QAM调制解调原理

合集下载

电路基础原理数字信号的调制与解调

电路基础原理数字信号的调制与解调

电路基础原理数字信号的调制与解调数字信号的调制与解调是电路基础原理中的重要概念。

调制是将数字信号转化为模拟信号的过程,解调则是将模拟信号还原为数字信号的过程。

本文将介绍数字信号的调制与解调原理及其应用。

一、调制的基本原理调制是为了将数字信号传输到远距离时,能够克服传输噪声、提高信号质量而进行的一种技术。

数字信号经过调制后,会转化为模拟信号,其特点是连续的波形。

1.频移键控调制(FSK)FSK是一种基本的数字信号调制方式,它通过改变信号的频率来表示不同的数字。

在FSK中,使用两个频率来分别代表二进制的0和1。

2.相移键控调制(PSK)PSK是一种通过改变信号的相位来表示不同的数字的调制方式。

在PSK中,使用不同的相位来表示二进制的0和1。

3.正交幅度调制(QAM)QAM是一种通过改变信号的振幅和相位来表示不同的数字的调制方式。

在QAM中,通过改变信号的振幅和相位的组合来表示多个二进制数字。

二、解调的基本原理解调是将模拟信号还原为数字信号的过程,其目的是还原接收到的信号,以便后续的数字信号处理。

1.频移解调频移解调是将经过FSK调制的信号还原回数字信号的过程。

解调器需要检测接收到的信号的频率,并根据频率的不同判断出二进制的0和1。

2.相移解调相移解调是将经过PSK调制的信号还原为数字信号的过程。

解调器需要检测接收到信号的相位,并根据相位的变化来判断出二进制的0和1。

3.幅度解调幅度解调是将经过QAM调制的信号还原为数字信号的过程。

解调器需要测量接收到信号的振幅和相位,并根据这些信息来判断出二进制的0和1。

三、调制与解调的应用调制与解调技术广泛应用于通信领域,特别是在无线通信中。

1.无线电广播无线电广播使用调制技术将音频信号转化为无线电信号,并通过无线电波传输到接收器中,然后通过解调技术将无线电信号还原为音频信号。

2.移动通信移动通信中的调制与解调技术被用于将数字信号通过无线电信道传输,以实现声音、图像和数据的无线传输。

基于MATLAB的QAM调制解调实现

基于MATLAB的QAM调制解调实现

基于MATLAB的QAM调制解调实现学生姓名:张平凡指导老师:吴志敏摘要: 此次课程设计的主要内容为利用MATLAB集成环境下的M文件,编写程序来实现QAM的调制解调,,并绘制出解调前后的时域和频域波形及叠加噪声时解调前后的时频波形,根据运行结果和波形来分析该解调过程的正确性及信道对信号传输的影响。

通过此次课设,我加深了关于正交调幅方面的理论知识,加强了MATLAB软件的操作能力,对以后的实验操作打下了基础。

此次课程设计,旨在提高自己的MATLAB软件编程能力,自学能力,对资料的收集.理解以及总结的能力。

在此次课程设计中,我依托MATLAB为平台,编程实现QAM 调制解调的实现,并将相关图形绘制出来,进一步巩固了对课本知识的理解。

关键词: MATLAB; 正交振幅调制; 频谱利用率; 调制与解调;1. 引言在现代通信中,提高频谱利用率一直是人们关注的焦点之一。

近年来,随着通信业务需求的迅速增长,寻找频谱利用率高的数字调制方式已成为数字通信系统设计、研究的主要目标之一。

为了提高其性能,人们对这些数字调制体制不断加以改进提出了多种新的调制解调机体。

这些新的调制解调体制,各有所长分别在不同的方面有其优势。

正交振幅调制QAM(Quadrature Amplitude Modulation)就是一种频谱利用率很高的调制方式,正交振幅调制是二进制的PSK、四进制的QPSK调制的进一步推广,通过相位和振幅的联合控制,可以得到更高频谱效率的调制方式,从而可在限定的频带内传输更高速率的数据【1】。

通信原理通信工程的一门重要的专业课,调制与解调又是通信的精髓,调制就是用基带信号去控制载波信号的某个或几个参量的变化,将信息荷载在其上形成已调信号传输,而解调是调制的反过程,通过具体的方法从已调信号的参量变化中将恢复原始的基带信号,QAM(正交振幅调制)是一种振幅和相位联合键控,在MPSK体制中,随着M 的增大,相位相邻相位的距离逐渐缩小,使噪声容限随之减小,使误码率难于保证,为了改善在M大的噪声容限,发展出了QAM体制【2】。

单载波qam参数-概述说明以及解释

单载波qam参数-概述说明以及解释

单载波qam参数-概述说明以及解释1.引言1.1 概述概述单载波QAM(Quadrature Amplitude Modulation)是一种常见的数字调制技术,被广泛应用于无线通信系统中。

它通过调节载波的振幅和相位来传输数字信息,具有高效利用频谱资源、提高传输速率的优点。

在无线通信领域,单载波QAM的参数选择对系统的性能有重要影响。

本文将从单载波QAM的基本概念、参数选择和性能分析三个方面对其进行深入探讨。

首先,我们将介绍单载波QAM的基本概念,包括其调制原理、调制方式和调制解调过程。

然后,我们将重点讨论单载波QAM 的参数选择,包括载波数目、调制阶数和调制误差等。

通过合理选择参数,可以提高系统的容量、抗干扰性能和误码率性能。

最后,我们将进行单载波QAM的性能分析,包括码率误差性能、功率效率和带宽效率等方面的评估。

本文的目的是系统地介绍单载波QAM的参数选择和性能分析方法,为研究人员和工程师在无线通信系统设计中提供参考。

在结论部分,我们将对文章进行总结,并给出对单载波QAM参数选择的建议,同时展望未来的研究方向。

通过深入了解单载波QAM的相关知识,我们可以更好地应用该技术,提高系统的性能和可靠性。

文章结构部分的内容如下:1.2 文章结构本文将按照以下结构介绍单载波QAM的相关内容:第一部分为引言部分,主要对单载波QAM的概述进行简要介绍,并阐述文章的目的。

第二部分为正文部分,分为三个小节进行阐述:2.1 单载波QAM的基本概念:该部分将介绍单载波QAM的基础概念,涵盖其定义、特点以及基本原理等方面内容。

2.2 单载波QAM的参数选择:该部分将讨论单载波QAM的参数选择问题,包括调制阶数的选择、载波间隔的确定以及功率分配策略等方面内容。

2.3 单载波QAM的性能分析:该部分将对单载波QAM的性能进行详细分析,包括误码率性能、带宽效率以及抗噪声等方面内容。

第三部分为结论部分,主要总结本文的研究内容,给出对单载波QAM 的参数选择的建议,并展望了未来研究的发展方向。

QAM讲解

QAM讲解

并串子系统
说明:并串子系统与前面的串并子系统相对应, 说明:并串子系统与前面的串并子系统相对应, 是前面串并过程的逆过程。 是前面串并过程的逆过程。4916PN序列频率为 序列频率为 250Hz,而后面的 序列4913频率为 ,而后面的PN序列 序列 频率为 500Hz,因此在4913的一个时钟内,4916有 ,因此在 的一个时钟内, 有 的一个时钟内 两个周期,控制电路连续运行两次,将经过与门, 两个周期,控制电路连续运行两次,将经过与门, 或门, 触发器运算后的数据有序地输出 触发器运算后的数据有序地输出, 或门,D触发器运算后的数据有序地输出,并使 整个过程输出的频率为500Hz。在这个实验中, 整个过程输出的频率为 。在这个实验中, 并串转换经历两次,将输入的250Hz变换成信 并串转换经历两次,将输入的 变换成信 源的1000Hz。 源的 。
上图为信源模块输出(黄色) 上图为信源模块输出(黄色)和最后并串转 换后(绿色)输出,可以发现两者除了幅度不同, 换后(绿色)输出,可以发现两者除了幅度不同, 图形是相同的,只是有一个延迟, 图形是相同的,只是有一个延迟,说明整个过程 是正确的。而如果要得到和信源完全一样的图形, 是正确的。而如果要得到和信源完全一样的图形, 只要在最后部分加一个增益放大模块和一个延迟 器件,选择合适参数即可得到和信源一眼的图形。 器件,选择合适参数即可得到和信源一眼的图形。
16QAM调制解调图 调制解调图
16QAM系统全图 系统全图
总模块说明:信源为PN序列,有两种电平信号, 总模块说明:信源为PN序列,有两种电平信号,经 PN序列 过串并转换后,进入二四进制转换模块, 过串并转换后,进入二四进制转换模块,该模块是把 二电平的信源信号变成4电平信号,即将0 交替组合, 二电平的信源信号变成4电平信号,即将0,1交替组合, 变成00,11,01,10,各个数据代表不同的幅度, 00,11,01,10,各个数据代表不同的幅度 变成00,11,01,10,各个数据代表不同的幅度,因为是 处理串并转换后的信号,所以要处理I路和Q 处理串并转换后的信号,所以要处理I路和Q路两路信 此时频率为信源频率的1/4 1/4。 号,此时频率为信源频率的1/4。随后的输出与载波相 进行调制,完成后将两路信号对应位置相加, 乘,进行调制,完成后将两路信号对应位置相加,经 过有高斯噪声的信道,进入接收端。 过有高斯噪声的信道,进入接收端。通过锁相环得到 载波信号,与接收到的信号进行相乘,完成解调过程。 载波信号,与接收到的信号进行相乘,完成解调过程。 再将得到的波形经过线性低通滤波器(频率设为300Hz 300Hz, 再将得到的波形经过线性低通滤波器(频率设为300Hz, 大于250Hz),进行滤波 随后将波形幅度放大2 250Hz),进行滤波, 大于250Hz),进行滤波,随后将波形幅度放大2倍, 进入四二进制转换,再进入整流模块, 进入四二进制转换,再进入整流模块,后进入并串转 随后将两路信号相加,得到总的信号, 换,随后将两路信号相加,得到总的信号,随后将信 号再次进行并串转换,得到最后的波形。 号再次进行并串转换,得到最后的波形。

第2讲 调制与解调

第2讲  调制与解调

图3-45 GMSK信号的功率谱密度
表3-2给出了作为BbTb函数的GMSK 信号中包含给定功率百分比的射频带宽。
表3-2
Bb T b 0.2 0.25 0.5 ∞
GMSK信号中包含给定功率百分比的射频带宽
90% 0.52Rb 0.57Rb 0.69Rb 0.78Rb 99% 0.79Rb 0.86Rb 1.04Rb 1.20Rb 99.9% 0.99Rb 1.09Rb 1.33Rb 2.76Rb 99.99% 1.22Rb 1.37Rb 2.08Rb 6.00Rb
最小频差(最大频偏):
当ak 1 当ak 1
(k 1)Ts t kTs
1 f f 2 f 1 2Ts
即最小频差等于码元速率的一半 设1/Ts=fs,则调频指数
h
f 1 1 Ts f s 2Ts 2
h=0.5时,满足在码元交替点相位连续的条件,也是频移键控为保证良 好的误码率性能所允许的最小调制指数,且此时波形的相关系数为 0.5, 待传送的两个信号是正交的。
图3-22 MQAM信号相干解调原理图
3.1.3 数字频率调制
一、 二进制频移键控
用二进制数字基带信号去控制载波 频率称为二进制频移键控(2FSK)。
如图3-25所示,设输入到调制器的比 n ∞~ ∞ 。 特流为{ a n },an 1, 2FSK的输出信号形式为
图3-25 2FSK信号的产生
图3-35 MSK信号调制器原理框图
MSK信号属于数字频率调制信号,因 此一般可以采用鉴频器方式进行解调,其 原理图如图3-38所示。
图3-38 MSK鉴频器解调原理框图
相干解调的框图如图3-39所示。
图3-39 MSK信号相干解调器原理框图

QAM调制解调的仿真实现报告-

QAM调制解调的仿真实现报告-

一、设计任务任务:使用 MATLAB 软件,实现对 QAM 系统调制与解调过程的仿真,并分析系统的可靠性。

二、实验内容(1)对原始信号分别进行 4QAM 和 16QAM 调制,画出星座图;(2)采用高斯信道传输信号,画出信噪比为 13dB 时,4QAM 和 16QAM 的接收信号星座图;(3)画出两种调制方式的眼图;(4)解调接收信号,分别绘制 4QAM 和 16QAM 的误码率曲线图,并与理论值进行对比;(5)提交详细的设计报告和实验报告。

三、设计原理QAM 调制原理:QAM 调制是把 2ASK 和 2PSK 两种调制技术结合起来的一种调制技术,使得带宽得到双倍扩展。

QAM 调制技术用两路独立的基带信号对频率相同、相位正交的两个载波进行抑制载波双边带调幅,并将已调信号加在一起进行传输。

nQAM 代表 n 个状态的正交调幅,一般有二进制(4QAM)、四进制(16QAM)、八进制(64QAM)。

我们要得到多进制的 QAM 信号,需将二进制信号转换为 m 电平的多进制信号,然后进行正交调制,最后相加输出。

正交调制及相干解调原理框图如下:QAM 调制说明:MQAM 可以用正交调制的方法产生,本仿真中分别取 M=16 和 4。

M=16 时,进行的是幅度和相位相结合的 16 个信号点的调制。

M=4 时,进行的是幅度和相位相结合的 4 个信号点的调制。

为了观察信道噪声对该调制方式的影响,我们在已调信号中又加入了不同强度的高斯白噪声,并统计其译码误码率。

为了简化程序和得到可靠的误码率,我们在解调时并未从已调信号中恢复载波,而是直接产生与调制时一模一样的载波来进行信号解调。

四、实验步骤:(1)我们整个代码编写为 MQAM 格式,在刚开始时,会询问选择 4QAM 还16QAM,然后开始运行。

(2)首先生成一个随机且长度为 n*k 的二进制比特流。

(3)在 MATLAB 中 16QAM 调制器要求输入的信号为 0~M-1 这 1M 个值,所以需要用函数 reshape 和 bi2de 将二进制的比特流转换为对应的十进制这 M 个值。

正交振幅调制(QAM)-与非网

正交振幅调制(QAM)-与非网
正交振幅调制(QAM) 与非网
目录
• 正交振幅调制(QAM)简介 • 非对称数字用户线(ADSL)与QAM • 正交频分复用(OFDM)与QAM
目录
• QAM调制技术的发展趋势 • QAM调制技术在5G网络中的应用
01
正交振幅调制(QAM)简 介
QAM的定义与原理
定义
正交振幅调制(QAM)是一种数字调 制方式,通过改变载波信号的振幅和 相位来传输信息。
04
QAM调制技术的发展趋 势
高阶QAM调制技术
01
16QAM
64QAM
02
03
256QAM
将信号划分为16个不同的符号, 提高了频谱效率和数据传输速率。
将信号划分为64个不同的符号, 进一步提高了频谱效率和数据传 输速率。
将信号划分为256个不同的符号, 是目前高阶QAM的最高阶数, 频谱效率和数据传输速率极高。
偏振复用QAM调制技术
偏振复用
通过将信号在两个正交的偏振方向上传输,提高了信 号的传输容量和抗干扰能力。
QPSK偏振复用
将QPSK调制与偏振复用相结合,提高了频谱效率和 数据传输速率。
16QAM偏振复用
将16QAM调制与偏振复用相结合,进一步提高了频 谱效率和数据传输速率。
频谱效率与功率效率的平衡
优点
OFDM具有抗多径干扰、频谱利用率高、高速数据传输等 优点,广泛应用于无线通信和有线电视网络等领域。
工作原理
OFDM通过将高速数据流串并变换成多个低速子数据流, 在多个正交子载波上进行调制,各子载波可以独立调制, 提高了频谱利用率。
OFDM中的QAM调制原理
定义
正交振幅调制(QAM)是一种数字调制方式,通过改变载波的 振幅和相位来传输信息。在OFDM中,QAM常用于调制子载波。

:正交幅度调制信号(QAM)调制解调系统的性能分析

:正交幅度调制信号(QAM)调制解调系统的性能分析

摘要正交幅度调制技术(QAM)是一种功率和带宽相对高效的信道调制技术,因此在大容量数字微波通信系统、有线电视网络高速数据传输、卫星通信系统等领域得到了广泛使用。

由于信道资源越来越紧张,许多数据传输场合二进制数字调制已无法满足需要。

为了在有限信道带宽中高速率地传输数据,可以采用多进制(M进制,M>2)调制方式,MPSK则是经常使用的调制方式,由于MPSK的信号点分布在圆周上,没有最充分地利用信号平面,随着M值的增大,信号最小距离急剧减小,影响了信号的抗干扰能力。

MQAM称为多进制正交幅度调制,它是一种信号幅度与相位结合的数字调制方式,信号点不是限制在圆周上,而是均匀地分布在信号平面上,是一种最小信号距离最大化原则的典型运用,从而使得在同样M值和信号功率条件下,具有比MPSK更高的抗干扰能力。

关键词:QAM 调制解调星座图误码率目录摘要 ................................................................................................................ 错误!未定义书签。

前言 ................................................................................................................ 错误!未定义书签。

一基本原理 .................................................................................................. 错误!未定义书签。

1.1硬件方面 ......................................................................................... 错误!未定义书签。

基于FPGA的16QAM调制解调

基于FPGA的16QAM调制解调

基于FPGA的16QAM调制解调器的实现组员:目录摘要3一、QAM调制原理3二、QAM的解调原理4三、16QAM调制器的实现51 系统总体框图 52 时钟分频 63 串并转换 64 差分编码和星座映射 65 DDS和线性加法器7四、QAM解调模块设计71 低通滤波器模块设计72 采样判决模块设计8五、16QAM调制器的仿真结果9四、附录121 顶层模块122 时钟分频模块133 串并转换模块144 差分模块和星座映射模块155 DDS 和加法器模块176 testbench 源程序227 用matlab 进行频谱分析23摘要QAM(Quadrature Amplitude Modulation)是一种新的调制技术,它在调制过程中利用了相位和幅度两维空间资源,比只利用单一维度空间资源的PSK 和ASK 调制方式频谱利用率高,不仅如此,QAM 的星座点比PSK 的星座点更分散,星座点之间的距离因此更大,所以能提供更好的传输性能。

随着第三代移动通信的兴起,传输容量增大,多进制正交幅度调制MQAM (Multiple Quadrature Amplitude Modulation)将得到更加广泛的运用。

本文主要研究了基于FPGA 的16QAM 调制与解调的实现。

首先说明了QAM 调制和解调的原理,然后对各系统组成模块分析与仿真之后提出基于FPGA 的16QAM 调制与解调的总体设计方案。

最后用Verilog 语言编写程序完成了整个系统的仿真,并对编好的程序其进行了编译调试。

文中详细介绍了载波恢复、正交相干解调、FIR 低通滤波器和采样判决的基本原理和设计方法。

关键词:正交相干解调,混频,FPGA ,QAM一、QAM 调制原理正交幅度调制(QAM)是一种把数字信息包含在载波的振幅和相位中的数字调制方式,也是ASK 和PSK 的结合。

式(1)表示了QAM 信号,它还可用式(2)来表示在QAM 中是如何结合幅度和相位调制的。

QAM调制解调讲解

QAM调制解调讲解

圆形16QAM的实现(2)
例如,若输入为“000”, 则当前码元的信号相位与前 一个码元信号相位相同。当 输入为001时,则当前码元 的相位,在前一个码元信号 相位的基础上增加 / 4 ,输 入数据与相位差的关系如表 所示:
输入数据
000 001 011 111 101 100 110 100
当前码元的相位增量
星座图的设计(2-3)
差分编码设计
多进制QAM的星座图
16QAM与64QAM的一些仿真
16QAM受干扰后的星座图 两种64QAM星座图的仿真比较 16QAM与64QAM的误码性能比较
16QAM受干扰后的星座图
两种64QAM星座图的仿真比较
采用Gray码设计的星座图(红) 采用自然码
16QAM的两种星座图比较(1)
圆形16QAM
矩形16QAM
16QAM的两种星座图比较(2)
从功率来看: 假设信号点之间的最小距离为2A,且所有信号
点等概率出现,则平均发射信号功率为: 矩形的16QAM信号平均功率=10A2 圆形的16QAM信号平均功率=14.03A2 两者功率相差1.4dB。即在相同的平均功率的情
16QAM与64QAM的误码性能比较 (2)
红色曲线-16QAM 蓝色曲线-64QAM
QAM的实现
单路QAM的实现 1)圆形16QAM的实现 2)矩形16QAM的实现
基于星座图解调方法的比较 QAM-OFDM的实现原理
圆形16QAM的实现(1)
16进制星形QAM 每个码元由4bit组成,每个码元的第一个比特, 通过差分的方式来改变QAM向量的振幅。当输 入的该比特为“l”时,则将当前码元的向量振幅, 改变到与前一个码元的向量振幅不同的振幅环 上;当输入的该比特为0时,则当前码元的向量 振幅与前一码元相同;每个码元的其余三比特, 通过Gray差分相位编码的方法来改变信号的相 位,也就是说,通过Gray编码来改变当前码元 信号向量与前一个码元信号向量的相位差。

QAM调制解调

QAM调制解调

题目:基于MATLAB 的16QAM 及32QAM 系统的仿真原理:QAM 是一种矢量调制,将输入比特映射到一个复平面,形成复数调制信号,然后将I 信号和Q 信号(实部虚部)分量采用幅度调制,分别对应调制在相互正交的两个载波(cos t ω,sin t ω)上。

下图为MQAM 的调制原理图。

MQAM 的信号表达式:()()()cos sin 1,2,...,,0M C S C S i i T C i T C S i i s t a g t t a g t ti M t T a a ωω=-=≤≤与是具有种不同幅度的加权值上述表达式可以看出,QAM 为两个正交载波振幅相位调制的结合。

波形矢量可以表示为:()()()11221,2,...,,0i i i S s t s f t s f t i M t T =+=≤≤()()()()()()()()121102202cos,02sin ,01,2,...,1,2,...,S ST C S g T C S g T i i T i i f t g t t t T E f t g t t t T E s s t f t dt i M s s t f t dt i M ωω=≤≤=≤≤====⎰⎰ MQAM 信号最佳接收:实验仿真条件:码元数量设定为10000个,基带信号频率1HZ ,抽样频率32HZ ,载波频率4HZ 。

实验结果分析:对于QAM ,可以看成是由两个相互正交且独立的多电平ASK 信号叠加而成。

因此,利用多电平误码率的分析方法,可得到M 进制QAM 的误码率为:])(1log 3[)11(022n E L L erfc L P b e --= 式中,M L =,Eb 为每码元能量,n 0为噪声单边功率谱密度。

通过调整高斯白噪声信道的信噪比SNR (Eb/No ),可以得到如图所示的误码率图:-1-0.500.511.522.510-310-210-1100QAM 信号误码率分析信噪比误码率可见16QAM和32QAM信号的误码率随着信噪比的增大而逐渐减小,这与理论趋势是一致的,但是存在偏差。

QAM原理

QAM原理

QAM是一种在两个正交载波上进行幅度调制的调制方式。

这两个载波通常是相位差为90度(π/2)的正弦波,因此被称作正交载波。

这种调制方式因此而得名。

概述同其它调制方式类似,QAM通过载波某些参数的变化传输信息。

在QAM中,数据信号由相互正交的两个载波的幅度变化表示。

模拟信号的相位调制和数字信号的PSK可以被认为是幅度不变、仅有相位变化的特殊的正交幅度调制。

由此,模拟信号频率调制和数字信号FSK也可以被认为是QAM的特例,因为它们本质上就是相位调制。

这里主要讨论数字信号的QAM,虽然模拟信号QAM也有很多应用,例如NTSC和PAL制式的电视系统就利用正交的载波传输不同的颜色分量。

类似于其他数字调制方式,QAM发射信号集可以用星座图方便地表示。

星座图上每一个星座点对应发射信号集中的一个信号。

设正交幅度调制的发射信号集大小为N,称之为N-QAM。

星座点经常采用水平和垂直方向等间距的正方网格配置,当然也有其他的配置方式。

数字通信中数据常采用二进制表示,这种情况下星座点的个数一般是2的幂。

常见的QAM形式有16-QAM、64-QAM、256-QAM等。

星座点数越多,每个符号能传输的信息量就越大。

但是,如果在星座图的平均能量保持不变的情况下增加星座点,会使星座点之间的距离变小,进而导致误码率上升。

因此高阶星座图的可靠性比低阶要差。

当对数据传输速率的要求高过8-PSK能提供的上限时,一般采用QAM的调制方式。

因为QAM的星座点比PSK的星座点更分散,星座点之间的距离因之更大,所以能提供更好的传输性能。

但是QAM星座点的幅度不是完全相同的,所以它的解调器需要能同时正确检测相位和幅度,不像PSK解调只需要检测相位,这增加了QAM解调器的复杂性。

M-QAM信号波形的表达式为:其中g(t)为码元信号脉冲。

因此QAM可以分解为分别在两个正交的载波cos2πfct与sin2πfct上的M1-PAM与M2-PAM的叠加,其中M1M2 = M。

qam原理

qam原理

QAM(Quadrature Amplitude Modulation,正交幅度调制)是一种常用的调制技术,主要用于无线通信和数字通信系统中。

它通过在两个正交的载波信号上调制幅度和相位来传输数字数据,以实现高效的数据传输。

QAM的原理基于两个正交的基带信号,分别称为正弦信号和余弦信号。

QAM通过对这两个信号同时进行幅度和相位调制,并将它们叠加在一起,形成调制后的信号。

这样,数字信息就被映射到平面上的特定信号点,每个信号点代表一个特定的符号或比特序列。

以下是QAM的详细原理描述:1. 数字源:QAM的输入是数字信息,可以是比特流或符号流。

比特流是由0和1组成的二进制序列,而符号流是由多个比特组成的离散符号序列。

2. 幅度调制:QAM首先对每个数据流进行幅度调制。

幅度调制是根据输入的数字信息,为每个数据流分配特定的幅度系数。

例如,对于二进制调制,可使用±A 表示两个不同的幅度值。

3. 相位调制:QAM接下来对每个数据流进行相位调制。

相位调制是根据输入的数字信息,为每个数据流分配特定的相位角度。

通常采用等间隔的相位角度,例如二进制调制可以使用0°和90°。

4. 叠加:通过将幅度调制和相位调制后的信号叠加在一起,得到最终的调制信号。

这是通过将正弦信号和余弦信号进行线性叠加来实现的。

5. 带通滤波:经过叠加后的信号通常包含多个频率成分,需要进行带通滤波以去除不需要的频率成分,得到最终的调制信号。

带通滤波器的作用是滤除高频和低频噪声,保留频率范围内的有用信号。

QAM的调制阶数表示在平面上能够表示的信号点的数量。

常见的调制阶数有16-QAM和64-QAM。

例如,对于16-QAM,共有16个信号点,可以表示4个比特;对于64-QAM,共有64个信号点,可以表示6个比特。

在接收端,QAM解调器执行与调制相反的操作,将接收到的QAM信号转换回原始的数字信息。

解调的过程主要包括以下步骤:1. 信号接收:接收器接收到经过噪声和信道影响的QAM信号。

QAM调制解调讲解

QAM调制解调讲解
QAM星座图的含义 QAM星座图的参数 16QAM的两种星座图的比较 QAM星座图的设计 多进制QAM的星座图
QAM的星座图含义
y

0

1
x
BPSK星座图
y
• 01
0•0
1•1 x
• 10
QPSK星座图
y
1101 1001 0001 0101
••••
1100 1000 0000 0100
座图上星座点间的最小距离,该参数反映 了MQAM信号抗高斯白噪声能力,可以通 过优化星座图分布来得到最大值,从而抗 干扰能力较强。
QAM星座图的参数(2)
最小相位偏移 最小相位偏移是MQAM信号星座点
相位的最小偏移,该参数反映了MQAM信 号抗相位抖动能力和对时钟恢复精确度的 敏感性,同样可以优化星座点的分布来获 得最大值,从而获得更好的传输性能。
ቤተ መጻሕፍቲ ባይዱ
16QAM与64QAM的误码性能比较 (2)
红色曲线-16QAM 蓝色曲线-64QAM
QAM的实现
单路QAM的实现 1)圆形16QAM的实现 2)矩形16QAM的实现
基于星座图解调方法的比较 QAM-OFDM的实现原理
圆形16QAM的实现(1)
16进制星形QAM 每个码元由4bit组成,每个码元的第一个比特, 通过差分的方式来改变QAM向量的振幅。当输 入的该比特为“l”时,则将当前码元的向量振幅, 改变到与前一个码元的向量振幅不同的振幅环 上;当输入的该比特为0时,则当前码元的向量 振幅与前一码元相同;每个码元的其余三比特, 通过Gray差分相位编码的方法来改变信号的相 位,也就是说,通过Gray编码来改变当前码元 信号向量与前一个码元信号向量的相位差。

模拟调制解调知识点总结

模拟调制解调知识点总结

模拟调制解调知识点总结一、调制解调的基本原理1. 调制的基本原理调制是将要传输的信息信号与载波信号相乘,经过一定处理后发射出去。

通过改变载波信号的某些特性,比如振幅、频率或相位,来携带信息信号。

调制有很多种方式,如幅度调制(AM)、频率调制(FM)和相位调制(PM)等。

2. 解调的基本原理解调是将接收到的调制信号,通过某种方法提取出原始信息信号。

解调的方式通常与调制的方式相对应,比如AM调制对应AM解调,FM调制对应FM解调。

解调的过程中,需要使用与调制过程相反的方法来还原出原始信息信号。

二、常见的调制方式1. 幅度调制(AM)幅度调制是将信息信号的振幅变化作用到载波信号上。

最简单的AM调制方式是单边带调幅(SAM),还有双边带调幅(DAM)等不同形式。

2. 频率调制(FM)频率调制是将信息信号的频率变化作用到载波信号上。

FM调制中,频率的变化与信息信号的变化成正比,信息信号的振幅对于调制后的信号影响较小。

3. 相位调制(PM)相位调制是将信息信号的相位变化作用到载波信号上。

相位调制和频率调制非常相似,但是它所携带的信息主要体现在相位的变化上。

4. 正交调幅调制(QAM)QAM是将幅度调制和相位调制结合起来的一种调制方式。

通过同时改变信号的振幅和相位来携带更多的信息,可以获得更高的频谱效率。

5. 脉冲编码调制(PCM)PCM是一种数字调制方式,它将模拟信号转换为数字信号,并按一定规则进行调制。

PCM 可以保持信号的高质量,适合远距离传输。

以上是常见的调制方式,它们在不同的场景中有不同的应用。

比如AM调制适用于广播和短波通信,FM调制适用于广播和音频传输,而QAM则适用于数字通信和有线电视等领域。

三、调制解调在通信系统中的应用1. 无线通信系统无线通信系统是调制解调技术最常见的应用场景之一。

在移动通信系统中,设备之间需要通过无线信号进行通信,而无线信号的传输需要经过调制解调的过程。

2. 有线通信系统有线通信系统中也有很多应用调制解调技术的场景。

(完整版)实验五16QAM调制与解调实验

(完整版)实验五16QAM调制与解调实验

实验五16QAM调制与解调实验【实验目的】使学生了解16QAM的调制与解调原理;能够通过MATLAB对其进行调制和解调;比较解调前后功率谱密度的差别。

【实验器材】装有MATLAB软件的计算机一台【实验原理】1. 16QAM 是用两路独立的正交4ASK 信号叠加而成,4ASK 是用多电平信号去键控载波而得到的信号。

它是2ASK 体制的推广,和2ASK 相比,这种体制的优点在于信息传输速率高。

2. 正交幅度调制是利用多进制振幅键控(MASK)和正交载波调制相结合产生的。

16 进制的正交振幅调制是一种振幅相位联合键控信号。

16QAM 的产生有2 种方法:(1)正交调幅法,它是有2 路正交的四电平振幅键控信号叠加而成;(2)复合相移法:它是用2 路独立的四相位移相键控信号叠加而成。

3. 16QAM 信号采取正交相干解调的方法解调,解调器首先对收到的16QAM 信号进行正交相干解调,一路与cosωc t 相乘,一路与sinωc t 相乘。

然后经过低通滤波器,低通滤波器LPF 滤除乘法器产生的高频分量,获得有用信号,低通滤波器LPF 输出经抽样判决可恢复出电平信号。

【实验内容与步骤】1. MATLAB软件的设置:对路径的设置,设置成路径指向comm2文件夹;2. 在命令行输入start指令,然后输入num值,如3,之后按照内容3输入参考代码。

3. 新建一个扩展名为M的文件,输入以下程序:M=16;k=log2(M);x=randint(30000,1);%产生二进制随机数y=modulate(modem.qammod('M',16,'InputType','Bit'),x);%调制EbNo=-5:1:10;%信噪比s_b2d=bi2de(reshape(x,k,length(x)/k).','left-msb');%二进制变为十进制for n=1:length(EbNo)snr(n)=EbNo(n)+10*log10(k);%Ratio of symbol energy to noise power spectral densityynoisy=awgn(y,snr(n),'measured');%加入高斯白噪声z=demodulate(modem.qamdemod('M',16,'OutputType','Bit'),ynoisy);%解调r_b2d=bi2de(reshape(z,k,length(z)/k).','left-msb');%二进制变为十进制[sym(n),sym_rate(n)]=symerr(s_b2d,r_b2d);%计算仿真误码率,不是误比特率。

正交幅度调制(qam)信号解调方案原理及实现

正交幅度调制(qam)信号解调方案原理及实现

正交幅度调制(qam)信号解调方案原理及实现1. 引言1.1 概述本文主要探讨正交幅度调制(QAM)信号解调方案的原理及实现。

随着通信技术的快速发展,QAM已成为一种重要的数字调制方式,被广泛应用于无线通信、光纤通信以及数字电视等领域。

QAM具有高可靠性与高传输效率的优势,因此对于了解其解调原理以及实际应用具有重要意义。

1.2 文章结构本文包括以下几个部分:首先,我们将介绍QAM信号的基础知识,包括其特点、调制原理和解调原理。

然后,我们将详细讨论QAM信号解调方案的实现方法,包括直接检测法、匹配滤波器法和软判决法。

接下来,我们将进行实验验证,并对结果进行比较分析。

最后,在结论部分总结全文,并展望未来QAM技术的发展方向。

1.3 目的本文旨在深入探讨正交幅度调制(QAM)信号解调方案的原理和实现方法,帮助读者更好地理解QAM技术并能够应用于实际工程中。

通过对不同解调方案的比较与分析,读者将能够选择最适合自己应用场景的解调方法,并对未来QAM技术的发展有所展望。

2. 正交幅度调制(qam)基础知识:2.1 QAM信号特点:正交幅度调制(QAM)是一种常见的数字调制技术,它能够在有限的频谱资源中有效地传输多个数据位。

QAM信号的主要特点包括以下几点:首先,QAM信号是一种复合调制技术,它同时利用了载波的相位和幅度来传输信息。

其次,QAM信号由两个正交载波分量组成,一般被称为I路与Q路。

这意味着QAM信号可以提供更高的数据传输率,因为每一个载波上都可以携带独立的信息。

第三,QAM信号通过改变正弦波的相位和幅度来表示数字数据。

具体来说,将不同电平的比特映射到不同的相位角和能量水平上。

最后,QAM信号具有抗噪声和抗干扰能力强的优势。

由于不同相位角之间存在较大差异,并且存在着很多可选的相位和幅度组合方式,使得接收端可以根据接收到的信号选择最佳策略以抵御噪声和干扰。

2.2 QAM调制原理:正交幅度调制(QAM)的调制原理基于将数字数据映射到一组离散的复平面点上。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

工作总结
——基于MATLAB/SIMULINK的64QAM
正交振幅调制QAM:
正交振幅调制是用两个独立的基带数字信号对两个相互正交的同频载波进行抑制载波的双边带调制。

采用多进制正交振幅调制可以提高频谱利用率,即MQAM(M>2)。

MQAM信号表示式可以写成:
这里Ai和Bj表示振幅:
=i
A
±
)1
2(-
i
=j
B
±
)1
2(-
j
其中i,j=1,2,...L。

当L=4时即为64QAM。

信号矢量端点的分布图称为星座图,64QAM的星座图如下:
QAM调制解调原理:
Q A M 阶次的选择,取决于传输信道的质量。

传输信道的质量越好,干扰越小,可用的阶次就越大。

正交幅度调制根据电平的幅度和相位,分为16/32/64/128/256QAM,阶数越高,其传输效率越高。

但是,也并不能无限制地通过增加电平级数来增加传输码率,因为随着电平数的增加,电平间的间隔减少,噪声容限减小,同样噪声条件下,会导致误码增加;在时间轴上也会如此,各相位间隔减小、码间干扰增加,抖动和定时问题都会使接收效果变差。

相关文档
最新文档