第6章-混凝土梁承载力计算原理.doc
第6章-受压构件的截面承载力-自学笔记
第6章受压构件的截面承载力概述钢筋混凝土柱是典型的受压构件,不论是排架柱,还是框架柱(图6-1)在荷载作用下其截面上一般作用有轴力、弯矩和剪力。
图6-1 钢筋混凝土结构框架柱内力受压构件可分为两种:轴心受压构件与偏心受压构件,如图6-2所示。
(a) 轴心受压(b) 单向偏心受压(c) 双向偏心受压图6-2 轴心受压与偏心受压图实际工程中有没有真正的轴心受压构件?实际工程中真正的轴心受压构件是不存在的,因为在施工中很难保证轴向压力正好作用在柱截面的形心上,构件本身还可能存在尺寸偏差。
即使压力作用在截面的几何重心上,由于混凝土材料的不均匀性和钢筋位置的偏差也很难保证几何中心和物理中心相重合。
尽管如此,我国现行《混凝土规范》仍保留了轴心受压构件正截面承载力计算公式,对于框架的中柱、桁架的压杆,当其承受的弯矩很小时,可以略去不计,近似简化为轴心受压构件来计算。
偏心受压构件的三种情况:当弯矩和轴力共同作用于构件上,可看成具有偏心距e0 = M / N的轴向压力的作用,或当轴向力作用线与构件截面重心轴不重合时,称为偏心受压构件。
当轴向力作用线与截面的重心轴平行且沿某一主轴偏离重心时,称为单向偏心受压构件。
就是图6-2b这种情况。
当轴向力作用线与截面的重心轴平行且偏离两个主轴时,称为双向偏心受压构件。
就是图6-2c这种情况。
§6.1受压构件的一般构造要求6.1.1截面形式及尺寸6.1.2材料强度要求6.1.3纵筋的构造要求6.1.4箍筋的构造要求本节内容较容易,主要是混凝土结构设计规范的一些相关规定,请同学自学掌握。
§6.2轴心受压构件的正截面承载力计算为了减小构件截面尺寸,防止柱子突然断裂破坏,增强柱截面的延性和减小混凝土的变形,柱截面配有纵筋和箍筋,当纵筋和箍筋形成骨架后,还可以防止纵筋受压失稳外凸,当采用密排箍筋时还可以约束核心混凝土,提高混凝土的延性、强度和抗压变形能力。
轴心受压构件根据配筋方式的不同,可分为两种基本形式:①配有纵向钢筋和普通箍筋的柱,简称普通箍筋柱,如图6-5(a)所示;②配有纵向钢筋和间接钢筋的柱,简称螺旋式箍筋柱,如图6-5(b)所示(或焊接环式箍筋柱),如图6-5(c)所示。
第6章 混凝土梁承载力计算原理
第6章 混凝土梁承载力计算原理6—1 熟记受弯构件常用截面形式和尺寸、保护层厚度、受力钢筋直径、间距和配筋率等构造要求。
6—2 适筋梁正截面受力全过程可划分为几个阶段?各阶段主要特点是什么?与计算有何联系?6—3 钢筋混凝土梁正截面受力全过程与匀质弹性材料梁有何区别?6—4 钢筋混凝土梁正截面有几种破坏形式?各有何特点?6—5 适筋梁当受拉钢筋屈服后能否再增加荷载?为什么?少筋梁能否这样,为什么? 6—6 截面尺寸如图所示。
根据配筋量不同的4中情况,回答下列问题:(1) 各截面破坏原因和破坏性质;(2) 破坏时钢筋和混凝土强度是否充分利用;(3) 破坏时钢筋应力大小;(4) 受压区高度大小;(5) 开裂弯矩大致相等吗?为什么?(6) 若混凝土强度等级为C20,HPB235级钢筋,各截面的破坏弯矩怎样?题6—6图6—7 受弯构件正截面承载力计算有哪些基本假定?6—8 影响钢筋混凝土受弯承载力的最主要因素是什么?当截面尺寸一定,若改变混凝土或钢筋强度等级时对受弯承载力影响的有效程度怎样?6—9 钢筋混凝土受弯构件正截面受弯承载力计算中的s α、s γ的物理意义是什么?又怎样确定最小及最大配筋率?6—10 在什么情况下采用双筋梁?为什么双筋梁一定要采用封闭式箍筋?受压钢筋的设计强度是如何确定的?6—11 两类T 形截面梁如何判别?为什么说第一类T 形梁可按h b f ⨯'的矩形截面计算? 6—12 为什么受弯构件在支座附近会出现斜裂缝?其出现和开展过程是怎样的?6—13 受弯构件沿斜截面破坏时的形态有几种?各在什么情况下发生?应分别如何防止? 6—14何谓剪跨比?为什么其大小会引起沿斜截面破坏形态的改变?6—15 连续梁与简支梁相比,受剪承载力有无差别?当为集中荷载时,为什么采用计算剪跨比?6—16 计算斜截面受剪承载力时,其位置应取在哪些部位?6—17 何谓梁的材料抵抗弯矩图?其意义和作用怎样?它与弯矩图的关系怎样? 6—18 对纵向钢筋的截断和锚固,应满足哪些构造要求?6—19 简述矩形截面素混凝土构件及钢筋混凝土构件在扭矩作用下的裂缝形成和破坏机理。
混凝土基本原理-受弯构件斜截面承载力计算习题
3
②计算As
h0=h-as=500-40=460mm
= 1−
1−
=1−
0.51 bh20
250.9 × 10 6
1−
= 0.420
0.5 × 1.0 × 14.3 × 250 × 460 2
= 0.518
= 1 bh0 Τ = 1.0 × 14.3 × 250 × 460 × 0. 420Τ360 = 1918.6mm2
=0.264
选用双肢(n=2)φ10箍筋(Asv1=78.5mm2)
S≤nAsv1/0.264=2×78.5/0.264=594.7mm, 取S=250mm = Smax=250mm
ρsv=Asv/(bs)=78.5×2/(250×250)=0.251%
>ρsvmin=0.24ft/fyv=0.24×1.43/270=0.127%
=90KN(不含梁自重,永久及可变荷载各占50%)。混凝土为C30级,箍筋用
HPB300级钢,纵筋用HRB400级钢。试计算:(1)所需纵筋;(2)所需箍筋。
解:
(1) ①计算跨中弯矩
1
6
M 1.2 0.25 0.5 25 62 1.2 45 1.4 45 250.9 KN • M
弯起1Φ22 (Asb=380.1mm2)
V2=154.6KN<Vcs=170.8KN,不需弯起第二排筋,
150
V=206.4
498
V2=154.6
q=80KN/m
1题图
120120ຫໍສະໝຸດ 1205400PK
PK
120
2题图
120
120 1880
《工程结构》第六章:钢筋混凝土受扭构件承载力计算结构师、建造师考试
主页 目录
上一章 下一章 帮助
混凝土结构
第6章
塑性状态下能抵抗的扭矩为:
TU ftWt
…6-1
式中: Wt ––– 截面抗扭塑性抵抗矩;对于矩形截面
Wt
b2 6
3h
b
…6-2
h为截面长边边长;b为截面短边边长。
2. 素混凝土纯扭构件 T 0.7 ftWt
…6-3
主页 目录
上一章 下一章 帮助
混凝土结构
z fy Astl s
f A u yv st1 cor
…6-5
主页 目录
上一章 下一章 帮助
混凝土结构
第6章
式中: Astl ––– 全部抗扭纵筋截面面积; ucor ––– 截面核心部分周长, ucor = 2(bcor + hcor)。
主页
为了保证抗扭纵筋和抗扭箍筋都能充分被利用,要求: 目录
主页 目录
上一章 下一章 帮助
混凝土结构
第6章
规范将其简化为三段折线,简化后的结果为 : (1)当Tc/Tco≤ 0.5时,即T≤ 0.175ftWt时,可忽略扭
矩影响,按纯剪构件设计; (2)当Vc/Vco ≤ 0.5时,即V≤ 0.35ftbh0时,可忽略剪
力影响,按纯扭构件设计; (3)当T>0.175ftWt和V> 0.35ftbh0时,要考虑剪扭的相
混凝土结构 ➢ 扭矩分配:
腹板
受压翼缘
第6章
Tw
Wtw Wt
T
T' f
W' tf
Wt
T
…6-12 …6-13
受拉翼缘
Tf
Wtf Wt
T
…6-14
第 6 章 受压构件的截面承载力
第6 章受压构件的截面承载力思考题6.1 轴心受压普通钢筋短柱与长柱的破坏形态有何不同?轴心受压长柱的稳定系数? 如何确定?轴心受压普通箍筋短柱的破坏形态是随着荷载的增加,柱中开始出现微细裂缝,在临近破坏荷载时,柱四周出现明显的纵向裂缝,箍筋间的纵筋发生压屈,向外凸出,混凝土被压碎,柱子即告破坏。
而长柱破坏时,首先在凹侧出现纵向裂缝,随后混凝土被压碎,纵筋被压屈向外凸出;凸侧混凝土出现垂直于纵轴方向的横向裂缝,侧向挠度急剧增大,柱子破坏。
l s l s 《混凝土结构设计规范》采用稳定系数? 来表示长柱承载力的降低程度,即? =N u / N u ,N u 和N u 分别为长柱和短柱的承载力。
根据试验结果及数理统计可得? 的经验计算公式:当l0/b=8~34 时,? =1.177-0.021l0/b;当l0/b=35~50 时,? =0.87-0.012l0/b。
《混凝土结构设计规范》中,对于长细比l0/b 较大的构件,考虑到荷载初始偏心和长期荷载作用对构件承载力的不利影响较大,的? 取值比按经验公式所得到的? 值还要降低一些,以保证安全。
对于长细比l0/b 小于20 的构件,考虑到过去使用经验,? 的取值略微抬高一些,以使计算用钢量不致增加过多。
6.2 简述偏心受压短柱的破坏形态。
偏心受压构件如何分类?钢筋混凝土偏心受压短柱的破坏形态有受拉破坏和受压破坏两种情况。
受拉破坏形态又称大偏心受压破坏,它发生于轴向力N 的相对偏心距较大,且受拉钢筋配置得不太多时。
随着荷载的增加,首先在受拉区产生横向裂缝;荷载再增加,拉区的裂缝随之不断地开裂,在破坏前主裂缝逐渐明显,受拉钢筋的应力达到屈服强度,进入流幅阶段,受拉变形的发展大于受压变形,中和轴上升,使混凝土压区高度迅速减小,最后压区边缘混凝土达到极限压应变值,出现纵向裂缝而混凝土被压碎,构件即告破坏,破坏时压区的纵筋也能达到受压屈服强度,这种破坏属于延性破坏类型,其特点是受拉钢筋先达到屈服强度,导致压区混凝土压碎。
钢筋混凝土受弯构件正截面承载力计算
为保证钢筋混凝土结构的耐久性、防火性以及钢
筋与混凝土的粘结性能,钢筋的混凝土保护层厚
5度、一配般筋不率小于2A 5msm% ; ....4...2()
bh0
用下述公式表示
As bh0
%
公式中各符号含义:
As为受拉钢筋截面面积; b为梁宽;h0为梁的有效 高度,h0=h-as;as为所有受拉钢筋重心到梁底面 的距离,单排钢筋as= 35mm ,双排钢筋as= 55~60mm 。
M/ M u
Mu
1.0
0.8 My
0.6
II
0.4
III III a II a
M cr I a
I
0
f cr
fy
fu f
加载过程中弯矩-曲率关系
说明:
对于配筋合适的梁,在III
阶段,其承载力基本保持不 变而变形可以很大,在完全
M/ M u
Mu
1.0
破坏以前具有很好的变形能 力,破坏预兆明显,我们把
0.8 My
通常采用两点对称集中加荷,加载点位于梁跨度 的1/3处,如下图所示。这样,在两个对称集中荷载间 的区段(称“纯弯段”)上,不仅可以基本上排除剪力的 影响(忽略自重),同时也有利于在这一较长的区段上(L /3)布置仪表,以观察粱受荷后变形和裂缝出现与开 展的情况。在“纯弯段”内,沿梁高两侧布置多排测 点,用仪表量测梁的纵向变形。
梁破坏时的极限弯矩Mu小于在正常情况下的开
裂弯矩Mcr。梁配筋率越小, Mcr -Mu的差值越大; 越大(但仍在少筋梁范围内), Mcr -Mu的差值越小。
当Mcr -Mu =0时,它就是少筋梁与适筋梁的界限。这
时的配筋率就是适筋梁最小配筋率的理论值min。
第六章 受构件斜截面承载力答案
第六章 钢筋混凝土受弯构件斜截面承载力计算一、填空题:1、梁的斜截面承载力随着剪跨比的增大而 。
降低2、梁的斜截面破坏形态主要 、 、 ,其中,以 破坏的受力特征为依据建立斜截面承载力的计算公式。
斜拉破坏 斜压破坏 剪压破坏 剪压破坏3、随着混凝土强度的提高,其斜截面承载力 。
提高4、影响梁斜截面抗剪强度的主要因素是混凝土强度、配箍率、 剪跨比 和纵筋配筋率以及截面形式。
5、当梁的配箍率过小或箍筋间距过大并且剪跨比较大时,发生的破坏形式为 ;当梁的配箍率过大或剪跨比较小时,发生的破坏形式为 。
斜拉破坏 斜压破坏6、设置弯起筋的目的是 、 。
承担剪力 承担支座负弯矩7、为了防止发生斜压破坏,梁上作用的剪力应满足 ;为了防止发生斜拉破坏,梁内配置的箍筋应满足 。
025.0bh f V c c β≤ min ρρ≥,max s s ≤, min d d ≥二、判断题:1. 钢筋混凝土梁纵筋弯起后要求弯起点到充分利用点之间距离大于0.5h 0,其主要原因是为了保证纵筋弯起后弯起点处斜截面的受剪承载力要求。
( × )2.剪跨比0/h a 愈大,无腹筋梁的抗剪强度低,但当3/0>h a 后,梁的极限抗剪强度变化不大。
(√ )3.对有腹筋梁,虽剪跨比大于1,只要超配筋,同样会斜压破坏( √ )4、剪压破坏时,与斜裂缝相交的腹筋先屈服,随后剪压区的混凝土压碎,材料得到充分利用,属于塑性破坏。
( )×5、梁内设置多排弯起筋抗剪时,应使前排弯起筋在受压区的弯起点距后排弯起筋受压区的弯起点之距满足:max s s ≤( )×6、箍筋不仅可以提高斜截面抗剪承载力,还可以约束混凝土,提高混凝土的抗压强度和延性,对抗震设计尤其重要。
( )√7、为了节约钢筋,跨中和支座负纵筋均可在不需要位置处截断。
( )×8、斜拉、斜压、剪压破坏均属于脆性破坏,但剪压破坏时,材料能得到充分利用,所以斜截面承载力计算公式是依据剪压破坏的受力特征建立起来的。
混凝土结构设计原理-受弯构件正截面承载力精选全文
2.已知:矩形截面钢筋混凝土简支梁,计算跨度为6000mm, as=35mm, 作用均布荷载25 kN/m,混凝土强度等级C20,钢筋HRB335级。 ( fc =9.6 N/mm2 , ft =1.1 N/mm2 , fy =300 N/mm2 )
试设计此梁
3.已知:矩形截面梁尺寸b=200mm、h=450mm,as=35mm。混凝土 强度等级C70,钢筋HRB335级,实配4根20mm的钢筋。 ( fc =31.8 N/mm2 , ft =2.14 N/mm2 , fy =300 N/mm2 )
b
max
b
1 fc
fy
受弯构件正截面承载力计算
最小配筋率ρmin
最小配筋率规定了少筋和适筋的界限
m in
As bh
0.45
ft fy
且同时不应小于0.2%
受弯构件正截面承载力计算
造价
总造价
混凝土
钢
经济配筋率
经济配筋率 板:0.4~0.8%
矩形梁:0.6~1.5% T形梁:0.9~1.8%
受弯构件正截面承载力计算
小相等; 2. 等效矩形应力图形与实际抛物线应力图形的形心位置相同,即合
力作用点不变。
受弯构件正截面承载力计算
表 5.1 混凝土受压区等效矩形应力图系数
≤C50 C55
C60
C65
C
0.8
0.99 0.98 0.97 0.96 0.95 0.94 0.79 0.78 0.77 0.76 0.73 0.74
钢筋与混凝土的材料强度比,是反映构件中两种材料配比的本质参数。
基本方程改为:
N 0, M 0,
1 fcb h0 s As M u 1 fcbh02 (1 0.5 )
武汉理工大学《混凝土结构设计原理》各章重点习题及答案.
一、判断题(请在你认为正确陈述的各题干后的括号内打,否则打“X”。
每小题1 分・)第1章钢筋和混凝土的力学性能1.混凝土立方体试块的尺寸越人,强度越高。
()2.混凝土在三向压力作用下的强度可以提高。
()3.普通热轧钢筋受压时的屈服强度与受拉时基本相同。
()4・钢筋经冷拉后,强度和塑性均可提高。
()5.冷拉钢筋不宜用作受压钢筋。
()6.C20 表示/cu=20N/mmo ()7.混凝土受压破坏是由于内部微裂缝扩展的结果。
()8.混凝土抗拉强度随着混凝土强度等级提高而增大。
()9.混凝土在剪应力和法向应力双向作用2抗剪强度随拉应力的增人而增人。
()10.混凝土受拉时的弹性模量与受压时相同。
()11.线性徐变是指压应力较小时,徐变与应力成正比,而非线性徐变是指混凝土应力较大时,徐变増长与应力不成正比。
()12.混凝土强度等级愈高,胶结力也愈人()13.混凝土收缩、徐变与时间有关,且互相影响。
()第3章轴心受力构件承载力1.轴心受压构件纵向受压钢筋配置越多越好。
()2.轴心受压构件中的箍筋应作成封闭式的。
()3.实际工程中没有真正的轴心受压构件。
()4.轴心受压构件的长细比越大,稳定系数值越高。
()5.轴心受斥构件计算中,考虑受压时纵筋容易斥曲,所以钢筋的抗斥强度设计值最人取为400N / lmr o ( )6.螺旋箍筋柱既能提高轴心受压构件的承我力,又能捉高柱的稳定性。
()第4章受弯构件正截面承载力1.混凝土保护层厚度越大越好。
()2.对于x<h f的T形截面梁,因为其正截面受弯承载力相肖于宽度为bf的矩形截面梁,所以其配筋率应按p=-^-來计算。
()bfho3.板中的分布钢筋布置在受力钢筋的下而。
()4.在截面的受压区配置一定数最的钢筋对于改善梁截面的延性是有作用的。
()5.双筋截面比单筋截面更经济适用。
()6.截面复核中,如果歹〉仇,说明梁发生破坏,承载力为0。
()7.适筋破坏的特征是破坏始自于受拉钢筋的屈服,然后混凝土受压破坏。
组合结构设计原理 第2版 第6章 钢-混凝土组合梁
第六章 钢-混凝土组合梁
主讲人
目录
content
6.1 钢-混凝土组合梁的概念和特点 6.2 组合梁的构造要求 6.3 组合梁的设计方法 6.4 简支组合梁的弹性设计方法 6.5 简支组合梁的塑性设计方法 6.6 组合梁的纵向抗剪计算 6.7 组合梁抗剪连接件的计算 66.8 组合梁的变形计算 6.9 连续组合梁设计方法 本章小结
由混凝土板和钢梁组成的楼盖中,如果在两者交界面处没有连接构造措施,在弯矩作用下,混凝土板截面和 钢梁截面的弯曲变形相互独立,各自有其中和轴。如果忽略交界面处的摩擦力,两者之间必定发生相对水平滑移 错动,因此其受弯承载力为混凝土板受弯承载力和钢梁受弯承载力之和,这种梁称为非组合梁(图6-1)。
(a)交界面的滑移错动
(a)交界面的滑移错动
(b)交界面应力
应变
弹性应力 塑性应力
(c)截面应力、应变分布示意图
图6-2 组合梁受力情况及截面应力、应变分布示意图
剪应力
当钢梁与混凝土板间设置的抗剪连接件数量较少,受剪承载力不足时,梁在弯矩作用下的受力状态介于非组 合梁和组合梁之间,混凝土翼板和钢梁上翼缘交界面处产生一定的相互滑移,这种梁称为部分抗剪连接组合梁。 相应设置了足够数量抗剪连接件的组合梁也称为完全抗剪连接组合梁。部分抗剪连接组合梁的受弯承载力和刚度 介于非组合梁和完全抗剪连接组合梁之间。一般用于跨度不超过20m,以承受静力荷载为主、且没有太大集中荷 载的等截面组合梁。在满足设计要求的情况下,采用部分抗剪连接也可以获得较好的经济效益。
6.1 钢-混凝土组合梁的概念和特点
6.1.1 钢-混凝土组合梁的概念
组合梁有两类:一种是将钢筋混凝土板锚固在钢梁上形成的组合梁(Composite Beam);另一种是将型钢 或焊接钢骨架埋入钢筋混凝土梁而形成的组合梁,又称为型钢混凝土梁(Steel Reinforced Concrete Beam,或 Concrete Encased Steel Beam)。本章介绍的组合梁是指第一种钢-混凝土组合梁。
混凝土结构设计原理~习题+答案-第六章受压构件正截面承截力
两种偏心受压破坏形态的界限与受弯构件两种破坏的界限相同,即 在破坏进纵向钢筋应力达到屈服强度,同时受压区混凝土亦达到极限压 应变εcu值,此时其相对受压区高度称为界限相对受压区高度ξb。 当:时,属于大偏心受压破坏;
η-lo法 原规范在偏心受压构件的截面设计计算中,采用由标准偏心受压柱 (两端铰支,作用有等偏心距轴压力的压杆)求得的偏心距增大系数η 与柱段计算长度lo相结合的方法,来估算附加弯矩。这种方法也称为η-lo 法,属于近似方法之一。GB50010—2002仍保留了此种方法。
考虑二阶效应的弹性分析法 假定材料性质是弹性的,各构件的刚度则采用折减后的弹性刚度。 但它考虑了结构变形的非线性,也就是考虑了二阶效应的影响。由它算 得的各构件控制截面的最不利内力可以直接用于截面的承载力设计,而 不再需要像原规范那样通过偏心距增大系数η来增大相应截面的初始偏 心距。考虑二阶效应的弹性分析法的关键是如何对构件的弹性刚度加以 折减, 新规范规定:当按考虑二阶效应的弹性分析方法时,可在结构分析 中对构件的弹性抗弯刚度EсI(I为不计钢筋的混凝土毛截面的惯性矩)
设该构件为大偏心构件,则令
求得: 故该构件属于大偏心受压构件 则: ,则 因: 则:
3. 某方形截面柱,截面尺寸为600×600mm。柱子的计算长度为3m。轴 向压力设计值为N=3500kN,弯矩设计值为。混凝土强度等级为 C30(fc=14.3N/mm2),纵向受力钢筋采用HRB335级钢 (=300N/mm2),若设计成对称配筋,求所需的钢筋面积。 3、解:设,则
计算温度系数,因 查表得,=0.875。 则:
,因此, 因此符合配筋率要求。
第6章钢筋混凝土受扭构件承载力计算-文档资料
式中β 值为与截面长边和短边h/b比值有关的系数,当比 值h/b=1~10时,β =0.208~0.313。 若将混凝土视为理想的弹塑性材料,当截面上最大 切应力值达到材料强度时,结构材料进人塑性阶段 由于 材料的塑性截面上切应力重新分布,如图5-3b。当截面 上切应力全截面达到混凝上抗拉强度时,结构达到混凝 上即将出现裂缝极限状态.根据塑性力学理论,可将截 面上切应力划分为四个部分,各部分切应力的合力,如 图5-3c。
根据极限平衡条件,结构受扭开裂扭矩值为
(6-3)
实际上,混凝上既非弹性材料 又非理想的塑性材 料。而是介于二者之间的弹塑性材料、对于低强度等 级混凝土。具有一定的塑性性质;对于高强度等级混 凝土,其脆性显著增大,截面上混凝土切应力不会象 理想塑性材料那样完全的应力重分布,而且混凝土应 力也不会全截面达到抗拉强度ft因此投式(6-2)计算的受 扭开裂扭矩值比试验值低,按式(6-3)计算的受扭开裂 扭矩值比试验值偏高。 为实用计算方便,纯扭构件受扭开裂扭矩设计时 采用理想塑性材料截面的应力分布计算模式,但结构 受扭开裂扭矩值要适当降低。试验表明,对于低强度 等级混凝上降低系数为0.8,对于高强度等级混凝上降 低系数近似为0.8。为统一开裂扭矩值的计算公式,并 满足一定的可靠度要求其计算公式为
考虑到设计应用上的方便《规范》采用一根略为偏低 的直线表达式,即与图中直线A′C′相应的表达式。在式(67)。取α1=0.35,α2=1.2。如进一步写成极限状态表达式, 则矩形截面钢筋混凝土纯扭构件的抗扭承载力计算公式为
(6-8)
式中 T——扭矩设计值; ft——混凝土的抗拉强度设计值; Wt——截面的抗扭塑性抵抗矩; fyv——箍筋的抗拉强度设计值;
Tcr=0. 7ftWt
钢筋混凝土结构原理6 受压构件
第6章 钢筋混凝土轴心受力构件正截面承载力计算
当混凝土压应力达到峰值应 外荷载不再增加, 变 , 外荷载不再增加 , 压缩 变形继续增加, 变形继续增加 , 出现的纵向 裂缝继续发展, 裂缝继续发展 , 箍筋间的纵 筋发生压屈向外凸出, 筋发生压屈向外凸出 , 混凝 土被压碎而整个构件破坏。 土被压碎而整个构件破坏。 应力峰值时的压应变一般在0.0025~0.0035之间。 《 规范》 偏于 ~ 之间。 规范》 应力峰值时的压应变一般在 之间 安 全 地 取 最 大 压 应 变 为 0.002 。 受 压 纵 筋 屈 服 强 度 约
(a)轴心受压
(b)单向偏心受压
(c)双向偏心受压
第6章 钢筋混凝土偏心受力构件承载力计算
偏心受压构件的构造要求
1. 混凝土强度等级、计算长度及截面尺寸 混凝土强度等级、 截面形状和尺寸: ⑴截面形状和尺寸:P124 采用矩形截面,单层工业厂房的预制柱常采用工字形截面。 ◆ 采用矩形截面,单层工业厂房的预制柱常采用工字形截面。 圆形截面主要用于桥墩、桩和公共建筑中的柱。 ◆ 圆形截面主要用于桥墩、桩和公共建筑中的柱。 柱的截面尺寸不宜过小,一般应控制在l ◆ 柱的截面尺寸不宜过小,一般应控制在 0/b≤30及l0/h≤25。 及 。 ◆当柱截面的边长在800mm以下时,一般以50mm为模数,边长 当柱截面的边长在 以下时,一般以 为模数, 以下时 为模数 以上时, 为模数。 在800mm以上时,以100mm为模数。 以上时 为模数 ( 2)混凝土强度等级 : 受压构件的承载力主要取决于混凝土强 ) 混凝土强度等级: 一般应采用强度等级较高的混凝土。 度,一般应采用强度等级较高的混凝土。目前我国一般结构中柱 的混凝土强度等级常用C30~C40,在高层建筑中,C50~C60级混 的混凝土强度等级常用 ,在高层建筑中, 级混 凝土也经常使用。 凝土也经常使用。
混凝土结构设计原理第六章受扭构件
第6章 钢筋混凝土受扭构件承载力计算
混凝土是介于二者之间的弹塑性材料,对于低强度等级混凝土, 混凝土是介于二者之间的弹塑性材料,对于低强度等级混凝土, 具有一定的塑性性质;对于高强度等级混凝土,其脆性显著增大, 具有一定的塑性性质; 对于高强度等级混凝土,其脆性显著增大, 截面上混凝土剪应力不会出现理想塑性材料那样完全的应力重分 而且混凝土应力也不会全截面达到抗拉强度f 布,而且混凝土应力也不会全截面达到抗拉强度 t。 故实际梁的 扭矩抗力介于弹性分析和塑性分析结果之间。 扭矩抗力介于弹性分析和塑性分析结果之间。 按弹性理论计算的Tcr比试验值低 , 按塑性理论计算的 cr比试验 按弹性理论计算的 比试验值低,按塑性理论计算的T 值高。 值高。 采用理想塑性材料理论计算值乘以一个降低系数。 ∴ 采用理想塑性材料理论计算值乘以一个降低系数 。 《 混凝土 结构设计规范》统一取为0.7,故开裂扭矩计算公式为: 结构设计规范》统一取为 ,故开裂扭矩计算公式为:
超静定结构中由于变形的协调 使截面产生扭转, 使截面产生扭转, 扭矩大小与 受扭构件的抗扭刚度有关。 受扭构件的抗扭刚度有关。
第6章 钢筋混凝土受扭构件承载力计算
协调扭矩的设计方法: 协调扭矩的设计方法: ⑴《规范》设计法 规范》 规范》规定支承梁(框架边梁) 《 规范 》 规定支承梁 (框架边梁 ) 的扭矩宜采用考虑内力重 分布的分析方法, 分布的分析方法 , 将支承梁按弹性分析所得的梁端扭矩内力 设计值进行调整, ( 设计值进行调整,T=(1-β )T弹 ⑵零刚度设计法 国外一些国家规范通常采用的方法。假定支承梁(框架边梁) 国外一些国家规范通常采用的方法。 假定支承梁 ( 框架边梁) 的截面抗扭刚度为零,则框架边梁的扭矩内力值为零。 的截面抗扭刚度为零 ,则框架边梁的扭矩内力值为零。 在支 承梁内只配置相当于开裂扭矩时所需的受扭构造钢筋, 承梁内只配置相当于开裂扭矩时所需的受扭构造钢筋, 用以 满足支承梁的延性和裂缝宽度限值的要求。 满足支承梁的延性和裂缝宽度限值的要求。
第6章-混凝土梁承载力计算原理
6 混凝土梁承载力计算原理6.1 概述本章介绍钢筋混凝土梁的受弯、受剪及受扭承载力计算方法。
钢筋混凝土梁是由钢筋和混凝土两种材料所组成,且混凝土本身是非弹性、非匀质材料。
抗拉强度又远小于抗压强度,因而其受力性能有很大不同。
研究钢筋混凝土构件的受力性能,很大程度上要依赖于构件加载试验。
建筑工程中梁常用的截面形式如图6-1所示。
6.2 正截面受弯承载力6.2.1 材料的选择与一般构造1)截面尺寸为统一模板尺寸以便施工,现浇钢筋混凝土构件宜采用下列尺寸:梁宽一般为100mm、120mm、 150mm、180mm、 200mm、220mm、250和300mm,以上按b/,50mm模数递增。
梁高200~800mm,模数为50mm,800mm以上模数为100mm。
梁高与跨度只比lh/,主梁为1/8~1/12,次梁为1/15~1/20,独立梁不小于1/15(简支)和1/20(连续);梁高与梁宽之比b在矩形截面梁中一般为2~2.5,在T形梁中为2.5~4.0。
2)混凝土保护层厚度为了满足对受力钢筋的有效锚固及耐火、耐久性要求,钢筋的混凝土保护层应有足够的厚度。
混凝土保护层最小厚度与钢筋直径,构件种类、环境条件和混凝土强度等级有关。
具体应符合下表规定。
表6-1 混凝土保护层最小厚度注:(1)基础的保护层厚度不小于40mm;当无垫层时不小于70mm。
(2)处于一类环境且由工厂生产的预制构件,当混凝土强度不低于C20时,其保护层厚度可按表中规定减少5mm,但预制构件中的预应力钢筋的保护层厚度不应小于15mm;处于二类环境且由工厂生产的预制构件,当表面另做水泥砂浆抹面层且有质量保证措施时,保护层厚度可按表中一类环境数值取用。
(3)预制钢筋混凝土受弯构件钢筋端头的保护层厚度不应小于10mm,预制肋形板主肋钢筋的保护层厚度应按梁的数值采用。
(4)板、墙、壳中分布钢筋的保护层厚度不应小于10mm,梁、柱中箍筋和构造钢筋的保护层厚度不应小于15mm。
《混凝土结构设计原理》第六章-课堂笔记
《混凝土结构设计原理》第六章受压构件正截面承载力计算课堂笔记♦主要内容受压构件的构造要求轴心受压构件承载力的计算偏心受压构件正截面的两种破坏形态及英判别偏心受压构件的N厂血关系曲线偏心受压构件正截面受压承载力的计算偏心受压构件斜截面受剪承载力的汁算♦学习要求1.深入理解轴心受压短柱在受力过程中,截而应力重分布的概念以及螺旋箍筋柱间接配筋的概念。
2.深入理解偏心受压构件正截而的两种破坏形式并熟练掌握其判别方法。
3.深入理解偏心受压构件的Nu-Mu关系曲线。
4.熟练掌握对称配筋和不对称配筋矩形截而偏心受压构件受压承载力的计算方法。
5.掌握受压构件的主要构造要求和规定。
♦重点难点偏心受压构件正截而的破坏形态及其判别;偏心受压构件正截面承载力的计算理论:对称配筋和不对称配筋矩形截面偏心受压构件受压承载力的计算方法:偏心受压构件的Nu-Mu关系曲线;偏心受压构件斜截面抗剪承载力的计算。
6.1受压构件的一般构造要求结构中常用的柱子是典型的受压构件。
6.1.1材料强度混凝上:受压构件的承载力主要取决于混凝丄强度,一般应采用强度等级较髙的混凝上,目前我国一般结构中柱的混凝土强度等级常用C30-C40,在髙层建筑中,C50-C60级混凝上也经常使用。
6.1.2截面形状和尺寸柱常见截面形式有圆形、环形和方形和矩形。
单层工业厂房的预制柱常采用工字形截面。
圆形截面主要用于桥墩、桩和公共建筑中的柱。
柱的截面尺寸不宜过小,一般应控制在lo/b^30及l°/hW25°当柱截面的边长在800mm以下时,一般以50mm为模数,边长在800mm以上时,以100mm为模数。
6.1.3纵向钢筋构造纵向钢筋配筋率过小时,纵筋对柱的承载力影响很小,接近于素混凝土柱,纵筋不能起到防止混凝上受压脆性破坏的缓冲作用。
同时考虑到实际结构中存在偶然附加弯矩的作用(垂直于弯矩作用平面),以及收缩和温度变化产生的拉应力,规定了受压钢筋的最小配筋率。
混凝土结构设计原理 第六章 钢筋混凝土受压构件承载力计算
6.1 轴心受压构件的承载力计算
第六章 受压构件的截面承载力
采用螺旋箍筋可有效提高柱的轴心受压承载力。 采用螺旋箍筋可有效提高柱的轴心受压承载力。 如螺旋箍筋配置过多,极限承载力提高过大, ◆ 如螺旋箍筋配置过多,极限承载力提高过大,则会在远未 达到极限承载力之前保护层产生剥落,从而影响正常使用。 达到极限承载力之前保护层产生剥落,从而影响正常使用。 规范》规定: 《规范》规定: ● 按螺旋箍筋计算的承载力不应大于按普通箍筋柱受压承载 力的50%。 力的 。 对长细比过大柱,由于纵向弯曲变形较大, ◆ 对长细比过大柱,由于纵向弯曲变形较大,截面不是全部 受压,螺旋箍筋的约束作用得不到有效发挥。 规范》规定: 受压,螺旋箍筋的约束作用得不到有效发挥。《规范》规定: 对长细比l 大于 的柱不考虑螺旋箍筋的约束作用。 大于12的柱不考虑螺旋箍筋的约束作用 ● 对长细比 0/d大于 的柱不考虑螺旋箍筋的约束作用。 螺旋箍筋的约束效果与其截面面积A 和间距s有关 有关, ◆ 螺旋箍筋的约束效果与其截面面积 ss1和间距 有关,为保证 有一定约束效果, 规范》规定: 有一定约束效果,《规范》规定: 螺旋箍筋的换算面积A 不得小于全部纵筋A' 面积的25% ● 螺旋箍筋的换算面积 ss0不得小于全部纵筋 s 面积的 螺旋箍筋的间距s不应大于 不应大于d ● 螺旋箍筋的间距 不应大于 cor/5,且不大于 ,且不大于80mm,同时 , 为方便施工, 也不应小于 也不应小于40mm。 为方便施工,s也不应小于 。
普通钢箍柱 螺旋钢箍柱
6.1 轴心受压构件的承载力计算
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
6混凝土梁承载力计算原理6.1概述本章介绍钢筋混凝土梁的受弯、受剪及受扭承载力计算方法。
钢筋混凝土梁是由钢筋和混凝土两种材料所组成,且混凝土本身是非弹性、非匀质材料。
抗拉强度又远小于抗压强度,因而其受力性能有很大不同。
研究钢筋混凝土构件的受力性能,很大程度上要依赖于构件加载试验。
建筑工程中梁常用的截面形式如图 6-1 所示。
6.2正截面受弯承载力6.2.1材料的选择与一般构造1)截面尺寸为统一模板尺寸以便施工,现浇钢筋混凝土构件宜采用下列尺寸:梁宽一般为100 mm、120 mm、 150 mm、 180 mm、 200 mm、220 mm、 250 和 300 mm,以上按50 mm模数递增。
梁高200~800mm,模数为50mm,800mm以上模数为100 mm。
梁高与跨度只比主梁为 1/8 ~ 1/12 ,次梁为 1/15 ~ 1/20 ,独立梁不小于1/15(简支)和 1/20(连续);梁高与梁宽之比在矩形截面梁中一般为2~ 2.5 ,在 T 形梁中为 2.5 ~ 4.0 。
b / l ,h / b ,2)混凝土保护层厚度为了满足对受力钢筋的有效锚固及耐火、耐久性要求,钢筋的混凝土保护层应有足够的厚度。
混凝土保护层最小厚度与钢筋直径,构件种类、环境条件和混凝土强度等级有关。
具体应符合下表规定。
表 6-1 混凝土保护层最小厚度环境类别板墙壳梁柱C25~ C45 C25~ C45C20 C50 C20 C50 一20 15 15 30 25 25a —20 15 —30 25二 b —25 20 —35 30三—30 25 —40 35注:( 1)基础的保护层厚度不小于40mm;当无垫层时不小于70mm。
(2)处于一类环境且由工厂生产的预制构件,当混凝土强度不低于C20 时,其保护层厚度可按表中规定减少5mm,但预制构件中的预应力钢筋的保护层厚度不应小于15mm;处于二类环境且由工厂生产的预制构件,当表面另做水泥砂浆抹面层且有质量保证措施时,保护层厚度可按表中一类环境数值取用。
( 3)预制钢筋混凝土受弯构件钢筋端头的保护层厚度不应小于10mm,预制肋形板主肋钢筋的保护层厚度应按梁的数值采用。
( 4)板、墙、壳中分布钢筋的保护层厚度不应小于10mm,梁、柱中箍筋和构造钢筋的保护层厚度不应小于15mm。
( 5)处于二类环境中的悬臂板,其上表面应另作水泥砂浆保护层或采取其它保护措施。
(6)有防火要求的建筑物,其保护层厚度应符合国家现行有关防火规范的规定。
3)钢筋直径及间距梁的纵向受力钢筋直径通常采用10~ 28mm,若用两种不同直径的钢筋,其直径相差至少为2mm,以便施工中能肉眼识别。
6.2.2 梁正截面工作的三个阶段1) 截面应力分布梁截面应力分布在各个阶段的变化特点如图6-2 所示( 1)第 I 阶段:梁承受的弯矩很小, 截面的应变也很小,混凝土处于弹性工作阶段,应力与应变成正比。
截面应变符合平截面假定,故梁的截面应力分布为三角形。
中和轴以上受压,另一侧受拉,钢筋与外围混凝土应变相同,共同受拉。
随着M 的增大,截面应变随之增大。
由于受拉区混凝土塑性变形的发展。
应力增长缓慢,应变增长较快,受拉区混凝土的应力图形呈曲线形。
当弯矩增加到使受拉边的应变到达混凝土的极限拉应变时,就进入裂缝出现的临界状态。
如再增加荷载,拉区混凝土将开裂,这时的弯矩为开裂弯矩,在此阶段,压区混凝土仍处于弹性阶段,因此压区应力图形为三角形。
( 2)第Ⅱ阶段:当弯矩继续增加,达到M cr后,在纯弯段内混凝土抗拉强度最弱的截面上将出现第一批裂缝。
开裂部分混凝土承受的拉力将传给钢筋,使开裂截面的钢筋应力突然增大,但中和轴以下未开裂部分混凝土仍可负担一部分拉力。
随着弯矩增大,截面应变增大;但截面应变分布基本上符合平截面假定;而压区混凝上则越来越表现出塑性变形的特征,压区的应力图形呈曲线形。
当钢筋应力到达屈服时,为第Ⅱ阶段的结束,这时的弯矩称为屈服弯矩M y。
( 3)第 III阶段:钢筋屈服后应力不增加,而应变急剧发展,钢筋与混凝土间的粘结遭到明显的破坏,使钢筋到达屈服的截面形成一条宽度很大,迅速向梁顶发展的临界裂缝。
虽然此阶段钢筋承担拉力不增大,但中和轴急剧上升,压区高度很快减小,内力臂增大,截面弯矩仍能有所增长。
随压区高度的减小,混凝土受压边缘的压应变显著增大。
最大压应变可达0.003 ~ 0.004 ,压应力图形将为带有下降段的曲线形,应力图形的峰值下移。
当压区混凝土的抗压强度耗尽时,在临界裂缝两侧的一定区段内,压区混凝土出现纵向水平裂缝,随即混凝土被压酥,梁达到极限弯矩。
2)破坏特征上述讨论仅适用于适量配筋的梁,它们的破坏是由于受拉钢筋首先到达屈服,然后混凝土受压破坏;破坏前临界裂缝显著开展,顶部压区混凝上产生很大局部变形,形成集中的塑性变形区域。
在这个区域内,在 M 不增加或增加不多情况下,截面的转角急剧增大,反映了截面的屈服;同时梁的挠度迅速增大,预示着梁的破坏即将到来,其破坏形态具有“塑性破坏”的特征,即在破坏前裂缝和变形急剧发展。
6.2.3正截面受力分析1)基本假设(1)截面应变符合平截面假定构件正截面弯曲变形后,其截面依然保持平面,截面应变分布服从平截面假定,即截面内任意点的应变与该点到中和轴的距离成正比,钢筋与外围混凝上的应变相同。
国内外大量试验也表明,从加载开始至破坏,所测得破坏区段的混凝土及钢筋的平均应变,基本上是符合平截面假定的。
试验还表明构件破坏时,受压区混凝土的压碎是在沿构件长度一定范围内发生的,受拉钢筋的屈服也是在沿构件长度一定范围内发生的。
因此,在承载力计算时采用平截面假定是可行的。
(2)不考虑混凝土的抗拉强度在裂缝截面处,受拉区混凝土已大部分退出工作,虽然在中和轴附近尚有部分混凝土承担拉力,但与钢筋承担的拉力或混凝土承担的压力相比,数值很小。
并且合力离中和轴很近,承担的弯矩可以忽略。
(3)混凝土应力—应变关系混凝土的应力—应变曲线有多种不同形式,常采用的由一条二次抛物线和水平线组成的曲线,即不考虑其下降段,并简化如图6-3 的形式。
(4)钢筋应力—应变关系钢筋应力取等于钢筋应变与其弹性模量的乘积,但不大于其强度设计值,受拉钢筋的极限拉应变取0.01 。
其简化的应力- 应变曲线如图6-4 所示。
2)受力分析适筋梁在正截面承载力极限状态,受拉钢筋己经达到屈服强度,压区混凝上达到受压破坏极限。
以单筋矩形截面为例,根据上述假设,截面受力状态如图6-5 所示。
此时,压区边缘混凝土压应变达到极限压应变。
对于特定的混凝土强度等级,0 与cu均可取为定值;因此,根据截面假定与混凝土应力- 应变关系,压区混凝土应力分布图形由压区高度唯一确定,压区混凝土合力 C 的值为一积分表达式,压区混凝土合力作用点与受拉钢筋合力作用点之间的距离z 称为内力臂,也必须表达为积分的形式。
根据轴向力与对受拉钢筋合力作用点的力矩平衡,可以建立两个独立平衡方程T A s f y C (x c ) (6.1 )M A s f y z( x c ) (6.2 )通过联立求解上述两个方程虽然可以进行截面设计计算,但因混凝土压应力分布为非线性分布,计算过程中需要进行比较复杂的积分计算,不利于工程应用。
《规范》采用简化压应力分布的简化方法。
3)等效矩形应力图形正截面抗弯计算的主要目的仅仅是为了建立M u的计算公式,实际上并不需要完整地给出混凝土的压应力分布,而只要能确定压应力合力 C 的大小及作用位置就可以了。
为此,《规范》对于非均匀受压构件,如受弯、偏心受压和大偏心受拉等构件的受压区混凝土的应力分布进行简化,即用等效矩形应力图形来代换二次抛物线加矩形的应力图形 ( 图 6-6) 。
其代换的原则是:保证两图形压应力合力 C 的大小和作用点位置不变。
等效矩形应力图由无量纲参数 1 及 1 所确定。
1 及 1 为等效矩形应力图块的特征值, 1 为矩形应力图的强度与受压区混凝土最大应力 f c的比值; 1 为矩形应力图的受压区高度与平截面假定的中和轴高度x c的比值.即1x / x c;x为等效压区高度值,简称压区高度。
根据试验及分析,可以求得 1 与 1 的值。
1 及 1 与混凝土强度等因素有关。
对中低强混凝土.当0 =0.002,cu =0.0033时, 1 =0.824,1 =0.969。
为简化计算取 1 =0.8, 1 =1。
对高强混凝土,用随混凝土强度提高而逐渐降低的系数1 值来反映高强混凝土的特点。
应当指出, 将上述简化计算规定用于三角形截面、圆形截面的受压区,会带来一定的误差。
《规范》规定:当 f cu,k ≤ 50 N / mm 2 时, 1 取为 0.8 ,当 f cu,k =80 N / mm 2时,1 取为 0.79 ,其间按 直线内插法取用;当f cu,k ≤ 50 N / mm 2 时,1 取为 1.0 ,当 f cu,k=80 N / mm 2时, 1 取为 0.94,其间按直线内插法取用。
相应的值列于表6-2 。
表 6-2混凝土受压区等效矩形应力系数混凝土等级≤C50C55C60C65C70C75 C8011.0 0.99 0.98 0.97 0.96 0.95 0.9410.8 0.79 0.78 0.77 0.76 0.75 0.744) 界限相对受压区高度与最小配筋率( 1)界限相对受压区高度b界限相对受压区高度b ,是指在适筋粱的界限破坏时,等效压区高度与截面有效高度之比。
界限破坏的特征是受拉钢筋屈服的同时,压区混凝土边缘达到极限压应变。
根据平截面假定,正截面破坏时,不同压区高度的应变变化如图6-7 所示.中间斜线表示的为界限破坏的应变。
对于确定的混凝土强度等级, u 的值为常数, 1x / x c 也为常数。
由图中可以看出,破坏时的相对压区高度越大,钢筋拉应变越小。
破坏时的相对压区高度x1xc(6.3 )h 0h 0相对界限受压区高度x b 1xcb(6.4 )bh 0h 0当b ,破坏时钢筋拉应变,受拉钢筋不屈服,表明发生的破坏为超筋破坏。
当 b ,破坏时钢筋拉应变,受拉钢筋已经达到屈服,表明发生的破坏为适筋破坏或少筋破坏。
根据平截面假设,相对界限受压区高度可用简单的几何关系求出1xcb1 cu1 cu1( 6.5 )bf yf yh 0cuycu1E scuEs《规范》规定;对有屈服点的钢筋1b(6.6 )f y1cuEs对无屈服点的钢筋b1(6.7 )0.002f y1cuEscu截面受拉区内配有不同种类的钢筋时,受弯构件的相对界限受压区高度应分别计算,并取其小值。
( 2)最小配筋率min少筋破坏就是一旦出现裂缝,构件就会失效。
《规范》规定:对受弯梁类构件,受拉钢筋百分率不应小于 45 f t / f y ,同时不应小于0.2 ;当温度因素对结构构件有较大影响时,受拉钢筋最小配筋百分率应比规定适当增加;原则上讲,最小配筋率规定了少筋截面和适筋截面的界限,即配有最小配筋率的钢筋混凝土梁在破坏时所能承担的弯矩等于相同截面的素混凝土梁所承担的弯矩。