二维核磁共振谱(精简2)_PPT幻灯片
合集下载
核磁共振二维谱
二、二维NMR的分类
2D-NMR可以分为三大类: 1、2D-J分解谱:(1)同核二维J分解谱 (2)异核二维J分解谱 2、2D-化学位移相关谱 : 同核化学位移相关谱(1H-1HCOSY) 异核化学位移相关谱 (1H-13CCOSY) 异核远程相关谱 (nJCH correlations等同于 HMBC谱 ) 3、 多量子跃迁 谱: HSQC 谱 (1H捡出的,异核单量子相干谱) HMQC谱 (1H捡出的,异核多量子相干谱) HMBC谱 (1H捡出的,异核多键相关谱)
190
180
170
160
150
140
130
120
110
100
90
80
70
60
50
40
30
20
10
0.53
ppm
9-β-D-阿糖鸟嘌呤( Ara-G) 的HMQC谱
9-β-D-阿糖鸟嘌呤( Ara-G) 的 HMBC谱
9-β-D-阿糖鸟嘌呤( Ara-G) 的13C-NMR图谱归属
OH
1 5 7 .1 9
H2O
9-β-D-阿糖鸟嘌呤( Ara-G) 的1H-NMR
3
DMSO
2 1 0
7.759 6.470 6.013 6.002 5.626 5.612 5.508 5.498 5.082 5.069 5.055 4.064 4.054 4.042 4.028 4.016 4.005 3.752 3.741 3.730 3.720 3.669 3.656 3.640 3.627 3.615 3.602 3.588 3.573 3.560 3.352 2.503 -0.001
9-β-D-阿糖鸟嘌呤( Ara-G) 的结构
第三章 二维核磁谱解析ppt课件
从NOESY 谱可以判断分子组装:
从NOESY 谱可以判断分子组装:
通过氢谱也可以识别,因为前者结构中两个- Ph 是等价的 ,化学位移相同,而后者不同。
从NOESY 谱可以判断分子组装:
从NOESY 谱可以判断分子组装:
H1ROESY 光谱清楚地显示了环糊精内腔的H-3, H-5 质子与 呋喃环质子的NOE 相关峰(峰A, B, C, D, E, F), 表明呋喃环 进入了环糊精的空腔 . 图中呋喃环上的质子 (HF5,HF4)与环糊 精空腔质子(H-3)的较强相关峰(A, C), 强于质子(HF5, HF4)与 环糊精空腔质子 (H-5) 的相关峰 (B, D); 这些质子相关峰的强 弱说明了取代基呋喃环更靠近环糊精的质子H-3, 即呋喃环位 于环糊精的第二面羟基.同时在谱图中我们能看到, 呋喃环质 子HF3 与H-3 之间存在较弱的相关峰(E), 以及HCH2 与H-3 的弱相关峰 (F),这进一步说明了呋喃环是从环糊精第二面羟 基进入了另外一个环糊精的空腔, 如图4b 所示
COS Y 谱中的对角线把 COSY 谱分为两个部分 . 因为常见
COSY 谱的对角线从左下到右上, 所以COSY 谱的这两部 分就是左上和右下. 由于COSY 谱中的相关峰是沿着对角线 对称分布的, 四此 COSY 谱中两个部分所含的信息相同, 只分析其中的任一部分即可.
3.3 NOESY 谱和ROESY谱 NOESY 谱和ROESY 谱都属于NOE 类相关谱. 这俩种 二维谱的原理和效果有些差别,主要根据所研究的有机化合 物选择.但是这两种二维谱的外形和解析方法是一样的. 在测定常规核磁共振氢谱之后, 如果化合物的结构中有 两个H,它们之间的空间距离比较近(小于5X10-10 m) ,照 射其中一个H的峰组时测定氢谱. 与该H相近的另外一个H的 峰组面积会变化,这就是NOE 效应. 做NOE 差谱,把后面 测得的氢谱减去原来的 ( 常规)氢谱,面积有变化的地方就 会出峰,这就可以发现NOE 效应. 上述的方法是用一维谱的 方式测定NOE 效应. 如果一个化合物中有若干成对的氢原子 空间距离相近,需要照射若干次, 这样显然不方便. NOE 类 的二维谱则是通过一张 NOE 类的二维谱找到 - 个化合物内所 有空间距离相近的氢原子对.
核磁课件 二维谱
第五章 二维核磁共振波谱
Two-dimentional NMR spectra
1
1971年J. Jeener 首次提出了二维核磁共振的概念;Ernst教 授进行了大量卓有成效的研究,推动了二维核磁共振的发展, 再加上他对脉冲-傅立叶变换核磁共振的贡献,获1991年诺 贝尔化学奖 提供相互偶合的观察核之间的相关关系信息 研究分子与分子之间相互作用 确定复杂分子(如生物分子)的结构,了解生物分子在溶液 状态时的空间结构(X-单晶衍射无法做到)
13
H-H二维谱需进行对称处理,去掉不对称的噪声峰。
H-H COSY二对称处理前后的谱图 H-H COSY, TOCSY ;HMQC, HSQC; HMBC
14
2.1、1H-1H COSY
• H-H COSY (H-H correlated spectroscopy) 同核位移相关谱
15
1H-1H COSY谱中的相关峰表示与该峰相交的两个峰之间有 自旋-自旋偶合(J-Coupling)存在。
9
10
11
二. 化学位移相关谱 (COSY)
Two-Dimesional Chemical Shift Correlation Spectroscopy
COSY作用:给出不同化学位移吸收峰之间的空间相关性。 包括同核COSY(通常为H-H耦合)和异核COSY(通常为H-C耦合)。 给出的信息:可以获得H-H之间的2J和3J耦合信息,甚至长程耦合信
通常在化学结构上,两个峰之间有自旋-自旋偶合表示产生 该峰的两个原子之间相隔的化学键数在三键以下。(当它们 之间有双键或三键存在时,四键或五键之间的原子也会有J偶 合存在)
相关峰的强弱(高低)与偶合常数J 值的大小有关,J 值越大相 关峰越强;当偶合常数(J 值)很小时,一维谱上可能表现 不出峰的偶合裂分,但二维谱上仍可能表现出相关峰。
Two-dimentional NMR spectra
1
1971年J. Jeener 首次提出了二维核磁共振的概念;Ernst教 授进行了大量卓有成效的研究,推动了二维核磁共振的发展, 再加上他对脉冲-傅立叶变换核磁共振的贡献,获1991年诺 贝尔化学奖 提供相互偶合的观察核之间的相关关系信息 研究分子与分子之间相互作用 确定复杂分子(如生物分子)的结构,了解生物分子在溶液 状态时的空间结构(X-单晶衍射无法做到)
13
H-H二维谱需进行对称处理,去掉不对称的噪声峰。
H-H COSY二对称处理前后的谱图 H-H COSY, TOCSY ;HMQC, HSQC; HMBC
14
2.1、1H-1H COSY
• H-H COSY (H-H correlated spectroscopy) 同核位移相关谱
15
1H-1H COSY谱中的相关峰表示与该峰相交的两个峰之间有 自旋-自旋偶合(J-Coupling)存在。
9
10
11
二. 化学位移相关谱 (COSY)
Two-Dimesional Chemical Shift Correlation Spectroscopy
COSY作用:给出不同化学位移吸收峰之间的空间相关性。 包括同核COSY(通常为H-H耦合)和异核COSY(通常为H-C耦合)。 给出的信息:可以获得H-H之间的2J和3J耦合信息,甚至长程耦合信
通常在化学结构上,两个峰之间有自旋-自旋偶合表示产生 该峰的两个原子之间相隔的化学键数在三键以下。(当它们 之间有双键或三键存在时,四键或五键之间的原子也会有J偶 合存在)
相关峰的强弱(高低)与偶合常数J 值的大小有关,J 值越大相 关峰越强;当偶合常数(J 值)很小时,一维谱上可能表现 不出峰的偶合裂分,但二维谱上仍可能表现出相关峰。
有机波谱解析 二维NMRppt课件
测定目的:确定(或归属)C和H之间的衔接方式
归属方法:
(i) 在1H核的信号得到归属情况下,进展13C核信号 的
((iiii)) 在1归3C属核.的信号得到归属情况下,进展1H核信号 的
(iii) 归属.
特征:无对角线峰.只出现1H核和13C相关的交叉 峰.
CA
s
HT (3H) HS(1H)
HR (2H) HQ (1H) HP (1H) OH (1H)
二维核磁共振谱
1. 根底知识
(1) 二维核磁共振谱:COSY (correlation spectroscopy) 又称之为二维相关谱或相关谱.
(2) 测定的目的:获得各种相关核(例如,1H-1H相关 1H-13C相关等)的重要信息.
(3) 二维核磁共振谱的方式
COSY的方式
1H,1H-COSY 1H,13C-COSY 以及在此根底上开展起来的其它各种特殊测定
其衔接方式如下:
CC HS HQ
CC核上所衔接的两个氢原 子为不等同的HS和HQ核
对任何一个13C信号都不出现交叉峰的1H信号,能 够对应着OH或NH那样的1H核.
一些特殊情况
(i) 某个13C信号在3个相应的1H位置出现交叉峰时,能够 存在以下几种能够:
C
HA(1H)
1个非等价CH2的和1个CH 的13C信号重合.
留意
(i) 有时对于较远程的巧合也出现交叉峰.因此,显示 交叉峰的1H核之间不一定就相隔三根键.
HH
H
H
C
C
H
H
CCC
CC
(ii) 巧合常数(J)为零的1H之间不出现交叉峰.因此,不 出现交叉峰的1H核之间也有能够是相邻的.
2. 1H,13C-COSY (异核相 关)
归属方法:
(i) 在1H核的信号得到归属情况下,进展13C核信号 的
((iiii)) 在1归3C属核.的信号得到归属情况下,进展1H核信号 的
(iii) 归属.
特征:无对角线峰.只出现1H核和13C相关的交叉 峰.
CA
s
HT (3H) HS(1H)
HR (2H) HQ (1H) HP (1H) OH (1H)
二维核磁共振谱
1. 根底知识
(1) 二维核磁共振谱:COSY (correlation spectroscopy) 又称之为二维相关谱或相关谱.
(2) 测定的目的:获得各种相关核(例如,1H-1H相关 1H-13C相关等)的重要信息.
(3) 二维核磁共振谱的方式
COSY的方式
1H,1H-COSY 1H,13C-COSY 以及在此根底上开展起来的其它各种特殊测定
其衔接方式如下:
CC HS HQ
CC核上所衔接的两个氢原 子为不等同的HS和HQ核
对任何一个13C信号都不出现交叉峰的1H信号,能 够对应着OH或NH那样的1H核.
一些特殊情况
(i) 某个13C信号在3个相应的1H位置出现交叉峰时,能够 存在以下几种能够:
C
HA(1H)
1个非等价CH2的和1个CH 的13C信号重合.
留意
(i) 有时对于较远程的巧合也出现交叉峰.因此,显示 交叉峰的1H核之间不一定就相隔三根键.
HH
H
H
C
C
H
H
CCC
CC
(ii) 巧合常数(J)为零的1H之间不出现交叉峰.因此,不 出现交叉峰的1H核之间也有能够是相邻的.
2. 1H,13C-COSY (异核相 关)
核磁共振波谱-二维谱(研)归纳.ppt
对角峰(Auto peak):位于对 角线(ω1=ω2)上的峰,称 为对角峰。对角峰在F1和F2轴 的投影就是其自身的信号。
演示课件
4.4.2 二维核磁共振谱的分类
15
(1)J分解谱 (J resolved spectroscopy)把化学位 移和自旋偶合的作用分辨开来,包括异 核和同核J谱。
(2)化学位移相关谱 (chemical shift correlation spectroscopy)是二维谱 的核心,通常所指的二维谱就是化学位移相关谱。
二维核磁共振谱
(2D-NMR)
化工与环境学院
2
目录
4.4.1 二维核磁共振谱基础知识 4.4.2 二维核磁共振谱的分类 4.4.3 常见二维核磁共振谱的原理及解析 4.4.4 核磁共振谱的综合解析
演示课件
NMR
射频脉 冲
一
预备期
维
实 验 过 程
检测期 (t2)
S (t2)
傅立叶 变换
S (2)
演示课件
发展期(演化期)(t1) Evolution period
混合期 Mixing period
在t1开始时由一个脉冲或几个脉冲使体系激发,此 时间系控制磁化强度运动,并根据各种不同的化 学环境的不同进动频率对它们的横向磁化矢量作 出标识。
通过相干或极化的传递,建立检测条件。
检测期(t2) Detection period
17
H(1)(δ5.85)有四个点,反 映了其分别与H(2)和H(3)耦 合,从图中可直接读出耦合常数 分别为J1,2=2Hz和J1,3=10Hz。同样 H(4)(δ4.20)与H(5) (δ1.70)耦合,有三个点, J4,5=6.5Hz;H(5)则分别与H(4) 和H(6)耦合,有9个点(其中有 两个部分重合),J4,5=6.5Hz, J5,6=8.0Hz。
演示课件
4.4.2 二维核磁共振谱的分类
15
(1)J分解谱 (J resolved spectroscopy)把化学位 移和自旋偶合的作用分辨开来,包括异 核和同核J谱。
(2)化学位移相关谱 (chemical shift correlation spectroscopy)是二维谱 的核心,通常所指的二维谱就是化学位移相关谱。
二维核磁共振谱
(2D-NMR)
化工与环境学院
2
目录
4.4.1 二维核磁共振谱基础知识 4.4.2 二维核磁共振谱的分类 4.4.3 常见二维核磁共振谱的原理及解析 4.4.4 核磁共振谱的综合解析
演示课件
NMR
射频脉 冲
一
预备期
维
实 验 过 程
检测期 (t2)
S (t2)
傅立叶 变换
S (2)
演示课件
发展期(演化期)(t1) Evolution period
混合期 Mixing period
在t1开始时由一个脉冲或几个脉冲使体系激发,此 时间系控制磁化强度运动,并根据各种不同的化 学环境的不同进动频率对它们的横向磁化矢量作 出标识。
通过相干或极化的传递,建立检测条件。
检测期(t2) Detection period
17
H(1)(δ5.85)有四个点,反 映了其分别与H(2)和H(3)耦 合,从图中可直接读出耦合常数 分别为J1,2=2Hz和J1,3=10Hz。同样 H(4)(δ4.20)与H(5) (δ1.70)耦合,有三个点, J4,5=6.5Hz;H(5)则分别与H(4) 和H(6)耦合,有9个点(其中有 两个部分重合),J4,5=6.5Hz, J5,6=8.0Hz。
二维核磁共振谱原理课件
Table of COSY correlations
shift
shift
Assignments
6.6
6.7
7 -8
5.7
5.3
3 -5
5.7
2.7
3 - 16
5.7
4.9
3-9 weak
5.3
4.2
5 - 10
5.3
2.7
5 - 16
4.9
4.2
9 - 10
4.2
2.9
10 - OH
3.3
2.7
11- 16
3.3
2.4
11 - 14
3.3
2.3
11 - 18'
3.0
2.4
18 - 14
3.0
2.3
18 - 18'
2.6
2.4
13 - 13'
2.6
2.1
13 - 17
2.6
1.9
13 - 17'
2.4
2.1
13' - 17
2.4
1.9
13' - 17'
2.1
1.9
17 - 17'
文档仅供参考,不能作为科学依据,请勿模仿;如有不当之处,请联系网站或本人删除。
The sample is 3.3 mg of codeine in .65 ml CDCl3 A contour plot of the NOESY spectrum is shown below. As with all homonuclear 2D plots, the diagonal consists of intense peaks that match the normal spectrum, as do projections onto each axis. The interesting information is contained in the "cross-peaks", which appear at the coordinates of 2 protons which have an NOE correlation. For small molecules, the NOE is negative. Exchange peaks have the opposite sign from NOE peaks, making them easy to identify. The water peak at 1.5 ppm exchanges with the OH at 2.9 ppm, shown here in red. The spectrum is phased with the large diagonal peaks inverted (shown in red here), so the NOE cross-peaks are positive.
二维核磁共振波谱
2020/1/1
2D NMR谱图
2020/1/1
脉冲序列
在x轴施加不同脉冲角度的射频宏观磁化强度矢量M的 变化情况。
2020/1/1
自旋回波的脉冲序列
90 x
180 x
DE
DE
AQT
自旋回波的脉冲序列为90x°—DE—180x°—DE— AQT,DE表示某一固定的时间间隔(delay);AQT表示 测定信号的采样时间 。
结束
2020/1/1
2020/1/1
1D NMR的脉冲序列和原理示意图
2020/1/1
傅 里 叶 变 换
2020/1/1
2D NMR
通过记录一系列的1D NMR 谱图获得的,每个1D NMR实验的差别仅在于在脉冲序列引入时间增量Δt (t1= t +Δt)。
2020/1/1
11.5.2 2D NMR相关谱
1.1H-1H 相关谱 (1~4)
11.5.1 概述
(1)二维核磁共振波谱:二个时间变量,二次傅里叶变 换,二个独立的频率信号,横坐标和纵坐标均为频率信 号,而第三维则为强度信号。 (2)两坐标代表的化学位移具有相关性,表明所有质子 发生自旋-自旋偶合的信息。 (3)可以是 1H-1H , 1H-13C相关谱;可提供邻近偶合、 远程偶合信息。 (4)不出现一维谱图m6.8~8.6)
2020/1/1
2D NMR 相关谱
间二硝基苯 1H-1H 相关谱
2020/1/1
1H-13C相关谱
2020/1/1
薄荷醇
1H-13C相 关谱
2020/1/1
内容选择
11.1 核磁共振原理 11.2 核磁共振波谱仪 11.3 1H核磁共振波谱 11.4 13C核磁共振波谱 11.5 二维核磁共振波谱 第十二章
2D NMR谱图
2020/1/1
脉冲序列
在x轴施加不同脉冲角度的射频宏观磁化强度矢量M的 变化情况。
2020/1/1
自旋回波的脉冲序列
90 x
180 x
DE
DE
AQT
自旋回波的脉冲序列为90x°—DE—180x°—DE— AQT,DE表示某一固定的时间间隔(delay);AQT表示 测定信号的采样时间 。
结束
2020/1/1
2020/1/1
1D NMR的脉冲序列和原理示意图
2020/1/1
傅 里 叶 变 换
2020/1/1
2D NMR
通过记录一系列的1D NMR 谱图获得的,每个1D NMR实验的差别仅在于在脉冲序列引入时间增量Δt (t1= t +Δt)。
2020/1/1
11.5.2 2D NMR相关谱
1.1H-1H 相关谱 (1~4)
11.5.1 概述
(1)二维核磁共振波谱:二个时间变量,二次傅里叶变 换,二个独立的频率信号,横坐标和纵坐标均为频率信 号,而第三维则为强度信号。 (2)两坐标代表的化学位移具有相关性,表明所有质子 发生自旋-自旋偶合的信息。 (3)可以是 1H-1H , 1H-13C相关谱;可提供邻近偶合、 远程偶合信息。 (4)不出现一维谱图m6.8~8.6)
2020/1/1
2D NMR 相关谱
间二硝基苯 1H-1H 相关谱
2020/1/1
1H-13C相关谱
2020/1/1
薄荷醇
1H-13C相 关谱
2020/1/1
内容选择
11.1 核磁共振原理 11.2 核磁共振波谱仪 11.3 1H核磁共振波谱 11.4 13C核磁共振波谱 11.5 二维核磁共振波谱 第十二章
二维核磁共振谱()
*CW-NMR扫描速度不能太快,通常全扫描时间为200-300s。 若扫描太快,共振来不及弛豫,信号将严重失真(畸变)。
4-2 基本原理
I≠0的原子核具有核磁矩,在一定条件下可以发生 核磁共振。由于是大量原子核的行为,可从宏观的角度 来讨论。
宏观磁化强度矢量(macroscopic magnetization vector)M为单位体 积内N个原子核磁矩μi的矢量和:
但却同时都发生了共振。
为满足 B12F
B1必须很强。同时B1的作用时间也应该很短。
类似于 B0 ,在旋转坐标系中M绕x'轴
转动的角速度Ω可用下式描述
B1
设B1的作用时间,也就是脉冲的宽度为tp,则M在
tp时间间隔内转动的角度θ为: t p B1t p
设θ=90°(这样的脉冲叫做90°脉冲),此时
当ν−ν0=1/tp时, C(ν−ν0)为0
ν
以氢谱而论,一般tp<10μs,因此1/tp>105Hz,频谱 非常宽。当取核磁谱图中心为ν0 ,在谱图中所可能出现 的ν−ν0小于二分之一谱宽,对氢谱来说,仅约5ppm。 设所用仪器为500MHz,5ppm仅对应2500Hz,它远远小
于105Hz。相应于核磁谱图,ν−ν0相距ν0 较近。 C(ν−ν0) 实际上近似等于C(ν0)。即各种氢核虽然共振频率不同, 但受射频作用的强度近似相等,这对于定量测定是很
resonance spectroscopy for determining the three-dimensional structure of biological macromolecules in solution".
他获得2002年诺贝尔化学奖另一半的奖金。
4-2 基本原理
I≠0的原子核具有核磁矩,在一定条件下可以发生 核磁共振。由于是大量原子核的行为,可从宏观的角度 来讨论。
宏观磁化强度矢量(macroscopic magnetization vector)M为单位体 积内N个原子核磁矩μi的矢量和:
但却同时都发生了共振。
为满足 B12F
B1必须很强。同时B1的作用时间也应该很短。
类似于 B0 ,在旋转坐标系中M绕x'轴
转动的角速度Ω可用下式描述
B1
设B1的作用时间,也就是脉冲的宽度为tp,则M在
tp时间间隔内转动的角度θ为: t p B1t p
设θ=90°(这样的脉冲叫做90°脉冲),此时
当ν−ν0=1/tp时, C(ν−ν0)为0
ν
以氢谱而论,一般tp<10μs,因此1/tp>105Hz,频谱 非常宽。当取核磁谱图中心为ν0 ,在谱图中所可能出现 的ν−ν0小于二分之一谱宽,对氢谱来说,仅约5ppm。 设所用仪器为500MHz,5ppm仅对应2500Hz,它远远小
于105Hz。相应于核磁谱图,ν−ν0相距ν0 较近。 C(ν−ν0) 实际上近似等于C(ν0)。即各种氢核虽然共振频率不同, 但受射频作用的强度近似相等,这对于定量测定是很
resonance spectroscopy for determining the three-dimensional structure of biological macromolecules in solution".
他获得2002年诺贝尔化学奖另一半的奖金。
二维核磁共振谱原理培训课件
HMQC is selective for direct C-H coupling HMBC will give longer range couplings (2-4 bond coupling).
二维核磁共振谱原理
19
NOESY Spectrum of Codeine
Expansion of the upfield region:
8 - 7, 12 7 - 18, 18' 3 - 5, 10 5 - 11, 16, 18' 9 - 10, 17, 17' 10 - 16 11 - 18, 16, 14, 18' 18 - 13, 18' 16 - 14, 17 13 - 14, 17, 17' 13' - 17, 17' 17 - 17'
24
2 D 远程C-H COSY
二维核磁共振谱原理
25
HMQC and HMBC
Heteronuclear Multiple Quantum Coherence (HMQC) and Heteronuclear Multiple Bond Coherence (HMBC): 2-D inverse H,C correlation techniques that allow for the determination of carbon (or other heteroatom) to hydrogen connectivity.
二维核磁共振谱原理
二维核磁共振谱原理
2
二维核磁共振谱原理
3
二维核磁共振谱原理
4
二维核磁共振谱原理
5
二维核磁共振谱原理
6
COSY: Hypothetical Coupling
二维核磁共振谱原理
19
NOESY Spectrum of Codeine
Expansion of the upfield region:
8 - 7, 12 7 - 18, 18' 3 - 5, 10 5 - 11, 16, 18' 9 - 10, 17, 17' 10 - 16 11 - 18, 16, 14, 18' 18 - 13, 18' 16 - 14, 17 13 - 14, 17, 17' 13' - 17, 17' 17 - 17'
24
2 D 远程C-H COSY
二维核磁共振谱原理
25
HMQC and HMBC
Heteronuclear Multiple Quantum Coherence (HMQC) and Heteronuclear Multiple Bond Coherence (HMBC): 2-D inverse H,C correlation techniques that allow for the determination of carbon (or other heteroatom) to hydrogen connectivity.
二维核磁共振谱原理
二维核磁共振谱原理
2
二维核磁共振谱原理
3
二维核磁共振谱原理
4
二维核磁共振谱原理
5
二维核磁共振谱原理
6
COSY: Hypothetical Coupling
2D核磁共振谱PPT课件
WDW
QSINE
SSB
0
LB
0.00 Hz
GB
0
32
HMBC 与HMQC的区别
HMQC是通过异核多量子相干实验把1H核和与其直接相连的 13C核关联起来。
HMBC则是通过异核多量子相干实验把1H核和远程偶合的13C 核关联了起来,其作用类似于COLOC谱
.
H1 H2 H3 H4 —C1 —C2 —C3—C4 —
氢-氢化学位移相关谱 (H,H-COSY) 氢-碳化学位移相关谱 (H,C-COSY) 二维接力相关谱2D RELAYED 总相关谱(TOCSY谱)
20
(1) 氢-氢相关谱 H,H-COSY(同核相关)
V icinal
HH
Ge m inal
CCH
.
21
AX自旋体系的H,HCOSY 示意图
5 CDCl3
32 1
ppm
32 1
30
CDCl3
O
3
CH3
40 50
1 H 3C N 8 4 N
60 70
7
5H
80
O
N6 N
90
4
CH3
100
2
110
120
130
876 5
140
150
160
8.0
7.5
7.0
6.5
6.0
5.5
5.0
4.5
4.0
3.5
ppm
.
Current Data Parameters
4.3.1 二维J分解谱
二维J分解谱一般不提供比一维NMR谱更多的
信息,只是将谱峰的化学位移和偶合常数分 别在两个不同的坐标轴上展开,便于解析复 杂谱峰的偶合常数。
二维核磁共振谱ppt课件
.
• 1。COSY-90。的基本脉冲序列包括两个基本脉 冲在此脉冲作用下,根据发展期t1的不同,自旋 体系的各个不同的跃迁之间产生磁化传递,通过 同核偶合建立同种核共振频率间连接图。此图的 二个轴都是1H的δ在ω1=ω2的对角线上可以找 出一维1H谱相对应谱峰信号。通过交叉峰分别作 垂线及水平线与对角线相交,即可以找到相应偶 合的氢核。因此从一张同核位移相关谱可找出所 有偶合体系,即等于一整套双照射实验的谱图 。
.
2。二维谱实验
• A.原则上二维谱可以用概念上不同的三种 实验获得,(如图4.1),(1).频率域实验 (frequency- frequency) (2).混合时域 (frequency-time)实验(3). 时域(time-time) 实验.它是获得二维谱的主要方法,以两个独 立的时间变量进行一系列实验,得到S(t1,t2), 经过两次傅立叶变换得到二维谱S(ω1,ω2). 通常所指的2D-NMR均是时间域二维实验
干转移的COSY交叉峰,正确选择D2可以衰减大 J产生的相关峰,有可能检测到4~5键质子间的 偶合(0.1~0.5Hz).
.
.
.
• 在解析LRCOSY中一定要 将COSY与LRCOSY共同比较, 确定哪些是大的 偶合,(2J,3J) 哪些是远程偶合。
.
• 与COSY有关的实验自旋回波 COSY(SECSY),双量子相干谱(DQCCOSY),同核接力相干谱(RCT).有兴趣 的同学,可以阅读有关的书籍。
.
.
• 谱图正负峰以不同的颜色表示(下图蓝色圆圈为 正峰,红色为负峰)。也可以用实心表示正峰, 空心表示负峰。
• 其交叉峰为纯吸收线形,对角线为色散型 • 从相敏COSY可以直接读出J值。这里需要辨认主
• 1。COSY-90。的基本脉冲序列包括两个基本脉 冲在此脉冲作用下,根据发展期t1的不同,自旋 体系的各个不同的跃迁之间产生磁化传递,通过 同核偶合建立同种核共振频率间连接图。此图的 二个轴都是1H的δ在ω1=ω2的对角线上可以找 出一维1H谱相对应谱峰信号。通过交叉峰分别作 垂线及水平线与对角线相交,即可以找到相应偶 合的氢核。因此从一张同核位移相关谱可找出所 有偶合体系,即等于一整套双照射实验的谱图 。
.
2。二维谱实验
• A.原则上二维谱可以用概念上不同的三种 实验获得,(如图4.1),(1).频率域实验 (frequency- frequency) (2).混合时域 (frequency-time)实验(3). 时域(time-time) 实验.它是获得二维谱的主要方法,以两个独 立的时间变量进行一系列实验,得到S(t1,t2), 经过两次傅立叶变换得到二维谱S(ω1,ω2). 通常所指的2D-NMR均是时间域二维实验
干转移的COSY交叉峰,正确选择D2可以衰减大 J产生的相关峰,有可能检测到4~5键质子间的 偶合(0.1~0.5Hz).
.
.
.
• 在解析LRCOSY中一定要 将COSY与LRCOSY共同比较, 确定哪些是大的 偶合,(2J,3J) 哪些是远程偶合。
.
• 与COSY有关的实验自旋回波 COSY(SECSY),双量子相干谱(DQCCOSY),同核接力相干谱(RCT).有兴趣 的同学,可以阅读有关的书籍。
.
.
• 谱图正负峰以不同的颜色表示(下图蓝色圆圈为 正峰,红色为负峰)。也可以用实心表示正峰, 空心表示负峰。
• 其交叉峰为纯吸收线形,对角线为色散型 • 从相敏COSY可以直接读出J值。这里需要辨认主
核磁二维谱
2
基本原理
一维核磁谱的信号是一个频率的函数,共振峰分 布在一个频率轴(或磁场)上,可记为S(ω)。
二维谱信号是二个独立频率(或磁场)变量的函 数,记为S(ω1,ω2),共振信号分布在两个频率轴组 成的平面上。也就是说2D NMR将化学位移、偶合常 数等NMR参数在二维平面上展开。
3
二维谱共振峰的名称
对角峰:它们处在坐标F1=F2的对角线上。对角峰在 F1或F2上的投影得到常规的一维偶合谱或去偶谱。
交叉峰:交叉峰也称为 2 1
34
5
相关峰(F1≠F2),在 对角线两侧并对称,和
对角峰可以组成一个正
F1
方形,由此可推测这两
组核存在偶合关系。
O
CH3 CH2
54
CH2 CH2
32
C
CH3
1
F2
4
同核化学位移相关谱
1H检测的异核化学位移相关谱:两个不同核的频率 通过标量偶合建立起来的相关谱。应用最广泛的是1H13C COSY。
11
13C-1H COSY
12
1H检测的异核多量子相关谱(HMQC)
常规的13C检测的异核直接相关谱,灵敏度低,样品的 用量较大,测定时间较长;
HMQC(异核多量子相关谱)技术很好地克服了上述缺 点,HMQC实验是通过多量子相干,检测1H信号而达到间 接检测13C的一种方法;
有机波谱分析
二维核磁谱(2D-NMR)
二维核磁共振波谱法
➢ 二维核磁共振(2D-NMR)是Jeener于1971年提出, 是一维谱衍生出来的新实验方法;
➢ 可将化学位移、偶合常数等参数展开在二维平面 上,减少了谱线的拥挤和重叠;
➢ 提供的HH、CH、CC之间的偶合及空间的相互作用, 确定它们之间的连接关系和空间构型。
基本原理
一维核磁谱的信号是一个频率的函数,共振峰分 布在一个频率轴(或磁场)上,可记为S(ω)。
二维谱信号是二个独立频率(或磁场)变量的函 数,记为S(ω1,ω2),共振信号分布在两个频率轴组 成的平面上。也就是说2D NMR将化学位移、偶合常 数等NMR参数在二维平面上展开。
3
二维谱共振峰的名称
对角峰:它们处在坐标F1=F2的对角线上。对角峰在 F1或F2上的投影得到常规的一维偶合谱或去偶谱。
交叉峰:交叉峰也称为 2 1
34
5
相关峰(F1≠F2),在 对角线两侧并对称,和
对角峰可以组成一个正
F1
方形,由此可推测这两
组核存在偶合关系。
O
CH3 CH2
54
CH2 CH2
32
C
CH3
1
F2
4
同核化学位移相关谱
1H检测的异核化学位移相关谱:两个不同核的频率 通过标量偶合建立起来的相关谱。应用最广泛的是1H13C COSY。
11
13C-1H COSY
12
1H检测的异核多量子相关谱(HMQC)
常规的13C检测的异核直接相关谱,灵敏度低,样品的 用量较大,测定时间较长;
HMQC(异核多量子相关谱)技术很好地克服了上述缺 点,HMQC实验是通过多量子相干,检测1H信号而达到间 接检测13C的一种方法;
有机波谱分析
二维核磁谱(2D-NMR)
二维核磁共振波谱法
➢ 二维核磁共振(2D-NMR)是Jeener于1971年提出, 是一维谱衍生出来的新实验方法;
➢ 可将化学位移、偶合常数等参数展开在二维平面 上,减少了谱线的拥挤和重叠;
➢ 提供的HH、CH、CC之间的偶合及空间的相互作用, 确定它们之间的连接关系和空间构型。
二维核磁共振谱
• 1。COSY-90。的基本脉冲序列包括两个基本脉 冲在此脉冲作用下,根据发展期t1的不同,自旋 体系的各个不同的跃迁之间产生磁化传递,通过 同核偶合建立同种核共振频率间连接图。此图的 二个轴都是1H的δ在ω1=ω2的对角线上可以找 出一维1H谱相对应谱峰信号。通过交叉峰分别作 垂线及水平线与对角线相交,即可以找到相应偶 合的氢核。因此从一张同核位移相关谱可找出所 有偶合体系,即等于一整套双照射实验的谱图 。
hm
ed
cd bc fh
hk
ci
c fe d e f k
i b a h m
ab af
e
H f h
a OH k
b
C
d
OH
i
m
• 它只有一个双量子跃迁,其频率正比于两个偶 合的13C核的化学位移之和的平均值。所以如果 两个碳具有相同的双量子跃迁频率,即可以判 断,它们是相邻。 • 在INADEQUATE谱图中F1与F2分别代表双量子 跃迁频率和13C的卫线,依次代表双量子和单量 子跃迁频率。谱图中一个轴是13C的化学位移, 一个为双量子跃迁频率,其频率正比于两个偶 合的13C核的化学位移之和的平均值。因此谱图 中F1=2F21的斜线两侧对称分布着两个相连的 13C原子信号,表示碳偶合对的单量子平均频率 与双量子频率间的关系,水平连线表明一对偶 合碳具有相同的双量子跃迁频率,可以判断它 们是直接相连的碳。依此类推可以找出化合物 中所有13C原子连接顺序。
• 在解析LRCOSY中一定要 将COSY与LRCOSY共同比较, 确定哪些是大的 偶合,(2J,3J) 哪些是远程偶合。
• 与COSY有关的实验自旋回波 COSY(SECSY),双量子相干谱(DQCCOSY),同核接力相干谱(RCT).有兴趣 的同学,可以阅读有关的书籍。
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2021/3/7
化学位移
J 偶 合
17
丙烯酸丁酯的同核J分解谱
2021/3/7
18
2. 异核J分解谱
谱信息: w2: 全去偶谱 →化学位移 dC w1: 谱线裂分 → 偶合常数JCH
(直接相连的氢原子耦合裂分产生)
CH3 ---四重峰,CH2---三重峰,CH ---双重峰。 由于DEPT等测定碳原子级数的方法能代替异核J 谱,且检 测速度快,操作方便,因此异核J 谱较少应用。
➢ 一般反应3J耦合关系,远程耦合较弱, 不产生交叉峰。当3J较小时(如两面角 接近90o)也可能无交叉峰。
2021/3/7
22
1
1
23 56
234
56 7
7 4
3H
1H 4
5
6
7
2021/3/7
2 H C=C-O-CH2-CH2-CH2-CH3
23
Problem 1. The schematic 1H
减小COSY脉冲序列中第二个脉冲的宽度,使脉冲角度 为度,较多使用45。 优点: (1)对角线峰沿对角线的宽度降低,有利于发现强耦 合体系之间的相关峰; (2)从COSY-45可判别耦合常数的符号。
2021/3/7
26
XX
MM A
2021/3/7
COSY-90
2,3-二溴丙酸
谱中任意一个交叉峰含两个紧靠的矩 形(它们共同形成一个交叉峰),通 过稍下的矩形中心往稍上的矩形中心 连线,可得到一倾斜的箭头。箭头指 向左上为正,箭头指向右上为负。
等高线图 Contour plot
截面图 Section
投影图 Projection
2021/3/7
9
堆积图
把堆积图用平行于F1和F2域的平面进行平 切后所得。
等高线图
等高线图中最中心的圆圈表 示峰的位置,圆圈的数目表 示峰的强度。
2021/3/7
10
2021/3/7
等高线图
从2D图中取出某一个谱 峰(F1或F2 )所对应相 关峰的1D断面图,对检 测一些弱小的相关峰很有 用。
间接探测期
直接探测期
3
交叉峰或 相关峰
对角峰或 自相关峰
2021/3/7
对角峰或 自相关峰
交叉峰或 相关峰
6
二维谱的分类
J分解谱 J Resolved Spectroscopy, d-J 谱 同核 (homonuclear), 异核(heteronuclear)
化学位移相关谱 Chemical Shift Correlation Spectroscopy, d- d 谱 同核偶合, 异核偶合, NOE 和化学交换
2021/3/7
12
同核J分解谱 AX体系
谱信息: (弱偶合体系) ≥10时为弱偶合,一级图谱。 w2: 全去偶谱 →化学位移 dH,转动前化学位移与耦合常数同时出现。 w1: 谱线多重性 → 偶合常数 JHH,峰组的峰数一目了然。 若为强偶合体系,其同核J谱的表现形式将比较复杂。
2021/3/7
site in the molecule.
O
C H3 C H2 C H2 C H2 C C H3
6 5 4 321
2021/3/7
24
F2域及F1域皆为1D 1H-NMR
先用化学位移判断, 后用交叉峰验证。
2位H与3位H 3位H与4位H
2021/3/7
谷氨酸的COSY90o等高线图
25
6 COSY-45(-COSY)
2021/3/7
1
2021/3/7
2
预个备较期长在的时时间期轴,上 它通 使常 实是 验在 个 于一 前t脉 非1开冲 平始使 衡时体 状由系 态一激 。个在 号发 发脉混 检, 展冲合 出使期或期的之的几建条处时立件信。 的体系回复到平衡状态。间t1是变化的
以通常方式检出 FID 信号。
2021/3/7
对角峰或 自相关峰
2021/3/7
对角峰或 自相关峰
交叉峰或 相关峰
21
同核位移相关谱
1. 1H-1H COSY 简化多重峰,直观地给出耦合关系。
➢ 最常用的位移相关谱。 1H-1H COSY实验相当于做一系列连
续选择性去耦实验去求得耦合关系,用 以确定质子之间的连接顺序。
➢ 解谱方法:以任一交叉峰为出发点, 可以确定相应的2组峰组的耦合关系而 不必考虑氢谱中的裂分峰形。交叉峰是 沿对角线对称分布的,因而只分析对角 线一侧的交叉峰即可。
投影图
是1D谱形式,相当于宽 带质子去偶氢谱,可准 确确定各谱峰的化学位 移值。
截面图
11
J分解谱
1. 同核J分解谱
一维谱中谱峰往往严重重叠,造成谱线裂分不 能 清楚分辨, 耦合常数不易读出。
在二维 J分解 谱中,只要化学位移 d 略有差别,
峰组的重叠就有可能避免,从而解决一维谱谱峰重 叠的问题。
COSY spectrum of 2hexanone is given below.
31
45
6
Using the COSY spectrum,
assign the 1H NMR
resonances of 2-hexanone, i.e.
establish which resonance
belongs to which specific H
多量子谱 Multiple Quantum Spectroscopy
2021/3/7
7
Acronyms For Basic Experiments Differ Only By The Nature Of Mixing
2021/3/7
8
二维谱的表现方式
堆积图 Stacked trace plot
13
同核J分解谱
AX体系J谱
w1
A
2021/3/7
X
w2
J J
AX2体系J谱
w1
A
X
w2
14
同核J分辨谱: AX3体系J谱
2021/3/7
15
应用:
拓普霉素 六元环上的取代基是 平伏键或直立键 Jaa> Jae ≥ Jee
1D 1H 谱裂分不清楚 J值不易求出
2021/3/7
16
同核J 分解谱
2021/310
7
9
16
8
O
5 4
CH3 ---四重峰(5-Me,1,1’ –Me, 10); CH2---三重峰(2,3,4); CH ---双重峰(7,8) 。
2021/3/7
20
位移相关谱
交叉峰或 相关峰
➢对角峰(diagonal peaks, 自相关 峰):对角线上的峰,它们和氢谱的 峰组一一对应,不提供耦合信息。 ➢ 交叉峰(cross peaks,相关峰): 对角线外的峰,反映2个峰组间的 耦合关系,主要反映3J偶合关系。 ➢F1、F2两维坐标均表示化学位移。