =+5.小明在解方程21133x x a -+=-去分母时,方程右边的﹣1没有乘3,因而求得的解为x =2,则原方程的解为()A .x =0B .x =﹣1C .x =2D .x =﹣26.关于x ,y 的二元一次方程2x+3y =20的非负整数解的个数为()A .2B .3C .4D .57.已知32x y =⎧⎨=-⎩是方程组23ax by bx ay +=⎧⎨+=-⎩的解,则a b +的值是()A .﹣1B .1C .﹣5D .58.下列方程组中是二元一次方程组的是()A .12xy x y =⎧⎨+=⎩B .52313x y y x -=⎧⎪⎨+=⎪⎩C .20135x z x y +=⎧⎪⎨-=⎪⎩D .5723x x y=⎧⎪⎨+=⎪⎩9.由方程组43x m y m+=-⎧⎨-=⎩可得出x 与y 之间的关系是()A .1x y +=B .1x y +=-C .7x y +=D .7x y +=-10.方程组1232008321244880x y x y +=⎧⎨+=⎩①②,x y +的值为是()A .0B .1C .1-D .211.关于x 的不等式组1x ax ⎧⎨⎩>>的解集为x >1,则a 的取值范围是()A .a≥1B .a >1C .a≤1D .a <112.若不等式组12x x k <≤⎧⎨>⎩无解,则k 的取值范围是()A .2k ≥B .1k <C .k 2≤D .12k ≤<13.若不等式组213x x a ->⎧⎨≤⎩的整数解共有三个,则a 的取值范围是().A .56a ≤<B .56a <≤C .56a <<D .56a ≤≤14.已知xyz≠0,且4520430x y z x y z -+=⎧⎨+-=⎩,则x :y :z 等于()A .3:2:1B .1:2:3C .4:5:3D .3:4:515.小红问老师的年龄有多大时,老师说:“我像你这么大时,你才4岁,等你像我这么大时,我就49岁了,设老师今年x 岁,小红今年y 岁”,根据题意可列方程为()A .449x y y x y x-=+⎧⎨-=+⎩B .449x y y x y x-=+⎧⎨-=-⎩C .449x y y x y x-=-⎧⎨-=+⎩D .449x y y x y x-=-⎧⎨-=-⎩16.小明从家里骑自行车到学校,每小时骑15km ,可早到10分钟,每小时骑12km 就会迟到5分钟.问他家到学校的路程是多少km ?设他家到学校的路程是xkm ,则据题意列出的方程是()A .10515601260x x +=-B .10515601260x x -=+C .10515601260x x -=-D .+1051512x x =-17.对于两个不相等的有理数a ,b ,我们规定符号{},max a b 表示a ,b 两数中较大的数,例如{}2,44max =.按照这个规定,那么方程{},21max x x x -=+的解为()A .-1B .13-C .1D .-1或13-18.关于x 的不等式(1)3(1)a x a -<-的解都能使不等式5x a <-成立,则a 的取值范围是()A .2a =B .2a ≤C .12a <≤D .1a <或2a ≥二、填空题19.若关于x 的方程||1(2)21a a x ---=是一元一次方程,则=a ____________.20.关于x 的方程231x k +=的解是非负数,则k 的取值范围是___________.21.某种商品每件的标价是270元,按标价的八折销售时,仍可获利20%,则这种商品每件的进价为_____元.22.解方程组278ax by cx y +=⎧⎨-=⎩时,一学生把c 看错得22x y =-⎧⎨=⎩,已知方程组的正确解是32x y =⎧⎨=-⎩,则abc 值为__________.23.若关于x 、y 的二元一次方程组3526x my x ny -=⎧⎨+=⎩的解是12x y =⎧⎨=⎩,则关于a 、b 的二元一次方程组3()()=52()()6a b m a b a b n a b +--⎧⎨++-=⎩的解是_______.24.关于x 、y 的二元一次方程组313x y mx y +=+⎧⎨+=⎩的解满足21x y +<,则m 的取值范围是_________.25.不等式组112251x x ⎧-≤⎪⎨⎪+>⎩的最大整数解是__________.26.把一些书分给几名同学,如果每人分3本,那么余8本,如果前面的每名同学分5本,那么最后一人分不到3本,那么这些书共有____本.27.如图,长方形ABCD 中有6个形状、大小相同的小长方形,根据图中所标尺寸,则小长方形的面积为_______.28.已知关于x 、y 的方程组343x y a x y a +=-⎧⎨-=⎩,其中﹣3≤a≤1,给出下列结论:①11x y =⎧⎨=⎩是方程组的解;②当a =﹣2时,x+y =0;③若y≤1,则1≤x≤4;④若S =3x ﹣y+2a ,则S 的最大值为11.其中正确的有_______.三、解答题29.(1)12223x x x -+-=-(2)34105642x y x y -=⎧⎨+=⎩(3)32823154x y y z x y z -=⎧⎪+=⎨⎪+-=-⎩(4)()3241213x x x x ⎧--≥⎪⎨+>-⎪⎩①②(本小题把解集在数轴上表示出来)30.已知不等式5(x -2)+8<6(x -1)+7的最小整数解为方程2x -ax =4的解,求a 的值.31.一项工程,甲队单独完成需60天,乙队单独完成需75天.(1)若甲队单独做24天后两队再合作,求:甲乙两队再合作多少天才能把该工程完成;(2)在(1)的条件下,甲队每天的施工费用为5000元,乙队每天的施工费用为6000元,求完成此项工程需付给甲、乙两队共多少元?32.已知:23x y =⎧⎨=⎩和25x y =-⎧⎨=-⎩都是关于x 、y 的方程y kx b =+的解.(1)求k 、b 的值;(2)若不等式323x m x +>+的最大整数解是k ,求m 的取值范围.33.已知关于x y 、的方程组731x y m x y m +=--⎧⎨-=+⎩的解满足00x y ≤<,.(1)求m 的取值范围;(2)在m 的取值范围内,当m 为何整数时,不等式221mx x m +<+的解为1x >?34.为了加强建设“经济强、环境美、后劲足、群众富”的实力城镇,聚力脱贫攻坚,全面完成脱贫任务,某乡镇特制定一系列帮扶计划.现决定将A 、B 两种类型鱼苗共320箱运到某村养殖,其中A 种鱼苗比B 种鱼苗多80箱.(1)求A 种鱼苗和B 种鱼苗各多少箱?(2)现计划租用甲、乙两种货车共8辆,一次性将这批鱼苗全部运往同一目的地.已知甲种货车最多可装A 种鱼苗40箱和B 种鱼苗10箱,乙种货车最多可装A 种鱼苗和B 种鱼苗各20箱.如果甲种货车每辆需付运输费4000元,乙种货车每辆需付运输费3600元,则安排甲、乙两种货车有哪几种不同的方案?并说明选择哪种方案可使运输费最少?最少运输费是多少元?参考答案1.A【分析】根据一元一次方程的定义即可得出答案.【详解】A:是一元一次方程,故A正确;B:有两个未知数,所以不是一元一次方程,故B错误;C:方程次数为2次,所以不是一元一次方程,故C错误;D:是分式方程,故D错误;故答案选择A.【点睛】本题考查的是一元一次方程的定义:只有一个未知数并且未知数的次数为1的整式方程. 2.B【分析】根据等式的性质逐项判断即可.【详解】=+,一定成立A.若x y=,两边同加x,等式不变,即2x x y=,两边同除以一个不为0的数,等式不变;因为不知c是否为0,所以a b=不一B.若ac bc定成立C.若a b=,两边同时平方,等式不变,即22a b=,一定成立D.若x y =,两边同乘以一个数(如2),等式不变,即22x y =,一定成立故答案为:B.3.B 【分析】先把a 看做常数,分别根据两个方程解出x 的值,再令两个x 的值相等即可得出答案.【详解】∵23x a +=∴32ax -=又∵27x a +=∴x=7-2a又23x a +=与27x a +=的解相同∴3722aa -=-解得:113a =故答案选择B.【点睛】本题考查的是解一元一次方程,难度适中,根据两个方程的解相同列出等式是解决本题的关键.4.D 【分析】根据等式的基本性质判断各选项即可.【详解】解:A 、由32a =,得23a =,故本选项错误;B 、由233x x -=,得3x =-,故本选项错误;C 、由310.9x -=,得103019x -=,故本选项错误;D 、由232a b=+,得2312a b =+,故本选项正确.故选:D .【点睛】本题主要考查了等式的基本性质.等式性质:1、等式的两边同时加上或减去同一个数或字母,等式仍成立;2、等式的两边同时乘以或除以同一个不为0数或字母,等式仍成立.5.A 【分析】已知小明在解方程去分母时,方程右边的﹣1这个项没有乘3,则所得的式子是:2x ﹣1=x+a ﹣1,把x =2代入方程即可得到一个关于a 的方程,求得a 的值,然后把a 的值代入原方程,解这个方程即可求得方程的解.【详解】解:根据题意,得:2x ﹣1=x+a ﹣1,把x =2代入这个方程,得:3=2+a ﹣1,解得:a =2,代入原方程,得:212133x x -+=-,去分母,得:2x ﹣1=x+2﹣3,移项、合并同类项,得:x =0,故选A .【点睛】此题考查了一元一次方程的解法以及方程的解的定义.熟练掌握解一元一次方程的方法和步骤是解题的关键.6.C 【解析】【分析】把x 作为已知数表示出y ,即可确定出非负整数解.【详解】方程2320x y +=解得:2023xy -=当1x =时,6y =当4x =时,4y =当7x =时,2y =当10x =时,0y =综上,二元一次方程的非负整数解的个数有4个故选:C.【点睛】本题考查了二元一次方程的特殊解的解法,掌握方程的解法是解题关键.7.A 【解析】【分析】把32x y =⎧⎨=-⎩代入方程组,可得关于a 、b 的方程组,继而根据二元一次方程组的解法即可求出答案.【详解】将32x y =⎧⎨=-⎩代入23ax by bx ay +=⎧⎨+=-⎩,可得:322323a b b a -=⎧⎨-=-⎩,两式相加:1a b +=-,故选A .【点睛】本题考查二元一次方程组的解,解题的关键是熟练运用二元一次方程组的解法.8.D 【解析】【分析】二元一次方程是指含有两个未知数,并且所含未知数的项的次数都是1的方程.两个结合在一起的共含有两个未知数的一次方程叫二元一次方程组.【详解】A 选项中最高次数为2次,则不是;B 选项中第二个方程不是整式方程,则不是;C 选项中含有3个未知数,则不是;故选:D .【点睛】本题主要考查的就是二元一次方程组的定义问题.在解决定义问题的时候特别要注意所有方程都必须是整式方程,否则就不是二元一次方程组.9.B 【解析】【分析】根据题意由方程组消去m 即可得到y 与x 的关系式,进行判断即可.【详解】解:43x m y m +-⎧⎨-⎩=①=②,把②代入①得:x+y-3=-4,则x+y=-1.故选:B .【点睛】本题考查解二元一次方程组,注意掌握利用消元的思想,消元的方法有:代入消元法与加减消元法.10.D 【解析】【分析】先把两个二元一次方程相加,进而即可得到答案.【详解】1232008321244880x y x y +=⎧⎨+=⎩①②,由①+②得:444x+444y=888,∴x y +=2.故选D .【点睛】本题主要考查解二元一次方程,掌握等式的基本性质,是解题的关键.11.C 【解析】【分析】根据不等式组解集的确定法则:大大取大即可得出答案.【详解】解:∵不等式组的解集为x >1,根据大大取大可得:a≤1,故选C .【点睛】本题主要考查的是求不等式组的解集,属于基础题型.理解不等式组的解集与不等式的解之间的关系是解决这个问题的关键.12.A 【解析】【分析】由已知不等式组无解,确定出k 的范围即可.【详解】解:∵不等式组12x x k <≤⎧⎨>⎩无解,∴k 的范围为k≥2,故选:A .【点睛】此题考查了不等式组的解集,熟练掌握确定每个不等式的解集是解本题的关键.13.A 【解析】【分析】首先确定不等式组的解集,利用含a 的式子表示,根据整数解的个数就可以确定有哪些整数解,根据解的情况可以得到关于a 的不等式,从而求出a 的范围.【详解】解不等式2x-1>3,得:x >2,∵不等式组整数解共有三个,∴不等式组的整数解为3、4、5,则56a ≤<,故选A .【点睛】本题考查了一元一次不等式组的整数解,正确解出不等式组的解集,确定a 的范围,是解答本题的关键.求不等式组的解集,应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.14.B【解析】【分析】由4520430x y zx y z-+⎧⎨+-⎩=①=②,①×3+②×2,得出x与y的关系式,①×4+②×5,得出x与z的关系式,从而算出xyz的比值即可.【详解】∵4520430x y zx y z-+⎧⎨+-⎩=①=②,∴①×3+②×2,得2x=y,①×4+②×5,得3x=z,∴x:y:z=x:2x:3x=1:2:3,故选B.【点睛】本题考查了三元一次方程组的解法,用含有x的代数式表示y与z是解此题的关键.15.D【解析】【分析】根据题设老师今年x岁,小红今年y岁,根据题意列出方程组解答即可.【详解】解:老师今年x岁,小红今年y岁,可得:449x y yx y x ì-=-ïïíï-=-ïî,故选:D.【点睛】此题考查了二元一次方程组的应用和理解题意能力,关键是知道年龄差是不变的量从而可列方程求解.16.A【解析】【分析】设他家到学校的路程是xkm ,将时间单位转化成小时,然后根据题意列方程即可.【详解】设他家到学校的路程是xkm ,∵10分钟=1060小时,5分钟=560小时,∴10+1560x =12x ﹣560.故选:A .【点睛】此题考查的是一元一次方程的应用,掌握实际问题中的等量关系是解决此题的关键.17.B【解析】【分析】利用题中的新定义化简已知方程,求解即可.【详解】解:当x x >-时0x >,{},max x x x -=,方程化简得21x x =+,解得1x =-(不符合题意,舍去)当x x <-时0x <,{},-max x x x -=,方程化简得-21x x =+,解得13x =-故选:B【点睛】此题考查了实数的运算,以及解一元一次方程,熟练掌握运算法则是解本题的关键.18.C【解析】【分析】根据关于x 的不等式(a-1)x <3(a-1)的解都能使不等式x <5-a 成立,列出关于a 的不等式,即可解答.【详解】解:∵关于x 的不等式(a-1)x <3(a-1)的解都能使不等式x <5-a 成立,∴a-1>0,即a >1,解不等式(a-1)x <3(a-1),得:x <3,则有:5-a≥3,解得:a≤2,则a 的取值范围是1<a≤2.故选:C .【点睛】本题考查了解一元一次不等式以及解一元一次不等式组,解不等式要依据不等式的基本性质:(1)不等式的两边同时加上或减去同一个数或整式,不等号的方向不变;(2)不等式的两边同时乘以或除以同一个正数,不等号的方向不变;(3)不等式的两边同时乘以或除以同一个负数,不等号的方向改变.19.-2【解析】【分析】只含有一个未知数(元),并且未知数的指数是1(次)的整式方程叫做一元一次方程,它的一般形式是0ax b +=(a ,b 是常数且0a ≠).【详解】由一元一次方程的特点得:11a -=,20a -≠,解得:2a =-.故答案为:2a =-.【点睛】本题主要考查了一元一次方程的一般形式,只含有一个未知数,未知数的指数是1,一次项系数不是0,这是这类题目考查的重点.20.13k ≤【解析】【分析】解方程用字母k 表示方程的解,由解为非负数,则构造关于k 的不等式问题可解.【详解】解:解方程231x k +=得132kx -=∵方程的解是非负数∴1302k -≥解得13k ≤故答案为13k ≤【点睛】本题综合考查了一元一次方程和不等式,解答关键是解出含有字母系数的一元一次方程,按要求列出不等式.21.180【解析】【分析】根据“售价=进价×(1+利润率)”可以列出相应的方程,解方程即可.【详解】设这种商品每件的进价为x 元,根据题意得:x (1+20%)=270×0.8解得:x=180.故答案为180.【点睛】本题考查了一元一次方程的应用,解答本题的关键是明确题意,列出相应的方程.22.﹣40【解析】【分析】将x =−2、y =2代入第1个方程,将x =3、y =−2代入两个方程可得关于a 、b 、c 的方程组,解之可得答案.【详解】解:由题意得:-2+223223148a b a b c =⎧⎪-=⎨⎪+=⎩,解得:45-2 abc=⎧⎪=⎨⎪=⎩,()=45-2=-40abc⨯⨯,故答案为:﹣40.【点睛】本题主要考查二元一次方程组的解的问题,解题的关键是理解相关概念,其中二元一次方程组的两个方程的公共解,叫做二元一次方程组的解.23.3212 ab⎧=⎪⎪⎨⎪=-⎪⎩【解析】【分析】方法一:利用关于x、y的二元一次方程组3526x myx ny-=⎧⎨+=⎩的解是12xy=⎧⎨=⎩可得m、n的数值,代入关于a、b的方程组即可求解;方法二:根据方程组的特点可得方程组3()()=5 2()()6a b m a ba b n a b+--⎧⎨++-=⎩的解是12a ba b+=⎧⎨-=⎩,再利用加减消元法即可求出a,b.【详解】解:方法一,∵关于x、y的二元一次方程组3526x myx ny-=⎧⎨+=⎩的解是12xy=⎧⎨=⎩,∴将解12xy=⎧⎨=⎩代入方程组3526x myx ny-=⎧⎨+=⎩,可得m=﹣1,n=2,∴关于a、b的二元一次方程组()()()()3=526a b m a ba b n a b⎧+--⎪⎨++-=⎪⎩,整理为:42546a ba+=⎧⎨=⎩,解得:3212 ab⎧=⎪⎪⎨⎪=-⎪⎩.方法二:∵关于x 、y 的二元一次方程组3526x my x ny -=⎧⎨+=⎩的解是12x y =⎧⎨=⎩,∴方程组3()()=52()()6a b m a b a b n a b +--⎧⎨++-=⎩的解是12a b a b +=⎧⎨-=⎩,解12a b a b +=⎧⎨-=⎩,得3212a b ⎧=⎪⎪⎨⎪=-⎪⎩,故答案为:3212a b ⎧=⎪⎪⎨⎪=-⎪⎩.【点睛】本题考查二元一次方程组的求解,重点是整体考虑的数学思想的理解、运用在此题体现明显.24.2m <-【解析】【分析】先解关于关于x ,y 的二元一次方程组313x y m x y +=+⎧⎨+=⎩的解集,其解集由a 表示;然后将其代入21x y +<,再来解关于a 的不等式即可.【详解】313x y m x y +=+⎧⎨+=⎩①②由①+②得4x+2y=4+m ,422m x y ++=,∴由21x y +<,得412m +<,解得:2m <-.故答案为2m <-.【点睛】考查解一元一次不等式,解二元一次方程组,熟练掌握二元一次方程组的解法是解题的关键.25.1x =【解析】【分析】先解不等式组,再求整数解的最大值.【详解】112251x x ⎧-≤⎪⎨⎪+>⎩①②解不等式①,得32x ≤解不等式②,得2x >-故不等式组的解集是322x -<≤所以整数解是:-1,0,1最大是1故答案为1x =【点睛】考核知识点:求不等式组的最大整数值.解不等式组是关键.26.26【解析】【分析】设共有x 名学生,根据每人分3本,那么余8本,可得图书共有(3x +8)本,再由每名同学分5本,那么最后一人就分不到3本,可得出不等式,解出即可.【详解】解:设共有x 名学生,则图书共有(3x +8)本,由题意得,0<3x +8−5(x−1)<3,解得:5<x <6.5,∵x 为非负整数,∴x =6.∴书的数量为:3×6+8=26.故答案为26.【点睛】本题考查了列一元一次不等式组解实际问题的运用,一元一次不等式组的解法的运用,解答时根据题意中的不相等关系建立不等式组是关键.27.20cm 2##20平方厘米【解析】【分析】设小长方形的长为xcm ,宽为163x -cm ,观察图形即可列出关于x 的一元一次方程,解之即可得出x 的值,即可求出结论.【详解】设小长方形的长为xcm ,宽为163x -cm ,由题意得:2×163x -+8=x+163x -,解得:x=10,所以163x -=2,∴小长方形的面积为20;故答案是:20cm 2.【点睛】此题主要考查了一元一次方程的应用,关键是正确理解题意,找出题目中的等量关系,列出方程.28.①②③④【解析】【分析】解方程组得出x 、y 的表达式,根据a 的取值范围确定x 、y 的取值范围,逐一判断即可.【详解】343x y a x y a +=-⎧⎨-=⎩①②,①⨯3+②得:x+2y=3,把11x y =⎧⎨=⎩代入得1+2=3,即11x y =⎧⎨=⎩是方程组的解,故①正确a=-2时,366x y x y +=⎧⎨-=-⎩,整理的x+y=0,故②正确,若y≤1,32x -≤1,解得:x ≥1,∵x-y=3a ,∴x-32x -=3a ,由﹣3≤a≤1得:53x -≤≤,所以y≤1时,14x ≤≤,故③正确,∵343x y a x y a+=-⎧⎨-=⎩,∴2x=2+4a ,∵S=3x-y+2a=2x+3a+2a=9a+2,﹣3≤a≤1∴S 的最大值为9+2=11,故④正确,故答案为①②③④【点睛】本题考查了二元一次方程组的解,解一元一次不等式组.根据条件,求出x 、y 的表达式及x 、y 的取值范围是解题关键.29.(1)x =1;(2)62x y =⎧⎨=⎩;(3)211x y z =⎧⎪=-⎨⎪=⎩;(4)x≤1,见解析【解析】【分析】(1)首先去分母,然后移项合并同类项即可求解;(2)利用加减消元法进行求解,首先消去y ,然后将x 的值代入方程即可求解;(3)利用加减消元法进行求解,首先消去z ,然后将x 、y 的值代入方程即可求解;(4)首先解两个不等式,然后将不等式的解表示在数轴上即可.【详解】(1)去分母得:6x ﹣3x+3=12﹣2x ﹣4,移项合并得:5x =5,解得:x =1.(2)①×3得:9x ﹣12y =30③②×2得:10x+12y =84④③+④得19x =114,x =6把x =6代入②,解得y =2原方程组的解是62x y =⎧⎨=⎩(3)②+③×3,得3x+17y =﹣11④,④﹣①,得19y =﹣19,解得,y =﹣1,将y =﹣1代入①,得x =2,将y =﹣1代入②,得z =1,故原方程组的解是211x y z =⎧⎪=-⎨⎪=⎩.(4)()3241213x x x x ⎧--≥⎪⎨+>-⎪⎩①②,由①得,x≤1,由②得,x <4,故此不等式组的解集为:x≤1.在数轴上表示为:;【点睛】本题考查了解一元一次方程,二元一次方程组,三元一次方程组和一元一次不等式组,考查较细,消元思想和降次思想是解决多元方程和高次方程的关键.30.4【解析】【分析】先解出不等式5(x-2)+8<6(x-1)+7的解,再求出不等式的最小整数解,然后把不等式的最小整数解代入方程2x-ax=4即可求出答案【详解】解:解不等式得x>-3,所以最小整数解为x =-2.所以2×(-2)-a×(-2)=4,解得a =4.故答案为4.【点睛】本题考查一元一次不等式的解,解不等式的性质:(1)不等式的两边加(或减)同一个数(或式子),不等号的方向不变;(2)不等式两边乘(或除以)同一个正数,不等号的方向不变;(3)不等式的两边乘(或除以)同一个负数,不等号的方向改变.31.(1)甲乙再合作20天才能把该工程完成;(2)完成此项工程需付给甲、乙两队共340000元.【解析】【分析】(1)设甲乙再合作x天才能把该工程完成,根据甲队完成的工作量+乙队完成的工作量=总工作量(单位1),即可得出关于x的一元一次方程,解之即可得出结论;(2)根据总施工费用=甲队每天的施工费用×甲队工作的时间+乙队每天的施工费用×乙队工作的时间,即可求出结论.【详解】(1)设甲乙再合作x天才能把该工程完成,依题意,得:246075x x++=1,解得:x=20.答:甲乙再合作20天才能把该工程完成.(2)5000×(24+20)+6000×20=340000(元).答:完成此项工程需付给甲、乙两队共340000元.【点睛】此题考查一元一次方程的应用,找准等量关系,正确列出一元一次方程是解题的关键.32.(1)k的值是2,b的值是﹣1;(2)0≤m<1.【解析】【分析】(1)把23xy=⎧⎨=⎩和25xy=-⎧⎨=-⎩代入y kx b=+,得到方程组,解方程组可得答案;(2)首先根据一元一次不等式的解法,可得x<3-m,然后根据不等式3+2x>m+3x的最大整数解是k,可得2<3-m≤3,据此求出m的取值范围即可.【详解】解:(1)∵23x y =⎧⎨=⎩和25x y =-⎧⎨=-⎩都是关于x 、y 的方程y =kx+b 的解,∴2325k b k b +=⎧⎨-+=-⎩①②,①-②得:48,k =2,k ∴=把2k =代入①得:1,b =-所以方程组的解是:21k b =⎧⎨=-⎩.∴k 的值是2,b 的值是﹣1.(2)∵3+2x >m+3x ,∴x <3﹣m ,∵不等式3+2x >m+3x 的最大整数解是k ,2k =,∴2<3﹣m≤3,∴m 的取值范围是:0≤m <1.【点睛】本题主要考查解二元一次方程组和一元一次不等式,解题的关键是掌握解二元一次方程组的能力,并根据不等式的整数解情况列出关于m 的不等式组.33.(1)23m -<≤;(2)m=−1.【解析】【分析】(1)先由二元一次方程组求得x 、y 的表达式,再由00x y ≤<,,解得m 的取值范围,再化简即可;(2)关键是把原不等式整理成(2m+1)x<2m+1,根据1x >两边都乘以2m+1不等号方向改变,得出2m+1<0.【详解】(1)方程组731x y m x y m +=--⎧⎨-=+⎩①②,①+②得2x=2m−6,∴x=m−3;①−②得2y=−4m−8,∴y=−2m−4,∵00x y ≤<,,∴30240m m -≤⎧⎨--<⎩③④,解得:23m -<≤;(2)(2m+1)x<2m+1,∵原不等式的解集是x>1,∴2m+1<0,∴m<12-,又∵23m -<≤∴122m -<<-,∵m 为整数,∴m=−1.【点睛】本题考查了二元一次方程组及一元一次不等式组的解法,有一定的综合性.掌握解二元一次方程组和一元一次不等式组的方法是解题关键.34.(1)A 种鱼苗有200箱,B 种鱼苗有120箱(2)3种方案(方案见解析),方案①运费最少,最少运费是29600元.【解析】【分析】(1)设A 种鱼苗有x 箱,B 种鱼苗有y 箱,利用A 、B 两种类型鱼苗共320箱,A 种鱼苗比B 种鱼苗多80箱,可列两个方程组成方程组,然后解方程组即可;(2)设租用甲种货车x 辆,利用甲乙货车装A 种鱼苗的数量和甲乙货车装B 种鱼苗的数量列不等式组,解不等式求出它的正整数解可得到运输方案,然后比较各方案的运输费即可.【详解】(1)设A 种鱼苗有x 箱,B 种鱼苗有y 箱,根据题意得320{80x y x y +=-=解得200{120x y ==,答∶A 种鱼苗有200箱,B 种鱼苗有120箱;(2)设租用甲种货车x辆,根据题意得()()1020812040208200x xx x⎧+-≥⎪⎨+-≥⎪⎩,解得2≤x≤4,而x为整数,所以x=2、3、4,所以设计方案有3种,分别为∶方案甲车乙车运费①262⨯4000+6⨯3600=29600②353⨯4000+5⨯3600=30000③444⨯4000+4⨯3600=30400所以方案①运费最少,最少运费是29600元.【点睛】此题考查二元一次方程组的实际应用和一元一次不等式组的应用,解题关键在于列出方程组.。

2024—2025学年最新人教版七年级下学期数学期中考试试卷(含参考答案)

2024—2025学年最新人教版七年级下学期数学期中考试试卷(含参考答案)

最新人教版七年级下学期数学期中考试试卷考生注意:本试卷共三道大题,25道小题,满分120分,时量120分钟一、选择题(每题只有一个正确选项,每小题3分,满分30分)1、在实数3π,﹣,0,,﹣3.14,,,0.151 551 555 1…中,无理数有()A.2个B.3个C.4个D.5个2、已知点P(﹣3,4),则P到y轴的距离为()A.﹣3B.4C.3D.﹣43、下列命题中,是真命题的是()A.0没有算术平方根B.两条直线被第三条直线所截,同位角相等C.相等的角是对顶角D.a是实数,点P(a2+1,2)一定在第一象限4、如图,直径为单位1的圆从数轴上的原点沿着数轴无滑动地顺时针滚动一周到达点A,则点A表示的数是()A.2B.C.πD.45、下列图形中,由∠1=∠2,能得到AB∥CD的是()A.B.C.D.6、若正数a的两个平方根是3m﹣2与3﹣2m,则m为()A.0B.1C.﹣1D.1或﹣17、如图,将△ABC沿BC方向平移3cm得到△DEF,若△ABC的周长为24cm,则四边形ABFD的周长为()A.30cm B.24cmC.27cm D.33cm8、若方程组的解满足x+y=0,则k的值为()A.﹣1B.1C.0D.1或09、《九章算术》是中国古代重要的数学著作,其中有这样一道题:“今有醇酒一斗,直钱五十;行酒一斗,直钱一十.今将钱三十,得酒二斗,问醇、行酒各得几何?”译文:今有醇酒(优质酒)1斗,价格50钱;行酒(勾兑酒)1斗,价格10钱.现有30钱,买2斗酒,问能买醇酒、行酒各多少斗?设能买醇酒x斗,行酒y斗,可列二元一次方程组为()A.B.C.D.10、如图,动点P在平面直角坐标系中按图中箭头所示方向运动,第1次从原点运动到点(﹣1,1),第2次接着运动到点(﹣2,0),第3次接着运动到点(﹣3,2),…,按这样的运动规律,经过第2022次运动后,动点P的坐标是()A.(2022,0)B.(﹣2022,0)C.(﹣2022,1)D.(﹣2022,2)二、填空题(每小题3分,满分18分)11、已知AB∥x轴,A的坐标为(1,6),AB=4,则点B的坐标是.12、若x|a|﹣1﹣1+(a﹣2)y=1是关于x,y的二元一次方程,则a=.13、已知=1.038,=2.237,=4.820,则=.14、已知x,y为实数,且+(y+1)2=0,则x+y的算术平方根是.15、若点P(m+1,3﹣2m)在第一、第三象限的角平分线上,则m=.16、如图,a∥b,M,N分别在a,b上,P为两平行线间一点,那么∠1+∠2+∠3=°.最新人教版七年级下学期数学期中考试试卷(答卷)考生注意:本试卷共三道大题,25道小题,满分120分,时量120分钟姓名:____________ 学号:_____________座位号:___________11、_______ 12、______13、_______ 14、______15、_______ 16、______三、解答题(17、18、19题每题6分,20、21每题8分,22、23每题9分,24、25每题10分,共计72分,解答题要有必要的文字说明)17、计算:.18、已知2a﹣1的算术平方根是3,b是﹣1的立方根,c是的整数部分,求a+b+c的值.19、解不等式组并求它的所有的非负整数解.20、已知x,y为实数,是否存在实数m满足关系式如果存在,求出m的值;如果不存在,说明理由.21、如图,在边长为1的正方形网格中,三角形ABC中任意一点P(x0,y0)经平移后对应点为P1(x0﹣4,y0+3),已知A(0,2),B(4,0),C(﹣1,﹣1),将三角形ABC作同样的平移得到三角形A1B1C1.(1)画出三角形A1B1C1并写出坐标:A1(,),B1(,),C1(,);(2)三角形A1B1C1的面积为;(3)已知点P在y轴上,且三角形P AC的面积等于三角形ABC面积的一半,则P点坐标是.22、某物流公司在运货时有A、B两种车型,如果用3辆A型车和2辆B型车载满货物一次可运17吨货物;用2辆A型车和3辆B型车载满货物一次可运18吨货物.现需要运输货物32吨,计划同时租用A型车和B型车若干辆,一次运完,且每辆车都载满货物.(1)1辆A型车和1辆B型车都载满货物,一次可分别运输货物多少吨?(2)若A型车每辆需租金200元/次,B型车每辆需租金240元/次.请帮物流公司设计租车方案,并选出最省钱的方案及最少租金.23、已知AD∥BC,AB∥CD,E为射线BC上一点,AE平分∠BAD.(1)如图1,当点E在线段BC上时,求证:∠BAE=∠BEA;(2)如图2,当点E在线段BC延长线上时,连接DE,若∠ADE=3∠CDE,∠AED=50°.①求证:∠ABC=∠ADC;②求∠CED的度数.24、对x,y,z定义一种新运算F,规定:F(x,y,z)=ax+by+cz,其中a,b,c为非负数.(1)当c=0时,F(1,﹣1,3)=1,F(3,1,﹣2)=7,求a,b的值;(2)在(1)的基础上,若关于m的不等式组恰有3个整数解,求k的取值范围;(3)已知F(3,2,1)=5,F(2,1,﹣3)=1,设H=3a+b﹣7c,求H 的最大值和最小值.25、如图,在平面直角坐标系中,AB⊥x轴,垂足为A,BC⊥y轴,垂足为C,已知A(a,0),C(0,c),其中a,c满足关系式(a﹣6)2+|c+8|=0,点P 从O点出发沿折线OA﹣AB﹣BC的方向运动到点C停止,运动的速度为每秒2个单位长度,设点P的运动时间为t秒.(1)在运动过程中,当点P到AB的距离为2个单位长度时,t=;(2)在点P的运动过程中,用含t的代数式表示P点的坐标;(3)当点P在线段AB上的运动过程中,射线AO上一点E,射线OC上一点F(不与C重合),连接PE,PF,使得∠EPF=70°,求∠AEP与∠PFC的数量关系.最新人教版七年级下学期数学期中考试试卷(参考答案)考生注意:本试卷共三道大题,25道小题,满分120分,时量120分钟姓名:____________ 学号:_____________座位号:___________11、(﹣3,6)或(5,6)12、﹣2 13、22.37 14、2 15、16、360三、解答题(17、18、19题每题6分,20、21每题8分,22、23每题9分,24、25每题10分,共计72分,解答题要有必要的文字说明)17、18、719、它的非负整数解为0,1,220、即m的值为721、(1)﹣4、5、0、3、﹣5、2(2)7(3)(0,9)或(0,﹣5)22、(1)1辆A型车载满货物一次可运输货物3吨,1辆B型车载满货物一次可运输货物4吨(2)当租用4辆A型车,5辆B型车时,租金最少,最少租金为2000元23、(1)证明(略)(2)①∠ABC=∠ADC ②120°24、(1)(2)故k的取值范围为27≤k<33(3)当c=时,H的最大值为﹣,当c=时,H的最小值为﹣25、(1)2s或8s(2)P(2t,0)P(6,6﹣2t)(20﹣2t,﹣8)(3)∠PFC+∠PEA=160°或∠PFC﹣∠AEP=20°。

七年级数学下册期中考试卷(附答案)

七年级数学下册期中考试卷(附答案)

七年级数学下册期中考试卷(附答案)一.选择题(共10小题,满分30分,每小题3分)1.下列方程中,属于一元一次方程的是()A.2x﹣1=0 B.1﹣x=y C.=4 D.1﹣x2=02.二元一次方程x+2y=5的非负整数解的个数是()A.4 B.3 C.2 D.13.若a>b,则下列不等式中成立的是()A.a﹣5>b﹣5 B.<C.>D.﹣a>﹣b4.小明用30元购买铅笔和签字笔,已知铅笔和签字笔的单价分别是2元和5元,他买了2支铅笔后,最多还能买几支签字笔?设小明还能买x支签字笔,则下列不等关系正确的是()A.5×2+2x≥30 B.5×2+2x≤30 C.2×2+2x≥30 D.2×2+5x≤305.若关于x的不等式组的整数解共有4个,则m的取值范围是()A.7<m<8 B.7≤m<8 C.7≤m≤8 D.7<m≤86.下列方程的变形正确的是()A.由3+x=5,得x=5+3 B.由x=0,得x=2C.由7x=﹣4,得x=﹣D.由3=x﹣2,得x=﹣2﹣37.如图,八块相同的小长方形地砖拼成一个大长方形,则每块小长方形地砖的宽等于()A.5cm B.10cm C.15cm D.45cm8.《孙子算经》是中国古代重要的数学著作,书中记载有这样一个问题:“今有木,不知长短,引绳度之,余绳四尺五寸;屈绳量之,不足一尺.木长几何?”译文:“现有一根木头,不知道它的长短.用一根绳子去量木头,绳子比木头长4.5尺;将绳子对折后去量,则绳子比木头短1尺.问木头的长度是多少尺?”设木长x尺、绳子长y尺,可列方程组为()A.B.C.D.9.不等式组的整数解是()A.15 B.16 C.17 D.15,1610.如图,正方形ABCD由四个相同的大长方形,四个相同的小长方形以及一个小正方形组成,其中四个大长方形的长和宽分别是小长方形长和宽的3倍,若中间小正方形的面积为1,则大正方形ABCD的面积是()A.25 B.36 C.49 D.81二.填空题(共5小题,满分15分,每小题3分)11.关于x的一元一次方程2mx﹣1=3﹣x有解,则m的值为.12.已知方程,用含y的代数式表示x,那么.13.若|x﹣2|+|y+1|=0,则x﹣2y的值为.14.如果4m、m、6﹣2m这三个数在数轴上所对应的点从左到右依次排列,那么m的取值范围是.15.某商品的进价为每件10元,若按标价打八折售出后,每件可获利2元,则该商品的标价为每件元.三.解答题(共8小题,满分75分)16.(16分)解方程与方程组:(1)=1;(2).17.(10分)解不等式和不等式组,并把解集在数轴上表示出来(1)3x﹣1<7﹣x(2)(3).18.(6分)规定新运算:x*y=ax+by,其中a、b是常数.已知2*1=4,﹣1*3=﹣9.(1)求a、b的值;(2)若,求m,n的值.(3)若3x*y=1﹣7t,(﹣2)x*(﹣3)y=4t﹣3,且3x+4y<6,求t的最小整数值.19.(7分)在关于x,y的二元一次方程组中;(1)若a=3,求方程组的解;(2)若S=a(3x+y),当a为何值时,S有最小值?是多少?20.(8分)已知关于x,y的方程组的解满足2x+3y>0,试求m的取值范围.21.(9分)已知关于x的方程2x﹣3=+x的解满足|x|﹣1=0,求m的值.22.(9分)某学校为了加强训练学生的篮球和足球运球技能,准备购买一批篮球和足球用于训练,已知购买1个篮球和2个足球共需316元;购买2个篮球和3个足球共需534元.(1)购买1个篮球和1个足球各需多少元?(2)学校准备购进篮球和足球共40个,并且总费用不超过4200元,则篮球最多可购买多少个?23.(10分)某公司要将一批物资一次性运往目的地.若用m辆载重量为5吨的汽车装运,则还剩余21吨物资,若用m辆载重量为8吨的汽车装运,则最后一辆汽车只要载2吨.(1)求m的值;(2)若同时使用载重为5吨和8吨的两种汽车运输,且每辆载重量5吨的汽车的运费为700元,每辆载重量8吨的汽车的运费为1000元,请你设计一种租车方案,每辆汽车都满载且租车的总费用最少.参考答案与解析一.选择题1.【答案】解:A、该方程符合一元一次方程的定义,故本选项符合题意.B、该方程中含有两个未知数,不是一元一次方程,故本选项不符合题意.C、该方程是分式方程不是一元一次方程,故本选项不符合题意.D、该方程的未知数的最高此时是2,不是一元一次方程,故本选项不符合题意.故选:A.2.【答案】解:由x+2y=5,得x=5﹣2y.∵x,y都是非负整数;∴y=0,1,2;相应的x=5,3,1.故选:B.3.【答案】解:A、∵a>b;∴a﹣5>b﹣5;故本选项符合题意;B、∵a>b;∴;故本选项不符合题意;C、a>b,当a=2,b=1时,可得;故C不符合题意;D、∵a>b;∴﹣a<﹣b;故本选项不符合题意;故选:A.4.【答案】解:设小明还能买x支签字笔;依题意得:2×2+5x≤30.故选:D.5.【答案】解:解不等式x﹣m<0,得:x<m;解不等式6﹣2x≤﹣2,得:x≥4;则不等式组的解集为4≤x<m;∵不等式组的整数解共有4个;∴不等式组的整数解为4、5、6、7;故选:D.6.【答案】解:(A)由3+x=5,得x=5﹣3,故A错误;(B)由x=0,得x=0,故B错误;(D)由3=x﹣2,得x=3+2,故D错误;故选:C.7.【答案】解:设每块小长方形地砖的长为xcm,宽为ycm;依题意得:;解得:;即每块小长方形地砖的宽等于15cm;故选:C.8.【答案】解:根据题意得:;故选:A.9.【答案】解:由①得x<由②得x>;所以不等式组的解集是<x<;则整数解是16.故选:B.10.【答案】解:设小长方形的长为x,宽为y,则大长方形的长为3x,宽为3y;根据题意得:;解得:;∴(3x+3y)2=(3×2+3×1)2=81.故选:D.二.填空题11.【答案】解:由2mx﹣1=3﹣x,可得(2m+1)x=4;∵关于x的一元一次方程2mx﹣1=3﹣x有解;解得:m≠﹣.故答案为:≠﹣.12.【答案】解:方程x﹣8=y;整理得:x﹣40=5y;解得:x=5y+40;故答案为:x=5y+4013.【答案】解:∵|x﹣2|+|y+1|=0;∴x﹣2=0,y+1=0;解得x=2,y=﹣1;∴x﹣2y=2﹣2×(﹣1)=2+2=4;故答案为:4.14.【答案】解:根据题意得:4m<m,m<6﹣2m,4m<6﹣2m;解得:m<0,m<2,m<1;∴m的取值范围是m<0.故答案为:m<0.15.【答案】解:设该商品的标价为每件x元;由题意得:80%x﹣10=2;解得:x=15.答:该商品的标价为每件15元.故答案为:15.三.解答题16.【答案】解:(1)去分母,得4(2x+1)﹣3(x﹣1)=12;去括号,得8x+4﹣3x+3=12;移项,得8x﹣3x=12﹣4﹣3;合并同类项,得5x=5;系数化为1,得x=1;(2);②﹣①,得3x=﹣9;解得:x=﹣3;把x=﹣3代入①,得﹣3+y=1;解得:y=4;所以方程组的解是.17.解:(1)3x﹣1<7﹣x;3x+x<7+1;4x<8;x<2;在数轴上表示为;(2)∵由①得:x≥;由②得:x>;∴不等式组的解集为:x>;在数轴上表示不等式组的解集为:;(3)∵由①得:x≤4;由②得:x>0;∴不等式组的解集为:0<x≤4;在数轴上表示不等式组的解集为:.18.【答案】解:(1)∵2*1=4,﹣1*3=﹣9,x*y=ax+by;∴;①+②×2,得7b=﹣14;解得:b=﹣2;把b=﹣2代入①,得2a﹣2=4;解得:a=3;(2)∵,a=3,b=﹣2,x*y=ax+by;∴;①×2﹣②,得﹣3n=﹣6;解得:n=2;把n=2代入②,得6m﹣2=4;解得:m=1;(3)∵3x*y=1﹣7t,(﹣2)x*(﹣3)y=4t﹣3,x*y=ax+by,a=3,b=﹣2;∴;①+②,得3x+4y=﹣2﹣3t;∵3x+4y<6;∴﹣2﹣3t<6;∴﹣3t<6+2;∴﹣3t<8;∴t>﹣;∴t的最小整数值是﹣2.19.【答案】解:(1)当a=3时,方程组为;①+②×2,得5x=5;∴x=1.把x=1代入②,得y=1.∴;(2);①+②,得3x+y=a+1;∴S=a(3x+y)=a(a+1)=a2+a=(a+)2﹣.当a=﹣时,S最小,最小值是﹣.20.【答案】解:;①+②×4,得6x+9y=9﹣m;∴2x+3y=>0;∴m<9.21.【答案】解:∵|x|﹣1=0,即|x|=1;解得x=﹣1或x=1;若x=﹣1,则2×(﹣1)﹣3=;解得m=﹣12;若x=1,则2×1﹣3=+1;解得m=﹣6;∴m=﹣12或m=﹣6.22.【答案】解:(1)设购买1个篮球需要x元,购买1个足球需要y元;依题意得:;解得:.答:购买1个篮球需要120元,购买1个足球需要98元.(2)设购买篮球m个,则购买足球(40﹣m)个;依题意得:120m+98(40﹣m)≤4200;解得:m≤12.又∵m为整数;∴m可以取的最大值为12.答:篮球最多可购买12个.23.【答案】解:(1)5m+21=8(m﹣1)+2解得m=9;(2)设使用载重为5吨的汽车x辆,使用载重为8吨的汽车y辆则5x+8y=66;x,y都是正整数或.使用载重为5吨的汽车2辆,使用载重为8吨的汽车7辆总费用最少为8400元。

人教(完整版)七年级数学下册期中试卷及答案 - 百度文库

人教(完整版)七年级数学下册期中试卷及答案 - 百度文库

人教(完整版)七年级数学下册期中试卷及答案 - 百度文库一、选择题1.36的平方根是()A .6-B .6C .6±D .4±2.下列图中的“笑脸”,由如图平移得到的是( )A .B .C .D . 3.若点()1,A a a -在第二象限,则点(),1B a a -在( )A .第一象限B .第二象限C .第三象限D .第四象限 4.下列说法中,真命题的个数为( )①两条平行线被第三条直线所截,同位角相等;②在同一平面内,如果两条直线都与第三条直线垂直,那么这两条直线互相平行; ③过一点有且只有一条直线与这条直线平行;④点到直线的距离是这一点到直线的垂线段;A .1个B .2个C .3个D .4个 5.将一张边沿互相平行的纸条如图折叠后,若边//AD BC ,则翻折角1∠与2∠一定满足的关系是( )A .122∠=∠B .1290∠+∠=︒C .1230∠-∠=︒D .213230∠-∠=︒ 6.下列命题正确的是( )A .若a >b ,b <c ,则a >cB .若a ∥b ,b ∥c ,则a ∥cC .49的平方根是7D .负数没有立方根 7.一副直角三角板如图所示摆放,它们的直角顶点重合于点O ,//CO AB ,则BOD ∠=( )A .30B .45︒C .60︒D .90︒8.如图,动点P 在平面直角坐标系中按图中箭头所示方向运动,第1次从原点运动到点()1,1,第2次接着运动到点()2,0,第3次接着运动到点()3,2,……按这样的运动规律,经过第2020次运动后,动点P 的坐标是( )A .()2020,1B .()2020,0C .()2020,2D .()2021,0二、填空题9.计算:﹣9=_____.10.在平面直角坐标系中,已知点A 的坐标为(﹣2,5),点Q 与点A 关于y 轴对称,点P 与点Q 关于x 轴对称,则点P 的坐标是___.11.如图,在平面直角坐标系中,点A ,B ,C 三点的坐标分别是()2,0A -,()0,4B ,()0,1C -,过点C 作//CD AB ,交第一象限的角平分线于点D ,连接AD 交y 轴于点E .则点E 的坐标为______.12.如图,将一块三角板的直角顶点放在直尺的一边上,当∠2=54º时,∠1=______.13.如图,将△ABC 沿直线AC 翻折得到△ADC ,连接BD 交AC 于点E ,AF 为△ACD 的中线,若BE =2,AE =3,△AFC 的面积为2,则CE=_____.14.已知,a b 为两个连续的整数,且 15a b <<,则a b +=_______ 15.如图,直线BC 经过原点O ,点A 在x 轴上,AD BC ⊥于D .若A (4,0),B (m ,3),C (n ,-5),则AD BC =______.16.育红中学八五班的数学社团在做如下的探究活动:在平面直角坐标系中,一个智能机器人接到如下指令:从原点O 出发,按向上、向右、向下、向右的方向依次移动,每次移动1个单位长度,其移动路线如图所示,第1次移动到点A 1,第2次移动到点A 2…第n 次移动到点A n ,则△OA 2A 2021的面积是 __________________.三、解答题17.计算下列各式的值:(1)237)--(233(3)8318.求下列各式中的x 的值:(1)2810x -=;(2)()3164x -=.19.完成下面的证明:已知:如图,130∠=︒,60B ∠=︒,AB AC ⊥.求证://AD BC .证明:AB AC ⊥(已知),∵∠______90=︒(____________________).∴130∠=︒,60B ∠=︒(已知),∵1BAC B ∠+∠+∠=__________.即∠______180B +∠=︒∴//AD BC (______________________________).20.如图①,在平面直角坐标系中,点A 、B 在x 轴上,AB BC ⊥,2AO BO ==,3BC =.(1)写出点A 、B 、C 的坐标.(2)如图②,过点B 作//BD AC 交y 轴于点D ,求CAB BDO ∠+∠的大小. (3)如图③,在图②中,作AE 、DE 分别平分CAB ∠、ODB ∠,求AED ∠的度数. 21.计算:(1)239(6)27----; (2)﹣12+(﹣2)3×31127()89--⨯-; (3)已知实数a 、b 满足1a -+|b ﹣1|=0,求a 2017+b 2018的值.(4)已知5+1的整数部分为a ,5﹣1的小数部分为b ,求2a+3b 的值.22.(1)若一圆的面积与这个正方形的面积都是22cm π,设圆的周长为C 圆,正方形的周长为C 正,则C 圆______C 正.(填“=”或“<”或“>”号)(2)如图,若正方形的面积为216cm ,李明同学想沿这块正方形边的方向裁出一块面积为212cm 的长方形纸片,使它的长和宽之比为3:2,他能裁出吗?请说明理由. 23.已知:直线AB ∥CD ,M ,N 分别在直线AB ,CD 上,H 为平面内一点,连HM ,HN . (1)如图1,延长HN 至G ,∠BMH 和∠GND 的角平分线相交于点E .求证:2∠MEN ﹣∠MHN =180°;(2)如图2,∠BMH 和∠HND 的角平分线相交于点E .①请直接写出∠MEN 与∠MHN 的数量关系: ;②作MP 平分∠AMH ,NQ ∥MP 交ME 的延长线于点Q ,若∠H =140°,求∠ENQ 的度数.(可直接运用①中的结论)【参考答案】一、选择题1.C解析:C【分析】根据平方根的定义求解即可.【详解】解:∵2(6)36=±,∴36的平方根是6±,故选:C .【点睛】此题考查的是求一个数的平方根,掌握平方根的定义是解决此题的关键.2.D【分析】根据平移的性质,不改变图形的形状和大小,经过平移,对应点所连的线段平行且相等,对应线段平行且相等.【详解】解:A 、B 、C 都是由旋转得到的,D 是由平移得到的.故选:D .【点睛】解析:D【分析】根据平移的性质,不改变图形的形状和大小,经过平移,对应点所连的线段平行且相等,对应线段平行且相等.【详解】解:A 、B 、C 都是由旋转得到的,D 是由平移得到的.故选:D .【点睛】本题考查平移的基本性质是:①平移不改变图形的形状和大小;②经过平移,对应点所连的线段平行且相等,对应线段平行且相等,对应角相等.3.A【分析】首先根据第二象限内点的坐标符号可得到0<a<1,然后分析出1-a>0,进而可得点B所在象限.【详解】解:∵点A(a-1,a)在第二象限,∴a-1<0,a>0,∴0<a<1,∴1-a>0,∴点B(a,1-a)在第一象限,故选A.【点睛】此题主要考查了点的坐标,关键是掌握第一象限内点的坐标符号(+,+),第二象限内点的坐标符号(-,+),第三象限内点的坐标符号(-,-),第四象限内点的坐标符号(+,-).4.B【分析】根据平行线的性质与判定,点到直线的距离的定义逐项分析判断即可【详解】①两条平行线被第三条直线所截,同位角相等,故①是真命题;②在同一平面内,如果两条直线都与第三条直线垂直,那么这两条直线互相平行,故②是真命题;③在同一平面内,过直线外一点有且只有一条直线与这条直线平行,故③不是真命题,④点到直线的距离是这一点到直线的垂线段的长度,故④不是真命题,故真命题是①②,故选B【点睛】本题考查了判断真假命题,平行线的性质与判定,点到直线的距离的定义,掌握相关性质定理是解题的关键.5.B【分析】根据平行可得出∠DAB+∠CBA=180°,再根据折叠和平角定义可求出1290∠+∠=︒.【详解】解:由翻折可知,∠DAE=21∠,∠CBF=22∠,∵//AD BC,∴∠DAB+∠CBA=180°,∴∠DAE+∠CBF=180°,∠+∠=°,即2122180∴1290∠+∠=︒,故选:B.【点睛】本题考查了平行线的性质和角平分线的性质,解题关键是熟练运用平行线的性质进行推理计算.6.B【解析】【分析】根据不等式的性质、平行线的判定、平方根和立方根依次判定各项后即可解答.【详解】选项A,由a>b,b>c,则a>c,可得选项A错误;选项B,若a∥b,b∥c,则a∥c,正确;选项C,由49的平方根是±7,可得选项C错误;选项D,由负数有立方根,可得选项D错误;故选B.【点睛】本题考查了命题的知识,关键是根据不等式的性质、平行线的判定、平方根和立方根解答.7.C【分析】由AB//CO得出∠BAO=∠AOC,即可得出∠BOD.【详解】AB CO,解://∴∠=∠=︒OAB AOC60∴∠=︒+︒=︒6090150BOC∠+∠=∠+∠=︒AOC DOA DOA BOD90∴∠=∠=︒60AOC BOD故选:C.【点睛】本题考查两直线平行内错角相等的知识点,掌握这一点才能正确解题.8.B【分析】分析点P的运动规律找到循环规律即可.【详解】解:点P坐标运动规律可以看做每运动四次一个循环,每个循环向右移动4个单位,则2020=505×4,所以,前505次循环运动点P共向右运解析:B【分析】分析点P的运动规律找到循环规律即可.【详解】解:点P坐标运动规律可以看做每运动四次一个循环,每个循环向右移动4个单位,则2020=505×4,所以,前505次循环运动点P共向右运动505×4=2020个单位,且在x轴上,故点P坐标为(2020,0).故选:B.【点睛】本题考查了规律型:点的坐标,是平面直角坐标系下的坐标规律探究题,解答关键是利用数形结合解决问题.二、填空题9.﹣3.【详解】试题分析:根据算术平方根的定义﹣=﹣3.故答案是﹣3.考点:算术平方根.解析:﹣3.【详解】﹣3.故答案是﹣3.考点:算术平方根.10.(2,﹣5).【分析】根据题意分析点P,先关于y轴对称,再求关于x轴对称的点即可【详解】∵点A的坐标为(﹣2,5),点Q与点A关于y轴对称,∴点Q 的坐标为(2,5),∵点P 与点Q 关于x 轴解析:(2,﹣5).【分析】根据题意分析点P ,先关于y 轴对称,再求关于x 轴对称的点即可【详解】∵点A 的坐标为(﹣2,5),点Q 与点A 关于y 轴对称,∴点Q 的坐标为(2,5),∵点P 与点Q 关于x 轴对称,∴点P 的坐标是(2,﹣5).故答案为:(2,﹣5).【点睛】本题考查了平面直角坐标系的定义,轴对称,理解题意是解题的关键.11.【分析】设D (x ,y ),由点在第一象限的角平分线上,可得,由待定系数法得直线AB 的解析式为,由,可设,把代入, 得,进而可求得,再由待定系数法求得直线AD 的解析式为,令x=0时,得,即可求得点E 解析:20,3⎛⎫⎪⎝⎭ 【分析】设D (x ,y ),由点D 在第一象限的角平分线上,可得x y =,由待定系数法得直线AB 的解析式为24y x =+,由//CD AB ,可设2CD y x b =+,把()0,1C -代入, 得21CD y x =-,进而可求得1(1)D ,,再由待定系数法求得直线AD 的解析式为1233y x =+,令x =0时,得23y =,即可求得点E 的坐标. 【详解】解:设D (x ,y ),点D 在第一象限的角平分线上,∴x y =,//CD AB ,()20A -,,()04B ,∴设直线AB 的解析式为:4y kx =+,把()20A -,,代入得: k =2,24AB y x ∴=+,2CD y x b ∴=+,把()0,1C -代入,得b =-1,21CD y x ∴=-,点D 在21CD y x =-上,(11)D ∴,,设直线AD 的解析式为:11y k x b =+,可得1111120k b k b +=⎧⎨-+=⎩, 111323k b ⎧=⎪⎪∴⎨⎪=⎪⎩, 1233AD y x ∴=+, 当x =0时,23y =, 2(0)3E ∴,, 故答案为:2(0)3, 【点睛】此题考查了一次函数的性质,掌握待定系数法求一次函数的解析式是解答此题的关键. 12.36°【分析】如图,根据平行线的性质可得∠3=∠2,然后根据平角的定义解答即可.【详解】解:如图,∵三角尺的两边a ∥b ,∴∠3=∠2=54º,∴∠1=180°-90°-∠3=36°.故解析:36°【分析】如图,根据平行线的性质可得∠3=∠2,然后根据平角的定义解答即可.【详解】解:如图,∵三角尺的两边a ∥b ,∴∠3=∠2=54º,∴∠1=180°-90°-∠3=36°.故答案为:36°.【点睛】本题以三角板为载体,主要考查了平行线的性质和和平角的定义,属于基础题型,熟练掌握平行线的性质是解题关键.13.【分析】根据已知条件以及翻折的性质,先求得S 四边形ABCD ,根据S 四边形ABCD ,即可求得,进而求得【详解】∵AF 为△ACD 的中线,△AFC 的面积为2,∴S △ACD =2S △AFC =4,∵解析:【分析】根据已知条件以及翻折的性质,先求得S 四边形ABCD ,根据S 四边形ABCD =12AC BD ⨯⨯,即可求得AC ,进而求得CE【详解】∵AF 为△ACD 的中线,△AFC 的面积为2,∴S △ACD =2S △AFC =4,∵△ABC 沿直线AC 翻折得到△ADC ,∴S △ABC =S △ADC ,BD ⊥AC ,BE =ED ,∴S 四边形ABCD =8, ∴182AC BD ⨯⨯=, ∵BE =2,AE =3,∴BD =4,∴AC =4,∴CE =AC ﹣AE =4﹣3=1.故答案为1.【点睛】本题考查了三角形中线的性质,翻折的性质,利用四边形ABCD 的等面积法求解是解题的关键.14.7【分析】由无理数的估算,先求出a 、b 的值,再进行计算即可.【详解】解:∵,∴,∵、为两个连续的整数,,∴,,∴;故答案为:7.【点睛】本题考查了无理数的估算,解题的关键是正确解析:7【分析】由无理数的估算,先求出a、b的值,再进行计算即可.【详解】解:∵91516<<,∴3154<<,∵a、b为两个连续的整数,15<<,a bb=,∴3a=,4a b+=+=;∴347故答案为:7.【点睛】本题考查了无理数的估算,解题的关键是正确求出a、b的值,从而进行解题.15.【分析】作三角形的高线,根据坐标求出BE、OA、OF的长,利用面积法可以得出BC•AD=32.【详解】解:过B作BE⊥x轴于E,过C作CF⊥y轴于F,∵B(m,3),∴BE=3,∵A解析:32【分析】作三角形的高线,根据坐标求出BE、OA、OF的长,利用面积法可以得出BC•AD=32.【详解】解:过B作BE⊥x轴于E,过C作CF⊥y轴于F,∵B(m,3),∴BE=3,∵A(4,0),∴AO=4,∵C(n,-5),∴OF=5,∵S△AOB=12AO•BE=12×4×3=6,S△AOC=12AO•OF=12×4×5=10,∴S△AOB+S△AOC=6+10=16,∵S△ABC=S△AOB+S△AOC,∴12BC•AD=16,∴BC•AD=32,故答案为:32.【点睛】本题考查了坐标与图形性质,根据点的坐标表示出对应线段的长,面积法在几何问题中经常运用,要熟练掌握;本题根据面积法求出线段的积.16.【分析】由题意知OA4n=2n,图形运动4次一个循环,横坐标对应一个循环增加2,计算出A2A2021,由此即可解决问题.【详解】解:由题意知OA4n=2n(n为正整数),图形运动4次一个循环解析:1009 2【分析】由题意知OA4n=2n,图形运动4次一个循环,横坐标对应一个循环增加2,计算出A2A2021,由此即可解决问题.【详解】解:由题意知OA4n=2n(n为正整数),图形运动4次一个循环,横坐标对应一个循环增加2∵2021÷4=505…1,∴A2021与A1是对应点,A2020与A0是对应点∴OA2020=505×2=1010,A1A2021=1010∴A2A2021=1010-1=1009则△OA2A2019的面积是12×1×1009=10092,故答案为:10092.【点睛】本题主要考查点的坐标的变化规律,解题的关键是根据图形得出下标为4的倍数时对应长度即为下标的一半,据此可得.三、解答题17.(1);(2)【分析】(1)先求绝对值,同时利用计算,再合并即可;(2)利用乘法的分配率先进行乘法运算,同时求解的立方根,再合并即可.【详解】解:(1)(2)【点睛】本题考解析:(1)4-;(2)2.【分析】(1)先求绝对值,同时利用()20a a =≥计算2,再合并即可; (2)利用乘法的分配率先进行乘法运算,同时求解8的立方根,再合并即可.【详解】解:(1)23--37 4.=-=-(2312=+-2.=【点睛】本题考查的是实数的运算,考查()20a a =≥,求一个数的立方根,绝对值的运算,掌握以上知识是解题的关键. 18.(1)或;(2)【分析】(1)方程整理后,利用平方根定义开方即可求出x 的值;(2)方程利用立方根定义开立方即可求出x 的值.【详解】解:(1),或.,.【点睛】此题考查了解析:(1)9x =或9x =-;(2)5x =【分析】(1)方程整理后,利用平方根定义开方即可求出x 的值;(2)方程利用立方根定义开立方即可求出x 的值.【详解】解:(1)2810x -=2x =81,9x =或9x =-.(2)()3164x -= 14x -=,5x =.【点睛】此题考查了立方根,以及平方根,熟练掌握运算法则是解本题的关键.19.BAC ,垂直的定义,180°,BAD ,同旁内角互补,两直线平行.【分析】根据垂直的定义和已知证明∠BAD ,即,由同旁内角互补,两直线平行即可得出结论.【详解】证明:∵(已知),∴∠BAC (解析:BAC ,垂直的定义,180°,BAD ,同旁内角互补,两直线平行.【分析】根据垂直的定义和已知证明∠BAD 180B +∠=︒,即1180BAC B ∠+∠+∠=︒,由同旁内角互补,两直线平行即可得出结论.【详解】证明:∵AB AC ⊥(已知),∴∠BAC 90=︒(垂直的定义).∵130∠=︒,60B ∠=︒(已知),∴1BAC B ∠+∠+∠=180°即∠BAD 180B +∠=︒∴//AD BC (同旁内角互补,两直线平行)故答案为:BAC ,垂直的定义,180°,BAD ,同旁内角互补,两直线平行.本题主要考查了垂直定义和平行线的判定,证明∠BAD 180B +∠=︒是解题关键. 20.(1),,;(2)90°;(3)45°【分析】(1)根据图形和平面直角坐标系,可直接得出答案;(2)根据两直线平行,内错角相等可得,则∠;(3)根据角平分线的定义可得,过点作,然后根据平行解析:(1)()2,0A -,()2,0B ,()2,3C ;(2)90°;(3)45°【分析】(1)根据图形和平面直角坐标系,可直接得出答案;(2)根据两直线平行,内错角相等可得ABD BAC ∠=∠,则∠90CAB BDO ABD BDO +∠=∠+∠=︒;(3)根据角平分线的定义可得CAE BDE ∠+∠45=︒,过点E 作//EF AC ,然后根据平行线的性质得出, 45AED CAE BDE ∠=∠+∠=︒.【详解】解:(1)依题意得:()2,0A -,()2,0B ,()2,3C ;(2)∵//BD AC ,∴ABD BAC ∠=∠,∴90CAB BDO ABD BDO +∠=∠+∠=︒;(3)∵//BD AC ,∴ABD BAC ∠=∠,∵AE ,DE 分别平分CAB ∠,ODB ∠, ∴111()()90222CAE BDE BAC BDO ABD BDO ∠+∠=∠+∠=∠+∠=⨯︒ 45=︒,过点E 作//EF AC ,则CAE AEF ∠=∠,BDE DEF ∠=∠,∴45AED AEF DEF CAE BDE ∠=∠+∠=∠+∠=︒.【点睛】本题考查了坐标与图形的性质,平行线的性质,熟记以上性质,并求出A ,B ,C 的坐标是解题的关键,(3)作出平行线是解题的关键.21.(1)0;(2)-3;(3)2;(4).【解析】【分析】直接利用算术平方根以及立方根的定义化简进而得出答案;直接利用有理数的乘方、算术平方根以及立方根的定义化简进而得出答案 利用绝对值以及平解析:(1)0;(2)-3;(3)2;(4).【解析】【分析】() 1直接利用算术平方根以及立方根的定义化简进而得出答案;()2直接利用有理数的乘方、算术平方根以及立方根的定义化简进而得出答案()3利用绝对值以及平方根的非负性质得出a ,b 的值,进而得出答案;()4直接利用23的范围进而得出a ,b 的值,即可得出答案.【详解】解:(13630=-+=;()23121(2)8⎛-+-⨯ ⎝111333⎛⎫=--+⨯-=- ⎪⎝⎭; ()3110a b -+-=,1a ∴=,1b =,20172018a b +112=+=;()451+的整数部分为a 1的小数部分为b ,3a ∴=,2b =,2366a b ∴+=+=【点睛】此题主要考查了估算无理数的大小以及实数运算,正确化简各数是解题关键. 22.(1)<;(2)不能,理由见解析【分析】(1)分别根据圆的面积和正方形的面积得出其半径或边长,再分别求得其周长,根据实数大小比较的方法,可得答案;(2)设裁出的长方形的长为,宽为,由题意得关于解析:(1)<;(2)不能,理由见解析【分析】(1)分别根据圆的面积和正方形的面积得出其半径或边长,再分别求得其周长,根据实数大小比较的方法,可得答案;(2)设裁出的长方形的长为3()a cm ,宽为2()a cm ,由题意得关于a 的方程,解得a 的值,从而可得长方形的长和宽,将其与正方形的边长比较,可得答案.【详解】解:(1)圆的面积与正方形的面积都是22cm π,∴)cm )cm ,)C cm ∴=圆,)C cm =正,32848ππππ=⨯>⨯, ∴C C ∴<正圆.(2)不能裁出长和宽之比为3:2的长方形,理由如下:设裁出的长方形的长为3()a cm ,宽为2()a cm ,由题意得:3212a a ⨯=,解得a =a =∴长为,宽为,正方形的面积为216cm ,∴正方形的边长为4cm , 324>,∴不能裁出长和宽之比为3:2的长方形.【点睛】本题考查了算术平方根在正方形和圆的面积及周长计算中的简单应用,熟练掌握相关计算公式是解题的关键.23.(1)见解析;(2)①2∠MEN +∠MHN =360°;②20°【分析】(1)过点E 作EP ∥AB 交MH 于点Q ,利用平行线的性质、角平分线性质、邻补角和为180°,角与角之间的基本运算、等量代换等即解析:(1)见解析;(2)①2∠MEN +∠MHN =360°;②20°【分析】(1)过点E 作EP ∥AB 交MH 于点Q ,利用平行线的性质、角平分线性质、邻补角和为180°,角与角之间的基本运算、等量代换等即可得证.(2)①过点H 作GI ∥AB ,利用(1)中结论2∠MEN ﹣∠MHN =180°,利用平行线的性质、角平分线性质、邻补角和为180°,角与角之间的基本运算、等量代换等得出∠AMH +∠HNC =360°﹣(∠BMH +∠HND ),进而用等量代换得出2∠MEN +∠MHN =360°. ②过点H 作HT ∥MP ,由①的结论得2∠MEN +∠MHN =360°,∠H =140°,∠MEN =110°.利用平行线性质得∠ENQ +∠ENH +∠NHT =180°,由角平分线性质及邻补角可得∠ENQ +∠ENH +140°﹣12(180°﹣∠BMH )=180°.继续使用等量代换可得∠ENQ 度数.【详解】解:(1)证明:过点E 作EP ∥AB 交MH 于点Q .如答图1∵EP∥AB且ME平分∠BMH,∴∠MEQ=∠BME=12∠BMH.∵EP∥AB,AB∥CD,∴EP∥CD,又NE平分∠GND,∴∠QEN=∠DNE=12∠GND.(两直线平行,内错角相等)∴∠MEN=∠MEQ+∠QEN=12∠BMH+12∠GND=12(∠BMH+∠GND).∴2∠MEN=∠BMH+∠GND.∵∠GND+∠DNH=180°,∠DNH+∠MHN=∠MON=∠BMH.∴∠DHN=∠BMH﹣∠MHN.∴∠GND+∠BMH﹣∠MHN=180°,即2∠MEN﹣∠MHN=180°.(2)①:过点H作GI∥AB.如答图2由(1)可得∠MEN=12(∠BMH+∠HND),由图可知∠MHN=∠MHI+∠NHI,∵GI∥AB,∴∠AMH=∠MHI=180°﹣∠BMH,∵GI∥AB,AB∥CD,∴GI∥CD.∴∠HNC=∠NHI=180°﹣∠HND.∴∠AMH+∠HNC=180°﹣∠BMH+180°﹣∠HND=360°﹣(∠BMH+∠HND).又∵∠AMH+∠HNC=∠MHI+∠NHI=∠MHN,∴∠BMH+∠HND=360°﹣∠MHN.即2∠MEN+∠MHN=360°.故答案为:2∠MEN+∠MHN=360°.②:由①的结论得2∠MEN+∠MHN=360°,∵∠H=∠MHN=140°,∴2∠MEN=360°﹣140°=220°.∴∠MEN=110°.过点H作HT∥MP.如答图2∵MP∥NQ,∴HT∥NQ.∴∠ENQ+∠ENH+∠NHT=180°(两直线平行,同旁内角互补).∵MP平分∠AMH,∴∠PMH=12∠AMH=12(180°﹣∠BMH).∵∠NHT=∠MHN﹣∠MHT=140°﹣∠PMH.∴∠ENQ+∠ENH+140°﹣12(180°﹣∠BMH)=180°.∵∠ENH=12∠HND.∴∠ENQ+12∠HND+140°﹣90°+12∠BMH=180°.∴∠ENQ+12(HND+∠BMH)=130°.∴∠ENQ+12∠MEN=130°.∴∠ENQ=130°﹣110°=20°.【点睛】本题考查了平行线的性质,角平分线的性质,邻补角,等量代换,角之间的数量关系运算,辅助线的作法,正确作出辅助线是解题的关键,本题综合性较强.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

) D. 22
7
A. -5
B. -11
C. -5 或 -11 D. 5 或 11
得分 评卷人
二、填空.(每小题 3 分,共 27 分)
7.把命题“平行于同一条直线的两条直线平行”改写成“如果……那么……”的形 式:_____________________________________________________________
得分 评卷人
20. (10 分) 计算:
32 =_____, 0.72 =_____, 02 =____, ( 6)2 =_____, ( 3 )2 =______,
4
(1)根据计算结果,回答: a2 一定等于 a 吗?你发现其中的规律了吗?请你用自己的
语言描述出来.
(2)利用你总结的规律,计算 (3.14 )2
15.略
17.对顶角相等;已知;等量代换;同旁内角互补,两直线平行。证明略
18.(1)图略 (2)A′(0,5),B′(-1,3),C(4,0)
“帅”位 (
) A.(-1,1)
B.(-2,-1)
C.(-3,1)
D.(1,-2)
4.下列现象属于平移的是( )
A.冷水加热过程中小气泡上升成为大气泡 B 急刹车时汽车在地面上的滑动
C.投篮时的篮球运动
D.随风飘动的树叶在空中的运动
5.下列各数中,是无理数的为(
A. 3 9
B. 3.14 C. 4
6.若 a2=9, 3 b =-2,则 a+b=( )
∠1+∠2=180°( ∴∠3+∠2=180°( ∴ a∥b( 请你再写出一种证明方法.
), ) )

得分 评卷人 19.(8 分)如图所示,火车站、码头分别位于 A,B 两点,直线 a 和 b 分 别表示铁路与河流. (1)从火车站到码头怎样走最近,画图并说明理由;
(2)从码头到铁路怎样走最近,画图并说明理由; (3)从火车站到河流怎样走最近,画图并说明理由.
度数之比为 3∶2,求∠AOC 的度数.
RN 七年级数学第二学期期中试卷参考答案
1-6 ABCBAC 7. 如果两条直线平行于同一条直线
8. 270° 9.略
10. -2+ 7 , -2- 7
11. 0, ± 1, ± 2 12. 2
13.(-3,2)
x 2 x 2
16.
y
1
y
0
14. 16 9
11.绝对值小于 7 的所有整数有_____________. 12.A、B 两点的坐标分别为(1,0)、(0,2),若将线段 AB 平移至 A1B1,点 A1B1 的坐 标分别为(2,a)、(b,3),则 a+b=____________. 13.第二象限内的点 P(x,y),满足|x|=9,y2=4,则点 P 的坐标是______. 14.若 x3m-3-2yn-1=5 是二元一次方程,则 Mn=__________ 15.平方根节是数学爱好者的节日,这一天的月份和日期的数字正好是当年年份最后两位 数字的平方根,例如 20XX 年的 3 月 3 日,20XX 年的 4 月 4 日,请你写出本世纪内你喜欢的一个 平方根节:_______年_____月_____日.(题中所举例子除外) 三、解答题.(共 70 分)
得分 评卷人
16. 解方程组(8 分)
2x y 5 2x 3y 4 x y 1 3x 2 y 6
A′(_____,______); B′(_____,______); C′(_____,______)。 (3)求△ABC 的面积。
得分 评卷人
17.(8 分)如右图,先填空后证明.
已知: ∠1+∠2=180° 求证:a∥b 证明:∵∠1=∠3(
8.一大门的栏杆如右图所示,BA⊥AE,若 CD∥AE,则∠ABC+∠ BCD=____度.
9.如右图,有下列判断:①∠A 与∠1 是同位角;②∠A 与∠B 是同旁内角;③∠4 与∠1 是内错角;④∠1与∠3是同位角。其中正确的是 _______(填序号).
10.在 数 轴上,-2 对应的点为 A,点 B 与点 A 的距离为 7 ,则点 B 表示的数为_________.
20XX 年七年级数学下册期中测试卷
七年级数 学
题号 一

三 16 17 18 19 20 21 22 23
卷面分 (5 字体卷面分,希望你用规范的字体、整洁的卷面递交一份满意的答卷.
得分 评卷人
一、选择题.(每空 3 分,共 18 分)
1. 如图,直线 AB、CD 相交于点 O,若∠1+∠2=100°,则
(2)本题隐含着一个规律,请你根据(1)的结果进行归纳:如果一个角的两边分别 平行于另一个角的两边,那么这两个角___________;
(3)利用(2)的结论解答:如果两个角的两边分别平行,其中一个角是另一个角的两倍,求 这两个角的大小.
得分 评卷人
22.(8 分)如图,直线 AB、CD 相交于点 O,OF⊥CO,∠AOF 与∠BOD 的
得分 评卷人 23.(8 分)某花农培育甲种花木 2 株,乙种花木 3 株,共需成本 1700 元; 培育甲种花木 3 株,乙种花木 1 株,共需成本 1500 元。求培育甲乙两种 花木每株的成本分别为多少元?
得分 评卷人 21.(10 分)如图,已知 AB∥CD,EF∥MN,∠1=115°, (1)求∠2 和∠4 的度数;
∠ BOC 等 于
() A.130°B.140°C.150°D.160°
2.如图,把一块含有 45°角的直角三角板的两个顶点放
在直尺的
对边上,如果∠1=20°,那么∠2 等于( ) A.30°B.25°C.20°D.15°
3.如 图 ,若 在 中 国 象 棋 盘 上 建 立 平 面 直 角 坐 标 系 ,使 于点(-1,-2),“马”位于点(2,-2),则“兵”位于点
得分 评卷人 18.(10 分)在平面直角坐标系中,△ABC 三个顶点的位置如图(每个小正方 形的边长均为 1).
(1)请画出△ABC 沿 x 轴向平移 3 个单位长度,再沿 y 轴向上平移 2 个单位长度后的△A ′B′C′(其中 A′、B′、C′分别是 A、B、C 的对应点,不写画法)
(2)直接写出 A′、B′、C′三点的坐标:
相关文档
最新文档