计算机组成原理第1章计算机系统概论

合集下载

计算机组成原理第1章PPT课件

计算机组成原理第1章PPT课件

3.数据传输率与数据通路宽度 (1)数据通路宽度: 数据总线一次能并行 传输的数据位数。 (2)数据传输率(带宽):数据总线每秒 传输的数据量。
总线位数×总线时钟频率
总线带宽 =
8
(B/S)
主存带宽 =?
4.存储容量
1)主存容量
K、M、G、T
1024
指存储单元个数 × 位数。
决定地址位数
存储体
控制线路
数据寄存器 读/写线路
译码器
…………
地址寄存器
…………
存储体: 存放信息的实体。 寻址系统:对地址码译码,选择存储单元。 读/写线路和数据寄存器:完成读/写操作,暂 存读/写数据。 控制线路:产生读/写时序,控制读/写操作。 3)讨论 存储单元读/写原理、存储器逻辑设计
(3) 输入/输出设备 1)功能:转换信息。
换、逻辑控制等功能。
2.典型的硬件系统结构 (1)以总线为基础的系统结构 特点:结构简单、控制方便、扩展容易。
总线
部件 部件 部件
单总线结构 系统总线
CPU
M
接口
I/O
接口 I/O
(2)采用通道或IOP的系统结构 带通道的系统(图1-6)
主机
通道
I/O控制器
I/O
• 规模较小的系统可将通道部件设置在 CPU内部。
1.3.2 计算机的主要性能指标
1.基本字长 指操作数的基本位数。 和运算器、寄存器、总线有关,它影响
计算精度、指令功能。 8 — 16 — 32 — 64位
2. 运算速度 (1)定点/浮点四则运算时间
(2)每秒平均执行的指令条数(MIPS) (3)CPU时钟频率(Hz)
5M 100M 1G 2.0G 3.2G (4)典型程序执行时间 (5)每条指令平均执行周期.事先编制程序 2.事先存储程序 3.自动、连续地执行程序

计算机组成原理第一章

计算机组成原理第一章

被减数 减法 差
乘数
乘法 乘积高位 乘积低位
被除数
除法 余数

X
加数
减数
被乘数 除数
第23页,共63页。
① 加法操作过程
ACC MQ ALU
X
运算器
指令

初态 ACC [M]
[ACC]+[X]
M
被加数 X ACC
第24页,共63页。
② 减法操作过程
ACC MQ ALU
X
运算器
指令

初态 ACC [M]
[ACC]-[X]
M
被减数 X ACC
第25页,共63页。
③ 乘法操作过程
AC0 C MQ
AALUU
X
运算器
指令

M
初态 ACC [M]
[ACC]
0
[X]×[MQ]
第26页,共63页。
被乘数 MQ X
ACC
ACC∥MQ
④ 除法操作过程
ACC MQ ALU
X
运算器
指令

M
初态 ACC
被除数
[M] X
同组成和实现的一系列(Family)不同档次、不同
型号的机器
兼容机
系列机和兼容机需要保证向后兼容
不同厂家生产的具有相同计算机结构(不同的组成 和实现)的计算机
第39页,共63页。
1.3 计算机硬件的主要技术指标
1.机器字长 CPU 一次能处理数据的位数
与 CPU 中的 寄存器位数 有关
2.运算速度
第43页,共63页。
用脑电波控制的电脑:附着在人头皮的传感器把 脑电波传给电脑,也可用无线电传递,在数千米 之外就能轻而易举的控制电脑。

计算机组成原理(白中英)

计算机组成原理(白中英)

D0
D1
D2
D3
A校验码 B校验码 C校验码 D校验码
系统结构
RAID4
I/O系统
❖ 专用奇偶校验独立存取盘阵列
❖ 数据以块(块大小可变)交叉的方式存于各盘, 奇偶校验信息存在一台专用盘上
数据块
校验码 产生器
A0
A1
A2
A3
B0
B1
B2
B3
C0
C1
C2
C3
D0
D1
D2
D3
A校验码 B校验码 C校验码 D校验码
❖ 只写一次光盘
只写一次光盘(Write Once Only):可以由用户写入 信息,不过只能写一次,写入后不能修改,可以多次读 出,相当于PROM。在盘片上留有空白区,可以把要修 改和重写的的数据追记在空白区内。
❖ 可檫写式光盘
可檫写式光盘(Rewriteable):利用磁光效应存取信 息,采纳特殊的磁性薄膜作记录介质,用激光束来记录、 再现和删除信息,又称为磁光盘,类似于磁盘,可以重 复读写。
RAID6
I/O系统
❖ 双维奇偶校验独立存取盘阵列
❖ 数据以块(块大小可变)交叉方式存于各盘, 检、纠错信息均匀分布在全部磁盘上
系统结构
A0 A1 A2
3校验码 D校验码
B0 B1
2校验码 C校验码
B2
C0
1校验码 B校验码
C1 C2
0校验码 A校验码
D1 D2 D3
校验码 产生器
7.7 光盘存储设备
– 正脉冲电流表示“1”,负脉冲电流表示“0”; – 不论记录“0”或“1”,在记录下一信息前,记录电流
恢复到零电流 – 简洁易行,记录密度低,改写磁层上的记录比较困难,

北京化工大学-裴颂伟计算机组成原理-第1章计算机系统概论

北京化工大学-裴颂伟计算机组成原理-第1章计算机系统概论

1.2计算机发展简史
三、微处理器的发展 1971年Intel公司开发出Intel 4004。这是第一个将CPU的
所有元件都放入同一块芯片内的产品,于是,微处理器诞 生了。 微处理器演变中的另一个主要进步是1972年出现的Intel 8008,这是第一个8位微处理器,它比4004复杂一倍。 1974年出现了Intel 8080。这是第一个通用微处理器,而 4004和8008是为特殊用途而设计的。8080是为通用微机而 设计的中央处理器。 20世纪70年代末才出现强大的通用16位微处理器,8086便 是其中之一。 这一发展趋势中的另一阶段是在1981年,贝尔实验室和HP 公司开发出了32位单片微处理器。 Intel于1985年推出了32位微处理器Intel 80386。 到现在的64
裴颂伟-2021年8月20日星期五
计算机组成原理
11/78
1.2计算机发展简史
第一代:电子真空管(Vacuum Tube )1946~57年
46年诞生第1台电子计算机 ENIAC(埃尼阿克)
裴颂伟-2021年8月20日星期五
计算机组成原理
12/78
ENIAC(埃尼阿克)
体积大,重30吨,有18000多个真空管,每个电子管大约有 一个普通家用25瓦灯泡那么大!这样ENIAC就有了8英尺高 (约2.44米)、3英尺宽、100英尺长的身躯,重达30吨, 耗电140千瓦。每秒能进行5000次加法运算(据测算,人 最快的运算速度每秒仅 5次加法运算。
一、计算机的五代变化
第一代为1946—1957年,电子管计算机:数据 处理
第二代为1958—1964年,晶体管计算机:工业 控制
第三代为1965—1971年,中小规模集成电路计 算机:小型计算机

计算机组成原理

计算机组成原理

2、总线规范
每个总线标准都有详细的规范说明,一般包括以下几个部分 1)机械性能规范:模板尺寸、插头、连接器的规格及位置 等。 2)功能规范:信号线的序号、名称及功能等。 3)电气特性的规范:信号线的电平种类、动态转换时间、 负载能力等。
五、总线的性能指标
评价总线性能的优劣 1、总线宽度:主要是指数据总线的数目。如4/8/16/32/64 直接影响总线的传输率(吞吐量) 2、标准传输率(总线带宽) 单位时间内总线上传输数据的位数。以MB/S表示。 例如:某总线工作频率为8.33MHZ,总线宽度为16位,则 标准传输率为 8.33M×2B/s=16.66MB/s 3、总线定时协议(握手机制) 数据传输采用何种时钟控制。分为同步、异步、半同步、 分离式几种 4、总线控制方式:如仲裁机制、自动配置等。 5、总线复用 两种不同时出现的信号共用一组物理线路,即分时使用同 一组总线,称为总线的多路分时复用。其目的在于减少芯 片的引脚数。 6、信号线数:总线所包含的全部信号线的总数。 7、其它指标:如负载能力、电源电压、能否扩展等。
第三章 系统总线
3.1 总线概述 3.2 常用的总线标准 3.3 总线结构
3.4 总线控制
3.1 总线概述
一、为什么要用总线
机内部件间互连方式:
早期:分散连接 以运算器为核心,内部连线复杂,尤其是当I/O 与存储器交换信息时,都需要经过运算器,严重影 响CPU的工作效率。
采用存储器为核心的分散连接结构,虽采用中断、 DMA等技术,仍无法解决I/0设备与主机之间连接的 灵活性。 目前:总线连接
MAR MDR 容量 10 8 1 K × 8位 16 32 64 K × 32位
1K = 210
2 b = 1 KB 1B = 23b 221b = 256 KB 80 GB

上海大学《计算机组成原理》笔记概要总结

上海大学《计算机组成原理》笔记概要总结

计算机组成原理第一章—计算机系统概论1.1计算机系统的简介1. 计算机系统由硬件与软件两大部分组成2. 将高级程序语言翻译成机器语言的程序称为翻译程序,翻译程序有两种,一种是编译程序,一种是解释程序,编译与解释的区别在于,编译程序是将高级语言程序一次性翻译为机器语言程序,而解释程序是翻译一句,执行一句。

3. 高级语言经过编译程序翻译为汇编语言,汇编语言经汇编程序,翻译为机器语言程序1.2计算机的基本组成1.1945年冯诺依曼提出了"存储程序"的概念,冯诺依曼机特点:1. 计算机由存储器,运算器,控制器,输入设备与输出设备组成2. 指令与数据以同等地位存放在存储器内,按地址寻访3. 指令与数据均按二进制数表示4. 指令由操作码与地址码组成,操作码用来表示操作的性质,地址码用来表示操作数在存储器中的位置5. 指令在存储器内按顺序存放6. 计算机以运算器为中心,输入设备与输出设备的数据传送通过运算器来完成2.冯诺依曼机是由运算器为中心的,现代计算机是以存储器为中心的3.计算机的工作过程(必考)涉及的元器件:MAR(地址寄存器),MDR(指令寄存器),ALU(算数逻辑单元),ACC(累加器),MQ(乘商寄存器),PC(程序计数器),IR(指令寄存器)(掌握执行指令的全过程)4.机器字长:机器字长是指CPU一次能处理数据的位数,通常与CPU的寄存器位数有关5.存储容量:存储容量存储单元个数存储字长6.运算速度(可能出计算):Vm = 1 / Tm 单位MIPS(百万指令每秒)CPI (执行每条指令所需要的时钟周期)= 1 / IPC(CPU每一周期执行指令的条数,一旦CPU设计完成,IPC的值不会变)第三章—系统总线3.1总线的基本概念总线是连接多个部件的信息传输线,是各部件共享的介质(总线的每条传输线可以传输1位二进制代码)3.2总线的分类总线按照数据传送方式可分为两类:1. 并行传输总线2. 串行传输总线按连接部件的不同可以分为三类(掌握加粗部分):1. 片内总线(指芯片内部的总线)2. 系统总线3. 通信总线3.2.1片内总线概念:片内总线是指芯片内部的总线3.2.2系统总线系统总线是指CPU,I/O设备,主存各大部件的信息传输线按照系统总线的传输信息不同,可分为三类:1. 数据总线2. 地址总线3. 控制总线1.数据总线:双向传输总线,与机器字长与存储字长有关2.地址总线:单向传输总线,由CPU发出,主存的地址线位数与存储单元的个数有关3.控制总线:从单个来说传输是单向的,从总体来说传输的双向的3.2.3通信总线(了解即可)这类总线用于计算机系统之间或计算机系统与其他操作系统之间的通信3.3总线特征与性能指标3.3.2总线性能指标1.总线宽度:总线宽度可以数据总线的宽度,用位来表示,例如8位,16位,32位2.总线带宽(要求会计算,且掌握提高总线速率的方式):总线带宽可以理解为总线的传输速率,即单位时间上的传输数据的位数,通常用每秒传输的字节数来衡量,单位Mbps(兆字节每秒)例子:总线的频率为33Hz,总线宽度为32位,求总线带宽?33*(32/8)=132MBps3.总线复用:一条信号线上传输两种线号,例如,一条总线上即可传输地址信号,又可传输数据信号,此称之为总线复用3.3.3总线标准(掌握PCI,USB)1.PCI总线:为了提升总线性能,由Intel首先提出,PCI中文名称为外围部件互连,其最出名的特性为即插即用,即任何扩展卡插入系统便可直接工作,现在已推出了PCI-ExpressB总线:通用串行总线,真正的即插即用,这里的串行指的是串行通信,即使用一条数据线,将数据1位1位的进行传输,不可同时传输2位数据3.5总线控制1.为何使用总线控制?由于总线上连接着多个部件,什么时候由哪个部件发送信息,如何给信息传送定时,如何防止信息丢失,如何避免多个部件同时发送,如何规定接受信息的部件等一系列问题,都需要由总线控制器统一管理。

计算机组成原理·第六版(课后习题)第一章

计算机组成原理·第六版(课后习题)第一章

计算机组成原理·第六版(课后习题)第⼀章第⼀章计算机系统概论1. ⽐较电⼦数字计算机和电⼦模拟计算机的特点电⼦数字计算机中处理的信息是在时间上离散的数字量,运算过程是不连续的;电⼦模拟计算机中处理的信息是连续的变化的物理量,运算过程是连续的。

2. 数字计算机如何分类?分类的依据是什么?分为专⽤计算机和通⽤计算机分类依据是计算机性能、速度、价格、运⾏的经济性3. 数字计算机有哪些应⽤ ?科学计算、⼈⼯智能、家⽤电器、测量等4. 冯·诺依曼型计算机的主要设计思想是什么?它包括哪些组成部分?主要设计思想:1)采⽤存储程序的⽅式编织好的程序和数据都存放在同⼀存储器中,2)计算机可以在⽆⼈⼲预的请扩下⾃动完成逐条指令的取出和执⾏指令的任务3)指令和数据均以⼆进制码的形式存储在计算机中组成部分:运算器、存储器、I/O设备、逻辑器、5. 什么是存储容量?什么是单元地址?什么是数据⾃?什么是指令字?存储容量:存储器中所有存储单元的总数单元地址:每个存储单元的编号数据字:某字代表要处理的数据指令字:某字为⼀条指令6. 什么是指令?什么是程序?指令:计算机硬件可以直接执⾏的每⼀个基本的算术运算或逻辑运算的操作程序:解算某⼀问题的⼀串指令寻列7. 指令和数据均存放在内存中,计算机如何区分他们是指令还是数据?指令:取指周期中从内存读出的信息流数据:执⾏器周期中内存读取的信息流8. 计算机的系统软件包括哪⼏部分?说明他们的⽤途。

半导体存储器称为内存存储容量更⼤的磁盘存储器和光盘存储器称为外存内存和外存共同来保存⼆进制数据运算器和控制器合称中央处理器,简称CPU ⽤来控制计算机以及进⾏算术逻辑运算配适器是外围设备与主机联系的桥梁,相当于转换器,使主机和外围设备并⾏协调⼯作9. 计算计的系统软件包括哪⼏类?说明他们的⽤途包括系统程序和应⽤程序。

系统程序⽤于简化程序设计,提⾼计算机使⽤效率应⽤程序是⽤户利⽤计算机来解决某些问题⽽编制的程序10. 现代计算机系统如何进⾏多级划分?这种分级观点对计算机设计会产⽣什么影响?微程序设计级机器语⾔级操作系统级汇编语⾔级⾼级语⾔级⽤⼀系列的级来组成计算机的借⼝对于掌握计算机是如何组成的提供了良好的结构和体制分级的挂念来设计计算机保证产⽣⼀个良好的系统结构也是很有帮助的11. 为什么软件能够转化为硬件?硬件能转化为软件?实现这种转化的媒介是什么?应为任何操作可以由软件来实现,也可以由硬件来实现;任何指令的执⾏可以由软件完成,也可以由硬件完成,实现这种转化的媒介是软件与硬件的逻辑等价性。

计算机组成原理总结

计算机组成原理总结

第一章计算机系统概论1. 什么是计算机系统、计算机硬件和计算机软件?硬件和软件哪个更重要?解:P3计算机系统:由计算机硬件系统和软件系统组成的综合体。

计算机硬件:指计算机中的电子线路和物理装置。

计算机软件:计算机运行所需的程序及相关资料。

硬件和软件在计算机系统中相互依存,缺一不可,因此同样重要。

5. 冯•诺依曼计算机的特点是什么?解:冯•诺依曼计算机的特点是:P8●计算机由运算器、控制器、存储器、输入设备、输出设备五大部件组成;●指令和数据以同同等地位存放于存储器内,并可以按地址访问;●指令和数据均用二进制表示;●指令由操作码、地址码两大部分组成,操作码用来表示操作的性质,地址码用来表示操作数在存储器中的位置;●指令在存储器中顺序存放,通常自动顺序取出执行;●机器以运算器为中心(原始冯•诺依曼机)。

7. 解释下列概念:主机、CPU、主存、存储单元、存储元件、存储基元、存储元、存储字、存储字长、存储容量、机器字长、指令字长。

解:P9-10主机:是计算机硬件的主体部分,由CPU和主存储器MM合成为主机。

CPU:中央处理器,是计算机硬件的核心部件,由运算器和控制器组成;(早期的运算器和控制器不在同一芯片上,现在的CPU内除含有运算器和控制器外还集成了CACHE)。

主存:计算机中存放正在运行的程序和数据的存储器,为计算机的主要工作存储器,可随机存取;由存储体、各种逻辑部件及控制电路组成。

存储单元:可存放一个机器字并具有特定存储地址的存储单位。

存储元件:存储一位二进制信息的物理元件,是存储器中最小的存储单位,又叫存储基元或存储元,不能单独存取。

存储字:一个存储单元所存二进制代码的逻辑单位。

存储字长:一个存储单元所存二进制代码的位数。

存储容量:存储器中可存二进制代码的总量;(通常主、辅存容量分开描述)。

机器字长:指CPU一次能处理的二进制数据的位数,通常与CPU的寄存器位数有关。

指令字长:一条指令的二进制代码位数。

计算机组成原理课后习题参考答案

计算机组成原理课后习题参考答案

计算机组成原理答案第一章计算机系统概论1.比较数字计算机和模拟计算机的特点。

解:模拟计算机的特点:数值由连续量来表示,运算过程是连续的;数字计算机的特点:数值由数字量(离散量)来表示,运算按位进行。

两者主要区别见P1 表1.1。

2.数字计算机如何分类?分类的依据是什么?解:分类:数字计算机分为专用计算机和通用计算机。

通用计算机又分为巨型机、大型机、中型机、小型机、微型机和单片机六类。

分类依据:专用和通用是根据计算机的效率、速度、价格、运行的经济性和适应性来划分的。

通用机的分类依据主要是体积、简易性、功率损耗、性能指标、数据存储容量、指令系统规模和机器价格等因素。

4.冯. 诺依曼型计算机的主要设计思想是什么?它包括哪些主要组成部分?解:冯. 诺依曼型计算机的主要设计思想是:存储程序和程序控制。

存储程序:将解题的程序(指令序列)存放到存储器中;程序控制:控制器顺序执行存储的程序,按指令功能控制全机协调地完成运算任务。

主要组成部分有:(控制器、运算器)(CPU的两部分组成)、存储器、输入设备、输出设备(I/O设备)。

5.什么是存储容量?什么是单元地址?什么是数据字?什么是指令字?解:存储容量:指存储器可以容纳的二进制信息的数量,通常用单位KB、MB、GB来度量,存储容量越大,表示计算机所能存储的信息量越多,反映了计算机存储空间的大小。

单元地址:简称地址,在存储器中每个存储单元都有唯一的地址编号,称为单元地址。

数据字:若某计算机字是运算操作的对象即代表要处理的数据,则称数据字。

指令字:若某计算机字代表一条指令或指令的一部分,则称指令字。

6.什么是指令?什么是程序?解:指令:计算机所执行的每一个基本的操作。

程序:解算某一问题的一串指令序列称为该问题的计算程序,简称程序。

7.指令和数据均存放在内存中,计算机如何区分它们是指令还是数据?解:一般来讲,在取指周期中从存储器读出的信息即指令信息;而在执行周期中从存储器中读出的信息即为数据信息。

白中英《计算机组成原理》(第5版)笔记和课后习题详解

白中英《计算机组成原理》(第5版)笔记和课后习题详解

白中英《计算机组成原理》(第5版)笔记和课后习题详解
关注薇公号-精研学习网-查找资料
第1章计算机系统概论
1.1复习笔记
一、计算机的分类
1电子模拟计算机
模拟计算机的特点是数值由连续量来表示,运算过程也是连续的。

2电子数字计算机
(1)概述
电子数字计算机是用数字来表示数量的大小,其特点是按位运算,并且不连续地跳动计算。

(2)分类
①专用计算机
专用计算机是针对某一任务设计的计算机。

②通用计算机
通用计算机分类及区别如图1-1所示。

图1-1多核机、单片机、PC机、服务器、大型机、超级计算机之间的区别
3电子模拟计算机与电子数字计算机的区别
电子模拟计算机与电子数字计算机的主要区别如表1-1所示。

表1-1电子数字计算机与电子模拟计算机的主要区别
二、计算机的发展简史
1计算机的五代变化
①电子管计算机
②晶体管计算机
③中小规模集成电路计算机
④大规模和超大规模集成电路计算机
⑤巨大规模集成电路计算机
2计算机的性能指标
描述计算机性能的指标如表1-2所示
表1-2计算机性能指标
三、计算机的硬件
1硬件组成要素
数字计算机的主要组成部分可以表示为如图1-2所示。

图1-2数字计算机的主要组成结构
2运算器
运算器示意图如图1-3所示。

运算器的主要功能是进行加、减、乘、除等算术运算,也可以进行逻辑运算,因此通常称为ALU(算术逻辑运算部件),其运算方式为二进制。

图1-3运算器结构示意图。

计算机组成原理

计算机组成原理
利用率: 在给定的时间间隔内。系统被实际使用的时间所占的比例。% 处理器字长:运算器一次能过完成的二进制数运算的位数。 总线宽度:通常指运算器与存储器之间互联的总线2进制位数。 存储器容量:存储器的字节数。 存储器带宽:单位时间内从存储器读出的二进制数信息量。B/s
主频: CPU的主时钟频率 f。MHz ,GHz 时钟周期: CPU的主时钟频率的倒数T=1/f,μS, nS
16
冯*诺依曼计算机原理
存储器:
* 数据存入存储器的过程也称“写入”。当存储器写入新数据后,其中的旧数 据丢失,不复存在。也称“冲掉”/“覆盖”旧数据。 * 数据从存储器取出的过程也称“读出”。读出并不破坏存取器中的数据。 因 此可以从同一存储单元中反复的读出同一数据。 * 存储器中只能存储2进制数据。存储器中所存入的一个2进制位,称作存储元。 * 存储器按存储单元组织,存储器中有大量的存储单元。为了方便查找,每个 存储单元都被分配一个地址。所以通常,存储器都是按地址查找。 * 一个存储单元中存入一个2进制数据串。不同的存储器,这个数据串的长度 并不一样。 * 一个8位二进制数据串称为一个“字节”。通常一个存储单元至少为一个字 节。有时则为一个“字”。例如对32位计算机,一个“字”的长度为4个字 节。 •不论存储器的存储单元有多大,存储器的容量一般都按字节计算。 •KB = 210=1024; MB = 220=1024*1024; GB = 230=1024*1024*1024; •TB = 240=1024*1024*1024*1024;
2012-6-20
9
冯*诺依曼计算机原理
现代数字计算机的重要里程碑:
谁把图灵的抽象计算模型变为现实? 3。ENIAC (电子数字积分计算机,英文全称:

白中英计算机组成原理第1章计算机系统概论共57页文档

白中英计算机组成原理第1章计算机系统概论共57页文档
1970年,半导体存储器 价格更加昂贵,体积小,非破坏性读写
1974年之后,半导体存储器 价格不断降低,体积不断减少,读写速度更快。
有关存储器的介绍详见第3章
25.04.2020
23
1.2.3 微处理器的发展
20世纪70年代的处理器 4004(4位) 8008 (8位) 8080(8位通用) 8086(16位) 8088
目录
1.0 预备知识 1.1 计算机的分类 1.2 计算机的发展简史 1.3 计算机的硬件 1.4 计算机的软件 1.5 计算机系统的层次结构
25.04算机的发展历程; 清楚计算机的系统层次结构、计算机硬件的基本组成(五大部件
的构成)、计算机软件的分类,以及计算机的基本工作过程; 了解计算机性能评价指标和相关参数;
采用电子管。
代表机型:ENIAC(电子数字积分计算机 )
1941年美国宾夕法尼亚大学开始研制;
它于1946年2月15日在美国宣告诞生
主要是为了解决美陆军提出的弹道计算问题 ;
ENIAC长30.48米,宽1米,占地面积约170平方米,30 个操作台,约相当于10间普通房间的大小,重达30吨, 耗电量150千瓦,造价48万美元。
吞吐量、响应时间、CPU时钟周期、主频、CPI、CPU执行时间; MIPS、MFLOPS等。
要求
初步掌握计算机系统的基本概念及基本结构,为进一步深入学习 打下基础。
25.04.2020
2
一个程序的CPU时间可以用下面两种方式来描述:
CPU时间=一个程序的CPU时钟周期数×时钟周期长度 或者:
就会改进10%。
不幸的是,孤立地改变一个参数是很困难的,因为改变各因素的技术是相互
关联的:
(1) 时钟周期的长度是由硬件技术和计算机组成决定;

计算机组成原理 唐朔飞 按知识点教材目录整理(含页码)

计算机组成原理 唐朔飞 按知识点教材目录整理(含页码)

P7计算机的多级层次P8冯诺依曼计算机的特点、五大部件P10计算机的工作步骤P13主存储器、运算器、控制器、I/OP17计算机的硬件技术指标(机器字长、存储容量、运算速度)第二章计算机的发展及应用——见课本目录第三章系统总线P43总线的分类(片内总线、系统总线(三总线结构——数据地址控制)、通信总线)P45总线特性(机械特性、电气特性、功能特性、时间特性)P46总线性能指标(总线宽度、总线带宽、时钟同步/异步、总线复用、信号线数、总线控制方式等其他指标)P47总线标准(ISA、EISA、VESA(VL-BUS)、PCI、AGP、RS-232C、USB)P52总线结构(单总线结构、多总线结构---示意图,如单总线、双总线、三总线结构)P57总线判优控制(集中式(链式查询、计数器定时查询、独立请求方式)+ 分布式)P59总线通信控制(总线周期四个阶段;四种方式:同步、异步、半同步、分离式通信)第四章存储器P68存储器分类(按存储介质、存取方式、在计算机中的作用分类,以及RAM、ROM)P70存储器的层次结构(缓存-主存层次、主存-辅存层次,以及P71虚拟存储系统)P72主存储器P73主存中存储单元地址的分配P73主存的技术指标(存储容量、存储速度、存储器带宽)P74半导体存储芯片(基本结构、译码驱动方式(线选法和重合法))P76随机存取存储器P76静态RAM(基本单元电路、芯片举例、读写时序)P80动态RAM(基本单元电路、芯片举例、读写时序)P86动态RAM的刷新(集中刷新、分散刷新、异步刷新)P87动态RAM和静态RAM的比较P88 只读存储器(MOS、TTL——掩模ROM、PROM、EPROM)P91 存储器与CPU的连接P91存储容量的扩展(位、字扩展)P93存储器与CPU的连接(P95例4.2、P97例4.3)P100汉明码(偶校验、奇校验)P103提高访存速度的措施(单体多字系统、多体并行系统)P107高性能存储芯片(SDRAM、RDRAM、带Cache的DRAM(CDRAM))P109高速缓冲存储器(问题的提出、Cache工作原理)P111 Cache命中率、效率、平均访问时间计算(例4.7)P112 Cache的基本结构(Cache存储体、地址映射变换机构、Cache替换机构)P114 Cache的改进(单一缓存和二级缓存、统一缓存和分立缓存)P117 Cache——主存地址映射(直接映射、全相联映射、组相联映射+ 例题)P123替换策略(先进先出(FIFO)算法、近期最少使用(LRU)算法、随机法)P123辅助存储器(硬磁盘、软磁盘、磁带、光盘存储器——见课本目录)P124硬盘容量计算(格式化、非格式化)P144循环冗余校验码(CRC码)P156概述(发展概况、组成、I/O设备与主机联系方式、与主机信息传送的控制方式)组成(I/O软件(I/O指令、通道指令)、I/O硬件)I/O设备与主机联系方式(I/O设备编址方式、设备寻址、传送方式、联络方式)与主机信息传送的控制方式(程序查询方式、程序中断方式、DMA方式)P166 I/O设备(输入设备、输出设备)输入设备(P168-171键盘、鼠标、触摸屏、光笔、画笔与图形板、图像输入设备)输出设备(P171显示设备、P177打印设备)P182其他I/O设备(终端设备、A/D与D/A转换器、汉字处理设备)P184多媒体技术P190程序查询方式、P194程序中断方式、P202 DMA方式——见课本目录第六章计算机的运算方法P220原码表示法、P221补码表示法、P224反码表示法、P225移码表示法P228数的定点表示(格式、范围)、P229浮点表示(形式、范围、规格化)、比较P234定点运算(移位、加、减、乘、除)P234移位运算、P237加减法、P243乘法(Booth)、P258除法(加减交替法)P269浮点四则运算(P269浮点加减运算、P274浮点乘除法运算、P280硬件配置)P280算术逻辑单元(ALU电路、快速进位链)第七章指令系统P300机器指令(指令格式、指令字长)、P304操作数类型及操作类型(数据存放方式)P310寻址方式P320指令格式举例、P326 RISC技术(P330主要特点、P333与CISC比较)第八章CPU的结构和功能P337 CPU的功能(取指令、分析指令、执行指令等)、CPU结构框图、CPU的寄存器P342指令周期(取指周期、间址周期、执行周期、中断周期;P344数据流)P345指令流水(概念、原理、P348影响流水线性能的因素)P353流水线性能(计算吞吐率、加速比、效率)P355多发技术(超标量、超流水线、超长指令字)、流水线结构P358中断系统(概述、P360中断请求标(INTR)记和中断判优逻辑(硬件排队、软件排队)P361中断服务程序入口地址的寻找(硬件向量法、软件查询法)P362中断响应(响应中断的条件、时间,中断隐指令)P364保护现场和恢复现场、P365中断屏蔽技术)第九章控制单元的功能P375微操作命令的分析(取指周期、间址周期、执行周期(非访存、访存、转移类指令)、中断周期)P379控制单元的功能P379控制单元的外特性(输入信号、输出信号)P380控制信号举例(不采用、采用CPU内部总线的方式)P386多级时序系统(机器周期、时钟周期(节拍、状态) 、多级时序系统)P387控制方式(同步控制方式、异步控制方式、联合控制方式、人工控制方式)第十章控制单元的设计P396微操作的节拍安排、P407微指令的编码方式、P409微指令序列地址的形成、P411微指令格式(水平型、垂直型)、P413静态微程序设计和动态微程序设计、毫微程序设计。

计算机组成原理知识点总结

计算机组成原理知识点总结

计算机组成原理白中英复习第一章计算机系统概论电子数字计算机的分类P1通用计算机超级计算机、大型机、服务器、工作站、微型机和单片机和专用计算机;计算机的性能指标P5数字计算机的五大部件及各自主要功能P6五大部件:存储器、运算器、控制器、输入设备、输出设备;存储器主要功能:保存原始数据和解题步骤;运算器主要功能:进行算术、逻辑运算;控制器主要功能:从内存中取出解题步骤程序分析,执行操作;输入设备主要功能:把人们所熟悉的某种信息形式变换为机器内部所能接收和识别的二进制信息形式;输出设备主要功能:把计算机处理的结果变换为人或其他机器所能接收和识别的信息形式;计算机软件P11系统程序——用来管理整个计算机系统应用程序——按任务需要编制成的各种程序第二章运算方法和运算器课件+作业第三章内部存储器存储器的分类P65按存储介质分类:易失性:半导体存储器非易失性:磁表面存储器、磁芯存储器、光盘存储器按存取方式分类:存取时间与物理地址无关随机访问:随机存储器RAM——在程序的执行过程中可读可写只读存储器ROM——在程序的执行过程中只读存取时间与物理地址有关串行访问:顺序存取存储器磁带直接存取存储器磁盘按在计算机中的作用分类:主存储器:随机存储器RAM——静态RAM、动态RAM只读存储器ROM——MROM、PROM、EPROM、EEPROMFlash Memory高速缓冲存储器Cache辅助存储器——磁盘、磁带、光盘存储器的分级P66存储器三个主要特性的关系:速度、容量、价格/位多级存储器体系结构:高速缓冲存储器cache、主存储器、外存储器;主存储器的技术指标P67存储容量:存储单元个数M×每单元位数N存取时间:从启动读写操作到操作完成的时间存取周期:两次独立的存储器操作所需间隔的最小时间 ,时间单位为ns;存储器带宽:单位时间里存储器所存取的信息量,位/秒、字节/每秒,是衡量数据传输速率的重要技术指标;SRAM存储器P67基本存储元:用一个锁存器触发器作为存储元;基本的静态存储元阵列P68双译码方式P68读周期、写周期、存取周期P70DRAM存储器P70基本存储元:由一个MOS晶体管和电容器组成的记忆电路;存储原理:所存储的信息1或0由电容器上的电荷量来体现充满电荷:1;没有电荷:0;一个DRAM存储元的写、读、刷新操作P71DRAM的刷新:集中式刷新和分散式刷新P73存储器容量的扩充P73位扩展——增加存储字长P73字扩展——增加存储字的数量P73字、位扩展P74例题P73只读存储器ROM P80掩模ROM、PROM、EPROM、EEPROM、Flash 存储器P80-86并行存储器P86双端口存储器:指同一个存储器具有两组相互独立的读写控制线路;多模块交叉存储器:连续地址分布在相邻的不同模块内,同一个模块内的地址都是不连续的;对连续字的成块传送可实现多模块流水式并行存取,大大提高存储器的带宽; cache基本原理P92避免 CPU“空等”现象CPU 和主存DRAM的速度差异程序访问的局部性原理cache由高速的SRAM组成cache的基本原理P93命中、未命中、命中率P93例题P94cache与主存的地址映射P94全相联映像:主存中的任一块可以映象到缓存中的任一块;直接映像:每个缓存块可以和若干个主存块对应;每个主存块只能和一个缓存块对应;组相联映像:某一主存块 j 按模 u 映射到缓存的第i 组中的任一块;替换算法P98先进先出算法FIFO:把一组中最先调入cache的块替换出去,不需要随时记录各个块的使用情况,所以实现容易,开销小;近期最少使用算法LRU:将近期内长久未被访问过的行块换出;每行设置一个计数器,cache每命中一次,命中行计数器清零,其它各行计数器增1;当需要替换时,比较各特定行的计数值,将计数值最大的行换出;最不经常使用LFU:被访问的行计数器增加1,换值小的行,不能反映近期cache的访问情况;随机替换:从特定的行位置中随机地选取一行换出; cache的写操作策略P99写回法、全写法、写一次法P99-100第四章指令系统指令系统P103程序、高级语言、机器语言、指令、指令系统、复杂指令系统计算机CISC、精简指令系统计算机RISCP103指令格式P105操作码:指令操作性质的二进制数代码地址码:指令中的地址码用来指出该指令的源操作数地址一个或两个、结果地址及下一条指令的地址;三地址指令、二地址指令、一地址指令、零地址指令;三种二地址指令SS、RR、RSP106指令字长度、机器字长P107例题P110操作数类型P110地址数据、数值数据、字符数据、逻辑数据寻址方式P112确定本条指令的操作数地址,下一条欲执行指令的指令地址指令寻址顺序寻址——PC+1跳跃寻址——转移类指令数据寻址P112-116立即寻址——形式地址就是操作数直接寻址——有效地址由形式地址直接给出隐含寻址——操作数地址隐含在操作码中间接寻址——有效地址由形式地址间接提供寄存器寻址——有效地址即为寄存器编号寄存器间接寻址——有效地址在寄存器中基址寻址——有效地址=形式地址+基地址变址寻址——有效地址=形式地址+变址寄存器的内容相对寻址——有效地址=PC的内容+形式地址堆栈寻址——栈顶指针段寻址例题P118指令的分类119数据处理、数据存储、数据传送、程序控制RISC技术P121RISC——精简指令系统计算机CISC——复杂指令系统计算机RISC指令系统的特点P121第五章中央处理器CPU的功能P127指令控制、操作控制、时间控制、数据加工CPU的基本组成P127控制器、运算器、cacheCPU中的主要寄存器P128数据缓冲寄存器DR、指令寄存器IR、程序计数器PC、数据地址寄存器AR、通用寄存器、状态字寄存器PSW操作控制器的分类P130时序逻辑型:硬布线控制器存储逻辑型:微程序控制器指令周期P131取出并执行一条指令所需的全部时间;指令周期、机器周期、时钟周期P131一个指令周期含若干个机器周期一个机器周期包含若干个时钟周期取指周期数据流P132执行周期数据流P133—138时序信号的作用和体制P141时序信号的基本体制是电位—脉冲制;数据加在触发器的电位输入端D ,打入数据的控制信号加在触发器的时钟脉冲输入端 CP;电位高低表示数据是1还是0,要求打入数据的控制信号来之前电位信号必须已稳定;节拍电位、节拍脉冲P142控制器的控制方式P144同步控制方式:即固定时序控制方式,各项操作都由统一的时序信号控制,在每个机器周期中产生统一数目的节拍电位和工作脉冲;异步控制方式:不受统一的时钟周期节拍的约束;各操作之间的衔接与各部件之间的信息交换采取应答方式;联合控制方式:同步控制和异步控制相结合的方式,大部分指令在固定的周期内完成,少数难以确定的操作采用异步方式;微程序控制原理P145微程序控制是指运行一个微程序来实现一条机器指令的功能;微程序控制的基本思想:仿照计算机的解题程序,把微操作控制信号编制成通常所说的“微指令”,再把这些微指令按时序先后排列成微程序,将其存放在一个只读存储器里,当计算机执行指令时,一条条地读出这些微指令,从而产生相应的操作控制信号,控制相应的部件执行规定的操作;微程序、微指令、微命令、微操作P145机器指令与微指令的关系P150微命令的编码方法P151直接表示法:微指令的每一位代表一个微命令,不需要译码;编码表示法:把一组相斥性的微命令信号组成一个小组即一个字段,然后通过小组字段译码器对每一个微命令信号进行译码,译码输出作为操作控制信号;混合表示法:把直接表示法与字段编码表示法混合使用,以便能综合考虑微指令字长、灵活性、速度等方面的要求;微指令格式P153水平型微指令:是指一次能定义并能并行执行多个微命令的微指令;垂直型微指令:微指令中设置微操作码字段,采用微操作码编译法,由微操作码规定微指令的功能,称为垂直型微指令;垂直型微指令的结构类似于机器指令的结构;硬连线控制器P155基本思想:通过逻辑电路直接连线而产生的,又称为组合逻辑控制方式;这种逻辑电路是一种由门电路和触发器构成的复杂树形逻辑网络;三个输入:来自指令操作码译码器的输出;来自执行部件的反馈信息;来自时序产生器的时序信号,包括节拍电位信号M和节拍脉冲信号T;一个输出:微操作控制信号硬布线控制器的基本原理:某一微操作控制信号C用一个逻辑函数来表达;并行处理技术P161并行性的概念:问题中具有可以同时进行运算或操作的特性;时间并行:让多个处理过程在时间上相互错开,轮流使用同一套硬件设备的各个部件,以加快硬件周转而赢得速度,实现方式就是采用流水处理部件;空间并行:以数量取胜;它能真正的体现同时性时间+空间并行:综合应用;Pentium中采用了超标量流水线技术;流水线的分类P163指令流水线:指指令步骤的并行;将指令流的处理过程划分为取指令、译码、取操作数、执行、写回等几个并行处理的过程段;算术流水线:指运算操作步骤的并行;如流水加法器、流水乘法器、流水除法器等;处理机流水线:是指程序步骤的并行;由一串级联的处理机构成流水线的各个过程段,每台处理机负责某一特定的任务;流水线中的主要问题P164资源相关:指多条指令进入流水线后在同一机器时钟周期内争用一个功能部件所发生的冲突;数据相关:在一个程序中,如果必须等前一条指令执行完毕后,才能执行后一条指令;解决数据相关冲突的办法:为了解决数据相关冲突,流水CPU的运算器中特意设置若干运算结果缓冲寄存器,暂时保留运算结果,以便于后继指令直接使用,称为“向前”或定向传送技术;控制相关:由转移指令引起的;解决控制相关冲突的办法:延迟转移法、转移预测法;例题P165第六章总线系统总线的概念P184总线是构成计算机系统的互联机构,是多个系统功能部件之间进行数据传送的公共通路;总线的分类P184内部总线——CPU内部连接各寄存器及运算部件之间的总线;系统总线——CPU和计算机系统中其他高速功能部件相互连接的总线;按系统传输信息的不同,又可分为三类:数据总线,地址总线和控制总线;I/O总线——中、低速I/O设备之间互相连接的总线;总线性能指标P185总线宽度:指数据总线的根数;寻址能力:取决于地址总线的根数;PCI总线的地址总线为32位,寻址能力达4GB;传输率:也称为总线带宽,是衡量总线性能的重要指标;例题P193总线上信息传送方式P190串行传送:使用一条传输线,采用脉冲传送有脉冲为1,无脉冲为0;连续几个无脉冲的处理方法:位时间;并行传送:每一数据位需要一条传输线,一般采用电位传送电位高为1,电位低为0;分时传送:总线复用、共享总线的部件分时使用总线;总线接口P192I/O接口,也叫适配器,和CPU数据的交换一定是并行的方式,和外设数据的交换可以是并行的,也可以是串行的;总线的仲裁P193集中式仲裁:有统一的总线仲裁器;链式查询方式、计数器定时查询方式、独立请求方式P193—195分布式仲裁:不需要中央仲裁器,每个潜在的主方功能模块都有自己的仲裁器和仲裁号;P195总线的定时P196同步定时:事件出现在总线上的时刻由总线时钟信号来确定;异步定时:后一事件出现在总线上的时刻取决于前一事件的出现,即建立在应答式或互锁机制基础上;PCI总线P200PCI:外围设备互连,PCI总线:连接各种高速的PCI设备;PCI是一个与处理器无关的高速外围总线,又是至关重要的层间总线;它采用同步时序协议和集中式仲裁策略,并具有自动配置能力;PCI总线支持无限的猝发式传送;即插即用;第七章外围设备外围设备的定义和分类P209除了CPU和主存外,计算机系统的每一部分都可作为一个外围设备来看待;外围设备可分为输入设备、输出设备、外存设备、数据通信设备和过程控制设备几大类;磁记录原理P210计算机的外存储器又称磁表面存储设备;所谓磁表面存储,是用某些磁性材料薄薄地涂在金属铝或塑料表面作载磁体来存储信息;磁盘存储器、磁带存储器均属于磁表面存储器;磁性材料上呈现剩磁状态的地方形成了一个磁化元或存储元,是记录一个二进制信息位的最小单位;磁表面存储器的读写原理P211在磁表面存储器中,利用一种称为磁头的装置来形成和判别磁层中的不同磁化状态;通过电-磁变换,利用磁头写线圈中的脉冲电流,可把一位二进制代码转换成载磁体存储元的不同剩磁状态;通过磁-电变换,利用磁头读出线圈,可将由存储元的不同剩磁状态表示的二进制代码转换成电信号输出;磁盘的组成和分类P213硬磁盘是指记录介质为硬质圆形盘片的磁表面存储设备; 它主要由磁记录介质、磁盘控制器、磁盘驱动器三大部分组成;温彻斯特磁盘简称温盘,是一种采用先进技术研制的可移动磁头固定盘片的磁盘机;它是一种密封组合式的硬磁盘,即磁头、盘片、电机等驱动部件乃至读写电路等组装成一个不可随意拆卸的整体;磁盘上信息的分布P215记录面、磁道、扇区P215磁道编号P215磁盘地址由记录面号也称磁头号、磁道号和扇区号三部分组成;磁盘存储器的技术指标P216存储密度:存储密度分道密度、位密度和面密度;道密度:沿磁盘半径方向单位长度上的磁道数,单位道/英寸;位密度:磁道单位长度上能记录的二进制代码位数,单位为位/英寸;面密度:位密度和道密度的乘积,单位为位/平方英寸;平均存储时间=寻道时间+等待时间+数据传送时间P216数据传输率P217例题P217磁盘cacheP218磁盘cache是为了弥补慢速磁盘和主存之间速度上的差异;磁盘阵列RAIDP218RAID:独立磁盘冗余阵列廉价冗余磁盘阵列,或简称磁盘阵列;简单的说, RAID 是一种把多块独立的硬盘物理硬盘按不同方式组合起来形成一个硬盘组逻辑硬盘,从而提供比单个硬盘更高的存储性能和提供数据冗余的技术;组成磁盘阵列的不同方式成为 RAID 级别;RAID 0 提高存储性能的原理是把连续的数据分散到多个磁盘上存取, 这样,系统有数据请求就可以被多个磁盘并行的执行,每个磁盘执行属于它自己的那部分数据请求;这种数据上的并行操作可以充分利用总线的带宽,显着提高磁盘整体存取性能;第八章输入输出系统外围设备的速度分级P236在CPU和外设之间数据传送时加以定时:速度极慢或简单的外设:CPU只需要接受或者发送数据即可;慢速或者中速的设备:可以采用异步定时的方式;高速外设:采用同步定时方式;I/O和主机信息交换方式P237程序查询方式、程序中断方式、直接内存访问DMA方式、通道方式程序查询方式P239数据在CPU和外围设备之间的传送完全靠计算机程序控制;当需要输入/输出时,CPU暂停执行主程序,转去执行设备输入/输出的服务程序,根据服务程序中的I/O指令进行数据传送;这是一种最简单、最经济的输入/输出方式,只需要很少的硬件;但由于外围设备动作很慢,程序进入查询循环时将浪费CPU时间;中断的概念P242中断是指CPU暂时中止现行程序,转去处理随机发生的紧急事件,处理完后自动返回原程序的功能和技术;程序中断方式的原理P242在程序中断方式中,某一外设的数据准备就绪后,它“主动”向CPU发出请求中断的信号,请求CPU暂时中断目前正在执行的程序而进行数据交换;当CPU响应这个中断时,便暂停运行主程序,并自动转移到该设备的中断服务程序;当中断服务程序结束以后,CPU又回到原来的主程序;中断处理过程中的几个问题P243CPU只有在当前一条指令执行完毕后,即转入公操作时才受理设备的中断请求;保存现场P243中断屏蔽P243中断处理过程P243单级中断和多级中断P245单级中断系统中,所有的中断源都属于同一级,所有中断源触发器排成一行,其优先次序是离CPU近的优先权高; 当响应某一中断请求时,执行该中断源的中断服务程序;在此过程中,不允许其他中断源再打断中断服务程序,既使优先权比它高的中断源也不能再打断;多级中断系统是指计算机系统中有相当多的中断源,根据各中断事件的轻重缓急程度不同而分成若干级别,每一中断级分配给一个优先权;优先权高的中断级可以打断优先权低的中断服务程序,以程序嵌套方式工作;一维多级中断是指每一级中断里只有一个中断源,二维多级中断是指每一级中断里又有多个中断源;DMA的基本概念P253直接内存访问DMA是一种完全由硬件执行I/O交换的工作方式;在这种方式中,DMA控制器从CPU完全接管对总线的控制,数据交换不经过CPU,而直接在内存和I/O设备之间进行;DMA方式一般用于高速传送成组数据;DMA方式的优点P253DMA能执行的一些操作P254从外围设备发出DMA请求;CPU响应请求,把CPU工作改成DMA操作方式,DMA控制器从CPU接管总线的控制;由DMA 控制器对内存寻址,即决定数据传送的内存单元地址及数据传送个数的计数,并执行数据传送的操作;发中断,向CPU报告DMA操作的结束;DMA传送方式P254停止CPU访问内存、周期挪用、DMA与CPU交替访内P254 DMA数据传送过程P257传送前预处理;正式传送;传送后处理;P257通道的基本概念P261通道是一个特殊功能的处理器,它有自己的指令和程序专门负责数据输入输出的传输控制,而CPU将“传输控制”的功能下放给通道后只负责“数据处理”功能;这样,通道与CPU 分时使用内存,实现了CPU内部运算与I/O设备的平行工作;通道的功能P253通道具有两种类型的总线:存储总线:承担通道与内存、CPU与内存之间的数据传输任务;通道总线即I/O总线,承担外围设备与通道间的数据传送任务;从逻辑结构上讲,I/O系统一般具有四级连接:CPU与内存通道设备控制器外围设备优先级别:由于大多数I/O设备的读写信号具有实时性,不及时处理会丢失数据;所以通道与CPU同时要求访内时,通道优先权高于CPU;CPU对通道的管理P262CPU是通过执行I/O指令以及处理来自通道的中断,实现对通道的管理;来自通道的中断有两种,一种是数据传送结束中断,另一种是故障中断;通道对I/O模块的管理P262通道通过使用通道指令控制I/O模块进行数据传送操作,并以通道状态字接收I/O模块反映的外围设备的状态;通道的类型P262选择通道、数组多路通道、字节多路通道P263第九章操作系统支持虚拟存储器的概念P282虚拟存储器是借助于磁盘等辅助存储器来扩大主存容量,使之为更大或更多的程序所使用;是一个容量非常大的存储器的逻辑模型,不是任何实际的物理存储器;它指的是主存-外存层次;以透明的方式给用户提供了一个比实际主存空间大得多的程序地址空间;实地址:或物理地址,计算机物理内存的访问地址,由CPU引脚送出,是用于访问主存的地址,对应的存储空间——物理存储空间或主存空间;虚地址:或逻辑地址,在编制程序时独立编址,使用的地址,对应的存储空间——虚存空间或逻辑地址空间;虚地址到实地址的转换过程——程序的再定位;虚存的访问过程P283虚拟存储器的用户程序以虚拟地址编址并存放在辅存中;程序运行时CPU以虚地址访问主存,由辅助硬件找出虚地址和物理地址的对应关系,判断这个虚地址指示的存储单元是否已装入主存:如果在主存,CPU就直接执行已在主存的程序;如果不在,要进行辅存向主存的调度;虚存与cache的异同P283几种虚拟存储器P284段式、页式、段页式页式虚拟存储器P284页、页表:页式虚拟存储系统中,虚地址空间被分成等长大小的页,称为逻辑页;主存空间也被分成同样大小的页,称为物理页;相应地,虚地址分为两个字段:高字段为逻辑页号,低字段为页内地址偏移量;实存地址也分两个字段:高字段为物理页号,低字段为页内地址;通过页表可以把虚地址逻辑地址转换成物理地址;页式虚存地址映射:地址变换时,用逻辑页号作为页表内的偏移地址索引页表,并找到相应物理页号,用物理页号作为实存地址的高字段,再与虚地址的页内偏移量拼接,就构成完整的物理地址;虚页内容若没有调入主存,则计算机启动输入输出系统,把虚地址指示的一页内容从辅存调入主存,再提供CPU访问;转换后援缓冲器P285段式虚拟存储器P286段式虚拟存储器,是以程序的逻辑结构所形成的段如主程序、子程序、过程、表格等作为主存分配单位的虚拟存储器管理方式的存储器;每个段的大小可以不相等;每个程序都有一个段表映象表,用于存放该道程序各程序段从辅存装入主存的状况信息;段表一般驻留在主存中;段式虚存地址映射P287段页式虚拟存储器P287把程序按逻辑单位分段以后,再把每段分成固定大小的页;程序对主存的调入调出是按页面进行的,但它又可以按段实现共享和保护,兼备页式和段式的优点;虚存的替换算法P289虚拟存储器中的替换策略一般采用LRU Least Recent1y Used算法、LFU算法、FIFO算法,或将两种算法结合起来使用;例题P289。

白中英计算机组成原理第1章_计算机系统概论

白中英计算机组成原理第1章_计算机系统概论

○ 减轻CPU的数据传送负担,提高系统的整体 性能;
34
1.3.2 运算器
功能: 处理所有的算术及逻辑运算。
通常称为ALU(算术逻辑单元)
特点:
采用二进制数据进行运算; 运算器一次可以处理的数据 位数称为机器字长; 机器字长一般为8、16、32、 64位,机器字长直接决定着运算的精度和能力; 运算器主要由ALU和各类通用寄存器构成。
数据 数据
31
冯· 诺依曼机的特点
由运算器、存储器、控制器、输入设备和输出设 备五个部分组成; 存储器以二进制形式存储指令和数据;
指令由操作码和地址码组成;
存储程序并按地址顺序执行;
冯 · 诺依曼机的核心设计思想,机器自动化工作 的关键;
以运算器为中心。
32
冯· 诺依曼机与现代微机
存储器
问题2:如何对以上设备分类?
输入输出设备 中央处理设备 存储设备 接口转换卡 部件连接线
显示器,键盘,鼠标,音箱
CPU(集处理和控制于一身) 硬盘、内存 显卡、声卡 总线
问题3:有了以上设备,计算机是否能发挥其功效?
一个完整的计算机系统应包括硬件系统和软件系统两部分。
4
5
21
1.2.2 半导体存储器的发展
20世纪50~60年代,磁芯存储器 价格昂贵,体积大,破坏性读出 1970年,半导体存储器
价格更加昂贵,体积小,非破坏性读写
1974年之后,半导体存储器
价格不断降低,体积不断减少,读写速度更快。
有关存储器的介绍详见第3章
22
1.2.3 微处理器的发展
冯· 诺依曼机结构
输入设备
运算器
输出设备
控制器

计算机组成原理课后习题及解答-唐朔飞(完整版)

计算机组成原理课后习题及解答-唐朔飞(完整版)
作的性质,地址码用来表示操作数在存储器中的位置; • 指令在存储器中顺序存放,通常自动顺序取出执行; • 机器以运算器为中心(原始冯•诺依曼机)。
• 7. 解释下列概念: • 主机、CPU、主存、存储单元、存储元件、存储基元、存储元、存储字、存储字长、
存储容量、机器字长、指令字长。
• 解:P9-10 • 主机:是计算机硬件的主体部分,由CPU和主存储器MM合成为主机。 • CPU:中央处理器,是计算机硬件的核心部件,由运算器和控制器组成;(早期的运
运算。 • ACC:Accumulator,累加器,是运算器中既能存放运算前的操作数,又能存放运算结果的寄存器
。 • MQ:Multiplier-Quotient Register,乘商寄存器,乘法运算时存放乘数、除法时存放商的寄存器。 • X:此字母没有专指的缩写含义,可以用作任一部件名,在此表示操作数寄存器,即运算器中工作
第一章 计算机系统概论
• 1. 什么是计算机系统、计算机硬件和计算机软件 ?硬件和软件哪个更重要?
• 解:P3 • 计算机系统:由计算机硬件系统和软件系统组成
的综合体。 • 计算机硬件:指计算机中的电子线路和物理装置
。 • 计算机软件:计算机运行所需的程序及相关资料
。 • 硬件和软件在计算机系统中相互依存,缺一不可
控制器组成。 • PC:Program Counter,程序计数器,其功能是存放当前欲执行指令的地址,并可自动计数形成下
一条指令地址。 • IR:Instruction Register,指令寄存器,其功能是存放当前正在执行的指令。 • CU:Control Unit,控制单元(部件),为控制器的核心部件,其功能是产生微操作命令序列。 • ALU:Arithmetic Logic Unit,算术逻辑运算单元,为运算器的核心部件,其功能是进行算术、逻辑
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一代: 电子管计算机时代(从1946年第一台 计算机研制成功到五十年代后期),将电子管、继电 器和存储器用绝缘导线互连在一起,由单个CPU构成, CPU用程序计数器和累加器顺序完成定点运算,采用 机器语言或汇编语言,用CPU程序控制I/O。其主要 特点是采用电子管作为基本器件。
代表性系统有由John von Neumann,AnhurBurks和 HermanGoldstine于1946年在普林斯顿大学研制成功的IAS 计算机、由宾夕法尼亚大学莫尔学院于1950年制成的 ENIAC、由IBM于1953年制造的IBM701计算机。
电子计算机的发展,如果从第一台计算机的问世 算起,到现在半个多世纪,在人类科技史上还没有 一种学科的发展速度可以与电子计算机的发展速度 相提并论。
20世纪40年代,无线电技术和无线电工业的发 展为电子计算机的研制准备了物质基础,1943年~ 1946年美国宾夕法尼亚大学研制的电子数字积分和 计算机ENIAC(Electronic Numerical Integrator And Computer)是世界上第一台电子计算机。ENIAC 计算机共用18000多个电子管,1500个继电器,重达 30吨,占地170平方米,耗电140千瓦,每秒钟能计 算 5000次加法,研制人是埃克特(J.P.Eckert)和
1-1 计算机的发展简史
电子计算机是一个统称,实际上它被明确 地分两大类:“电子模拟计算机”和“电子数 字计算机”。前者是使用连续变化的物理量(例 如电流、电压等)来表示数值的大小并参加机内 运算,其运算结果自然也是连续变化的物理量 ;后者是将运算对象数字化成为离散的数字量 ,用数码进行运算,其运算结果也是离散的数 字信息,它运算速度快、运算精度高,现代人 们所说的“电子计算机”或“计算机”,都是 指“电子数字计算机”,也是本书讨论的对象 。
第二代:晶体管计算机时代(1955~1964),采用分立 式晶体三极管、二极管和铁氧体的磁芯,用印刷电路将它 们互连起来。采用了变址寄存器、浮点运算、多路存储器 和I/O处理机。采用有编译程序的高级语言子管 改为晶体管,因而缩小了体积,降低了功耗,提高了速度 和可靠性。而且价格不断下降。后来又采用了磁心存储器 ,使速度得到进一步提高。代表性系统有1959年制成的 UnivacI。ARC、60年代的CDCl604和1962年制成的IBM7030 。1969年1月制成的超大型计算机CDC 7600,速度达到每 秒千万次浮点运算,是这一时期设计最成功的产品。
标准化:采用标准的输入/输出接口,因而各个 机型的外部设备是通用的。采用积木式结构设计, 除了各个型号的CPU独立设计以外,存储器、外部设 备都采用标准部件组装。
第四代:大规模集成电路计算机时代(1974— 1991),采用大规模或超大规模集成电路和半导体存 储器,出现了用共享存储器、分布存储器或向量硬 件选择的不同结构的并行计算机,开发了用于并行 处理的多处理操作系统、专用语言和编译器,同时 产生了用于并行处理或分布处理的软件工具和环境。 七十年代初,半导体存储器问世,迅速取代了磁心 存储器,并不断向大容量、高速度发展,此后,大 体上集成度每三年翻两番(1971年每片1K位,到1984 年达到每片256K位),价格平均每年下降30%。逻辑 电路也得到相应的发展。
第三代:集成电路计算机时代(1965—1974), 采用小规模或中规模集成电路和多层印刷电路。采 用了流水线、高速缓存和并行处理机。软件方面采 用多道程序设计和分时操作系统。这时期的计算机 采用集成电路作为基本器件,因此功耗,体积,价 格等进一步下降,而速度及可靠性相应地提高,这 就促使了计算机的应用范围进一步扩大。正是由于 集成电路成本的迅速下降,产生了成本低而功能不 是太强的小型计算机供应市场,占领了许多数据处 理的应用领域。代表性系统有IBM/360—370系列、 CDC6600/7600系列、Texas仪表公司的ASC和 Digital Equipment公司的PDP—8系列。IBM360系统 是最早采用集成电路的通用计算机,也是影响最大 的第三代计算机。它的主要特点是通用化,系列化、 标准化。
通用化:指令系统丰富,兼顾科学计算、数据处 理、实时控制三个方面。
系列化:IBM360各档机器采用相同的系统结构, 即在指令系统、数据格式,字符编码、中断系统、 控制方式、输入/输出操作方式等方面保持统一, 从而保证了程序兼容,当用户更新机器时原来在低 档机上编写的程序可以不作修改就使用在高档机上。 IBM360系统后来陆续增加的几种型号仍保持与前面 的产品兼容。后来,西欧与日本的一些通用计算机 也保持与IBM360系统兼容。苏联和东欧国家联合制 造的“统一系统”也是与IBM360系统兼容的。
莫克利(J.W.Mauchly)。ENIAC计算机存在两个主 要缺点,一是存储容量太小,只能存20个字长为10 位的十进制数,二是用线路连接的方法来编排程序,
因此每次解题都要依靠人工改接连线,准备时间 大大超过实际计算时间。
在ENIAC计算机研制的同时,冯·诺依曼(Von Neumann)与莫克利、埃克特小组合作研制EDVAC计算 机,在这台计算机中确立了计算机的五个基本部件: 输入器、输出器、运算器、存储器、控制器。程序 和数据存放在存储器中,并采用了二进制,确立了 存储程序的原则。现代的一般计算机被称作冯·诺依 曼结构计算机。
随着大规模集成电路的迅速发展,计算机进入 大发展时期,通用机、巨型机,小型机、微型机都 得到了发展。
目录
第1章:计算机系统概论 第2章:运算方法和运算器 第3章:存储系统 第4章:指令系统 第5章:中央处理器 第6章:总线系统 第7章:外围设备 第8章:输入输出系统 参考文献
第一章 计算机系统概论
1-1 计算机的发展简史 1-2 计算机的分类和应用 1-3 计算机的硬件和软件 1-4 计算机系统的层次结构
相关文档
最新文档