2019考研数学二线性代数复习注意内容

合集下载

考研线性代数复习有些做题规律

考研线性代数复习有些做题规律

考研线性代数复习有些做题规律考研数学考前复习一定要把解题思路了解清楚,对于重点题型一定要争取把分数拿到手。

为大家精心准备了考研线性代数做题的技巧,欢送大家前来阅读。

1.题设条件与代数余子式Aij或A*有关,那么立即联想到用行列式按行(列)展开定理以及AA*=A*A=|A|E。

2.假设涉及到A、B是否可交换,即AB=BA,那么立即联想到用逆矩阵的定义去分析。

3.假设题设n阶方阵A满足f(A)=0,要证aA+bE可逆,那么先分解出因子aA+bE再说。

4.假设要证明一组向量a1,a2,...,as线性无关,先考虑用定义再说。

5.假设AB=0,那么将B的每列作为Ax=0的解来处理再说。

6.假设由题设条件要求确定参数的取值,联想到是否有某行列式为零再说。

7.假设A的特征向量ζ0,那么先用定义Aζ0=λ0ζ0处理一下再说。

8.假设要证明抽象n阶实对称矩阵A为正定矩阵,那么用定义处理一下再说。

(一)根底阶段(3月-6月)1.目标:不留死角地复习每个知识点。

2.阶段重点:按照教材逐一梳理每个章节的每个知识点,并做课后习题。

3.复习建议:(1)明确所报考数一、数二还是数三,准备相应教材。

(2)按照章节顺序结合大纲梳理教材,不留死角和空白。

(3)对于重要的定理、公式,不能够仅停留在“看懂了”的层面上,一定要自己亲手推导其证明过程。

(4)每天学习新内容前要复习前面的内容,准备一个记题本,将复习过程中碰到的不懂的知识点记录下与做错的习题成错题集。

(5)注意顺序:一定要先看书后做题,此阶段不要做难题。

(二)强化阶段(7月-8月)1.学习目标:熟悉考研数学题,分清重难点。

2.阶段重点:通过大量练习,归纳常见题型,总结解题思路和方法。

3.复习建议:(1)这一时期考生每天学习数学的时间尽量集中在一起,保证每日至少3个小时连续复习时间。

(2)可以买一本考研数学辅导书,先做练习题。

学会归纳题型与常考知识点,把重点、难点以及错题做成笔记,以便以后复习。

考研数学线性代数必考的知识点

考研数学线性代数必考的知识点

考研数学线性代数必考的知识点考研数学线性代数必考的知识点漫长的学习生涯中,大家最熟悉的就是知识点吧?知识点就是一些常考的内容,或者考试经常出题的地方。

还在苦恼没有知识点总结吗?以下是店铺帮大家整理的考研数学线性代数必考的知识点,供大家参考借鉴,希望可以帮助到有需要的朋友。

考研数学线性代数必考的知识点篇1考研数学线性代数必考的重点一、行列式与矩阵第一章《行列式》、第二章《矩阵》是线性代数中的基础章节,有必要熟练掌握。

行列式的核心内容是求行列式,包括具体行列式的计算和抽象行列式的计算二、向量与线性方程组向量与线性方程组是整个线性代数部分的核心内容。

相比之下,行列式和矩阵可视作是为了讨论向量和线性方程组部分的问题而做铺垫的基础性章节。

向量与线性方程组的内容联系很密切,很多知识点相互之间都有或明或暗的相关性。

复习这两部分内容最有效的方法就是彻底理顺诸多知识点之间的内在联系,因为这样做首先能够保证做到真正意义上的理解,同时也是熟练掌握和灵活运用的前提。

三、特征值与特征向量相对于前两章来说,本章不是线性代数这门课的理论重点,但却是一个考试重点。

其原因是解决相关题目要用到线代中的大量内容——既有行列式、矩阵又有线性方程组和线性相关,“牵一发而动全身”。

四、二次型本章所讲的内容从根本上讲是第五章《特征值和特征向量》的一个延伸,因为化二次型为标准型的核心知识为“对于实对称矩阵A存在正交矩阵Q使得A可以相似对角化”,其过程就是上一章相似对角化在为实对称矩阵时的应用。

考研数学概率以大纲为本夯实基础从考试的角度,大家看看历年真题就发现比较明显的规律:概率的题型相对固定,哪考大题哪考小题非常清楚。

概率常考大题的地方是:随机变量函数的分布,多维分布(边缘分布和条件分布),矩估计和极大似然估计。

其它知识点考小题,如随机事件与概率,数字特征等。

从学科的角度,概率的知识结构与线性代数不同,不是网状知识结构,而是躺倒的树形结构。

第一章随机事件与概率是基础知识,在此基础上可以讨论随机变量,这就是第二章的内容。

线性代数知识点归纳

线性代数知识点归纳

线性代数知识点归纳线性代数复习要点第一部分行列式1.排列的逆序数2.行列式按行(列)展开法则3.行列式的性质及行列式的计算行列式的定义行列式的计算:①(定义法)②(降阶法)行列式按行(列)展开定理:行列式等于它的任一行(列)的各元素与其对应的代数余子式的乘积之和.推论:行列式某一行(列)的元素与另一行(列)的对应元素的代数余子式乘积之和等于零.③(化为三角型行列式)上三角、下三角行列式等于主对角线上元素的乘积④若都是方阵(不必同阶)则⑤关于副对角线:⑦型公式:⑧(升阶法)在原行列式中增加一行一列,保持原行列式不变的方法.⑨(递推公式法)对阶行列式找出与或,之间的一种关系——称为递推公式,其中,,等结构相同,再由递推公式求出的方法称为递推公式法.(拆分法)把某一行(或列)的元素写成两数和的形式,再利用行列式的性质将原行列式写成两行列式之和,使问题简化以例计算.⑩(数学归纳法)2.对于阶行列式,恒有:,其中为阶主子式;3.证明的方法:①、;②、反证法;③、构造齐次方程组,证明其有非零解;④、利用秩,证明;⑤、证明0是其特征值.4.代数余子式和余子式的关系:第二部分矩阵矩阵的运算性质矩阵求逆矩阵的秩的性质矩阵方程的求解矩阵的定义由个数排成的行列的表称为矩阵.记作:或(同型矩阵:两个矩阵的行数相等、列数也相等.(矩阵相等:两个矩阵同型,且对应元素相等.(矩阵运算a.矩阵加(减)法:两个同型矩阵,对应元素相加(减).b.数与矩阵相乘:数与矩阵的乘积记作或,规定为.c.矩阵与矩阵相乘:设,,则,其中注:矩阵乘法不满足:交换律、消去律,即公式不成立.a.分块对角阵相乘:b.用对角矩阵乘一个矩阵相当于用的对角线上的各元素依次乘此矩阵的向量;用对角矩阵乘一个矩阵相当于用的对角线上的各元素依次乘此矩阵的向量d.两个同阶对角矩阵相乘只用把对角线上的对应元素相乘,⑤矩阵的转置:把矩阵的行换成同序数的列得到的新矩阵,叫做的转置矩阵,记作.a.对称矩阵和反对称矩阵:是对称矩阵.是反对称矩阵.b.分块矩阵的转置矩阵:⑥伴随矩阵:,为中各个元素的代数余子式.,,.分块对角阵矩阵转置的性质:矩阵可逆的性质:伴随矩阵的性质:(无条件恒成立) 2.逆矩阵的求法方阵可逆.①伴随矩阵法:②初等变换法③分块矩阵的逆矩阵:④,⑤配方法或者待定系数法(逆矩阵的定义)行阶梯形矩阵可画出一条阶梯线,线的下方全为;每个台阶只有一行,台阶数即是非零行的行数,阶梯线的竖线后面的第一个元素非零.当非零行的第一个非零元为1,且这些非零元所在列的其他元素都是时,称为行最简形矩阵初等变换与初等矩阵对换变换、倍乘变换、倍加(或消法)变换初等变换初等矩阵初等矩阵的逆初等矩阵的行列式 () () () ?矩阵的初等变换和初等矩阵的关系:(对施行一次初等变换得到的矩阵,等于用相应的初等矩阵乘;(对施行一次初等变换得到的矩阵,等于用相应的初等矩阵乘.注意:初等矩阵是行变换还是列变换,由其位置决定:左乘为初等行矩阵、右乘为初等列矩阵.矩阵的秩关于矩阵秩的描述:①、,中有阶子式不为0,阶子式(存在的话)全部为0;②、,的阶子式全部为0;③、,中存在阶子式不为0;矩阵的秩的性质:①;;≤≤②③④⑤≤⑥若、可逆,则;即:可逆矩阵不影响矩阵的秩.⑦若;若⑧等价标准型.⑨≤,≤≤⑩,求秩矩阵方程的解法):设法化成第三部分线性方程组1.向量组的线性表示2.向量组的线性相关性3.向量组的秩4.向量空间5.线性方程组的解的判定6.线性方程组的解的结构(通解)(1)齐次线性方程组的解的结构(基础解系与通解的关系)(2)非齐次线性方程组的解的结构(通解)线性表示:对于给定向量组,若存在一组数使得,则称是的线性组合,或称称可由的线性表示.线性表示的判别定理:可由的线性表示由个未知数个方程的方程组构成元线性方程:①、有解②、③、(全部按列分块,其中);④、(线性表出)⑤、有解的充要条件:(为未知数的个数或维数)2.设的列向量为的列向量为,,为的解可由线性表示.即:的列向量能由的列向量线性表示,为系数矩阵. 同理:的行向量能由的行向量线性表示,为系数矩阵. 即:线性相关性判别方法:法1法2法3推论线性相关性判别法(归纳)线性相关性的性质零向量是任何向量的线性组合零向量与任何同维实向量正交单个零向量线性相关;单个非零向量线性无关部分相关整体必相关;整体无关部分必无关原向量组无关接长向量组无关;接长向量组相关原向量组相关两个向量线性相关对应元素成比例;两两正交的非零向量组线性无关向量组中任一向量≤都是此向量组的线性组合若线性无关,而线性相关则可由线性表示且表示法一向量组的秩向量组的极大无关组所含向量的个数,称为这个向量组的秩.记作矩阵等价经过有限次初等变换化为向量组等价和可以相互线性表示记作:矩阵的行向量组的秩列向量组的秩阶梯形矩阵的秩等于它的非零行的个数矩阵的初等变换不改变矩阵的秩且不改变行向量间的线性关系向量组可由向量组线性表示且,则线性相关向量组线性无关且可由线性表示则.向量组可由向量组线性表示且则两向量组等价任一向量组和它的极大无关组等价向量组极大无关组若两个线性无关的向量组等价则它们包含的向量个数相等设是矩阵若,的行向量线性无关;线性方程组的矩阵式向量式(1)解得判别定理(2)线性方程组解的性质:判断是的基础解系的条件:①线性无关;②是的解;③.(4)求非齐次线性方程组Ax=b的通解的步骤(5)其他性质一个齐次线性方程组的基础解系不唯一.√若是的一个解,是的一个解线性无关√与同解(列向量个数相同):①它们的极大无关组相对应从而秩相等②它们对应的部分组有一样的线性相关性③它们有相同的内在线性关系与的行向量组等价齐次方程组与同解(左乘可逆矩阵);矩阵与的列向量组等价(右乘可逆矩阵).第四部分方阵的特征值及特征向量1.施密特正交化过程2.特征值、特征向量的性质及计算3.矩阵的相似对角化,尤其是对称阵的相似对角化1.(标准正交基个维线性无关的向量两两正交每个向量长度为1与的内积(.记为:④向量的长度⑤是单位向量的向量.2.内积的性质:①正定性:②对称性:③线性:(设A是一个n阶方阵,若存在数和n维非零列向量,使得,则称是方阵A的一个特征值,为方阵A的对应于特征值的一个特征向量.(的特征矩阵).(的特征多项式).④是矩阵的特征多项式⑤,称为矩阵的迹.⑥上三角阵、下三角阵、对角阵的特征值就是主对角线上的各元素若则为的的基础解系即为属于的线性无关的特征向量.⑧一定可分解为=、,从而的特征值为:,.为各行的公比,为各列的公比.⑨若的全部特征值,是多项式,则:①若满足的任何一个特征值必满足②的全部特征值为;.⑩与有相同的特征值,但特征向量不一定相同.特征值与特征向量的求法(1)写出矩阵A的特征方程,求出特征值.(2)根据得到A对应于特征值的特征向量.设的基础解系为其中.则A对应于特征值的全部特征向量为其中为任意不全为零的数.(与相似(为可逆矩阵)(与正交相似(为正交矩阵)(可以相似对角化与对角阵相似.(称是的相似标准形)6.相似矩阵的性质:①,从而有相同的特征值,但特征向量不一定相同.是关于的特征向量,是关于的特征向量.②③从而同时可逆或不可逆④⑤若与相似,则的多项式与的多项式相似.矩阵对角化的判定方法①n阶矩阵A可对角化(即相似于对角阵)的充分必要条件是A有n 个线性无关的特征向量.这时,为的特征向量拼成的矩阵,为对角阵,主对角线上的元素为的特征值.设为对应于的线性无关的特征向量,则有:.②可相似对角化,其中为的重数恰有个线性无关的特征向量.:当为的重的特征值时,可相似对角化的重数基础解系的个数.③若阶矩阵有个互异的特征值可相似对角化.实对称矩阵的性质:①特征值全是实数,特征向量是实向量;②不同特征值对应的特征向量必定正交;:对于普通方阵,不同特征值对应的特征向量线性无关;③一定有个线性无关的特征向量.若有重的特征值,该特征值的重数=;④必可用正交矩阵相似对角化,即:任一实二次型可经正交变换化为标准形;⑤与对角矩阵合同,即:任一实二次型可经可逆线性变换化为标准形;⑥两个实对称矩阵相似有相同的特征值.9.正交矩阵正交矩阵的性质①;②;③正交阵的行列式等于1或-1④是正交阵则也是正交阵⑤两个正交阵之积仍是正交阵⑥的行(列)向量都是单位正交向量组.10.11.施密特线性无关单位化:其中为对称矩阵,(与合同.()(正惯性指数二次型的规范形中正项项数负惯性指数二次型的规范形中负项项数符号差(为二次型的秩)④两个矩阵合同它们有相同的正负惯性指数他们的秩与正惯性指数分别相等.⑤两个矩阵合同的充分条件是:与等价⑥两个矩阵合同的必要条件是:2.经过化为标准形.(正交变换法(配方法(1)若二次型含有的平方项,则先把含有的乘积项集中,然后配方,再对其余的变量同样进行,直到都配成平方项为止,经过非退化线性变换,就得到标准形;若二次型中不含有平方项,但是(),则先作可逆线性变换,化二次型为含有平方项的二次型,然后再按(1)中方法配方.(初等变换法3. 正定二次型不全为零,.正定矩阵正定二次型对应的矩阵.4.为正定二次型(之一成立):(1),;(2)的特征值全大于;(3)的正惯性指数为;(4)的所有顺序主子式全大于;(5)与合同,即存在可逆矩阵使得;(6)存在可逆矩阵,使得;5.(1)合同变换不改变二次型的正定性.(2)为正定矩阵;.(3)为正定矩阵也是正定矩阵.(4)与合同,若为正定矩阵为正定矩阵(5)为正定矩阵为正定矩阵,但不一定为正定矩阵. 半正定矩阵的判定一些重要的结论:全体维实向量构成的集合叫做维向量空间.√关于:①称为的标准基,中的自然基,单位坐标向量;②线性无关;③;④;⑤任意一个维向量都可以用线性表示.7第1页共20页。

线性代数重点难点

线性代数重点难点

线性代数重点难点一、重点内容及要求:1. 理解行列式的概念,能熟练运用行列式的基本性质以及行列式按行(列)展开定理计算行列式,会用Laplace定理和Cramer 法则解线性方程组。

2. 理解矩阵及其秩的概念,会用初等变换求其秩,掌握线性方程组有解、有唯一解以及无解的条件。

掌握用行的初等变换求方程组解的方法。

3. 会熟练运用矩阵的加法、数乘、乘法、转置等运算法则,会计算方阵乘积的行列式。

理解矩阵可求逆的概念,掌握利用伴随矩阵和初等变换求出矩阵逆的方法。

理解矩阵的初等变换和初等矩阵的关系, 理解初等变换和矩阵乘法的关系,掌握矩阵可逆的充要条件。

掌握分块矩阵的运算法则。

4. 理解线性空间、向量的线性组合和线性表示、向量组等价、向量组的线性相关线性无关以及向量组的极大线性无关组和向量组秩的概念,掌握向量组线性相关、线性无关的性质,能判断向量组的线性相关和无关性,会求出向量组的极大线性无关组、确定向量组的秩。

掌握子空间的判断条件,会求出线性空间的基、维数以及向量在一组基下的坐标。

理解基变换的概念,会求过渡矩阵、会用坐标变换公式。

掌握理解向量组的秩与矩阵秩的关系。

理解非齐次线性方程组的解与其导出的齐次线性方程组的解之间的关系、掌握齐次线性方程组基础解系的求法以及写出非齐次线性方程组的通解。

5. 理解内积和欧氏空间的概念,掌握Schmidt正交化方法,理解标准正交基、正交矩阵的概念及其相关性质。

6. 了解线性变换的概念,会写出在基下的矩阵。

理解线性变化和矩阵特定的一一对应关系。

理解并能熟练计算矩阵的特征值和特征向量,掌握矩阵的特征值和特征向量的相关性质。

理解相似矩阵的概念和性质。

掌握矩阵可相似对角阵的充要条件,能熟练地利用之化矩阵为对角阵。

理解实对称矩阵的特征值和特征向量的性质,能熟练地用整交矩阵化实对称矩阵化为对角阵。

7. 理解二次型及其秩的概念,理解对称矩阵和二次型的一一对应关系,理解二次型的标准形、规范形概念以及惯性定理,熟练利用配方法和正交矩阵化二次型为标准形。

线性代数各章要点整理

线性代数各章要点整理

第一章行列式主要知识点一、行列式的定义和性质1.余子式和代数余子式的定义2.行列式按一行或一列展开的公式1)2)3.行列式的性质1)2)用数k乘行列式的某一行(列)所得新行列式=原行列式的k倍. 推论3)互换行列式的任意两行(列)所得新行列式等于原行列式的相反数. 推论4)如果行列式中两行(列)对应元素成比例,则行列式值为0.5)行列式可以按任一行(列)拆开.6)行列式的某一行(列)的k倍加到另一行(列)上,所得新行列式与原行列式的值相等.二、行列式的计算1.二阶行列式和三角形行列式的计算.2.对一般数字行列式,利用行列式的性质将其降阶以化成二阶行列式或三角形(或对角形)行列式的计算.3.对行列式中有一行或一列中只有一个或两个非零元的情况,用这一行或一列展开.4.行列式中各行元素之和为一个常数的类型.5.范德蒙行列式的计算公式第二章矩阵主要知识点一、矩阵的概念1.要分清矩阵与行列式的区别2.几种特殊矩阵(0矩阵,单位阵,三角阵,对角阵,数量阵)二、矩阵的运算1.矩阵A , B的加、减、乘有意义的充分必要条件2.矩阵运算的性质比较矩阵运算(包括加、减、数乘、乘法等)的性质与数的运算性质的相同点和不同点(加法、乘法的交换律和结合律;乘法关于加法的分配律)重点是矩阵乘法没有交换律(由此产生了矩阵运算公式与数的运算的公式的不同点).3.转置对称阵和反对称阵1)转置的性质2)若A T=A (A T= - A),则称A为对称(反对称)阵4.逆矩阵1)方阵A可逆(也称非异,非奇异,满秩)的充分必要条件是.当A可逆时,.2)方阵A的伴随阵的定义。

重要公式;与A -1的关系(当方阵A可逆时,)3)重要结论:若n阶方阵A,B满足AB=E,则A,B都可逆,且A-1=B ,B-1=A.4)逆矩阵的性质:; ; .5)消去律:设方阵A可逆,且AB=AC(BA=CA),则必有B=C。

(若不知A可逆,仅知A≠0结论不一定成立。

考研数学线性代数重点整理

考研数学线性代数重点整理

考研数学线性代数重点整理一、矢量空间矢量空间是线性代数的基础概念,它描述了一组对象(称为矢量)的性质及其之间的运算规则。

以下是矢量空间的一些重要性质和定义:1. 定义:矢量空间是满足以下8个条件的集合V,其中两个运算(加法和乘法)满足特定的性质。

2. 加法:对于任意的矢量u和v,它们的和u+v也是V中的一个矢量。

3. 加法交换律:对于任意的矢量u和v,有u+v = v+u。

4. 加法结合律:对于任意的矢量u、v和w,有(u+v)+w = u+(v+w)。

5. 加法单位元:存在一个称为零矢量的特殊矢量0,对于任意的矢量v,有v+0 = 0+v = v。

6. 加法逆元:对于任意的矢量v,存在一个称为负矢量的特殊矢量-u,使得v+(-u) = (-u)+v = 0。

7. 乘法定义:对于任意的矢量v和实数c,cv也是V中的一个矢量。

8. 乘法分配律:对于任意的矢量v和实数c和d,有c(dv) = (cd)v。

9. 乘法单位元:对于任意的矢量v,有1v = v。

二、矩阵与线性方程组矩阵是线性代数中另一个重要的概念,它可以用来表示线性方程组和线性变换。

以下是与矩阵和线性方程组相关的一些重要内容:1. 矩阵定义:将数按矩形排列成的矩形数表称为矩阵,其中行数和列数分别称为矩阵的行数和列数。

2. 矩阵运算:矩阵之间可以进行加法和乘法的运算,具体规则如下:- 矩阵加法:对应位置元素相加。

- 矩阵乘法:设A是一个m×n矩阵,B是一个n×p矩阵,那么它们的乘积AB是一个m×p矩阵,乘法规则为A的行乘以B的列。

3. 线性方程组:线性方程组是一组线性方程的集合,矩阵可以用来表示和求解线性方程组。

对于一个m×n矩阵A、一个n×1矩阵X和一个m×1矩阵B,线性方程组可以表示为AX=B。

4. 线性方程组的解:根据矩阵的性质,可以通过高斯消元法、矩阵求逆等方法求解线性方程组。

考研数学二备考的复习建议

考研数学二备考的复习建议

考研数学二备考的复习建议考研数学二备考的复习建议在数学一、数学二和数学三种,数学二是特别的,因为不考概率与数理统计。

店铺为大家精心准备了考研数学二备考的复习指南,欢迎大家前来阅读。

考研数学二给考生的复习建议全方位研究典型题型对于数二的来说,需要做大量的试题。

即使在初始阶段,数二的很多同学都在对典型题型进行研究,问题在于你如何研究它,我认为应该对典型题型进行全方位立体式的研究。

面对一道典型例题,在做这道题以前你必须考虑,它该从哪个角度切入,为要从这个角度切入。

做题的过程中,必须考虑为什么要用这几个定理,而不用那几个定理,为什么要这样对这个式子进行化简,而不那样化简。

做完之后,必须要回过头看一下,这个解题方法适合这个题的关键是什么,为什么偏偏这个方法在这道题上出现了最好的效果,有没有更好的解法。

就这样从开始到最后,每一步都进行全方位的思考,那么这道题的价值就会得到充分的发掘。

数学二,重在做题,熟能生巧。

对于数学的基本概念、公式、结论等也只有在反复练习中才能真正理解与巩固。

数学试题虽然千变万化,其知识结构却基本相同,题型也相对固定,往往存在一定的解题套路,熟练掌握后既能提高正确率,又能提高解题速度。

训练解答综合题此外,还要初步进行解答综合题的训练。

数学二的重要特征之一就是综合性强、知识覆盖面广,近几年来较为新颖的综合题愈来愈多。

这类试题一般比较灵活,难度也要大一些,应逐步进行训练,积累解题经验。

这也有利于进一步理解并彻底弄清楚知识点的纵向与横向联系,转化为自己真正掌握了的东西,能够在理解的基础上灵活运用、触类旁通。

同时要善于思考,归纳解题思路与方法。

一个题目有条件,有结论,当你看见条件和结论想起了什么?这就是思路。

思路有些许偏差,解题过程便千差万别。

考研数学复习光靠做题也是不够的,更重要的是应该通过做题,归纳总结出一些解题的方法和技巧。

考生要在做题时巩固基础,在更高层次上把握和运用知识点。

对数学习题最好能形成自己熟悉的解题体系,也就是对各种题型都能找到相应的解题思路,从而在最后的实考中面对陌生的试题时能把握主动。

考研数学:线性代数知识点汇总

考研数学:线性代数知识点汇总

2019考研数学:线性代数知识点汇总摘要:尽管考研数学的考查内容各个学校的侧重点不一样,但是都是在考研大纲里面的更改。

因此,了解好考研数学的每一个小知识点,才能全面掌握考研数学。

就帮大家整理了一些线性代数的知识点,分享给在数学上犯愁的同学们。

►【行列式】1、行列式本质就是一个数2、行列式概念、逆序数考研:小题,无法联系其他知识点,当场解决。

3、二阶、三阶行列式具体性计算考研:不会单独出题,常常结合伴随矩阵、可逆矩阵考察。

4、余子式和代数余子式考研:代数余子式的正负是一个易错点,了解代数余子式才能学习行列式展开定理。

5、行列式展开定理考研:核心知识点,必考!6、行列式性质考研:核心知识点,必考!小题为主。

7、行列式计算的几个题型①、划三角(正三角、倒三角)②、各项均加到第一列(行)③、逐项相加④、分块矩阵⑤、找公因这样做的目的,在行/列消出一个0,方便运用行列式展开定理。

考研:经常运用在找特征值中。

⑥数学归纳法⑦范德蒙行列式⑧代数余子式求和⑨构造新的代数余子式8、抽象型行列式(矩阵行列式)①转置②K倍③可逆③伴随④题型丨A+B丨;丨A+B-1丨;丨A-1+B丨型(这部分内容放在第二章,但属于第一章的内容)考研:出小题概率非常大,抽象性行列式与行列式性质结合考察。

►【矩阵】1、矩阵性质考研:与伴随矩阵、可逆矩阵、初等矩阵结合考察。

2、数字型n阶矩阵运算①方法一:秩是1②方法二:含对角线上下三角为0的矩阵③方法三:利用二项式定理,拆写成E+B型④方法四:利用分块矩阵⑤方法五:P-1AP=B;P-1APP-1AP=B2方法五涉及相似对角化知识。

方法三涉及高中知识。

考研:常见在大题出现,是大题的第一问!看到数字型n阶矩阵运算,一定出自这5个方法。

(二战考上,如果本题不会做,你的问题出在只掌握这五种方法的某几种,所以你是失败在归纳总结上了)3、伴随矩阵考研:伴随矩阵常与其他知识考察,与行列式、转置、K倍、可逆、伴随的伴随结合考察。

考研数学二线代的考试范围

考研数学二线代的考试范围

考研数学二线代的考试范围摘要:一、考研数学二线性代数考试范围概述二、线性代数主要考试内容1.行列式2.矩阵3.矩阵的运算4.矩阵的性质5.矩阵的初等变换6.矩阵的秩7.矩阵的等价分块矩阵及其运算三、考试要求与备考建议正文:一、考研数学二线性代数考试范围概述考研数学二主要考察高等数学和线性代数两部分内容。

其中,线性代数部分占据了约22% 的考试比重。

线性代数作为数学的基础学科,其考试范围主要包括行列式、矩阵、矩阵的运算、矩阵的性质、矩阵的初等变换、矩阵的秩以及矩阵的等价分块矩阵及其运算等内容。

二、线性代数主要考试内容1.行列式行列式是线性代数中的基本概念,主要考察内容包括行列式的概念和基本性质、行列式按行(列)展开定理等。

在备考过程中,需要掌握行列式的性质,并能应用行列式的性质和行列式按行(列)展开定理计算行列式。

2.矩阵矩阵是线性代数中的核心概念,考试内容主要包括矩阵的概念、矩阵的线性运算、矩阵的乘法、方阵的幂、方阵乘积的行列式、矩阵的转置、逆矩阵的概念和性质等。

在备考过程中,需要理解矩阵的概念,并能熟练运用矩阵的性质和运算规则。

3.矩阵的运算矩阵的运算主要包括矩阵的加法、减法、数乘以及矩阵乘法等。

在备考过程中,需要掌握矩阵的运算规则,并能熟练进行矩阵运算。

4.矩阵的性质矩阵的性质主要包括矩阵的可逆性、矩阵的秩、矩阵的行列式等。

在备考过程中,需要理解矩阵的性质,并能应用矩阵的性质解决实际问题。

5.矩阵的初等变换矩阵的初等变换主要包括矩阵的交换、矩阵的旋转、矩阵的缩放等。

在备考过程中,需要掌握矩阵的初等变换方法,并能运用矩阵的初等变换将矩阵化为简化形式。

6.矩阵的秩矩阵的秩是矩阵的一个重要性质,主要考察内容包括矩阵的秩的计算方法、矩阵的等价分块矩阵及其运算等。

在备考过程中,需要掌握矩阵的秩的计算方法,并能运用矩阵的等价分块矩阵及其运算解决实际问题。

7.矩阵的等价分块矩阵及其运算矩阵的等价分块矩阵及其运算是矩阵理论中的重要内容,主要考察内容包括矩阵的等价分块矩阵、矩阵的简化阶梯形式等。

2019考研数学二高数线代笔记

2019考研数学二高数线代笔记
抽象型
如例3:设f(x)在x=x0处可导,g(x)在x=x0处连续但不可导,证明 在x=x0处可导的充要条件是f(x0)=0.
注:例3子题:
例3子题: 。2个
2.微分
设函数y = f(x)在x的邻域内有定义,x及x + Δx在此区间内。
如果函数的增量Δy = f(x + Δx) - f(x)可表示为 Δy = AΔx + o(Δx)(其中A是不依赖于Δx的常数),而o(Δx)是比Δx高阶的无穷小,那么称函数f(x)在点x是可微的,且AΔx称作函数在点x相应于因变量增量Δy的微分,记作dy,即dy = AΔx。
五大方面的应用
1、涉及f(x)的定理的使用(有最介零)
2、罗尔定理的使用
3、拉格朗日定理的使用
(一般为等式证明)
2)给高阶条件推出低阶不等式
3)给低阶条件推出高阶不等式
4)具体化f,由a<ξ<b推出不等式
4、柯西中值定理的使用
可能是一个具体函数,一个抽象函数,在添加拉格朗日定理。
5、高阶导数的证明问题——
2)代数余子式:(-1)i+jMij=Aij、(-1)i+jAij=Mij、Aij为代数余子式
3)展开公式:
2、行列式的计算
1)具体型
(行和或列和相等)
注意:
如例题:
②消零降价法()
如例题:
③加边法
如例题:
注:爪型行列式用斜爪消平爪
④递推法(高阶推低阶)
如例题:
⑤数学归纳法(低阶推高阶)
注意:第一数归法和第二数归法的区别,先找出关系,再确定用哪种方法
如例3:当 >0,证明
注:该结论证明x的正次幂趋向0比lnx趋向 的速度快,x的正次幂趋向+∞比e-δx趋向0的速度慢

考研数学复习线性代数的注意事项

考研数学复习线性代数的注意事项

考研数学复习线性代数的注意事项 线性代数部分看似内容不多,但是难度不容忽视,考生复习时要注意四点:基础、大纲、 真题和模拟。

为大家精心准备了考研数学复习线性代数要注意的重点,欢迎大家前来阅读。

考研数学复习线性代数要注意的要点一、注重理解基本概念、基本性质从历年试题看,线 性代数主要考查考生对基本概念、性质的深入理解以及分析解决问题的能力,需要考生能够做 到灵活地运用所学的知识,熟记一些解题方法去解决线性代数问题。

所以大家在复习过程中要准确理解线性代数的基本概念,基本性质,为了深刻记忆,同学 们可以结合一些例题和练习题来训练,只要概念和方法理解准确到位,多做些相关题目,考试 时碰到类似题目就一定能够轻松正确解答。

基础知识的复习主要是在基础阶段进行,也就是今年暑期之前,要特别指出的是在基础阶 段的复习中,不要轻视对教材中一般习题的练习,一定要配合各章节内容做一定数量的习题, 总结一般题型的解题方法与思路。

在此过程中,不要过多地去追求复杂的题,要脚踏实地、全面仔细地复习,凡是考纲上有 的内容,就不要遗漏。

这个阶段虽然涉及综合性、提高性题型不多,但基础打得好将为下阶段全面综合复习创造 一个有利前提,而且,试卷中多数综合性、灵活性强的考题,其关键之处也在于考生是否能够 适当运用有关的基本概念、性质和方法。

二、认真分析考试大纲,抓住考试重点考试大纲是最重要的备考资料,从历年的数学大纲 来看,每年基本上不变,所以同学们可以先参考 2016 年考研数学大纲,将大纲中要求的考点 仔细梳理一下,一定要明确重点,不要在不太重要的内容和复杂的题目上投入太多精力。

而对于线性代数的重点考查对象一定要重视,例如,线性方程组的求解基本上每年都会以 解答题的形式考查,矩阵的特征值、特征向量以及化成对角矩阵是考试频率最高的,也是较难 的一类题目,这类问题的关键,所以平时复习要加强这类题型的训练。

另外,围绕向量的秩的考查也是考试的重点,大家在复习过程中一定要深刻理解它们的性 质。

《线性代数》知识点归纳整理

《线性代数》知识点归纳整理

《线性代数》知识点归纳整理线性代数是数学的一个分支,主要研究向量、向量空间以及线性映射等概念和性质。

它在数学领域具有广泛的应用,被广泛应用于物理学、计算机科学、经济学、工程学等领域。

以下是对《线性代数》的知识点进行归纳整理:1.矩阵和向量:矩阵是一个二维的数字阵列,可以表示为一个矩阵的形式。

向量是矩阵的特殊情况,只有一个列的矩阵。

矩阵和向量可以进行加法和数乘运算。

2.矩阵乘法:矩阵乘法是矩阵运算中的重要操作,它利用矩阵的行和列的组合,将两个矩阵相乘得到新的矩阵。

3.行列式:行列式是一个标量值,用于判断一些矩阵是否可逆。

行列式的值为0表示矩阵不可逆,非零表示矩阵可逆。

4.向量空间:向量空间是一组向量的集合,满足一定的条件。

向量空间具有加法和数乘运算,并满足一定的性质,如封闭性、结合律、分配律等。

5.线性相关与线性无关:向量集合中的向量如果不能由其他向量线性组合得到,则称这个向量集合是线性无关的;反之,如果存在一个向量可以由其他向量线性组合得到,则称这个向量集合是线性相关的。

6.基与维数:如果向量集合是线性无关的,并且能够生成整个向量空间中的所有向量,则称这个向量集合是向量空间的一组基。

向量空间的维数是指基向量的个数。

7.矩阵的秩:矩阵的秩是指矩阵列向量或行向量中的线性无关向量的个数。

秩表示矩阵中线性无关的方向个数。

8.特征值与特征向量:对于一个n维矩阵A,如果存在一个标量λ和非零向量X,使得AX=λX成立,则λ称为矩阵A的特征值,对应的非零向量X称为矩阵A的特征向量。

9.对角化:如果矩阵A可以通过相似变换得到一个对角矩阵B,则称矩阵A可以被对角化。

对角化后的矩阵可以简化各种计算。

10.线性变换:线性变换是指一个向量空间到另一个向量空间的映射,它满足线性性质。

线性变换可以用矩阵来表示,通过矩阵乘法来表示向量的线性变换。

11.正交性:向量集合中的向量如果互相垂直,则称这个向量集合是正交的。

如果正交向量集合中的每个向量都是单位向量,则称这个向量集合是标准正交的。

考研数二知识点总结

考研数二知识点总结

考研数二知识点总结一、线性代数1. 行列式行列式是矩阵的一个重要性质,它可以用于求解线性方程组的解。

行列式的定义是一个数学函数,用来将一个矩阵转换为一个标量。

行列式的计算方法有代数余子式法、拉普拉斯展开法和行列式性质法等。

2. 矩阵矩阵是线性代数中的一个重要概念,它是由数域上的元素组成的矩形阵列。

矩阵有加法、数量乘法和矩阵乘法的运算法则。

矩阵的转置、逆矩阵、行列式以及特征值和特征向量都是矩阵的重要性质。

3. 向量向量是线性代数中的另一个重要概念,它是一个具有方向和大小的量。

向量的基本运算有加法、数量乘法和点积。

向量的线性相关性、线性无关性以及向量的表示都是考研数学中的重要知识点。

4. 矩阵的特征值和特征向量矩阵的特征值和特征向量是矩阵运算中的重要概念,它们可以用来描述矩阵的性质和特征。

特征值和特征向量在物理学、工程学和经济学等领域都有重要的应用。

5. 矩阵的相似性矩阵的相似性是指对于两个矩阵A和B,如果存在一个非奇异矩阵P,使得P^-1AP=B成立,则称矩阵A与B相似。

相似矩阵具有相同的特征值,但不一定有相同的特征向量。

6. 线性空间线性空间是线性代数的一个重要概念,它是指一个集合,它满足一些线性运算的性质。

线性空间中的向量可以进行线性组合和线性相关的运算。

7. 线性变换线性变换是指一个向量空间到另一个向量空间的映射,它保持了向量空间的线性运算性质。

线性变换可以用矩阵来描述,它在计算机图形学、物理学和工程学中都有重要的应用。

二、概率论1. 概率空间概率空间是概率论的一个重要概念,它由一个样本空间和一个事件的集合组成。

概率空间中的事件有概率分布,它描述了事件发生的可能性大小。

2. 随机变量随机变量是描述随机现象的数学变量,它可以是离散型随机变量或连续型随机变量。

随机变量的分布函数、密度函数以及期望和方差都是概率论中的重要知识点。

3. 事件的独立性事件的独立性是指两个事件的发生不受到另一个事件的影响。

线性代数背诵要点(全)

线性代数背诵要点(全)

第一章 行列式一、行列式的概念、展开公式及其性质 (一)行列式的概念nnn n n n a a a a a a a a a A .. (2)12222111211=(二)行列式按行(列)展开公式公式为关于副对角线,其计算角线上元素的乘积三角行列式等于其主对下上的代数余子式为的余子式,而阶行列式,称之为列元素后的行及第中去掉第是其中.2......)(.1)1(1)1( (221122)11221122112211nnnn nn ij ij j i ij ij ijj i ij nj nj j j j j in in i i i i a a a a a a a a a a M a n j i A M M A A a A a A a A a A a A a A ⋅⋅⋅=******=******---=+++=+++=++11212)1(11211121)1(......n n n n n n n nn n na a a a a a a a a ⋅⋅⋅-=******=******---- B A OB A BA OB A B OA B O A n B m A mn ⋅-=*=*⋅=*=*)1(.3阶矩阵,则是阶矩阵,是开式,设两种特殊的拉普拉斯展(三)行列式的性质1.经转置的行列式的值不变,即T A A =2.行列式中某一行各元素如有公因数k ,则k 可以提到行列式符号外,若行列式某行元素全是零,则行列式的值为零3.如果行列式中某行的每个原色都是两个的和,则这个行列式可以拆成两个行列式的和mlb b a a 2121++=mlb a 11+mlb a 224对换行列中某两行的位置,行列式的值只改变正负号;若两行元素对应相对(成比例),则行列式的值为零 5.把某行的k 倍加至另一行,行列式的值不变(四)关于代数余子式的求和...0...)()(.2,.122112211=+++=+++nk nj k j k j jn in j i j i ij ij ij ij A a A a A a A a A a A a a A A a 乘积之和必为零对应元素的代数余子式列元素与另一行列行列式一行的取值无关与式值并不影响其代数余子所在行或列中的元素的只改变二、有关行列式的几个重要公式A k kA n A n =阶矩阵,则是若.1B A B A n B A •=阶矩阵,则是,若.211-1.3--*==AA n A AA n A n 阶可逆矩阵,则是若阶矩阵,则是若∏≤≤----==ni j j i n nn n n nx x A x x x x x x x x x A n A 1112112222121)( (1)...11.4,则阶范德蒙矩阵是若 ∏==ni i i A A n A 1.5λλ的特征值,则是阶矩阵,是若B A B A =,则若~.6三、关于克莱姆法则的系数换成常数项中的是把其中则方程组有唯一解方程组,如果系行列式个未知数的非齐次线性个方程对于j j n n x D D DDx D D x D D x A D n n ,,...,,,02211===≠=则方程组只有零解程组,系数行列式个未知数的齐次线性方个方程对于,0≠=A D n n 0==A D n n 数行列式程组,有非零解,则系个未知数的齐次线性方个方程对于逆序数的计算,从左至右,看每个数后面比它小的数的个数 经初等变换矩阵的秩不变第二章 矩阵及其运算一、矩阵的概念与几类特殊方阵 (一)矩阵及相关概念 1.矩阵阶方阵阶矩阵或是,则称若或矩阵,简记称为列的表格行排成的个数n n A n m a A n m a a a a a a a a a n m a n m n m ij mn m m n n ij =⨯⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡⨯⨯,)( (21)2222111211 2.0矩阵00,则称为零矩阵,记作中所有元素而都是如果矩阵A 3.同型矩阵是同型矩阵与则称中如果,矩阵B A t n s m b B a A t s ij n m ij ,,,)(,)(====⨯⨯4.矩阵相等即对应的元素都相等同型矩阵),,(j i b a B A ij ij ∀=⇔= 1. 方阵的行列式 阶行列式其元素可构造对于方阵n a A ij )(=B A B A a a a a a a a a a A nnn n nn≠≠=得不到由,.............. (2)12222111211(二)几类特殊方阵1.单位矩阵 主对角线上的运算全是1,其余元素均为0的n 阶段方阵,称为n 阶单位矩阵, 记为E E A A AE EA ===0;2.对称矩阵),(,j i a a A A n A ji ij T ∀==即阶矩阵,如是设3.反对称矩阵对称矩阵反不一定是对称矩阵,但反也是对称矩阵,则反是同阶的若,即阶矩阵,如是设)()(,,)(,0),(-,-AB A B A B A B A a j i a a A A n A ii ji ij T λ-+=∀==4.对角矩阵、积仍然是对角矩阵同阶的对角矩阵的和差,对角矩阵记为阶矩阵,如是设Λ≠∀≡)(0j i a n A ij5.逆矩阵1,-==AA AB A E BA AB B n n A 记为的逆矩阵唯一的逆矩阵,是是可逆矩阵,,则称使阶矩阵阶矩阵,如存在是设6.正交矩阵T T T A A A E A A AA n A ===-1,是正交矩阵,则称阶矩阵,如是设 7.伴随矩阵*=A A A A A A A A A A A n A a A n a A nnnnn n ij ij ij 的伴随矩阵,记为,称为阶矩阵所构成的的代数余子式的各元素阶矩阵,则由行列式是设....................)(212221212111二、矩阵的运算(一)矩阵的线性运算 1.矩阵的加法C B A B A b a c C n m n m b B a A ij ij ij ij ij =++==⨯⨯==的和称为矩阵矩阵矩阵,则是两个设,)()()(),(2.矩阵的数乘kAA k b a ka n m k n m a A ij ij ij ij 记为的数乘,与矩阵称为数矩阵是一个常数,则矩阵,是设)()()(+=⨯⨯=3.矩阵的乘法nb r A r B Ax B AB A E A A A A B AB BA AB B A BA AB ABC B A b a b a b a b a c c C s m s n b B a A nk kj ik nj in j i j i ij ij ij ij ≤+≠======≠==≠==+++==⨯⨯==∑=)()(,00,0;0,;00,0)2(,)1(,...)()(),(212211则齐次方程组有非零解的解,若程中的每一列都是其次方应联想到或不能堆出,不能退出时,才能运算可交换即与只有换律矩阵的乘法一般没有交的乘积,记为与称为其中矩阵矩阵,则是两个设,命题成立矩阵,秩序是若不能退出的列数,则,且若可逆,则,且矩阵若立:以下两种情况消去率成,对于矩阵乘以不具有消去律n A r n m A C B A AC AB B A A r AB B A AB A AB =⨯=≠======≠=)(,,0,)3(0)(000),0(0(二)关于逆矩阵的运算规律A A =--11))(1( 111))(2(--=A kkA 111))(3(---=A B AB 11)())(4(--=T T A A 11)5(--=A A n n A A )())(6(11--=(三)关于矩阵转置的运算规律A A T T =))(1( T T kA kA =))(2( T T T AB AB =))(3( T T T B A B A +=+))(4((四)关于伴随矩阵的运算规律E A AA A A ==**)1( )2()2(1≥=-*n AA n )2())(3(2≥=-**n A AA n*-*=A k kA n 1))(4( **=)())(5(T T A A1)(,0)(;1)(,1)(;)(,)()6(-=-====***n A r A r n A r A r n A r n A r111-1-,)()(,1)()7(-**-**===A A A A A A AA A 可逆,则若(五)关于分块矩阵的运算法则⎥⎦⎤⎢⎣⎡++++=⎥⎦⎤⎢⎣⎡+⎥⎦⎤⎢⎣⎡4433221143214321)1(B A B A B A B A B B B B A A A A ⎥⎦⎤⎢⎣⎡++++=⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡DW CY DZ CX BW AY BZ AX W Z Y X D C B A )2( ⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡T TT T TD B C A D C B A )3( ⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡n n n C OO B C O O B )4( ⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡--O B C O O C B O C O O B C O O B 111-1-1-1-)4(,三、矩阵可逆的充分必要条件.8,.70.6)(.5,.4)(.30.2.121的特征值全不为总有唯一解非齐次方程组只有零解齐次方程组向量线性无关行的列是初等矩阵其中,有阶方阵存在可逆,等价于阶方阵A b Ax b Ax A P P P P A nA r A E BA AB B n A n i s =∀=⋅⋅⋅==≠==四、矩阵的初等变换与初等矩阵 (一)矩阵的初等变换及相关概念 1.矩阵的初等变换下述三种对矩阵的行列实施的变换称为矩阵的初等行列变换 (1) 对调矩阵的两行列(2) 用非零常数k 乘以某行列中所有元素(3) 把矩阵某行列所有元素的k 倍加至另一行列对应的元素上去 (4) 求秩(行列变换可混用);求逆矩阵(只用行或只用列);求线性方程组的解(只用行变换) (5) 不要混淆矩阵的运算2.行阶梯形矩阵与行最简形矩阵(1)具体如下特征的矩阵称为行阶梯形矩阵①零行(即元素全为零的行)全都位于非零行的下方②各非零行坐起第一个非零元素的列指标由上至下是严格增大(2)如果其非零行的第一个非零元素为1,并且这些非零元素所在列的其他元素均为零,这个行阶梯形矩阵称为行最简形矩阵对于任何矩阵A ,总可以经过有限次初等行变换把它化为行阶梯形矩阵和行最简形矩阵(二)初等矩阵的概念单位矩阵经过一次初等变换所得到的矩阵称为初等矩阵(三)初等矩阵的性质逆是同类型的初等矩阵初等矩阵均可逆,且其同样的行列初等变换做了一次与就是对矩阵,所得乘右左用初等矩阵.2)()(.1P A AP PA A P)()(100013-001100013001)1()(100021000110002000100101010000101010011-11-11-k E k E kE k E EE ij ij i i ij ij -=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---主对角线以外;主对角线;副对角线五、矩阵的等价(一)矩阵等价的概念的秩是矩阵阶单位矩阵是的等价标准形,其中后者是则称若等价,记作与则称矩阵矩阵经有限次初等变换变成矩阵A r r E A EA B A B A B A r r,,000~.~,⎥⎦⎤⎢⎣⎡ (二)矩阵等价的充分必要条件价向量组等价必有矩阵等向量可以互相线性表示;向量组等价是指两个等价是两个不同的概念矩阵的等价与向量组的使得阶可逆矩阵,阶可逆矩阵矩阵,则存在时设,使和存在可逆矩阵秩是同型矩阵且有相同的,等价于⎥⎦⎤⎢⎣⎡=⨯=000,.2.1~rE PAQ Q n P m n m A BPAQ Q P B A B A⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡=====----*-O BC O O C B O C O O B C O O B AE E A A EE A A AA E BA E AB B 111-1-1-1-111)()();()(1,分块矩阵法初等变换法伴随矩阵法或使定义法,找出为阶梯形方程组列方程用高斯消元法化不可逆,则可设未知数,若方法可以先求出可逆,则若方法解题思路的列向量表出的每列可由有解等价于A AB A X A AB r A r A B B Ax 2,,1)()(.2.111--===的主对角线元素之和是矩阵T T αββα 若11,--==P PB A PBP A n n 则1-)(,P P A P A n n n Λ=Λ,令与先求特征值与特征向量求 行列变换与单位矩阵、初等矩阵运算的关系第三章 n 维向量一、n 维向量的概念与运算 (一)n 维向量的概念个分量称为向量的第的矩阵,数或维列向量,也就是维行向量或分别称为或维向量,记作构成的有序数组称为个数i a n n n n a a a a a a n a a a n i T n n n 11,),...,,(),...,,(,...,,212121⨯⨯(二)n 维向量的运算0),(......),(,0),(.4...),(.3),...,,(.2),...,,(.1),...,,(,),...,,(222212222122112122112121=⇔==+++=+++=====+++==+++=+==ααααααααααβαβααββαβααβαβαT n nT TT n n Tn T n n T n T n a a a a a a b a b a b a ka ka ka k b a b a b a b b b a a a 正交,,则若内积数乘加法如果二、线性组合与线性表出 1.线性组合若干个同维数的列向量(或同维数的行向量)所组成的集合叫做向量组称为组合系数的一个线性组合,其中称为向量组所构成的向量个常数及维向量个由s s s s s s k k k k k k k k k s n s ,...,,,...,,...,...,,,...,,212122112121ααααααααα+++ 2.线性表出的线性组合是线性表出,或说可由则称的线性组合能表示成向量维向量如αααβαααββααααααβ,...,,,...,,...,...,,2121221121s s s s k k k n =+++3.向量组等价,则称两个向量等价量组可以互相线性表出线性表出;如果两个向可由向量组线性表出,则称向量组量组的每个向量都可以由向如过向量组)2()1(,...,,)2(,...,,)1(2121t s βββααα等价、则线性表出,可由向量组如果向量组不一定等价秩,但秩相同的向量组等价的向量具有相同的相同向量组所含向量的个数两个等价的线性无关的无关组等价向量组的任意两个极大无关组等价任一向量组和它的极大样,线性相关也可以不一但向量个数可以不一样、对称性、及反身性,等价向量组具有传递性)2()1(),2()1()2()1(.6.5.4.3.21r r =三、向量组的线性相关与线性无关 (一)线性相关与线性无关的概念 1.线性相关线性相关则称此向量组使得的数,如存在一组不全为维向量对于s s s s s k k k k k k n ααααααααα,...,,0...,...,,0,...,,2122112121=+++2.线性无关线性无关称此向量组,,必有不全为或者说如存在一组数线性无关则称此向量组,必有,如果维向量对于s s s s s s s s s k k k k k k k k k k k k n ααααααααααααααα,...,,0...0,...,,,...,,,0...0...,...,,212211212121221121≠+++=====+++(二)线性相关与线性无关的充分必要条件 1.线性相关的充分必要条件位向量一定线性相关个维向量线性相关个个向量线性表出可由其他存在某向量的个数有非零解齐次方程组线性相关,向量组n n n n s s r x x x s i s s s s 10,...,,1)(),...,,(0...),...,,(,...,,2121212121+=⇔-⇔⇔=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡⇔ααααααααααααα2.线性无关的充分必要条件个向量线性表出都不能用其他存在某向量的个数只有零解齐次方程组线性无关,向量组1)(),...,,(0...),...,,(,...,,21212121-⇔=⇔=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡⇔s s r x x x i s s s s αααααααααα3.几个重要结论组必然线性无关两两正交、非零的向量必然线性无关,,,延伸组线性无关,则它的任一若向量组必然线性无关个部分分组线性无关,则它的任一若向量组无关阶梯形向量组一定线性)4(...,...,,)3(,...,,,...,,)2()1(2211212121⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡s s s i i i s t βαβαβαααααααααα四、线性相关性与线性表出的关系ts t s s s t s s t s i i i s s s s s t ≤-线性无关,则线性表出,且可由向量组若向量组线性相关则线性表出,且可由向量组若向量组必然线性无关则它的任一个部分分组一线性表出,且表示法唯可由线性相关,则,线性无关,而向量组若向量组个向量线性表出可以用其余是线性相关,的充要条件向量组αααβββααααααβββαααααααααββαααααααααα,...,,,...,,,...,,)4(,...,,,,...,,,...,,)3(,...,,,...,,,...,,,...,,)2(1,...,,)1(2121212121212121212121五、向量组的秩与矩阵的秩(一)向量组的秩与矩阵的秩的概念 1.极大线性无关组是由原向量唯一确定的即个数都是关组中所含向量的个数个极大线性无关组是等价的,从而每的。

考研数学线代知识点的复习指导

考研数学线代知识点的复习指导

考研数学线代知识点的复习指导考研数学复习阶段的时候,我们需要掌握好线代知识点的复习要点。

小编为大家精心准备了考研数学线代知识点的复习攻略,欢迎大家前来阅读。

考研数学线代知识点的复习指南线性代数总共分为六章。

第一章行列式本章的考试重点是行列式的计算,考查形式有两种:一是数值型行列式的计算,二是抽象型行列式的计算.另外数值型行列式的计算不会单独的考大题,考选择填空题较多,有时出现在大题当中的一问或者是在大题的处理其他问题需要计算行列式,题目难度不是很大。

主要方法是利用行列式的性质或者展开定理即可。

而抽象型行列式的计算主要:利用行列式的性质、利用矩阵乘法、利用特征值、直接利用公式、利用单位阵进行变形、利用相似关系。

06、08、10、12年、13年的填空题均是抽象型的行列式计算问题,14年选择考了一个数值型的矩阵行列式,15、16年的数一、三的填空题考查的是一个n行列式的计算,。

今年数一、数二、数三这块都没有涉及。

第二章矩阵本章的概念和运算较多,而且结论比较多,但是主要以填空题、选择题为主,另外也会结合其他章节的知识点考大题。

本章的重点较多,有矩阵的乘法、矩阵的秩、逆矩阵、伴随矩阵、初等变换以及初等矩阵等。

其中06、09、11、12年均考查的是初等变换与矩阵乘法之间的相互转化,10年考查的是矩阵的秩,08年考的则是抽象矩阵求逆的问题,这几年考查的形式为小题,而13年的两道大题均考查到了本章的知识点,第一道题目涉及到矩阵的运算,第二道大题则用到了矩阵的秩的相关性质。

14的第一道大题的第二问延续了13年第一道大题的思路,考查的仍然是矩阵乘法与线性方程组结合的知识,但是除了这些还涉及到了矩阵的分块。

16年只有数二了矩阵等价的判断确定参数。

第三章向量本章是线代里面的重点也是难点,抽象、概念与性质结论比较多。

重要的概念有向量的线性表出、向量组等价、线性相关与线性无关、极大线性无关组等。

复习的时候要注意结构和从不同角度理解。

考研数学二重点

考研数学二重点

考研数学二重点数学二不考概率统计,微积分和线性代数各占一半,因此微积分和线性代数部分考试内容都很重要。

不过,由于各学校对各个部分的要求不同,因此在复习时应该有所侧重。

1、微积分部分微积分部分主要考察极限、导数、一元积分、多元函数极值等。

极限是微积分的基础,导数和一元积分是解决实际问题的工具,多元函数极值是微积分的核心。

因此,在复习时,要注重对基本概念和基本理论的理解和掌握,同时要熟悉一些常用的解题方法和技巧。

2、线性代数部分线性代数部分主要考察矩阵、行列式、线性方程组、矩阵的特征值和特征向量等。

矩阵是线性代数的核心,行列式是解决线性方程组的关键,矩阵的特征值和特征向量是研究矩阵的重要工具。

因此,在复习时,要注重对基本概念和基本理论的理解和掌握,同时要熟悉一些常用的解题方法和技巧。

3、考试重点数学二考试重点包括:极限的计算、导数的应用、一元积分的应用、多元函数极值的求解、矩阵的逆运算、行列式的计算、线性方程组的求解等。

在复习时,应该对这些重点进行深入学习和练习,同时要熟悉一些常用的公式和定理,以便在考试中能够快速准确地解决问题。

数学二考试要求考生全面系统地掌握微积分和线性代数的基本概念和基本理论,同时要熟悉一些常用的解题方法和技巧。

在复习时,应该注重对基本概念和基本理论的理解和掌握,同时要进行大量的练习,以便能够熟练地解决问题。

考研数学数学二试题一、选择题(每题5分,共20分)1、以下哪个选项不是线性方程组的解?(A)x1 = 2,x2 = 3(B)x1 = 1,x2 = 2(C)x1 = 0,x2 = -1(D)x1 = 1,x2 = 12、下列哪个函数在区间[0, ∞)上是单调递增的?(A)f(x) = x^2(B)f(x) = x^3(C)f(x) = 2x(D)f(x) = sin x3、下列哪个选项表示一个连续函数?(A)y = x^2 (x > 0)(B)y = sin x (x > 0)(C)y = e^x (x > 0)(D)y = ln x (x > 0)4、下列哪个矩阵不是对称矩阵?(A)1 2 3; 2 4 5; 3 5 6(B)1 0 0; 0 -1 -2; 0 -2 -3 (C)1 -2 3; -2 -4 -5; 3 -5 -6 (D)1 -2 -3; -2 -4 -5; -3 -5 -6二、填空题(每题4分,共16分)5、若一个矩阵的特征值分别为1,-1,2,则其行列式值为____。

考研数学二 大纲

考研数学二 大纲

考研数学二大纲
加参考文献
中国研究生入学考试管理信息系统(简称CGS)2019年硕士研究生入学考试复试科目
考试复习大纲中指出,考研数学二考试总时为120分钟,覆盖共30小题,每题4分,考
查内容主要有概率论、线性代数和偏微分方程等。

以下是考研数学二复习大纲的详细说明:
第一章概率论
一、概率空间、概率分布、条件概率、独立性:香农定理、概率相等定理、中心极限
定理以及其证明。

二、随机变量的基本概念、函数的概率定义;期望、方差、协方差、协方差的使用;
参数估计的基本理论。

三、检验随机变量符合给定分布;特定总体参数和总体分布的检验。

四、多维概率分布,应用。

第二章线性代数
一、线性变换,基,基变换,矩阵,函数、维度,内积和外积,列主元法,列空间和
行空间的概念;初等变换。

二、线性无关、齐次线性方程组的解;迹,行列式及其应用;克拉默形式和特征值分解;行列式的性质;如何求解逆矩阵。

三、矩阵的运算,精度估计;和单位矩阵、零矩阵。

第三章偏微分方程
一、初等偏微分方程:恰当解、通解、幂级数解;特征根解;正定偏微分方程组。

二、可积系统:梯度、散度、旋度、导流算子;雷诺数、机械冲量;黎曼几何、内积、拉普拉斯算子等;旋风场和磁场;分离变量法;
三、偏微分方程组的逐步近似解法。

[1] 李川. 数学分析及其应用[M]. 第七版. 中国标准出版社, 2018.
[3] 吴正志. 偏微分方程基础理论与计算方法[M]. 第三版. 清华大学出版社, 2018.。

考研数学有哪些线性代数复习重点

考研数学有哪些线性代数复习重点

考研数学有哪些线性代数复习重点考研数学有哪些线性代数复习重点考生们在进入考研数学的感想阶段时,有哪些线性代数是需要复我们去。

店铺为大家精心准备了考研数学线性代数复习难点,欢迎大家前来阅读。

考研数学线性代数复习要点第一章行列式考试内容:行列式的概念和基本性质,行列式按行(列)展开定理。

考试要求:1、了解行列式的概念,掌握行列式的性质。

2、会应用行列式的性质和行列式按行(列)展开定理计算行列式。

第二章矩阵考试内容:矩阵的概念,矩阵的线性运算,矩阵的乘法,方阵的幂,方阵乘积的行列式,矩阵的转置,逆矩阵的概念和性质,矩阵可逆的充分必要条件,伴随矩阵,矩阵的初等变换,初等矩阵,矩阵的秩,矩阵的等价分块矩阵及其运算。

考试要求:1、理解矩阵的概念,了解单位矩阵、数量矩阵、对角矩阵、三角矩阵、对称矩阵和反对称矩阵以及它们的性质。

2、掌握矩阵的线性运算、乘法、转置以及它们的运算规律,了解方阵的幂与方阵乘积的行列式的性质。

3、理解逆矩阵的概念,掌握逆矩阵的性质以及矩阵可逆的充分必要条件,理解伴随矩阵的概念,会用伴随矩阵求逆矩阵。

4、了解矩阵初等变换的概念,了解初等矩阵的性质和矩阵等价的概念,理解矩阵的秩的概念,掌握用初等变换求矩阵的秩和逆矩阵的方法。

5、了解分块矩阵及其运算。

新大纲变化:矩阵一章增加了一个知识点“分块矩阵及其运算”。

解析及应对策略:08年大纲增加了“分块矩阵及其运算”,从而达到了与数学一、数学三和数学四对矩阵要求相统一。

从考试内容和考试要求上看,该知识点的增加其实是对矩阵内容考察的更加完善,充分体现了研究生入学考试的严谨性及对学生的综合能力的考察。

这部分内容的增加,加大了对数学二同学矩阵方面的要求。

同学们在复习这部分内容的时候,结合分块矩阵的定义及分块矩阵的运算性质。

还要对矩阵的几种运算要熟练,比如:对分块矩阵求逆矩阵,分块矩阵的四则运算法则等,做到全面不遗漏。

第三章向量考试内容:向量的概念,向量的线性组合和线性表示,向量组的线性相关和线性无关,向量组的极大线性无关组,等价的向量组,向量组的秩,向量组的秩与矩阵的秩之间的关系,向量的内积,线性无关向量组的的正交规范化方法。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2019考研数学二线性代数复习复习注意内容
来源:智阅网
线性代数是考研数学二中很重要的一部分。

所以,一本考研数学二的相关复习图书,是否适合学生使用,就通过看这本书对于线性代数基础内容的讲解了。

这里就来熟悉一下线性代数的基础内容。

线代概念很多,重要的有代数余子式、伴随矩阵、逆矩阵、初等变换与初等矩阵、正交变换与正交矩阵、秩(矩阵、向量组、二次型)、等价(矩阵、向量组)、线性组合与线性表出、线性相关与线性无关、极大线性无关组、基础解系与通解、解的结构与解空间、特征值与特征向量、相似与相似对角化、二次型的标准形与规范形、正定、合同变换与合同矩阵。

而运算法则也有很多必须掌握:行列式(数字型、字母型)的计算、求逆矩阵、求矩阵的秩、求方阵的幂、求向量组的秩与极大线性无关组、线性相关的判定或求参数、求基础解系、求非齐次线性方程组的通解、求特征值与特征向量(定义法,特征多项式基础解系法)、判断与求相似对角矩阵、用正交变换化实对称矩阵为对角矩阵(亦即用正交变换化二次型为标准形)。

汤老师的2019《考研数学复习大全》(数学二),对相关线性代数的基础和重要知识点都有详尽的讲解,介绍了不少解题方法,对咱们提高考研数学二复习效果,有很大帮助。

相关文档
最新文档