三角函数及解三角形常用公式
高中数学三角函数公式大全全解
高中数学三角函数公式大全全解三角函数公式1.正弦定理:$a/\sin A=b/\sin B=c/\sin C=2R$($R$为三角形外接圆半径)。
2.余弦定理:$a^2=b^2+c^2-2bc\cos A$。
$b^2=a^2+c^2-2ac\cos B$。
$c^2=a^2+b^2-2ab\cos C$。
3.海伦公式:$S_{\triangle}=\sqrt{p(p-a)(p-b)(p-c)}$。
其中$p=(a+b+c)/2$,$S_{\triangle}$为三角形面积。
4.诱导公式:奇变偶不变,符号看象限。
sin(-\alpha)=-\sin\alpha$,$\sin(\pi-\alpha)=\sin\alpha$,$\cos(-\alpha)=\cos\alpha$,$\cos(\pi-\alpha)=-\cos\alpha$,$\tan(-\alpha)=-\tan\alpha$,$\tan(\pi-\alpha)=\tan\alpha$,$\cot(-\alpha)=-\cot\alpha$,$\cot(\pi-\alpha)=-\cot\alpha$。
5.和差角公式:sin(\alpha\pm\beta)=\sin\alpha\cos\beta\pm\cos\alpha\sin\beta $,$\cos(\alpha\pm\beta)=\cos\alpha\cos\beta\mp\sin\alpha\sin\beta$,$\tan(\alpha\pm\beta)=(\tan\alpha\pm\tan\beta)/(1\mp\tan\alpha\tan \beta)$。
6.二倍角公式:(含万能公式)sin 2\theta=2\sin\theta\cos\theta=2\tan\theta/(1+\tan^2\theta)$,$\cos 2\theta=\cos^2\theta-\sin^2\theta=1-2\sin^2\theta= (1-\tan^2\theta)/(1+\tan^2\theta)$,$\tan 2\theta=2\tan\theta/(1-\tan^2\theta)$。
高中数学三角函数公式大全全解
三角函数公式1.正弦定理:A a sin =B b sin =Cc sin = 2R (R 为三角形外接圆半径) 2.余弦定理:a 2=b 2+c 2-2bc A cos b 2=a 2+c 2-2ac B cos c 2=a 2+b 2-2ab C cosbca cb A 2cos 222-+=3.S ⊿=21a a h ⋅=21ab C sin =21bc A sin =21ac B sin =Rabc 4=2R 2A sin B sin C sin =A C B a sin 2sin sin 2=B C A b sin 2sin sin 2=CB A c sin 2sin sin 2=pr=))()((c p b p a p p ---(其中)(21c b a p ++=, r 为三角形内切圆半径)4.诱导公试注:奇变偶不变,符号看象限。
注:三角函数值等于α的同名三角函数值,前面加上一个把α看作锐角时,原三角函数值的符号;即:函数名不变,符号看象限注:三角函数值等于α的异名三角函数值,前面加上一个把α看作锐角时,原三角函数值的符号;即:函数名改变,符号看象限5.和差角公式①βαβαβαsin cos cos sin )sin(±=± ②βαβαβαsin sin cos cos )cos( =± ③βαβαβαtg tg tg tg tg ⋅±=± 1)( ④)1)((βαβαβαtg tg tg tg tg ⋅±=±6.二倍角公式:(含万能公式)①θθθθθ212cos sin 22sin tg tg +== ②θθθθθθθ22222211sin 211cos 2sin cos 2cos tg tg +-=-=-=-=③θθθ2122tg tg tg -= ④22cos 11sin 222θθθθ-=+=tg tg ⑤22cos 1cos 2θθ+=7.半角公式:(符号的选择由2θ所在的象限确定) ①2cos 12sinθθ-±= ②2cos 12sin 2θθ-= ③2cos 12cos θθ+±= ④2cos 12cos 2θθ+=⑤2sin 2cos 12θθ=- ⑥2cos 2cos 12θθ=+ ⑦2sin2cos )2sin 2(cos sin 12θθθθθ±=±=±⑧θθθθθθθsin cos 1cos 1sin cos 1cos 12-=+=+-±=tg8.积化和差公式:[])sin()sin(21cos sin βαβαβα-++=[])sin()sin(21sin cos βαβαβα--+=[])cos()cos(21cos cos βαβαβα-++=()[]βαβαβα--+-=cos )cos(21sin sin9.和差化积公式:①2cos2sin2sin sin βαβαβα-+=+ ②2sin2cos2sin sin βαβαβα-+=-③2cos 2cos 2cos cos βαβαβα-+=+ ④2sin2sin 2cos cos βαβαβα-+-=- 锐角三角形函数公式总结大全1、勾股定理:直角三角形两直角边a 、b 的平方和等于斜边c 的平方。
三角函数及解三角形知识点总结
1. 任意角的三角函数的定义: 设〉是任意一个角,p (x,y )是〉的终边上的任意一点(异于原点),它与原点的距离是「“x 2r 2.o ,位置无关。
2. 三角函数在各象限的符号:(一全二正弦,三切四余弦)+L i+ ——L+ _ - + ------ ■——+ -■sin : cos : tan :3. 同角三角函数的基本关系式:4.三角函数的诱导公式 k 二.一诱导公式(把角写成2…形式,利用口诀:奇变偶不变,符(2)商数关系:tan-E屮一、cos 。
(用于切化弦) (1)平方关系: 2 2 2sin 工 cos ■■ -1,1 tan : 1cos 2:※平方关系一般为隐含条件,直接运用。
注意“ 1”的代换si …y,cos 」那么r三角函数值只与角的大小有关,而与终边上点5. 特殊角的三角函数值度 0s30cA45“A60“90 120cA135“150s 180c 270° 360弧31JIJI2n3兀 5兀 JI3兀 2兀度64323462si n 。
01 竝迈1旦1 01222222cosa亦11念力12_112 2222号看象限)sin (2k .亠 x ) = sin x cos (2k ■亠 x ) = cosx [)tan (2k ,亠 x )二 tanxsin ( -x ) - - sin x cos (-x ) =cosx H )tan(-x ) - - tanxm )|sin (,亠 x ) = -sin x cos (m ) = - cosx tan (二 x ) IV ) Sin (兀 _x ) =sin x cos (兀—x ) = —cosx tan (兀一sin (— -〉)= cos ..zsin (㊁:)=cos :V )-?) = sin :6. 三角函数的图像及性质7.函数厂Asi n( X J图象的画法:n 5m —兀-2兀①“五点法” __设X-x…•,令X = 0, 2,,2,求出相应的X 值,计算得出五点的坐标,描点后得出图象;②图象变换法:这是作函数简图常用方法。
常用三角函数公式及口诀
常用三角函数公式及口诀三角函数是数学中非常重要的一部分,它经常在几何、物理、工程等各个领域中被广泛应用。
掌握常用的三角函数公式和口诀,将有助于我们更好地理解和应用它们。
下面是一些常用的三角函数公式及口诀:一、三角函数的定义:在一个直角三角形中,正弦(sin)定义为对边与斜边的比值,余弦(cos)定义为邻边与斜边的比值,正切(tan)定义为对边与邻边的比值。
即:sin(θ) = 对边 / 斜边cos(θ) = 邻边 / 斜边tan(θ) = 对边 / 邻边二、特殊角的三角函数值:1.30°角特殊值:sin(30°) = 1/2cos(30°) = √3/2tan(30°) = 1/√32.45°角特殊值:sin(45°) = √2/2cos(45°) = √2/2tan(45°) = 13.60°角特殊值:sin(60°) = √3/2cos(60°) = 1/2tan(60°) = √3三、基本三角函数的性质:1.正弦、余弦的周期性:sin(θ) = sin(θ + 2π)cos(θ) = cos(θ + 2π)2.正弦、余弦的对称性:sin(-θ) = -sin(θ)cos(-θ) = cos(θ)3.正弦、余弦的平方和为1:sin^2(θ) + cos^2(θ) = 14.正切的周期性:tan(θ) = tan(θ + π)四、和差角公式:1.正弦和差角公式:sin(A ± B) = sin(A)cos(B) ± cos(A)sin(B) 2.余弦和差角公式:cos(A ± B) = cos(A)cos(B) ∓ sin(A)sin(B)3.正切和差角公式:tan(A ± B) = (tan(A) ± tan(B)) / (1 ∓ tan(A)tan(B))五、倍角公式:1.正弦倍角公式:sin(2A) = 2sin(A)cos(A)2.余弦倍角公式:cos(2A) = cos^2(A) - sin^2(A) = 2cos^2(A) - 1 = 1 - 2sin^2(A) 3.正切倍角公式:tan(2A) = 2tan(A) / (1 - tan^2(A))六、半角公式:1.正弦半角公式:sin(A/2) = ±√[(1 - cos(A)) / 2]2.余弦半角公式:cos(A/2) = ±√[(1 + cos(A)) / 2]3.正切半角公式:tan(A/2) = ±√[(1 - cos(A)) / (1 + cos(A))]七、和差化积公式:1.正弦和差化积公式:sin(A) + sin(B) = 2sin[(A+B)/2]cos[(A-B)/2]sin(A) - sin(B) = 2cos[(A+B)/2]sin[(A-B)/2] 2.余弦和差化积公式:cos(A) + cos(B) = 2cos[(A+B)/2]cos[(A-B)/2]cos(A) - cos(B) = -2sin[(A+B)/2]sin[(A-B)/2]。
第5章 三角函数与解三角形公式
三角函数与解三角形公式总结【预备知识点】一、任意角与弧度制(一)任意角1.任意角的概念:规定一条射线绕其端点任意方向旋转所形成的角。
2.任意角的分类:(1)正角:规定一条射线绕其端点逆时针方向旋转所形成的角。
(2)负角:规定一条射线绕其端点顺时针方向旋转所形成的角。
(3)零角:规定一条射线绕其端点无任意方向旋转所形成的角,始边与终边重合的角。
口诀:正逆负顺零重合3.相等角、相反角与角的运算(1)相等角:旋转方向相同且旋转量相等。
(2)相反角:旋转方向相反且旋转量相等。
(3)角的运算:线性加减运算与数乘运算。
4.常见误区:(1)锐角是第一象限角,但是第一象限角不一定是锐角,因为有周期。
例如420°。
(2)钝角是第二象限角,但是第二象限角不一定是钝角,因为有周期。
例如495°。
(3)直角不是任意象限角,属于y轴的特殊角。
(4)平角、周角属于轴线角,它不属于任何一个象限角。
(二)弧度制1.弧长公式及其意义(1)弧长公式:l=nπr180⟺lr=n∗π180=|α|⟺l=|α|r(2)弧长公式的意义:(i)圆心角α所对的弧长与半径r的比值,只与α大小有关。
(ii)弧长长度等于半径长的圆弧所对的圆心角叫做1弧度的角,用rad表示,读作弧度。
其中rad可省略。
(3)一般地,正角的弧度数是正数,零角的弧度数是0,负角的弧度数是一个负数。
2.角度制与弧度制的互换依据:180°=π rad{1°=π180rad≈0.01745 rad 1 rad=(180π)°≈57.30°=57°18′(三)常见的角度制与弧度制互换表示二、三角函数常用特殊值【大重点,熟练背诵】【必考知识点】一、三角函数概念(1)定义式【熟记理解】(2)同角三角函数的基本关系【大重点题型:化弦为切经常用到,结合诱导公式与恒等变换】(i)平方关系【重点记第一个】sin2x+cos2x=11+cot2x=csc2x1+tan2x=sec2x(ii)商数关系【重点记第一个】tanx=sinx cosxcotx=cosx sinx(iii)倒数关系tanx∗cotx=1sinx∗cscx=1cosx∗secx=1(3)三角函数在各象限的符号【大重点并背诵】二、诱导公式【大重点,以下表格全背】诱导公式的基本思路【以第1组~第4组为例】:(1)首先,任意负角的三角函数转化成任意正角的三角函数【用公式3或1】(2)其次,任意正角的三角函数转化成0∼2π的三角函数【用公式1】(3)最后,0∼2π的三角函数转化成锐角三角函数【用公式2或4】三、三角恒等变换【大重点,所有公式都要背】1.两角和与差的正弦、余弦、正切Cα−β:cos(α−β)=cosα∗cosβ+sinα∗sinβCα+β:cos(α+β)=cosα∗cosβ−sinα∗sinβSα−β:sin(α−β)=sinα∗cosβ−cosα∗sinβSα+β:sin(α+β)=sinα∗cosβ+cosα∗sinβTα−β:tan(α−β)=tanα−tanβ1+tanα∗tanβTα+β:tan(α+β)=tanα+tanβ1−tanα∗tanβ扩展:三角和公式Cα+β+γ:cos(α+β+γ)=cosα∗cosβ∗cosγ−cosα∗sinβ∗sinγ−sinα∗cosβ∗sinγ−sinα∗sinβ∗cosγSα+β+γ:sin(α+β+γ)=sinα∗cosβ∗cosγ+cosα∗sinβ∗cosγ+cosα∗cosβ∗sinγ−sinα∗sinβ∗sinγTα+β+γ:tan(α+β+γ)=tanα+tanβ+tanγ−tanα∗tanβ∗tanγ1−tanα∗tanβ−tanα∗tanγ−tanβ∗tanγ2.二倍角的正弦、余弦、正切C2α: cos2α=cos2α−sin2α=1−2sin2α=2cos2α−1; cos2α=1+cos2α2,sin2α=1−cos2α2S2α: sin2α=2sinα∗cosαT2α: tan2α=2tanα1−tan2α扩展1:半角公式Cα2: cosα2=±√1+cosα2Sα2: sinα2=±√1−cosα2Tα2: tanα2=sinα1+cosα=1−cosαsinα=±√1−cosα1+cosα注意:正负由α2所在的象限决定!其中Cα: cosα=cos2α2−sin2α2=1−2sin2α2=2cos2α2−1=1−tan2α21+tan2α2Sα: sinα=2sin α2∗cosα2=2∗tanα21+tan2α2Tα:tanα=2∗tanα2 1−tan2α2扩展2:三倍角公式S3α: sin3α=3sinα−4sin3α=4sinα∗sin(π3−α)∗sin(π3+α)C3α: cos3α=4cos3α−3cosα=4cosα∗cos(π3−α)∗cos(π3+α)T3α: tan3α=3tanα−tan3α1−3tan3α=tanα∗tan(π3−α)∗tan(π3+α)扩展3:四倍角公式S4α: sin4α=−4∗[cosα∗sinα∗(2sin2α−1)]C4α: cos4α=1−8∗cos2α∗sin2αT4α: tan4α=4tanα−4tan3α1−6tan2α+tan4α扩展4:五倍角公式S5α: sin5α=16sin5α−20sin3α+5sinαC5α: cos5α=16cos5α−20cos3α+5cosαT5α: tan5α=5−10tan2α+tan4α1−10tan2α+5tan4α3.和差化积公式sin α+sin β=2sin α+β2∗cosα−β2sin α−sin β=2cos α+β2∗sinα−β2cos α+cos β=2cos α+β2∗cosα−β2cos α−cos β=−2sin α+β2∗sinα−β2tan α+tan β=sin(α+β) cosα∗cosβtan α−tan β=sin(α−β) cosα∗cosβcot α+cot β=sin(α+β) sinα∗sinβcot α−cot β=−sin(α−β) sinα∗sinβtan α+cot β=cos(α−β) cosα∗sinβtan α−cot β=−cos(α+β) cosα∗sinβsin2α−sin2β=sin(α+β)∗sin(α−β)cos2α−cos2β=−sin(α+β)∗sin(α−β)sin2α−cos2β=−cos(α+β)∗cos(α−β)cos2α−sin2β=cos(α+β)∗cos(α−β)记忆口诀:同名和差三角积,(sin α±sin β或cos α±cos β:等式左边只有同是正弦或同是余弦才可以相加减。
三角关系公式大全高数
三角关系公式大全在高等数学中,三角函数是十分重要的内容之一。
三角函数的定义涉及到三角关系,而三角关系则可以通过一系列公式来表示和计算。
下面将介绍一些常用的三角关系公式。
1. 三角函数的定义在直角三角形中,假设一条直角边的长度为 a,另一条直角边的长度为 b,斜边的长度为 c。
则定义如下三个三角函数:•正弦(sine):sine(A) = a/c•余弦(cosine):cos(A) = b/c•正切(tangent):tan(A) = a/b其中 A 为直角边 a 的对角(角度)。
2. 基本关系公式基本关系公式可以通过三角函数的定义推导得出,它们是解决三角函数相关计算的基础。
下面是几个常用的基本关系公式:•余弦定理(cosine formula):c^2 = a^2 + b^2 - 2ab * cos(C)•正弦定理(sine formula):a/sin(A) = b/sin(B) = c/sin(C)•正切定义:tan(A) = sin(A) / cos(A)这些基本关系公式能够在解决直角三角形问题中提供重要的参考。
3. 和差公式和差公式可以用于计算三角函数求和或差的情况,下面是几个常用的和差公式:•正弦的和差公式:–sin(A + B) = sin(A) * cos(B) + cos(A) * sin(B)–sin(A - B) = sin(A) * cos(B) - cos(A) * sin(B)•余弦的和差公式:–cos(A + B) = cos(A) * cos(B) - sin(A) * sin(B)–cos(A - B) = cos(A) * cos(B) + sin(A) * sin(B)•正切的和差公式:–tan(A + B) = (tan(A) + tan(B)) / (1 - tan(A) * tan(B))–tan(A - B) = (tan(A) - tan(B)) / (1 + tan(A) * tan(B)) 这些和差公式可以在解决三角函数的简化、展开和求值问题时发挥作用。
三角形及三角函数公式
三角形及三角函数公式三角形是最基本的几何图形之一,其研究成果对于数学和物理等学科都有重要的意义。
三角形的研究主要包括三角形的性质及其相关的三角函数公式。
三角形的性质:1.三角形是由三条边和三个内角组成的封闭图形。
2.三角形的两边之和大于第三边,任意两个内角之和小于180度。
3.在一个三角形中,外角等于其对应的非相邻内角之和。
4.三角形的内角和等于180度。
5.等腰三角形的两底角相等,而等边三角形的三个内角相等。
三角函数公式:在三角形中,我们经常使用三角函数来描述角度和边长之间的关系。
以下是一些常用的三角函数公式:1. 正弦定理(Sine Rule):在任意三角形ABC中,边长a、b、c与对应的角A、B、C之间有如下关系:sinA/a = sinB/b = sinC/c2. 余弦定理(Cosine Rule):在任意三角形ABC中,边长a、b、c与对应的角A、B、C之间有如下关系:c^2 = a^2 + b^2 - 2ab*cosC3. 正切定理(Tangent Rule):在任意三角形ABC中,角A、B、C的正切值与其对应边长之间有如下关系:tanA = a/b,tanB = b/a,tanC = c/a4. 正割公式(Secant Formula):在任意三角形ABC中,角A、B、C的正割值与其对应边长之间有如下关系:secA = c/a,secB = c/b,secC = a/c5. 余割公式(Cosecant Formula):在任意三角形ABC中,角A、B、C的余割值与其对应边长之间有如下关系:cscA = c/a,cscB = c/b,cscC = b/c6.直角三角形公式:对于直角三角形ABC(其中角C为直角),边长a、b和斜边c之间有如下关系:sinA = a/c,cosA = b/c,tanA = a/b这些三角函数公式可以应用于解决各种三角形问题,如求解边长、角度、三角形的面积等。
三角函数和解三角形知识点汇总
三角函数和解三角形知识点汇总知识点一三角函数(一)、角的概念的推广1.定义:角可以看成平面内的一条射线绕着端点从一个位置旋转到另一个位置所成的图形.2.分类:按旋转方向不同分为正角、负角、零角.按终边位置不同分为象限角和轴线角.3.终边相同的角:所有与角α终边相同的角,连同角α在内,可构成一个集合S={β|β=α+k·360°,k∈Z}.(二)、弧度制的定义和公式1.定义:把长度等于半径长的弧所对的圆心角叫做1弧度的角,弧度记作rad. 2.公式(三)、任意角的三角函数(四)、同角三角函数的基本关系 1.平方关系:sin 2α+cos 2α=1. 2.商数关系:sin αcos α=tan α.(五)、三角函数的诱导公式知识点二 三角函数的图像与性质(一)、用五点法作正弦函数和余弦函数的简图1.正弦函数y =sin x ,x ∈[0,2π]的图象中,五个关键点是:(0,0),⎝ ⎛⎭⎪⎫π2,1,(π,0),⎝ ⎛⎭⎪⎫3π2,-1,(2π,0).2.余弦函数y =cos x ,x ∈[0,2π]的图象中,五个关键点是:(0,1),⎝ ⎛⎭⎪⎫π2,0,(π,-1),⎝ ⎛⎭⎪⎫3π2,0,(2π,1).(二)、正弦、余弦、正切函数的图象与性质(下表中k ∈Z )知识点三函数y=A sin(ωx+φ)的图像及应用(一)、“五点法”作函数y=A sin(ωx+φ)(A>0,ω>0)的简图“五点法”作图的五点是在一个周期内的最高点、最低点及与x轴相交的三个点,作图时的一般步骤为:1.定点:如下表所示.2.作图:在坐标系中描出这五个关键点,用平滑的曲线顺次连接得到y=A sin(ωx+φ)在一个周期内的图象.3.扩展:将所得图象,按周期向两侧扩展可得y=A sin(ωx+φ)在R上的图象.(二)、函数y=A sin(ωx+φ)中各量的物理意义当函数y=A sin(ωx+φ)(A>0,ω>0),x∈[0,+∞) 表示一个振动量时,几个相关的概念如下表:(三)、函数y =sin x 的图象经变换得到y =A sin(ωx +φ)的图象的两种途径知识点四 三角恒等变换(一)、两角和与差的正弦、余弦和正切公式sin(α±β)=sin αcos β±cos αsin β. cos(α∓β)=cos αcos β±sin αsin β. tan(α±β)=tan α±tan β1∓tan αtan β.(二)、二倍角的正弦、余弦、正切公式sin 2α=2sin αcos α.cos 2α=cos 2α-sin 2α=2cos 2α-1=1-2sin 2α. tan 2α=2tan α1-tan 2α.(三)、有关公式的逆用、变形等 1.tan α±tan β=tan(α±β)(1∓tan αtan β). 2.cos 2α=1+cos 2α2, sin 2α=1-cos 2α2. 3.1+sin 2α=(sin α+cos α)2, 1-sin 2α=(sin α-cos α)2,sin α±cos α=2sin ⎝ ⎛⎭⎪⎫α±π4.(四)、函数f (α)=a sin α+b cos α(a ,b 为常数),可以化为f (α)=a 2+b 2sin(α+φ)⎝ ⎛⎭⎪⎫其中tan φ=b a 或f (α)=a 2+b 2cos(α-φ)⎝ ⎛⎭⎪⎫其中tan φ=a b .知识点五 解三角形(一)、正、余弦定理在△ABC 中,若角A ,B ,C 所对的边分别是a ,b ,c ,R 为△ABC 外接圆半径,则(二)、S△ABC=12ab sin C=12bc sin A=12ac sin B=abc4R=12(a+b+c)·r(r是三角形内切圆的半径),并可由此计算R,r.(三)、实际问题中的常用角1.仰角和俯角:在同一铅垂平面内的水平视线和目标视线的夹角,目标视线在水平视线上方叫仰角,目标视线在水平视线下方叫俯角(如图1).2.方位角:从某点的指北方向线起按顺时针转到目标方向线之间的水平夹角叫作方位角.如B点的方位角为α(如图2).3.方向角:正北或正南方向线与目标方向线所成的锐角,如南偏东30°,北偏西45°等.4.坡度:坡面与水平面所成的二面角的正切值.。
(完整版)三角函数解三角形知识点总结
1. 任意角的三角函数的定义:设α是任意一个角,P (,)x y 是α的终边上的任意一点(异于原点),它与原点的距离是0r =>,那么sin ,cos y xr rαα==,()tan ,0yx xα=≠三角函数值只与角的大小有关,而与终边上点P 的位置无关。
2.三角函数在各象限的符号:(一全二正弦,三切四余弦)+ + - + - + - - - + + -sin α cos α tan α3. 同角三角函数的基本关系式:(1)平方关系:22221sin cos 1,1tan cos αααα+=+= (2)商数关系:sin tan cos ααα=(用于切化弦) ※平方关系一般为隐含条件,直接运用。
注意“1”的代换4.三角函数的诱导公式诱导公式(把角写成απ±2k 形式,利用口诀:奇变偶不变,符号看象限)Ⅰ)⎪⎩⎪⎨⎧=+=+=+x x k x x k x x k tan )2tan(cos )2cos(sin )2sin(πππ Ⅱ)⎪⎩⎪⎨⎧-=-=--=-x x x x x x tan )tan(cos )cos(sin )sin( Ⅲ) ⎪⎩⎪⎨⎧=+-=+-=+x x x x x x tan )tan(cos )cos(sin )sin(πππ Ⅳ)⎪⎩⎪⎨⎧-=--=-=-x x x x x x tan )tan(cos )cos(sin )sin(πππ Ⅴ)⎪⎪⎩⎪⎪⎨⎧=-=-ααπααπsin )2cos(cos )2sin( Ⅵ)⎪⎪⎩⎪⎪⎨⎧-=+=+ααπααπsin )2cos(cos )2sin(5.特殊角的三角函数值6.三角函数的图像及性质sin y x =cos y x = tan y x =图像定义域 R R,2x x k k Z ππ⎧⎫≠+∈⎨⎬⎩⎭值域[]1,1-[]1,1-R最值当22x k ππ=+()k Z ∈时,max 1y =;当22x k ππ=-()k Z ∈时,当()2x k k Z π=∈时,max 1y =;当2x k ππ=+()k Z ∈时,min 1y =-.既无最大值也无最小值度0 30 45 6090 120 135 150 180︒270360弧度0 6π 4π 3π 2π 23π 34π 56π π32π 2π sin α1222 32132 22121cos α132 221212- 22-32-1- 0 1tan α 0 331 3无3- 1-33-无7.函数sin()y A x ωϕ=+图象的画法: ①“五点法”――设X x ωϕ=+,令X =0,3,,,222ππππ求出相应的x 值,计算得出五点的坐标,描点后得出图象; ②图象变换法:这是作函数简图常用方法。
三角函数公式大全及其推导方法
1. 三角函数的定义 由此,我们定义: 如Figure I, 在ΔABC 中sin () cos () tan ()11 cot ()tan 11 sec ()cos 11 csc ()sin bca cb a a b b ac a a c c b b c θθθθθθθθθθθθθθθ∠=∠=∠=∠===∠===∠===对边的正弦值:斜边邻边的余弦值:斜边对边的正切值:邻边邻边的余切值:对边斜边的正割值:邻边斜边的余割值:对边备注:当用一个字母或希腊字母表示角时,可略写∠符号,但用三个子母表示时,不能省略。
在本文中,我们只研究sin 、cos 、tan 。
A c b θ Figure I2. 额外的定义222222sin (sin )cos (cos )tan (tan )θθθθθθ===3. 简便计算公式22sin cos cos(90)cos sin sin(90)111tan tan tan(90)sin cos 1b A cc A b b a a A bθθθθθθθθ===-∠===-∠====-∠+= 证明:2222222222901sin sin 1sin cos 1ABC ABC a b c a b c cB A θθ∆∠=∴+=∴+=∴+=∴+=在中,证完222222sin tan cos sin cos 1tan 1cos cos cos bb c a a cθθθθθθθθθ===+=+= 4. 任意三角形的面积公式如Figure II , Ca bhFigure II121sin 21sin ()2ABC S ah ab C ac B ∆===两边和其夹角正弦的乘积 5. 余弦定理:任意三角形一角的余弦等于两邻边的平方和减对边的平方之差与两邻边积的两倍之比。
证明:如Figure II, 2222222222222222222222(cos )(sin )2cos cos sin =2cos (cos sin )2cos cos 22b d h a c B c B a ac B c B c Ba ac B c B B a c ac Bb ac a c b B ac ac=+=-+=-++-++=+---+-⇒==-证完6. 海伦公式证明:如Figure II ,2222244422222222224442222222222444222222222244422221sin 211cos 21122122212414222241422244214ABC S ab C ab C a b c ab ab a b c a b a c b c ab a b a b a b c a b a c b c ab a b a b a b c a b a c b c a b a b a b c a b a b ∆==-⎛⎫+-=- ⎪⎝⎭+++--=-----++=----++=⋅-----=⋅()()()()()22222222416a c b c a b a b c a b c b c a a b c -+--++-++=()()()()()()()222222222222222222=2ABC a b c c a b c b a b c a a b c a b c c a b c b a b c a a b c a b c a b c a b c a b c a b c a b cs S s s a s b s c ∆++-++-++-++=⨯⨯⨯++-++-++-++=⨯⨯⨯++++++++⎛⎫⎛⎫⎛⎫=--- ⎪⎪⎪⎝⎭⎝⎭⎝⎭++=---设: 7. 正弦定理A如 Figure III ,c 为ΔABC 外接圆的直径,sin 2 sin a A c ac r r ABC A =∴==∆(为的外接圆半径)同理:, sin sin 2sin sin sin b c c c B C a b c r A B C ==∴===8. 加法定理(1)两角差的余弦如 Figure IV,AOC BOC AOB αβαβ∠=∠∠=∠∠=∠-∠令AO=BO=r点A 的横坐标为cos A x r α=点A 的纵坐标为sin A y r α= y A BO C xβ (α-α Figure IV点B 的横坐标为cos B x r β=点B 的纵坐标为sin B y r β=()()()()()()22222222222222222222222222sin sin cos cos sin sin 2sin sin cos cos 2cos cos sin sin 2sin sin cos cos 2cos cos sin cos sin cos 2sin sin 2cos cos 112s A B A B AB y y x x r r r r r r r r r r r r r αββααβαβαβαβαβαβαβαβααββαβαβ=-+-=-+-=+-++-=+-++-=+++--=+-()()()22in sin cos cos 22sin sin cos cos 21sin sin cos cos r r αβαβαβαβαβαβ+⎡⎤⎣⎦=-+⎡⎤⎣⎦=-+⎡⎤⎣⎦由余弦公式可得:()()()()2222222222cos 2cos 22cos 22cos 21cos AB AC BC AC BC ACBr r r r r r r r αβαβαβαβ=+-⋅∠=++⋅-=+-=--⎡⎤⎣⎦=--⎡⎤⎣⎦综上得:()cos sin sin cos cos αβαβαβ-=+(2)两角和的余弦()()()()cos cos sin sin cos cos sin sin cos cos cos cos sin sin αβαβαβαβαβαβαβαβ+=--⎡⎤⎣⎦=-+-=-+=-(3)两角和的正弦()()()()()sin cos 90cos 90sin 90sin cos 90cos cos sin sin cos αβαβαβαβαβαβαβ+=︒-+⎡⎤⎣⎦=︒--⎡⎤⎣⎦=︒-+︒-=+(4)两角差的正弦()()()()sin sin cos sin sin cos cos sin sin cos sin cos cos sin αβαβαβαβαβαβαβαβ-=+-⎡⎤⎣⎦=-+-=-+=-(5)两角和的正切()()()sin tan cos cos sin sin cos cos cos sin sin cos sin sin cos cos cos cos cos sin sin cos cos sin sin cos cos sin sin 1cos cos tan tan 1tan tan αβαβαβαβαβαβαβαβαβαβαβαβαββαβααβαβαβαβ++=++=-+=-+=-+=-(6)两角差的正切()()()()tan tan tan tan 1tan tan tan tan 1tan tan αβαβαβαβαβαβ-=+-⎡⎤⎣⎦+-=---=+ 9. 两倍角公式()()()()()()()222222222222sin 2sin sin cos sin cos 2sin cos cos 2cos cos cos sin sin cos sin 12sin 2cos 1sin 2tan 2cos 22sin cos cos sin 2sin cos cos cos sin cos 2sin cos sin 1cos 2tan 1ta αααααααααααααααααααααααααααααααααααααα=+=+==+=-=-=-=-==-=-=-=-2n α10.积化和差公式()()()()1sin cos 2sin cos 21sin cos sin cos cos sin cos sin 21sin sin 2αβαβαβαβαβαβαβαβ==++-=++-⎡⎤⎣⎦()()()()()()()()1cos cos 2cos cos 21cos cos cos cos sin sin sin sin 21cos cos 21sin sin 2sin sin 21sin sin sin sin cos cos cos cos 21cos cos 2αβαβαβαβαβαβαβαβαβαβαβαβαβαβαβαβ==++-=++-⎡⎤⎣⎦==++-=+--⎡⎤⎣⎦ 11.和差化积公式 (1)设:A=α+β, B=α-β,()()()()sin sin sin sin sin cos cos sin sin cos cos sin 2sin cos 2sin cos 222sin cos 22sin sin sin sin sin cos cos sin sin cos cos sin 2cos si A B A B A B A B αβαβαβαβαβαβαβαβαβαβαβαβαβαβαβαβαβα+=++-=++-=++-+--⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭+-⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭-=+--=+-+=n 2cos sin 222cos sin 22A B A B βαβαβαβαβ++-+-+⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭+-⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭(2)设:cos sin αα==∵22cos sin 1αα+=()()sin sin coscos sin sin cossinsin baθθθθαθαθαθ+=+=+=+12.其他常用公式()()()()()()()()()()()()()()000sin 360sin cos 360cos tan 360tan sin 90cos cos 90sin 1tan 90tan sin 90cos cos 90sin 1tan 90tan sin 90cos cos 90sin 1tan 90tan sin 180sin cos 180cos n n n θθθθθθθθθθθθθθθθθθθθθθθθθθθ+⨯=+⨯=+⨯=︒-=︒-=︒-=︒+=︒+=-︒+=--︒=--︒=-︒=-︒-=︒-=-()()()()()()()()tan 180tan sin 180sin cos 180cos tan 180tan sin sin cos cos tan tan tan 2190 1cos 1cos 11sin 1sin 1n θθθθθθθθθθθθθθθθθθθ︒-=-±︒=-±︒=-±︒=-=--=-=-+⨯︒⎡⎤⎣⎦-≤≤⇒≤-≤≤⇒≤不存在13.特殊的三角函数值14.关于机器算法在计算机中,三角函数的算法是这样的,其中x 用弧度计算()()1357210246sin 1!3!5!7!21!cos 0!2!4!6!2!n n nn x x x x x x n x x x x x x n +=∞=∞=-+-+=+=-+-+=∑∑推导公式:(a+b+c)/(sinA+sinB+sinC)=2R(其中,R为外接圆半径) 由正弦定理有a/sinA=b/sinB=c/sinC=2R所以a=2R*sinAb=2R*sinBc=2R*sinC加起来a+b+c=2R*(sinA+sinB+sinC)带入(a+b+c)/(sinA+sinB+sinC)=2R*(sinA+sinB+sinC)/(sinA+sinB+sinC)=2R 两角和公式sin(A+B)=sinAcosB+cosAsinBsin(A-B)=sinAcosB-cosAsinBcos(A+B)=cosAcosB-sinAsinBcos(A-B)=cosAcosB+sinAsinBtan(A+B)=(tanA+tanB)/(1-tanAtanB)tan(A-B)=(tanA-tanB)/(1+tanAtanB)cot(A+B)=(cotAcotB-1)/(cotB+cotA)cot(A-B)=(cotAcotB+1)/(cotB-cotA)倍角公式Sin2A=2SinACosA对数的性质及推导用^表示乘方,用log(a)(b)表示以a为底,b的对数*表示乘号,/表示除号定义式:若a^n=b(a>0且a≠1)则n=log(a)(b)基本性质:^(log(a)(b))=b(a)(MN)=log(a)(M)+log(a)(N);(a)(M/N)=log(a)(M)-log(a)(N);(a)(M^n)=nlog(a)(M)推导1.这个就不用推了吧,直接由定义式可得(把定义式中的[n=log(a)(b)]带入a^n=b)2.MN=M*N由基本性质1(换掉M和N)a^[log(a)(MN)]=a^[log(a)(M)]*a^[log(a)(N)]由指数的性质a^[log(a)(MN)]=a^{[log(a)(M)]+[log(a)(N)]}又因为指数函数是单调函数,所以log(a)(MN)=log(a)(M)+log(a)(N)3.与2类似处理MN=M/N由基本性质1(换掉M和N)a^[log(a)(M/N)]=a^[log(a)(M)]/a^[log(a)(N)]由指数的性质a^[log(a)(M/N)]=a^{[log(a)(M)]-[log(a)(N)]}又因为指数函数是单调函数,所以log(a)(M/N)=log(a)(M)-log(a)(N)4.与2类似处理M^n=M^n由基本性质1(换掉M)a^[log(a)(M^n)]={a^[log(a)(M)]}^n由指数的性质a^[log(a)(M^n)]=a^{[log(a)(M)]*n}又因为指数函数是单调函数,所以log(a)(M^n)=nlog(a)(M)其他性质:性质一:换底公式log(a)(N)=log(b)(N)/log(b)(a)推导如下N=a^[log(a)(N)]a=b^[log(b)(a)]综合两式可得N={b^[log(b)(a)]}^[log(a)(N)]=b^{[log(a)(N)]*[log(b)(a)]}又因为N=b^[log(b)(N)]所以b^[log(b)(N)]=b^{[log(a)(N)]*[log(b)(a)]}所以log(b)(N)=[log(a)(N)]*[log(b)(a)]{这步不明白或有疑问看上面的}所以log(a)(N)=log(b)(N)/log(b)(a)性质二:(不知道什么名字)log(a^n)(b^m)=m/n*[log(a)(b)]推导如下由换底公式[lnx是log(e)(x),e称作自然对数的底]log(a^n)(b^m)=ln(a^n)/ln(b^n)由基本性质4可得log(a^n)(b^m)=[n*ln(a)]/[m*ln(b)]=(m/n)*{[ln(a)]/[ln(b)]}再由换底公式log(a^n)(b^m)=m/n*[log(a)(b)]--------------------------------------------(性质及推导完)公式三:log(a)(b)=1/log(b)(a)证明如下:由换底公式log(a)(b)=log(b)(b)/log(b)(a)----取以b为底的对数,log(b)(b)=1=1/log(b)(a)还可变形得:log(a)(b)*log(b)(a)=1平方关系:sin^2(α)+cos^2(α)=1tan^2(α)+1=sec^2(α)cot^2(α)+1=csc^2(α)·商的关系:tanα=sinα/cosαcotα=cosα/sinα·倒数关系:tanα·cotα=1sinα·cscα=1cosα·secα=1万能公式:sinα=2tan(α/2)/[1+tan^2(α/2)]cosα=[1-tan^2(α/2)]/[1+tan^2(α/2)]tanα=2tan(α/2)/[1-tan^2(α/2)]常用的诱导公式有以下几组:公式一:设α为任意角,终边相同的角的同一三角函数的值相等:sin(2kπ+α)=sinαcos(2kπ+α)=cosαtan(2kπ+α)=tanαcot(2kπ+α)=cotα公式二:设α为任意角,π+α的三角函数值与α的三角函数值之间的关系:sin(π+α)=-sinαcos(π+α)=-cosαtan(π+α)=tanαcot(π+α)=cotα公式三:任意角α与-α的三角函数值之间的关系:sin(-α)=-sinαcos(-α)=cosαtan(-α)=-tanα公式四:利用公式二和公式三可以得到π-α与α的三角函数值之间的关系:sin(π-α)=sinαcos(π-α)=-cosαtan(π-α)=-tanαcot(π-α)=-cotα公式五:利用公式一和公式三可以得到2π-α与α的三角函数值之间的关系:sin(2π-α)=-sinαcos(2π-α)=cosαtan(2π-α)=-tanαcot(2π-α)=-cotα公式六:π/2±α及3π/2±α与α的三角函数值之间的关系:sin(π/2+α)=cosαcos(π/2+α)=-sinαtan(π/2+α)=-cotαcot(π/2+α)=-tanαsin(π/2-α)=cosαcos(π/2-α)=sinαtan(π/2-α)=cotαsin(3π/2+α)=-cosαcos(3π/2+α)=sinαtan(3π/2+α)=-cotαcot(3π/2+α)=-tanαsin(3π/2-α)=-cosαcos(3π/2-α)=-sinαtan(3π/2-α)=cotαcot(3π/2-α)=tanα(以上k∈Z)一般的最常用公式有:Sin(A+B)=SinA*CosB+SinB*CosASin(A-B)=SinA*CosB-SinB*CosACos(A+B)=CosA*CosB-SinA*SinBCos(A-B)=CosA*CosB+SinA*SinBTan(A+B)=(TanA+TanB)/(1-TanA*TanB) Tan(A-B)=(TanA-TanB)/(1+TanA*TanB)平方关系:sin^2(α)+cos^2(α)=1tan^2(α)+1=sec^2(α)cot^2(α)+1=csc^2(α)·积的关系:sinα=tanα*cosαcosα=cotα*sinαtanα=sinα*secαcotα=cosα*cscαsecα=tanα*cscαcscα=secα*cotα·倒数关系:tanα·cotα=1sinα·cscα=1cosα·secα=1直角三角形ABC中,角A的正弦值就等于角A的对边比斜边,余弦等于角A的邻边比斜边正切等于对边比邻边,三角函数恒等变形公式·两角和与差的三角函数:cos(α+β)=cosα·cosβ-sinα·sinβcos(α-β)=cosα·cosβ+sinα·sinβsin(α±β)=sinα·cosβ±cosα·sinβtan(α+β)=(tanα+tanβ)/(1-tanα·tanβ) tan(α-β)=(tanα-tanβ)/(1+tanα·tanβ)·辅助角公式:Asinα+Bcosα=(A^2+B^2)^(1/2)sin(α+t),其中sint=B/(A^2+B^2)^(1/2)cost=A/(A^2+B^2)^(1/2)·倍角公式:sin(2α)=2sinα·cosα=2/(tanα+cotα)cos(2α)=cos^2(α)-sin^2(α)=2cos^2(α)-1=1-2sin^2(α)tan(2α)=2tanα/[1-tan^2(α)]·三倍角公式:sin(3α)=3sinα-4sin^3(α)cos(3α)=4cos^3(α)-3cosα·半角公式:sin(α/2)=±√((1-cosα)/2)cos(α/2)=±√((1+cosα)/2)tan(α/2)=±√((1-cosα)/(1+cosα))=sinα/(1+cosα)=(1-cosα)/sinα·降幂公式sin^2(α)=(1-cos(2α))/2=versin(2α)/2cos^2(α)=(1+cos(2α))/2=vercos(2α)/2tan^2(α)=(1-cos(2α))/(1+cos(2α))·万能公式:sinα=2tan(α/2)/[1+tan^2(α/2)]cosα=[1-tan^2(α/2)]/[1+tan^2(α/2)]tanα=2tan(α/2)/[1-tan^2(α/2)]·积化和差公式:sinα·cosβ=(1/2)[sin(α+β)+sin(α-β)]cosα·sinβ=(1/2)[sin(α+β)-sin(α-β)]cosα·cosβ=(1/2)[cos(α+β)+cos(α-β)]sinα·sinβ=-(1/2)[cos(α+β)-cos(α-β)]·和差化积公式:sinα+sinβ=2sin[(α+β)/2]cos[(α-β)/2]sinα-sinβ=2cos[(α+β)/2]sin[(α-β)/2]cosα+cosβ=2cos[(α+β)/2]cos[(α-β)/2]cosα-cosβ=-2sin[(α+β)/2]sin[(α-β)/2]·其他:sinα+sin(α+2π/n)+sin(α+2π*2/n)+sin(α+2π*3/n)+……+sin[α+2π*( n-1)/n]=0cosα+cos(α+2π/n)+cos(α+2π*2/n)+cos(α+2π*3/n)+……+cos[α+2π*( n-1)/n]=0以及sin^2(α)+sin^2(α-2π/3)+sin^2(α+2π/3)=3/2tanAtanBtan(A+B)+tanA+tanB-tan(A+B)=0部分高等内容·高等代数中三角函数的指数表示(由泰勒级数易得):sinx=[e^(ix)-e^(-ix)]/(2i)cosx=[e^(ix)+e^(-ix)]/2tanx=[e^(ix)-e^(-ix)]/[ie^(ix)+ie^(-ix)]泰勒展开有无穷级数,e^z=exp(z)=1+z/1!+z^2/2!+z^3/3!+z^4/4!+…+z^n/n!+…此时三角函数定义域已推广至整个复数集。
高中数学-三角函数公式大全
高中数学-三角函数公式大全新课程高中数学三角公式汇总一、任意角的三角函数在角α的终边上任取一点P(x,y),记r=x²+y²。
正弦:sinα=y/r余弦:cosα=x/r正切:tanα=y/x余切:cotα=x/y正割:secα=r/x余割:cscα=r/y注:我们还可以用单位圆中的有向线段表示任意角的三角函数。
如图,与单位圆有关的有向线段MP、OM、AT分别叫做角α的正弦线、余弦线、正切线。
二、同角三角函数的基本关系式倒数关系:sinα·cscα=1,cosα·secα=1,tanα·cotα=1.商数关系:tanα=sinα/cosα,cotα=cosα/sinα。
平方关系:sin²α+cos²α=1,1+tan²α=sec²α,1+cot²α=csc²α。
三、诱导公式⑴α+2kπ(k∈Z)、-α、π+α、π-α、2π-α的三角函数值,等于α的同名函数值,前面加上一个把α看成锐角时原函数值的符号。
(口诀:函数名不变,符号看象限)⑵π/3+α、-π/3+α、π-α、-π+α的三角函数值,等于α的异名函数值,前面加上一个把α看成锐角时原函数值的符号。
(口诀:函数名改变,符号看象限)四、和角公式和差角公式sin(α+β)=sinα·cosβ+cosα·sinβsin(α-β)=sinα·cosβ-cosα·sinβcos(α+β)=cosα·cosβ-sinα·sinβcos(α-β)=cosα·cosβ+sinα·sinβtan(α+β)=(tanα+tanβ)/(1-tanα·tanβ)tan(α-β)=(tanα-tanβ)/(1+tanα·tanβ)五、二倍角公式sin2α=2sinα·cosαcos2α=cos²α-sin²α=2cos²α-1=1-2sin²α…(※)tan2α=2tanα/(1-tan²α)二倍角的余弦公式(※)有以下常用变形:(规律:降幂扩角,升幂缩角)1+cos2α=2cos²α1-cos2α=2sin²α1+sin2α=(sinα+cosα)²1-sin2α=(sinα-cosα)²cos2α=(1+cos2α)/(1-cos2α)sin2α=(1-cos2α)/2tanα=sin2α/(1+cos2α)万能公式告诉我们,任何单角的三角函数都可以用半角的正切来表示。
三角函数公式大全及解析
三角函数公式大全及解析倒数关系:tanα ·cotα=1sinα ·cscα=1cosα ·secα=1商的关系:sinα/cosα=tanα=secα/cscαcosα/sinα=cotα=cscα/secα平方关系:sin^2(α)+cos^2(α)=11+tan^2(α)=sec^2(α)1+cot^2(α)=csc^2(α)平常针对不同条件的常用的两个公式sin^2(α)+cos^2(α)=1tan α *cot α=1一个特殊公式(sina+sinθ)*(sina-sinθ)=sin(a+θ)*sin(a-θ)证明:(sina+sinθ)*(sina-sinθ)=2 sin[(θ+a)/2] cos[(a-θ)/2] *2 cos[(θ+a)/2] sin[(a-θ)/2]=sin(a+θ)*sin(a-θ)坡度公式我们通常半坡面的铅直高度h与水平高度l的比叫做坡度(也叫坡比),用字母i表示,即i=h / l, 坡度的一般形式写成l : m 形式,如i=1:5.如果把坡面与水平面的夹角记作a(叫做坡角),那么i=h/l=tan a.锐角三角函数公式正弦:sin α=∠α的对边/∠α 的斜边余弦:cos α=∠α的邻边/∠α的斜边正切:tan α=∠α的对边/∠α的邻边余切:cot α=∠α的邻边/∠α的对边二倍角公式正弦sin2A=2sinA·cosA余弦1.Cos2a=Cos^2(a)-Sin^2(a)2.Cos2a=1-2Sin^2(a)3.Cos2a=2Cos^2(a)-1即Cos2a=Cos^2(a)-Sin^2(a)=2Cos^2(a)-1=1-2Sin^2(a)正切tan2A=(2tanA)/(1-tan^2(A))三倍角公式sin3α=4sinα·sin(π/3+α)sin(π/3-α)cos3α=4cosα·cos(π/3+α)cos(π/3-α)tan3a = tan a · tan(π/3+a)· tan(π/3-a)三倍角公式推导sin(3a)=sin(a+2a)=sin2acosa+cos2asina=2sina(1-sin²a)+(1-2sin²a)sina=3sina-4sin^3acos3a=cos(2a+a)=cos2acosa-sin2asina=(2cos²a-1)cosa-2(1-cos^a)cosa=4cos^3a-3cosasin3a=3sina-4sin^3a=4sina(3/4-sin²a)=4sina[(√3/2)²-sin²a]=4sina(sin²60°-sin²a)=4sina(sin60°+sina)(sin60°-sina)=4sina*2sin[(60+a)/2]cos[(60°-a)/2]*2sin[(60°-a)/2]cos[(60°-a)/2]=4sinasin(60°+a)sin(60°-a)cos3a=4cos^3a-3cosa=4cosa(cos²a-3/4)=4cosa[cos²a-(√3/2)^2]=4cosa(cos²a-cos²30°)=4cosa(cosa+cos30°)(cosa-cos30°)=4cosa*2cos[(a+30°)/2]cos[(a-30°)/2]*{-2sin[(a+30°)/2]sin[(a-30°)/2]} =-4cosasin(a+30°)sin(a-30°)=-4cosasin[90°-(60°-a)]sin[-90°+(60°+a)]=-4cosacos(60°-a)[-cos(60°+a)]=4cosacos(60°-a)cos(60°+a)上述两式相比可得tan3a=tanatan(60°-a)tan(60°+a)现列出公式如下: sin2α=2sinαcosα tan2α=2tanα/(1-tan^2(α))cos2α=cos^2(α)-sin^2(α)=2cos^2(α)-1=1-2sin^2(α) 可别轻视这些字符,它们在数学学习中会起到重要作用。
高中数学知识系列之三角函数,解三角形的基本公式概念及应用
高中数学知识系列之三角函数,解三角形的基本公式、概念及应用1三角不等式:(1)若(0,)2x π∈,则sin tan x x x <<.(2) 若(0,)2x π∈,则1sin cos x x <+≤(3) |sin ||cos |1x x +≥.2 同角三角函数的基本关系式 :22sin cos 1θθ+=,tan θ=θθcos sin , 3 正弦、余弦的诱导公式(奇变偶不变,符号看象限) 4 和角与差角公式sin()sin cos cos sin αβαβαβ±=±;cos()cos cos sin sin αβαβαβ±=;tan tan tan()1tan tan αβαβαβ±±=.sin cos a b αα+)αϕ+(辅助角ϕ所在象限由点(,)a b 的象限决定,tan baϕ= ). 5 二倍角公式及降幂公式sin 2sin cos ααα=22tan 1tan αα=+. 2222cos 2cos sin 2cos 112sin ααααα=-=-=-221tan 1tan αα-=+. 22tan tan 21tan ααα=-.sin 21cos 2tan 1cos 2sin 2ααααα-==+ 221cos 21cos 2sin ,cos 22αααα-+==6 三角函数的周期公式函数sin()y x ωϕ=+,x ∈R 及函数cos()y x ωϕ=+,x ∈R(A,ω,ϕ为常数,且A ≠0)的周期2||T πω=;函数tan()y x ωϕ=+,,2x k k Z ππ≠+∈(A,ω,ϕ为常数,且A ≠0)的周期||T πω=. 三角函数的图像:7 正弦定理 :2sin sin sin a b cR A B C===(R 为ABC ∆外接圆的半径). 2sin ,2sin ,2sin a R A b R B c R C ⇔===::sin :sin :sin a b c A B C ⇔=8余弦定理:2222cos a b c bc A =+-;2222cos b c a ca B =+-;2222cos c a b ab C =+-.9面积定理:(1)111222a b c S ah bh ch ===(a b c h h h 、、分别表示a 、b 、c 边上的高). (2)111sin sin sin 222S ab C bc A ca B ===.(3)OAB S ∆=2,2a b c S r r a b c ∆∆∆+==++斜边内切圆直角内切圆-10三角形内角和定理:在△ABC 中,有()A B C C A B ππ++=⇔=-+222C A Bπ+⇔=-222()C A B π⇔=-+. 11实数与向量的积的运算律:设λ、μ为实数,那么: (1) 结合律:λ(μa )=(λμ) a ;(2)第一分配律:(λ+μ) a =λa +μa ;(3)第二分配律:λ(a +b )=λa +λb .12a 与b 的数量积(或内积):a ·b =|a ||b |cos θ。
三角函数及解三角形知识点总结
三角函数及解三角形知识点总结三角函数是数学中一个重要的分支,它研究了三角形中角度和边长之间的关系。
解三角形则是利用已知的一些条件,计算出三角形中的未知量。
本文将总结三角函数和解三角形的相关知识点,以帮助读者更好地理解和应用这些概念。
一、三角函数的基本概念1. 正弦函数(sine function)正弦函数是三角函数中最基本的一种,用sin表示。
它表示一个角的对边与斜边之比,即sinθ = 对边 / 斜边。
2. 余弦函数(cosine function)余弦函数是与正弦函数相似的三角函数,用cos表示。
它表示一个角的邻边与斜边之比,即cosθ = 邻边 / 斜边。
3. 正切函数(tangent function)正切函数也是常见的三角函数,用tan表示。
它表示一个角的对边与邻边之比,即tanθ = 对边 / 邻边。
二、三角函数的性质1. 周期性三角函数具有周期性,即在一定范围内,函数值会重复出现。
例如正弦函数和余弦函数的周期是2π,而正切函数的周期是π。
2. 定义域和值域不同的三角函数具有不同的定义域和值域。
正弦函数和余弦函数的定义域是整个实数集,值域是[-1, 1];而正切函数的定义域是除去其奇点的整个实数集,值域是整个实数集。
三、解三角形的基本方法解三角形是根据已知条件来计算未知量和角度的过程。
下面介绍几种常用的解三角形方法。
1. 余弦定理(Law of Cosines)余弦定理可以用来计算三角形中的边长。
对于一个三角形ABC,已知边长a、b和夹角C,余弦定理可以表示为c^2 = a^2 + b^2 - 2ab cosC。
通过此公式,我们可以计算出任意一条边的长度。
2. 正弦定理(Law of Sines)正弦定理可以用来计算三角形中的角度和边长。
对于一个三角形ABC,已知边长a,b和夹角C,正弦定理可以表示为a/sinA = b/sinB = c/sinC。
通过此公式,我们可以计算出未知的角度和边长。
三角函数定理公式大全
三角函数定理公式大全在数学中,三角函数是一组基本的函数,用于描述角度和边长之间的关系。
三角函数定理是描述三角形中角度和边长之间的关系的公式集合。
三角函数定理被广泛应用于三角形的计算和解决各种实际问题。
在本篇文章中,我们将介绍三角函数的各种定理公式。
1. 正弦定理(Sine Rule):在任意三角形ABC中,边长a,b,c与对应的角A,B,C之间满足以下关系:a/sinA = b/sinB = c/sinC这意味着一个三角形的任意一边的长度与它所对应的角的正弦值成比例。
2. 余弦定理(Cosine Rule):在任意三角形ABC中,边长a,b,c与对应的角A,B,C之间满足以下关系:c² = a² + b² - 2ab*cosCb² = a² + c² - 2ac*cosBa² = b² + c² - 2bc*cosA这意味着一个三角形的任意一边的平方与其他两边的平方以及其夹角的余弦值有关。
3. 正切定理(Tangent Rule):在任意三角形ABC中,边长a,b,c与对应的角A,B,C之间满足以下关系:tanA = a/btanB = b/atanC = c/a这意味着一个三角形的任意一边的长度与其他两边的长度之间的比率与对应的角的正切值成比例。
4. 正割定理(Secant Rule):在任意三角形ABC中,边长a,b,c与对应的角A,B,C之间满足以下关系:secA = 1/cosAsecB = 1/cosBsecC = 1/cosC这意味着一个三角形的任意一边的长度与对应的角的余弦值的倒数成比例。
5. 余割定理(Cosecant Rule):在任意三角形ABC中,边长a,b,c与对应的角A,B,C之间满足以下关系:cosecA = 1/sinAcosecB = 1/sinBcosecC = 1/sinC这意味着一个三角形的任意一边的长度与对应的角的正弦值的倒数成比例。
三角函数及解三角形公式一览
三角函数及解三角形公式一览三角函数和解三角形是数学中重要的概念和工具。
三角函数主要涉及角的度量和三角关系,解三角形则是通过给定的一些已知信息来求解三角形的边长和角度。
本文将详细介绍常见的三角函数和解三角形的公式,其中包括正弦、余弦、正切、余切、正割和余割的定义和性质,以及利用这些函数求解三角形的几何关系和应用。
一、三角函数的定义和性质1. 正弦函数(sin)正弦函数是一个周期函数,其定义域是所有实数,值域是[-1,1]。
它的定义公式为:sinθ = 对边 / 斜边sin(θ + 2πk) =sinθsin(π/2 - θ) = cosθ2. 余弦函数(cos)余弦函数也是一个周期函数,定义域是所有实数,值域是[-1,1]。
它的定义公式为:cosθ = 邻边 / 斜边cos(θ + 2πk) = cosθcos(π/2 - θ) = sinθ3. 正切函数(tan)正切函数是无界函数,其定义域是所有实数,值域是整个实数轴。
它的定义公式为:tanθ = 正弦 / 余弦 = 对边 / 邻边tan(θ + πk) = tanθtan(π/2 - θ) = 1 / tanθ4. 余切函数(cot)余切函数也是无界函数,定义域是所有实数,值域是整个实数轴。
它的定义公式为:cotθ = 余弦 / 正弦 = 邻边 / 对边cot(θ + πk) = cotθcot(π/2 - θ) = 1 / cotθ5. 正割函数(sec)正割函数是无界函数,其定义域是除了90°的倍数的所有实数,值域是(-∞,-1]∪[1,+∞)。
它的定义公式为:secθ = 1 / 余弦 = 斜边 / 邻边sec(θ + 2πk) = secθsec(θ + π) = -secθ6. 余割函数(cosec)余割函数也是无界函数,定义域是除了180°的倍数的所有实数,值域是(-∞,-1]∪[1,+∞)。
它的定义公式为:cosecθ = 1 / 正弦 = 斜边 / 对边cosec(θ + 2πk) = cosecθcosec(θ + π) = -cosecθ二、解三角形的公式解三角形是指通过给定的一些已知信息(如边长或角度)来求解三角形的未知信息。
高中数学知识系列之三角函数,解三角形的基本公式、概念及应用
高中数学知识系列之三角函数,解三角形的基本公式、概念及应用1三角不等式:(1)若(0,)2x π∈,则sin tan x x x <<.(2) 若(0,)2x π∈,则1sin cos x x <+≤(3) |sin ||cos |1x x +≥.2 同角三角函数的基本关系式 :22sin cos 1θθ+=,tan θ=θθcos sin , 3 正弦、余弦的诱导公式(奇变偶不变,符号看象限) 4 和角与差角公式sin()sin cos cos sin αβαβαβ±=±;cos()cos cos sin sin αβαβαβ±=;tan tan tan()1tan tan αβαβαβ±±=.sin cos a b αα+)αϕ+(辅助角ϕ所在象限由点(,)a b 的象限决定,tan baϕ= ). 5 二倍角公式及降幂公式sin 2sin cos ααα=22tan 1tan αα=+.2222cos 2cos sin 2cos 112sin ααααα=-=-=-221tan 1tan αα-=+. 22tan tan 21tan ααα=-. sin 21cos 2tan 1cos 2sin 2ααααα-==+221cos 21cos 2sin ,cos 22αααα-+==6 三角函数的周期公式函数sin()y x ωϕ=+,x ∈R 及函数cos()y x ωϕ=+,x ∈R(A,ω,ϕ为常数,且A ≠0)的周期2||T πω=;函数tan()y x ωϕ=+,,2x k k Z ππ≠+∈(A,ω,ϕ为常数,且A ≠0)的周期||T πω=. 三角函数的图像:7 正弦定理 :2sin sin sin a b cR A B C===(R 为ABC ∆外接圆的半径). 2sin ,2sin ,2sin a R A b R B c R C ⇔===::sin :sin :sin a b c A B C ⇔=8余弦定理:2222cos a b c bc A =+-;2222cos b c a ca B =+-;2222cos c a b ab C =+-.9面积定理:(1)111222a b c S ah bh ch ===(a b c h h h 、、分别表示a 、b 、c 边上的高). (2)111sin sin sin 222S ab C bc A ca B ===.(3)OAB S ∆=2,2a b c S r r a b c ∆∆∆+==++斜边内切圆直角内切圆-10三角形内角和定理 :在△ABC 中,有()A B C C A B ππ++=⇔=-+222C A B π+⇔=-222()C A B π⇔=-+. 11实数与向量的积的运算律:设λ、μ为实数,那么: (1) 结合律:λ(μa )=(λμ) a ;(2)第一分配律:(λ+μ) a =λa +μa ;(3)第二分配律:λ(a +b )=λa +λb .12a 与b 的数量积(或内积):a ·b =|a ||b |cos θ。
常用三角函数公式
常用三角函数公式三角函数是数学中一个非常重要的概念,它与三角形的内角和边长之间的关系密切相关。
在几何学、物理学、工程学等领域中广泛应用。
下面是一些常用的三角函数公式:1.正弦公式:在一个任意三角形ABC中,设a、b、c分别为三边的长度,A、B、C 分别为相应的内角,则有下列公式:sinA/a = sinB/b = sinC/c这个公式表明,在一个三角形中,每一个角的正弦值与其对边的比率是相等的。
2.余弦公式:在一个任意三角形ABC中,设a、b、c分别为三边的长度,A、B、C 分别为相应的内角,则有下列公式:c² = a² + b² - 2abcosCa² = b² + c² - 2bccosAb² = a² + c² - 2accosB这个公式表明,一个三角形的两个边的长度和夹角的余弦值有一定的关系。
3.正切公式:在一个任意三角形ABC中,设a、b、c分别为三边的长度,A、B、C分别为相应的内角,则有下列公式:tanA = a/btanB = b/atanC = c/atanC = c/b这个公式表示一个三角形的两个内角的正切值等于其对应边长的比率。
4.二倍角公式:sin(2θ) = 2sinθcosθcos(2θ) = cos²θ - sin²θ = 2cos²θ - 1 = 1 - 2sin²θtan(2θ) = 2tanθ / (1 - tan²θ)这个公式表示角的两倍角的正弦、余弦和正切值与原角的正弦、余弦和正切值之间的关系。
5.半角公式:sin²(θ/2) = (1 - cosθ) / 2cos²(θ/2) = (1 + cosθ) / 2tan²(θ/2) = (1 - cosθ) / (1 + cosθ)这个公式表示角的半角的正弦、余弦和正切值与原角的正弦、余弦和正切值之间的关系。
(完整版)高中数学三角函数公式大全全解
三角函数公式1.正弦定理:A a sin =B b sin =Cc sin = 2R (R 为三角形外接圆半径) 2.余弦定理:a 2=b 2+c 2-2bc A cos b 2=a 2+c 2-2ac B cos c 2=a 2+b 2-2ab C cosbca cb A 2cos 222-+=3.S ⊿=21a a h ⋅=21ab C sin =21bc A sin =21ac B sin =Rabc 4=2R 2A sin B sin C sin =AC B a sin 2sin sin 2=B C A b sin 2sin sin 2=C B A c sin 2sin sin 2=pr=))()((c p b p a p p ---(其中)(21c b a p ++=, r 为三角形内切圆半径)4.诱导公试注:奇变偶不变,符号看象限。
注:三角函数值等于α的同名三角函数值,前面加上一个把α看作锐角时,原三角函数值的符号;即:函数名不变,符号看象限注:三角函数值等于α的异名三角函数值,前面加上一个把α看作锐角时,原三角函数值的符号;即:函数名改变,符号看象限5.和差角公式①βαβαβαsin cos cos sin )sin(±=± ②βαβαβαsin sin cos cos )cos( =± ③βαβαβαtg tg tg tg tg ⋅±=± 1)( ④)1)((βαβαβαtg tg tg tg tg ⋅±=±6.二倍角公式:(含万能公式)①θθθθθ212cos sin 22sin tg tg +== ②θθθθθθθ22222211sin 211cos 2sin cos 2cos tg tg +-=-=-=-= ③θθθ2122tg tg tg -= ④22cos 11sin 222θθθθ-=+=tg tg ⑤22cos 1cos 2θθ+=7.半角公式:(符号的选择由2θ所在的象限确定) ①2cos 12sinθθ-±= ②2cos 12sin 2θθ-= ③2cos 12cos θθ+±= ④2cos 12cos 2θθ+=⑤2sin 2cos 12θθ=- ⑥2cos 2cos 12θθ=+ ⑦2sin2cos )2sin 2(cos sin 12θθθθθ±=±=±⑧θθθθθθθsin cos 1cos 1sin cos 1cos 12-=+=+-±=tg8.积化和差公式:[])sin()sin(21cos sin βαβαβα-++=[])sin()sin(21sin cos βαβαβα--+=[])cos()cos(21cos cos βαβαβα-++= ()[]βαβαβα--+-=cos )cos(21sin sin9.和差化积公式:①2cos2sin2sin sin βαβαβα-+=+ ②2sin2cos2sin sin βαβαβα-+=-③2cos2cos 2cos cos βαβαβα-+=+ ④2sin 2sin 2cos cos βαβαβα-+-=- 锐角三角形函数公式总结大全1、勾股定理:直角三角形两直角边a 、b 的平方和等于斜边c 的平方。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
三角函数常用公式
1、两角和与差的三角函数关系sin(α±β)=sin α·cos β±cos α·sin βcos(α±β)=cos α·cos β sin α·sin β
β
αβαβαtan tan 1tan tan )tan(⋅±=
± 2、倍角公式s in2α=2sin α·cos αcos2α=cos 2α-sin 2α
=2cos 2α-1=1-2sin 2α3、降幂升角公式1+cos α=2
cos 22α
cos 2α22cos 1α
+=
1-cos α=2
sin 22
α
sin 2α2
2cos 1α
-=
4、引入辅助角。
)cos()sin(cos sin 2222ϕθϕθθθ-+=++=+=b a b a b a y ,
这里辅助角ϕ所在象限由b a 、的符号确定,
ϕ角的值由a
b
=
ϕtan 确定5、三角函数的图像和性质:(其中z k ∈)
试
三角函
数
x
y sin
=x
y cos
=x
y tan
=
图像
定义域(-∞,+∞)(-∞,+∞)
2
π
π+
≠k
x
值域[-1,1][-1,1](-∞,+∞)
最小正
周期π2
=
Tπ2
=
Tπ
=
T 奇偶性奇偶奇
单调性]
2
2,
2
2[
π
π
π
π+
-k
k
单调
递增
]
2
3
2,
2
2[
π
π
π
π+
+k
k
单调
递减
]
2,
)1
2
[(π
πk
k-单调
递增
]
)1
2(,
2
[(π
π+
k
k单调
递减
)
2
,
2
(
π
π
π
π+
-k
k
单调
递增
对称性对称轴:
2
π
π+
=k
x
对称中心:)0,
(πk
对称轴:πk
x=
对称中心:
)0,
2
(
π
π+
k
对称中心:
)0,
2
(
πk
零值点πk
x=
2
π
π+
=k
x
πk
x=
最值点1
,
2
2
max
=
+
=y
k
x
π
π
1
,
2
2
max
-
=
-
=y
k
x
π
π
1
,
2
max
=
=y
k
xπ
1
,
)1
2(
max
-
=
+
=y
k
xπ无
试
6、函数)sin(ϕω+=x A y 的图像与性质:
(本节知识考察一般能化成形如)sin(ϕω+=x A y 图像及性质)(1)函数)sin(ϕω+=x A y 和)cos(ϕω+=x A y 的周期都是ωπ
2=T (2)函数)tan(ϕω+=x A y 和)cot(ϕω+=x A y 的周期都是ω
π=
T (3)五点法作)sin(ϕω+=x A y 的简图,设ϕω+=x t ,取0、2
π、π、
2
3π、π2来求相应x 的值以及对应的y 值再描点作图。
(4)关于平移伸缩变换可具体参考函数平移伸缩变换,提倡
先平移后伸缩。
切记每一个变换总是对字母x 而言,即图像变换要看“变量”起多大变化,而不是“角变化”多少。
【函数的平移变换】:
①)0)(()(>±=→=a a x f y x f y 将)(x f y =
图像沿x 轴向左(右)
平移a 个单位(左加右减)
②)0()()(>±=→=b b x f y x f y 将)(x f y =
图像沿y 轴向上(下)平移b 个单位(上加下减)【函数的伸缩变换】:
①)
0)(()(>=→=
w wx f y x f y 将)(x f y =图像纵坐标不变,
横坐标缩到原来的w
1倍(1>w 缩短,10<<w 伸长)
②)
0)(()(>=→=
A x Af y x f y 将)(x f y =图像横坐标不变,纵坐
标伸长到原来的A 倍(1>A 伸长,10<<A 缩短)
试
解三角形常用公式
1、正弦定理及其变形
2(sin sin sin a b c
R R A B C
===为三角形外接圆半径)
12sin ,2sin ,2sin a R A b R B c R C ===()(边化角公式)
2sin ,sin ,sin 222a b c
A B C R R R
=
==()(角化边公式)3::sin :sin :sin a b c A B C =()sin sin sin (4)
,,sin sin sin a A a A b B b B c C c C
===
2、正弦定理适用情况:(1)已知两角及任一边
(2)已知两边和一边的对角(需要判断三角形解的情况)已知a ,b 和A ,求B 时的解的情况:
如果sin A ≥sin B ,则B 有唯一解;如果sin A <sin B <1,则B 有两解;如果sin B =1,则B 有唯一解;如果sin B >1,则B 无解.3、余弦定理及其推论
2222222222cos 2cos 2cos a b c bc A b a c ac B c a b ab C
=+-=+-=+-222
222
222
cos 2cos 2cos 2b c a A bc a c b B ac a b c C ab
+-=
+-=
+-=
4、余弦定理适用情况:(1)已知两边及夹角;(2)已知三边。
5、常用的三角形面积公式
(1)高底⨯⨯=
∆21
ABC S ;(2)B ca A bc C ab S ABC sin 2
1
sin 21sin 21===∆(两边夹一角);
6、解三角形中常用结论
(1),,(a b c b c a a c b +>+>+>即两边之和大于第三边,两边之差小于第三边)(2)sin sin (ABC A B a b A B ∆>⇔>⇔>在中,即大边对大角,大角对大边)(3)在△ABC 中,A+B+C=π,所以sin(A+B)=sinC ;cos(A+B)=-cosC ;tan(A+B)=
-tanC 。
2
sin 2cos ,2cos 2sin C
B A
C B A =+=
+试
试。