(完整版)一次方程组和一次不等式组练习题

合集下载

一次方程(组)和一元一次不等式(组)

一次方程(组)和一元一次不等式(组)

一次方程(组)和一元一次不等式(组)一、选择题1.某校春季运动会比赛中,九年级(1)班、(5)班的竞技实力相当,关于比赛结果,甲同学说:(1)班与(5)班得分比为6:5;乙同学说:(1)班得分比(5)班得分的2倍少40分.若设(1)班得x 分,(5)班得y 分,根据题意所列的方程组应为( ) A .65,240x y x y =⎧⎨=-⎩ B .65,240x y x y =⎧⎨=+⎩ C .56,240x y x y =⎧⎨=+⎩ D .56,240x y x y =⎧⎨=-⎩2.若关于x y ,的方程组2x y m x m y n-=⎧⎨+=⎩的解是21x y =⎧⎨=⎩,则||m n -为( )A .1B .3C .5D .23.关于x 的方程12m x x -=的解为正实数,则m 的取值范围是( )A .m ≥2B .m ≤2C .m >2D .m <24.A 种饮料B 种饮料单价少1元,小峰买了2瓶A 种饮料和3瓶B 种饮料,一共花了13元,如果设B 种饮料单价为x 元/瓶,那么下面所列方程正确的是( ) A .2(1)313x x -+= B .2(1)313x x ++= C .23(1)13x x ++=D .23(1)13x x +-=5.若关于x 的不等式0721x m x -<⎧⎨-≤⎩的整数解共有4个,则m 的取值范围是( )A.6<m<7B.6≤m<7C.6≤m≤7D.6<m≤7 二、填空题1.关于x 的方程x kx 21=-的解为正实数,则k 的取值范围是2.一家商店将某件商品按成本价提高50%后,标价为450元,又以8折出售,则售出这件商品可获利润______元.3.不等式组2113x x +>-⎧⎨+⎩2,≤.的整数解为_______.4.如果|21||25|0x y x y -++--=,则x y +的值为 三、解答题 1.解方程组.1123,12⎩⎨⎧=-=+y x y x2.解不等式组:()20213 1.x x x ->⎧⎪⎨+≥-⎪⎩,四、应用题1.为了防控甲型H1N1流感,某校积极进行校园环境消毒,购买了甲、乙两种消毒液共100瓶,其中甲种6元/瓶,乙种9元/瓶.(1)如果购买这两种消毒液共用780元,求甲、乙两种消毒液各购买多少瓶?(2)该校准备再次..购买这两种消毒液(不包括已购买的100瓶),使乙种瓶数是甲种瓶数的2倍,且所需费用不多于...1200元(不包括780元),求甲种消毒液最多能再购买多少瓶?2.某旅游商品经销店欲购进A、B两种纪念品,若用380元购进A种纪念品7件,B种纪念品8件;也可以用380元购进A种纪念品10件,B种纪念品6件。

(完整版)一元一次不等式和一元一次不等式组(经典难题)

(完整版)一元一次不等式和一元一次不等式组(经典难题)

一元一次不等式和一元一次不等式组1.某同学说213a a -+一定比21a -大,你认为对吗?说明理由。

2.已知方程组23121x y m x y m +=+⎧⎨-=-⎩(1) 请列出x>y 成立的关于m 的不等式。

(2) 运用不等式的基本性质将此不等式化为m>a 或m<a 的形式。

3.要使不等式(1)12a x x a ->+-的解集为x<-1,求a 的取值范围。

4.已知关于x 的一元一次方程4131x m x -+=-的解都是负数,求m 的取值范围.5.如果关于x 的不等式(1)524.a x a x a -<+<和的解集相同,求的值6.x 取哪些非负整数时,322x -的值不小于213x +与1的差。

7.m 取何值时,关于x 的方程6151632x m m x ---=-的解大于1?8.如果方程组24122x y m x y m -=+⎧⎨-=-⎩的解满足3x-y>0,求m 的取值范围.9.若关于x 的方程52)4(3+=+a x 的解大于关于x 的方程3)43(4)14(-=+x a x a 的解,求a 的取值范围.10.不等式组⎩⎨⎧+>+<+1,159m x x x 的解集是x >2,则m 的取值范围是 .11.对于整数a ,b ,c ,d ,定义bd ac c d ba -=,已知3411<<d b,则b +d 的值为_________.12.k 满足______时,方程组⎩⎨⎧=-=+4,2y x k y x 中的x 大于1,y 小于1.13.解下列不等式或不等式组:.15)2(22537313-+≤--+x x x ).1(32)]1(21[21-<---x x x x⋅->+-+2503.0.02.003.05.09.04.0x x x ⎪⎩⎪⎨⎧-<-->-->+.3273,4536,7342x x x x x x14.当310)3(2kk -<-时,求关于x 的不等式k x x k ->-4)5(的解集.15.已知⎩⎨⎧+=+=+122,42k y x k y x 中的x ,y 满足0<y -x <1,求k 的取值范围.16.已知a 是自然数,关于x 的不等式组⎩⎨⎧>-≥-02,43x a x 的解集是x >2,求a 的值.17.关于x 的不等式组⎩⎨⎧->-≥-123,0x a x 的整数解共有5个,求a 的取值范围.18.若关于x 的不等式组⎪⎪⎩⎪⎪⎨⎧+<+->+ax x x x 322,3215只有4个整数解,求a 的取值范围.22.某办公用品销售商店推出两种优惠方法:①购1个书包,赠送1支水性笔;②购书包和水性笔一律按9折优惠.书包每个定价20元,水性笔每支定价5元.小丽和同学需买4个书包,水性笔若干支(不少于4支).(1)分别写出两种优惠方法购买费用y(元)与所买水性笔支数x(支)之间的函数关系式;(2)对x的取值情况进行分析,说明按哪种优惠方法购买比较便宜;(3)小丽和同学需买这种书包4个和水性笔12支,请你设计怎样购买最经济.。

沪教版 六年级数学下册 第六章 一元一次方程组及不等式组单元题有测试卷

沪教版 六年级数学下册 第六章 一元一次方程组及不等式组单元题有测试卷

沪教版六年级下册数学第五章一元一次方程组及不等式组提优测试卷第Ⅰ卷(选择题共18分)一、选择题(每题3分,共18分)在下列方程中,是二元一次方程的是()A. x²+x=2B. xy=﹣1C. 3x=1D. x-3=y2.如果a<b,那么下列不等式正确的是()A.1-a>1-b B. 2a >2b C. a+2>b-2 D a ²>b²3.下列方程中,解是-2的是()A. 3x-1=2+xB. 2-y=0C. x+3=﹣1D. =﹣14.下列方程变形正确的是()A.由8-x=11,得x=11-8 B.由﹣2x=3x-5,得﹣5x=﹣5C.由x=1,得x=D.由5x+1=3x,得5x-3x=15.长方形的周长为14厘米,长比宽的3倍少1厘米,设宽为x cm,依题意列方程,下列正确的是()A. x+(3x+1)=14B. x+(-)=14C.2x+2(3x-1)=14 D.2x+2(3x+1)=146.已知方程4x-3y=7,用含x的式子表示y正确的是()A. x=+B. x=4(7+3y)C. y=-D.y=-第Ⅱ卷(非选择题共82分)ニ、填空题(每题3分,共36分)7.列不等式:x的倒数减去1的差不小于它的2倍。

8.方程﹣2x-1=0的解是。

9.不等式﹣<1的解集是10.不等式组>﹣>的解集是1.﹣<x≤1的正整数解有个。

12.方程组+=--=的解是。

13.如果=-=是方程ax+y=-1的一个解那么a=14.二元一次方程x+3y=8的正整数解是15.如果方程5--++=0是二元一次方程,那么m+n =16.一双皮鞋售价x元,现降价四成出售,现在售价为元(列代数式)17.写出一个解集为ー1<x<2的不等式组:。

18.当x=时,代数式“-与-互为相反数。

三、解答题(第19~22题,每题6分,第23~24题每题7分,第25题8分,共46分)19.解方程:2--=20.解不等式:2(1-x)<﹣(2x+1)-x,并将解集在数轴上表示出来。

【备战2021-专项突破】专题3_2_一次方程(组)和一元一次不等式(组)(2)(原卷版)

【备战2021-专项突破】专题3_2_一次方程(组)和一元一次不等式(组)(2)(原卷版)

专题3.2 一次方程(组)和一元一次不等式(组) 备战2021年中考数学精选考点专项突破卷(2)一、单选题(共30分)1.(本题3分)(2020·广东揭阳·初二期末)对于实数,,a b c 中,给出下列命题:①若a b <,则a c b c -<-;②若ab c >,则ca b>;③若32a a ->,则0a <;④若a b >,则22ac bc >.其中真命题有( ) A .①②B .①③C .②④D .③④2.(本题3分)(2020·河南省洛阳市东升第二中学初三一模)不等式组271532x x +>⎧⎨-≥⎩的解集在数轴上表示正确的是( ) A .B .C .D .3.(本题3分)(2019·河北南宫·初一期末)关于x 的方程3a x -=的解是非负数,那么a 满足的条件是( ) A .3a >B .3a ≤C .3a <D .3a ≥4.(本题3分)(2020·河南郑州外国语中学初一期中)我们定义a c ⎛ ⎝ b ad bc d ⎫=-⎪⎭,例如:24⎛ ⎝ 3253425⎫=⨯-⨯=-⎪⎭,若x 满足423⎛-≤ ⎝ 22x ⎫<⎪⎭,则x 的整数解有( )A .0个B .1个C .2个D .3个5.(本题3分)(2020·山东长清·初二期中)若关于x 的一元一次不等式组0122x a x x ->⎧⎨->-⎩无解,则a 的取值范围是( ) A .a ≥1 B .a >1 C .a ≤,1D .a <,16.(本题3分)(2019·廊坊市第四中学初一期中)下列结论中错误的是( ) A .若ax bx =,则a b = B .若1x =,则1122x = C .若a b =,则11ac bc -=-D .若a b =,则2211a bc c =++ 7.(本题3分)(2020·哈尔滨市松雷中学校初一月考)按下面的程序计算,若开始输入的值x 为正整数,最后输出的结果为62,则满足条件的x的不同值最多有()A.2B.3C.4D.58.(本题3分)(2020·重庆九龙坡·期末)《九章算术》是中国传统数学重要的著作,奠定了中国传统数学的基本框架.它的代数成就主要包括开放术、正负术和方程术.其中方程术是《九章算术》最高的数学成就.《九章算术》中记载:“今有共买鸡,人出八,盈三;人出七,不足四问人数、鸡价各几何?”译文:“今天有几个人共同买鸡,每人出8钱,多余3钱,每人出7钱,还缺4钱.问人数和鸡的价钱各是多少?”设人数有x人,鸡的价钱是y钱,则可列方程组为()A.8374x yy x-=⎧⎨-=⎩B.8374y xy x-=⎧⎨-=⎩C.8374x yx y-=⎧⎨-=⎩D.8374y xx y+=⎧⎨-=⎩9.(本题3分)(2020·山东岱岳·初一期末)已知方程组233411x y kx y k+=⎧⎨-=+⎩中的x,y满足5x﹣y=3,则k=()A.﹣5B.﹣3C.﹣6D.﹣410.(本题3分)(2020·河北其他)解方程组①3759y xx y=-⎧⎨+=-⎩,②35123156x yx y+=⎧⎨-=-⎩,比较简便的方法是()A.都用代入法B.都用加减法C.①用代入法,②用加减法D.①用加减法,②用代入法二、填空题(共24分)11.(本题3分)(2020·孟津县双语实验学校初一月考)2150a--=,则a=________.12.(本题3分)(2020·孟津县双语实验学校初一月考)某书上有一道解方程的题:113xx++=,□处在印刷时被油墨盖住了﹐查后面的答案知这个方程的解是2x=-,那么□处应该是数字________.13.(本题3分)(2020·广东初三一模)已知a,b互为相反数,并且3a,2b,5,则a2,b2,________,14.(本题3分)(2020·湖南初一期末)已知二元一次方程组2326x yx y+=⎧⎨+=⎩,则x+y=__________.15.(本题3分)(2020·河南其他)不等式组11230 xx+⎧⎪⎨⎪--<⎩的最大整数解是_____.16.(本题3分)(2020·四川省射洪县射洪中学外国语实验学校初一期中)如图,长方形ABCD 中有6个形状、大小相同的小长方形,根据图中所标尺寸,则小长方形的面积为_______.17.(本题3分)(2020·河南遂平·初一期中)若关于x 、y 的二元一次方程组2133x y m x y -=+⎧⎨+=⎩的解满足x +y >0,则m 的取值范围是_________.18.(本题3分)(2019·黑龙江勃利·初一期末)已知关于x 的不等式组423(){23(2)5x x a x x +>+>-+仅有三个整数解,则a 的取值范围是__________. 三、解答题(共66分)19.(本题4分)(2020·河北南宫·初一期末)下面是林林同学的解题过程:解方程212136x x ++-=. 解:去分母,得:2(21)26x x +-+= 第①步 去括号,得:4226x x +-+= 第②步 移项合并,得:32x = 第③步 系数化1,得:23x =第④步 (1)上述林林的解题过程从第________步开始出现错误; (2)请你帮林林写出正确的解题过程.20.(本题4分)(2020·河南洛宁·初一期中)解下列不等式,并把解集在数轴上表示出来:2(1)3x +<5(1)6x -﹣1.21.(本题4分)(2020·长沙市长郡外国语实验中学月考)解不等式组2142311323x xxx-<+⎧⎪+⎨-≤⎪⎩,并把解集在数轴上表示出来.22.(本题4分)(2020·河北阜平·初一期末)解方程组:896 27170 x yx y-=⎧⎨++=⎩23.(本题7分)(2020·夏津县第二实验中学初一月考)张老师元旦节期间到武商众圆商场购买一台某品牌笔记本电脑,恰逢商场正推出“迎元旦”促销打折活动,具体优惠情况如表:例如:若购买的商品原价为15000 元,实际付款金额为:5000×90%+(10000﹣5000)×80%+(15000﹣10000)×70%=12000 元.(1)若这种品牌电脑的原价为8000 元/台,请求出张老师实际付款金额;(2)已知张老师购买一台该品牌电脑实际付费5700 元.求该品牌电脑的原价是多少元/台?24.(本题8分)(2020·广东阳山·初二期末)欣欣服装厂加工A、B两种款式的运动服共100件,加工A种运动服的成本为每件80元,加工B种运动服的成本为每件100元,加工两种运动服的成本共用去9200元.(1)A、B两种运动服各加工多少件?(2)A种运动服的标价为200元,B种运动服的标价为220元,若两种运动服均打八折出售,则该服装厂售完这100件运动服共盈利多少元?25.(本题8分)(2020·山东垦利·初一期末)列方程组(或不等式组)解应用题:垦利区为打好创城攻坚战,在城市创卫工作中“保护好环境,拒绝冒黑烟”,公交公司将淘汰某一条线路上“冒黑烟”较严重的公交车,计划购买A型和B型两种环保节能公交车共10辆.若购买A型公交车3辆,B型公交车2辆,共需180万元;若购买A型公交车2辆,B型公交车3辆,共需195万元.(1)求购买A型和B型公交车每辆各需多少万元;(2)预计在该线路上A型和B型公交车每辆年均载客量分别为60万人次和100万人次,若该公司购买A 型和B型公交车的总费用不超过360万元,且确保这10辆公交车在该线路的年均载客总和不少于680万人次,则该公司有哪几种购车方案,哪种购车方案总费用最少?最少总费用是多少?26.(本题8分)(2019·四川南充·初三一模)某水果经销商看准商机,第一次用800元购进某种水果进行销售,销售良好,于是第二次用了2400元购进同种水果,但此次进价比第一次提高了20%,所购数量比第一次购进数量的2倍还多200千克.(1)求第一次所购水果的进货价是每千克多少元?(2)在实际销售中,两次售价开始均相同,但第一次购进的水果在销售过程中,消费者挑选后,由于水果品相下降,最后50千克八折售出;第二次购进的水果由于同样的原因,最后100千克九折售出,若售完这两批水果的毛利不低于940元,则每千克开始售价至少为多少元?27.(本题9分)(2020·四川省射洪县射洪中学外国语实验学校初一期中)为了加强建设“经济强、环境美、后劲足、群众富”的实力城镇,聚力脱贫攻坚,全面完成脱贫任务,某乡镇特制定一系列帮扶计划.现决定将A、B两种类型鱼苗共320箱运到某村养殖,其中A种鱼苗比B种鱼苗多80箱.(1)求A种鱼苗和B种鱼苗各多少箱?(2)现计划租用甲、乙两种货车共8辆,一次性将这批鱼苗全部运往同一目的地.已知甲种货车最多可装A种鱼苗40箱和B种鱼苗10箱,乙种货车最多可装A种鱼苗和B种鱼苗各20箱.如果甲种货车每辆需付运输费4000元,乙种货车每辆需付运输费3600元,则安排甲、乙两种货车有哪几种不同的方案?并说明选择哪种方案可使运输费最少?最少运输费是多少元?28.(本题10分)(2020·江苏徐州·初一期末)已知56xy=⎧⎨=⎩与310xy=-⎧⎨=-⎩都是方程y kx b=+的解.(1)求k、b的值;(2)若y的值不小于0,求x的取值范围;(3)若21x,求y的取值范围.。

解不等式组50道题

解不等式组50道题

解不等式组50道题一、简单一元一次不等式组(1 - 10题)1. 解不等式组:x + 3>2 2x - 1<5- 解第一个不等式x + 3>2,移项可得x>2 - 3,即x>- 1。

- 解第二个不等式2x-1 < 5,移项得到2x<5 + 1,2x<6,两边同时除以2,得x < 3。

- 所以不等式组的解集为-1 < x < 3。

2. 解不等式组:3x-2≤slant1 x+1>0- 解第一个不等式3x-2≤slant1,移项得3x≤slant1 + 2,3x≤slant3,两边同时除以3,得x≤slant1。

- 解第二个不等式x + 1>0,移项得x>-1。

- 所以不等式组的解集为-1 < x≤slant1。

3. 解不等式组:2x+3≥slant1 -x + 2>0- 解第一个不等式2x+3≥slant1,移项得2x≥slant1 - 3,2x≥slant - 2,两边同时除以2,得x≥slant - 1。

- 解第二个不等式-x + 2>0,移项得x<2。

- 所以不等式组的解集为-1≤slant x<2。

4. 解不等式组:4x-1<7 3x+2≥slant - 1- 解第一个不等式4x-1<7,移项得4x<7 + 1,4x<8,两边同时除以4,得x < 2。

- 解第二个不等式3x+2≥slant - 1,移项得3x≥slant - 1-2,3x≥slant - 3,两边同时除以3,得x≥slant - 1。

- 所以不等式组的解集为-1≤slant x<2。

5. 解不等式组:5x-3>2x x+4<2x - 1- 解第一个不等式5x-3>2x,移项得5x-2x>3,3x>3,两边同时除以3,得x > 1。

- 解第二个不等式x + 4<2x-1,移项得x-2x<-1 - 4,-x<-5,两边同时乘以-1,不等号变向,得x>5。

北师大版八年级数学下册第二章一元一次不等式和一元一次不等式组专项训练试题(含答案及详细解析)

北师大版八年级数学下册第二章一元一次不等式和一元一次不等式组专项训练试题(含答案及详细解析)

第二章一元一次不等式和一元一次不等式组专项训练考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。

第I 卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如果a <b ,c <0,那么下列不等式成立的是( )A .a +c <bB .a ﹣c >b ﹣cC .ac +1<bc +1D .a (c ﹣2)<b (c ﹣2)2、不等式270x -<的最大整数解为( )A .2B .3C .4D .53、一次函数y =(m -2)x +m 2-3的图象与y 轴交于点M (0,6),且y 的值随着x 的值的增大而减小,则m 的值为( )A .6-B .C .3D .3-4、已知关于x 的不等式组3x x a≤⎧⎨>⎩有解,则a 的取值不可能是( ) A .0 B .1 C .2 D .35、若m <n ,则下列各式正确的是( )A .﹣2m <﹣2nB .33m n >C .1﹣m >1﹣nD .m 2<n 26、对有理数a ,b 定义运算:a ✬b =ma +nb ,其中m ,n 是常数,如果3✬4=2,5✬8>2,那么n 的取值范围是( )A .n >1-B .n <1-C .n >2D .n <27、若m >n ,则下列不等式不成立的是( )A .m +4>n +4B .﹣4m <﹣4nC .44m n >D .m ﹣4<n ﹣48、如果a >b ,下列各式中正确的是( )A .﹣2021a >﹣2021bB .2021a <2021bC .a ﹣2021>b ﹣2021D .2021﹣a >2021﹣b9、若整数a 使得关于x 的方程2(2)3x a -+=的解为非负数,且使得关于y 的一元一次不等式组322222010y y y a --⎧+>⎪⎪⎨-⎪≤⎪⎩至少有3个整数解.则所有符合条件的整数a 的和为( ) A .23 B .25 C .27 D .2810、若a >b ,则下列不等式一定成立的是( )A .﹣2a <﹣2bB .am <bmC .a ﹣3<b ﹣3D .3a +1<3b +1 第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、任何一个以x 为未知数的一元一次不等式都可以变形为_____(a ≠0)的形式,所以解一元一次不等式相当于在某个一次函数_____的值大于0或小于0时,求_____的取值范围.2、从2-,1-,0,13,1,2这六个数字中,随机抽取一个数记为a ,则使得关于x 的不等式组102321x a x ⎧->⎪⎨⎪-+≤⎩只有三个整数解的概率是 __. 3、已知a >b ,且c ≠0,用“>”或“<”填空.(1)2a ________a +b(2)2ac _______2b c(3)c -a _______c -b(4)-a |c |_______-b |c |4、大学城熙街新开了一家大型进口超市,开业第一天,超市分别推出三款纸巾:洁柔体验装、洁柔超值装、妮飘进口装进行促销活动,纸巾只能按包装整袋出售,每款纸巾的单价为整数,其中妮飘进口装的促销单价是其余两款纸巾促销单价和的4倍,同时妮飘进口装的促销单价大于40元且不超过60元,当天三款纸巾的销售数量之比为3:1:1第二天,超市对三款纸巾恢复原价,洁柔体验装比其促销价上涨50%,洁柔超值装的价格是其促销价的53,而妮飘进口装的价格在其第一天的基础上增加了14,第二天洁柔体验装与妮飘进口装的销量之比为4:3,洁柔超值装的销量比第一天的销量减少了20%.超市结算发现,第一天的销售总额比第二天洁柔体验装和妮飘进口装的销售总额之和多767元,第一天三款纸巾的总销量与第二天三款纸巾的总销量之差大于96件且小于120件,这两天妮飘进口装的总销售额为_______元.5、不等式组:3561162x x x x <+⎧⎪+-⎨≥⎪⎩,写出其整数解的和_____. 三、解答题(5小题,每小题10分,共计50分)1、若(m -2)23m x --2≥7是关于x 的一元一次不等式,求m 的值. 2、(1)解方程组:2523517x y x y +=⎧⎨-=⎩ (2)解不等式组()20 2131x x x +>⎧⎨+≥-⎩ 3、关于x 的方程6422x a x a +-=+的解大于1,求a 的取值范围.4、解不等式3x ﹣1≤x +3,并把解在数轴上表示出来.5、某学校计划购买若干台电脑,现在从两家商场了解到同一型号的电脑每台报价均为6000元,并且多买都有一定的优惠.甲商场的优惠条件是:第一台按原报价收款,其余每台优惠25%;乙商场的优惠条件是:每台优惠20%.如果你是校长,你该怎么考虑,如何选择?-参考答案-一、单选题1、A【分析】根据不等式的性质,逐项判断即可求解.【详解】解:A、由a<b,c<0得到:a+c<b+0,即a+c<b,故本选项符合题意.B、当a=1,b=2,c=﹣3时,不等式a﹣c>b﹣c不成立,故本选项不符合题意.C、由a<b,c<0得到:ac+1>bc+1,故本选项不符合题意.D、由于c﹣2<﹣2,所以a(c﹣2)>b(c﹣2),故本选项不符合题意.故选:A【点睛】本题主要考查了不等式的性质,熟练掌握不等式两边加(或减)同一个数(或式子),不等号的方向不变;不等式两边乘(或除以)同一个正数,不等号的方向不变;不等式两边乘(或除以)同一个负数,不等号的方向改变.2、B【分析】求出不等式的解集,然后找出其中最大的整数即可.【详解】x-<,解:270x<,277x<,2则符合条件的最大整数为:3,故选:B.【点睛】本题题考查了求不等式的整数解,能够正确得出不等式的解集是解本题的关键.3、D【分析】由一次函数y=(m-2)x+m2-3的图象与y轴交于点M(0,6),利用一次函数图象上点的坐标特征即可得出关于m的方程,解之即可得出m的值,由y的值随着x的值的增大而减小,利用一次函数的性质可得出m-2<0,解之即可得出m<2,进而可得出m=-3.【详解】解:∵一次函数y=(m-2)x+m2-3的图象与y轴交于点M(0,6),∴m2-3=6,即m2=9,解得:m=-3或m=3.又∵y的值随着x的值的增大而减小,∴m-2<0,∴m<2,∴m=-3.故选:D.【点睛】本题考查了一次函数图象上点的坐标特征以及一次函数的性质,利用一次函数图象上点的坐标特征及一次函数的性质,找出关于m的方程及一元一次不等式是解题的关键.4、D【分析】根据“同大取大,同小取小,大小小大取中间,大大小小无解”即可求出a 的取值范围,然后根据a 的取值范围解答即可.【详解】解:∵关于x 的不等式组3x x a ≤⎧⎨>⎩有解, ∴a <3,∴a 的取值可能是0、1或2,不可能是3.故选D .【点睛】本题考查了由不等式组的解集情况求参数,不等式组解集的确定方法是:同大取大,同小取小,大小小大取中间,大大小小无解.5、C【分析】根据不等式的基本性质逐项判断即可.【详解】解:A :∵m <n ,∴﹣2m >﹣2n ,∴不符合题意;B :∵m <n , ∴33m n <, ∴不符合题意;C :∵m <n ,∴﹣m >﹣n ,∴1﹣m >1﹣n ,∴符合题意;D : m <n ,当10m n =-=,时,m 2>n 2, ∴不符合题意;故选:C .【点睛】本题主要考查了不等式的基本性质,熟练掌握不等式的3条基本性质是解题关键.6、A【分析】先根据新运算的定义和3✬4=2将m 用n 表示出来,再代入5✬8>2可得一个关于n 的一元一次不等式,解不等式即可得.【详解】解:由题意得:342m n +=, 解得243n m -=, 由5✬8>2得:582m n +>, 将243n m -=代入582m n +>得:5(24)823n n -+>, 解得1n >-,故选:A .【点睛】本题考查了一元一次不等式的应用,理解新运算的定义是解题关键.7、D【分析】根据不等式的基本性质对各选项进行逐一分析即可.【详解】解:A .∵m >n ,∴m +4>n +4,故该选项正确,不符合题意;B .∵m >n ,∴44m n -<-,故该选项正确,不符合题意;C .∵m >n , ∴44m n >,故该选项正确,不符合题意; D .∵m >n ,∴44m n ->-,故该选项错误,符合题意;故选:D .【点睛】本题考查不等式的基本性质.掌握不等式的基本性质“1.不等式两边都加上(或减去)同一个数或同一个整式,不等号的方向不变;2.不等式两边都乘(或除以)同一个正数,不等号的方向不变;3.不等式两边都乘(或除以)同一个负数,不等号的方向改变.”是解答本题的关键.8、C【分析】根据不等式的性质即可求出答案.【详解】解:A 、∵a >b ,∴−2021a <−2021b ,故A 错误;B、∵a>b,∴2021a>2021b,故B错误;C、∵a>b,∴a﹣2021>b﹣2021,故C正确;D、∵a>b,∴2021﹣a<2021﹣b,故D错误;故选:D.【点睛】本题考查不等式,解题的关键是熟练运用不等式的性质,本题属于基础题型.9、B【分析】表示出不等式组的解集,由不等式至少有四个整数解确定出a的值,再由分式方程的解为非负数以及分式有意义的条件求出满足题意整数a的值,进而求出之和.【详解】解:32222210y yy a--⎧+>⎪⎪⎨-⎪≤⎪⎩①②,解不等式①得:2y>-,解不等式②得:y a≤∴不等式组的解集为:1yy a>-⎧⎨≤⎩,∵由不等式组至少有3个整数解,∴2a≥,即整数a=2,3,4,5,…,∵()223x a -+=,∴243x a -+= 解得:72a x , ∵方程()223x a -+=的解为非负数,∴702a -≥, ∴7a ≤∴得到符合条件的整数a 为3,4,5,6,7,之和为25.故选B .【点睛】此题考查了解一元一次方程,以及解一元一次不等式组,熟练掌握运算法则是解本题的关键.10、A【分析】由题意直接依据不等式的基本性质对各个选项进行分析判断即可.【详解】解:A .∵a >b ,∴﹣2a <﹣2b ,故本选项符合题意;B .a >b ,当m >0时,am >bm ,故本选项不符合题意;C .∵a >b ,∴a ﹣3>b ﹣3,故本选项不符合题意;D .∵a >b ,∴33a b >, ∴1133ab +>+,故本选项不符合题意;故选:A .【点睛】本题考查不等式的基本性质,注意掌握不等式的基本性质:①不等式的两边同时加上(或减去)同一个数或同一个含有字母的式子,不等号的方向不变;②不等式的两边同时乘以(或除以)同一个正数,不等号的方向不变;③不等式的两边同时乘以(或除以)同一个负数,不等号的方向改变.二、填空题1、ax +b >0或ax +b <0 y =ax +b 自变量【分析】根据一次函数图象与一元一次不等式的关系解答.【详解】解:任何一个以x 为未知数的一元一次不等式都可以变形为ax +b >0或ax +b <0 (a ≠0)的形式,所以解一元一次不等式相当于在某个一次函数y =ax +b 的值大于0或小于0时,求自变量的取值范围. 故答案为:ax +b >0或ax +b <0;y =ax +b ;自变量.【点睛】本题考查了一次函数与一元一次不等式:从函数的角度看,就是寻求使一次函数y =kx +b (k ≠0)的值大于(或小于)0的自变量x 的取值范围;从函数图象的角度看,就是确定直线y =kx +b (k ≠0)在x 轴上(或下)方部分所有的点的横坐标所构成的集合.2、13【分析】解关于x 的不等式组,由不等式组整数解的个数求出a 的范围,再从6个数中找到同时满足以上两个条件的情况,从而利用概率公式求解可得.【详解】解:解不等式组12321x ax⎧->⎪⎨⎪-+≤⎩,得:12a<x≤2,∵不等式组只有3个整数解,∴不等式组的整数解为2、1、0,则-1≤12a<0,即-2≤a<0∴在所列的六个数字中,同时满足以上两个条件的只有-2,-1,∴只有三个整数解的概率是21 = 63故答案为:13.【点睛】题主要考查的是解一元一次不等式组的解集和概率的知识,解题的关键是熟练掌握解一元一次不等式组的能力及概率公式的应用.3、>><<【分析】(1)根据不等式的性质:不等式两边同时加上一个数,不等号不变号,即可得;(2)根据不等式的性质:不等式两边同时除以一个正数,不等号不变号,即可得;(3)根据不等式的性质:不等式两边同时乘以一个负数,改变不等式的符号,再根据不等式两边同时加上一个数,不等号不变号,即可得;(4)根据不等式的性质:不等式两边同时乘以一个负数,改变不等式的符号,再根据不等式两边同时乘以一个正数,不等号不变号,即可得.【详解】解:(1)∵a b>,∴a a b a +>+,即:2a b a >+;(2)∵a b >,20c >, ∴22a b c c >; (3)∵a b >,∴a b -<-,∴c a c b -<-;(4)∵a b >,∴a b -<-,0c >, ∴a c b c -<-;故答案为:(1)>;(2)>;(3)<;(4)<.【点睛】题目主要考查不等式的基本性质,熟练掌握不等式的性质并综合运用是解题关键.4、14960【分析】设洁柔体验装的促销价为x 元,销售量为a 包,洁柔超值装的促销价为y 元,销售量为b 包,妮飘进口装的促销价为z 元,销售量为c 包,第二天,洁柔体验装的原价为: (150%)x +,销售量为1a 包,洁柔超值装的原价为: 53y ,销售量为1b 包,妮飘进口装的原价为: 1(1)4z +,销售量为 1c 包,根据第一天的销售总额比第二天洁柔体验装和妮飘进口装的销售总额之和多767元,可得()()175767x y c c +-=,进而可得 1755913x y c c +=⎧⎨-=⎩,x y 为整数,即可求得x y +,根据第一天三款纸巾的总销量与第二天三款纸巾的总销量之差大于96件且小于120件,解得 5135482828c <<,由 121753c c ,都是整数,则 5135482828c <<能被 3和5整除的数即能被15整除,即可求得c ,则这两天妮飘进口装的总销售额为11(1)4zc z c ++,即 ()()965x y c +-,代入数值求解即可. 【详解】解:设洁柔体验装的促销价为x 元,销售量为a 包,洁柔超值装的促销价为y 元,销售量为b 包,妮飘进口装的促销价为z 元,销售量为c 包,()44060::3:1:1z x y z a b c ⎧=+⎪<≤⎨⎪=⎩1015x y ∴<+≤,33a b c ==, 则35a b c c c c c ++=++=第二天,洁柔体验装的原价为:(150%)x +,销售量为1a 包,洁柔超值装的原价为:53y ,销售量为1b 包,妮飘进口装的原价为:1(1)4z +,销售量为1c 包, 11:=4:3a c ,即1143a c = ()1120%b b =-4=5b 4=5c 则11111144743535a b c c c c c c ++=++=+ 第一天的销售总额比第二天洁柔体验装和妮飘进口装的销售总额之和多767元∴()111150%17674ax by cz x a z c ⎡⎤⎛⎫++-+++= ⎪⎢⎥⎝⎭⎣⎦()()3(344)75ax by cz c x y z c x y x y c x y ++=++=+++=+()111150%14x a z c ⎛⎫+++ ⎪⎝⎭ 1151.54()4xa x y c =+⨯+1111.555xa xc yc =++111345523x c xc yc =⨯++ 1175xc yc =+()175x y c =+∴()111150%17674ax by cz x a z c ⎡⎤⎛⎫++-+++= ⎪⎢⎥⎝⎭⎣⎦即1(75)(75)c x y c x y +-+767=即()()175767x y c c +-=7671359=⨯1755913x y c c +=⎧∴⎨-=⎩或 1751359x y c c +=⎧⎨-=⎩ 1015x y <+≤505575x y ∴<+≤7550x y ∴+>1755913x y c c +=⎧∴⎨-=⎩ 5975x y -∴=,x y 为整数,解得29x y =⎧⎨=⎩或 72x y =⎧⎨=⎩洁柔体验装的原价为:(150%)x + 1.5x =是整数,则7x ≠,洁柔超值装的原价为:53y 是整数则2y ≠ ∴ 29x y =⎧⎨=⎩4()44z x y ∴=+=第一天三款纸巾的总销量与第二天三款纸巾的总销量之差大于96件且小于120件,∴()()11196120a b c a b c ≤++-++≤113c c -=1c c ∴>()()111a b c a b c ++-++=117421753553c c c c c ⎛⎫-+=-⎪⎝⎭ ∴217633591(13)5315153c c c ⎛⎫--=-+ ⎪⎝⎭2891153c =+ 即289196120153c <+< 解得5135482828c <<121753c c ,都是整数,则5135482828c <<能被3和5整除的数即能被15整除 ∴45c =11(1)4zc z c ++=()()11554444zc zc x y c x y c +=+++ ()()145x y c c =++()()4513x y c c =++-⎡⎤⎣⎦()()965x y c =+-44=⨯()94565⨯-14960=故答案为:14960【点睛】本题考查了二元一次方程,一元一次不等式组求整数解,理清题中数据关系是解题的关键. 5、0【分析】分别求出不等式组中两不等式的解集,找出解集的公共部分确定出不等式组的解集,即可求出整数解,最后相加即可.【详解】 解:3561162x x x x <+⎧⎪⎨+-≥⎪⎩①②,解不等式①,得3x >-;解不等式②,得2x ≤.∴不等式组的解集为32x -<≤,∴不等式组的整数解分别为-2、-1、0、1、2,∴不等式组的整数解的和为:210120--+++=.故答案为:0.【点睛】本题考查求不等式组的整数解.正确的求出不等式组中每一个不等式的解集是解答本题的关键.三、解答题1、m =-2【分析】由题意可知:m2-3=1,m-2≠0,即可解答.【详解】解∵不等式(m-2) 23mx- -2≥7是关于x的一元一次不等式,∴m2-3=1,m-2≠0,解得m=-2当m=-2时,不等式是关于x的一元一次不等式【点睛】此题考查了一元一次不等式的定义,熟练掌握一元一次不等式的定义是解本题的关键.2、(1)43xy=⎧⎨=⎩;(2)﹣2﹤x≤3.【分析】(1)方程运用加减消元法求解即可;(2)分别求出每个不等式的解集,再取它们的公共部分即可【详解】解:(1)2523 517x yx y+=⎧⎨-=⎩①②①+②×5得:27x=23+17×5,解得:x=4,将x=4代入②中,得:20﹣y=17,解得:y=3,∴原方程组的解为43xy=⎧⎨=⎩.(2)202(1)31xx x+>⎧⎨+≥-⎩①②,解:解①得:x﹥﹣2,解②得:x≤3,∴不等式组的解集为:﹣2﹤x≤3【点睛】本题考查的是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.3、a>0【分析】先解方程得出x=44a+,根据方程的解大于1得出关于a的不等式,解之即可.【详解】解:解不等式6x+a−4=2x+2a,得x=44a+,根据题意,得:44a+>1,解得a>0.【点睛】本题主要考查解一元一次不等式的基本能力,严格遵循解不等式的基本步骤是关键,尤其需要注意不等式两边都乘以或除以同一个负数不等号方向要改变.4、x≤2;数轴表示见解析.【分析】按移项、合并同类项、系数化为1的步骤求得不等式的解集,然后在数轴上表示出来即可.【详解】解:313x x -≤+,移项,得331x x -≤+,合并同类项,得24x ≤,系数化为1,得x ≤2,把解集在数轴上表示如图所示:【点睛】本题考查了解一元一次不等式,在数轴上表示不等式的解集,熟练掌握解一元一次不等式的基本步骤以及在数轴上表示解集的方法是解题的关键.5、当购买少于5台电脑时,学校选择乙商场购买更优惠;当购买5台电脑时,学校选择甲、乙两商场购买一样优惠;当购买多于5台电脑时,学校选择甲商场购买更优惠.【分析】设学校购买x 台电脑,在甲商场购买花费为1y ,在乙商场购买花费为2y ,根据题意可得甲乙两种购买方式得函数解析式,分三种情况讨论:当12y y >时;当12y y =时;当12y y <时;分别进行计算得出自变量的取值范围即可得出在什么情况下选择哪种方案更优惠.【详解】解:设学校购买x 台电脑,在甲商场购买花费为1y ,在乙商场购买花费为2y ,则根据题意可得:()()1600016000125%45001500y x x =+⨯⨯=+--(x 为正整数);()2·6000120%4800y x x =⨯=-(x 为正整数);当12y y >时,学校选择乙商场购买更优惠,即450015004800x x +>,解得5x <,即15x <<;当12y y =时,学校选择甲、乙两商场购买一样优惠,即450015004800x x +=,解得5x =;当12y y <时,学校选择甲商场购买更优惠,即450015004800x x +<,解得5x >.∴当购买数量少于5台电脑时,学校选择乙商场购买更优惠;当购买5台电脑时,学校选择甲、乙两商场购买一样优惠;当购买数量多于5台电脑时,学校选择甲商场购买更优惠.【点睛】题目主要考查一次函数应用中的方案选择,理解题意,列出相应函数解析式,求解不等式是解题关键.。

初中数学试题分类汇编:一次函数与方程、不等式综合训练1(选择 附答案)

初中数学试题分类汇编:一次函数与方程、不等式综合训练1(选择 附答案)

初中数学试题分类汇编:一次函数与方程、不等式综合训练1(选择附答案)1.若函数y=kx﹣b的图象如图所示,则关于x的不等式kx﹣b>0的解集为()A.x<2 B.x>2 C.x<4 D.x>42.若直线l1经过点(﹣1,0),l2经过点(2,2),且l1与l2关于直线x=1对称,则l1和l2的交点坐标为()A.(1,4)B.(1,2)C.(1,0)D.(1,3)3.如图,若一次函数y=﹣2x+b的图象与两坐标轴分别交于A,B两点,点A的坐标为(0,3),则不等式﹣2x+b>0的解集为()A.x>32B.x<32C.x>3 D.x<34.在同一直角坐标系内,若直线y=2x-1与直线y=-2x+m的交点在第四象限,则m的取值范围是()A.m>—1 B.m<1 C.—1<m<1 D.—1≤m≤1 5.如图,已知直线y1=x+m与y2=kx﹣1相交于点P(﹣1,2),则关于x的不等式x+m <kx﹣1的解集在数轴上表示正确的是()A.B.C.D.6.如图,过A点的一次函数的图象与正比例函数y=2x的图象相交于点B,则这个一次函数的解析式是()7.如图,直线y 1=kx+2与直线y 2=mx 相交于点P(1,m),则不等式mx <kx+2的解集是( )A .x <0B .x <1C .0<x <1D .x >18.若以二元一次方程x +2y ﹣b=0的解为坐标的点(x ,y )都在直线y=﹣12x+b ﹣l 上,则常数b=( )A .12B .2C .﹣1D .19.如图,直线y =kx +b (k ≠0)经过点(-1,3),则不等式kx +b ≥3解集为( )A .x ≤-1B .x ≥-1C .x ≤3D .x ≥310.如图,直线y=ax+b 过点A (0,2)和点B (﹣3,0),则方程ax+b=0的解是( )A .x=2B .x=0C .x=﹣1D .x=﹣311.如图所示,函数1y x =和21433y x =+的图象相交于(–1,1),(2,2)两点.当12y y >时,x 的取值范围是( )12.如图所示,函数y=2x和y=ax+4的图象相交于点A(3 2,3),则关于x的不等式2x≥ax+4的解集为()A.x≤32B.x≤3C.x≥32D.x≥313.直线y=kx+b(k<0)与x轴交于点(3,0),关于x的不等式kx+b>0的解集是()A.x<3 B.x>3 C.x>0 D.x<014.如图,一次函数11y k x b=+,的图象1l与22y k x b=+的图象2l相交于点P,则方程组111222y k x by k x b=+⎧⎨=+⎩的解是()A.23xy=-⎧⎨=⎩B.32xy=⎧⎨=-⎩C.23xy=⎧⎨=⎩D.23xy=-⎧⎨=-⎩15.一次函数y kx b=+(0k≠)的图象如图所示,则关于x的不等式0kx b+>的解集为()A.1x>-B.1x<-C.2x>D.0x>16.如图,在平面直角坐标系xOy 中,如果一个点的坐标可以用来表示关于x ,x 的二元一次方程组111222a x b y c a x b y c +=⎧⎨+=⎩的解,那么这个点是A .MB .NC .ED .F17.若直线y=-2x -4与直线y=4x +b 的交点在第三象限,则b 的取值范围是( ) A .-4<b<8 B .-4<b<0 C .b<-4或b>8 D .-4≤6≤818.直线y kx b =+与y mx =在同一平面直角坐标系中的图象如图所示,则关于 x 的不等式kx b mx +≤的解集为( )A .x >﹣2B .x <﹣2C .x ≥﹣1D .x <﹣119.如图,已知一次函数y=k x+b 的图象与x 轴,y 轴分别交于点(2,0),点(0,3).有下列结论:①关于x 的方程0kx b +=的解为2x =;②关于x 的方程3kx b +=的解为0x =;③当2x >时,0y <;④当0x <时,3y <.其中正确的是( )A .①②③B .①③④C .②③④D .①②④20.数形结合是数学解题中常用的思想方法,使用数形结合的方法,很多问题可迎刃而解,且解法简洁.如图,直线y =3x 和直线y =ax +b 交于点(1,3),根据图象分析,方程3x =ax +b 的解为( )A .x =1B .x =﹣1C .x =3D .x =﹣321.如图,在同一直角坐标系中作出一次函数1y k x =与2y k x b =+的图象, 则二元一次方程组21y k x b y k x =+⎧⎨=⎩的解是( )A .20x y =-⎧⎨=⎩B .20x y =⎧⎨=⎩C .12x y =⎧⎨=-⎩D .12x y =⎧⎨=⎩22.如图所示,一次函数y =kx +b (k 、b 为常数,且k ≠0)与正比例函数y =ax (a 为常数,且a ≠0)相交于点P ,则不等式kx +b >ax 的解集是( )A .x >1B .x <1C .x >2D .x <223.已知点A (-1,3),点B (-1,-4),若常数a 使得一次函数y =ax +1与线段AB 有交点,且使得关于x 的不等式组45(3)65425x x a ⎧+≥⎪⎪⎨⎪-<-⎪⎩无解,则所有满足条件的整数a 的个数为( )24.一次函数1y kx b =+与2y x a =+的图象如图所示,有下列结论:①0a >;②0k >;③当4x <时,kx b x a +>+其中正确的结论有( )A .0个B .1个C .2个D .3个25.如图,函数y=2x 和y=ax+4的图象相交于A(m ,3),则不等式2x ax+4<的解集为( )A .3x 2>B .x 3>C .3x 2<D .x 3<26.如图,直线与y 轴交于点(0,3)、与x 轴交于点(a ,0),当a 满足时,k 的取值范围是( )A .B .C .D .27.一次函数y 1=kx +b 与y 2=x +a 的图象如下图所示,则下列结论:①k <0;②a >0;③b >0;④当x <3时,y 1<y 2;其中正确的个数是( )A .1个B .2个C .3个D .4个28.观察图中的函数图象,则关于的不等式的解集为( )A .B .C .D .29.已知一次函数y kx b =+的图象如图所示,当2x <时,y 的取值范围是( )A .4y <-B .40y -<<C .2y <D .0y <30.一次函数1y ax b 与2y cx d =+ 的图象如图所示,下列说法:①0ab < ;②函数y ax d =+ 不经过第一象限;③不等式ax b cx d ++> 的解集是3x < ;④()13a c db -=- .其中正确的个数有( )A .4B .3C .2D .1参考答案1.A【解析】【分析】观察函数图象得到即可.【详解】由图象可得:当2x <时,函数y kx b =-的图象在x 轴的上方,所以关于x 的不等式0kx b ->的解集是2x <,故选:A .【点睛】本题考查了一次函数与不等式(组)的关系及数形结合思想的应用.解决此类问题关键是仔细观察图形,注意几个关键点(交点、原点等),做到数形结合.2.A【解析】【分析】根据对称的性质得出两个点关于直线x =1对称的对称点,再根据待定系数法确定函数关系式,求出交点坐标即可.【详解】解:∵直线l 1经过点(﹣1,0),l 2经过点(2,2),关于直线x =1对称,∴点(﹣1,0)关于直线x =1对称点为(3,0),点(2,2)关于直线x =1对称点为(0,2),∴直线l 1经过点(﹣1,0),(0,2),l 2经过点(2,2),(3,0),∴直线l 1的解析式为:y =2x+2,直线l 2的解析式为:y =﹣2x+6,解方程组2226y x y x =+⎧⎨=-+⎩得,14x y =⎧⎨=⎩∴l 1和l 2的交点坐标为(1,4),故选:A .【点睛】此题主要考查了一次函数图象与几何变换,正确得出l 1与l 2的交点坐标为l 1与l 2与y 轴的交点是解题关键.3.B【解析】【分析】根据点A的坐标找出b值,令一次函数解析式中y=0求出x值,从而找出点B的坐标,观察函数图象,找出在x轴上方的函数图象,由此即可得出结论.【详解】解:∵一次函数y=﹣2x+b的图象交y轴于点A(0,3),∴b=3,令y=﹣2x+3中y=0,则﹣2x+3=0,解得:x=32,∴点B(32,0).观察函数图象,发现:当x<32时,一次函数图象在x轴上方,∴不等式﹣2x+b>0的解集为x<32.故选:B.【点睛】本题考查了一次函数与一元一次不等式,解题的关键是找出交点B的坐标.本题属于基础题,难度不大,解决该题型题目时,根据函数图象的上下位置关系解不等式是关键.4.C【解析】【分析】联立两直线的解析式求出交点坐标,再根据交点在第四象限列出不等式组求解即可.【详解】解:联立方程组212y xy x m=-⎧⎨=-+⎩,解得:1412mxmy+⎧=⎪⎪⎨-⎪=⎪⎩,∵交点在第四象限,∴1412mm+⎧>⎪⎪⎨-⎪<⎪⎩,解得:11m-<<.故选:C.【点睛】本题考查了两直线的交点和一元一次不等式组的解法,属于常考题型,联立两函数解析式求交点坐标是常用的方法,要熟练掌握并灵活应用.5.D【解析】【分析】利用函数图象,找出直线y=x+m在直线y=kx-1的下方所对应的自变量的范围即可【详解】解析根据图象得,当x<-1时,x+m<kx-1故选D【点睛】此题考查在数轴上表示不等式的解集和一次函数与ー元一次不等式,解题关键在于判定函数图象的位置关系6.D【解析】试题分析:∵B点在正比例函数y=2x的图象上,横坐标为1,∴y=2×1=2,∴B(1,2),设一次函数解析式为:y=kx+b,∵过点A的一次函数的图象过点A(0,3),与正比例函数y=2x的图象相交于点B(1,2),∴可得出方程组,解得,则这个一次函数的解析式为y=﹣x+3.故选D.考点:1.待定系数法求一次函数解析式2.两条直线相交或平行问题.7.B【解析】【分析】根据两直线的交点坐标和函数的图象即可求出答案.【详解】解:∵直线y1=kx+2与直线y2=mx相交于点P(1,m),∴不等式mx<kx+2的解集是x<1,故选:B.【点睛】本题考查了对一次函数与一元一次不等式的应用,主要考查学生的观察图形的能力和理解能力,题目比较好,但是一道比较容易出错的题目.8.B【解析】【分析】直线解析式乘以2后和方程联立解答即可.【详解】因为以二元一次方程x+2y﹣b=0的解为坐标的点(x,y)都在直线y=﹣12x+b﹣l上,直线解析式乘以2得2y=﹣x+2b﹣2,变形为:x+2y﹣2b+2=0,所以﹣b=﹣2b+2,解得:b=2,故选B.【点睛】本题考查一次函数与二元一次方程问题,关键是直线解析式乘以2后和方程联立解答.9.B【解析】【分析】结合函数的图象利用数形结合的方法确定不等式的解集即可.【详解】解:观察图象知:当1x -时,3kx b +,故选:B .【点睛】本题考查了一次函数与一元一次不等式的知识,解题的关键是根据函数的图象解答,难度不大.10.D【解析】∵方程ax +b =0的解是直线y =ax +b 与x 轴的交点横坐标,∴方程ax +b =0的解是x =-3.故选D.11.B【解析】试题解析:当x≥0时,y 1=x ,又21433y x =+, ∵两直线的交点为(2,2),∴当x <0时,y 1=-x ,又21433y x =+, ∵两直线的交点为(-1,1),由图象可知:当y 1>y 2时x 的取值范围为:x <-1或x >2.故选B .12.C【解析】【分析】根据函数的图象即可写出不等式的解集.【详解】解:已知函数y=2x和y=ax+4的图象相交于点A(32,3),根据函数图象可以看出,当x=32时,2x=ax+4;当x>32时,2x>ax+4;当x<32时,2x<ax+4;故关于x的不等式2x≥ax+4的解集为32x .故选择C.【点睛】本题考查了一次函数与一元一次不等式,根据函数图像及交点坐标,判断关于x的不等式的解集是解答本题的关键.13.A【解析】【分析】由图知:一次函数与x轴的交点横坐标为3,且函数值y随自变量x的增大而减小,根据图形可判断出解集.【详解】解:直线y=kx+b(k<0)与x轴交于点(3,0),当x=3时,y=0,函数值y随x的增大而减小;根据y随x的增大而减小,因而关于x的不等式kx+b>0的解集是x<3.故选:A.【点睛】本题考查了一次函数与一元一次不等式,由于任何一元一次不等式都可以转化的ax+b>0或ax+b<0(a、b为常数,a≠0)的形式,所以解一元一次不等式可以看作:当一次函数值大于(或小于)0时,求自变量相应的取值范围.14.A【解析】【分析】根据图象求出交点P的坐标,根据点P的坐标即可得出答案.【详解】解:∵由图象可知:一次函数y=k1x+b1的图象l1与y=k2x+b2的图象l2的交点P的坐标是(-2,3),∴方程组111222y k x b y k x b =+⎧⎨=+⎩的解是23x y =-⎧⎨=⎩, 故选A.【点睛】本题考查了对一次函数与二元一次方程组的关系的理解和运用,主要考查学生的观察图形的能力和理解能力,题目比较典型,但是一道比较容易出错的题目.15.A【解析】【分析】直接从一次函数的图象上即可得到答案.【详解】解:由题图可知,当x >﹣1时,y=kx b +>0,则不等式0kx b +>的解集为1x >-.故选A.【点睛】本题主要考查一次函数与不等式,解此题的关键在于从一次函数的图象上获取信息. 16.C【解析】【分析】本题可以通过直线与方程的关系得到两直线都过定点E ,得到本题结论.【详解】解:两直线都过定点E ,所以点E 表示关于x 、y 的二元一次方程组111222a x b y c a x b y c +=⎧⎨+=⎩的解,故选C .【点睛】本题考查的是直线与方程的关系,还可以用解方程组的方法加以解决.【解析】【分析】联立y=-2x-4和y=4x+b,求解得交点坐标,x和y的值都用b来表示,再根据交点坐标在第三象限表明x、y都小于0,即可求得b的取值范围:【详解】解:由244y xy x b=--⎧⎨=+⎩解得4683bxby+⎧=-⎪⎪⎨-⎪=⎪⎩∵交点在第三象限,∴4683bb+⎧-<⎪⎪⎨-⎪<⎪⎩,解得48 bb>-⎧⎨<⎩∴-4<b<8.故选A.18.C【解析】【分析】根据函数图象交点左侧直线y=kx+b图象在直线y=mx图象的下面,即可得出不等式kx+b≤mx 的解集.【详解】解:由图可知,在x≥-1时,直线y=mx在直线y=kx+b上方,关于x的不等式kx+b≤mx的解是x≥-1.故选:C.本题考查了一次函数与一元一次不等式:观察函数图象,比较函数图象的高低(即比较函数值的大小),确定对应的自变量的取值范围.也考查了数形结合的思想.19.A【解析】【分析】根据一次函数的性质及一次函数与一元一次方程的关系对各结论逐一判断即可得答案.【详解】∵一次函数y=k x+b 的图象与x 轴,y 轴分别交于点(2,0),点(0,3),∴x=2时,y=0,x=0时,y=3,∴关于x 的方程0kx b +=的解为2x =;关于x 的方程3kx b +=的解为0x =, ∴①②正确,由图象可知:x>2时,y<0,故③正确,x<0时,y>3,故④错误,综上所述:正确的结论有①②③,故选A.【点睛】本题考查一次函数图象上点的坐标特征及一次函数与一元一次方程的关系,利用数形结合的思想是解题关键.20.A【解析】【分析】根据方程的解即为函数图象的交点横坐标解答.【详解】解:∵直线y =3x 和直线y =ax +b 交于点(1,3)∴方程3x =ax +b 的解为x =1.故选:A .【点睛】本题主要考查了一次函数与一元一次方程.函数图象交点坐标为两函数解析式组成的方程组21.D【解析】【分析】观察图象,直接根据两直线的交点坐标写出方程组的解,即可作答.【详解】解:由题图可知:一次函数1y k x =与2y k x b =+的图象交于(1,2),所以方程组21y k x b y k x =+⎧⎨=⎩的解是:12x y =⎧⎨=⎩; 故选:D .【点睛】函数1y k x =与2y k x b =+的交点坐标就是方程组21y k x b y k x =+⎧⎨=⎩的解,明确此知识点是解题的关键.22.D【解析】分析:以函数的交点为分界线,然后看谁的图像在上面就是谁大.详解:根据函数图像可得:当x >2时,kx+b <ax ,故选C .点睛:本题主要考查的是不等式与函数之间的关系,属于中等难度题型.解决这个问题的关键就是看懂函数图像.23.D【解析】【分析】根据一次函数y=ax+1与线段AB 有交点,求得-2≤a≤5,且a≠0,再解不等式组得18525x x a ⎧≥⎪⎪⎨⎪-⎪⎩< ,由题意得a≤4,据此a 的值为-2,-1,1,2,3,4,即可得整数a 的个数.【详解】解:把点A (﹣1,3)代入y =ax +1得,3=﹣a +1,解得a =﹣2,把点B (﹣1,﹣4)代入y =ax +1得,﹣4=﹣a +1,解得a =5,∵一次函数y =ax +1与线段AB 有交点,∴﹣2≤a ≤5,且a ≠0, 解不等式组45365425x x a ⎧⎛⎫+≥ ⎪⎪⎪⎝⎭⎨⎪--⎪⎩< 得18525x x a ⎧≥⎪⎪⎨⎪-⎪⎩< , ∵不等式组无解,∴a ﹣25 ≤185, 解得:a ≤4,则所有满足条件的整数a 有:﹣2,﹣1,1,2,3,4.故选D .【点睛】本题考查一次函数的图象与性质,解一元一次不等式组,熟练掌握解一元一次不等式组的方法是解题的关键.24.B【解析】【分析】利用一次函数的性质分别判断后即可确定正确的选项.【详解】解:①∵2y x a =+的图象与y 轴的交点在负半轴上,∴a <0,故①错误;②∵1y kx b =+的图象从左向右呈下降趋势,∴k <0,故②错误;③两函数图象的交点横坐标为4,当x <4时,1y kx b =+ 在2y x a =+的图象的上方,即y 1>y 2,故③正确;故选:B.【点睛】本题考查了一次函数与一元一次不等式的关系:从函数的角度看,就是寻求使一次函数y=kx+b的值大于(或小于)0的自变量x的取值范围;从函数图象的角度看,就是确定直线y=kx+b在x轴上(或下)方部分所有的点的横坐标.利用数形结合是解题的关键.25.C【解析】【分析】【详解】解:∵函数y=2x和y=ax+4的图象相交于点A(m,3),∴3=2m,解得m=32.∴点A的坐标是(32,3).∵当3x2<时,y=2x的图象在y=ax+4的图象的下方,∴不等式2x<ax+4的解集为3x2 <.故选C.26.C【解析】【分析】【详解】解:把点(0,3)(a,0)代入,得b=3.则a=,∵,∴,解得:k≥1.故选C.【点睛】本题考查一次函数与一元一次不等式,属于综合题,难度不大.27.B【解析】【分析】根据一次函数12,y kx b y x a =+=+的图象及性质逐一分析可得答案.【详解】解:根据图象1y kx b =+经过第一、二、四象限,∴k <0,b >0, 故①③正确;∵2y x a =+与y 轴负半轴相交,∴a <0, 故②错误;当x <3时,图象1y 在2y 的上方,所以:当x <3时,1y >2y ,故④错误.所以正确的有①③共2个.故选:B .【点睛】本题考查了一次函数图象的性质,一次函数与不等式的关系,准确识图并熟练掌握一次函数的性质是解题的关键.28.D【解析】【分析】根据图象得出两图象的交点坐标是(1,2)和当x <1时,ax <bx+c ,推出x <1时,ax <bx+c ,即可得到答案.【详解】解:由图象可知,两图象的交点坐标是(1,2),当x >1时,ax >bx+c ,∴关于x 的不等式ax-bx >c 的解集为x >1.故选:D .【点睛】本题主要考查对一次函数与一元一次不等式的关系的理解和掌握,能根据图象得出正确结论是解此题的关键.29.D【解析】观察图象得到直线与x轴的交点坐标为(2,0),且图象经过第一、三象限,y随x的增大而增大,所以当x<2时,y<0.【详解】解:∵一次函数y=kx+b与x轴的交点坐标为(2,0),且图象经过第一、三象限,∴y随x的增大而增大,∴当x<2时,y<0.故选:D.【点睛】本题考查了一次函数的性质:一次函数y=kx+b(k、b为常数,k≠0)的图象为直线,当k >0,图象经过第一、三象限,y随x的增大而增大;当k<0,图象经过第二、四象限,y 随x的增大而减小.30.A【解析】【分析】仔细观察图象:①a的正负看函数y1=ax+b图象从左向右成何趋势,b的正负看函数y1=ax+b图象与y轴交点即可;②c的正负看函数y2=cx+d从左向右成何趋势,d的正负看函数y2=cx+d与y轴的交点坐标;③以两条直线的交点为分界,哪个函数图象在上面,则哪个函数值大;④看两直线都在x轴上方的自变量的取值范围.【详解】由图象可得:a<0,b>0,c>0,d<0,∴ab<0,故①正确;函数y=ax+d的图象经过第二,三,四象限,即不经过第一象限,故②正确,由图象可得当x<3时,一次函数y1=ax+b图象在y2=cx+d的图象上方,∴ax+b>cx+d的解集是x<3,故③正确;∵一次函数y1=ax+b与y2=cx+d的图象的交点的横坐标为3,∴3a+b=3c+d∴3a−3c=d−b,∴a−c=13(d−b),故④正确,【点睛】本题考查了一次函数与一元一次不等式,一次函数的图象与性质,利用数形结合是解题的关键.。

第6章 一次方程(组)和一次不等式练习题 含解析

第6章 一次方程(组)和一次不等式练习题 含解析

第6章 一次方程(组)和一次不等式(组)一.选择题(共11小题) 1.不等式23x ->的解集是( ) A .23x >-B .23x <-C .32x >-D .32x <-2.如果m n >,那么下列结论错误的是( ) A .22m n +>+B .22m n ->-C .22m n >D .22m n ->-3.如果a b >,0m <,那么下列不等式中成立的是( ) A .am bm >B .a b m m> C .a m b m +>+ D .a m b m -+>-+.4.不等式240x +„的解集在数轴上表示正确的是( ) A . B .C .D .5.不等式260x +>的解集在数轴上表示正确的是( ) A .B .C .D .6.现有三种不同的物体:“甲、乙、丙”,用天平称了两次,情况如图所示,那么“甲、乙、丙”这三种物体按质量从大到小的顺序排列为( )A .丙甲乙B .丙乙甲C .乙甲丙D .乙丙甲7.一件商品成本价是30元,如果按原价的八五折销售,至少可获得15%的利润.如果设该商品的原价是x 元,则列式( ) A .303015%85%x +⨯„ B .303015%85%x +⨯… C .303015%85%x -⨯„D .303015%85%x -⨯…8.若关于x 的一元一次方程20x m -+=的解是负数,则m 的取值范围是( )A .2m …B .2m >C .2m <D .2m „9.关于x 的方程5264x a a x -=+-的解是非负数,则a 的取值范围是( )A .1a …B .1a -…C .1a -„D .0a …10.不等式732122x x --+<的负整数解有( ) A . 1 个B . 2 个C . 3 个D . 4 个11.如果关于x 的不等式(1)1a x a +>+的解集为1x <,则a 的取值范围是( ) A .0a <B .1a <-C .1a >D .1a >-二.填空题(共17小题)12.用不等式表示:y 减去1的差不小于y 的一半 . 13.不等式2(1)34x x ->-的自然数解为 . 14.解不等式:29x x --„的非负整数解有 个. 15.不等式2132x x +>-的非负整数解是 . 16.不等式215x -„的非负整数解是 . 17.不等式1123x x --<的非负整数解是 . 18.不等式12123x x -->的非负整数解为 . 19.不等式3256x x -+„的最大负整数解为 . 20.不等式123x x -+>的正整数解为 . 21.不等式3618x ---…的正整数解为 .22.试写出一个不等式 使它的正整数解只有1,2,3. 23.满足 2.1x <-的最大整数是 . 24.不等式1208x-…的最大整数解为 . 25.不等式250x -…的最小整数解为 . 26.适合不等式3(2)2x x ->的最小正整数是 . 27.不等式214x ->的最小整数解是 .28.对于有理数m ,我们规定[]m 表示不大于m 的最大整数,例如[1.2]1=,[3]3=,[ 2.5]3-=-,若2[]53x +=-,则整数x 的取值是 . 三.解答题(共12小题)29.解不等式3(2)2x x +>,并把解在数轴上表示出来.30.解不等式121132x x+++…,并把它的解集在数轴上表示出来.31.解不等式并把解集表示在数轴上: (1)2(1)142x x +-+…, (2)7223x x---…32.若关于x 的不等式14x x m +>+的解集为1x <,求m 的值.33.若不等式3(2)54(1)6x x -+<-+的最小整数解为方程23x ax -=的解,求a 的值.34.已知3x =是方程212x a x --=-的解,求不等式1(2)53a x ->的解集.35.若关于x 的一元一次方程538m x +=的解是非负数,求m 的取值范围.36.学校为美化环境,计划购进菊花和绿萝共30盆,菊花每盆16元,绿萝每盆8元,若购买菊花和绿萝的总费用不超过400元,则最多可以购买菊花多少盆?37.有10名合作伙伴承包了一块土地准备种植蔬菜,他们每人可种茄子3亩或辣椒2亩,已知每亩茄子平均可收入0.5万元,每亩辣椒平均可收入0.8万元,要使总收入不低于15.6万元,则最多只能安排多少人种茄子?38.字母m 、n 分别表示一个有理数,且m n ≠.现规定{min m ,}n 表示m 、n 中较小的数,例如:{3min ,1}1-=-,{1min -,0}1=-.据此解决下列问题: (1)1{2min -,1}3-= . (2)若21{3x min -,2)1=-,求x 的值; (3)若{25min x -,3}2x +=-,求x 的值.39.某县为了更好保障居民饮用水安全,环保局决定购10台污水处理设备,现有A、B两种型号的设备,价格与每台日处理污水的能力见表.(1)若县环保局购买污水处理设备的资金不超过105万元,你认为有哪几种方案.(2)在(1)的条件下,每日要求处理污水量不低于2040吨,为了节约资金,请设计“一个最省钱”的购买方案.40.甲、乙两队共同承担一项“退耕返林”的植树任务,甲队单独完成此项任务比乙队单独完成此项任务多用8天,且甲队单独植树7天和乙队单独植树5天的工作量相同.(1)甲、乙两队单独完成此项任务各需多少天?(2)甲、乙两队共同植树5天后,乙队因另有任务停止植树,剩下的由甲队继续植树.为了能够在规定时间内完成任务,甲队增加人数,使工作效率提高到原来的2倍.那么甲队至少再单独施工多少天?参考答案一.选择题(共11小题) 1.不等式23x ->的解集是( ) A .23x >-B .23x <-C .32x >-D .32x <-【解答】解:不等式的两边同时除以2-得,32x <-.故选:D .2.如果m n >,那么下列结论错误的是( ) A .22m n +>+ B .22m n ->- C .22m n > D .22m n ->-【解答】解:m n >Q , 22m n ∴-<-,故选:D .3.如果a b >,0m <,那么下列不等式中成立的是( ) A .am bm >B .a b m m> C .a m b m +>+ D .a m b m -+>-+.【解答】解:A 、am bm <,故原题错误; B 、a bm m<,故原题错误; C 、a m b m +>+,故原题正确;D 、a m b m -+<-+,故原题错误;故选:C .4.不等式240x +„的解集在数轴上表示正确的是( ) A . B .C .D .【解答】解:移项得,24x -„, 系数化为1得,2x -„. 在数轴上表示为:.故选:C .5.不等式260x +>的解集在数轴上表示正确的是( ) A .B .C .D .【解答】解:260x +>, 26x >-, 3x >-,在数轴上表示为:,故选:C .6.现有三种不同的物体:“甲、乙、丙”,用天平称了两次,情况如图所示,那么“甲、乙、丙”这三种物体按质量从大到小的顺序排列为( )A .丙甲乙B .丙乙甲C .乙甲丙D .乙丙甲【解答】解:由图一可得:丙+丙>丙+乙,所以丙>乙; 由图二可得:甲+甲+甲=甲+乙,所以乙=甲+甲>甲. 则丙>乙>甲. 故选:B .7.一件商品成本价是30元,如果按原价的八五折销售,至少可获得15%的利润.如果设该商品的原价是x 元,则列式( ) A .303015%85%x +⨯„ B .303015%85%x +⨯… C .303015%85%x -⨯„D .303015%85%x -⨯…【解答】解:由题意:303015%85%x +⨯„. 故选:A .8.若关于x 的一元一次方程20x m -+=的解是负数,则m 的取值范围是( )A .2m …B .2m >C .2m <D .2m „【解答】解:Q 方程20x m -+=的解是负数, 20x m ∴=-<,解得:2m <, 故选:C .9.关于x 的方程5264x a a x -=+-的解是非负数,则a 的取值范围是( )A .1a …B .1a -…C .1a -„D .0a …【解答】解:移项,得5642x x a a +=++, 合并同类项,得666x a =+, 系数化成1得1x a =+,根据题意得:10a +…, 解得:1a -…. 故选:B . 10.不等式732122x x --+<的负整数解有( ) A . 1 个B . 2 个C . 3 个D . 4 个【解答】解: 去分母, 得:7232x x -+<-, 移项, 得:3722x x -<-- 合并同类项, 得:23x -<, 则32x >-. 则负整数解是:1-. 故选:A .11.如果关于x 的不等式(1)1a x a +>+的解集为1x <,则a 的取值范围是( ) A .0a <B .1a <-C .1a >D .1a >-【解答】解:由题意,得 10a +<,解得1a <-, 故选:B .二.填空题(共17小题)12.用不等式表示:y 减去1的差不小于y 的一半 112y y -… .【解答】解:依题意,得:112y y -….故答案为:112y y -….13.不等式2(1)34x x ->-的自然数解为 1和0 . 【解答】解:2(1)34x x ->-, 2234x x ->-, 2342x x ->-+, 2x ->-, 2x <,则该不等式的自然数解为1和0, 故答案为:1和0.14.解不等式:29x x --„的非负整数解有 4 个. 【解答】解:29x x --„,29x x +„, 39x „, 3x „,所以不等式:29x x --„的非负整数解有0,1,2,3四个, 故答案为4.15.不等式2132x x +>-的非负整数解是 0,1,2 . 【解答】解:移项得,2321x x ->--, 合并同类项得,3x ->-, 系数化为1得,3x <. 故其非负整数解为:0,1,2.16.不等式215x -„的非负整数解是 0、1、2、3 . 【解答】解:215x -„, 移项得:26x „,不等式的两边都除以2得:3x „, 即不等式的非负整数解释:0、1、2、3, 故答案为:0、1、2、3. 17.不等式1123x x --<的非负整数解是 0,1,2,3 . 【解答】解:1123x x --<, 32(1)6x x --<,3226x x -+<, 3262x x -<-, 4x <,所以不等式1123x x --<的非负整数解是0,1,2,3, 故答案为:0,1,2,3. 18.不等式12123x x -->的非负整数解为 0 . 【解答】解:12123x x -->3(1)2(21)x x ->-,则3342x x ->-, 故75x ->-, 解得:57x <, 故不等式12123x x -->的非负整数解为0. 故答案为:0.19.不等式3256x x -+„的最大负整数解为 1x =- . 【解答】解:3256x x -+Q „,3562x x ∴-+„, 28x -„,则4x -…,∴不等式的最大负整数解为1x =-,故答案为:1x =-. 20.不等式123x x -+>的正整数解为 1,2 . 【解答】解:123x x -+>, 去分母,得:163x x -+>, 移项,得:316x x ->-, 合并同类项,得:25x ->-, 系数化成1得: 2.5x <. 则正整数解是:1,2.故答案是:1,2.21.不等式3618x ---…的正整数解为 1、2、3、4 .【解答】解:3618x ---…,移项得:3186x --+…合并同类项得:312x --…,把x 的系数化为1得:4x „,∴不等式3618x ---…的正整数解为1、2、3、4.故答案为1、2、3、4.22.试写出一个不等式 3x „(答案不唯一) 使它的正整数解只有1,2,3.【解答】解:不等式3x „(答案不唯一)的正整数解只有1,2,3,故答案为:3x „(答案不唯一)23.满足 2.1x <-的最大整数是 3- .【解答】解:满足 2.1x <-的最大整数是3-,故答案为:3-.24.不等式1208x -…的最大整数解为 0 . 【解答】解:不等式去分母得:120x -…, 解得:12x „, 则不等式的最大整数解为0,故答案为:0.25.不等式250x -…的最小整数解为 3 . 【解答】解:不等式250x -…, 移项得:25x …, 解得:52x …, 则不等式的最小整数解为3,故答案为:326.适合不等式3(2)2x x ->的最小正整数是 7 .【解答】解:3(2)2x x ->,362x x ->,326x x ->,6x >,所以不等式3(2)2x x ->的最小正整数是7,故答案为:7.27.不等式214x ->的最小整数解是 3 . 【解答】解:214x ->,25x >,2.5x >,所以不等式214x ->的最小整数解是3,故答案为:3.28.对于有理数m ,我们规定[]m 表示不大于m 的最大整数,例如[1.2]1=,[3]3=,[ 2.5]3-=-,若2[]53x +=-,则整数x 的取值是 17-,16-,15- . 【解答】解:[]m Q 表示不大于m 的最大整数,2543x +∴-<-„, 解得:1714x -<-„,∴整数x 为17-,16-,15-,故答案为17-,16-,15-.三.解答题(共12小题)29.解不等式3(2)2x x +>,并把解在数轴上表示出来.【解答】解:去括号,得:632x x +>,移项,得:326x x ->-,合并同类项,得:6x >-,将解集表示在数轴上如下:30.解不等式121132x x +++…,并把它的解集在数轴上表示出来. 【解答】解:去分母,得2(12)63(1)x x +++…去括号得,24633x x +++…, 再移项、合并同类项得,5x -….在数轴上表示为:.31.解不等式并把解集表示在数轴上:(1)2(1)142x x +-+…,(2)7223x x ---… 【解答】解:(1)22142x x +-+…, 24221x x --+…,21x -…, 12x -„,(2)3122(7)x x ---…,312152x x --+…,321512x x --+…,3x -…,32.若关于x 的不等式14x x m +>+的解集为1x <,求m 的值.【解答】解:41x x m ->-,31x m ->-,13m x -<, Q 不等式的解集为1x <,∴113m -=, 解得2m =-.33.若不等式3(2)54(1)6x x -+<-+的最小整数解为方程23x ax -=的解,求a 的值.【解答】解:解不等式3(2)54(1)6x x -+<-+,去括号,得:365446x x -+<-+,移项,得344665x x -<-++-,合并同类项,得3x -<,系数化成1得:3x >-.则最小的整数解是2-.把2x =-代入23x ax -=得:423a -+=, 解得:72a =. 34.已知3x =是方程212x a x --=-的解,求不等式1(2)53a x ->的解集. 【解答】解:由于3x =是方程212x a x --=-的解, 所以32312a --=- 解得5a =-把5a =-代入不等式,得1(21)3x +> 解得,19x > 所以不等式的解集为19x >. 35.若关于x 的一元一次方程538m x +=的解是非负数,求m 的取值范围.【解答】解:解方程538m x +=得853m x -=, 根据题意知8503m -…, 解得85m „. 36.学校为美化环境,计划购进菊花和绿萝共30盆,菊花每盆16元,绿萝每盆8元,若购买菊花和绿萝的总费用不超过400元,则最多可以购买菊花多少盆?【解答】解:设需要购买菊花x 盆,则需要购买绿萝(30)x -盆,依题意,得:168(30)400x x +-„,解得:20x „.答:最多可以购买菊花20盆.37.有10名合作伙伴承包了一块土地准备种植蔬菜,他们每人可种茄子3亩或辣椒2亩,已知每亩茄子平均可收入0.5万元,每亩辣椒平均可收入0.8万元,要使总收入不低于15.6万元,则最多只能安排多少人种茄子?【解答】解:安排x 人种茄子,依题意得:30.52(10)0.815.6x x +-g g …,解得:4x „.所以最多只能安排4人种茄子.38.字母m 、n 分别表示一个有理数,且m n ≠.现规定{min m ,}n 表示m 、n 中较小的数,例如:{3min ,1}1-=-,{1min -,0}1=-.据此解决下列问题:(1)1{2min -,1}3-= 2. (2)若21{3x min -,2)1=-,求x 的值; (3)若{25min x -,3}2x +=-,求x 的值.【解答】解:(1)根据题中的新定义得:1{2min -,11}32-=-; 故答案为:12-; (2)由21>-,得到2113x -=-, 解得:1x =-; (3)若252x -=-,解得: 1.5x =,此时3 4.52x +=>-,满足题意;若32x +=-,解得:5x =-,此时25152x -=-<-,不符合题意,综上, 1.5x =.39.某县为了更好保障居民饮用水安全,环保局决定购10台污水处理设备,现有A 、B 两种型号的设备,价格与每台日处理污水的能力见表.(1)若县环保局购买污水处理设备的资金不超过105万元,你认为有哪几种方案.(2)在(1)的条件下,每日要求处理污水量不低于2040吨,为了节约资金,请设计“一个最省钱”的购买方案.【解答】解:(1)设购买A 型设备x 台,则B 型设备(10)x -台,依题意得,1210(10)105x x +-„,解得, 2.5x „;又x 取自然数(或说非负整数),故2x =,1,0,所以,符合要求的购买方案有以下3种:①购买10台B 型;②购买1台A 型和9台B 型;③购买2台A 型和8台B 型.(2)设购买A 型设备x 台,则B 型设备(10)x -台,由题意得:240200(10)2040x x +⨯-…,解得,1x …, 由生活实际可知价格便宜的购置数量越多越省钱,故购买1台A 型和9台B 型符合要求,40.甲、乙两队共同承担一项“退耕返林”的植树任务,甲队单独完成此项任务比乙队单独完成此项任务多用8天,且甲队单独植树7天和乙队单独植树5天的工作量相同.(1)甲、乙两队单独完成此项任务各需多少天?(2)甲、乙两队共同植树5天后,乙队因另有任务停止植树,剩下的由甲队继续植树.为了能够在规定时间内完成任务,甲队增加人数,使工作效率提高到原来的2倍.那么甲队至少再单独施工多少天?【解答】解:(1)设乙队单独完成此项任务需x 天,则甲队单独完成此项任务需(8)x +天, 依题意,得:857x x +=, 解得:20x =,828x ∴+=.答:甲队单独完成此项任务需28天,乙队单独完成此项任务需20天.(2)设甲队再单独施工y 天, 依题意,得:55212028y ++…, 解得:8y ….答:甲队至少再单独施工8天.。

含详细解析答案初中数学一元一次不等式组解法练习40道.pdf

含详细解析答案初中数学一元一次不等式组解法练习40道.pdf

初中数学一元一次不等式组解法练习1.求不等式组的整数解.解不等式组:.2.求不等式组:的整数解.3.解下列不等式组并将不等式组的解集在数轴上表示出来.(1);(2).4.解不等式组,并将它的解集在数轴上表示出来.5.试确定实数a的取值范围,使不等式组恰有两个整数解.6.求不等式组的正整数解.7.解不等式(组),并把它们的解集在数轴上表示出来(1)2x-1<3x+2;(2).8.解下列不等式(组):(1)2(x+3)>4x-(x-3)(2)9..10.解不等式组:,并在数轴上表示出不等式组的解集.11.若关于x的不等式组恰有三个整数解,求实数a的取值范围.12.解不等式组:.13.解不等式组并把它的解集在数轴上表示出来.14.解不等式组:15.已知关于x、y的方程组a为常数.(1)求方程组的解;(2)若方程组的解x>y>0,求a的取值范围.16.解不等式组.17.解不等式组,并写出该不等式组的整数解.18.解下列不等式(组),并把它们的解集在数轴上表示出来.(1);(2).19.解不等式组:,并把解集在数轴上表示出来.20.已知方程组的解x、y都是正数,且x的值小于y的值,求m的取值范围.21.满足不等式-1≤3-2x<6的所有x的整数的和是多少?22.(1)解方程组:(2)解不等式组:23.已知关于x,y的方程组,其中-3≤a≤1.(1)当a=-2时,求x,y的值;(2)若x≤1,求y的取值范围.24.解不等式组:.25.解下列不等式和不等式组(1)-1(2)26.解不等式组(注:必须通过画数轴求解集)27.解不等式组:并写出它的所有整数解.28.解不等式组,并把解集在数轴上表示出来.29.解不等式组:30.解下面的不等式组,并把它们的解集在数轴上表示出来:(1)(2)31.若不等式组的解集为,求a,b的值.32.(1)解不等式-1(2)解不等式,并将解集在数轴上表示.33.解不等式组:34.解不等式组35.解不等式组:并写出它的所有的整数解.36.解不等式组把它的解集在数轴上表示出来,并写出不等式组的非负整数解.37.(1)解方程组(2)解不等式组并把解集在数轴上表示出来.38.若关于x,y的方程组的解满足x<0且y<0,求m的范围.39.解不等式组:并写出它的所有整数解.40.解不等式组:并写出它的所有整数解.初中数学一元一次不等式组解法练习答案1.求不等式组的整数解.【答案】解:由①,解得:x≥-2;由②,解得:x<3,∴不等式组的解集为-2≤x<3,则不等式组的整数解为-2、-1、0、1、2.【解析】求出不等式组中两不等式的解集,找出解集的公共部分即可.此题考查了一元一次不等式组的整数解,熟练掌握不等式的解法是解本题的关键.2.解不等式组:.【答案】解:,由①得,x>-1,由②得,x≤2,所以,原不等式组的解集是-1<x≤2.【解析】先求出两个不等式的解集,再求其公共解.本题主要考查了一元一次不等式组解集的求法,其简便求法就是用口诀求解.求不等式组解集的口诀:同大取大,同小取小,大小小大中间找,大大小小找不到(无解).3.求不等式组:的整数解.【答案】解:由x-3(x-2)≤8得x≥-1由5-x>2x得x<2∴-1≤x<2∴不等式组的整数解是x=-1,0,1.【解析】先求出每个不等式的解集,再确定其公共解,得到不等式组的解集,然后求其整数解.解答此题要先求出不等式组的解集,求不等式组的解集要遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.4.解下列不等式组并将不等式组的解集在数轴上表示出来.(1);(2).【答案】解:(1),解①得x<1,解②得x≤-2,所以不等式组的解集为x≤-2,用数轴表示为:;(2),解①得x>-2,解②得x≤2,所以不等式组的解集为-2<x≤2,用数轴表示为:.【解析】(1)分别解两个不等式得到x<1和x≤-2,然后根据同小取小确定不等式组的解集,再利用数轴表示解集;(2)分别解两个不等式得到x>-2和x≤2,然后根据大于小的小于大的取中间确定不等式组的解集,再利用数轴表示解集.本题考查了解一元一次不等式组:分别求出不等式组各不等式的解集,然后根据“同大取大,同小取小,大于小的小于大的取中间,大于大的小于小的无解”确定不等式组的解集.5.解不等式组,并将它的解集在数轴上表示出来.【答案】解:由①得:-2x≥-2,即x≤1,由②得:4x-2<5x+5,即x>-7,所以-7<x≤1.在数轴上表示为:【解析】先解不等式组中的每一个不等式,再根据大大取较大,小小取较小,大小小大取中间,大大小小无解,把它们的解集用一条数轴表示出来.本题考查不等式组的解法和解集在数轴上的表示法,如果是表示大于或小于号的点要用空心,如果是表示大于等于或小于等于号的点用实心.6.试确定实数a的取值范围,使不等式组恰有两个整数解.【答案】解:由>0,两边同乘以6得3x+2(x+1)>0,解得x>-,由x+>(x+1)+a,两边同乘以3得3x+5a+4>4(x+1)+3a,解得x<2a,∴原不等式组的解集为-<x<2a.又∵原不等式组恰有2个整数解,即x=0,1;则2a的值在1(不含1)到2(含2)之间,∴1<2a≤2,∴0.5<a≤1.【解析】先求出不等式组的解集,再根据x的两个整数解求出a的取值范围即可.此题考查的是一元一次不等式的解法,得出x的整数解,再根据x的取值范围求出a的值即可.求不等式组的解集,应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.7.求不等式组的正整数解.【答案】解:由①得4x+4+3>x解得x>- ,由②得3x-12≤2x-10,解得x≤2,∴不等式组的解集为- <x≤2.∴正整数解是1,2.【解析】本题主要考查了不等式组的解法,并会根据未知数的范围确定它所满足的特殊条件的值.一般方法是先解不等式组,再根据解集求出特殊值.先解每一个不等式,求出不等式组的解集,再求出正整数解即可.8.解不等式(组),并把它们的解集在数轴上表示出来(1)2x-1<3x+2;(2).【答案】解:(1)移项得,2x-3x<2+1,合并同类项得,-x<3,系数化为1得,x>-3 (4分)在数轴上表示出来:(6分)(2),解①得,x<1,解②得,x≥-4.5在数轴上表示出来:不等式组的解集为-4.5≤x<1,【解析】本题考查了不等式与不等式组的解法,是基础知识要熟练掌握.(1)先移项,再合并同类项、系数化为1即可;(2)先求两个不等式的解集,再求公共部分即可.9.解下列不等式(组):(1)2(x+3)>4x-(x-3)(2)【答案】解:(1)去括号,得:2x+6>4x-x+3,移项,得:2x-4x+x>3-6,合并同类项,得:-x>-3,系数化为1,得:x<3;(2),解不等式①,得:x<2,解不等式②,得:x≥-1,则不等式组的解集为-1≤x<2.【解析】本题考查的是解一元一次不等式和解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.(1)根据解一元一次不等式基本步骤:去括号、移项、合并同类项、系数化为1可得;(2)分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解来确定不等式组的解集.10. ..【答案】解:,由①得:x≥1,由②得:x<-7,∴不等式组的解集是空集.【解析】根据不等式性质求出不等式的解集,根据找不等式组解集的规律找出即可.本题主要考查对不等式的性质,解一元一次不等式(组)等知识点的理解和掌握,能根据不等式的解集找出不等式组的解集是解此题的关键.11.解不等式组:,并在数轴上表示出不等式组的解集.【答案】解:解①得:x>3,解②得:x≥1,则不等式组的解集是:x>3;在数轴上表示为:【解析】分别解两个不等式得到x>3和x≥1,然后利用同大取大确定不等式组的解集,再利用数轴表示解集.本题考查了解一元一次不等式组:解一元一次不等式组时,一般先求出其中各不等式的解集,再求出这些解集的公共部分,利用数轴可以直观地表示不等式组的解集.解集的规律:同大取大;同小取小;大小小大中间找;大大小小找不到.12.若关于x的不等式组恰有三个整数解,求实数a的取值范围.【答案】解:,由①得:x>-,由②得:x<2a,则不等式组的解集为:-<x<2a,∵不等式组只有3个整数解为0、1、2,∴2<2a≤3,∴1<a≤,故答案为:1<a≤.【解析】首先利用a表示出不等式组的解集,根据解集中的整数恰好有3个,即可确定a的值.本题考查不等式组的解法及整数解的确定.求不等式组的解集,应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.13.解不等式组:.【答案】解:由(1)得:x>-2把(2)去分母得:4(x+2)≥5(x-1)去括号整理得:x≤13∴不等式组的解集为-2<x≤13.【解析】先解不等式组中的每一个不等式,再求其公共解集即可.解不等式组应遵循的原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.14.解不等式组并把它的解集在数轴上表示出来.【答案】解:解不等式①得x>-2,解不等式②得x≤3,数轴表示解集为:所以不等式组的解集是-2<x≤3.【解析】分别解两个不等式得到x>-2和x≤3,再利用数轴表示解集,然后根据大小小大中间找确定不等式组的解集.本题考查了一元一次不等式组:解一元一次不等式组时,一般先求出其中各不等式的解集,再求出这些解集的公共部分,利用数轴可以直观地表示不等式组的解集.解集的规律:同大取大;同小取小;大小小大中间找;大大小小找不到.15.解不等式组:【答案】解:解不等式2x+9<5x+3,得:x>2,解不等式-≤0,得:x≤7,则不等式组的解集为2<x≤7.【解析】首先解每个不等式,两个不等式的解集的公共部分就是不等式组的解集.本题考查的是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.16.已知关于x、y的方程组a为常数.(1)求方程组的解;(2)若方程组的解x>y>0,求a的取值范围.【答案】解:(1),①+②,得:3x=6a+3,解得:x=2a+1,把x=2a+1代入②,得:y=a-2,所以方程组的解为;(2)∵x>y>0,∴,解得:a>2.【解析】本题主要考查解一元一次不等式组和二元一次方程组,解题的关键是熟练掌握消元法解二元一次方程和解一元一次不等式组的能力.(1)两方程相加求出x、两方程相减可求得y;(2)由(1)中所求x、y结合x>y>0可得关于k的不等式组,解之可得.17.解不等式组.【答案】解:解不等式①得x<1解不等式②得x>-3所以原不等式组的解集为-3<x<1.【解析】把不等式组的不等式在数标轴上表示出来,看两者有无公共部分,从而解出解集.此题考查解不等式的一般方法,移项、合并同类项、系数化为1等求解方法,较为简单.18.解不等式组,并写出该不等式组的整数解.【答案】解:由得x≤1,由1-3(x-1)<8-x得x>-2,所以-2<x≤1,则不等式组的整数解为-1,0,1.【解析】首先把两个不等式的解集分别解出来,再根据大大取大,小小取小,比大的小比小的大取中间,比大的大比小的小无解的原则,求得不等式的解集,再求其整数解.本题主要考查不等式组的解集,以及在这个范围内的整数解.同时,一元一次不等式(组)的解法及不等式(组)的应用是一直是各省市中考的考查重点.19.解下列不等式(组),并把它们的解集在数轴上表示出来.(1);(2).【答案】解:(1)15-3x≥14-2x,-3x+2x≥14-15,-x≥-1,解得:x≤1,数轴表示如下:(2)解不等式①得:x≥-1,解不等式②得:x<3,∴不等式组的解集为-1≤x<3,数轴表示如下:.【解析】这是一道考查一元一次不等式与不等式组的解法的题目,解题关键在于正确解出不等式,并在数轴上表示出解集.(1)先去分母,移项,合并同类项,注意要改变符号;(2)求出每个不等式的解集,再求出公共部分,即可求出答案.20.解不等式组:,并把解集在数轴上表示出来.【答案】解:,解①得x>-3,解②得x≤2,所以不等式组的解集为-3<≤2,用数轴表示为:【解析】先分别解两个不等式得到x>-3和x≤2,再根据大小小大中间找得到不等式组的解集,然后利用数轴表示解集.本题考查了解一元一次不等式组:解一元一次不等式组时,一般先求出其中各不等式的解集,再求出这些解集的公共部分,利用数轴可以直观地表示不等式组的解集.解集的规律:同大取大;同小取小;大小小大中间找;大大小小找不到.21.已知方程组的解x、y都是正数,且x的值小于y的值,求m的取值范围.【答案】解:方程组解得:,根据题意得:且2m-1<m+8,解得:<m<9.【解析】将m看做已知数,表示出x与y,根据题意列出不等式,求出不等式的解集即可得到m的范围.此题考查了解一元一次不等式组,以及解二元一次方程组,弄清题意是解本题的关键.22.满足不等式-1≤3-2x<6的所有x的整数的和是多少?【答案】解:根据题意得:,解①得:x≤2,解②得:x>-,则不等式组的解:-<x≤2,则整数解是:-1,0,1,2.则整数和是:-1+0+1+2=2.【解析】先求出不等式组中每个不等式的解集,然后求出其公共解集,最后求其整数解,然后求和即可.本题考查不等式组的解法及整数解的确定.求不等式组的解集,应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.23.(1)解方程组:(2)解不等式组:【答案】解:(1),整理得,解得 .(2),解①得:,解②得:.则不等式组的解集为.【解析】本题考查了一元一次不等式的解法及解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.(1)方程组整理后,利用加减消元法求出解即可;(2)分别求出不等式组中两不等式的解集,找出解集的公共部分即可.24.已知关于x,y的方程组,其中-3≤a≤1.(1)当a=-2时,求x,y的值;(2)若x≤1,求y的取值范围.【答案】解:(1),①-②,得:4y=4-4a,解得:y=1-a,将y=1-a代入②,得:x-1+a=3a,解得:x=2a+1,则,∵a=-2,∴x=-4+1=-3,y=1+2=3;(2)∵x=2a+1≤1,即a≤0,∴-3≤a≤0,即1≤1-a≤4,则1≤y≤4.【解析】(1)先解关于x、y的方程组,再将a的值代入即可得;(2)由x≤1得出关于a≤0,结合-3≤a≤1知-3≤a≤0,从而得出1≤1-a≤4,据此可得答案.此题考查了解二元一次方程组与一元一次不等式组,解题的关键是根据题意得出用a表示的x、y.25.解不等式组:.【答案】解:解不等式2x+1≥x-1,得:x≥-2,解不等式<3-x,得:x<2,∴不等式组的解集为-2≤x<2.【解析】分别求出各不等式的解集,再求出其公共解集即可.本题考查的是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.26.解下列不等式和不等式组(1)-1(2)【答案】解:(1)3(x+3)≤5(2x-5)-15,3x+9≤10x-25-15,3x-10x≤-25-15-9,-7x≤-49,x≥7;(2)解不等式1-2(x-1)≤5,得:x≥-1,解不等式<x+1,得:x<4,则不等式组的解集为-1≤x<4.【解析】(1)依据解一元一次不等式的步骤依次计算可得;(2)分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.此题考查一元一次不等式解集的求法,切记同乘负数时变号;一元一次不等式组的解集求法,其简单的求法就是利用口诀求解,“同大取大,同小取小,大小小大中间找,大大小小找不到(无解)”.27.解不等式组(注:必须通过画数轴求解集)【答案】解:解不等式①,得:x≥2,解不等式②,得:x<4,在数轴上表示两解集如下:所以,原不等式组的解集为2≤x<4.【解析】分别求出不等式组中两不等式的解集,找出解集的公共部分即可.此题考查了解一元一次不等式组,以及在数轴上表示不等式的解集,熟练掌握运算法则是解本题的关键.28.解不等式组:并写出它的所有整数解.【答案】解:,解不等式①,得x<1,解不等式②,得x≥-2,所以不等式组的解集为-2≤x<1,所以它的所有整数解为-2,-1,0.【解析】本题主要考查不等式组的解法及整数解的确定.求不等式组的解集,应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.先求出每个不等式的解集,再确定其公共解,得到不等式组的解集,然后求其整数解.29.解不等式组,并把解集在数轴上表示出来.【答案】解:,解不等式①得,x≤2,解不等式②得,x>-1,∴不等式组的解集是-1<x≤2.用数轴表示如下:【解析】根据一元一次不等式组的解法,求出两个不等式的解集,然后求出公共解集即可.本题主要考查了一元一次不等式组的解法,注意在数轴上表示时,有等号的用实心圆点表示,没有等号的用空心圆圈表示.30.解不等式组:【答案】解:解不等式1-x>3,得:x<-2,解不等式<,得:x>12,所以不等式组无解.【解析】先分别求出各不等式的解集,再求出其公共解集即可.主要考查了一元一次不等式解集的求法,其简便求法就是用口诀求解.求不等式组解集的口诀:同大取大,同小取小,大小小大中间找,大大小小找不到(无解).31.解下面的不等式组,并把它们的解集在数轴上表示出来:(1)(2)【答案】解:(1),解不等式①,得x≤4,解不等式②,得x>-1,不等式①②的解集在数轴上表示如下:(2),解不等式①,得,解不等式②,得x>1,不等式①②的解集在数轴上表示如下:【解析】本题考查的是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.(1)分别求出各不等式的解集,再求出其公共解集,然后在数轴上表示出来即可;(2)别求出各不等式的解集,再求出其公共解集,然后在数轴上表示出来即可.32.若不等式组的解集为,求a,b的值.【答案】解:解第一个不等式,得:,解第二个不等式,得:,∵不等式组的解集为1≤x≤6,∴,2b=1,解得:a=12,b=.【解析】此题考查的是含有待定字母的一元一次不等式的解法,解决此题要先求出每个不等式的解集,再找出它们的公共部分,根据给出的解集转化为关于a和b的方程求解即可.33.(1)解不等式-1(2)解不等式,并将解集在数轴上表示.【答案】解:(1)去分母,得:4(x+1)<5(x-1)-6,去括号,得:4x+4<5x-5-6,移项,得:4x-5x<-5-6-4,合并同类项,得:-x<-15,系数化为1,得:x>15;(2)解不等式2x-1≥x,得:x≥1,解不等式4-5(x-2)>8-2x,得:x<2,∴不等式组的解集为1≤x<2,将解集表示在数轴上如下:【解析】(1)根据解不等式的基本步骤求解可得;(2)分别求出各不等式的解集,再求出其公共解集即可.本题考查的是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.34.解不等式组:【答案】解:由(1)得,x>3由(2)得,x≤4故原不等式组的解集为3<x≤4.【解析】分别求出各不等式的解集,再求其公共解集即可.求不等式组的解集应遵循以下原则:“同大取较大,同小取较小,小大大小中间找,大大小小解不了”的原则.35.解不等式组【答案】解:解不等式-2x+1>-11,得:x<6,解不等式-1≥x,得:x≥1,则不等式组的解集为1≤x<6.【解析】分别求出各不等式的解集,再求出其公共解集即可.本题考查的是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.36.解不等式组:并写出它的所有的整数解.【答案】解:,解不等式①得,x≥1,解不等式②得,x<4,所以,不等式组的解集是1≤x<4,所以,不等式组的所有整数解是1、2、3.【解析】本题主要考查了一元一次不等式组解集的求法,其简便求法就是用口诀求解.求不等式组解集的口诀:同大取大,同小取小,大小小大中间找,大大小小找不到(无解).先求出两个不等式的解集,再求其公共解,然后写出整数解即可.37.解不等式组把它的解集在数轴上表示出来,并写出不等式组的非负整数解.【答案】解:,由①得:x≥-1,由②得:x<3,∴不等式组的解集为-1≤x<3,在数轴上表示,如图所示,则其非负整数解为0,1,2.【解析】求出不等式组的解集,表示在数轴上,确定出非负整数解即可.此题考查了一元一次不等式组的整数解,以及解一元一次不等式组,熟练掌握运算法则是解本题的关键.38.(1)解方程组(2)解不等式组并把解集在数轴上表示出来.【答案】解:(1),①+②,得:6x=18,解得:x=3,②-①,得:4y=4,解得:y=1,所以方程组的解为;(2)解不等式x-4≤(2x-1),得:x;解不等式2x-<1,得:x<3,则不等式组的解集为-≤x<3,将解集表示在数轴上如下:【解析】(1)利用加减消元法求解可得;(2)分别求出各不等式的解集,再求出其公共解集即可.本题考查的是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则及加减消元法解二元一次方程组是解答此题的关键.39.若关于x,y的方程组的解满足x<0且y<0,求m的范围.【答案】解:,①+②,得:6x=3m-18,解得:x=,②-①,得:10y=-m-18,解得:y=,∵x<0且y<0,∴,解得:-18<m<6.【解析】先解出方程组,然后根据题意列出不等式组即可求出m的范围.本题考查学生的计算能力,解题的关键是熟练运用方程组与不等式组的解法,本题属于基础题型.40.解不等式组:并写出它的所有整数解.【答案】解:,解不等式①,得,解不等式②,得x<2,∴原不等式组的解集为,它的所有整数解为0,1.【解析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.第21页,共21页。

一次函数与方程不等式专项练习60题(有答案)

一次函数与方程不等式专项练习60题(有答案)

一次函数与方程、不等式专项练习60题〔有答案〕1.一次函数y=kx+b的图象如下图,那么方程kx+b=0的解为〔〕A .x=2 B.y=2 C.x=﹣1 D.y=﹣12.如图,函数y=2x和y=ax+4的图象相交于点A〔m,3〕,那么不等式2x<ax+4的解集为〔〕A .x<B.x<3 C.x>D.x>33.如图,一次函数y=kx+b的图象与y轴交于点〔0,1〕,那么关于x的不等式kx+b>1的解集是〔〕A .x>0 B.x<0 C.x>1 D.x<14.一次函数y=ax+b的图象过第一、二、四象限,且与x轴交于点〔2,0〕,那么关于x的不等式a〔x﹣1〕﹣b >0的解集为〔〕A .x<﹣1 B.x>﹣1 C.x>1 D.x<15.如图,直线y1=k1x+a与y2=k2x+b的交点坐标为〔1,2〕,那么使y1<y2的x的取值范围为〔〕A .x>1 B.x>2 C.x<1 D.x<26.直线l1:y=k1x+b与直线l2:y=k2x在同一平面直角坐标系中的图象如下图,那么关于x的不等式k2x<k1x+b的解集为〔〕A .x<﹣1 B.x>﹣1 C.x>2 D.x<27.如图,直线y=kx+b经过点A〔﹣1,﹣2〕和点B〔﹣2,0〕,直线y=2x过点A,那么不等式2x<kx+b<0的解集为〔〕A .x<﹣2 B.﹣2<x<﹣1 C.﹣2<x<0 D.﹣1<x<08.整数x满足﹣5≤x≤5,y1=x+1,y2=﹣2x+4,对任意一个x,m都取y1,y2中的较小值,那么m的最大值是〔〕A .1 B.2 C.24 D.﹣99.如图,直线y1=与y2=﹣x+3相交于点A,假设y1<y2,那么〔〕A .x>2 B.x<2 C.x>1 D.x<110.一次函数y=3x+9的图象经过〔﹣,1〕,那么方程3x+9=1的解为x= _________ .11.如图,直线y=ax+b,那么方程ax+b=1的解x= _________ .12.如图,一次函数y=ax+b的图象经过A,B两点,那么关于x的方程ax+b=0的解是_________ .13.直线与x轴、y轴交于不同的两点A和B,S△AOB≤4,那么b的取值范围是_________ .14.关于x的方程mx+n=0的解是x=﹣2,那么直线y=mx+n与x轴的交点坐标是_________ .15.ax+b=0的解为x=﹣2,那么函数y=ax+b与x轴的交点坐标为_________ .16.一次函数y=kx+b的图象如下图,那么关于x的方程kx+b=0的解为______ ,当x ______ 时,kx+b<0.17.如图,函数y=2x+b和y=ax﹣3的图象交于点P〔﹣2,﹣5〕,根据图象可得方程2x+b=ax﹣3的解是_________ .18.一元一次方程0.5x+1=0的解是一次函数y=0.5x+1的图象与_________ 的横坐标.19.如图,直线y=ax﹣b,那么关于x的方程ax﹣1=b的解x= _________ .20.一次函数y1=kx+b与y2=x+a的图象如图,那么方程kx+b=x+a的解是_________ .21.一次函数y=2x+2的图象如下图,那么由图象可知,方程2x+2=0的解为_________ .22.一次函数y=ax+b的图象过点〔0,﹣2〕和〔3,0〕两点,那么方程ax+b=0的解为_________ .23.方程3x+2=8的解是x= _________ ,那么函数y=3x+2在自变量x等于_________ 时的函数值是8.24.一次函数y=ax+b的图象如下图,那么一元一次方程ax+b=0的解是x= _________ .25.观察下表,估算方程1700+150x=2450的解是_________ .x的值 1 2 3 4 5 6 7 …1700+150x的值1850 2000 2150 2300 2450 2600 2750 …26.y1=3x+1,y2=21-3x,当x取何值时,y1比21y2小2.27.计算:〔4a﹣3b〕•〔a﹣2b〕28.我们知道多项式的乘法可以利用图形的面积进展解释,如〔2a+b〕〔a+b〕=2a2+3ab+b2就能用图1或图2等图形的面积表示:〔1〕请你写出图3所表示的一个等式:_________ .〔2〕试画出一个图形,使它的面积能表示:〔a+b〕〔a+3b〕=a2+4ab+3b2.29.如图,直线l是一次函数y=kx+b的图象,点A、B在直线l上.根据图象答复以下问题:〔1〕写出方程kx+b=0的解;〔2〕写出不等式kx+b>1的解集;〔3〕假设直线l上的点P〔m,n〕在线段AB上移动,那么m、n应如何取值.30.当自变量x的取值满足什么条件时,函数y=﹣2x+7的值为﹣2.31.如图,过A点的一次函数y=kx+b的图象与正比例函数y=2x的图象相交于点B,那么不等式0<2x<kx+b的解集是〔〕A .x<1 B.x<0或x>1 C.0<x<1 D.x>132.关于x的一次函数y=kx+b〔k≠0〕的图象过点〔2,0〕,〔0,﹣1〕,那么不等式kx+b≥0的解集是〔〕A .x≥2B.x≤2C.0≤x≤2D.﹣1≤x≤233.当自变量x的取值满足什么条件时,函数y=3x﹣8的值满足y>0〔〕A .x=B.x≤C.x>D.x≥﹣34.函数y=8x﹣11,要使y>0,那么x应取〔〕A .x>B.x<C.x>0 D.x<035.如图,直线y=3x+b与y=ax﹣2的交点的横坐标为﹣2,根据图象有以下3个结论:①a>0;②b>0;③x>﹣2是不等式3x+b>ax﹣2的解集.其中正确的个数是〔〕A .0 B.1 C.2 D.336.如图,直线y=ax+b经过点〔﹣4,0〕,那么不等式ax+b≥0的解集为_________ .37.如图,直线y=kx+b经过A〔﹣2,﹣1〕和B〔﹣3,0〕两点,那么不等式﹣3≤﹣2x﹣5<kx+b的解集是_________ .38.如下图,函数y=ax+b和a〔x﹣1〕﹣b>0的图象相交于〔﹣1,1〕,〔2,2〕两点.当y1>y2时,x的取值范围是_________ .39.如图,直线y=ax+b与直线y=cx+d相交于点〔2,1〕,直线y=cx+d交y轴于点〔0,2〕,那么不等式组ax+b<cx+d<2的解集为_________ .40.如图,直线y=kx+b经过点〔2,1〕,那么不等式0≤x<2kx+2b的解集为_________ .41.一次函数y=kx+b的图象如下图,由图象可知,当x _________ 时,y值为正数,当x _________ 时,y 为负数.42.如图,直线y=kx+b经过A〔1,2〕,B〔﹣2,﹣1〕两点,那么不等式x<kx+b<2的解集为_________ .43.如果直线y=kx+b经过A〔2,1〕,B〔﹣1,﹣2〕两点,那么不等式x≥kx+b≥﹣2的解集为:_________ .44.如图,直线y=kx+b与x轴交于点〔﹣3,0〕,且过P〔2,﹣3〕,那么2x﹣7<kx+b≤0的解集_________ .45.一次函数y=ax﹣b的图象经过一、二、三象限,且与x轴交于点〔﹣2,0〕,那么不等式ax>b的解集为_________ .46.一次函数y=ax+b的图象过第一、二、四象限,且与x轴交于点〔2,O〕,那么关于x的不等式a〔x﹣l〕﹣b>0的解集为_________ .47.如图,直线y=ax+b经过A〔﹣2,﹣5〕、B〔3,0〕两点,那么,不等式组2〔ax+b〕<5x<0的解集是_________ .48.函数y1=2x+b与y2=ax﹣3的图象交于点P〔﹣2,5〕,那么不等式y1>y2的解集是_________ .49.如图,直线y=kx+b经过A〔2,0〕,B〔﹣2,﹣4〕两点,那么不等式y>0的解集为_________ .50.点P〔x,y〕位于第二象限,并且y≤x+4,x、y为整数,符合上述条件的点P共有6个.51.作出函数y=2x﹣4的图象,并根据图象答复以下问题:〔1〕当﹣2≤x≤4时,求函数y的取值范围;〔2〕当x取什么值时,y<0,y=0,y>0;〔3〕当x取何值时,﹣4<y<2.52.画出函数y=2x+1的图象,利用图象求:〔1〕方程2x+1=0的根;〔2〕不等式2x+1≥0的解;〔3〕求图象与坐标轴的两个交点之间的距离.53.用画函数图象的方法解不等式5x+4<2x+10.54.画出函数y=3x+12的图象,并答复以下问题:〔1〕当x为什么值时,y>0;〔2〕如果这个函数y的值满足﹣6≤y≤6,求相应的x的取值范围.55.如图,直线y=x+1和y=﹣3x+b交于点A〔2,m〕.〔1〕求m、b的值;〔2〕在所给的平面直角坐标系中画出直线y=﹣3x+b;〔3〕结合图象写出不等式﹣3x+b<x+1的解集是_________ .56.如图,图中是y=a1x+b1和y=a2x+b2的图象,根据图象填空.的解集是_________ ;的解集是_________ ;的解集是_________ .57.在平面直角坐标系x0y中,直线y=kx+b〔k≠0〕过〔1,3〕和〔3,1〕两点,且与x轴、y轴分别交于A、B 两点,求不等式kx+b≤0的解.58.用图象法解不等式5x﹣1>2x+5.59.〔1〕在同一坐标系中,作出函数y1=﹣x与y2=x﹣2的图象;〔2〕根据图象可知:方程组的解为_________ ;〔3〕当x _________ 时,y2<0.〔4〕当x _________ 时,y2<﹣2〔5〕当x _________ 时,y1>y2.60.做一做,画出函数y=﹣2x+2的图象,结合图象答复以下问题.函数y=﹣2x+2的图象中:〔1〕随着x的增大,y将_________ 填“增大〞或“减小〞〕〔2〕它的图象从左到右_________ 〔填“上升〞或“下降〞〕〔3〕图象与x轴的交点坐标是_________ ,与y轴的交点坐标是_________〔4〕这个函数中,随着x的增大,y将增大还是减小?它的图象从左到右怎样变化?〔5〕当x取何值时,y=0?〔6〕当x取何值时,y>0?一次函数与方程不等式60题参考答案:1.∵一次函数y=kx+b的图象与x轴的交点为〔﹣1,0〕,∴当kx+b=0时,x=﹣1.应选C.2.∵函数y=2x和y=ax+4的图象相交于点A〔m,3〕,∴3=2m,m=,∴点A的坐标是〔,3〕,∴不等式2x<ax+4的解集为x<;应选A3.由一次函数的图象可知,此函数是减函数,∵一次函数y=kx+b的图象与y轴交于点〔0,1〕,∴当x<0时,关于x的不等式kx+b>1.应选B.4.∵一次函数y=ax+b的图象过第一、二、四象限,∴b>0,a<0,把〔2,0〕代入解析式y=ax+b得:0=2a+b,解得:2a=﹣b =﹣2,∵a〔x﹣1〕﹣b>0,∴a〔x﹣1〕>b,∵a<0,∴x﹣1<,∴x<﹣1,应选A5.由图象可知,当x<1时,直线y1落在直线y2的下方,故使y1<y2的x的取值范围是:x<1.应选C.6.两条直线的交点坐标为〔﹣1,2〕,且当x>﹣1时,直线l2在直线l1的下方,故不等式k2x<k1x+b的解集为x>﹣1.应选B7.不等式2x<kx+b<0表达的几何意义就是直线y=kx+b上,位于直线y=2x上方,x轴下方的那局部点,显然,这些点在点A与点B之间.应选B8.联立两函数的解析式,得:,解得;即两函数图象交点为〔1,2〕,在﹣5≤x≤5的范围内;由于y1的函数值随x的增大而增大,y2的函数值随x的增大而减小;因此当x=1时,m值最大,即m=2.应选B9.从图象上得出,当y1<y2时,x<2.应选B.10.方程3x+9=1的解,即函数y=3x+9中函数值y=1时,x的值.∵一次函数y=3x+9的图象经过〔﹣,1〕,即函数值是1时,自变量x=﹣.因而方程3x+9=1的解为x=﹣11.根据图形知,当y=1时,x=4,即ax+b=1时,x=4.∴方程ax+b=1的解x=412.由图可知:当x=2时,函数值为0;因此当x=0时,ax+b=0,即方程ax+b=0的解为:x=213.由直线与x轴、y轴交于不同的两点A和B,令x=0,那么y=b,令y=0,那么x=﹣2b,∴S△AOB=×2b2=b2≤4,解得:﹣2≤b≤2且b≠0,故答案为:﹣2≤b≤2且b≠014.∵方程的解为x=﹣2,∴当x=﹣2时mx+n=0;又∵直线y=mx+n与x轴的交点的纵坐标是0,∴当y=0时,那么有mx+n=0,∴x=﹣2时,y=0.∴直线y=mx+n与x轴的交点坐标是〔﹣2,0〕15.∵ax+b=0的解为x=﹣2,∴函数y=ax+b与x轴的交点坐标为〔﹣2,0〕,故答案为:〔﹣2,0〕16.从图象上可知那么关于x的方程kx+b=0的解为的解是x=﹣3,当x<﹣3时,kx+b<0.故答案为:x=﹣3,x<﹣317.根据题意,知 点P 〔﹣2,﹣5〕在函数y=2x+b 的图象上,∴﹣5=﹣4+b ,解得,b=﹣1;又点P 〔﹣2,﹣5〕在函数y=ax ﹣3的图象上,∴﹣5=﹣2a ﹣3,解得,a=1;∴由方程2x+b=ax ﹣3,得2x ﹣1=x ﹣3,解得,x=﹣2;故答案是:x=﹣218. ∵0.5x+1=0,∴0.5x=﹣1,∴x=﹣2,∴一次函数y=0.5x+1的图象与x 轴交点的横坐标为:x=﹣2,故答案为:x 轴交点.19.根据图形知,当y=1时,x=4,即ax ﹣b=1时,x=4.故方程ax+b=1的解x=4.故答案为:420.一次函数y 1=kx+b 与y 2=x+a 的图象的交点的横坐标是3,故方程的解是:x=3.故答案是:x=321.由一次函数y=2x+2的图象知:y=2x+2经过点〔﹣1,0〕,∴方程2x+2=0的解为:x=﹣1,故答案为:x=﹣1.22.一次函数y=ax+b 的图象过点〔0,﹣2〕和〔3,0〕两点,∴b=﹣2,3a+b=0,解得:a=,∴方程ax+b=0可化为:x ﹣2=0,∴x=3.23.解方程3x+2=8得到:x=2,函数y=3x+2的函数值是8.即3x+2=8,解得x=2,因而方程3x+2=8的解是x=2 即函数y=3x+2在自变量x 等于2时的函数值是8.故填2、824.∵一次函数y=ax+b 的图象与x 轴交点的横坐标是﹣2,∴一元一次方程ax+b=0的解是:x=﹣2.故填﹣225.设y=1700+150x ,由图中所给的表可知:当x=5时,y=1700+150x=2450,∴方程1700+150x=2450的解是5. 故答案为:526.∵y 1比21 y 2小2.,y 1=3x +1, y 2=21-3x ∴3x +1= 21〔21-3x 〕-2=41-23x-2 两边都乘12得,4x+12=3-18x-24,移项及合并得22x=-33,解得x=-1.5,当x=-1.5时,y 1比21 y 2小2. 27.原式=4a•a﹣8ab ﹣3ab+6b•b=4a 2﹣11ab+6b 228.〔1〕∵长方形的面积=长×宽,∴图3的面积=〔a+2b 〕〔2a+b 〕=2a 2+5ab+2b 2,故图3所表示的一个等式:〔a+2b 〕〔2a+b 〕=2a 2+5ab+2b 2,故答案为:〔a+2b 〕〔2a+b 〕=2a 2+5ab+2b 2;〔2〕∵图形面积为:〔a+b 〕〔a+3b 〕=a 2+4ab+3b 2,∴长方形的面积=长×宽=〔a+b 〕〔a+3b 〕,由此可画出的图形为:29.函数与x 轴的交点A 坐标为〔﹣2,0〕,与y 轴的交点的坐标为〔0,1〕,且y 随x 的增大而增大.〔1〕函数经过点〔﹣2,0〕,那么方程kx+b=0的根是x=﹣2;〔2〕函数经过点〔0,1〕,那么当x >0时,有kx+b >1,即不等式kx+b >1的解集是x >0;〔3〕线段AB 的自变量的取值范围是:﹣2≤x≤2,当﹣2≤m≤2时,函数值y 的范围是0≤y≤2, 那么0≤n≤2.30. 函数y=﹣2x+7中,令y=﹣2,那么﹣2x+7=﹣2,解得:x=4.5.31.一次函数y=kx+b 经过A 、B 两点,∴,解得:k=﹣,b=3.故:y=﹣,∵0<2x<﹣,解得:0<x<1.应选C32.由于x的一次函数y=kx+b〔k≠0〕的图象过点〔2,0〕,且函数值y随x的增大而增大,∴不等式kx+b≥0的解集是x≥2.应选A33.函数y=3x﹣8的值满足y>0,即3x﹣8>0,解得:x>.应选C34.函数y=8x﹣11,要使y>0,那么8x﹣11>0,解得:x>.应选A.35.由图象可知,a>0,故①正确;b>0,故②正确;当x>﹣2是直线y=3x+b在直线y=ax﹣2的上方,即x>﹣2是不等式3x+b>ax﹣2,故③正确.应选D.36.由图象可以看出:当x≥﹣4时,y≥0,∴不等式ax+b≥0的解集为x≥﹣4,故答案为:x≥﹣437.∵直线y=kx+b经过A〔﹣2,﹣1〕和B〔﹣3,0〕两点,∴,解得,∴不等式变为﹣3≤﹣2x﹣5<﹣x﹣3,解得﹣2<x≤﹣1,故答案为﹣2<x≤﹣138.∵函数y=ax+b和a〔x﹣1〕﹣b>0的图象相交于〔﹣1,1〕,〔2,2〕两点,∴根据图象可以看出,当y1>y2时,x的取值范围是x>2或x<﹣1,故答案为:x<﹣1或x>239. 如图,直线y=ax+b与直线y=cx+d相交于点〔2,1〕,直线y=cx+d交y轴于点〔0,2〕,那么不等式组ax+b<cx+d<2的解集为〔0,2〕.40.由直线y=ax+b与直线y=cx+d相交于点〔2,1〕,直线y=cx+d交y轴于点〔0,2〕,根据图象即可知不等式组ax+b<cx+d<2的解集为〔0,2〕,故答案为:〔0,2〕.41. 一次函数y=kx+b的图象如下图,由图象可知,当x x>﹣3 时,y值为正数,当x x<﹣3 时,y为负数.42.由图形知,一次函数y=kx+b经过点〔﹣3,0〕,〔0,2〕故函数解析式为:y=x+2,令y>0,解得:x>﹣3,令y<0,解得:x<﹣3.故答案为:x>﹣3,x<﹣343.直线y=kx+b经过A〔2,1〕和B〔﹣1,﹣2〕两点,可得:,解得;那么不等式组x≥kx+b≥﹣2可化为x≥x﹣1≥﹣2,解得:﹣1≤x≤244.直线y=kx+b与x轴交于点〔﹣3,0〕,且过P〔2,﹣3〕,∴结合图象得:kx+b≤0的解集是:x≥﹣3,∵2x﹣7<﹣3,∴x<2,∴2x﹣7<kx+b≤0的解集是:﹣3≤x<2,故答案为:﹣3≤x<2 45.如右图所示:不等式ax>b的解集就是求函数y=ax﹣b>0,当y>0时,图象在x轴上方,那么不等式ax>b的解集为x>﹣2.故答案为:x>﹣2.46.∵一次函数y=ax+b的图象过第一、二、四象限,∴b>0,a<0,把〔2,0〕代入解析式y=ax+b得:0=2a+b,解得:2a=﹣b,=﹣2,∵a〔x﹣1〕﹣b>0,∴a〔x﹣1〕>b,∵a<0,∴x﹣1<,∴x<﹣147.把A〔﹣2,﹣5〕、B〔3,0〕两点的坐标代入y=ax+b,得﹣2a+b=﹣5,3a+b=0,解得:a=1,b=﹣3.解不等式组:2〔x﹣3〕<5x<0,得:﹣2<x<0.故答案为:﹣2<x<048.由图象可知x>﹣2时,y1>y2;故答案为x>﹣249.∵一次函数y=kx+b的图象经过A、B两点,由图象可知:直线从左往右逐渐上升,即y随x的增大而增大,又A〔2,0〕,所以不等式y>0的解集是x>2.故答案为x>250.∵点P〔x,y〕位于第二象限,∴x<0,y>0,又∵y≤x+4,∴0<y<4,x<0,又∵x、y为整数,∴当y=1时,x可取﹣3,﹣2,﹣1,当y=2时,x可取﹣1,﹣2,当y=3时,x可取﹣1.那么P坐标为〔﹣1,1〕,〔﹣1,2〕,〔﹣1,3〕,〔﹣2,1〕,〔﹣2,2〕,〔﹣3,1〕共6个.故答案为:651.当x=0时,y=﹣4,当y=0时,x=2,即y=2x﹣4过点〔0,﹣4〕和点〔2,0〕,过这两点作直线即为y=2x﹣4的图象,从图象得出函数值随x的增大而增大;〔1〕当x=﹣2时,y=﹣8,当x=4,y=4,∴当﹣2≤x≤4时,函数y的取值范围为:﹣8≤y≤4;〔2〕由于当y=0时,x=2,∴当x<2时,y<0,当x=2时,y=0,当x>2时,y>0;〔3〕∵当y=﹣4时,x=0;当y=2时,x=3,∴当x的取值范围为:0<x<3时,有﹣4<y<2.52.列表:描点,过〔0,1〕和〔﹣,0〕两点作直线即可得函数y=2x+1的图象,如图:〔1〕由图象看出当x=﹣时,y=0,即2x+1=0,所以x=﹣是方程2x+1=0的解;〔2〕不等式2x+1≥0的解应为函数图象上不在x轴下方的点的横坐标,所以x≥﹣是不等式2x+1≥0的解;〔3〕由勾股定理得它们之间的距离为53.令y1=5x+4,y2=2x+10,对于y1=5x+4,当x=0时,y=4;当y=0时,x=﹣,即y1=5x+4过点〔0,4〕和点〔﹣,0〕,过这两点作直线即为y1=5x+4的图象;对于y2=2x+10,当x=0时,y=10;当y=0时,x=﹣5,即y2=2x+10过点〔0,10〕和点〔﹣5,0〕,过这两点作直线即为y2=2x+10的图象.图象如图:由图可知当x<2时,不等式5x+4<2x+10成立.54. 当x=0时,y=12;当y=0时,x=﹣4,即y=3x+12过点〔0,12〕和点〔﹣4,0〕,过这两点作直线即为y=3x+12的图象,从图象得出函数值随x的增大而增大;〔1〕函数图象经过点〔﹣4,0〕,并且函数值y随x的增大而增大,因而当x>﹣4时y>0;〔2〕函数经过点〔﹣6,﹣6〕和点〔﹣2,6〕并且函数值y随x的增大而增大,因而函数y的值满足﹣6≤y≤6时,相应的x的取值范围是:﹣6≤x≤﹣2.55.〔1〕根据题意得:解得:〔2〕画出直线如图:〔3〕自变量的取值范围是:x>2.56.由题意知:由图象知y=a1x+b1>0时有x>﹣3,函数y=a2x+b2>0时有x<1,∴不等式组的解集的解集为:﹣3<x<1;故答案为:﹣3<x<1;由题知:由图象知y=a1x+b1<0时有x<﹣3,根据函数图象知y=a2x+b2<0时有x<1,∴不等式组的解集为:x<﹣3;故答案为:x<﹣3;由题意知:根据函数图象知y=a1x+b1<0时有x<﹣3,根据函数图象知y=a2x+b2<0时有x>1,∴不等式组的解集是空集;故答案为:空集57.∵直线y=kx+b〔k≠0〕过〔1,3〕和〔3,1〕两点,∴,解得:,∴直线AB的解析式为:y=﹣x+4,∵当y=0时,x=4,∴A〔4,0〕,∴不等式kx+b≤0的解集为:x<4.58.5x﹣1>2x+5可变形为x﹣2>0,画一次函数y=x﹣2的图象,如下图:根据图象可得:当y>0时,图象在x轴的上方,故x>2.59.〔1〕解:如下图:.〔2〕解:由图象可知:方程组的解为,故答案为:.〔3〕解:根据题意得:x﹣2<0,解得:x<2,故答案为:<2.〔4〕解:根据题意得:x﹣2<﹣2,解得:x<0,故答案为:<0.〔5〕解:根据题意得:﹣x>x﹣2,解得:x<1,故答案为:x<1.60.函数y=﹣2x+2的图象为:〔1〕由图象知:随着x的增大,y将减小.〔2〕由图象知:图象从左向右下降.〔3〕由图象知:与x轴的交点坐标是〔1,0〕,与y轴的交点坐标是〔0,2〕.〔4〕由图象知:这个函数中,随着x的增大,y将减小,图象从左向右下降.〔5〕由图象知:当x=1时,y=0.〔6〕由图象知:当x<1时,y>0.。

不等式解决问题练习题

不等式解决问题练习题

不等式解决问题练习题一、一元一次不等式1. 解不等式:3x 5 > 22. 解不等式:4 2x ≤ 13. 解不等式:5x + 8 > 34. 解不等式:7 3x < 45. 解不等式:2x 6 ≥ 4二、一元一次不等式组1. 解不等式组:\[\begin{cases}x 2 > 0 \\3x + 1 < 4\end{cases}\]2. 解不等式组:\[\begin{cases}2x 3 < 5 \\4x + 7 > 11\end{cases}\]3. 解不等式组:\[\begin{cases}5x + 4 > 2x 1 \\3x 2 ≤ 8\end{cases}\]三、一元二次不等式1. 解不等式:x^2 5x + 6 > 02. 解不等式:2x^2 4x 6 < 03. 解不等式:x^2 + 3x 4 ≥ 04. 解不等式:x^2 + 2x + 3 ≤ 05. 解不等式:4x^2 12x + 9 > 0四、分式不等式1. 解不等式:\(\frac{1}{x2} > 0\)2. 解不等式:\(\frac{2}{x+3} < 1\)3. 解不等式:\(\frac{3}{x1} + \frac{1}{x+2} ≥ 0\)4. 解不等式:\(\frac{4}{x+1} \frac{2}{x3} ≤ 2\)5. 解不等式:\(\frac{5}{x^2 4x + 3} > 0\)五、绝对值不等式1. 解不等式:|x 4| < 32. 解不等式:|2x + 1| ≥ 53. 解不等式:|3x 7| > 24. 解不等式:|4 x| ≤ 65. 解不等式:|5x + 3| < 8六、综合应用题1. 某企业生产一种产品,每件产品的成本为50元,售价为80元。

若该企业每月固定开支为2000元,要使企业不亏损,每月至少需要销售多少件产品?2. 一辆汽车以60km/h的速度行驶,行驶过程中,速度每增加10km/h,油耗增加1L/100km。

(完整版)多元一次方程组与一元多次不等式组经典应用题

(完整版)多元一次方程组与一元多次不等式组经典应用题

(完整版)多元一次方程组与一元多次不等式组经典应用题引言本文将介绍多元一次方程组与一元多次不等式组的经典应用题,旨在帮助读者更好地理解和应用这些数学概念。

多元一次方程组多元一次方程组是由多个未知数和这些未知数的一次项组成的方程组。

例如,以下是一个多元一次方程组的例子:x + y = 52x - y = 1经典应用题1. 问题描述:小明和小红在一家商场里购物,他们买了一些衣服和鞋子,总共花费了150元。

已知一件衣服的价格为x元,一双鞋子的价格为y元。

已知小明买了3件衣服和2双鞋子,小红买了2件衣服和3双鞋子。

求解衣服和鞋子的单价。

解答:设衣服的单价为x元,鞋子的单价为y元。

根据题目的描述,可以得到以下两个方程:3x + 2y = 1502x + 3y = 150解方程组可以得到衣服的单价x=30元,鞋子的单价y=45元。

2. 问题描述:小明和小红在一家餐厅吃饭,他们点了若干份菜品,总共消费了100元。

已知一份菜品的价格为x元,小明点了3份菜品,小红点了5份菜品。

如果小明和小红平分账单,则每人应付多少钱?解答:设一份菜品的价格为x元。

根据题目的描述,可以得到以下两个方程:3x + 5x = 100解方程可以得到菜品的单价x=10元。

所以小明和小红每人应付10元。

一元多次不等式组一元多次不等式组是由一个未知数和这个未知数的多次项组成的不等式组。

例如,以下是一个一元多次不等式组的例子:x^2 + 3x - 4 > 02x^3 - 5x^2 + x < 0经典应用题1. 问题描述:求解不等式4x^2 - x - 3 > 0。

解答:首先,化简不等式为标准形式:4x^2 - x - 3 > 0然后,我们需要找到不等式的根,即使不等式成立。

可以使用因式分解或配方法得到根x=1/2和x=-3/4。

由于不等式的符号是大于号,所以我们需要找到不等式根的右边区间使得不等式成立。

根据图像可知x>1/2或x<-3/4。

一元一次不等式与一元一次不等式组典型例题

一元一次不等式与一元一次不等式组典型例题

一元一次不等式与一元一次不等式组的解法知识点回顾1.不等式用不等号连接起来的式子叫做不等式.常见的不等号有五种: “≠”、 “>” 、 “<” 、 “≥”、 “≤”. 2.不等式的解与解集不等式的解:使不等式成立的未知数的值,叫做不等式的解.不等式的解集:一个含有未知数的不等式的解的全体,叫做不等式的解集.不等式的解集可以在数轴上直观的表示出来,具体表示方法是先确定边界点。

解集包含边界点,是实心圆点;不包含边界点,则是空心圆圈;再确定方向:大向右,小向左。

说明:不等式的解与一元一次方程的解是有区别的,不等式的解是不确定的,是一个范围,而一元一次方程的解则是一个具体的数值. 3.不等式的基本性质(重点)(1)不等式的两边都加上(或减去)同一个数或同一个整式.不等号的方向不变.如果a b >,那么__a c b c ±±(2)不等式的两边都乘以(或除以)同一个正数,不等号的方向不变.如果,0a b c >>,那么__ac bc (或___a b c c) (3)不等式的两边都乘以(或除以)同一个负数,不等号的方向改变.如果a b >,0c <那么__ac bc (或___a b c c) 说明:常见不等式所表示的基本语言与含义还有:①若a -b >0,则a 大于b ;②若a -b <0,则a 小于b ;③若a -b ≥0,则a 不小于b ;④若a -b≤0,则a 不大于b ;⑤若ab >0或0a b >,则a 、b 同号;⑥若ab <0或0ab<,则a 、b 异号。

任意两个实数a 、b 的大小关系:①a -b>O ⇔a>b ;②a -b=O ⇔a=b ;③a-b<O ⇔a<b .不等号具有方向性,其左右两边不能随意交换:但a <b 可转换为b >a ,c ≥d 可转换为d ≤c 。

4.一元一次不等式(重点)只含有一个未知数,且未知数的次数是1.系数不等于0的不等式叫做一元一次不等式. 注:其标准形式:ax+b <0或ax+b ≤0,ax+b >0或ax+b ≥0(a ≠0). 5.解一元一次不等式的一般步骤(重难点)(1)去分母;(2)去括号;(3)移项; (4)合并同类项;(5)化系数为1.例:131321≤---x x 解不等式:6.一元一次不等式组含有相同未知数的几个一元一次不等式所组成的不等式组,叫做一元一次不等式组.说明:判断一个不等式组是一元一次不等式组需满足两个条件:①组成不等式组的每一个不等式必须是一元一次不等式,且未知数相同;②不等式组中不等式的个数至少是2个,也就是说,可以是2个、3个、4个或更多.7.一元一次不等式组的解集一元一次不等式组中,几个不等式解集的公共部分.叫做这个一元一次不等式组的解集.一元一次不等式组的解集通常利用数轴来确定.9.解一元一次不等式组的步骤(1)分别求出不等式组中各个不等式的解集;(2)利用数轴求出这些解集的公共部分,即这个不等式组的解集.(三)常见题型归纳和经典例题讲解 1.常见题型分类(加粗体例题需要作答) 1.下列不等式中,是一元一次不等式的是( ) A.x1+1>2 B.x 2>9 C.2x +y ≤5D.21(x -3)<0 2.若51)2(12>--+m x m 是关于x 的一元一次不等式,则该不等式的解集为 .a 与6的和小于5; x 与2的差小于-1;1.a ,b 两个实数在数轴上的对应点如图所示:用“<”或“>”号填空:a __________b ; |a |__________|b |; a +b __________0 a -b __________0; a +b __________a -b ; ab __________a .2.已知实数a 、b 在数轴上对应的点如图所示,则下列式子正确的是( )A 、ab >0B 、a b >C 、a -b >0D 、a +b >01.与2x <6不同解的不等式是( )A.2x +1<7B.4x <12C.-4x >-12D.-2x <-6): (这类试题在中考中很多见)1.(2010湖北随州)解不等式组110334(1)1x x +⎧-⎪⎨⎪--<⎩≥ 2.(2010福建宁德)解不等式215312+--x x ≤1,并把它的解集在数轴上表示出来. 3.(2006年绵阳市)12(1)1,1.23x x x -->⎧⎪⎨-≥⎪⎩此类试题易错知识辨析(1)解字母系数的不等式时要讨论字母系数的正、负情况. 如不等式ax b >(或ax b <)(0a ≠)的形式的解集:当0a >时,b x a >(或b x a<) 当0a <时,bx a <(或b x a >)当0a <时,b x a <(或b x a>) 4 若不等式(a +1)x >a +1的解集是x <1,则a 必满足( ).(A)a <0 (B)a >-1 (C)a <-1 (D)a <15 若m >5,试用m 表示出不等式(5-m )x >1-m 的解集______.6.如果不等式(m -2)x >2-m 的解集是x <-1,则有( ) A.m >2 B.m <2 C.m =2 D.m ≠27.如果不等式(a -3)x <b 的解集是x <3-ab,那么a 的取值范围是________. 1.不等式3(x -2)≤x +4的非负整数解有几个.( ) A.4 B.5 C.6D.无数个2.不等式4x -41141+<x 的最大的整数解为( ) A.1B.0C.-1D.不存在|x |<37的整数解是________.不等式|x |<1的解集是________. 已知ax <2a (a ≠0)是关于x 的不等式,那么它的解集是( )A.x <2B.x >-2C.当a >0时,x <2D.当a >0时,x <2;当a <0时,x >21. 若x +y >x -y ,y -x >y ,那么(1)x +y >0,(2)y -x <0,(3)xy ≤0,(4)yx<0中,正确结论的序号为________。

六年级春季班第15讲:一次方程(组)和一次不等式(组)章节复习(1)(教案教学设计导学案)

六年级春季班第15讲:一次方程(组)和一次不等式(组)章节复习(1)(教案教学设计导学案)

一次方程(组)和一次不等式(组)是初中数学六年级下学期第2章的内容.本章学习了一元一次方程、二元一次方程(组)、三元一次方程组以及一元一次不等式(组)的概念及其解法,学习时应注意方程与不等式及其解法之间的联系与区别,体会消元与化归的数学方法和数学思想,加强用方程解决实际问题的意识.【练习1】方程,,,中,二元一次方程的个数有()个A.1B.2C.3D.4【难度】★【答案】【解析】【练习2】下列说法正确的有()个(1)x = 2是不等式2x < 6的一个解;(2)不等式x > 1的正整数解有无数个;(3)因为x = 2是不等式x < 5的一个解,所以该不等式的解集是x = 2.A.0 B.1 C.2 D.3 【难度】★【答案】【解析】【练习3】下列说法正确的有()个(1)两个二元一次方程组成的方程组叫做二元一次方程组;(2)三元一次方程组可以由两个方程组成;(3)两个一元一次不等式组成的不等式组叫做一元一次不等式组.A.0 B.1 C.2 D.3 【难度】★【答案】【解析】【练习4】若,则不等式的解集是()A.B.C.D.无解【难度】★【答案】【解析】【练习5】不等式组的解集在数轴上表示为()A.B.C.D.【难度】★【答案】【解析】【练习6】不等式组的整数解是()A.、、0、1、2B.、0、1、2C.、0、1D.、、0、1【难度】★【答案】【解析】【练习7】下列不等式中,一定成立的有()个○1;○2;○3;○4.A.0B.1C.2D.3【难度】★★【答案】【解析】【练习8】方程与方程的解之间的关系是()A.互为倒数B.互为相反数C.互为负倒数D.两数相等【难度】★★【答案】【解析】【练习9】下列说法一定正确的是()A.如果,那么B.如果,那么C.如果,那么D.如果,那么【难度】★★【答案】【解析】【练习10】已知,且,则k的取值范围是()A.B.C.D.【难度】★★【答案】【解析】【练习11】如果关于x的方程只有负数解,则m的取值范围是()A.B.C.D.【难度】★★【答案】【解析】【练习12】含盐5%的盐水10千克,要用15千克的盐水和它混合,使混合后的盐水浓度不低于8%,且不高于14%,则所选15千克的盐水的浓度P的范围是()A.B.C.D.【难度】★★★【答案】【解析】【练习13】二元一次方程组的解题思想是______,主要方法是____________法和____________法.【难度】★【答案】【解析】【练习14】已知方程,用含x的代数式表示y,则y =______.【难度】★【答案】【解析】【练习15】若不等式的解集是,那么a的取值范围是________.【难度】★【答案】【解析】【练习16】若是关于x、y的二元一次方程,则______.【难度】★★【答案】【解析】【练习17】关于x的方程的解是正数,则a的取值范围__________.【难度】★★【答案】【解析】【练习18】已知是关于x的一元一次不等式,则m =______.【难度】★★【答案】【解析】【练习19】不等式的非负整数解是____________.【难度】★★【答案】【解析】【练习20】的非负整数解为__________________.【难度】★★【答案】【解析】【练习21】已知不等式的最小整数解为方程的解,则a =______.【难度】★★【答案】【解析】【练习22】已知,化简______.【难度】★★【答案】【解析】【练习23】当x______时,代数式与的差不小于1.【难度】★★【答案】【解析】【练习24】已知关于x的不等式的解集是,则a的范围是_______________.【难度】★★【答案】【解析】【练习25】若关于x的不等式组无解,则a的取值范围是______.【难度】★★【答案】【解析】【练习26】已知关于x、y的方程组与有相同的解,则______.【难度】★★【答案】【解析】【练习27】若关于x、y的方程组的解为负数,则k的取值范围为_______________.【难度】★★【答案】【解析】【练习28】某电力公司为鼓励居民节约用电,采用分段计费的方法,规定每月不超过100度时,按每度0.4元计费,每月用电超过100度时,超出部分按每度0.6元计费,小明家上月的电费不少于82元,那么他家上月的用电量________________.【难度】★★★【答案】【解析】【练习29】已知,则的最小值为_______.【难度】★★★【答案】【解析】【练习30】若方程组的解满足,则a的取值范围是______.【难度】★★★【答案】【解析】【练习31】若关于x的不等式组无解,则a的取值范围是___________.【难度】★★★【答案】【解析】【练习32】若关于x的不等式组有且仅有4个整数解,则a的取值范围是____________.【难度】★★★【答案】【解析】【练习33】甲、乙两位同学解方程组时,甲看错了a,解得;乙将一个方程中的b看成了它的相反数,解得,则a =_____,b =_____.【难度】★★★【答案】【解析】【练习34】从盛满浓度为75%的50升盐水的容器中,第一次倒出10升溶液后,加满水,第二次又倒出一些溶液后,再加满水,此时盐水浓度为10%,则第二次倒出溶液________升.【难度】★★★【答案】【解析】【练习35】解方程:(1);(2);(3);(4);(5).【难度】★★【答案】【解析】【练习36】解不等式:(1);(2).【难度】★★【答案】【解析】【练习37】解不等式组:(1);(2).【难度】★★【答案】【解析】【练习38】解方程组:(1);(2);(3);(4).【难度】★★【答案】【解析】【练习39】解关于x的不等式:.【难度】★★★【答案】【解析】【练习40】解不等式.【难度】★★★【答案】【解析】【练习41】解不等式组:.【难度】★★★【答案】【解析】【练习42】若与互为相反数,则a的值是多少?【难度】★【答案】【解析】【练习43】不等式组的解集是,求m的值.【难度】★【答案】【解析】【练习44】若关于x的方程的解是,求关于x的不等式的解集.【难度】★★【答案】【解析】【练习45】当m为何值时,关于x的方程的解比方程的解大2.【难度】★★【答案】【解析】【练习46】已知关于x、y的方程组的解满足,求m的值.【难度】★★【答案】【解析】【练习47】关于x、y的方程组和有相同的解,求a、b的值.【难度】★★★【答案】【解析】【练习48】若关于x的不等式组的正整数解只有4,求k的取值范围.【难度】★★★【答案】【解析】【练习49】当m取什么正整数时,方程组有正整数解?并求出这组解.【难度】★★★【答案】【解析】【练习50】已知(),求的值.【难度】★★★【答案】【解析】【练习51】若关于x的不等式组的解集中任何一个x的值均不在这个范围内,求a的取值范围.【难度】★★★【答案】【解析】【练习52】已知关于x的不等式的解集为,求的解集.【难度】★★★【答案】【解析】【练习53】五、六年级电脑班共有学生90人,其中男生有71人,五年级男生占该年级电脑班学生数的,六年级男生占该年级电脑班学生数的,问五、六年级各有多少人参加电脑班?【难度】★★【答案】【解析】【练习54】某水果店一次批发买进苹果若干筐,每筐苹果的进价为30元,如果按照每筐40元的价钱卖出,那么当卖出比全部苹果的一半多5筐时,恰好收回全部苹果的成本,那么这个水果店这次一共批发买进苹果多少筐?【难度】★★【答案】【解析】【练习55】用A、B两种原料配制两种油漆,已知甲种油漆内含A、B原料之比为5 : 4,每千克50元;乙种油漆内含A、B之比为3 : 2,每千克48.6元,求A、B两种原料每千克的价格.【难度】★★【答案】【解析】【练习56】列不等式(组)解应用题:某校在一次课外活动中,把学生编为9组,如果每组比预定的人数多一人,那么学生总数超过200人;如果每组比预定的人数少一人,那么学生总数不到190人,求预定每组的人数?【难度】★★【答案】【解析】【练习57】有学生若干人,住若干间宿舍,如果每间住4人,则余19人没有宿舍住;如果每间住6人,则有一间宿舍不空也不满,求有多少间宿舍,有多个个学生?【难度】★★【答案】【解析】【练习58】某车间共有86个工人,已知每人平均每天可加工甲种部件15个或乙种部件12个或丙种部件9个.如果要使加工后的部件按3个甲种部件、2个乙种部件和1个丙种部件一组刚好配套,问加工甲、乙、丙三种部件各需安排多少人?【难度】★★★【答案】【解析】【练习59】甲骑自行车从某城出发,2小时后,乙步行从同城赶来,3小时后,甲、乙两人相距16千米,此时乙继续前进追赶,甲在原地休息小时后从原地返回,又经过1小时,甲、乙两人相遇于C地,问:C地到某城的距离是多少千米?【难度】★★★【答案】【解析】【练习60】某商场计划拨款9万元从厂家购买电视机,已知该厂家生产三种不同型号的电视机的出厂价分别为:甲种每台1500元,乙种每台2100元,丙种每台2500元;商场销售一台甲种电视机可获利150元,销售一台乙种电视机可获利200元,销售一台丙种电视机可获利250元.(1)若同时购进其中两种不同型号的电视机共50台,用去9万元,请你为商场制定进货方案(要求写出制定方案的过程);(2)经市场调查这三种型号的电视机都颇受欢迎,且销售量乙种是丙种的3倍,商场要求在成本不能超过计划拨款数额,利润不能少于8500元的前提下,购进这三种型号的电视机共50台,请问:三种型号的电视机各购进多少台?【难度】★★★【答案】【解析】。

京改版七年级数学下册第四章一元一次不等式和一元一次不等式组专项训练练习题(含详解)

京改版七年级数学下册第四章一元一次不等式和一元一次不等式组专项训练练习题(含详解)

七年级数学下册第四章一元一次不等式和一元一次不等式组专项训练考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。

第I 卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、已知x =2不是关于x 的不等式2x ﹣m >4的整数解,x =3是关于x 的不等式2x ﹣m >4的一个整数解,则m 的取值范围为( )A .0<m <2B .0≤m <2C .0<m ≤2D .0≤m ≤22、某校在一次外出郊游中,把学生编为9个组,若每组比预定的人数多1人,则学生总数超过200人;若每组比预定的人数少1人,则学生总数不到190人,那么每组预定的学生人数为( )A .24人B .23人C .22人D .不能确定3、已知关于x 的不等式(4)4a x a -<-的解集为1x <-,则a 的取值范围是( )A .4a >B .4a ≠C .4a <D .4a4、如果关于x 的不等式组312364x x x a +⎧≥-⎪⎨⎪+>+⎩有且只有3个奇数解,且关于y 的方程3y +6a =22-y 的解为非负整数,则符合条件的所有整数a 的积为( )A .-3B .3C .-4D .45、若a >b ,则( )A .a ﹣1≥bB .b +1≥aC .2a +1>2b +1D .a ﹣1>b +16、关于x 的两个代数式3x -与5x +的值的符号相反,则x 的取值范围是( )A .3x >B .5x <-C .53x -<<D .5x <-或3x >7、若实数a ,b 满足a >b ,则下列不等式一定成立的是( )A .a >b +2B .a ﹣1>b ﹣2C .﹣a >﹣bD .a 2>b 28、已知关于x 的不等式组0320x a x ->⎧⎨->⎩的整数解共有3个,则a 的取值范围是()A .21a -≤<-B .21a -<≤C .21a -<<-D .21a -≤≤9、下列不等式一定成立的是( )A .65y y >B .611x x +<+C .7x x >-D .79m m ->-10、若不等式组4101x m x x m -+<+⎧⎨+>⎩解集是4x >,则( )A .92m ≤B .5m ≤C .92m = D .5m =第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、满足不等式2124y ->的最小整数解是_________.2、若关于x 的不等式x a ≤有三个正整数解,则a 的取值范围是____________.3、已知4334x x -=-,则x 的取值范围是________.4、不等式组1023x x +>⎧⎨<⎩的解集为_______.5、不等式组(1)3293x x -->⎧⎨+>⎩的解集是______.三、解答题(5小题,每小题10分,共计50分)1、关于x、y的方程组731x y ax y a+=+⎧⎨-=+⎩的解满足0x<,0y>.求a的取值范围.2、y取什么值时,代数式2y-3的值:(1)大于5y-3的值?(2)不大于5y-3的值?3、解不等式:(1)2x+3>6﹣x;(2)524(1)21125x xxx+≥-⎧⎪+⎨->-⎪⎩.4、解不等式,并把解集在数轴上表示出来.(1)7x﹣2≤9x+2;(2)7132184x x--->.5、定义:如果一元一次方程的解也是一元一次不等式组的解,则称该一元一次方程为该不等式组的“相伴方程”.例如:方程2x﹣6=0的解为x=3,不等式组205xx-⎧⎨⎩><的解集为2<x<5.因为2<3<5.所以称方程2x﹣6=0为不等式组205xx-⎧⎨⎩><的相伴方程.(1)若关于x的方程2x﹣k=2是不等式组3641410x xx x--⎧⎨-≥-⎩>的相伴方程,求k的取值范围;(2)若方程2x+4=0,213x-=-1都是关于x的不等式组()225m x mx m⎧--⎨+≥⎩<的相伴方程,求m的取值范围;(3)若关于x的不等式组2122x xx n--+⎧⎨≤+⎩>的所有相伴方程的解中,有且只有2个整数解,求n的取值范围.---------参考答案-----------一、单选题1、B【解析】【分析】由2x-m>4得x>42m+,根据x=2不是不等式2x-m>4的整数解且x=3是关于x的不等式2x-m>4的一个整数解得出42m+≥2、42m+<3,解之即可得出答案.【详解】解:由2x-m>4得x>42m+,∵x=2不是不等式2x-m>4的整数解,∴42m+≥2,解得m≥0;∵x=3是关于x的不等式2x-m>4的一个整数解,∴42m+<3,解得m<2,∴m的取值范围为0≤m<2,故选:B.【点睛】本题主要考查了一元一次不等式的整数解,解题的关键是根据不等式整数解的情况得出关于m 的不等式.2、C【解析】【分析】根据若每组比预定的人数多1人,则学生总数超过200人;若每组比预定的人数少1人,则学生总数不到190人,可以列出相应的不等式组,再求解,注意x 为整数.【详解】解:设每组预定的学生数为x 人,由题意得,9(1)2009(1)190x x +>⎧⎨-<⎩ 解得21212299x << x 是正整数 22x ∴=故选:C .【点睛】本题考查一元一次不等式组的应用,属于常规题,掌握相关知识是解题关键.3、C【解析】【分析】由题意直接根据已知解集得到40a ->,即可确定出a 的范围.【详解】解:不等式(4)4a x a-<-的解集为1x<-,40a∴->,解得:4a<.故选:C.【点睛】本题考查不等式的解集,熟练掌握不等式的基本性质是解答本题的关键.4、A【解析】【分析】先求解不等式组,根据解得范围确定a的范围,再根据方程解的范围确定a的范围,从而确定a的取值,即可求解.【详解】解:由关于x的不等式组312364xxx a+⎧≥-⎪⎨⎪+>+⎩解得253ax-<≤∵关于x的不等式组有且只有3个奇数解∴2113a--≤<,解得15a-≤<关于y的方程3y+6a=22-y,解得1132a y-=∵关于y的方程3y+6a=22-y的解为非负整数∴1132a-≥,且1132a-为整数解得113a≤且1132a-为整数又∵15a-≤<,且a为整数∴符合条件的a有1-、1、3-⨯⨯=-符合条件的所有整数a的积为(1)133故选:A【点睛】本题主要考查一元一次不等式组的解法及一元一次方程的解法,熟练掌握一元一次不等式组的解法及一元一次方程的解法是解题的关键.5、C【解析】【分析】举出反例即可判断A、B、D,根据不等式的性质即可判断C.【详解】解:A、若a=0.5,b=0.4,a>b,但是a﹣1<b,不符合题意;B、若a=3,b=1,a>b,但是b+1<a,不符合题意;C、∵a>b,∴2a+1>2b+1,符合题意;D、若a=0.5,b=0.4,a>b,但是a﹣1<b+1,不符合题意.故选:C.【点睛】此题考查不等式的性质,对性质的理解是解题的关键.不等式的性质:不等式的基本性质1:不等式的两边都加上(或减去)同一个数(或式子),不等号的方向不变;不等式的基本性质2:不等式的两边都乘以(或除以)同一个正数,不等号的方向不变;不等式的基本性质3:不等式的两边都乘以(或除以)同一个负数,不等号的方向改变.6、C【解析】【分析】代数式x -3与x +5的符号相反,分两种情况,解不等式组即可.【详解】解:根据题意得,3050x x ->⎧⎨+<⎩或3050x x -<⎧⎨+>⎩, 解得:53x -<<,故选:C .【点睛】本题考查了解一元一次不等式组,是基础知识要熟练掌握.7、B【解析】【分析】根据不等式的性质即可依次判断.【详解】解:当a >b 时,a >b +2不一定成立,故错误;当a >b 时,a ﹣1>b ﹣1>b ﹣2,成立,当a >b 时,﹣a <﹣b ,故错误;当a >b 时,a 2>b 2不一定成立,故错误;故选:B .【点睛】本题主要考查了不等式的性质的灵活应用,解题的关键是基本知识的熟练掌握.8、A【解析】【分析】先分别求出每个不等式的解集,然后确定不等式组的解集,最后根据整数解的个数确定a的范围.【详解】解:0 320 x ax->⎧⎨->⎩①②解不等式①得:x>a,解不等式②得:x<32,∴不等式组的解集是a<x<32,∵原不等式组的整数解有3个为1,0,-1,∴-2≤a<-1.故选择:A.【点睛】本题考查了解一元一次不等式、解一元一次不等式组、不等式组的整数解的应用,确定不等式组的解集是解答本题的关键.9、B【解析】【分析】根据不等式的性质依次判断即可.【详解】解:A.当y≤0时不成立,故该选项不符合题意;B.成立,该选项符合题意;C. 当x≤0时不成立,故该选项不符合题意;D. 当m≤0时不成立,故该选项不符合题意;故选:B.【点睛】本题主要考查不等式的性质,熟练掌握不等式的性质是解决本题的关键.10、C【解析】【分析】首先解出不等式组的解集,然后与x>4比较,即可求出实数m的取值范围.【详解】解:由①得2x>4m-10,即x>2m-5;由②得x>m-1;∵不等式组4101x m xx m-+<+⎧⎨+>⎩的解集是x>4,若2m-5=4,则m=92,此时,两个不等式解集为x>4,x>72,不等式组解集为x>4,符合题意;若m-1=4,则m=5,此时,两个不等式解集为x>5,x>4,不等式组解集为x>5,不符合题意,舍去;故选:C.【点睛】本题是已知不等式组的解集,求不等式中另一未知数的问题.可以先将另一未知数当作已知数处理,将求出的解集与已知解集比较,进而求得另一个未知数.求不等式组的公共解,要遵循以下原则:同大取较大,同小取较小,大小小大中间找,大大小小解不了.二、填空题1、5【解析】【分析】先求出不等式的解集,然后求出满足题意的最小整数解即可.【详解】解:解不等式2124y->得:92y>,∴满足不等式的最小整数解是5,故答案为:5.【点睛】本题主要考查了解一元一次不等式和求满足题意的不等式的最小整数解,解题的关键在于能够熟练掌握解不等式的方法.2、34a≤<【解析】【分析】首先确定不等式的正整数解,则a的范围即可求得.【详解】解:关于x的不等式x a≤恰有3个正整数解,则正整数解是:1,2,3.则a的取值范围:34a≤<.故答案为:34a≤<.【点睛】本题主要考查一元一次不等式组的整数解,根据a 的取值范围正确确定a 与3和4的关系是关键. 3、34x ≤【解析】【分析】直接利用绝对值的性质分析得出答案,正数的绝对值是正数,负数的绝对值是它的相反数,0的相反数是0.【详解】解:|43|34x x -=-,340x ∴-, 解得34x , 故答案为:34x. 【点睛】此题主要考查了绝对值的性质,正数的绝对值是正数,负数的绝对值是它的相反数,0的相反数是0,正确掌握绝对值的性质是解题关键.4、312x -<<【解析】【分析】先分别求出每一个不等式的解集,然后再根据“同大取大、同小取小、大小小大中间找、大大小小找不到”确定不等式组的解集即可.【详解】解:由10x +>,得:1x >-,由23x<,得:32x<,∴不等式组的解集为312x-<<.故填:312x-<<.【点睛】本题主要考查了解一元一次不等式组,掌握“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答本题的关键.5、32x-<<-【解析】【分析】根据一元一次不等式组的解法可直接进行求解.【详解】解:(1)3293xx-->⎧⎨+>⎩①②,由①可得:2x<-,由②可得:3x>-,∴原不等式组的解集为32x-<<-;故答案为32x-<<-.【点睛】本题主要考查一元一次不等式组的解法,熟练掌握一元一次不等式组的解法是解题的关键.三、解答题1、2a<-【解析】【分析】解关于x 、y 的方程组,根据0x <,0y >得到关于a 的不等式组,求解可得.【详解】731x y a x y a +=+⎧⎨-=+⎩①② ①+②得248x a =+解得24x a =+①-②得226y a =-+解得3y a0x <,0y >24030a a +<⎧∴⎨-+>⎩解不等式240a +<,解得2a <-解不等式30a -+>,解得3a <∴2a <-∴a 的取值范围为2a <-【点睛】本题主要考查解方程组和不等式组,根据题意得出关于a 的不等式组是解题的关键.2、(1) y <0;(2)y ≥0【解析】【分析】(1)先列不等式,然后解不等式即可,(2)先列不等式,然后解不等式即可.【详解】解:(1)由2y-3>5y-3,解得y<0;(2)由2y-3≤5y-3,解得y≥0.【点睛】本题考查列不等式和解不等式,掌握抓住不等关系语言列不等式,和解不等式是解题关键.3、(1)x>1;(2)﹣6≤x<2【解析】【分析】(1)把不等式移项,合并同类项,然后系数化1即可;(2)先把不等式组标号,解每个不等式,求每个不等式解集的公共部分即可.【详解】解:(1)2x+3>6﹣x,移项得:2x+x>6﹣3,合并得:3x>3,系数化1得x>1;(2)524(1)21125x xxx+≥-⎧⎪⎨+->-⎪⎩①②,解不等式①得:x≥﹣6,解不等式②得:x<2,不等式组的解集为:﹣6≤x<2.【点睛】本题考查一元一次不等式,与一元一次不等式组的解法,掌握一元一次不等式的解法与步骤,不等式组的解法是解题关键.4、(1)x≥-2,在数轴上表示见解析;(2)x<1,在数轴上表示见解析【解析】【分析】(1)根据解一元一次不等式基本步骤:移项、合并同类项、系数化为1可得;(2)根据解一元一次不等式基本步骤:去分母、去括号、移项、合并同类项、系数化为1可得.【详解】解:(1)7x-2≤9x+2,移项,得:7x-9x≤2+2,合并同类项,得:-2x≤4,系数化为1,得:x≥-2.将不等式的解集表示在数轴上如下:;(2)7132184x x--->,去分母,得:8-(7x-1)>2(3x-2),去括号,得:8-7x+1>6x-4,移项,得:-7x-6x>-4-8-1,合并同类项,得:-13x>-13,系数化为1,得:x<1.将不等式的解集表示在数轴上如下:.【点睛】本题主要考查了解一元一次不等式的基本能力,严格遵循解不等式的基本步骤是关键,尤其需要注意不等式两边都乘以或除以同一个负数不等号方向要改变.5、(1)3<k≤4;(2)2<m≤3;(3)4≤n<6.【解析】【分析】(1)首先求出方程2x﹣k=2的解和不等式组3641410x xx x--⎧⎨-≥-⎩>的解集,然后根据“相伴方程”的概念列出关于k的不等式组求解即可;(2)首先求出方程2x+4=0,213x-=-1的解,然后分m<2和m>2两种情况讨论,根据“相伴方程”的概念即可求出m的取值范围;(3)首先表示出不等式组2122x xx n--+⎧⎨≤+⎩>的解集,然后根据题意列出关于n的不等式组求解即可.【详解】解:(1)∵不等式组为3641410x xx x--⎧⎨-≥-⎩>,解得532x≤<,∵方程为2x﹣k=2,解得x22k+ =,∴根据题意可得,523 22k+≤<,∴解得:3<k≤4,故k取值范围为:3<k≤4.(2)∵方程为2x+4=0,2113x-=-,解得:x=﹣2,x=﹣1;∵不等式组为225m x mx m--⎧⎨+≥⎩()<,当m<2时,不等式组为15xx m⎧⎨≥-⎩>,此时不等式组解集为x>1,不符合题意,应舍去;∴当m>2时不等式组解集为m﹣5≤x<1,∴根据题意可得,252mm⎧⎨-≤-⎩>,解得2<m≤3;故m取值范围为:2<m≤3.(3)∵不等式组为2122x xx n--+⎧⎨≤+⎩>,解得1<x22n+≤,根据题意可得,3242n+≤<,解得4≤n<6,故n取值范围为4≤n<6.【点睛】此题考查了新定义问题,一元一次方程和一元一次不等式组含参数问题,解题的关键是正确分析新定义的“相伴方程”概念,并列出方程求解.。

初中数学一次函数与方程(组)与不等式经典练习题.docx

初中数学一次函数与方程(组)与不等式经典练习题.docx

xx 学校xx 学年xx 学期xx 试卷姓名:_____________ 年级:____________ 学号:______________一、xx 题(每空xx 分,共xx 分)试题1:(2006,绍兴)如图所示,一次函数y=x+5的图像经过点P (a ,b ),Q (c ,d ),•则a (c -d )-b (c -d )的值为______. 试题2:关于x 的一次函数y=(a -3)x+2a -5的图像与y 轴的交点不在x•轴的下方,且y 随x 的增大而减小,则a 的取值范围是______. 试题3:已知一次函数y=kx+b (k ≠0)的图像经过点(0,1),且y 随x 的增大而增大,•请你写出一个符合上述条件的函数关系式_______. 试题4:如图所示,L 甲,L 乙分别表示甲走路与乙骑自行车(在同一条路上)行走的路程s 与时间t 的关系,观察图像并回答下列问题:(1)乙出发时,与甲相距______km ;(2)走了一段路后,乙的自行车发生故障,停下来修理,修车为_____h ; (3)乙从出发起,经过_____h 与甲相遇;(4)甲行走的路程s 与时间t 之间的函数关系式_______;(5)如果乙自行车不出现故障,那么乙出发后经过______h 与甲相遇,相遇处离乙的出发点____km .并在图中标出其相遇点.试题5:直线y=-x+a与直线y=x+b的交点坐标为(m,8),则a+b=______.试题6:已知关于x的一次函数y=mx+2m-7在-1≤x≤5上的函数值总是正数,则m的取值范围是_______.试题7:(2008,绍兴)如图所示,已知函数y=x+b和y=ax+3的图像交点为P,•则不等式x+b>ax+3的解集为________.试题8:(2006,南安)如图所示,一个蓄水桶,60min可匀速将一满桶水放干.其中,水位h(cm)随着放水时间t(min)的变化而变化.h与t的函数的大致图像为()试题9:(2005,杭州市)已知一次函数y=kx-k,若y随x的增大而减小,则该函数的图像经过()A.第一,二,三象限 B.第一,二,四象限C.第二,三,四象限 D.第一,三,四象限试题10:(2008,济南)济南市某储运部紧急调拨一批物资,调进物资共用4h,调进物资2h后开始调出物资(调进物资与调出物资的速度均保持不变).储运部库存物资S(t)•与时间t(h)之间的函数关系如图5-35所示,•这批物资从开始调进到全部调出所需要的时间是()A.4h B.4.4h C.4.8h D.5h试题11:(2009年新疆)如图,直线与轴交于点,关于的不等式的解集是()A. B. C. D.试题12:(2005,重庆市)为了增强抗旱能力,保证今年夏粮丰收,某村新修建了一个蓄水池,这个蓄水池安装了两个进水管和一个出水管(两个进水管的进水速度相同),一个进水管和一个出水管的进出水速度如图a,b所示,某天0点到6点(•至少打开一个水管),该蓄水池的蓄水量如图c所示,并给出以下3个论断:①0点到1点不进水,只出水;②1点到4点不进水,不出水;③4点到6点只进水,不出水,则一定正确的论断是()(a) (b)(c)A.①③ B.②③ C.③ D.①②③试题13:函数y1=x+1与y2=ax+b(a≠0)的图像如图5所示,•这两个函数图像的交点在y轴上,那么使y1,y2的值都大于零的x的取值范围是()A.x>-1 B.x<2 C.1<x<2 D.-1<x<2试题14:小亮用作图像的方法解二元一次方程组时,在同一直角坐标系内作出了相应的两个一次函数的图像L1,L2如图所示,他解的这个方程组是()A. B.C. D.试题15:已知一次函数y=x+m和y=-x+n的图像都经过点A(-2,0),且与x轴交于A,B两点,那么△ABC的面积是() A.2 B.3 C.4 D.6试题16:(2009年烟台市)如图,直线经过点和点,直线过点A,则不等式的解集为()A.B.C. D.试题17:(2009年宁波市)以方程组的解为坐标的点在平面直角坐标系中的位置是()A.第一象限 B.第二象限 C.第三角限 D.第四象限试题18:(2008,南京)一列快车从甲地驶往乙地,一列慢车从乙地驶往甲地,两车同时出发.设慢车行驶的时间为x(h),两车之间的距离为y(km),下图中的折线表示y•与x之间的函数关系.根据图像进行以下探究:信息读取:(1)甲,乙两地之间的距离为_____km;(2)请解释图中点B的实际意义.图像理解:(3)求慢车和快车的速度;(4)求线段BC所表示的y与x之间的函数关系式,并写出自变量x的取值范围.问题解决:(5)若第二列快车也从甲地出发驶往乙地,速度与第一列快车相同.•在第一列快车与慢车相遇30min后,第二列快车与慢车相遇,•求第二列快车比第一列快车晚出发多少小时.试题19:(2009年陕西省)在一次运输任务中,一辆汽车将一批货物从甲地运往乙地,到达乙地卸货后返回.设汽车从甲地出发x(h)时,汽车与甲地的距离为y(km),y与x的函数关系如图所示.根据图像信息,解答下列问题:(1)这辆汽车的往、返速度是否相同?请说明理由;(2)求返程中y与x之间的函数表达式;(3)求这辆汽车从甲地出发4h时与甲地的距离.试题20:(2005,哈尔滨市)甲,乙两名同学进行登山比赛,图5-42所示为甲同学和乙同学沿相同的路线同时从山脚出发到达山顶过程中,•各自行进的路程随时间变化的图象,根据图像中的有关数据回答下列问题:(1)分别求出表示甲,乙两同学登山过程中路程s(km)与时间t(h)的函数解析式;(不要求写出自变量t的取值范围)(2)当甲到达山顶时,乙行进到山路上的某点A处,求A点距山顶的距离;(3)在(2)的条件下,设乙同学从A处继续登山,甲同学到达山顶后休息1h,沿原路下山,在点B处与乙相遇,此时点B与山顶距离为1.5km,相遇后甲,•乙各自按原来的线路下山和上山,求乙到达山顶时,甲离山脚的距离是多少千米?试题21:某校部分住校学生,放学后到学校锅炉房打水,每人接水2L,•他们先同时打开两个放水龙头,后来故故障关闭一个放水龙头,假设前后两个接水间隔时间忽略不计,且不发生泼洒,锅炉内的余水量y(L)与接水时间x(min)的函数图像如图所示.请结合图像,回答下列问题:(1)根据图中信息,请你写出一个结论;(2)问前15位同学接水结束共需要几分钟?(3)小敏说:“今天我们寝室的8位同学去锅炉房连续接完水恰好用了3min”.•你说可能吗?请说明理由.试题22:(2006,浙江舟山)近阶段国际石油迅速猛涨,中国也受期影响,为了降低运行成本,部分出租车进行了改装,改装后的出租车可以用液化气来代替汽油.•假设一辆出租车日平均行程为300km.(1)使用汽油的出租车,假设每升汽油能行驶12km,当前的汽油价格为4.6元/L,•当行驶时间为t天时,所耗的汽油费用为p元,试写出p关于t的函数关系式;(2)使用液化气的出租车,假设每千克液化气能行驶15~16km,•当前的液化气价格为4.95元/kg,当行驶时间为t 天时,所耗的液化气费用为w元,试求w的取值范围(用t表示);(3)若出租车要改装为使用液化气,每辆需配置成本为8000元的设备,•根据近阶段汽油和液化气的价位,请在(1)(2)的基础上,计算出最多几天就能收回改装设备的成本?•并利用你所学的知识简单说明使用哪种燃料的出租车对城市的健康发展更有益.(用20字左右谈谈感想).试题23:(2003,岳阳市)我市某化工厂现有甲种原料290kg,乙种原料212kg,计划利用这两种原料生产A,B两种产品共80件.生产一件A产品需要甲种原料5kg,•乙种原料1.5kg,生产成本是120元;生产一件B产品,需要甲种原料2.5kg,乙种原料3.5kg,•生产成本是200元.(1)该化工厂现有的原料能否保证生产?若能的话,有几种生产方案,请你设计出来;(2)设生产A,B两种产品的总成本为y元,其中一种的生产件数为x,试写出y与x之间的函数关系,并利用函数的性质说明(1)中哪种生产方案总成本最低?•最低生产总成本是多少?试题24:(2009年江苏省)某加油站五月份营销一种油品的销售利润(万元)与销售量(万升)之间函数关系的图象如图中折线所示,该加油站截止到13日调价时的销售利润为4万元,截止至15日进油时的销售利润为5.5万元.(销售利润=(售价-成本价)×销售量)请你根据图象及加油站五月份该油品的所有销售记录提供的信息,解答下列问题:(1)求销售量为多少时,销售利润为4万元;(2)分别求出线段AB与BC所对应的函数关系式;(3)我们把销售每升油所获得的利润称为利润率,那么,在OA.AB.BC三段所表示的销售信息中,哪一段的利润率最大?(直接写出答案)试题25:(2006,宁波市)宁波市土地利用现状通过国土资源部验收,该市在节约集约用地方面已走在全国前列.1996~2004年,市区建设用地总量从33万亩增加到48万亩,相应的年GDP从295亿元增加到985亿元.宁波市区年GDPy(亿元)与建设用地总量x(•万亩)之间存在着如图所示的一次函数关系.(1)求y关于x的函数关系式;(2)据调查2005年市区建设用地比2004年增加4万亩,•如果这些土地按以上函数关系式开发使用,那么2005年市区可以新增GDP多少亿元?(3)按以上函数关系式,该市年GDP每增加1亿元,需增建设用地多少万亩?(•精确到0.001万亩)试题26:.绿谷商场“家电下乡”指定型号冰箱、彩电的进价和售价如下表所示:类别冰箱彩电进价(元/台) 2 320 1 900售价(元/台) 2 420 1 980(1) 按国家政策,农民购买“家电下乡”产品可享受售价13%的政府补贴.农民田大伯到该商场购买了冰箱、彩电各一台,可以享受多少元的政府补贴?(2)为满足农民需求,商场决定用不超过85 000元采购冰箱、彩电共40台, 且冰箱的数量不少于彩电数量的.①请你帮助该商场设计相应的进货方案;②哪种进货方案商场获得利润最大(利润=售价进价),最大利润是多少?试题27:(2004,河北省)光华农机租赁公司共有50台联合收割机,其中甲型20台,乙型30台.现将这50台联合收割机派往A,B两地区收割小麦,其中30台派往A地区,20•台派往B地区.两地区与该农村租赁公司商定的每天的租赁价格见下表:每台甲型收割机的租金每台乙型收割机的租金A地区 1800元 1600元B地区 1600元 1200元(1)设派往A地区x台乙型联合收割机,租赁公司这50台联合收割机一天获得的租金为y(元),求y与x之间的函数关系式,并写出x的取值范围;(2)若使农机租赁公司这50台联合收割机一天获得的租金总额不低于79600元,•说明有多少种分派方案,并将各种方案设计出来;(3)如果要使这50台联合收割机每天获得的租金最高,请你为光华租赁公司提出一条合理建议.试题28:我市部分地区近年出来持续干旱现象,为确保生产生活用水,某村决定由村里提供一点,村民捐一点的办法筹集资金维护和新建一批储水池。

二元一次方程(组)与一元一次不等式(组)练习题

二元一次方程(组)与一元一次不等式(组)练习题

七年级数学二元一次方程(组)与一元一次不等式(组)练习题命题人: 冯纯雄 2011.6.2一、填空题(每题3分,共33分)1、已知方程(k 2-1)x 2+(k +1)x +(k -7)y =k +2,当k =______时,方程为一元一次方程;当k =______时,方程为二元一次方程。

2、对二元一次方程2(5-x )-3(y -2)=10,当x =0时,则y = ;当y =0时,则x =3、若-72a 2b 3与10a x +1b x +y 是同类项,则x 、y 的值分别为4、已知方程组2523x ay x y +=⎧⎨-=⎩的解也是二元一次方程x -y =1的一个解,则a =_________.5、已知0132)2(2≤--+++y x y x ,则x +y =6、当a 时,不等式(a —1)x >1的解集是x <11-a . 7、已知x =3是方程2a x -—2=x —1的解,那么不等式(2—5a )x <31的解集是8、若不等式组841x x x m+-⎧⎨⎩<>的解集是x >3,则m 的取值范围是9、已知关于x 的不等式组0321x a x -≥⎧⎨--⎩>的整数解共有5个,则a 的取值范围是10、若不等式组2123x a x b -⎧⎨-⎩<>的解集为—1<x <1,那么(a —1)(b —1)的值等于11、在平面直角坐标系中,已知点A )82(--,b a 与点B )32(b a +-,关于原点对称,则a 、b 的值分别为.二、选择题(每题3分,共30分) 12、方程2x -3y =5,xy =3,33=+yx ,3x -y +2z =0,62=+y x 中是二元一次方程的有( )个。

A、1 B、2 C、3 D、4 13、方程2x +y =9在正整数范围内的解有( )A 、1个B 、2个C 、3个D 、4个 14、已知x =3-k ,y =k +2,则y 与x 的关系是( )A、x +y =5 B、x +y =1 C、x -y =1 D、y =x -1 15、下列说法正确的是( )A、二元一次方程只有一个解 B、二元一次方程组有无数个解 C、二元一次方程组的解必是它所含的二元一次方程的解 D、三元一次方程组一定由三个三元一次方程组成16、已知“①x +y =1;②x >y ;③x +2y ;④x 2—y ≥1;⑤x <0”属于不等式的有( )个.A .2;B . 3;C .4;D . 5.17、韩日“世界杯” 期间,重庆球迷一行若干人从旅馆乘车到球场为中国队加油,现有某个车队,若全部安排乘该车队的车,每辆坐4人则多16人无车坐,若每辆坐6人,则坐最后一辆车的人数不足一半.这个车队有( )辆车A .11B .10C .9D .12 18、如果m <n <0,那么下列结论错误的是( )A .m -9<n -9;B .—m >—n ;C .n 1>m 1;D .nm>1. 19、已知方程组⎩⎨⎧-=+=-135b y ax y x 有无数多个解,则a 、b 的值等于( )A 、a =-3,b =-14B 、a =3,b =-7C 、a =-1,b =9D 、a =-3,b =1420、已知方程组)0(030334≠⎩⎨⎧=+-=--xyz z y x z y x ,则2215x z yz+的值为( ) A 、521B 、22663C 、37225D 、112121、下列方程组中,是二元一次方程组的是( ) A 、2132x y y z +=⎧⎨-=⎩B 、2351x y x y +=⎧⎨-=⎩C 、23x y xy +=⎧⎨=-⎩D 、32210y x x=-⎧⎪⎨-=⎪⎩ 三、解下列方程或不等式组:(每题4分,共16分)22、⎪⎩⎪⎨⎧=-+=+-=-+35351343z y x z y x z y x 23、⎩⎨⎧=--+=-++0)1(3)2(212)1(3)2(2y x y x24、⎪⎩⎪⎨⎧>-+<+02)8(21042x x 25、13112x x x -+≤-<四.解答题26、(4分)若方程组323x y x y a +=⎧⎨-=-⎩的解x 、y 都是正数,求a 的取值范围.27、(5分)若式子y=kx+b 中,当x =1时,y =5,当x =-1时,y =-1,则当-4≤x ≤2时,求y 的取值范围。

第2章《一元一次不等式与一元一次不等式组》知识复习2021年八年级北师大版下册数学作业题(含答案)

第2章《一元一次不等式与一元一次不等式组》知识复习2021年八年级北师大版下册数学作业题(含答案)

2021年北师大版八年级数学作业题第2章《一元一次不等式与一元一次不等式组》知识复习一.选择题1.不等式x>5的解集在数轴上表示正确的是()A.B.C.D.2.已知a>b,c≠0,则下列关系一定成立的是()A.c+a>c+b B.C.c﹣a>c﹣b D.ac<bc3.在平面直角坐标系中,若点A(x+3,﹣4)在第四象限,则x的取值范围是()A.﹣3<x<6B.x<﹣3C.x>6D.3<x<64.如果不等式组有解,则m的范围()A.m<﹣1B.m>﹣1C.m≤﹣1D.m≥﹣15.不等式组的最小整数解为()A.2B.1C.﹣1D.﹣26.若不等式(m+2)x>m+2的解集为x<1,则m满足的条件是()A.m>0B.m>﹣2C.m<﹣2D.m<27.现用甲、乙两种运输汽车共10辆,将46吨抗旱物资一次性运往某地区,甲种运输车载重5吨,乙种运输车载重4吨,则甲种运输车至少应安排()A.7辆B.6辆C.5辆D.4辆8.某次知识竞赛共有20道题,规定每答对一题得10分,答错或不答都扣5分,小明得分要超过125分,他至少要答对多少道题?如果设小明答对x道题,根据题意可列不等式()A.10x﹣5(20﹣x)≥125B.10x+5(20﹣x)≤125C.10x+5(20﹣x)>125D.10x﹣5(20﹣x)>125二.填空题9.用不等式表示“x的5倍与2的差为负数”.10.若x<y,试比较大小2x﹣62y﹣6(用“>”、“<”、“=”填空).11.关于x的不等式x﹣1>的解集是.12.不等式4(x﹣1)<3x﹣2的正整数解为.13.已知关于x,y的二元一次方程组满足x﹣y>0,则a的取值范围是.14.在平面直角坐标系中,一次函数y=kx和y=﹣x+b的图象如图所示,则不等式kx>﹣x+b的解集为.15.陈老师购了一批笔记本,用于奖励期中考试成绩优异和进步快的同学,同学们想知道笔记本的本数,陈老师让他们猜.陈茜说:“至少13本.”江涵说:“至多11本.”江月说:“至多8本.”陈老师说:“你们三个人都说错了”.则这批笔记本有本.16.如图所示,一次函数y=ax+b与y=cx+d的图象如图所示,下列说法:①对于函数y=﹣ax+b来说,y随x的增大而增大;②函数y=ax+d不经过第四象限;③不等式ax﹣d ≥cx﹣b的解集是x≥4;④4(a﹣c)=d﹣b.其中正确的是.三.解答题17.解下列不等式或不等式组,并把解集在数轴上表示出来:(1)≥1﹣.(2).18.解不等式组,请按下列步骤完成解答:(1)解不等式①,得;(2)解不等式②,得;(3)把不等式①和②的解集在数轴上表示出来;(4)原不等式组的解集为.19.求不等式组的非负整数解.20.关于x,y的二元一次方程组的解满足不等式x+2y>5,求a的取值范围.21.若关于x,y的二元一次方程组.(1)当y=k时,求k的值;(2)若方程组的解x与y满足条件0≤x+y≤2,求整数k的值.22.为了对学生进行爱国主义教育,某校组织学生去看演出,有甲、乙两种票,其单价分别为24元,18元,学校计划拿出不超过750元的资金,让七年级一班的36名学生首先观看,问甲种票最多买多少张.23.已知关于x,y的方程组.(1)求方程组的解(用含m的代数式表示);(2)若方程组的解同时满足x为非正数,y为负数,求m的取值范围;(3)在(2)的条件下化简|m﹣2|+|3﹣m|.24.某网店销售甲、乙两种羽毛球,已知甲种羽毛球每筒的售价比乙种羽毛球多15元,王老师从该网店购买了2筒甲种羽毛球和3筒乙种羽毛球,共花费255元.(1)该网店甲、乙两种羽毛球每筒的售价各是多少元?(2)根据消费者需求,该网店决定用不超过8780元购进甲、乙两种羽毛球共200筒,且甲种羽毛球的数量大于乙种羽毛球数量的,已知甲种羽毛球每筒的进价为50元,乙种羽毛球每筒的进价为40元.①若设购进甲种羽毛球m筒,则该网店有哪几种进货方案?②若所购进羽毛球均可全部售出,请求出在①的条件下网店哪种方案获利最多?是多少?参考答案一.选择题1.解:不等式x>5的解集在数轴上表示为:5右边的部分,不包括5,故选:A.2.解:A、在不等式a>b的两边同时加上c,不等式仍然成立,即a+c>b+c;故本选项正确;B、当c>0时,不等式a>b的两边同时除以正数c,则不等号的方向不发生改变,>,故本选项错误;C、在不等式a>b的两边同时乘以负数﹣1,则不等号的方向发生改变,即﹣a<﹣b;然后再在不等式的两边同时加上c,不等号的方向不变,即c﹣a<c﹣b,故本选项错误;D、当c>0时,不等式a>b的两边同时乘以正数c,则不等号的方向不发生改变,即ac>bc.故本选项错误;故选:A.3.解:∵点A(x+3,﹣4)在第四象限,∴,解得﹣3<x<6.故选:A.4.解:如图,∵不等式组有解,∴m>﹣1,故选:B.5.解:,解不等式①,得x>﹣解不等式②,得x≤4,所以不等式组的解集是﹣<x≤4,所以不等式组的最小整数解是﹣2,故选:D.6.解:∵不等式(m+2)x>m+2的解集是x<1,∴m+2<0,∴m<﹣2,故选:C.7.解:设甲种运输车安排x辆,乙种运输车安排(10﹣x)辆,根据题意得5x+4(10﹣x),解得:x≥6,∴甲种运输车至少安排6辆车,故选:B.8.解:由题意可得,10x﹣5(20﹣x)>125,故选:D.二.填空题9.解:x的5倍与2的差小于0,即:5x﹣2<0.故答案为:5x﹣2<0.10.解:∵x<y,∴2x<2y,∴2x﹣6<2y﹣6.故答案为:<.11.解:移项,得:x>1+,合并同类项,得:x>,系数化为1,得:x>,故答案为:x>.12.解:不等式4(x﹣1)<3x﹣2的解集为x<2,故不等式4(x﹣1)<3x﹣2的正整数解为1.故答案为1.13.解:,①﹣②,得x﹣y=3a﹣3,∵x﹣y>0,∴3a﹣3>0,解得a>1,故答案为:a>1.14.解:如图所示:∵一次函数y=kx和y=﹣x+b的图象交点为(1,2),∴关于x的一元一次不等式kx>﹣x+b的解集是:x>1.故答案为:x>1.15.解:设这批笔记本有x本,依题意得:,解得:11<x<13.又∵x为正整数,∴x=12.故答案为:12.16.解:由图象可得,a>0,则﹣a<0,对于函数y=﹣ax+b来说,y随x的增大而减小,故①错误;a>0,d>0,则函数y=ax+d经过第一、二、三象限,不经过第四象限,故②正确;由ax﹣d≥cx﹣b可得ax+b≥cx+d,故不等式ax﹣d≥cx﹣b的解集是x≥4,故③正确;4a+b=4c+d可以得到4(a﹣c)=d﹣b,故④正确;故答案为②③④.三.解答题17.解:(1)去分母,得:2(x+8)≥4﹣x,去括号,得:2x+16≥4﹣x,移项,得:2x+x≥4﹣16,合并同类项,得:3x≥﹣12,系数化为1,得:x≥﹣4,将不等式组的解集表示在数轴上如下:(2)解不等式2x﹣1<x+1,得:x<2,解不等式x+8<4x﹣1,得:x>3,所以不等式组无解,将不等式组的解集表示在数轴上如下:18.解:,(1)解不等式①,得x≥﹣1;(2)解不等式②,得x>3;(3)把不等式①和②的解集在数轴上表示出来:(4)原不等式组的解集为x>3,故答案为x≥﹣1,x>3,x>3.19.解:解不等式2x﹣6≤0,得:x≤3,解不等式(x﹣4)+3>0,得:x>﹣2,则不等式组的解集为﹣2<x≤3,所以不等式组的非负整数解为0、1、2、3.20.解:,②﹣①得:x+2y=4a﹣3,∵x+2y>5,∴4a﹣3>5,解得a>2.故a的取值范围为a>2.21.解:(1),①×2﹣②,得:3x=6k,解得x=2k,将x=2k代入①,得:4k+y=3k﹣1,解得y=﹣k﹣1,∵y=k,∴﹣k﹣1=k,解得k=﹣;(2)①+②,得:3x+3y=3k﹣3,∴x+y=k﹣1,∵0≤x+y≤2,∴0≤k﹣1≤2,解得1≤k≤3,所以整数k的值为1、2、3.22.解:设购买甲种票x张,则购买乙种票(36﹣x)张,依题意得:24x+18(36﹣x)≤750,解得:x≤17.答:甲种票最多买17张.23.解:(1),由①+②,得2x=4m﹣8,解得x=2m﹣4,由①﹣②,得2y=﹣2m﹣4,解得y=﹣m﹣2,所以原方程组的解是;(2)∵x为非正数,y为负数,∴x≤0,y<0,即,解得﹣2<m≤2;(3)∵﹣2<m≤2,∴|m﹣2|+|3﹣m|=2﹣m+3﹣m=5﹣2m.24.解:(1)设该网店甲种羽毛球每筒的售价是x元,乙种种羽毛球每筒的售价是y元,依题意得:,解得:.答:该网店甲种羽毛球每筒的售价是60元,乙种种羽毛球每筒的售价是45元.(2)①设购进甲种羽毛球m筒,则购进乙种羽毛球(200﹣m)筒,依题意得:,解得:75<m≤78.又∵m为正整数,∴m可以为76,77,78,∴该网店有3种进货方案,方案1:购进76筒甲种羽毛球,124筒乙种羽毛球;方案2:购进77筒甲种羽毛球,123筒乙种羽毛球;方案3:购进78筒甲种羽毛球,122筒乙种羽毛球.②选择进货方案1可获得的利润为(60﹣50)×76+(45﹣40)×124=1380(元);选择进货方案2可获得的利润为(60﹣50)×77+(45﹣40)×123=1385(元);选择进货方案3可获得的利润为(60﹣50)×78+(45﹣40)×122=1390(元).∵1380<1385<1390,∴在①的条件下网店选择方案3获利最多,最多利润是1390元.。

(完整版)一次方程组和一次不等式组练习题

(完整版)一次方程组和一次不等式组练习题

一次方程/组和一次不等式/组练习题一、填空/选择1、在数轴上从左至右的三个数为a ,1+a ,-a ,则a 的取值范围是( )A 、a <12B 、a <0C 、a >0D 、a <-122、如果不等式组x a x b >⎧⎨<⎩无解,那么不等式组的解集是( ) A.2-b <x <2-a B.b -2<x <a -2 C.2-a <x <2-b D.无解3、已知 ()03222=--+-a y x x ,y 是正数,则a 的取值范围是__________。

4、已知三角形的两边8=b ,10=c ,则这个三角形的第三边a 的取值范围是__________。

二、解方程组或者不等式组1、⎩⎨⎧=--+=++-20)5(8)7.0(527)7.0(5)5(20x y y x 2、 1:14:3)4(:)(:)6(=+-+-y x y x x3、 4、三、问答题1、已知m是整数,方程组⎩⎨⎧=+=-266634my x y x 有整数解,求m的值。

2、已知关于x ,y 的方程组⎩⎨⎧=+=+-b y x y x a 5)1(当a ,b 满足什么条件时,方程组有唯一解,无解,有无数解?3、(1)对于有理数x、y,定义一种新运算“*”,x*y=a x+b y+c ,其中a 、b 、c 为常数,等式右边是常用的加法与乘法运算,又已知3*5=15,4*7=28,求1*1的值。

(2)对于有理数x 、y 定义新运算:x *y =ax +by +5,其中a ,b 为常数.已知1*2=9,(-3)*3=2,求a ,b 的值.四、应用题1、甲、乙两件服装的成本共500元,商店老板为获得利润,决定将甲服装按50%的利润定价,乙服装按40%的利润定价,在实际出售时,顾客要求,两件衣服均9折出售,这样商店共获利157元。

求服装的成本各是多少元?2、把若干颗花生分给若干只猴子。

如果每只猴子分3颗,就剩下8颗;如果每只猴子分5颗,那么最后一只猴子虽分到了花生,但不足5颗。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一次方程/组和一次不等式/组练习题
一、填空/选择
1、在数轴上从左至右的三个数为a ,1+a ,-a ,则a 的取值范围是( )
A 、a <12
B 、a <0
C 、a >0
D 、a <-12
2、如果不等式组x a x b >⎧⎨<⎩
无解,那么不等式组的解集是( ) A.2-b <x <2-a B.b -2<x <a -2 C.2-a <x <2-b D.无解
3、已知 ()03222
=--+-a y x x ,y 是正数,则a 的取值范围是__________。

4、已知三角形的两边8=b ,10=c ,则这个三角形的第三边a 的取值范围是__________。

二、解方程组或者不等式组
1、⎩⎨
⎧=--+=++-20)5(8)7.0(527)7.0(5)5(20x y y x 2、 1:14:3)4(:)(:)6(=+-+-y x y x x
3、 4、
三、问答题
1、已知m是整数,方程组⎩

⎧=+=-266634my x y x 有整数解,求m的值。

2、已知关于x ,y 的方程组⎩
⎨⎧=+=+-b y x y x a 5)1(当a ,b 满足什么条件时,方程组有唯一解,无解,有无数解?
3、(1)对于有理数x、y,定义一种新运算“*”,x*y=a x+b y+c ,其中a 、b 、c 为常数,等式右边是常用的加法与乘法运算,又已知3*5=15,4*7=28,求1*1的值。

(2)对于有理数x 、y 定义新运算:x *y =ax +by +5,其中a ,b 为常数.已知1*2=9,(-3)*3=2,求a ,b 的值.
四、应用题
1、甲、乙两件服装的成本共500元,商店老板为获得利润,决定将甲服装按50%的利润定价,乙服装按40%的利润定价,在实际出售时,顾客要求,两件衣服均9折出售,这样商店共获利157元。

求服装的成本各是多少元?
2、把若干颗花生分给若干只猴子。

如果每只猴子分3颗,就剩下8颗;如果每只猴子分5颗,那么最后一只猴子虽分到了花生,但不足5颗。

问猴子有多少只,花生有多少颗?
3.某园林的门票每张10元,一次使用,考虑到人们的不同需要,也为了吸引更多的游客,该
园林除保留原来的售票方法外,还推出了一种“购买年票”的方法。

年票分为A 、B 、C 三种:A 年票每张120元,持票进入不用再买门票;B 类每张60元,持票进入园林需要再买门票,每张2元,C 类年票每张40元,持票进入园林时,购买每张3元的门票。

(1) 如果你只选择一种购买门票的方式,并且你计划在一年中用80元花在该园林的门票上,试通过计算,
找出可使进入该园林的次数最多的购票方式。

(2) 求一年中进入该园林至少多少时,购买A 类年票才比较合算。

相关文档
最新文档