电化学理论与方法 第五章 电极过程概述
电化学-第五章电荷转移步骤动力学与电化学极化(极力推荐)
W1 W2’-W1’ W2-W1
nF W
2
W2’
还原态
氧化态
nF
nF
nF
x
改变电极电位对电极反应活化能的影响的示意图
W2’ – W1’ = W2- W1 + nF
这样, W2’ – W2 = W1’- W1 + nF
阴极反应活化 能增值
阳极反应活化 能增值
再变化为:(W2’ – W2)- (W1’- W1)= nF
当电极反应处于标准平衡状态时,即 = 平
ia nFk c exp(
0 a R 0 c o
nF
RT RT
0 平 ) nFK a cR
ic nFk c exp(
nF
0 平 ) nFK c co
上两式中:
K a k exp(
0 a
nF
RT
0 平 ) 0 平 )
K c kc0 exp(
a b lg I
从上式可以看出,不仅与电流密度I有关,还 与a、b有关。而a、b则与电极材料性质、表面结 构、电极的真实表面积、溶液的组成及温度有关。
5.1.2 影响电化学极化的主要因素
(1)电流密度。
(2)电极材料,不同的电极材料a值不同,反应能力完全 不同。需要寻找具有高催化活性的材料。 (3)电极的真实表面积,表面积越大电极的反应能力越大, 可减小电极的极化。如采用多孔电极。
若改写成指数形式,则有:
阳极反应
ia i exp(
0
nF
RT
a )
阴极反应
ic i exp(
0
nF
RT
c )
知道了、和i0,根据上面的电化学步骤的基本动 力学方程,就可以计算任一电位下的绝对电流密 度 ia 、 ic 。
电极过程概述PPT课件
电极过程概述
4.3 电极过程的基本历程和速度控制步骤 4.3.1 电极过程的基本历程
• 电化学反应过程 至少包含阳极反 应过程、阴极反 应过程和液相传 质过程三部分。 他们是串联进行 的,彼此独立而 可以分别研究。
Zn在0.38MZnCl2溶液 中
电极过程概述
电化学反应速度的表示方法
设电极反应为:One R
按异相化学反应速度表示: v 1 dc S dt
采用电流表示: i nFvnF1dc S dt
当电极反应达到稳定状态时,外电流将全部 消耗于电极反应,实验测得的外电流密度值 就代表了电极反应速度。
阴极
Ic
电 流
强
- i,-
i,- i,+
i,-
i,+
i,+
度
+
E
c
a
V
充电 Ic 阴极
Ox1+z1e
(电解池) 阳极
I 电极过程概述
Red1
Red2 Ox2+z2e
a
原电池与电解池的比较
原电池 阴极(+)→负移 阳极(-)→正移
E>V
电解池 阳极→正移 阴极→负移
E<V
电极过程概述
极化
电极= 活化+ 浓差+电阻
有电流通过时,产生一对矛盾。
一方为电子的流动,它起着在电极表面积累电 荷,使电极电位偏离平衡电位的作用,即极化 作用。
另一方是电极反应,它起着吸收电子运动所传 递过来的电荷,使电极电位恢复到平衡状态的 作用,可称为去极化作用。
电化学原理第五章
当电极上有电流通过时,三种传质方式可能同时存在, 但在一定区域,一定条件下,只有一至二种传质方式起主要 作用。 电极反应消耗大量粒子,要靠传质过程补充,若电解液 含较多电解质,则可忽略电迁移传质作用,向电极表面传输 反应粒子主要由扩散和对流串联而成。通常对流传质的速度 原大于扩散传质的速度,故液相传质过程速度主要由扩散传 质过程控制,它可代表整个液相传质过程动力学的特征,本 章讨论扩散传质动散。 反应初期,反应粒子浓度变化不太大,浓度梯度较小,扩散较 慢,扩散发生范围主要在离电极较近区域,随反应进行,扩 散过来的反应粒子的数量远小于电极反应的消耗量,梯度较 大,扩散范围也增大,反应粒子的浓度随时间和电极表面距 离变化而不断变化。
17:59:38
扩散层中各点的反应粒子浓度是时间和距离的函数,即 Ci=f(x,t) 反应浓度随x和t不断变化的扩散过程,是一种不稳定的扩散 传质过程。这个阶段内的扩散称非稳态扩散或暂态扩散,反 应粒子是x与t的函数。
17:59:38
二、液相传质三种方式的相对比较 (1)传质推动力不同 电迁移:电场力,存在电位梯度 对流传质: 自然对流:或温度差存在,实质是不同部分溶液存在重 力差。 强制对流:是搅拌外力,机械、空气搅拌等。 扩散传质: 推动力是存在浓度差。 (2)从传输的物质粒子的情况看 电迁移只能传输带电粒子,扩散和对流既可传输离子,也可传输 分子,甚至粒子。 电迁移和扩散过程粒子间溶质与溶剂存在相对运动,对流传质过 程中,溶液一部分相对于另一部分作相对运动,在运动的溶液内 部,溶质与溶剂分子一起运动,二者间无明显相对运动。 (3)从传质作用区域考虑 把电极表面和附近的液层大划分为双电层区,扩散层区和对流区 。
J Ag DAg dCAg dx DAg
应用电化学---第五章 无机物的电解合成
(3)可以根据需要控制反应的方向。 --通过控制电势,选择适当的电极等方法, 实现电解反应的控制,避免副反应,得到所 希望的产品。 (4)环境污染少、产品纯净。 --电合成中一般用不外加化学氧化剂或还原 剂,杂质少,产品纯。且能实现自动、连续、 密闭生产,对环境造成的污染少。
二.电解合成法的缺点 (1)消耗大量电能。例如生产1吨铝耗电 14000-15000KWh。 (2)占用厂房而积大。由于生产中要同时 用许多电解槽,一些前处理还要占用厂房 等。 (3)电解槽结构通常复杂,电极间电器绝 缘,隔膜的制造、保护和调换比较困难。 (4)电极易受污染,活性不易维持,阳极 尤易受到腐蚀损耗。
全氟磺酸膜 (Nafion膜)的分子结构含强酸 根:
Plemion膜(全氟羧酸膜)的分子结构含有弱 酸根:
两种膜都是聚四氟乙烯基的离子文换树脂, 故既能耐强碱和酸,耐有机物侵蚀,但价 格昂贵。用强酸膜时,阳极室NaOH浓度限 于20%以下;用弱酸膜时,NaOH浓度可达 40%,最大电流密度6KA/m2。 --另外,还有磺化聚苯乙烯膜,其价格低 廉,但在有机介质中易老化,必要时两层 膜迭合使用可延长其使用寿命。表5-2给出 几种离子膜槽电解的操作参数。
§5.5 电解水生产氢气和氧气
成本高,通常石油化工、氯碱工业都产出 氢气,液化空气可以得到氧气,成本低, 但纯度也低。在前面的电化学理论中讲到 了氢和氧的电极行为,这里结合起来就可 以了:
由于没有副反应,电流效率接近100%,槽 电压应该高于理论分解电压(1.23V),实 际工作电压1.8-2.6V 阴阳极之间必须有隔膜,防止气体的混合。
§5.4 锰化合物的电解合成
§5.4.1 电解制取二氧化锰 应用:电池、精细化工、医药 二氧化锰的活性及其性质与晶粒大小、晶格 缺陷的密度和水合程度相关。 通过电化学方法,阳极氧化二价锰制得的MnO2 有很好的活性,大多被用于制造高质量锌 锰电池和碱性MnO2电池。
电化学原理知识点
电化学原理知识点————————————————————————————————作者:————————————————————————————————日期:电化学原理第一章 绪论两类导体: 第一类导体:凡是依靠物体内部自由电子的定向运动而导电的物体,即载流子为自由电子(或空穴)的导体,叫做电子导体,也称第一类导体。
第二类导体:凡是依靠物体内的离子运动而导电的导体叫做离子导体,也称第二类导体。
三个电化学体系:原电池:由外电源提供电能,使电流通过电极,在电极上发生电极反应的装置。
电解池:将电能转化为化学能的电化学体系叫电解电池或电解池。
腐蚀电池:只能导致金属材料破坏而不能对外界做有用功的短路原电池。
阳极:发生氧化反应的电极 原电池(-)电解池(+) 阴极:发生还原反应的电极 原电池(+)电解池(-) 电解质分类:定义:溶于溶剂或熔化时形成离子,从而具有导电能力的物质。
分类:1.弱电解质与强电解质—根据电离程度2.缔合式与非缔合式—根据离子在溶液中存在的形态3.可能电解质与真实电解质—根据键合类型 水化数:水化膜中包含的水分子数。
水化膜:离子与水分子相互作用改变了定向取向的水分子性质,受这种相互作用的水分子层称为水化膜。
可分为原水化膜与二级水化膜。
活度与活度系数: 活度:即“有效浓度”。
活度系数:活度与浓度的比值,反映了粒子间相互作用所引起的真实溶液与理想溶液的偏差。
规定:活度等于1的状态为标准态。
对于固态、液态物质和溶剂,这一标准态就是它们的纯物质状态,即规定纯物质的活度等于1。
离子强度I :离子强度定律:在稀溶液范围内,电解质活度与离子强度之间的关系为: 注:上式当溶液浓度小于0.01mol ·dm-3 时才有效。
电导:量度导体导电能力大小的物理量,其值为电阻的倒数。
符号为G ,单位为S ( 1S =1/Ω)。
影响溶液电导的主要因素:(1)离子数量;(2)离子运动速度。
第五章电极过程扩散动力学
l
(5-4)
稳态扩散的电流密度:
i F (J Ag ) FDAg
s c0 c Ag Ag
l
(5-5)
26
将式(5-5)扩展为一般形式,
对于反应:
O ne R
稳态扩散的电流密度:
ci0 cis (5-6) i nF ( J i ) nFDi l s 极限扩散电流密度:当 ci =0时的扩散电流密
11
2、电极过程的速度控制步骤
速度控制步骤 :串连的各反应步骤中反应速度 最慢的步骤。 常见的极化类型: 浓差极化:液相传质步骤成为控制步骤时引起的 电极极化。指单元步骤(1) 电化学极化:由于电化学反应迟缓而控制电极过 程所引起的电极极化。指单元步骤(3)
12
3、准平衡态
当电极反应以一定速度的进行时,非控制步 骤的平衡态几乎未破坏,这种状态叫做准平 衡态。 对准平衡态下的过程可用热力学方法而无需 用动力学方法处理,使问题得到简化。
阴极极 化
阳极极 化
不锈钢在硫酸中的极化 曲线
8
三、电极过程的基本历程和速度控制步 骤
1、电极过程的基本历程
液相传质步骤 前置的表面转化步骤
电子转移步骤
随后的表面转化步骤
新相生成步骤和反应后的液相传质步骤
9
例 银氰络离子在阴极还原的电极过程 :
图5-1银氰络离子在阴极还原过程示意图
19
传质作用的区域: 电极表面及 其附近的液 层区域划分: 双电层区、 扩散层区、 对流区。
s’ c
s
cc
0
c0 cs
c
c
双电层区
扩散区
电极过程概述
五、极化曲线
• 极化度(反应电阻):极化曲线上某一点 的斜率为该电流密度下的极化度。表示电 极反应进行的难易程度。
五、极化曲线
• 电极反应:有电子参与的氧化还原反应。 One R
• 电极反应速度用电流密度表示:
电极反应速度按异相化学反应表示: v
1 S
dc dt (3.2)
电极表面积
电极上有1摩尔物质还原或氧化,就需要通过nF电量。
三、浓差极化和电化学极化
浓差极化:由于液相传质步骤的迟缓,使得电极表面 反应离子的浓度低于溶液本体浓度,造成电极电位 偏离平衡电位(稳定电位)的现象。 例: Z2n2eZn电极附近液层传质过程迟缓
电化学极化:由于电极表面得、失电子的电化学反应 的迟缓,而引起的电极电位偏离平衡电位(稳定电 位)的现象。 例: N2 i2eNi 得电子过程迟缓
第三章 电极过程概述
第三章 电极过程概述
•电化学反应过程:阳极反应、阴极反应、液相传 质 •电极过程:把发生在电极/溶液界面上的电极反应、 化学转化和电极附近液层中的传质作用等一系列变 化的总和统称为电极过程。 •电极过程动力学:有关电极过程的历程、速度、 影响因素的研究称为电极过程动力学。
第三章 电极过程概述
6、过电位:在一定电位下,电极电位与平衡电位的
差值。
平
过电位取正值:
c 平 c
a a 平
7、极化值:有电流通过时的电极电位(极化电位) 和无电流通过时的电极电位(静止电位)的差值。
五、极化曲线
极化曲线:过电位或电极电 位随电流密度变化的关系 曲线。
讨论: I = 0 时,E = 静止电位。 曲线1、2的极化性能不同。 相同电流密度反应2比反 应1阴极电位负,表明反 应较难于进行。
电化学原理-第五章-液相传质步骤动力学-2015修订
y u 1/ 6 1/ 2 1/ 2 0
n0 知
y1/2
u 1/ 0
2
而旋转圆盘电极上各点的切向速度:
u0 2n0 y
所以:
u01/ 2 y1/ 2 (2n0)1/ 2 常数
y 有:
Di1/3 1/6 常数
即:旋转圆盘电极上各点的扩散层
厚度与y值无关。
1、电极表面附近的液流现象及传质作用 2、扩散层的有效厚度 3、对流扩散的动力学规律
摩擦力
y0
边界层:存在流速梯 度的区域。
电极表面上各点,边 界层厚度不同。
动力粘滞
层流
y0
边界层
根据流体力学理论 可知:
边界层厚度:
B y / u0 (5.10)
动力粘滞系数:
粘度系数 密度
当 j 很小时,由于 j jd
则 (5.40) 简化为:
RT(1 j )
nF
jd (5.41)
对数 直线 关系 关系
由
0
RT nF
ln OcO0
RT nF
ln(1
j jd
)
作极化曲线。
0 2.由3RT
nF
log
O cO0
2.3RT nF
log(1
液相传质步骤动力学
液相传质常是电极反应的限制步骤。 1mol / L 时电极反应最大速度可达 105 A / cm2
实际电化学反应装置的最高电流密度极少 超过几 A / cm2 表明电化学反应的潜力未发挥出来。
通过减缓或增加液相传质来控制电极反应速度。 采用多孔膜和选择透过性薄膜减少干扰组分对 电极反应的影响。
电化学原理第5章:液相传质步骤动力学介绍
Ci0 Cis1 Cis4
1
100
非稳态扩
ci f(x,t)
• 稳态扩散:扩散的速度不 断提高,扩散补充的反应
散
dc 常数 dx
离子数与电极反应消耗的
反应粒子数相等,扩散层
扩散层厚度δ随时间变化
稳态扩散:
ci f(x) dc 常数 dx
中,各点的反应粒子浓度
分布不再随时间的变化而 变化,仅仅是距离的函数。
2 0.62nFD2 / 3 1/ 61/( ci0 cis)
jd nFDi
ci0
0.62nFD2 / 3 1/ 6 1/ 2 ci0
(5.19)
3、旋转圆环-圆盘电极
控制盘电极和环电极 之间的电位差,研 究电极过程的中间 产物。
5.2.4、电迁移对稳态扩散过程的影响 1、电解质溶液中的电迁移现象
四、电迁移对稳态扩散过程的影响
5.2.1 理想条件下的稳态扩散
1.理想条件:排除电迁移的影响,区分扩散区 和对流区,人为地创造一种单纯的扩散过程
0 s c Ag c Ag
强烈搅拌
管径极小
C0
K
大量局外 电解质
dc c c 常数 dx l
0 s
Ag
NO 3
2.理想稳态扩散的动力学规律
液相传质步骤控制的动力学规律,然后再考虑其他
单元步骤对它的影响。
液相传质动力学,实际上是讨论电极表面物质浓度 变化的速度(向电极表面传输物质的速度)。
与电极反应的速度有关,但如果我们假定电极反应
速度很快,那么这种物质浓度的变化速度主要取决
于液相传质的方式及其速度。
因此.我们要先研究液相传质的几种方式。
电化学研究方法第五章
5-7,5-8就是电极浓度表达式,式中 为辅助变量 由5-7,5-8可推导出循环. 伏安法中响应曲线的方程式.
2.无量纲积分方程式
①Nernst方程式的引入: Nernst方程式的引入必然涉及到可逆的概 , CO(0,t), CR(0,t) 之间的关系,对 念, 因为这是必须找一个 可逆过程,可用Nernst方程 0 RT CO(0, t )
i( )d 1 {1 exp[ jat ]} o nFC 0 O DO(t )
t
5-13
这里必须指出的是5-11 a 哪里呢?
nF V 是一个特殊的表达式,特殊在 RT
③无量纲概念的引入: a.无量纲的量义:无量纲也叫无因次,无量纲的量也是无因次 的量。无纲量,无因次就是无单位,纯数。 b.什么是无纲量的量呢?在我们研究的体系中,什么量无量纲 t 就是无纲量的量,为什么呢? 的量呢?
第五章
一、概述
循环伏安法
前面讲的是Φ (或i)被控制在恒定数值下,来探讨电流
t 的变化规律。这一章电位Φ是 t 的函数,Φ随时间 而变,响应的是i~ Φ曲线,也称为变电位伏安法,当随 t 而变
或电位随 化的电位是三角波电位时,称为循环伏安法。
i
t
i
t t
t
1.什么叫循环伏安法: 在平面电极上,施加一个随时间作线性变化的三角波电位, 这一电位叫电位扫描。 i 为扫描的起点电位。 tS tS 为扫描的终点电位。 t s 为电位扫描的反扫时间。 i 因为是线性扫描,当电位以恒定的速度从 i t t 0 t 向负的方向扫描到 tS 时,阴极上会发生还原反应: s
(5-10)
(t ) 截距 vt ' (t≥ts) t ' t ts i vts vt ' i 2vts vt (5-10)′
电极过程简明教程
电极过程简明教程
《电极过程简明教程》
电极过程是一种将电能转换成化学能的方法,是电化学反应的基础。
它是一种重要的能源转换技术,用于制造电池、燃料电池、电解槽等。
下面介绍一下电极过程的基本原理和步骤。
原理:电极过程通过电化学反应将电能转换成化学能,其中电解质在电极表面发生氧化还原反应,从而将电能转换成化学能。
步骤:
1.准备电极:首先准备好电极,电极可以是金属电极或非金属电极,根据不同的电极材料,选择合适的电解质。
2.准备电解质:将电解质加入电极中,以便发生电化学反应。
3.连接电源:将电极连接到电源,使电流流过电极,从而发生电化学反应。
4.观察反应:观察电极表面的反应,以确定电极过程的进行情况。
以上就是电极过程的基本原理和步骤,它是一种重要的能源转换技术,可以用于制造电池、燃料电池、电解槽等。
电化学原理和方法
0.5MNa2SO4及其中加入0.1M丁醇和 0.2M丁醇溶液中汞电极的电毛细曲线
第五节 双电层电容
一、双电层电容
1 微分电容
C= dq , 从Lippman方程可以从电毛细曲线计算微分电容值 dE
d qdE, q d dE
C
dq dE
d 2 dE 2
第二Lippman方程
2 积分电容
K= q E Eq0
电化学的发展史
Butler(1924)提出电化学反应速度,并推导 出Nernst公式的动力学推导(电极过程动力学)
Gurney(1931)对电子通过相界面的传递进行了 量子力学的探讨,并提出了电子的隧道传输机 理(量子电化学)
Hush、Marcus、Gerischer等发展了严格的量 子电化学观点(量子电化学)
3、没考虑双电层中的离子在电场下的变形。 4、双电层理论是研究电极表面状态的重要理论, 随着现代研究方法的不断提高,双电层理论还 在不断的发展,其一个重要工作是由以Frumkin 为代表的,将Helmholtz层分成内Helmholtz层 和外Helmholtz层,在内Helmholtz中,主要是 特征吸附的去水化的离子或吸附分子,而外 Helmholtz则是以静电吸附的水化离子。这一模 型更有效地解释了由双电层引起的实验现象。
d qd (HSg ) idi
i
E
M1 Hg
MP1
HPg
dE d (HPg ) d (MP1 ),
d qdE idi
i
如果考虑溶液的组分不变,则有
d qdE, Lippman 方程
3、汞电极上的电毛细曲线
在0.9M 、 0.1M 、0.01M NaF溶液中汞电极的电毛细 曲线
电极过程概述
电极过程概述——《电化学原理》李荻电极过程•概念:在电化学中,把发生在电极/溶液界面上的电极反应、化学转化和电极附近液层中的传质作用等一系列变化的总和称为电极过程。
•电极过程动力学:有关电极过程的历程、速度及其影响因素的研究就称为电极过程动力学。
一、电极的极化现象•概念:有电流通过时电极电位偏离平衡电位的现象。
•实验表明,在电化学体系中,发生电极极化时,阴极的电极电位总是变得比平衡电位更负,阳极的电极电位总是变得比平衡电位更正。
因此,电极电位偏离平衡电位向负移为阴极极化,向正移称为阳极极化。
过电位•过电位:在一定的电流密度下,电极电位与平衡电位的差值称为该电流密度下的过电位。
η=ψ-ψ平•过电位是表征电极极化程度的参数。
习惯上取过电位为正值,因此规定阴极极化时ηc=ψ平-ψc;阳极极化时ηa=ψa-ψ平•把电极在没有电流通过时的电位称为静止电位ψ静,把有电流通过时的电位(极化电位)与静止电位的差值称为极化值,Δψ•Δψ=ψ-ψ静二、电极极化的原因•有电流通过时,一方面,电子的流动,在电极表面积累电荷,使电极电位偏离平衡状态,即极化作用;另一方面,电极反应,吸收电子运动所传递过来的电荷,使电极电位恢复平衡状态,即去极化作用。
电极性质的变化就取决于极化作用和去极化作用的对立统一。
•实验表明,电子的运动速度往往是大于电极反应速度的,因而通常是极化作用占主导地位。
•有电流通过时,阴极上由于电子流入电极的速度大,造成负电荷的积累;阳极上由于电子流出电极的速度大,造成正电荷的积累。
因此阴极电位向负移动,阳极电位向正移动,都偏离了原来的平衡状态,产生所谓的“电极的极化”现象。
•电极极化现象的实质:电极极化现象是极化与去极化作用的综合结果,其实质是电极反应速度跟不上电子运动速度而造成的电荷在界面的积累,即产生电极极化现象的内在原因正是电子运动速度与电极反应速度之间的矛盾。
•两种特殊的极端情况:理想极化电极和理想不计划电极。
电极过程概述
面转化步骤。
例如银氰络合离子在阴极还原的电极过程,包
括4个单元步骤: (1) 液相传质步骤
Ag(CN)32-(溶液深处)→Ag(CN)32-(电极表 面附近)
(2) 前置转化步骤 Ag(CN)32-→Ag(CN)2-+CN-
(3) 电化学步骤(电子转移) Ag(CN)2-+e→Ag(吸附态)+2CN-
在连续进行的各个单元步骤中,除速度控制步骤 外,可以认为其余的步骤反应速度是非常快的。 如果远远大于控制步骤,则可以近似地认为它们 处于平衡状态。可以用热力学方法而不必用动力 学处理这些步骤,即认为它们处于可逆状态。应 当注意的是电极过程中的控制步骤并不是固定不 变的。随着条件的变化,可能由原来起控制步骤 的分部反应步骤转化为由另一个分部反应步骤起 控制步骤作用。
(5) 镀液的稳定性 如果满足以上5个条件,则认为此电解液的性 能较好。
四、极化曲线的分析
例1:P35 图3-1 例2:下图为18℃时,某甲基磺酸盐镀锡溶的 极化曲线,开路电位分别是 1#:-445mv ; 2#:-430mv ;通过分析得出镀液的分散能力 2#好于1#
2#施罗得 1#国巨
Dk (A/dm2)
析出超电势用η析来表示 对于阴极: η析=φ平- φ析 对于阳极: η析=φ析- φ平 二、析出电势的测定
P36
三、电解时的电极反应 电解时,如果溶液中有几种离子在阴极进 行还原或在阳极进行氧化时,则析出电势 大的优先在阴极进行还原反应,反之,析 出电势小的优先在阳极进行氧化反应。
例题:
在25℃时,用铜电极电解0.1M的CuSO4和 0.1M的ZnSO4溶液,当电流密度为0.01A/cm2 时,氢在铜上的析出超电势为0.584 v,而锌 与铜的析出超电势很小可以忽略不7
电化学第五章 电极过程概述
本章主要内容
1. 电极的极化现象 2. 原电池和电解池的极化图 3. 电极过程的基本历程和速度控制步骤 4. 电极过程的特征
4.1 电级的极化现象
1、什么是电极的极化现象
• 首先回顾可逆电极、平衡电极电位特征
Cu
➢ 处于热力学平衡状态
➢ 氧化反应和还原反应速度相等
➢ 电荷交换和物质交换都处于动态平衡之中
• 实际中遇到的电极体系,在没有电流通过时,测得的电
极电位可能是可逆电极的平衡电位,也可能是不可逆电 极的稳定电位。
• 因而,又往往把电极在没有电流通过时的电位统称为静
止电位j静,把有电流通过时的电极电位(极化电位)与静 止电位的差值称为极化值,用△j 表示。即
△j = j - j静
• 在实际问题的研究中.往往来用极化值△j更方便,但
能,通常需要通过实验测定过电位或电极电位随 电流密度变化的关系曲线。这种曲线就叫做极化 曲线。
1. 在氰化镀锌镕液中测得
的极化曲线(曲线2)比 在简单的锌盐(Zncl)溶 液中测的极化曲线(曲 线1)要陡得多,即电极 电位的变化要剧烈得多。 这表明锌电极在镕液2 中比在溶液1中容易极 化。
2. 所以,尽管锌电极在两
是,应该注意极化值与过电位之间的区别。
2、电极极化的原因
• 电极体系的组成:两类导体串联体系、两种载流子。 • 断路时,两类导体中都没有载流子的流动,只在电极
/溶液界面上有氧化反应与还原反应的动态平衡及由 此所建立的相间电位(平衡电位)。
• 当电流通过电极时,就表明外线路和金属电极中有自由电
子的定向运动,溶液中有正、负离子的定向运动,以及界 面上有一定的净电极反应,使得两种导电方式得以相互转 化。
• 实际情况也确实
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
整个测量极化曲线的线路是由两个回路组成的。其中极化 回路中有电流通过,用以控制和测量通过研究电极的电流 密度。测量回路用以测量研究电极的电位,该回路中几乎 没有电流通过。
5.2 原电池和电解池的极化图
1、原电池的极化图
断路时电池的电动势为
E c平- a平
(5.3)
通电后,电流从阳极流入,从阴极流出,在溶液中 形成与电动势方向相反的欧姆降。
5.3 电极过程基本历程和速度控制步骤
一、电极过程的基本历程
电极过程是由一系列性质不同的单元步骤串连组成的 复杂过程,大致由以下各单元串连组成:
(1)反应粒子向电极表面附近液层迁移,称为液相传质步骤。
(2)反应粒子在电极表面或电极表面附近液层中进行电化学反 应前的某种转化过程(前置转化 )。
(3)反应粒子在电极/溶液界面上得到或失去电子,生成还原 反应或氧化反应的产物。 (4)反应产物在电极表面或表面附近液层中进行电化学反应后 的转化过程(随后转化 )。
(5.6)
通电后,电流从阳极流入,从阴极(负极)流出,在溶 液中形成与电动势方向相同的欧姆降。电池的端电压为
V a c IR
E ( c a ) IR
令
(5.7)
V ( a平 a ) ( c平 c ) IR
V超= a c
电子运动速度>电极反应速度,极化作用>去极化 作用。阳极上,电子流出电极的速度大,造成正电荷 的积累,阳极电极电位向正移动 ;阴极上,电子流 入电极的速度大,造成负电荷的积累 ,阴极电极电 位向负移动。
理想极化电极:通电时不存在去极化作用,流 入电极的电荷全部在电极上不断积累,只起改 变电极电位(改变双电层结构)。
的速度近似于相等。
非控制步骤这种类似于平衡的状态称为准平衡态。
对准平衡态下的过程可以用热力学方法而无需用动力学方
法处理,可使问题得到简化。
5.4 电极过程的特征
1、电极反应的特点 (1)反应是在电极/溶液界面上进行的、有电子参与的氧 化还原反应。 (2)溶液界面存在双电层和界面电场,对界面上有电子参 与的电极反应有活化作用,可以加速电极反应的速度。 2、电极过程的动力学特征
二、电极过程的速度控制步骤
电极过程中任一单元步骤都需要一定的活化能才 能进行。不同的步骤有不同的活化能,从而有不同 的反应速度。 G 0 /(RT ) 反应速度与标准活化自由能的关系: v e 1、电极过程的速度控制步骤 控制着整个电极过程的单元步骤,称为~。 说明: (1)电极过程中各单元步骤的“快”与“慢”是相对 的。 (2)控制步骤可能不止一个。
其它类型极化:表面转化极化(前置转化或随后转化)、 电结晶极化(由于生成结晶态新相时,吸附态原子进入晶 格的过程迟缓而称为控制步骤所引起的电极极化)。
3、准平衡态
引入准平衡态概念仅是一种为简化问题而采取的近似处理
方法。
当电极以控制步骤的速度进行时,可以认为非控制步骤的
平衡态近似的处于平衡态。
对于稳态进行的电极过程,可以认为还原反应和氧化反应
第5章 电极过程概述
内容
电极的极化现象 原电池和电解池的极化图 电极过程基本历程和速度控制步骤 电极过程的特征
5.1 电极的极化现象
基本的概念:
电极过程: 发生在电极/溶液界面上的电极反应、化学转 化和电极附近液层中的传质作用等一系列变化的 总和统称为电极过程。
电极过程动力学: 研究电极过程的历程、速度及其影响因素。
用搅拌的方法可使浓差极化减小,但由于电极表面总有一个 扩散层,所以不能完全消除。
(2)电化学极化:电化学反应本身的迟缓性引起的极化。
–
Zn2+
仍以 Zn2+ 在阴极还原为例。当电流通过电 极时,由于电极反应速率是有限的,所以电子 到达极板后,不能立即被Zn2+ 消耗,所以电 极表面积累起比平衡态多的电子,相应于使电 极电位降低。
电池的端电压为
V c a IR
(5.4)
V ( c平 c ) ( a平+ a ) IR E ( c a ) IR
(5.5)
原电池的极化图
有电流通过时原电池端电压变 化的示意图及其等效电路
2、电解池的极化图
断路时电池的电动势为
E a平- c平
K
+
–
两电极通过开关 K、安培计 G 和可 变电阻 R 与外电池 B 相连。调节可变 电阻 R ,可改变通过待测电极的电流, 电流值由安培计读出。 为测定待测电极的电极电位,在电解池中 加一参比电极(通常为甘汞电极)。在待测电极 与参比电极间连上电位计,
A
B R
G
V
K
+
–
A
由电位计测出不同电流密度下的 电位差。由于参比电极的电极电 位为已知,由此可得到不同电流 密度下的待测电极的电极电位。 以电流密度 J 为横坐标,电极电 位为纵坐标,将实验结果绘图, 即得阴极极化曲线。
(5)新相生成步骤或者是反应后的液相传质步骤。
对具体的电极过程并不一定包含所有5个单元步 骤,但(1)、(3)、(5)必定包括。 例:银氰络离子在阴 极还原的电极过程
液相传质 前置转化 电子转移 生成新相或液相 传质
氢离子的阴极 还原过程中,氢分 子的生成可能是由 两个并联进行的电 子转移步骤所生成 的吸附氢原子复合 而成。
c 平- c
a a- 平
静态电位:无电流通过时的电极电位; 动态电位:有电流通过时的电极电位。 把有电流通过时的电极电位(极化电位)与静止电位的 差值称为极化值,用
表示,即 静
二、电极极化的原因
体系有电流通过电极时 ,存在两种作用:
极化作用:电子的流动使电极表面积累电荷,使电 极电位偏离平衡状态; 去极化作用:电极反应起着吸收电子运动所传递过 来的电荷,使电极电位恢复平衡状态的作用。 极化的原因:
则
(5.9)
(5.8)
原电池: 电解池:
V E V超-IR
V E+V超+IR
(5.10)
电解池的极化图
有电流通过时电解池端电压变 化的示意图及其等效电路
3、电解池与原电池极化的差别
就单个电极来说,极化的结果是使阴极电势变得更负 (电子的积累、被还原物浓度降低),阳极电势变得更 正。但由于电解池的阴极对应于负极,而原电池的阴极 却对应于正极。所以对这两种情况,极化结果不同。
2、电极极化的类型 (1)浓差极化:液相传质步骤成为控制步骤时引起的电极极化。 扩散过程的迟缓性而引起的极化。
–
Zn2+
以Zn2+ 在阴极还原为例。由于Zn2+沉积 到阴极上,而溶液本体中Zn2+来不及补充上去, 在阴极附近Zn2+ 的浓度低于它在本体溶液中的 浓度。结果电极如同浸入一个浓度较小的溶液 一般。而通常所说的平衡电极电位都是指在本 体溶液中而言。所以此电极电位低于平衡值。 这种现象称为浓差极化。
恒电位法:控制电位,测量相应的电流密度值。
稳态法:测量电极过程达到稳定状态后的 电流密度和电极电位的关系,电流密度和 电极电位不随时间变化。 暂态法:测量电极过程未达到稳态时电流 密度与电极电位的关系,包含时间因素对 电极过程的影响 。
按电极过程是否与 时间因素有关:
测定极化曲线的方法
B R
G
V
A为电解池,内盛电解质溶液及两个 电极(其中阴极为待测电极),及搅 拌器。电极-溶液界面积为已知。
一、电极的极化
电流无限小,可逆地发生电极反应时电极所具 有的电势,称为可逆电极电势,用 平 表示。 当有电流通过时,发生的是不可逆的电极 反应,此时的电极电势称为不可逆电极电 势,用 表示。
不可逆电极电势 与可逆电极电势 平 产生偏差 的现象称为“电极的极化”,偏差的大小称为 “过电势”,用η表示。数值表示极化程度的大 小。 平 规定:
(1)电极过程服从一般异相催化反应的动力学规律。
(2)界面电场对电极过程进行速度有重大影响。 (3)电极过程是一个多步骤的、连续进行的复杂过程。
3、电极过程的研究方法
(1)弄清电极反应的历程。 (2)找出电极过程的速度控制步骤。混和控制时,可以 不只有一个控制步骤。 (3)测定控制步骤的动力学参数。 (4)测定非控制步骤的热力学平衡常数或其他有关的热 力学数据。 核心:判断控制步骤和寻找影响控制步骤的有效方法。
1 dc v= S dt
电极反应速度用电流密度表示: 1 dc j nFυ nF S dt
(5.1)
(5.2)
d 极化度:极化曲线上某一点的斜率 dj
d 或 dj
含义:表示了某一电流密度下,电极极化程度 变化的趋势,反映了电极过程进行的难易程度。
四、极化曲线的测量
分类方法: 按自变量不同: 恒电流法:给定电流密度,测量相应的电极电位 。
电解池阴极对应于负极,阳极对应于正极,正极电位 大于负极电位,所以在极化曲线图中,阳极极化曲线在 阴极极化曲线上面。电流密度增加,两端端电压增大。
对于原电池,情况正相反。正极为阴极,发生还原反 应,负极为阳极生氧化反应,而正极电位总大于负极电 位,所以阴极极化曲线在阳极极化曲线之上。随电流密度 增大,原电池端电压减小。
理想不极化电极:电极反应速度很大,极化作 用≈去极化作用,有电流通过时,电极电位电 位几乎不变,此类电极为理想不极化电极。
三、极化曲线
曲线的用途 : 求得任一电流密度下 的过电位或极化值;
了解整个电极过程中 电极电位变化的趋势 和比较不同电极过程 的极化规律;
电极反应速度的表示方法:
O ne R