福建省龙岩市上杭县2018-2019学年第二学期期末学段水平测试八年级数学试卷%28图片版无答案%29

合集下载

2018-2019学年八年级第二学期期末考试数学模拟试卷(含答案解析)

2018-2019学年八年级第二学期期末考试数学模拟试卷(含答案解析)

2018-2019学年八年级第二学期期末考试数学模拟试卷(考试时间120分钟,满分120分)一、选择题(共30分) 1.若二次根式有意义,则的取值范围是( )A .B .C .D .2.已知点A (﹣2,y 1),B (3,y 2)在一次函数y =﹣x ﹣2的图象上,则( ) A .y 1>y 2 B .y 1<y 2 C .y 1≤y 2 D .y 1≥y 23.若一个三角形的三边长分别为6、8、10,则这个三角形最长边上的中线长为( ) A.3.6 B.4 C.4.8 D.5 4.反比例函数xy 6=与一次函数1+=x y 的图象交于点)3,2(A ,利用图象的对称性可知它们的另一个交点是( ).A )2,3(B )2,3(--C )3.2(--D )3,2(- 5.某班学生积极参加爱心活动,该班50名学生的捐款统计情况如下表:金额/元 5 10 20 50 100 人数4161596则他们捐款金额的中位数和平均数分别是( )A .10,20.6B .20,20.6C .10,30.6D .20,30.66. 如图,在平行四边形ABCD 中,对角线AC 、BD 相交于点O ,若BD 、AC 的和为18cm ,CD :DA =2:3,△AOB 的周长为13cm ,那么BC 的长是( ) A .6cm B .9cm C .3cm D .12cm7. 如图,在平面直角坐标系xOy 中,已知点(2,0)A ,(1,1)B .若平移点A 到点C ,使以点O ,A ,C ,B 为顶点的四边形是菱形,则正确的平移方法是( )A.向左平移1个单位,再向下平移1个单位个单位,再向上平移1个单位B.向左平移(221)C.向右平移2个单位,再向上平移1个单位D.向右平移1个单位,再向上平移1个单位8. 一段笔直的公路AC长20千米,途中有一处休息点B,AB长15千米,甲、乙两名长跑爱好者同时从点A出发,甲以15千米/时的速度匀速跑至点B,原地休息半小时后,再以10千米/时的速度匀速跑至终点C;乙以12千米/时的速度匀速跑至终点C,下列选项中,能正确反映甲、乙两人出发后2小时内运动路程y(千米)与时间x(小时)函数关系的图象是()A B C D9. 如图,在边长为2的菱形ABCD中,∠B=45°,AE为BC边上的高,将△ABE沿AE所在直线翻折得△AB′E,AB′与CD边交于点F,则B′F的长度为()A.1B.C.2-D.2﹣210. 一顶点重合的两个大小完全相同的边长为3的正方形ABCD和正方形AB′C′D′,如图所示,∠DA’ D′=45°,边BC与D′C′交于点O,则四边形ABOD′的周长是()A.6 B.C.D.二、填空题(共28分)(11-14小题每小题3分;15-18小题每小题4分)11. 若函数y=(m﹣1)x|m|是正比例函数,则该函数的图象经过第象限.12. 直角三角形两直角边长分别为3和4,则它斜边上的高为.13. 已知一组数据为1,2,3,4,5,则这组数据的方差为.14. 已知一元二次方程x 2+mx +m ﹣1=0有两个相等的实数根,则m = .15. 如图,反比例函数错误!未找到引用源。

2018-2019学年福建省龙岩市八年级(下)期末数学试卷

2018-2019学年福建省龙岩市八年级(下)期末数学试卷

2018-2019学年福建省龙岩市八年级(下)期末数学试卷一、选择题:本大题共10小题,每小题4分,共40分。

1、√8−√2=( ) A .±2B .2C .√2D .−√22、下列四个数中,大于1而又小于2的无理数是( ) A .32B .√2+12C .√3−13D .√3+133、下列计算错误的是( ) A .√(−3)2=−3B .(√13)2=13C .√6√2=√62=√3D .−√12=−2√34、某校男子足球队年龄分布条形图如图所示,该球队年龄的众数和中位数分别是( )A .8,8B .15,15C .15,16D .15,145、若√x −2y +9与|x ﹣y ﹣3|互为相反数,则x +y 的值为( ) A .27B .9C .12D .36、下列命题中是正确的命题为( )A .有两边相等的平行四边形是菱形B .有一个角是直角的四边形是矩形C .四个角相等的菱形是正方形D .两条对角线互相垂直且相等的四边形是平行四边形 7、小明在画函数y =6x (x >0)的图象时,首先进行列表,下表是小明所列的表格,由于不认真列错了一个不在该函数图象上的点,这个点是( ) x … 0.5 1 1.5 2 2.5 3 3.5 4 5 6 … y…6321…A .(1,6)B .(2,3)C .(3,2)D .(4,1)8、如图所示,将一张正方形纸片对折两次,然后在上面打3个洞,则纸片展开后是()A.B.C.D.9、如图,▱ABCD的对角线AC与BD相交于点O,AB⊥AC,若AB=4,AC=6,则BD的长是()A.8B.9C.10D.1110、定义min(a,b),当a≥b时,min(a,b)=b,当a<b时,min(a,b)=a;已知函数y=min(﹣x﹣3,2x﹣21),则该函数的最大值是()A.﹣15B.﹣9C.﹣6D.6二、填空题:本大题共6小题,每小题4分,共24分.11、如图,在平面直角坐标系内所示的两条直线,其中函数y随x增大而减小的函数解析式是.12、直线y=x+9沿y轴平行的方向向下平移3个单位,所得直线的函数解析式是.13、数据1,﹣1,﹣1,1,1,﹣1的方差S2=.14、Rt△ABC中∠C=90°,∠A=30°,AB=2,则BC=.15、如图,在△ABC中,∠ABC=∠BAC,D,E分别是AB,AC的中点,且DE=2,延长DE到点F,使EF=BC,连接CF,BE,若四边形BEFC是菱形,则AB=.16、如图,直线AB与坐标轴相交于点A,B,将△AOB沿直线AB翻折到△ACB的位置,当点C的坐标为C(3,√3)时,直线AB的函数解析式是.三、解答题:本大题共9小题,共86分.解答应写出文字说明、证明过程或演算步骤.17、计算:(2√48−3√27)÷√6.18、先化简,再求值:(x−3xx+1)÷x−21+2x+x2,其中x=√3−1.19、已知x1=−b−√b2−4ac2a,x2=−b+√b2−4ac2a,若a=3,b=2,c=﹣2,试求x1+x2的值.20、已知张强家、体育场、文具店在同一直线上,下面的图象反映的过程是:张强从家跑步去体育场,在那里锻炼了一阵后又走到文具店去买笔,然后散步走回家.图中x表示时间,y表示张强离家的距离.根据图象解答下列问题:(1)体育场离张强家多远?张强从家到体育场用了多少时间?(2)体育场离文具店多远?(3)张强在文具店停留了多少时间?(4)求张强从文具店回家过程中y与x的函数解析式.21、如图1,AD是△ABC的边BC上的中线.(1)①用尺规完成作图:延长AD到点E,使DE=AD,连接CE;②若AB=6,AC=4,求AD的取值范围;(2)如图2,当∠BAC=90°时,求证:AD=12 BC.22、某学校计划在总费用2300元的限额内,租用汽车送234名学生和6名教师集体外出活动,每辆汽车上至少要有1名教师.现有甲、乙两种大客车,它们的载客量和租金如表所示.甲种客车乙种客车载客量/(人/辆)4530租金/(元/辆)400280(1)共需租多少辆汽车?(2)请给出最节省费用的租车方案.23、某景区的水上乐园有一批4人座的自划船,每艘可供1至4位游客乘坐游湖,因景区加大宣传,预计今年游客将会增加.水上乐园的工作人员在去年6月27日一天出租的150艘次4人自划船中随机抽取了100艘,对其中抽取的每艘船的乘坐人数进行统计,并制成如下统计图.(1)求扇形统计图中,“乘坐1人”所对应的圆心角度数;(2)估计去年6月27日这天出租的150艘次4人自划船平均每艘船的乘坐人数;(3)据旅游局预报今年6月27日这天该景区可能将增加游客300人,请你为景区预计这天需安排多少艘4人座的自划船才能满足需求.24、如图,边长为2的正方形ABCD中,对角线AC,BD相交于点O,点E是BC中点,AE交BD于点F,BH⊥AE于点G,交AC于点H.(1)求证:△AOF≌△BOH;(2)求线段BG的长.25、在平面直角坐标系中,已知点A(0,3),B(4,0),C(m,﹣3m+22),点D与A关于x轴对称.(1)写出点C所在直线的函数解析式;(2)连接AB,BC,AC,若线段AB,BC,AC能构成三角形,求m的取值范围;(3)若直线CD把四边形ACBD的面积分成相等的两部分,试求m的值.。

2018—2019学年度(下)初中期末教学质量监测八年级数学参考答案.doc

2018—2019学年度(下)初中期末教学质量监测八年级数学参考答案.doc

2018—2019学年度(下)初中期末教学质量监测八年级数学参考答案选择题(每小题2分,共18分)二、填空题(每小题2分,共18分)10. 2021 11. −2 12. 十 13. 80°或20° 14. −415. 4 16. 2.6cm 17. 1 18.3 三、(每小题4分,共8分)19. (1)因式分解:32296y y x xy ++=)96(22x xy y y ++ ……2分 =2)3(x y y + ……4分(2)解不等式组:解:解不等式①,得 x ≤1 ……1分解不等式②,得 x<4……2分在同一数轴上表示不等式①②的解集,如图.……3分∴原不等式组的解集为:x ≤1 ……4分① ② ≥4, ⎪⎩⎪⎨⎧->+--.1321)2(3x x x x四、(每小题5分,共10分)20.(1)39631122-+÷+---+x xx x x x x =)1(3)3(3112+-⋅--++x x x x x x ……2分 =)1(111+++x x x =x1……4分 当23-=x 时,原式=231-=32- ……5分(2)解方程:14143=-+--xx x 解:方程两边都乘以4-x ,得 ……1分413-=--x x ……2分 解这个方程,得3=x ……3分 检验:将3=x 代入原方程 ……4分左边=右边=1∴原方程的根是3=x ……5分五、(每小题6分,共12分)21. (1)平移如图,△A 1B 1C 1即为所求.A 1的坐标(1,2)……3分(2) 如图,△A 2B 2C 2即为所求.A 2的坐标(−1,−2)……6分(第21题图)22.解:连接AD∵DF 垂直平分AB ,∴AD =BD =26∴∠DAB =∠B =22.5°,∠ADE =45°∵AE ⊥BC ,∴∠AED =90°∴∠EDA =∠EAD =45°∴AE = DE ,设AE= DE =a ,则222)26(=+a a∴a =6,即AE =6, ……4分在Rt △AEC 中,∵∠C =60°,∴∠EAC =30° 设EC =b ,则AC =2b ,∴36)2(22=-b b∴32=b ,即CE =32 ……6分六、(23题7分,24题8分,共15分)23.解:设摩托车速度为x 千米/时,抢修车速度是1.5x 千米/时, ……1分根据题意得:60155.13030+=x x ……3分 解这个方程得40=x ……4分 经检验:40=x 是原方程的根 ……5分 60405.15.1=⨯=x (千米/时) ……6分答:摩托车的速度为40千米/时,抢修车速度是60千米/时 ……7分 24.证明:(1)∵AO =CO ,OE =OF ,∠AOE =∠COF∴△AOE ≌△COF ,∴∠OAE =∠OCF ……2分∴AD ∥BC ,∴∠EDO =∠FBO∵OE =OF ,∠EOD =∠FOB∴△EOD ≌△FOB , ……4分 ∴OB =OD∴四边形ABCD 是平行四边形. ……5分 (2)∵EF ⊥AC ,AO =CO ,∴AF =FC∴AB +BF +AF =AB +BF +FC =15即AB +BC =15 ……7分 ∵□ABCD 中AD =BC ,AB =CD∴□ABCD 的周长是15×2=30. ……8分七、(本题9分)A25.由)100%(801001-+=x y 得,208.01+=x y 由)50%(90502-+=x y 得,59.02+=x y∴y 1,y 2与x 的函数关系式208.01+=x y ,59.02+=x y ……2分 由y 1>y 2得 59.0208.0+>+x x 150<x ……4分 由y 1=y 2得 59.0208.0+=+x x 150=x ……6分 由y 1<y 2得 59.0208.0+<+x x 150>x ……8分∴当小明购物金额少于150元时,去乙超市合算,等于150元时去两家超市一样,多于150元时去甲超市合算. ……9分八、(本题10分)26.(1)①AE CF CP =- ……1分证明:∵AB PD ⊥∴︒=∠=∠90C PDE , ∵BP 平分∠ABC ∴PD =PC 又∵PE =PF∴Rt △PDE ≌Rt △PCF ……2分 ∴DE =CF∵△ABC 中,∠C =90°,AC =BC ∴∠A =∠ABC =45° ∴∠APD =∠A =45° ∴AD =PD ∴AD =CP∵AD -DE =AE∴CP -CF =AE ……4分②∵△PCF ≌△PDE ∴∠DPE =∠CPF ∴∠EPF =∠DPC ∵∠ABC =45° ∴∠DPC =360°-90°-90°-45°=135°∴∠EPF =135° ……6分(2)∵∠EPF =135°,∠DPC =135°∴∠DPE =∠CPF又∵∠PCF =∠PDE =90°,PC =PD ∴△PDE ≌△PCF ∴DE =CF∵PC =PD ,∠PDB =∠PCB =90°,BP =BP ∴Rt △PCB ≌Rt △PDB∴BC =BD ……8分设DE =CF =x ,则BD =BC =x +-+163 AB =2BC =)163(2x +-+ ∵∠CFP =60°,∴∠CPF =30° ∴PF =2x ,x x x PC 3)2(22=-= ∴x PC AD PD 3===∴1633-+++=+=x x BE AE AB ∴1633)163(2-+++=+-+x x x ∴1=x ∴13+=AE ∴2332)13(321+=+=⨯=∆PD AE S AEP ……9分 (3)2)13(2m S AEP -=∆。

福建省龙岩市上杭县农村初中八年级下学期期中联考数学试题

福建省龙岩市上杭县农村初中八年级下学期期中联考数学试题

第二学期半期学段水平测试 八年级数学试题 (总分:150分 考试时间:120分钟) 一、选择题(本大题共10小题,每小题4分,共40分. 每小题的四个选项中,只有一项符合题目要求.) 1. 下列各式中一定是二次根式的是 A.2x 1+ B.38 C.2- D.2x 2. 菱形ABCD 中的周长是16,∠A =60⁰则对角线BD 的长为 A.23 B.3 C.4 D.43 3. 下列各式正确的是 A.233--()= B.222--= C.22510()= D.9±=3 4. 如图 ABCD 中,AB =4,BC =6,AC 的垂直平分线交AD 于点E ,则△CDE 的周长是 A.9 B.10 C.11 D.12 5. 下列各式中是最简二次根式的是 A.8 B.2a C.23 D.3x y 6. 如图在矩形ABCD 中对角线AC 、BD 相交于点O ,若OA =5,CD =6,则BC 的长是 A.6 B.7 C.8 D.9 7.在四边形ABCD 中AB 、CD 相交于点O ,下列说法错误..的是 A. AB ∥CD ,AD =BC ,则四边形ABCD 是平行四边形; B. AO =CO ,BO =DO 且AC ⊥BD ,则四边形ABCD 是菱形; C. AO =OB =OC =OD ,则四边形ABCD 是矩形; D. ∠A =∠B =∠C =∠D 且AB =BC ,则则四边形ABCD 是正方形。

8.下列四组数据中是勾股数的有学校:班级:姓名:座号:○15、7、8 ○23、6、3○39、12、15 ○4n²+1,n²-1 2n(n>1)A.1组B.2组C.3组D. 4组9. 已知直角三角形的两边长分别为8和6,则第三边长是A.10B.27C.12D.10或2710.下列定理中,没有逆定理的是A.内错角相等,两直线平行; B 菱形的四条边都相等;C. 若实数a=b,则a²=b²;D.直角三角形两直角边的平方等于斜边的平方。

福建省龙岩市五县、区2018-2019学年八年级下学期期末考试数学试题(有答案)

福建省龙岩市五县、区2018-2019学年八年级下学期期末考试数学试题(有答案)

第4题图/岁2018~2019年五县市区八年级第二学期期末质量检查数学试题(满分:150分考试时间:120分钟)注意:请把所有答案填涂或书写到答题卡上!请不要错位、越界答题!在本试题上答题无效.一、选择题:本大题共10小题,每小题4分,共40分.每小题的四个选项中,只有一项符合题目要求.-=A.±2B. 22.下列四个数中,大于1而又小于2的无理数是A. 3 23.下列计算错误的是=-3B. =213===-4.某校男子足球队年龄分布条形图如图所示,该球队年龄的众数和中位数分别是A. ,88B. ,1515C. ,1516 D. ,15145.--3x y互为相反数,则+x y=A. 27B. 12C. 9D. 312第9题图O DCA6.下列命题中是正确的命题为A. 有两边相等的平行四边形是菱形B. 有一个角是直角的四边形是矩形C. 四个角相等的菱形是正方形D. 两条对角线互相垂直且相等的四边形是平行四边形7.小明在画函数6y =x(x >0)的图象时,首先进行列表,下表是小明所列的表格,由于不认真列错了一个不在该函数图象上的点,这个点是12366543.532.521.510.5…………y xA. (,)16B. (,)23C. (,)32D. (,)418. 如图所示,将一张正方形纸片对折两次,然后在上面打3个洞,则纸片展开后是9. 如图, □ ABCD 的对角线AC 与BD 相交于点O ,⊥AB AC ,,46AB =AC =,则BD =A. 8B. 9C. 10D. 1110.定义min(,)a b ,当≥a b 时,min(,)=a b b ,当a <b 时,min(,)=a b a ; 已知函数min(,)=---3221y x x ,则该函数的最大值是 A. -15 B. -9 C. -6 D. 6 二、填空题:本大题共6小题,每小题4分,共24分.311.如图,在平面直角坐标系内所示的两条直线,其中函数y 随x 增大而减小的函数解析式是 ;12.直线=9y x +沿y 轴平行的方向向下平移3个单位,所得直线的函数解析式是 ;13.数据1,-1,-1,1,1,-1的方差=2S;14.在Rt ∆ABC 中,若,,∠︒∠︒=90302C =A =AB ,则BC = ; 15. 如图,在∆ABC 中,∠∠ABC =BAC ,,D E 分别是,AB AC 的中点,且2DE =,延长DE 到点F ,使=EF BC ,连接,CF BE ,若四边形BEFC 是菱形,则AB =______; 16.如图,直线AB 与坐标轴相交于点,A B ,将∆AOB 沿直线AB 翻折到∆ACB 的位置,当点C的坐标为(3C 时,直线AB 的函数解析式是 .三、解答题:本大题共9小题,共86分. 解答应写出文字说明、证明过程或演算步骤. 17. (本题满分8分)计算:(-÷18. (本题满分8分)先化简,再求值:()--÷+232112x x x x +x +x,其中-1x =.4min19. (本题满分8分)已知--12b x =a,-22b +x =a,若,,===-322a b c ,试求+12x x 的值. 20. (本题满分8分)已知张强家、体育场、文具店在同一直线上,下面的图象反映的过程是:张强从家跑步去体育场,在那里锻炼了一阵后又走到文具店去买笔,然后散步走回家.图中x 表示时间,y 表示张强离家的距离. 根据图象解答下列问题:(1)体育场离张强家多远?张强从家到体育场用了多少时间?(2)体育场离文具店多远? (3)张强在文具店停留了多少时间?(4)求张强从文具店回家过程中y 与x 的函数解析式.21. (本题满分8分)如图1,AD 是∆ABC 的边BC 上的中线.(1)①用尺规完成作图:延长AD 到点E ,使=DE AD ,连接CE ; ② 若,64AB =AC =,求AD 的取值范围;(2)如图2,当∠︒90BAC =时,求证:12AD =BC .22. (本题满分10分)某学校计划在总费用2300元的限额内,租用汽车送234名学生和6名教师集体参加校外实践活动,为确保安全,每辆汽车上至少要有1名教师.现有甲、乙两种大客车,它们的载客量和租金如下表所示.5HF G EOD CBA2804003045租金/(元/辆)载客量/(人/辆)乙种客车甲种客车(1)根据题干所提供的信息,确定共需租用多少辆汽车? (2)请你给学校选择一种最节省费用的租车方案. 23. (本题满分10分)某景区的水上乐园有一批4人座的自划船,每艘可供1至4位游客乘坐游湖,因景区加大宣传,预计今年游客将会增加.水上乐园的工作人员在去年6月27日一天出租的150艘次4人自划船中随机抽取了100艘,对其中抽取的每艘船的乘坐人数进行统计,并制成如下统计图.(1)求扇形统计图中,“乘坐1人”所对应的圆心角度数; (2)估计去年6月27日这天出租的150艘次4人自划船平均每艘船的乘坐人数;(3)据旅游局预报今年6月27日这天该景区可能将增加游客300人,请你为景区预计这天需安排多少艘4人座的自划船才能满足需求. 24.(本题满分12)如图,边长为2的正方形ABCD 中,对角线AC,BD 相交于点O ,点E 是BC 中点,AE 交BD于点F ,⊥BH AE 于点G ,交AC 于点H . (1)求证:∆AOF ≌∆BOH ; (2)求线段BG 的长. 25.(本题满分14)在平面直角坐标系中,已知点(,)03A,(,)40B ,(,)-+322C m m ,点D 与A 关于x 轴对称.(1)写出点C 所在直线的函数解析式;(2)连接,,AB BC AC ,若线段,,AB BC AC 能构成三角形,求m 的取值范围;1人(3)若直线CD把四边形ACBD的面积分成相等的两部分,试求m的值.672018~2019年五县市区八年级第二学期期末质量检查数学评分标准与参考答案一、CBABA CDDCB二、11. .-051y =x +;12. =6y x +;13. 1;14. 1;15. ;16.y =+三、解答题:本大题共9小题,共86分. 解答应写出文字说明、证明过程或演算步骤. 17. (本题满分8分) 解:原式=(-÷4分=(÷…………………………………………………………………6分=-7分=-2……………………………………………………………………………8分 18. (本题满分8分)解:原式=()()--÷22211x x x x +x + ………………………………………………………3分 =()()-⨯-22112x x x +x +x ………………………………………………………4分=()1x x + ………………………………………………………………………6分当-1x =时,原式=)--+111……………………………………………………7分=-3……………………………………………………………………8分8min19. (本题满分8分)解:原式=---2b b +a…………………………………2分=-ba…………………………………………………………………………6分 =-23…………………………………………………………………………8分 20. (本题满分8分) 解:(1)体育场离张强家.km 25,张强从家到体育场用了min 15…………………………2分 (2)体育场离文具店1km …………………………………………………………………3分 (3)张强在文具店停留了min 20…………………………………………………………4分 (4)设张强从文具店回家过程中y 与x 的函数解析式为y =kx +b ,………………5分 将点(,.)6515,(,)1000代入y =kx +b 得.⎧+=⎨⎩65151000k b k +b =, 解得⎧=-⎪⎪⎨⎪⎪⎩370307k b =, ……………………………………………………………………6分 ∴-330707y =x +(≤≤65100x )……………………………………………8分 (没有写出自变量取值范围扣1分)921. (本题满分8分)(1)①用尺规完成作图:延长AD 到点E ,使=DE AD ,连接CE ;……2分②∵=BD DC ,=DE AD ,∠=∠ADB EDC ∴∆ADB ≌∆EDC∴=EC AB ………………………………………………………………………3分 ∴6-4<AE <6+4,即2<AE <10……………………………………………4分 又∵2AE =AD∴1<AD <5……………………………………………………………………5分 (2)延长延长=BD DC AD 到点E ,使=DE AD ,连接,CE BE∵=BD DC∴四边形ABEC 是平行四边形………………………………………………………6分 ∵∠︒90BAC =∴四边形ABEC 是矩形………………………………………………………………7分 ∴=AE BC∴1122AD =AE =BC .…………………………………………………………8分 22. (本题满分10分)解:(1)由使234名学生和6名教师都有座位,租用汽车辆数必需不小于+=234616453辆;每辆汽车上至少要有1名教师,租用汽车辆数必需不大于6辆.所以,根据题干所提供的信息,确定共需租用6辆汽车.…………………………2分 (2)设租用甲种客车x 辆,共需费用y 元,则租用乙种客车()-6x 辆.…………3分6辆汽车载客人数为()⎡⎤-⎣⎦45306x +x 人………………………………………4分()-4002806y =x +x10=1201680x + …………………………………………………………5分∴ ()⎧-≥⎨≤⎩4530624012016802300x +x x + ……………………………………………………6分解得≤≤3146x …………………………………………………………7分 ∴4x =,或5x = ……………………………………………………8分 当4x =时,甲种客车4辆,乙种客车2辆,2160y =当5x =时,甲种客车5辆,乙种客车1辆,2300y =……………………………9分 ∴最节省费用的租车方案是租用甲种客车4辆,乙种客车2辆.……………………10分 23. (本题满分10分)解:(1)“乘坐1人”所对应的圆心角度数是:()︒⨯---=︒0360145203018………………………………………3分(2)估计去年6月27日这天出租的150艘次4人自划船平均每艘船的乘坐人数是:⨯+⨯+⨯+⨯=453304202513100人 …………………………………6分(3)+=3001502503艘4人座的自划船才能满足需求.……………………10分 24.(本题满分12)(1)证明:∵四边形ABCD 是正方形∴OA =OB ,∠︒90AOB =………………………………………2分 ∵⊥BH AE∴∠∠︒90AOB =BOH =………………………………………3分11又∵︒∠∠∠∠90FAO +AHG =OBH +AHG =………………4分∴∠∠FAO =OBH ………………………………………5分∴∆AOF ≌∆BOH ; ………………………………………6分(2)解:∵在Rt ∆ABE 中,,21AB =BE =,……………………………………7分∴==AE =9分 又∵⨯⨯1122AB BE =AG BG ……………………………………10分∴⨯==25AB BE BG =AG ……………………………………12分 25.(本题满分14)在平面直角坐标系中,已知点(,)03A,(,)40B ,(,)-+322C m m ,点D 与A 关于x 轴对称.解:(1)-322y =x +…………………………………………………………………3分(2)设AB 所在直线的函数解析式为y =kx +b ,将点(,)03A,(,)40B 代入y =kx +b 得 ⎧⎨⎩340b =k +b =,解得⎧⎪⎨-⎪⎩334b =k =,∴-334y =x + 当点(,)-+322C m m 在直线AB 上时,线段,,AB BC AC 不能构成三角形………………5分将(,)-+322C m m 代入-334y =x +,得--332234m +=m + 解得769m =,12∴≠769m 时,线段,,AB BC AC 能构成三角形;………………………………7分 (3)(,)-03D ,设AB 的中点为E ,过E 作⊥EM x 轴于M ,⊥EN y 轴于N , 根据三角形中位线性质可知(,)322E ,…………………………………………8分 由三角形中线性质可知,当点(,)-+322C m m 在直线DE 上时,DC 把四边形ACBD 的面积分成相等的两部分,…………………………………………………………………10分设直线DE 的函数解析式为y =kx +b ,将(,)-03D ,(,)322E 代入y =kx +b , 得⎧-⎪⎨⎪⎩3302b =k +b =,解得⎧-⎨⎩32b =k =,∴-23y =x ,…………………………………11分将(,)-+322C m m 代入-23y =x ,得--32223m +=m ,解得5m =,……………………………………………………13分 ∴当5m =时,DC 把四边形ACBD 的面积分成相等的两部分.………………………14分。

2018-2019学年度下学期初二年级期末考试数学试题

2018-2019学年度下学期初二年级期末考试数学试题

2018---2019学年度第下学期期末质量监测初二数学试题考生注意:1、考试时间为120分钟 2、全卷共三道大题,总分120分题 号 一二三总 分核分人得 分题所给出的四个选项中,只有一项是符合题目要求的.) 1. 在下列各数π3,0,2.0&,722,Λ1010010001.6,11131,27,3.14,中无理数的个数是 ( ) A . 4 B . 3 C . 2 D . 1 2.-8的立方根是( ) A.2± B.2 C . -2 D .243.如果03)4(2=-+-+y x y x ,那么y x -2的值为( ) A.-3 B .3 C .-1 D .1 4. 点A (3,y 1,),B (-2,y 2)都在直线32+-=x y 上,则y 1与y 2的大小关系是( ) A .y 1>y 2 B .y 2>y 1 C .y 1=y 2 D .不能确定 5. 如图1,将一个边长分别为4、8的长方形纸片ABCD 折叠,使C 点与 A 点重合,则EB 的长是( ).A .3B .4C .6D .56. 如图2,△ABC 中∠ACB =90°,且CD ∥AB ,∠B =60°,则∠1等于( )A . 30°B . 40°C . 50°D . 60°(图1) (图2) (图3)7.一根竹竿竖直插到水池中离岸边1.5m 远的水底,竹竿高出水面0.5m ,若把竹竿的顶端拉向岸边,则竿顶刚好接触到岸边,并且和水面一样高,问水池的深度为( ) A .2m B .2.5cm C .2.25m D .3m8. 如果直线y =2x +m 与两坐标轴围成的三角形面积等于m ,则m 的值是( )A .±3B .3C .±4D .49.将三角形三个顶点的横坐标都减2,纵坐标不变,则所得三角形与原三角形的关系是( )A .将原图向左平移两个单位B .关于原点对称C .将原图向右平移两个单位D .关于y 轴对称10.一次函数y =-bx -k 的图象如下,则y =kx+b 的图象大致位置是( )二、填空题(本大题共10小题,每小题3分,共30分)11. 写出一个解是⎩⎨⎧==21y x 的二元一次方程组 .12. 如果x<-2 ,2)2(+x = 13.若|a ﹣3|+b 2﹣2b +1=0,则a +b = .14.如果某公司一销售人员的个人月收入与其每月的销售量成一次函数(如图3所示),那么此销售人员的销售量在4千件时的月收入是 元。

2018-2019学年八年级下期末数学试卷及答案

2018-2019学年八年级下期末数学试卷及答案

2018-2019学年八年级(下)期末考试数学试卷一、填空题(每小题3分,共24分)1.当x时,在实数范围内有意义.2.在▱ABCD中,∠A=70°,则∠C=度.3.正比例函数y=kx(k≠0)的图象经过点A(﹣1,5),则k=.4.如图,分别以Rt△ABC的三边为边长,在三角形外作三个正方形,若正方形P的面积等于89,Q的面积等于25,则正方形R的边长是.5.如图,在平行四边形ABCD中,点E、F分别在边BC、AD上,请添加一个条件,使四边形AECF是平行四边形(只填一个即可).6.有两名学员小林和小明练习射击,第一轮10枪打完后两人打靶的环数如图所示,通常新手的成绩不太稳定,那么根据图中的信息,估计小林和小明两人中新手是.7.如图,在矩形ABCD中,对角线AC、BD相交于点O,点E、F分别是AO、AD的中点,若AB=6cm,BC=8cm,则△AEF的周长=cm.8.一次函数y1=kx+b与y2=x+a的图象如图所示,则不等式kx+b<x+a的解集为.二、选择题(每小题3分,共24分)9.下列二次根式中,最简二次根式是()A.B.C. D.10.下列计算正确的是()A.2B. C.D.=﹣311.如图,在Rt△ABC中,∠ACB=90°,AC=8,BC=6,CD是AB边上的中线,则CD的长是()A.20 B.10 C.5 D.12.一次函数y=kx+b的图象如图所示,则k、b的符号()A.k<0,b>0 B.k>0,b>0 C.k<0,b<0 D.k>0,b<013.下列命题中,为真命题的是()A.有一组邻边相等的四边形是菱形B.有一个角是直角的平行四边形是矩形C.有一组对边平行的四边形是平行四边形D.对角线互相垂直平分的四边形是正方形14.为了调查某小区居民的用水情况,随机抽查了若干户家庭的月用水量,结果如下表:3458月用水量(吨)户数2341则关于这若干户家庭的月用水量,下列说法错误的是()A.平均数是4.6吨B.中位数是4.5吨C.众数是4吨D.调查了10户家庭的月用水量15.一根蜡烛长30cm,点燃后每小时燃烧5cm,燃烧时蜡烛剩余的长度为h(cm),燃烧时间为t(小时),则下列图象能反映h与t的函数关系的是()A. B. C. D.16.如图,菱形ABCD的周长为40cm,对角线AC、BD相交于点O,DE⊥AB,垂足为E,DE:AB=4:5,则下列结论:①DE=8cm;②BE=4cm;③BD=4cm;=80cm,正确的有()④AC=8cm;⑤S菱形ABCDA.①②④⑤B.①②③④C.①③④⑤D.①②③④⑤三、解答题(共72分)17.(12分)计算:(1)2(2)÷﹣2×+(3)﹣(+2)(﹣2)18.(6分)如图所示,沿海城市B的正南方向A处有一台风中心,沿AC的方向以30km/h的速度移动,已知AC所在的方向与正北成30°的夹角,B市距台风中心最短的距离BD为120km,求台风中心从A处到达D处需要多少小时?(,结果精确到0.1)19.(6分)已知水银体温计的读数y(℃)与水银柱的长度x(cm)之间是一次函数关系,现有一支水银体温计,其部分刻度线不清晰(如图),表中记录的是该体温计部分清晰刻度线及其对应水银柱的长度.(1)求y关于x的函数关系式(不需要写出函数自变量x的取值范围);(2)用该体温计测体温时,水银柱的长度为6.0cm,求此时体温计的读数.20.(6分)已知:如图,在▱ABCD中,E、F是对角线BD上的两点,BE=DF,求证:AE=CF.21.(6分)某中学为了丰富学生的体育活动,决定根据学生的兴趣爱好采购一批体育用品供学生课后锻炼使用,学校随机抽取了部分同学调查他们的兴趣爱好,将收集的数据整理并绘制成下列两幅统计图,请根据图中的信息,完成下列问题:(1)设学校这次调查共抽取了n名学生,n=;(2)请你补全条形统计图;(3)设该校共有学生1200名,请你估计该校有多少名学生喜欢跳绳?22.(9分)在昆明市“创文”工作的带动下,某班学生开展了“文明在行动”的志愿者活动,准备购买一些书包送到希望学校,已知A品牌的书包每个40元,B 品牌的书包每个42元,经协商:购买A品牌书包按原价的九折销售;购买B品牌的书包10个以内(包括10个)按原价销售,10个以上超出的部分按原价的八折销售.(1)设购买x个A品牌书包需要y1元,求出y1关于x的函数关系式;(2)购买x个B品牌书包需要y2元,求出y2关于x的函数关系式;(3)若购买书包的数量超过10个,问购买哪种品牌的书包更合算?说明理由.23.(8分)如图,四边形ABCD中,对角线AC、BD相交于点O,AO=CO,BO=DO,且∠ABC+∠ADC=180°.(1)求证:四边形ABCD是矩形.(2)DF⊥AC,若∠ADF:∠FDC=3:2,则∠BDF的度数是多少?24.(9分)如图,在平面直角坐标系xOy中,直线y=﹣2x+a与y轴交于点C (0,6),与x轴交于点B.(1)求这条直线的解析式;(2)直线AD与(1)中所求的直线相交于点D(﹣1,n),点A的坐标为(﹣3,0).①求n的值及直线AD的解析式;②求△ABD的面积;③点M是直线y=﹣2x+a上的一点(不与点B重合),且点M的横坐标为m,求△ABM的面积S与m之间的关系式.25.(10分)如图,正方形ABCD中,AC是对角线,今有较大的直角三角板,一边始终经过点B,直角顶点P在射线AC上移动,另一边交DC于Q.(1)如图1,当点Q在DC边上时,探究PB与PQ所满足的数量关系;小明同学探究此问题的方法是:过P点作PE⊥DC于E点,PF⊥BC于F点,根据正方形的性质和角平分线的性质,得出PE=PF,再证明△PEQ≌△PFB,可得出结论,他的结论应是;(2)如图2,当点Q落在DC的延长线上时,猜想并写出PB与PQ满足的数量关系,并证明你的猜想.2018-2019学年八年级(下)期末考试八年级数学参考答案一、填空题(每小题3分,共24分) 1.3≥x 2. 70º3. -54. 85. AF=CE 或DF=BE 或AE ∥CF 或∠AEB=∠FCB 或∠DFC=∠DAE 或∠AEC=∠CFA 或∠EAF=∠FCE 或∠AEB=∠CFD6. 小林7. 98. x >3三、解答题:17.计算:(每小题4分,共12分) (1)483316122+- 解: 原式=3123234+- …………………………3分 =314= …………………………4分(2)810512-327+⨯÷ 解: 原式=22223+- …………………………3分 =3 …………………………4分 (3)()()()2525232-+-+解: 原式= 12623-++ …………………………3分 =624+ …………………………4分18. 解:在Rt △ADB 中,∠ADB=90º∵∠BAD=30º,BD=120km∴ AB=240km …………………………2分 又∵ 222AB BD AD =+∴312012024022=-=AD km …………………………4分∵73.13≈∴从A 处到达D 处需要34303120=9.6≈小时 …………………………5分答:求台风中心从A 处到达D 处大约6.9小时 …………………………6分19. 解:设函数的解析式为:b kx y +=(k ≠0)依题意得:⎩⎨⎧=+=+408354b k b k …………………………2分…………………………3分∴ 3045+=x y …………………………4分 (2)当 x=6.0cm 时,y=7.5+30=37.5 …………………………5分 答:此时体温计的读数为37.5ºC . …………………………6分20.证明:∵四边形ABCD 是平行四边形,∴AB=CD ,AB ∥CD . …………………………1分 ∴∠ABE=∠CDF . …………………………2分 在△ABE 和△CDF 中⎪⎩⎪⎨⎧==∠=DF BE CDF ABE CD AB ∴△ABE ≌△CDF (SAS ). …………………………5分∴AE=CF …………………………6分 (其它做法参照给分)21. 解:(1)n =100;…………………………1分(2)∵喜欢羽毛球的人数=100×20%=20人,…………………………2分∴条形统计图如图;…………………………3分(3)由已知得,1200×20%=240(人). …………………………5分答;该校约有240人喜欢跳绳. …………………………6分22. 解:(1)由题意得:x y 361= ………1分(2)⎩⎨⎧+≤≤=)>10(846.33)100(422x x x x y …………………………4分(分开书写:当0≤x ≤10时,x y 422=,当x >10时;()846.33108.04210422+=-⋅⨯+⨯=x x y ,得满分) (列对一个解析式得一分,取值范围共一分)(3)若x >10则:846.332+=x y①当21y y =时,846.3336+=x x ,解得35=x ;………5分 ②当1y >2y 时,846.3336+x x >,解得35>x ;………6分当21y y <时,846.3336+x x <,解得35<x ,………7分 ∵x >10∴3510<<x ………8分答:若购买35个书包,选A 、B 品牌都一样;若购买35个以上书包,选B 品牌划算;若购买书包个数超过10个但小于35个,选A 品牌划算. ………9分23. 证明:(1)证明:∵A0=C0,B0=D0∴四边形ABCD 是平行四边形 …………………………2分∴∠ABC=∠ADC ∵∠ABC+∠ADC=180°∴∠ABC=∠ADC=90° …………………………3分∴平行四边形ABCD 是矩形 …………………………4分 (2)解:∵∠ADC=90°,∠ADF :∠FDC=3:2∴∠FDC=36° …………………………5分 ∵DF ⊥AC ,∴∠DCO=90°-36°=54°, …………………………6分 ∵四边形ABCD 是矩形,∴OC=OD ,∴∠DCO =∠ODC=54° …………………………7分 ∴∠BDF=∠ODC-∠FDC=18° …………………………8分24. 解:(1)∵直线y=-2x+a 与y 轴交于点C (0,6),∴a=6,…………………………1分 ∴y=-2x+6,…………………………2分(2) ①∵点D (-1,n )在y=-2x+6上,∴n=8,…………………………3分设直线AD 的解析式为y=kx+b(K ≠0)⎩⎨⎧=+-=+83-b k b k 解得:k=4,b=12 …………………………4分∴直线AD 的解析式为y=4x+12;…………………………5分 ②令y=0,则-2x+6=0,解得:x=3,∴B (3,0),…………………………6分∴AB=6,∵点M 在直线y=-2x+6上,设M (m ,-2m+6),∴S= 21×6×62-+m =362-+m …………………………7分 ∴①当m <3时,S=3(-2m+6),即S=-6m+18;…………………………8分 ②当m >3时,S=21×6×[-(-2m+6)],即S=6m-18;…………………………9分25..(1)答:PB=PQ ………………………2分(2)证明:过P 作PE ⊥BC 的延长线于E 点,PF ⊥CQ 于F 点, ………………………3分∵AC 是正方形的对角线∴ PA 平分∠DCB ,∴∠DCA=∠ACB ………………………4分∵ ∠ACB=∠PCE , ∠DCA=∠FCP∴∠PCE=∠FCP∴ PC 平分∠FCE ,又∵PE ⊥BC ,PF ⊥CQ∴ PF=PE , ………………………5分∴∠ECF=∠CEP=∠CFP = 90°=∠QFP∴ 四边形CEPF 是矩形………………………6分 ∴∠EPF=90°∴∠BPE=∠QPF ,………………………7分 在△PEB 和△PFQ 中⎪⎩⎪⎨⎧∠=∠=∠=∠BPEQPF PF PE QFPBEP∴△PEB ≌△PFQ (ASA )………………………9分 ∴PB=PQ .………………………10分 (其它做法参照给分)。

2018--2019学年第二学期教学质量检测八年级数学试题卷及答案

2018--2019学年第二学期教学质量检测八年级数学试题卷及答案

2018--2019学年第二学期教学质量检测八年级数学试题卷及答案注意事项:本试卷满分120分,考试时间100分钟一、选择题(每小题3分,共30分)1.化简12的结果是()A.6B. 23C. 32D. 262.要使代数式1 x有意义,则x的取值范围是()A.x>1B.x≥-1C. x≠0D. x>-1且x≠03.菱形的对角线长分别是8,6,则这个菱形的面积是()A.48B. 24C. 14D. 124.已知一次函数y=-x+1,则该函数的图象是()5下列各组线段能构成直角三角形的是()A.1,2,3B. 7,12,13C. 5,8,10D. 15,20,256.矩形的面积为18,一边长为23,则另一边长为()A. 3B. 63C. 33D. 937.下表记录了甲、乙、丙、丁四名跳高运动员最近几次选拔赛成绩的平均数与方差:甲乙丙丁平均数185 180 185 180方差 3.6 3.6 7.4 8.1根据表中数据,要从中选择一名成绩好且稳定的运动员参加比赛,应该选择()A.甲B. 乙C. 丙D. 丁8.如图,函数y=ax和y=kx-2的图象相交于点A(2,-3),则不等式ax≥kx-2的解集为()A.x≤2B. x≤-3C. x≥2D. x≥-39.若顺次连接四边形ABCD四边的中点,得到的图形是一个矩形,则四边形ABCD一定是()A.矩形B. 对角线相等的四边形C . 菱形 D. 对角线互相垂直的四边形10.如图,菱形ABCD中,AB=4,E、F分别是AB、BC的中点,P是AC上动点,则PE+PF的最小值是()二.填空题(每小题3分,共15分)11.某学校八年级3班有50名同学,30名男生平均身高为170cm,20名女生的平均身高160cm,则全班学生的平均身高是cm.12.函数y=2x与y=6-kx的图象如图所示,则k= .13.如图,所有阴影部分都是正方形,所有三角形都是直角三角形,若正方形B,C,D的面积依次为4,3,9,则正方形A 的面积为 .14. 已知△ABC 中,∠ACB=90°点D 为AB 的中点, 若CD=6,则AB 长为 .15. 将两个全等的直角三角形的直角边对齐拼成平行四边形,若这两个直角三角形直角边的长分别是1cm, 2cm,那么拼成的平行四边形较长的对角线长是 三、解答题(本大题共8个小题,共75分) 16.(8分)计算()()()3-535 1⨯+;()323216-822+ 17.如图,将平行四边形ABCD 的对角线BD 向两个方向延长,分别至点E 和点F ,且使BE=DF.求证:四边形AECF 是平行四边形.18.(8分)下表是某网络公司员工月收入情况表:月收入(元)45000 17000 10000 5600 5000 3800 3000 1600人数1 1 12 5 2 11 2(1)求此公司员工月收入的中位数;(2)小张求出这个公司员工月收入平均数为6080元,若用所求平均数反映公司全体员工月收入水平,合适吗?若不合适,用什么数据更好?19. (10分)如图所示,直线y=343- x 分别与x 轴,y 轴交于点A,B ,点C 是y 轴负半轴上一点,BA=BC. (1)求点A 和点B 的坐标;(2)求图象经过点A 和点C 的一次函数的解析式.20. (10分)如图,平行四边形ABCD 中,对角线AC 和BD 相交于点O ,且OA=OB.(1)求证:∠ABC=90°;(2)若AD=4,∠AOD=60°,求CD 的长.21. (9分)已知王亮家,公园,新华书店在一条直线上,下面的图象反映的过程是:王亮从家跑步去公园,在那里锻炼了一阵后又走到新华书店去买书,然后散步走回家,其中x 表示时间,y 表示王亮离家的距离. 根据图象回答:(1)公园离王亮家 km;王亮从家到公园用了 min;(2)公园离新华书店 km ; (3)王亮在新华书店逗留了 min; (4)王亮从新华书店回家的平均速度是多少?22. (10)甲乙两家商场平时以同样的价格出售相同的商品,春节期间两家商场都让利酬宾,其中甲商场所有商品按m 折出售,乙商场对一次购物超过200元后的价格部分打n 折,以x (单位:元)表示商品原价,y (单位:元)表示购物金额,分别就两家商场的让利方式画出y 与x 的函数图像如图所示.(1)请直接写出m,和n 的值; (2)求出乙甲,y y 关于x 的函数关系式;(3)春节期间如何选择这两家商场去购物更省钱?23.(12分)(1)【探索发现】正方形ABCD中,P是对角线AC上的一个动点(与点A,C不重合),过点P作PE⊥PB交线段DC于点E. 求证:PB=PE.小玲想到的思路是:过点P作PG⊥BC于点G,PH⊥DC于点H,通过证明△PGB≌△PHE得到PB=PE.请按小玲的思路写出证明过程.(3)【应用拓展】如图2,在(1)的条件下,设正方形ABCD的边长为2,过点E作EF⊥AC交AC于点F,求PF的长.2019--2019学年第二学期教学质量检测八年级数学试题卷答案一、选择题 题号 1 2 3 4 5 6 7 8 9 10 答案BBBADCAADC二、填空题: 题号 11 12 13 14 15答案166121217三、解答题16.(1)2;(2)213 17.证明:如图:连接AC 交BD 于O ,∵平行四边形ABCD , ∴OB=OD,OA=OC ∵BE=DF∴OB+BE=OD+DF,即:OE=OF 又OA=OC ,∴四边形AECF 是平行四边形.18.(1)3000元;(2)不合适,因为全公司只有3个人的工资能达到平均数,不能很好的反映公司全体员工的月收入水平.用中位数更好. 19.(1)A (4,0),B (0,3);(2)221-=x y20.证明:∵平行四边形ABCD ,∴OB=OD=21BD,OA=OC=21AC∵OA=OB ,∴BD=AC∴平行四边形ABCD 是矩形,∴∠ABC=90° (3)3421. (1)2.5 20(2)1 (3)20 ;(4)703(km/min ) 22. (1)m=8,n=7; (2)x y 8.0=甲,()⎩⎨⎧>+≤≤=)200 607.02000x x x x y (乙(3)当x<600元时,甲商场优惠; 当x=600元时,甲、乙两商场价格一样; 当x>600元时,去乙商场购物优惠.23. 【证明】∵正方形ABCD ,∴AC 平分∠BCD ,且∠BCD=90° 又∵PG ⊥BC 于点G ,PH ⊥DC 于点H, ∴PG=PH ,∠PGB=∠PHE=90° ∴∠HPG=90°即:∠HPE+∠EPG=90°∵PE ⊥PB ,∴∠BPE=90°即:∠BPG+∠EPG=90° ∴∠BPG=∠HPE ,∴△PGB ≌△PHE ,∴PB=PE(2)2。

2024届福建省龙岩市龙岩二中学数学八年级第二学期期末达标检测试题含解析

2024届福建省龙岩市龙岩二中学数学八年级第二学期期末达标检测试题含解析

2024届福建省龙岩市龙岩二中学数学八年级第二学期期末达标检测试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。

2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。

回答非选择题时,将答案写在答题卡上,写在本试卷上无效。

3.考试结束后,将本试卷和答题卡一并交回。

一、选择题(每题4分,共48分)1.若平行四边形的两个内角的度数之比为1:5,则其中较小的内角是( )A .30B .45C .60D .902.如图,四边形ABCD 为平行四边形,延长AD 到点E ,使DE AD =,连接EB ,EC ,DB .添加一个条件,不能使四边形成为矩形的是( )A .AB BE = B .90ADB ∠=︒C .BE DC ⊥D .CE DE ⊥3.一次函数()32y k x =-+的图像不经过第四象限,那么k 的取值范围是( )A .3k >B .3k <C .3k ≥D .3k ≤ 4.若方程12-- +2- = 3有增根,则a 的值为( ) A .1 B .2 C .3 D .05.若关于x 的不等式组3428512x x x a x +≤+⎧⎪⎨+-⎪⎩<有且仅有5个整数解,且关于y 的分式方程3111y a y y ---=--有非负整数解,则满足条件的所有整数a 的和为( )A .12B .14C .21D .336.如图,在△ABC 中,∠C =90°,点E 是斜边AB 的中点,ED ⊥AB ,且∠CAD :∠BAD =5:2,则∠BAC =( )A .60°B .70°C .80°D .90°7.下列由左边到右边的变形,属于因式分解的是().A.(x+1)(x-1)=x2-1B.x2-2x+1=x(x-2)+1C.a2-b2=(a+b)(a-b)D.mx+my+nx+ny=m(x+y)+n(x+y)8.如图,将△ABC绕点A顺时针旋转,使点C落在边AB上的点E处,点B落在点D处,连结BD,如果∠DAC=∠DBA,那么∠BAC度数是()A.32°B.35°C.36°D.40°9.如图所示,在▱ABCD中,分别以AB,AD为边向外作等边△ABE,△ADF,延长CB交AE于点G,点G在点A,E之间,连接CG,CF,则下列结论不一定正确的是()A.△CDF≌△EBCB.∠CDF=∠EAFC.CG⊥AED.△ECF是等边三角形10.某校5名同学在“国学经典颂读”比赛中,成绩(单位:分)分别是86,95,97,90,88,这组数据的中位数是()A.97 B.90 C.95 D.8811.如图,点P是边长为1的菱形ABCD对角线AC上的一个动点,点M,N分别是AB,BC边上的中点,则MP+PN 的最小值是()A .12B .1C .2D .2 12.当a <0,b <0时,-a +2ab -b 可变形为( )A .()2a b +B .-()2a b -C .()2a b -+-D .()2a b ---二、填空题(每题4分,共24分)13.把直线y =-x +3向上平移m 个单位后,与直线y =2x +4的交点在第一象限,则m 的取值范围是_________________.14.如图,已知:∠MON=30°,点A 1、A 2、A 3 在射线ON 上,点B 1、B 2、B 3…在射线OM 上,△A 1B 1A 2、△A 2B 2A 3、△A 3B 3A 4…均为等边三角形,若OA 1=a ,则△A 6B 6A 7的边长为______.15.一次函数y ax b =+图象经过一、三、四象限,则反比例函数()0ab y x x=>的函数值随x 的增大而__________.(填增大或减小) 16.如图,以△ABC 的三边为边向外作正方形,其面积分别为S 1,S 2,S 3,且S 1=9,S 3=25,当S 2=_____时∠ACB =90°.17.如图,已知边长为4的菱形ABCD 中,AC =BC ,E ,F 分别为AB ,AD 边上的动点,满足BE =AF ,连接EF 交AC 于点G ,CE 、CF 分别交BD 与点M ,N ,给出下列结论:①∠AFC =∠AGE ;②EF =BE+DF ;③△ECF 面积的最小值为33,④若AF =2,则BM =MN =DN ;⑤若AF =1,则EF =3FG ;其中所有正确结论的序号是_____.18.如图,在矩形中,,,点是边上一点,若平分,则的面积为________.三、解答题(共78分)19.(8分)如图,在正方形网格中每个小正方形的边长为1,小正方形的顶点称为格点,在正方形网格中分别画出下列图形:(1)在图(1)网格中画出长为5的线段AB .(2)在图(2)网格中画出一个腰长为10,面积为3的等腰DEF ∆20.(8分)已知,5a b +=,6ab =,求33a b ab +的值.21.(8分)已知命题“若 a >b ,则 a 2>b 2”.(1)此命题是真命题还是假命题?若是真命题,请给予证明;若是假命题,请举出一个 反例.(2)写出此命题的逆命题,并判断此逆命题的真假;若是真命题,请给予证明;若是假 命题,请举出一个反例.22.(10分)如图,抛物线y=﹣x 2+bx+c (a≠0)与x 轴交于点A (﹣1,0)和B (3,0),与y 轴交于点C ,点D 的横坐标为m (0<m <3),连结DC 并延长至E ,使得CE=CD ,连结BE ,BC .(1)求抛物线的解析式;(2)用含m 的代数式表示点E 的坐标,并求出点E 纵坐标的范围;(3)求△BCE 的面积最大值.23.(10分)化简:2162a a --÷(a-4)-12a -. 24.(10分)如图,在平面直角坐标系中,已知△ABC 的三个顶点坐标分别是A (1,1),B (4,1),C (3,3). (1)将△ABC 向下平移5个单位后得到△A 1B 1C 1,请画出△A 1B 1C 1; (2)将△ABC 绕原点O 逆时针旋转90°后得到△A 2B 2C 2,请画出△A 2B 2C 2;(3)判断以O ,A 1,B 为顶点的三角形的形状.(无须说明理由)25.(12分)阅读材料,解答问题:(1)中国古代数学著作《周髀算经》有着这样的记载:“勾广三,股修四,经隅五.”这句话的意思是:“如果直角三角形两直角边为3和4时,那么斜边的长为1.”上述记载说明:在Rt ABC 中,如果90C ∠=︒,BC a =,AC b =,AB c =,那么a b c ,,三者之间的数量关系是: .(2)对于(1)中这个数量关系,我们给出下面的证明.如图①,它是由四个全等的直角三角形围成的一个大正方形ABDE ,中空的部分是一个小正方形CFGH .结合图①,将下面的证明过程补充完整:∵12ABC EAF DEG BDH S S S S ab ∆∆∆∆====,2ABDE S c =正方形 CFGH S =正方形 (用含,a b 的式子表示)又∵ = .∴221()42a b c ab -=-⨯ ∴22222a ab b c ab -+=-∴ .(3)如图②,把矩形PQRS 折叠,使点Q 与点S 重合,点R 落在点K 处,折痕为MN .如果48PS PQ ==,,求PN 的长.26.(课题研究)旋转图形中对应线段所在直线的夹角(小于等于90︒的角)与旋转角的关系.(问题初探)线段AB 绕点O 顺时针旋转得线段CD ,其中点A 与点C 对应,点B 与点D 对应,旋转角的度数为α,且0180α︒<<︒.(1)如图(1)当90α=︒时,线段AB 、CD 所在直线夹角为______.(2)如图(2)当60α=︒时,线段AB 、CD 所在直线夹角为_____.(3)如图(3),当90180α︒<<︒时,直线AB 与直线CD 夹角与旋转角α存在着怎样的数量关系?请说明理由; (形成结论)旋转图形中,当旋转角小于平角时,对应线段所在直线的夹角与旋转角_____.(运用拓广)运用所形成的结论求解下面的问题:(4)如图(4),四边形ABCD 中,60ABC ∠=︒,30ADC ∠=︒,AB BC =,2AD =,3CD =BD 的长度.参考答案一、选择题(每题4分,共48分)1、A【解题分析】根据平行四边形的性质即可求解.【题目详解】设较小的角为x ,则另一个角为5x ,∵平行四边形的对角互补,∴x+5x=180°,解得x=30° ,故选A【题目点拨】此题主要考查平行四边形的性质,解题的关键是熟知平行四边形的对角互补.2、C【解题分析】先证明四边形BCED 为平行四边形,再根据矩形的判定进行解答.【题目详解】解:∵四边形ABCD 为平行四边形,∴AD ∥BC ,AD=BC ,又∵AD=DE ,∴DE ∥BC ,且DE=BC ,∴四边形BCED 为平行四边形,A 、∵AB=BE ,DE=AD ,∴BD ⊥AE ,∴▱DBCE 为矩形,故本选项错误;B 、∵∠ADB=90°,∴∠EDB=90°,∴▱DBCE 为矩形,故本选项错误;C 、∵对角线互相垂直的平行四边形为菱形,不一定为矩形,故本选项正确;D 、∵CE ⊥DE ,∴∠CED=90°,∴▱DBCE 为矩形,故本选项错误.故选:C .【题目点拨】本题考查了平行四边形的判定和性质、矩形的判定,首先判定四边形BCDE 为平行四边形是解题的关键. 3、A【解题分析】根据一次函数经过的象限即可确定30k ->,解不等式即可得出k 的取值范围.【题目详解】∵一次函数()32y k x =-+的图像不经过第四象限,∴30k->,解得3k>,故选:A.【题目点拨】本题主要考查一次函数的图象及性质,掌握一次函数的图象及性质是解题的关键.4、A【解题分析】增根是分式方程化为整式方程后产生的使分式方程的分母为0的根.把增根代入化为整式方程的方程即可求出a的值.【题目详解】方程两边都乘(x-2),得x-1-a=3(x-2)∵原方程增根为x=2,∴把x=2代入整式方程,得a=1,故选:A.【题目点拨】考查了分式方程的增根,增根确定后可按如下步骤进行:①化分式方程为整式方程;②把增根代入整式方程即可求得相关字母的值.5、B【解题分析】先解不等式组,根据有5个整数解,确定a的取值2<a≤9,根据关于y的分式方程,得y=a-22,根据分式方程有意义的条件确定a≠4,从而可得a的值并计算所有符合条件的和.【题目详解】解:3428512x xx ax+≤+⎧⎪⎨+-<⎪⎩①②,解①得:x≤4,解②得:x>2-a7,∴不等式组解集为:2-a7<x≤4,∵不等式组3428512x xx ax+≤+⎧⎪⎨+-<⎪⎩有且仅有5个整数解,即0,1,2,3,4,∴-1≤2-a7<0,∴2<a≤9,-y y-1−a-3y-1=1,去分母得:-y+a-3=y-1,y=a-22,∵y有非负整数解,且y≠1,即a≠4,∴a=6或8,6+8=14,故选B.【题目点拨】本题考查了一元一次方程组的解、分式方程的解,此类题容易出错,根据整数解的个数确定字母系数a的值,有难度,要细心.6、B【解题分析】点E是斜边AB的中点,ED⊥AB,∠B=∠DAB,∠DAB=2x,故2x+2x+5x=90°,故x=10°,∠BAC=70°.故选B.7、C【解题分析】因式分解是把一个多项式化为几个整式的积的形式,据此进行解答即可.【题目详解】解:A、B、D三个选项均不是把一个多项式化为几个整式的积的形式,故都不是因式分解,只有C选项符合因式分解的定义,故选择C.【题目点拨】本题考查了因式分解的定义,牢记定义是解题关键.8、C【解题分析】设∠BAC=x,依据旋转的性质,可得∠DAE=∠BAC=x,∠ADB=∠ABD=2x,再根据三角形内角和定理即可得出x.【题目详解】设∠BAC=x,由旋转的性质,可得∠DAE=∠BAC=x,∴∠DAC=∠DBA=2x,又∵AB=AD,∴∠ADB=∠ABD=2x,又∵△ABD中,∠BAD+∠ABD+∠ADB=180°,∴x+2x+2x=180°,∴x=36°,即∠BAC=36°,故选C.【题目点拨】本题主要考查了旋转的性质以及三角形内角和定理,解题时注意:旋转前、后的图形全等.9、C【解题分析】A.在平行四边形ABCD中,∠ADC=∠ABC,AD=BC,CD=AB,∵△ABE、△ADF都是等边三角形,∴AD=DF,AB=EB,∠ADF=∠ABE=60°,∴DF=BC,CD=BC,∴∠CDF=360°-∠ADC-60°=300°-∠ADC,∠EBC=360°-∠ABC-60°=300°-∠ABC,∴∠CDF=∠EBC,在△CDF和△EBC中,DF=BC,∠CDF=∠EBC,CD=EB,∴△CDF≌△EBC(SAS),故A正确;B.在平行四边形ABCD中,∠DAB=180°-∠ADC,∴∠EAF=∠DAB+∠DAF+∠BAE=180°-∠ADC+60°+60°=300°-∠ADC,∴∠CDF=∠EAF,故B正确;C. .当CG⊥AE时,∵△ABE是等边三角形,∴∠ABG=30°,∴∠ABC=180°-30°=150°,∵∠ABC=150°无法求出,故C错误;D. 同理可证△CDF≌△EAF,∴EF=CF,∵△CDF≌△EBC,∴CE=CF,∴EC=CF=EF,∴△ECF是等边三角形,故D正确;故选C.点睛:本题考查了全等三角形的判定、等边三角形的判定和性质、平行四边形的性质等知识,综合性强.考查学生综合运用数学知识的能力.根据题意,结合图形,对选项一一求证,判定正确选项.10、B【解题分析】先将题中的数据按照从小到大的顺序排列,然后根据中位数的概念求解即可.【题目详解】解:将小明所在小组的5个同学的成绩重新排列为:86、88、90、95、97,所以这组数据的中位数为90分,故选:B.【题目点拨】本题考查了中位数的概念:将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.11、B【解题分析】先作点M关于AC的对称点M′,连接M′N交AC于P,此时MP+NP有最小值.然后证明四边形ABNM′为平行四边形,即可求出MP+NP=M′N=AB=1.【题目详解】解:如图,作点M关于AC的对称点M′,连接M′N交AC于P,此时MP+NP有最小值,最小值为M′N的长.∵菱形ABCD关于AC对称,M是AB边上的中点,∴M′是AD的中点,又∵N是BC边上的中点,∴AM′∥BN,AM′=BN,∴四边形ABNM′是平行四边形,∴M′N=AB=1,∴MP+NP=M′N=1,即MP+NP的最小值为1,故选B.12、C【解题分析】试题解析:∵a<1,b<1,∴-a>1,-b>1.∴-a+ab b a-2ab b-)2,a b--2.故选C.二、填空题(每题4分,共24分)13、m>1【解题分析】试题分析:直线y=-x+3向上平移m个单位后可得:y=-x+3+m,求出直线y=-x+3+m与直线y=2x+4的交点,再由此点在第一象限可得出m的取值范围.试题解析:直线y=-x+3向上平移m个单位后可得:y=-x+3+m,联立两直线解析式得:3? {24y x my x=-++=+,解得:13{2103mxmy-=+=,即交点坐标为(13m-,2103m+),∵交点在第一象限,∴13{2103mm-+>>,解得:m>1.考点:一次函数图象与几何变换.14、32a【解题分析】根据等腰三角形的性质以及平行线的性质得出A1B1∥A2B2∥A3B3,以及A2B2=2B1A2,得出A3B3=4B1A2=4,A4B4=8B1A2=8,A5B5=16B1A2…进而得出答案.【题目详解】如图所示:∵△A1B1A2是等边三角形,∴A1B1=A2B1,∠3=∠4=∠12=60°,∴∠2=120°,∵∠MON=30°,∴∠1=180°-120°-30°=30°,又∵∠3=60°,∴∠5=180°-60°-30°=90°,∵∠MON=∠1=30°,∴OA 1=A 1B 1=a ,∴A 2B 1=a ,∵△A 2B 2A 3、△A 3B 3A 4是等边三角形,∴∠11=∠10=60°,∠13=60°,∵∠4=∠12=60°,∴A 1B 1∥A 2B 2∥A 3B 3,B 1A 2∥B 2A 3,∴∠1=∠6=∠7=30°,∠5=∠8=90°,∴A 2B 2=2B 1A 2,B 3A 3=2B 2A 3,∴A 3B 3=4B 1A 2=4a ,A 4B 4=8B 1A 2=8a ,A 5B 5=16B 1A 2=16a ,以此类推:A 6B 6=32B 1A 2=32a .故答案是:32a .【题目点拨】考查了等边三角形的性质以及等腰三角形的性质,根据已知得出A 3B 3=4B 1A 2,A 4B 4=8B 1A 2,A 5B 5=16B 1A 2进而发现规律是解题关键.15、增大【解题分析】根据一次函数y ax b =+图象经过一、三、四象限,可以得出a >0,b<0,则反比例函数的系数0ab <,结合x>0即可得到结论.【题目详解】∵一次函数y ax b =+图象经过一、三、四象限,∴a >0,b<0,∴0ab <,∴又x>0,∴反比例函数图象在第四象限,且y 随着x 的增大而增大,故答案为:增大.【题目点拨】本题考查了一次函数的图象和性质,反比例函数的图象和性质,掌握一次函数,反比例函数的图象和性质是解题的关键.16、1【解题分析】设△ABC的三边分别为BC=a、AC=b、AB=c,当∠ACB=90°时,△ABC是直角三角形,由勾股定理可得到a2+b2=c2,即S1+S2=S3,代入可得解.【题目详解】设△ABC的三边分别为BC=a、AC=b、AB=c,∴S1=a2=9,S2=b2,S3=c2=25,当∠ACB=90°时,△ABC是直角三角形,∴a2+b2=c2,即S1+S2=S3,∴S2=S3﹣S1=1.故答案为:1.【题目点拨】本题考查了勾股定理的几何背景,灵活运用勾股定理是解题关键.17、①③④【解题分析】由“SAS”可证△BEC≌△AFC,再证△EFC是等边三角形,由外角的性质可证∠AFC=∠AGE;由点E在AB上运动,可得BE+DF≥EF;由等边三角形的性质可得△ECF2,则当EC⊥AB时,△ECF的最小值为由等边三角形的性质和菱形的性质可求MN=BD﹣BM﹣DN,由平行线分线段成比例可求EG=3FG,即可求解.【题目详解】∵四边形ABCD是菱形,∴AB=BC=CD=AD=4,∵AC=BC,∴AB=BC=CD=AD=AC,∴△ABC,△ACD是等边三角形,∴∠ABC=∠BAC=∠ACB=∠DA C=60°,∵AC=BC,∠ABC=∠DAC,AF=BE,∴△BEC≌△AFC(SAS)∴CF=CE,∠BCE=∠ACF,∴∠ECF=∠BCA=60°,∴△EFC是等边三角形,∴∠EFC=60°,∵∠AFC=∠AFE+∠EFC=60°+∠AFE,∠AGE=∠AFE+∠CAD=60°+∠AFE,∴∠AFC=∠AGE,故①正确;∵BE+DF=AF+DF=AD,EF=CF≤AC,∴BE+DF≥EF(当点E与点B重合时,BE+DF=EF),故②不正确;∵△ECF是等边三角形,∴△ECF面积的34EC2,∴当EC⊥AB时,△ECF面积有最小值,此时,EC=23,△ECF面积的最小值为33,故③正确;如图,设AC与BD的交点为O,若AF=2,则FD=BE=AE=2,∴点E为AB中点,点F为AD中点,∵四边形ABCD是菱形,∴AC⊥BD,AO=CO,BO=DO,∠ABO=12∠ABC=30°,∴AO=12AB=2,BO3AO=3∴BD=43∵△ABC是等边三角形,BE=AE=2,∴CE⊥AB,且∠ABO=30°,3EM=2,BM=2EM,43,同理可得DN=433,∴MN=BD﹣BM﹣DN=433,∴BM=MN=DN,故④正确;如图,过点E作EH∥AD,交AC于H,∵AF=BE=1,∴AE=3,∵EH∥AD∥BC,∴∠AEH=∠ABC=60°,∠AHE=∠ACB=60°,∴△AEH是等边三角形,∴EH=AE=3,∵AD∥EH,∴13 AF FGEH EG==,∴EG=3FG,故⑤错误,故答案为:①③④【题目点拨】本题是四边形综合题,考查菱形的性质,等边三角形的判定和性质,等腰直角三角形的判定和性质,勾股定理等知识,添加辅助线是解题的关键.18、1【解题分析】首先根据矩形的性质和角平分线的性质得到EA=DA,从而求得BE,然后利用三角形的面积公式进行计算即可.【题目详解】解:∵四边形ABCD是矩形,∴AD∥BC,AD=BC=5,CD=AB=3,∴∠CED=∠ADE,∵ED平分∠AEC,∴∠AED =∠CED ,∴∠EDA =∠AED ,∴AD =AE =5,∴BE =,∴△ABE 的面积=BE•AB =×4×3=1; 故答案为:1.【题目点拨】本题考查了矩形的性质,勾股定理等,了解矩形的性质是解答本题的关键,难度不大.三、解答题(共78分)19、(1)见解析;(2)见解析.【解题分析】(1)根据勾股定理可得直角边长为2和1的直角三角形斜边长为5;(2)根据勾股定理可得直角边长为3和1的直角三角形斜边长为10,再根据面积为3确定△DEF.【题目详解】解如图所示图(1) 图(2)【题目点拨】此题主要考查了勾股定理的应用,在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方. 20、78.【解题分析】原式提取公因式,再利用完全平方公式化简,将已知等式代入计算即可求出值.【题目详解】()33222()2a b ab ab a b ab a b ab ⎡⎤+=+=+-⎣⎦把5a b +=,6ab =代入得:()3326526a b ab ∴+=⨯-⨯3378a b ab ∴+=【题目点拨】此题考查了因式分解-提公因式法,熟练掌握因式分解的方法是解本题的关键.21、(1)假命题,举例如a =1,b =-1;反例不唯一.(2)逆命题为“若a 2>b 2,则a >b ”,该命题也是假命题,举例如a =-2,b =1;反例不唯一.【解题分析】(1)判断是否为真命题,需要分析由题设是否能推出结论,本题可从a 、b 的正负性来考虑反例,如a =1,b =-1来进行检验判断;(2)先写出逆命题,再按照(1)的思路进行判断.【题目详解】解:(1)假命题,举例如a =1,b =-1,满足a >b ,但很明显,221(1)=-,不满足a 2>b 2,所以原命题是假命题;当然反例不唯一.(2)逆命题为“若a 2>b 2,则a >b ”,该命题也是假命题,举例如a =-2,b =1,满足a 2>b 2,但不满足a >b ;反例也不唯一.【题目点拨】本题主要考查命题和逆命题的知识,判断命题的真假关键是熟知课本中有关的定义和性质定理等,另外,正确举出反例是判断假命题的常用方法.22、(1)y=﹣x 2+2x+1.(2)2≤E y <2.(1)当m=1.5时,S △BCE 有最大值,S △BCE 的最大值=278. 【解题分析】分析:(1) 1)把A 、B 两点代入抛物线解析式即可;(2)设()()2,23,0,3D m m m C CE CD -++=,利用求线段中点的公式列出关于m 的方程组,再利用0<m <1即可求解;(1) 连结BD ,过点D 作x 轴的垂线交BC 于点H,由BCE BCD S S ∆∆=,设出点D 的坐标,进而求出点H 的坐标,利用三角形的面积公式求出BCE S ∆,再利用公式求二次函数的最值即可. 详解:(1)∵抛物线 2y x bx c =-++ 过点A (-1,0)和B (1,0) 10930b c b c ---=⎧∴⎨-++=⎩ 22233b y x xc =⎧∴∴=-++⎨=⎩ (2)∵()()2,23,0,3D m m m C CE CD -++=∴点C 为线段DE 中点设点E (a,b )()20236a m b m m +=⎧⎪∴⎨+-++=⎪⎩()2,23E m m m ∴--+∵0<m <1, ()222312m m m -+=-+∴当m=1时,纵坐标最小值为2当m=1时,最大值为2∴点E 纵坐标的范围为26E y ≤<(1)连结BD ,过点D 作x 轴的垂线交BC 于点H∵CE=CD ()2,23,:3BCE BCDS S D m m m BC y x ∆∆∴=-++=-+ ∴H (m ,-m+1) ∴()211=233322BCD S DH OB m m m ∆=⨯-+++-⨯ 23922m m =-+ 当m=1.5时,max 278EBC S ∆=.点睛:本题考查了二次函数的综合题、待定系数法、一次函数等知识点,解题的关键是灵活运用所学知识解决问题,会用方程的思想解决问题.23、32a a +- 【解题分析】先利用平方差公式22()()a b a b a b -=+-对216a -进行因式分解,然后把除法运算转化为乘法运算,能约分的要约分,最后进行减法运算即可.【题目详解】原式=()()4411242a a a a a +-⋅---- =4122a a a +--- =32a a +- 【题目点拨】本题主要考查分式的混合运算,掌握分式混合运算顺序和法则是解题的关键.24、(1)画图见解析;(2)画图见解析;(3)三角形的形状为等腰直角三角形.【解题分析】【分析】(1)利用点平移的坐标特征写出A 1、B 1、C 1的坐标,然后描点即可得到△A 1B 1C 1为所作;(2)利用网格特定和旋转的性质画出A 、B 、C 的对应点A 2、B 2、C 2,从而得到△A 2B 2C 2,(3)根据勾股定理逆定理解答即可.【题目详解】(1)如图所示,△A 1B 1C 1即为所求;(2)如图所示,△A 2B 2C 2即为所求;(3)三角形的形状为等腰直角三角形,OB=OA 1224117+=A 12253+34即OB 2+OA 12=A 1B 2,所以三角形的形状为等腰直角三角形.【题目点拨】本题考查了作图﹣旋转变换:根据旋转的性质可知,对应角都相等都等于旋转角,对应线段也相等,由此可以通过作相等的角,在角的边上截取相等的线段的方法,找到对应点,顺次连接得出旋转后的图形.25、(1)222a b c +=;(2)2()a b -;正方形ABCD 的面积;四个全等直角三角形的面积+正方形CFGH 的面积;222a b c +=;(2)2. 【解题分析】(1)根据勾股定理解答即可;(2)根据题意、结合图形,根据完全平方公式进行计算即可;(2)根据翻折变换的特点、根据勾股定理列出方程,解方程即可.【题目详解】解:(1)在Rt ABC 中,90C ∠=︒,BC a =,AC b =,AB c =,由勾股定理得,222a b c +=,故答案为:222a b c +=;(2)221,()2ABC EAF DEG ABDE CFGH S S S ab S c S a b =====-正方形正方形, 又正方形的面积=四个全等直角三角形的面积的面积+正方形CFGH 的面积, 221()42a b c ab ∴-=-⨯. 22222a ab b c ab ∴-+=-.222a b c ∴+=,故答案为:2()a b -;正方形的面积;四个全等直角三角形的面积的面积+正方形CFGH 的面积;222a b c +=;(2)设PN x =,则8QN x =-,由折叠的性质可知,8SN QN x ==-,在Rt SPN 中,222SN SP PN =+,则222(8)4x x -=+, 解得,3x =,则PN 的长为2.【题目点拨】 本题考查的是正方形和矩形的性质、勾股定理、翻折变换的性质,正确理解勾股定理、灵活运用数形结合思想是解题的关键.26、(1)90°;(2)60°;(3)互补,理由见解析;相等或互补;(4)BD =【解题分析】(1)通过作辅助线如图1,延长DC 交AB 于F ,交BO 于E ,可以通过旋转性质得到AB=CD ,OA=OC ,BO=DO ,证明△AOB ≌△COD ,进而求得∠B=∠D 得∠BFE=∠EOD=90°(2)通过作辅助线如图2,延长DC 交AB 于F ,交BO 于E ,同(1)得∠BFE=∠EOD=60°(3)通过作辅助线如图3,直线AB 与直线CD 所夹的锐角与旋转角α互补, 延长AB ,CD 交于点E 通过证明AOB COD ∆∆≌得A OCD ∠=∠,再通过平角的定义和四边形内角和定理,证得180AEC AOC ∠+∠=︒;形成结论:通过问题(1)(2)(3)可以总结出旋转图形中,当旋转角小于平角时,对应线段所在直线的夹角与旋转角相等或互补;(4)通过作辅助线如图:将BCD ∆绕点B 顺时针旋转,使得BC 与AB 重合,得到BAF △,连接DF ,延长FA ,DC 交于点E ,可得BCD BAF ∆∆≌,进一步得到△BDF 是等边三角形,90FAD AED ADC ∠=∠+∠=︒,再利用勾股定理求得BD .【题目详解】(1)解:(1)如图1,延长DC 交AB 于F ,交BO 于E ,∵α=90°∴∠BOD=90°∵线段AB 绕点O 顺时针旋转得线段CD ,∴AB=CD ,OA=OC ,BO=DO∴△AOB ≌△COD (SSS )∴∠B=∠D∵∠B=∠D ,∠OED=∠BEF∴∠BFE=∠EOD=90°故答案为:90°(2)如图2,延长DC 交AB 于F ,交BO 于E ,∵α=60°∴∠BOD=60°∵线段AB 绕点O 顺时针旋转得线段CD ,∴AB=CD ,OA=OC ,BO=DO∴△AOB ≌△COD (SSS )∴∠B=∠D∵∠B=∠D ,∠OED=∠BEF∴∠BFE=∠EOD=60°故答案为:60°(3)直线AB 与直线CD 所夹的锐角与旋转角α互补,延长AB ,CD 交于点E∵线段AB 绕点O 顺时针旋转得线段CD ,∴AO CO =,BO DO =,AOC BOD α∠=∠=∴AOB COD ∠=∠∴AOB COD ∆∆≌∴A OCD ∠=∠∵180OCE OCD ∠+∠=︒∴180A OCE ∠+∠=︒∴()360180AEC AOC A OCE ∠+∠=︒-∠+∠=︒∴直线AB 与直线CD 所夹的锐角与旋转角α互补;形成结论:旋转图形中,当旋转角小于平角时,对应线段所在直线的夹角与旋转角相等或互补;(4)将BCD ∆绕点B 顺时针旋转,使得BC 与AB 重合,得到BAF △,连接DF ,延长FA ,DC 交于点E ,∴旋转角为60ABC ∠=︒,BCD BAF ∆∆≌∴60AED ABC ∠=∠=︒,AF CD ==BD BF =,∴△BDF 是等边三角形,∵30ADC ∠=︒,2AD =,∴90FAD AED ADC ∠=∠+∠=︒,∴BD DF ===【题目点拨】本题是三角形综合题,考查了旋转的性质,全等三角形的判定和性质,等边三角形的判定和性质等知识,添加辅助线构造全等三角形是本题的关键.。

2018-2019学年八年级数学下学期期末考试原创卷B卷(福建)(考试版)

2018-2019学年八年级数学下学期期末考试原创卷B卷(福建)(考试版)

数学试题 第1页(共6页) 数学试题 第2页(共6页)………………○………………内………………○………………装………………○………………订………………○………………线………………○………………………………○………………外………………○………………装………………○………………订………………○………………线………………○………………… 学校:______________姓名:_____________班级:_______________考号:______________________2018-2019学年下学期期末原创卷B 卷八年级数学(考试时间:120分钟 试卷满分:150分)注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。

答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。

2.回答第Ⅰ卷时,选出每小题答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其他答案标号。

写在本试卷上无效。

3.回答第Ⅱ卷时,将答案写在答题卡上。

写在本试卷上无效。

4.考试结束后,将本试卷和答题卡一并交回。

5.考试范围:华师大版八下全册。

第Ⅰ卷一、选择题(本大题共10个小题,每小题4分,共40分.在每小题给出的四个选项中,只有一个选项是符合题目要求的) 1.要使分式13x -有意义,x 必须满足的条件是 A .x ≠3B .x ≠0C .x >3D .x =32.每到四月,许多地方杨絮、柳絮如雪花漫天飞舞,人们不堪其扰,据测定,杨絮纤维的直径约为0.0000106m ,该数值用科学记数法表示为 A .1.06×105B .0.106×10–4C .1.06×10–5D .106×10–73.已知直线y =kx –2经过点(3,1),则这条直线还经过下面哪个点 A .(2,0)B .(0,2)C .(1,3)D .(3,–1)4.如图,在Y ABCD 中,∠ABC 的平分线BE 交AD 于E 点,AB =5,ED =3,则Y ABCD 的周长为A .16B .20C .26D .305.在某次数学测验中,随机抽取了10份试卷,其成绩如下:73,78,79,81,81,81,83,83,85,91,则这组数据的众数、中位数分别为 A .81,82B .81,81C .83,81D .83,826.如图,菱形ABCD 的对角线相交于点O ,若AC =8,BD =6,则菱形的周长为A .40B .30C .28D .207.一组数据:3、4、5、4,若添加一个数据4,则发生变化的统计量是A .平均数B .方差C .众数D .中位数8.若正比例函数()211my m x -=-的图象经过第二、四象限,则m 的值为A .1B .1-C .2D .2-9.如图,平行四边形OABC 的顶点O ,B 在y 轴上,顶点A 在反比例函数y =–5x上,顶点C 在反比例函数y =7x上,则平行四边形OABC 的面积是A .8B .10C .12D .31210.如图,E 是边长为1的正方形ABCD 的对角线BD 上一点,且BE =BC ,P 为CE 上任意一点,PQ ⊥BC于点Q ,PR ⊥BE 于点R ,则PQ +PR 的值是数学试题 第3页(共6页) 数学试题 第4页(共6页)………………○………………内………………○………………装………………○………………订………………○………………线………………○………………此卷只装订不密封………………○………………外………………○………………装………………○………………订………………○………………线………………○………………A .22B .12C .32D .23第Ⅱ卷二、填空题(本大题共6小题,每小题4分,共24分) 11.计算()4011π152-⎛⎫-⨯---= ⎪⎝⎭__________. 12.分式12x,212y ,15xy 的最简公分母为__________. 13.若点(–2,3)在反比例数ky x=的图象上,则k 的值是__________. 14.平面直角坐标系中,若点()A a b -,在第三象限内,则点()B b a ,在第__________象限. 15.如图,在平行四边形ABCD 中,AE 平分∠BAD 交DC 于点E ,AD =4cm ,AB =7cm ,则EC 的长为__________cm .16.如图,在△ABC 中,AB =3cm ,AC =4cm ,BC =5cm ,M 是BC 边上的动点,MD ⊥AB ,ME ⊥AC ,垂足分别是D 、E .线段DE 的最小值是__________cm.三、解答题(本大题共9小题,共86分.解答应写出文字说明、证明过程或演算步骤) 17.(本小题满分8分)先化简,再求值:2121()n n n n n-+-÷,其中,n =–3. 18.(本小题满分8分)如图,正方形ABCD 的对角线AC 、BD 相交于点O ,过点B 作AC 的平行线,过点C 作DB 的平行线,它们相交于点E .求证:四边形OBEC 是正方形.19.(本小题满分8分)若正比例函数y =–2x 的图象与一次函数y =x +m 的图象交于点A ,且点A 的横坐标为–3.(1)求该一次函数的解析式;(2)直接写出方程组2y xy x m=-⎧⎨=+⎩的解.20.(本小题满分8分)某班40名学生的某次数学测验成绩统计表如下:成绩(分) 50 60 70 80 90 100 人数(人)2x10y42(1)若这个班的数学平均成绩是69分,求x 和y 的值;(2)在(1)的条件下,设此班40名学生成绩的众数为a 分,中位数为b 分,求(a –b )2的值; (3)根据以上信息,你认为这个班的数学水平怎么样? 21.(本小题满分8分)平面直角坐标系中,反比例函数y =k x 的图象与一次函数y =-122x -的图象交于A (–6,m ),B (n ,–3)两点,点C 与点B 关于原点对称,过点C 作x 轴的垂线交直线AB 于点D .(1)求反比例函数y =kx的表达式及点C 的坐标;(2)求△ACD 的面积.22.(本小题满分10分)某校举办八年级学生数学素养大赛,比赛共设四个项目:七巧板拼图、趣题巧解、数学应用、魔方复原,每个项目的得分都按一定百分比折算后计入总分.下表为甲、乙、丙三位同学的得分情况(单位:分):数学试题 第5页(共6页) 数学试题 第6页(共6页)………………○………………内………………○………………装………………○………………订………………○………………线………………○………………………………○………………外………………○………………装………………○………………订………………○………………线………………○………………… 学校:______________姓名:_____________班级:_______________考号:______________________七巧板拼图趣题巧解 数学应用 魔方复原 甲 66 89 86 68乙 66 60 80 68 丙66809068(1)比赛后,甲猜测七巧板拼图、趣题巧解、数学应用、魔方复原这四项的得分分别按10%、40%、20%、30%折算计入总分,根据猜测,求出甲的总分.(2)本次大赛组委会最后决定,总分在80分以上(包括80分)的学生获一等奖.现获悉乙、丙的总分分别是70分、80分,甲的七巧板拼图、魔方复原两项的得分折算后的分数和是20分,甲能否获得这次比赛的一等奖?23.(本小题满分10分)观察以下等式:第1个等式:101011212++⨯=,第2个等式:111112323++⨯=,第3个等式:121213434++⨯=,第4个等式:131314545++⨯=, 第5个等式:141415656++⨯=, ……按照以上规律,解决下列问题: (1)写出第6个等式:__________;(2)写出你猜想的第n 个等式:__________(用含n 的等式表示),并证明.24.(本小题满分12分)某公司今年如果用原线下销售方式销售一产品,每月的销售额可达100万元.由于该产品供不应求,公司计划于3月份开始全部改为线上销售,这样,预计今年每月的销售额y (万元)与月份x (月)之间的函数关系的图象如图1中的点状图所示(5月及以后每月的销售额都相同),而经销成本p (万元)与销售额y (万元)之间函数关系的图象如图2中线段AB 所示.(1)求经销成本p (万元)与销售额y (万元)之间的函数关系式; (2)分别求该公司3月,4月的利润;(3)问:把3月作为第一个月开始往后算,最早到第几个月止,该公司改用线上销售后所获得利润总额比同期用线下方式销售所能获得的利润总额至少多出200万元?(利润=销售额–经销成本) 25.(本小题满分14分)如图,已知正比例函数y =ax 与反比例函数y =kx的图象交于点A (3,2). (1)求上述两函数的表达式;(2)M (m ,n )是反比例函数图象上的一个动点,其中0<m <3,过点M 作直线MB ∥x 轴,交y 轴于点B ;过点A 点作直线AC ∥y 轴交x 轴于点C ,交直线MB 于点D .若S 四边形OADM =6,求点M 的坐标,并判断线段BM 与DM 的大小关系,说明理由;(3)探索:x 轴上是否存在点P ,使△OAP 是等腰三角形?若存在,求出点P 的坐标;若不存在,说明理由.。

2018至2019第二学期八年级数学试卷(含答案)

2018至2019第二学期八年级数学试卷(含答案)

图3 2018—2019学年度第二学期期末教学质量检测试卷 八年级 数学(总分:100分 作答时间:100分钟)一、选择题(本题共10小题,每小题3分,共30分. 在每小题给出的四个选项中只有一项是符合要求的。

)1、下列式子中,是最简二次根式的是( )A. 21B. 313C. 51 D.8 2、已知一个直角三角形的两边长分别为3和5,则第三边的长是( ) A.5 B.4 C. 34 D.4或343.如图1,在□ABCD 中,O 是对角线AC ,BD 的交点,下列结论中错误的是( )A. AB ∥CDB.AB=CDC. AC=BDD.OA=OC4、如图2,函数3221+=-=ax y x y 与的图像相交于点 A (m ,2),则关于x 的不等式32+>-ax x 的解集是( )A.x>2B. x<2C.x>-1D.x<-15、在某次义务植树活动中,10名同学植树的棵数如图3所示.若他们植树的棵树的平均数是a 棵,中位数是b 棵,众数是c 棵,则下列结论中正确的是( )A. a=bB. b>aC. b=cD. c>b6、如图4,在Rt △ABC 中,∠ACB=90°,CD ⊥AB 于点D ,∠ACD=3∠AB 上的中点,则∠ECD 的度数是( )A. 30°B. 45°C. 50°D.55°7、小李与小陆从A 地出发,骑自行车沿同一条路行驶到B 地.他们离出发地的距离s(km)和行驶时间t(h)之间的函数关系如图5所示.根据图中提供的信息,有下列说法:①他们都行驶了20km;②小陆全程共用了1.5h ;③小李与小陆相遇后,小李的速度小于小陆的速度;④小李在途中停留了0.5h.其中正确的说法有几个( )A.1个B. 2个C. 3个D. 4个8、如图6,E 是边长为4的正方形ABCD 的对角线BD 上一点,且BE=BC.P 为CE 上任意一图2 图1 图4点,PQ ⊥BC 于点Q ,PR ⊥BD 于点R.则PQ+PR 的值是( )A.22B. 2C. 32D.389、如图7,已知等腰△ABC 的底边BC=20,D 是腰AB 上一点,且CD=16,BD=12.则△ABC的周长是( )A. 56B. 40C. 3153 D. 5347 10、如图8,在锐角△ABC 中,点O 是AC 边上的一个动点,过O 作直线MN ∥BC ,设MN交∠ACB 的平分线于点E ,交∠ACB 的外角平分线于点F ,有下列四个结论:①OE=OF ;②CE=CF ;③若CE=12,CF=5,则OC 的长为6;④当AO=CO 时,四边形AECF 是矩形.其中正确的有( )A. ①②B. ①④C. ①③④D.②③④二、填空题(本题共8小题,每小题3分,共24分)11、在函数72-=x y 中,自变量x 的取值范围是_______________.12、若0131=-++b a ,则___________20182017=+b a13、已知点A (2,0),B (0,2),C (-1,m )在同一条直线上,则m 的值为_____________14、甲、乙、丙、丁四位同学最近5次数学考试成绩的平均分分别是80、85、85、80,方差分别是42、42、54、59.如果从这四位同学中选出一位成绩较好且状态稳定的同学参加即将举行的数学竞赛,那么应该选________.15、如图9,在△ABC 中,D ,E 分别是AB 和AC 的中点,F 是BC 延长线上的一点,点G是CE 的中点,CF=2,则BC=___________.16、将矩形纸片ABCD 按图10的方式折叠,得到菱形AECF ,若AB=3,则BC 的长为_____.17、如图11,在平面直角坐标系中,有点A (1,6),B (5,0).点C 是y 轴上的一个动点.当△ABC 的周长最小时,点C 的坐标为____________.图5 图6 图8 图11 图9 图10 图718、 图12是一个“羊头”图案.其作法是:从正方形①开始,以它的一边为斜边,向外作等腰直角三角形,然后再以其直角边为边,分别向外作正方形②和②’……若正方形①的边长为64cm,则正方形⑦的边长为___________cm 。

【期末试卷】2018-2019学年(下)八年级质量检测数学期末考试卷

【期末试卷】2018-2019学年(下)八年级质量检测数学期末考试卷

2018-2019学年(下)八年级质量检测数学试卷(试卷满分:150分 考试时间:120分钟)一、选择题(本大题共10题,每小题4分,共40分))A .4B .2C . 0D .-1 2.某函数图象经过点(1,1),该函数的解析式可以是( ) A .y =x 2 B . y =2xC . y =2x -2D . y =x +13.如图1,四边形ABCD 的对角线AC ,BD 交于点O ,则∠DAC 的内错角是( ) A .∠ABD B .∠BDC C .∠ACB D .∠DOC4.计算(-2)2正确的是( )A .4B .2C .-2D .±25.2017年世界未来委员会与联合国防治荒漠化公约授予我国“未来政策奖”,以表彰我国在防治土地荒漠化方面的突出成就.图2是我国荒漠化土地面积统计图,则荒漠化土地面积是五次统计数据中的中位数的年份是( ) A .1999年 B .2004年 C .2009年 D .2014年6.如图3,某个函数的图象由线段AB 和线段BC 组成,其中A (0,2),B (32,1),C (4,3),则正确的结论是( )A .当x ≥0时,y 随x 的增大而增大B .当0≤x ≤32时,y 随x 的增大而增大C .当1≤x ≤3时,y 随x 的增大而增大D .当32≤x ≤4时,y 随x 的增大而增大DB20142009200419991994年份荒漠化土地 面积(km 2)图1 图2 图37.如图4,矩形ABCD的对角线AC、BD交于点O,在BD上截取BE=BC,连接CE并延长,交AD边于点F,若∠DBC=36°,则下列正确的是( )A.CF=BCB.CF=AFC.OE=2EDD.BC=2OE图48.下列命题都是正确的命题,其中逆命题也正确的是( )A.若a>b,则a≠bB.若a>b+1,则a>bC.若a>2b>0,则a>bD.若a>b,则a-b>09.在平面直角坐标系中xOy中,点A、B在直线y=x上,且横坐标分别为1,2,过点A作AC⊥x轴于点C,过点B向y轴作垂线段,与直线y=kx+b( k<0)交于点D,若BD=OC,则下列结论一定成立的是( )A.b=2-kB.b=2kC.b=2-3kD.b=k10.用若干个大小相同的正方形拼成矩形,若正方形的个数是6,则有两种拼法(如图5),则下列只有一种拼法的正方形的个数是( )A.25B.52C.91D.101图513.有一组数据:a,b,c,d,e(a<b<c<d<e),将这组数据改变成a-2,b,c,d,e+2.设这组数据改变前后的方差分别是S12,S22,则S12与S22的大小关系是__________.14.已知整数a为实数,若有整数b,m,满足(a+b) (a-b)=m2,则称a是b,m的弦数,若a<15且a为整数,请写出一组a,b,m,使得a是b,m的弦数:__________.15.某电信公司推出两种上宽带网的按月收费方式,两种方式都采取包时上网,即上网时间在一定范围内,收取固定的月使用费;超过该范围,则加收超时费,若两种方式所收费用y(元)与上宽带网时间x(时)的函数关系如图7所示,且超时费都为0.05元/分钟,则这两种方式所收的费用最多相差__________元.16.在菱形ABCD中,M是BC边上的点(不与B、C两点重合),AB=AM,点B关于直线AM对称的点是N,连接DN,设∠ABC,∠CDN的度数分别为x,y,则y关于x的函数解析式是______________________.三、解答题(本大题有9小题,共86分)17.(本题满分12分)(1)计算;12-212+8(2)当x=3+1,y=3-1时,求代数式x2-y2+xy的值.18.(本题满分7分)如图8,在□ABCD 中,BE 平分∠ABC ,且与AD 边交于点E ,∠AEB =45°,证明四边形ABCD 是矩形.图819.(本题满分7分)下表是厦门市某品牌专卖店全体员工9月8日的销售量统计资料.(1)写出该专卖店全体员工9月8日销售量的众数; (2)求该专卖店全体员工9月8日的平均销售量.20.(本题满分8分) 已知一次函数y =2x +1(1)在平面直角坐标系中,画出该函数的图象;(2)点(12,5)在该函数图象的上方还是下方?请做出判断说明理由.21.(本题满分8分)某区要在面积为128平方米的正方形空地上建造一个休闲园地,并进行规划(如图9):在体闲园地内建一个面积为72平方米的正方形儿童游乐场,游乐场两边铺设健身道,剩下的区域作为休息区.现计划在休息区摆放占地面积为3×1.5平方米“背靠背”休闲椅(如图10),并要求休闲椅摆放在东西方向或南北方向上,请通过计算说明休息区内最多能摆放几张这样的休闲椅.图9 图1022.(本题满分8分)如图11,四边形ABCD是平行四边形,E是BC边的中点,DF∥AE,DF与BC的延长线交于点F,AE,DC的延长线交于点G,连接FG.若AD=3,AG=2,FG=22,求在线AG与DF之间的距离.23.(本题满分11分)在平面直角坐标系xOy中,直线l1:y=mx+n(m<0且n>0)与x轴交于点A,过点C(1,0)作直线l2⊥x轴,且与l1交于点B.(1)当m=-2时,n=1时,求BC的长;(2)若BC=1-m,D(4,3+m),且BD∥x轴,判断四边形OBDA的形状,并说明理由.24. (本题满分11分)在正方形ABCD中,E是△ABD内的点,EB=EC.(1)如图12,若EB=BC,求∠EBD的度数;(2)如图13,EC与BD交于点F,连接AE,若S四边形ABFE=a,试探究线段FC与BE之间的等量关系,并说明理由.25.(本题满分14分)一条笔直跑道上的A ,B 两处相距500米甲.从A 处,乙从B 处,两人同时相向匀速而跑,直到乙到达A 处时停止,且甲的速度比乙大,甲、乙到A 处的距离y (米)与跑动时间x (秒)的函数关系如图14所示. (1)若点M 的坐标为(100,0),求乙从B 处跑到A 处的过程中y 与x 的函数解析式; (2)若两人之间的距离不超过200米的时间持续了40秒,①当x =x 1时,两人相距200米.请在图14中画出点P (x 1+40,0),保留画图痕迹,并写出画图步骤; ②请判断起跑后112分钟,两人之间的距离能否超过420米,并说明理由.(秒)。

2018-2019学年第二学期八年级数学期末试题(1)及参考答案

2018-2019学年第二学期八年级数学期末试题(1)及参考答案

2018—2019学年度第二学期期末八年级数学试题(1)一、选择题(本题共12个小题,在每小题的四个选项中只有一个是正确的,请把正确的选项选出来,每小题3分,满分36分)1.下列方程中,一元二次方程的是( )A. 0122=+x x B. ()()1312=-+x x C. 02=+bx ax D. 052322=--y xy x2.如图,在平行四边形ABCD 中,AB=6错误!未找到引用源。

,BC=8错误!未找到引用源。

,∠BCD 的平分线交AD 于E ,交BA 的延长线于F ,则AE+AF 的值等于( ) A.2 B. C.4 D.63.已知一次函数的图象与直线y=-x+1平行,且过点(8,2),那么此一次函数的解析式为( ) A.y=-x-2B.y=-x-6C.y=-x+10D.y=-x-1 4.若关于x 的方程 x 2-2x+m=0的一个根为-1,则另一个根为( ) A.-3 B.-1C.1D.35.下列条件中,不能判断四边形ABCD 是平行四边形的是( )A.AB//CD ,AD=CBB.AB=CD ,AB//CDC.AB=CD ,AD=BCD.AB//CD ,AD//BC 6.已知一次函数y=(k-2)x+k+1错误!未找到引用源。

的图象不过第三象限,则k 的取值范围是( ) A.2>kB.2<kC.21≤≤-kD.21<k ≤-7.某同学五天内每天完成家庭作业的时间(时)分别为2,3,2,1,2,则对这组数据的下列说法中错误的是( ) A.平均数是2B.众数是2C.中位数是2D.方差是28.端午节甲、乙两队举行了一年一度的赛龙舟比赛,两队在比赛时的路程y (米)与时间t (分钟)之间的函数关系图象如图所示,请你根据图象判断,下列说法正确的是( ) A.甲队率先到达终点B.甲队比乙队多走了200米路程C.乙队比甲队少用0.2分钟D.比赛中两队从出发到分钟时间段,乙队的速度比甲队的速度快.9.元旦节班上数学兴趣小组的同学,互赠新年贺卡,每两个同学都相互赠送一张,小明统计出全组共互送了90张贺年卡,那么数学兴趣小组的人数是多少?设数学兴趣小组人数为x 人,则可列方程为( )A.()901=-x xB.902)1(⨯=-x xC.()2901÷=-x xD.()901=+x x10.抛物线y=-3x 2+2x-1的图象与坐标轴交点的个数是( )A .没有交点B .只有一个交点C .有且只有两个交点D .有且只有三个交点11.同一坐标系中,一次函数2+=ax y 与二次函数a x y +=2的图象可能是( )A. B. C. D.12.已知二次函数()02≠++=a c bx ax y 的图象如图所示,对称轴为21-=x ,下列结论中,正确的是( )A. 0>abcB. 0=+b aC. 02>c b +D. b c a 24<+二、填空题:本大题共8小题,共40分,只要求填写最后结果,每小题填对得5分. 13.有10个数据的平均数为12,另有20个数据的平均数为15,那么所有这30个数据的平均数是 .14.将抛物线2x y =错误!未找到引用源。

龙岩上杭2018-2019学度初二下抽考数学试卷含解析解析

龙岩上杭2018-2019学度初二下抽考数学试卷含解析解析

龙岩上杭2018-2019学度初二下抽考数学试卷含解析解析一、选择题:(每小题4分,共40分)1.如果有意义,那么x的取值范围是()A.x>1 B.x≥1 C.x≤1 D.x<12.已知两条线段长分别为3、4,那么能与它们组成直角三角形的第三条线段长是()A.5 B.C.5或D.不能确定3.下列根式中属最简二次根式的是()A.B.C.D.4.下列计算错误的是()A.B.C. D.5.下列二次根式中与是同类二次根式的是()A. B.C.D.6.若是整数,则正整数n的最小值是()A.2 B.3 C.4 D.57.设,a在两个相邻整数之间,则这两个整数是()A.1和2 B.2和3 C.3和4 D.4和58.已知a<b,则化简二次根式的正确结果是()A.B.C.D.9.+|x﹣3|=0,则x y=()A.81 B.64 C.27 D.6310.已知,则的值为()A.B.8 C.D.6二、填空题:(每小题3分,共30分)11.已知a=,则代数式a2﹣1的值为.12.若,则m﹣n的值为.13.计算:=.14.无论x取任意实数,代数式都有意义,则m的取值范围为.15.比较大小:﹣3﹣2.16.化简=.17.一只蚂蚁从长为4cm、宽为3cm,高是5cm的长方体纸箱的A点沿纸箱爬到B点,那么它所行的最短路线的长是cm.18.如果最简二次根式与是同类二次根式,那么a=.19.字母b的取值如图,化简=.20.观察下列各式:①;②=3;③,…请用含n(n≥1)的式子写出你猜想的规律:.三、解答题:(共6小题,共80分)21.计算:(1);(2)(3)(4)(5)(6).22.已知:x=+1,y=﹣1,求下列各式的值.(1)x2+2xy+y2;(2)x2﹣y2.23.先简化,再求值:,其中x=.24.先化简,再求值,其中a=,b=.25.如图,在数轴上画出表示的点(不写作法,但要保留画图痕迹).26.阅读下面问题:;;.试求:(1)的值;(2)(n为正整数)的值.(3)计算:.2015-2016学年福建省龙岩市上杭县茶地中学八年级(下)月考数学试卷(3月份)参考答案与试题解析一、选择题:(每小题4分,共40分)1.如果有意义,那么x的取值范围是()A.x>1 B.x≥1 C.x≤1 D.x<1【考点】二次根式有意义的条件.【分析】直接利用二次根式有意义的条件分析得出答案.【解答】解:由题意得:x﹣1≥0,解得:x≥1.故选:B.2.已知两条线段长分别为3、4,那么能与它们组成直角三角形的第三条线段长是()A.5 B.C.5或D.不能确定【考点】勾股定理的逆定理.【分析】由于“两边长分别为3cm和4cm,要使这个三角形是直角三角形”指代不明,因此,要讨论第三边是直角边和斜边的情形.【解答】解:当第三条线段为直角边时,4cm为斜边,根据勾股定理得第三边长为=;当第三条线段为斜边时,根据勾股定理得第三边长为=5,故选:C.3.下列根式中属最简二次根式的是()A.B.C.D.【考点】最简二次根式.【分析】根据最简二次根式的定义对各选项分析判断后利用排除法求解.【解答】解:A、无法化简,故本选项正确;B、=,故本选项错误;C、=2故本选项错误;D、=,故本选项错误.故选:A.4.下列计算错误的是()A .B .C .D .【考点】二次根式的混合运算.【分析】结合选项分别进行二次根式的除法运算、乘法运算、加减运算,然后选择正确选项.【解答】解:A 、×=7,原式计算正确,故本选项错误;B 、÷=,原式计算正确,故本选项错误;C 、+=8,原式计算正确,故本选项错误;D 、3﹣=2,原式计算错误,故本选项错误. 故选D .5.下列二次根式中与是同类二次根式的是()A .B .C .D .【考点】同类二次根式.【分析】根据同类二次根式的定义,先化简,再判断.【解答】解:A 、=2,与的被开方数不同,不是同类二次根式,故A 选项错误;B 、=,与的被开方数不同,不是同类二次根式,故B 选项错误;C 、=,与的被开方数不同,不是同类二次根式,故C 选项错误;D 、=3,与的被开方数相同,是同类二次根式,故D 选项正确.故选:D .6.若是整数,则正整数n 的最小值是() A .2 B .3 C .4 D .5 【考点】二次根式的定义.【分析】先把75分解,然后根据二次根式的性质解答. 【解答】解:∵75=25×3,∴是整数的正整数n 的最小值是3. 故选:B .7.设,a 在两个相邻整数之间,则这两个整数是() A .1和2 B .2和3 C .3和4 D .4和5 【考点】估算无理数的大小.【分析】先对进行估算,再确定是在哪两个相邻的整数之间,然后计算介于哪两个相邻的整数之间. 【解答】解:∵16<19<25,∴4<<5,∴3<﹣1<4, ∴3<a <4,∴a 在两个相邻整数3和4之间; 故选C .8.已知a <b ,则化简二次根式的正确结果是()A.B.C.D.【考点】二次根式的性质与化简.【分析】由于二次根式的被开方数是非负数,那么﹣a3b≥0,通过观察可知ab必须异号,而a<b,易确定ab的取值范围,也就易求二次根式的值.【解答】解:∵有意义,∴﹣a3b≥0,∴a3b≤0,又∵a<b,∴a<0,b≥0,∴=﹣a.故选A.9.+|x﹣3|=0,则x y=()A.81 B.64 C.27 D.63【考点】非负数的性质:算术平方根;非负数的性质:绝对值.【分析】根据非负数的性质列式求出x、y的值,然后代入代数式进行计算即可得解.【解答】解:由题意得,x﹣y+1=0,x﹣3=0,解得x=3,y=4,所以,x y=34=81.故选A.10.已知,则的值为()A.B.8 C.D.6【考点】完全平方公式.【分析】首先求出(a+)2=a2++2=10,进而得出(a﹣)2=6,即可得出答案.【解答】解:∵,∴(a+)2=a2++2=10,∴a2+=8,∴a2+﹣2=(a﹣)2=6,∴=.故选:C.二、填空题:(每小题3分,共30分)11.已知a=,则代数式a2﹣1的值为1.【考点】实数的运算.【分析】把a=代入a2﹣1直接计算即可.【解答】解:当a=时,a2﹣1=()2﹣1=1.故本题答案为:1.12.若,则m﹣n的值为4.【考点】非负数的性质:算术平方根;非负数的性质:偶次方.【分析】根据任何非负数的平方根以及偶次方都是非负数,两个非负数的和等于0,则这两个非负数一定都是0,即可得到关于m.n的方程,从而求得m,n的值,进而求解.【解答】解:根据题意得:,解得:.则m﹣n=3=(﹣1)=4.故答案是:4.13.计算:=3.【考点】二次根式的加减法.【分析】本题是二次根式的减法运算,二次根式的加减运算法则是合并同类二次根式.【解答】解:=5﹣2=3.14.无论x取任意实数,代数式都有意义,则m的取值范围为m≥36.【考点】二次根式有意义的条件.【分析】根据二次根式有意义,被开方数大于等于0,再利用根的判别式△≤0列式计算即可得解.【解答】解:由题意得,x2﹣12x+m≥0,△=(﹣12)2﹣4×1×m≤0,解得m≥36.故答案为:m≥36.15.比较大小:﹣3<﹣2.【考点】实数大小比较.【分析】先把两数平方,再根据实数比较大小的方法即可比较大小.【解答】解:∵(3)2=18,(2)2=12,∴﹣3<﹣2.故答案为:<.16.化简=.【考点】二次根式的化简求值.【分析】分母有理化即可.【解答】解:==.故答案是:.17.一只蚂蚁从长为4cm、宽为3cm,高是5cm的长方体纸箱的A点沿纸箱爬到B点,那么它所行的最短路线的长是cm.【考点】平面展开-最短路径问题.【分析】先将图形展开,再根据两点之间线段最短,再由勾股定理求解即可.【解答】解:将长方体展开,如图1所示,连接A、B,根据两点之间线段最短,AB== cm;如图2所示,=4cm,∵<4,∴蚂蚁所行的最短路线为cm.故答案为:18.如果最简二次根式与是同类二次根式,那么a=1.【考点】同类二次根式.【分析】根据同类二次根式的定义建立关于a的方程,求出a的值.【解答】解:∵最简二次根式与是同类二次根式,∴1+a=4a﹣2,解得a=1.故答案为1.19.字母b的取值如图,化简=3.【考点】二次根式的性质与化简;实数与数轴.【分析】根据二次根式的性质可得:=|b﹣2|+=|b﹣2|+|b﹣5|,继而求得答案.【解答】解:∵2<b<5,∴=|b﹣2|+=|b﹣2|+|b﹣5|=(b﹣2)+(5﹣b)=b﹣2+5﹣b=3.故答案为:3.20.观察下列各式:①;②=3;③,…请用含n(n≥1)的式子写出你猜想的规律:=(n+1).【考点】二次根式的乘除法.【分析】从给出的三个式子中,我们可以发现计算出的等号后面的系数为等号前面的根号里的整数加分数的分子,根号里的还是原来的分数,依此可以找出规律.【解答】解:从①②③三个式子中,我们可以发现计算出的等号后面的系数为等号前面的根号里的整数加分数的分子,根号里的还是原来的分数,即=(n+1).三、解答题:(共6小题,共80分)21.计算:(1);(2)(3)(4)(5)(6).【考点】二次根式的混合运算;零指数幂.【分析】(1)先化简二次根式,然后合并二次根式;(2)根据同底数幂的乘法和积的乘方、绝对值的性质以及零指数的意义进行计算,求出即可.(3)利用乘法公式计算;(4)根据多项式除以单项式的法则进行计算; (5)去括号,化简二次根式,然后合并二次根式; (6)根据混合运算的顺序进行计算. 【解答】解:(1)=2﹣﹣2﹣=﹣3;(2)=[(2﹣)(2+)]2013(2+)﹣﹣1=2+﹣﹣1 =1;(3)=6﹣2 =4;(4)=4﹣=﹣;(5)=4﹣﹣+=3;(6)=2+1 =3.22.已知:x=+1,y=﹣1,求下列各式的值. (1)x 2+2xy+y 2; (2)x 2﹣y 2.【考点】二次根式的化简求值;整式的加减—化简求值. 【分析】观察可知:(1)式是完全平方和公式,(2)是平方差公式.先转化,再代入计算即可.【解答】解:(1)当x=+1,y=﹣1时,原式=(x+y )2=(+1+﹣1)2=12;(2)当x=+1,y=﹣1时,原式=(x+y )(x ﹣y )=(+1+﹣1)(+1﹣+1)=4.23.先简化,再求值:,其中x=.【考点】分式的化简求值.【分析】原式除数括号中两项通分并利用同分母分式的加法法则计算,同时利用除以一个数等于乘以这个数的倒数将除法运算化为乘法运算,约分得到最简结果,将x的值代入计算即可求出值.【解答】解:原式=•=,当x=+1时,原式==.24.先化简,再求值,其中a=,b=.【考点】分式的化简求值;二次根式的化简求值.【分析】本题的关键是正确进行分式的通分、约分,并准确代值计算.【解答】解:=;因为a=,b=;所以原式=.25.如图,在数轴上画出表示的点(不写作法,但要保留画图痕迹).【考点】勾股定理;实数与数轴.【分析】根据勾股定理,作出以1和4为直角边的直角三角形,则其斜边的长即是;再以原点为圆心,以为半径画弧与数轴的正半轴的交点即为所求.【解答】解:所画图形如下所示,其中点A即为所求.26.阅读下面问题:;;.试求:(1)的值;(2)(n为正整数)的值.(3)计算:.【考点】分母有理化.【分析】(1)(2)仿照题目所给的分母有理化的方法进行计算;(3)将每一个二次根式分母有理化,再寻找抵消规律.【解答】解:(1)===﹣;(2)===﹣;(3)原式=﹣1+﹣+﹣+…+﹣+﹣=﹣1=10﹣1=9.2016年5月5日。

2018-2019学年第二学期期末调研考试八年级数学试题及答案(含评分标准)

2018-2019学年第二学期期末调研考试八年级数学试题及答案(含评分标准)

2018—2019学年度第二学期期末调研考试八年级数学试题注意:本份试卷共8页,三道大题,26个小题;总分120分,时间120分钟。

一、选择题(本大题共16个小题,共42分.1~10小题各3分,11~16小题各2分,共42分.在每小题给出的四个选项中,只有一项是1.A 居民区的月底统计用电情况,其中3户用电45度,5户用电50度,6户用电42度,则平均每户用电为A .41 度B .42 度C .45.5 度D .46 度 2.化简的结果是A .2B .C .D .以上答案都不对3.勾股定理在平面几何中有着不可替代的重要地位,在我国古算书《周牌算经》中就有“若勾三,股四,则弦五”的记载.下面四幅图中,不能证明勾股定理的是A .B .C .D .4.如图,三个正比例函数的图象分别对应函数关系式:①y =ax , ②y =bx ,③y =cx ,将a ,b ,c 从小到大排列并用“<”连接为 A .a <b <c B .c <a <b C .c <b <a D .a <c <b 5.如果y =+2,那么(﹣x )y 的值为A .1B .﹣1C .±1D .06.若一次函数y=ax+b(a,b是常数),x与y的部分对应值如下表:则方程ax+b=0的解是A.x=2 B.x=3 C.x=﹣1 D.x=17.七年级1班甲、乙两个小组的14名同学身高(单位:厘米)如表:以下叙述错误的是A.两组相比,乙组同学身高的方差大B.乙组同学身高的中位数是161 C.甲组同学身高的平均数是161 D.甲组同学身高的众数是160 8.的整数部分为m,小数部分是n,则(+m)•n的值为A.0 B.1 C.+1 D.﹣19.如图,在Rt△ABC中,∠ACB=90°,CD是AB边上的高,CE是AB边上的中线,AD=3,CE=5,则CD等于A.3 B.4 C.D.10.某通讯公司推出三种上网月收费方式.这三种收费方式每月所收的费用y(元)与上网时间x(小时)的函数关系如图所示,则下列判断错误的是A.每月上网不足25小时,选择A方式最省钱B.每月上网时间为30小时,选择B方式最省钱C.每月上网费用为60元,选择B方式比A方式时间长D.每月上网时间超过70小时,选择C方式最省钱11.如图,将▱ABCD沿对角线BD折叠,使点A落在点E处,交BC于点F,若∠ABD=48°,∠CFD=40°,则∠E为A.102°B.112°C.122°D.92°12.如图,是按一定规律排成的三角形数阵,按图中数阵的排列规律,第9行从左至右第4个数是A.2B.C.5D.13.用尺规在一个平行四边形内作菱形ABCD,下列作法中错误的是A.B.C.D.14.已知:一次函数y=kx+b(k≠0)的图象经过第二、三、四象限,则一次函数y=﹣bx+kb的图象可能是A.B.C.D.15.如图,矩形ABCD中,AB=8,AD=3.点E从D向C以每秒1个单位的速度运动,以AE为一边在AE的右下方作正方形AEFG.同时垂直于CD的直线MN也从C向D以每秒2个单位的速度运动,当经过多少秒时,直线MN和正方形AEFG开始有公共点?A.B.C.D.16.如图,矩形OABC中,D为对角线AC,OB的交点,直线AC的解析式为y=2x+4,点P是y轴上一动点,当△PBD的周长最小时,线段OP的长为A.2 B.C.4 D.二、填空题(本大题共3小题,共12分.17~18小题各3分;19小题有2个空,每空3分.把答案写在题中横线上)17.某8种食品所含的热量值分别为:120,134,120,119,126,120,118,124,则这组数据的众数为.18.如图,在四边形ABDC中,E、F、G、H分别为AB、BC、CD、DA的中点,并且E、F、G、H四点不共线.当AC=6,BD=8时,四边形EFGH的周长是.19.边长为a的菱形是由边长为a的正方形“形变”得到的,若这个菱形一组对边之间的距离为h,则称为为这个菱形的“形变度”.(1)一个“形变度”为2的菱形与其“形变”前的正方形的面积之比为.(2)如图,A、B、C为菱形网格(每个小菱形的边长为1,“形变度”为)中的格点,则△ABC的面积为.三、解答题(本大题共7小题,共66分.解答应写出文字说明、证明过程或演算步骤)20.计算(本题满分8分,每小题4分)(1)(﹣2)2+5÷﹣9 (2)÷×21.(本题满分9分)如图,在▱ABCD中,连接BD,E是DA延长线上的点,F是BC 延长线上的点,且AE=CF,连接EF交BD于点O.求证:OB=OD.22.(本题满分9分)已知一次函数y=kx+b,当x=2时y的值为1,当x=﹣1时y的值为﹣5.(1)在所给坐标系中画出一次函数y=kx+b的图象;(2)求k,b的值;(3)将一次函数y=kx+b的图象向上平移4个单位长度,求所得到新的函数图象与x 轴,y轴的交点坐标.23.(本题满分9分)某年级共有300名学生.为了解该年级学生A,B两门课程的学习情况,从中随机抽取60名学生进行测试,获得了他们的成绩(百分制),并对数据(成绩)进行整理、描述和分析.下面给出了部分信息.①A课程成绩的频数分布直方图如图(数据分成6组:40≤x<50,50≤x<60,60≤x<70,70≤x<80,80≤x<90,90≤x≤100):②A课程成绩在70≤x<80这一组的是:70 71 71 71 76 76 77 78 78.578.5 79 79 79 79.5③A,B两门课程成绩的平均数、中位数、众数如下:根据以上信息,回答下列问题:(1)表中m的值为;(2)在此次测试中,某学生的A课程成绩为76分,B课程成绩为71分,这名学生成绩排名更靠前的课程是(填“A“或“B“),理由是;(3)假设该年级学生都参加此次测试,估计A课程成绩超过75.8分的人数.24.(本题满分10分)在汛期来临之前,某市提前做好防汛工作,该市的A、B两乡镇急需防汛物质分别为80吨和120吨,由该市的甲、乙两个地方负责全部运送到位,甲、乙两地有防汛物质分别为110吨和90吨,已知甲、乙两地运到A、B两乡镇的每吨物质的运费如表所示:(1)设乙地运到A乡镇的防汛物质为x吨,求总运费y(元)关于x(吨)的函数关系式,并指出x的取值范围.(2)求最低总运费,并说明总运费最低时的运送方案.25.(本题满分10分)如图,在菱形ABCD中,对角线AC与BD交于点O.过点C作BD 的平行线,过点D作AC的平行线,两直线相交于点E.(1)求证:四边形OCED是矩形;(2)若CE=1,DE=2,则菱形ABCD的面积为.26.(本题满分11分)已知:在平面直角坐标系中,边长为8的正方形OABC的两边在坐标轴上(如图).(1)写出点A ,B ,C 的坐标:A ,B ,C . (2)经过A ,C 两点的直线l 上有一点P ,点D (0,6)在y 轴正半轴上,连PD ,PB (如图1),若PB 2﹣PD 2=24,求四边形PBCD 的面积.(3)若点E (0,1),点N (2,0)(如图2),经过(2)问中的点P 有一条平行于y 轴的直线m ,在直线m 上是否存在一点M ,使得△MNE 为直角三角形?若存在,求M 点的坐标;若不存在,请说明理由.(备注:已知平面内两点()11M x y ,,()22N x y ,,其两点间的距离公式为:MN =2018—2019 (2) 八年级数学参考答案及评分标准说明:1.在阅卷过程中,如果考生还有其它正确解法,可参照评分参考酌情给分;2.填空题缺少必有的单位或答案不完整不得分;3.坚持每题评阅到底的原则,当考生的解答在某一步出现错误,影响了后继部分时,如果该步以后的解答未改变这一题的内容和难度,可视影响的程度决定后面部分的给分,但不得超过后继部分应给分数的一半;如果这一步后面的解答有较严重的错误,就不给分;4.解答右端所注分数,一般表示正确做到这一步应得的累积分数.二、填空题(本大题有3个小题,共12分.17~18小题各3分;19小题有2个空,每空3分)17.120; 18.14; 19. 1:2(或12);454.三、解答题(本大题有7小题,共66分)20.解:(1)原式=5﹣4+4+5﹣9…………………………………….2分=;………………………………………………….4分(2)原式=…………………………………………………2分=.………………………………………………………..4分21.证明:证法一:∵四边形ABCD是平行四边形,∴AD=BC,AD∥BC.……………………………………………………3分∴∠EDO=∠FBO.又∵AE=CF,∴AE+AD=CF+BC,即ED=FB.又∵∠EOD=∠FOB,∴△EOD≌△FOB.………………………………………………………7分∴OB=OD.………………………………………………………………9分证法二:连接BE,DF,……………………………………………………..1分∵四边形ABCD是平行四边形,∴AD=BC,AD∥BC.………………………………………………….4分∵AE=CF,∴AE+AD=CF+BC,即ED=FB.∴四边形EBFD是平行四边形,……………………………………………..7分∴OB=OD.……………………………………………………………….9分22.解:(1)函数图象如图所示,……………………………………………………….2分(2)将当x=2,y=1;x=﹣1,y=﹣5分别代入y=kx+b得:,………………………………………………………………………4分解得.……………………………………………………………………..5分(3)由(2)可得,一次函数的关系式为y=2x﹣3.一次函数y=2x﹣3的图象向上平移4个单位长度,可得y=2x﹣3+4=2x+1,…………………………………………………………7分令y=0,得2x+1=0,则x=﹣;令x=0,则y=1,∴与x轴,y轴的交点坐标分别为(﹣,0)和(0,1).……………………...9分23.(1)78.75 ………………………………………………………………………2分(2)B;该学生的A课程成绩小于A课程的中位数,而B课程成绩大于B课程的中位数.…………………………………………………………………6分(每空2分)解:(3)300×=180,所以A课程成绩超过75.8分的人数约为180人。

2018—2019学年度第二学期期末教学质量检测八年级数学试题及答案

2018—2019学年度第二学期期末教学质量检测八年级数学试题及答案

2018—2019学年度第二学期期末教学质量检测八年级数学试题(满分120分,时间:120分钟)一、选择题:本大题共8个小题,每小题3分,共24分,在每小题给出的四个选项A 、B 、C 、D 中,只有一项是正确的,请把正确的选项填在答题卡的相应位置1.在数轴上与原点的距离小于8的点对应的x 满足A.x <8B.x >8C.x <-8或x >8D.-8<x <82.将多项式﹣6a 3b 2﹣3a 2b 2+12a 2b 3分解因式时,应提取的公因式是A .-3a 2b 2B .-3abC .-3a 2bD .-3a 3b 33.下列分式是最简分式的是A .11m m --B .3xy y xy -C .22x y x y -+D .6132m m- 4.如图,在Rt △ABC 中,∠C=90°,∠ABC=30°,AB=8,将△ABC 沿CB 方向向右平移得到△DEF.若四边形ABED 的面积为8,则平移距离为A .2B .4C .8D .165.如图所示,在△ABC 中,AB=AC ,AD 是中线,DE ⊥AB ,DF ⊥AC ,垂足分别为E 、F ,则下列四个结论中:①AB 上任一点与AC 上任一点到D 的距离相等;②AD 上任一点到AB 、AC 的距离相等;③∠BDE=∠CDF ;④∠1=∠2.正确的有A.1个B.2个C.3个D.4个6.每千克m 元的糖果x 千克与每千克n 元的糖果y 千克混合成杂拌糖,这样混合后的杂拌糖果每千克的价格为 A.y x my nx ++元 B.yx ny mx ++元 C.y x n m ++元 D.12x y m n ⎛⎫+ ⎪⎝⎭元 7.如图,□ABCD 的对角线AC ,BD 交于点O ,已知AD=8,BD=12,AC=6,则△OBC 的周长为A .13B .26C .20D .178.如图,DE 是△ABC 的中位线,过点C 作CF ∥BD 交DE 的延长线于点F ,则下列结论正确的是A .EF=CFB .EF=DEC .CF <BD D .EF >DE二、填空题(本大题共6个小题,每小题3分,共18分,只要求把最后的结果填写在答题卡的相应区域内)9.利用因式分解计算:2012-1992= ;10.若x+y=1,xy=-7,则x 2y+xy 2= ;11.已知x=2时,分式31x k x ++的值为零,则k= ; 12.公路全长为skm ,骑自行车t 小时可到达,为了提前半小时到达,骑自行车每小时应多走 ;13.一个多边形的内角和是外角和的2倍,则这个多边形的边数为 ;14.如图,△ACE 是以□ABCD 的对角线AC 为边的等边三角形,点C 与点E 关于x 轴对称.若E 点的坐标是(7,﹣D 点的坐标是 .三、解答题(本大题共78分,解答要写出必要的文字说明、演算步骤)15.(6分)分解因式(1)20a 3-30a 2 (2)25(x+y )2-9(x-y )216.(6分)计算:(1)22122a a a a+⋅-+ (2)211x x x -++ 17.(6分)A 、B 两地相距200千米,甲车从A 地出发匀速开往B 地,乙车同时从B 地出发匀速开往A 地,两车相遇时距A 地80千米.已知乙车每小时比甲车多行驶30千米,求甲、乙两车的速度.18.(7分)已知:如图,在△ABC 中,AB=AC ,点D 是BC 的中点,作∠EAB=∠BAD ,AE 边交CB 的延长线于点E ,延长AD 到点F ,使AF=AE ,连结CF .求证:BE=CF .19.(8分) “二广”高速在益阳境内的建设正在紧张地进行,现有大量的沙石需要运输.“益安”车队有载重量为8吨、10吨的卡车共12辆,全部车辆运输一次能运输110吨沙石.(1)求“益安”车队载重量为8吨、10吨的卡车各有多少辆?(2)随着工程的进展,“益安”车队需要一次运输沙石165吨以上,为了完成任务,准备新增购这两种卡车共6辆,车队有多少种购买方案,请你一一写出.20.(8分)如图,在Rt △ABC 中,∠ACB=90°,点D ,E 分别在AB ,AC 上,CE=BC ,连接CD ,将线段CD 绕点C 按顺时针方向旋转90°后得CF ,连接EF.(1)补充完成图形;(2)若EF ∥CD ,求证:∠BDC=90°.21.(8分)下面是某同学对多项式(x 2-4x+2)(x 2-4x+6)+4进行因式分解的过程.解:设x 2-4x=y ,原式=(y+2)(y+6)+4(第一步)=y 2+8y+16 (第二步)=(y+4)2(第三步)=(x 2-4x+4)2(第四步)(1)该同学第二步到第三步运用了因式分解的 .A .提取公因式B .平方差公式C .两数和的完全平方公式D .两数差的完全平方公式(2)该同学因式分解的结果是否彻底? .(填“彻底”或“不彻底”)若不彻底,请直接写出因式分解的最后结果 .(3)请你模仿以上方法尝试对多项式(x 2-2x)(x 2-2x+2)+1进行因式分解.22.(8分)如图,四边形ABCD 中,对角线AC ,BD 相交于点O ,点E ,F 分别在OA ,OC 上(1)给出以下条件;①OB=OD ,②∠1=∠2,③OE=OF ,请你从中选取两个条件证明△BEO ≌△DFO ;(2)在(1)条件中你所选条件的前提下,添加AE=CF ,求证:四边形ABCD 是平行四边形.23.(10分)如图,在□ABCD 中,E 是BC 的中点,连接AE 并延长交DC 的延长线于点F .(1)求证:AB=CF ;(2)连接DE ,若AD=2AB ,求证:DE ⊥AF .24.(11分)如图,在直角梯形ABCD 中,AD ∥BC ,∠B=90°,且AD=12cm ,AB=8cm ,DC=10cm ,若动点P 从A 点出发,以每秒2cm 的速度沿线段AD 向点D 运动;动点Q 从C 点出发以每秒3cm 的速度沿CB 向B 点运动,当P 点到达D 点时,动点P 、Q 同时停止运动,设点P 、Q 同时出发,并运动了t 秒,回答下列问题:(1)BC= cm ;(2)当t 为多少时,四边形PQCD 成为平行四边形?(3)当t 为多少时,四边形PQCD 为等腰梯形?(4)是否存在t ,使得△DQC 是等腰三角形?若存在,请求出t 的值;若不存在,说明理由.八年级数学试题参考答案一、选择题(每小题3分,共24分)1、D2、A3、C4、A5、C6、B7、D8、B二、填空题(每小题3分,共18分)9. 800 10.-7 11.-6 12.221s t --s t 13.6(六) 14.(5,0) 三、解答题 (共78分)15.(1)解:20a 3﹣30a 2=10a 2(2a ﹣3)…………………………………………3分(2)解:25(x+y )2﹣9(x ﹣y )2=[5(x+y )+3(x ﹣y )][5(x+y )﹣3(x ﹣y )]=(8x+2y )(2x+8y );=4(4x+y)(x+4y)……………………………………………………………3分16.(1)解:22122a a a a+⋅-+ =2(2)(2)a a a a +-⋅+ =212a a -1(2)a a -或………………………………………………3分 (2)211x x x -++ =2(1)1x x x --+ =2(1)(1)11x x x x x -+-++ =2(1)(1)1x x x x --++=11x +…………………………………………………………………………3分 17.设甲车的速度是x 千米/时,乙车的速度为(x+30)千米/时,……………1分308020080+-=x x ………………………………………………………………………3分 解得,x=60,………………………………………………………………………4分经检验,x=60是原方程的解.……………………………………………………5分则x+30=90,即甲车的速度是60千米/时,乙车的速度是90千米/时.……………………6分18.证明:∵AB=AC ,点D 是BC 的中点,∴∠CAD=∠BAD .…………………………………………………………………2分 又∵∠EAB=∠BAD ,∴∠CAD=∠EAB .…………………………………………………………………4分 在△ACF 和△ABE 中,∴△ACF ≌△ABE (SAS ).∴BE=CF .……………………………………………………………………………7分19.解:(1)设“益安”车队载重量为8吨、10吨的卡车分别有x 辆、y 辆,根据题意得:,解之得:. 答:“益安”车队载重量为8吨的卡车有5辆,10吨的卡车有7辆;…………………4分(2)设载重量为8吨的卡车增加了z 辆,依题意得:8(5+z )+10(7+6﹣z )>165,解之得:z <,………………………………………………………………………………6分 ∵z ≥0且为整数,∴z=0,1,2;∴6﹣z=6,5,4.∴车队共有3种购车方案:①载重量为8吨的卡车购买1辆,10吨的卡车购买5辆;②载重量为8吨的卡车购买2辆,10吨的卡车购买4辆;③载重量为8吨的卡车不购买,10吨的卡车购买6辆.………………………………8分20.(1)解:补全图形,如图所示.………………………………………………………3分(2) 证明:由旋转的性质得∠DCF=90°,DC=FC ,∴∠DCE +∠ECF=90°.………………………………………………………………4分∵∠ACB=90°,∴∠DCE +∠BCD=90°,∴∠ECF=∠BCD∵EF ∥DC ,∴∠EFC +∠DCF=180°,∴∠EFC=90°.………………………………………………………………………6分在△BDC 和△EFC 中,⎩⎪⎨⎪⎧DC =FC ,∠BCD =∠ECF ,BC =EC ,∴△BDC ≌△EFC(SAS),∴∠BDC=∠EFC=90°.………………………………………………………………8分21.解:(1)该同学第二步到第三步运用了因式分解的两数和的完全平方公式;故选:C ;……………………………………………………………………………2分(2)该同学因式分解的结果不彻底,原式=(x 2﹣4x+4)2=(x ﹣2)4;故答案为:不彻底,(x ﹣2)4…………………………………………………………4分(3)(x 2﹣2x )(x 2﹣2x+2)+1=(x 2﹣2x )2+2(x 2﹣2x )+1=(x 2﹣2x+1)2=(x ﹣1)4.………………………………………………………………………………8分22.证明:(1)选取①②,∵在△BEO和△DFO中,∴△BEO≌△DFO(ASA);……………………………………………………………………4分(2)由(1)得:△BEO≌△DFO,∴EO=FO,BO=DO,∵AE=CF,∴AO=CO,∴四边形ABCD是平行四边形.……………………………………………………………8分23.证明:(1)∵四边形ABCD是平行四边形,∴AB∥DF,∴∠ABE=∠FCE,∵E为BC中点,∴BE=CE,在△ABE与△FCE中,,∴△ABE≌△FCE(ASA),∴AB=FC;………………………………………………………………………………6分(2)∵AD=2AB,AB=FC=CD,∴AD=DF,∵△ABE≌△FCE,∴AE=EF,∴DE⊥AF.………………………………………………………………………………10分24.解:根据题意得:PA=2t,CQ=3t,则PD=AD-PA=12-2t.(1)如图,过D点作DE⊥BC于E,则四边形ABED为长方形,DE=AB=8cm,AD=BE=12cm,在直角△CDE中,∵∠CED=90°,DC=10cm,DE=8cm,∴EC=,∴BC=BE+EC=18cm.…………………………………………………………………2分(直接写出最后结果18cm即可)(2)∵AD∥BC,即PD∥CQ,∴当PD=CQ时,四边形PQCD为平行四边形,即12-2t=3t,解得t=125秒,故当t=125秒时四边形PQCD为平行四边形;………………………………………4分(3)如图,过D点作DE⊥BC于E,则四边形ABED为长方形,DE=AB=8cm,AD=BE=12cm,当PQ=CD时,四边形PQCD为等腰梯形.过点P作PF⊥BC于点F,过点D作DE⊥BC于点E,则四边形PDEF是长方形,EF=PD=12-2t,PF=DE.在Rt△PQF和Rt△CDE中,PQ CD PF DE ==⎧⎨⎩, ∴Rt △PQF ≌Rt △CDE (HL ),∴QF=CE ,∴QC-PD=QC-EF=QF+EC=2CE ,即3t-(12-2t )=12,解得:t=245, 即当t=245时,四边形PQCD 为等腰梯形;……………………………………………8分 (4)△DQC 是等腰三角形时,分三种情况讨论:①当QC=DC 时,即3t=10,∴t=103; ②当DQ=DC 时,362t = ∴t=4; ③当QD=QC 时,3t ×6510= ∴t=259. 故存在t ,使得△DQC 是等腰三角形,此时t 的值为103秒或4秒或259秒.………11分③在Rt△DMQ中,DQ2=DM2+QM2222 (3)8(38) t t=+-36t=100t=259第11 页共11 页。

2018-2019学年福建省龙岩市上杭县八年级(下)期末数学试卷

2018-2019学年福建省龙岩市上杭县八年级(下)期末数学试卷

2018-2019学年福建省龙岩市上杭县八年级(下)期末数学试卷一、选择题:本题共10小题,每小题4分,共40分,在每小题给出的四个选项中,只有一项是符合题目要求的. 1.(4分)下列各点中,在直线y=2x上的点是()A.(1,1)B.(2,1)C.(2,﹣2)D.(1,2)2.(4分)下列各组数中不能作为直角三角形三边长的是()A.7,9,12B.5,12,13C.1,,D.3,4,53.(4分)下列根式中,不能与合并的是()A.B.C.D.4.(4分)下列各曲线中表示y是x的函数的是()A.B.C.D.5.(4分)面试时,某人的基本知识、表达能力、工作态度的得分分别是80分,70分,85分,若依次按30%,30%,40%的比例确定成绩,则这个人的面试成绩是()分A.78.3B.79C.235D.无法确定6.(4分)如图,平行四边形ABCD中,AC⊥AB,点E为BC边中点,AD=6,则AE的长为()A.2B.3C.4D.57.(4分)若,则a的取值范围是()A.a>0B.a≥1C.0<a<1D.0<a≤18.(4分)如图,有一张直角三角形纸片ABC,两条直角边AC=5,BC=10,将△ABC折叠,使点A和点B重合,折痕为DE,则CD的长为()A.1.8B.2.5C.3D.3.759.(4分)△ABC中,AB=15,AC=13,高AD=12,则△ABC的周长为()A.42B.32C.42或32D.37或3310.(4分)如图,在长方形纸片ABCD中,AB=4,AD=6.点E是AB的中点,点F是AD边上的一个动点.将△AEF沿EF所在直线翻折,得到△GEF.则GC长的最小值是()A.B.C.2D.2二、填空题:本题共6小题,每小题4分,共24分.11.(4分)化简:=.12.(4分)若三角形的一边长为2,面积为4,则这条边上的高为.13.(4分)已知一次函数y=kx+b的图象如图所示,则不等式kx+b≥4的解是.14.(4分)已知数据﹣1,﹣2,0,1,2,则这组数据的方差是.15.(4分)如图,在平面直角坐标系xOy中,菱形ABCD的顶点D在x轴上,边BC在y轴上,若点A的坐标为(12,13),则点C的坐标是.16.(4分)已知一次函数y=ax﹣a+2(a为常数,且a≠0).若当﹣1≤x≤4时,函数有最大值7,则a的值为.三、解答题:本题共9个小题,共86分.解答应写出文字说明、证明过程或演算步骤.17.(8分)计算:(1)(2)18.(8分)先化简,再求值:,其中m=.19.(8分)如图,在平面直角坐标系中,已知点A(5,0)和点B(0,4).(1)求直线AB所对应的函数表达式;(2)设直线y=x与直线AB相交于点C,求△AOC的面积.20.(8分)如图,甲、乙两船同时从港口A出发,甲船以16海里/h的速度向南偏东50°方向航行,乙船向北偏东40°方向航行.3h后,甲船到达B岛,乙船到达C岛.若B、C两岛相距60海里,请问乙船的速度是多少?21.(8分)国家规定,中小学生每天在校体育活动时间不低于1h.为此,某县就“你每天在校体育活动时间是多少”的问题,随机调査了辖区内300名初中学生.根据调查结果绘制成统计图如图所示,其中A组为t<0.5h,B组为0.5h≤t<1h,C组为1h≤t<1.5h,D组为t≥1.5h请根据上述信息解答下列问题(1)本次调查数据的中位数落在组内,众数落在组内;(2)若该辖区约4000名初中生,请你估计其中达到国家规定体育活动时间的人数;(3)若A组取t=0.25h,B组取t=0.75h,C组取t=1.25h,D组取t=2h,试计算这300名学生平均每天在校体育活动的时间.22.(10分)如图,▱ABCD中,E、F两点在对角线BD上,且BE=DF,求证:AF∥CE.23.(10分)在平面直角坐标系xOy中,直线l1:y=mx+n(m<0且n>0)与x轴交于点A,过点C(1,0)作直线l2⊥x轴,且与l1交于点B.(1)当m=﹣2,n=1时,求BC的长;(2)若BC=1﹣m,D(4,3+m),且BD∥x轴,判断四边形OBDA的形状,并说明理由.24.(12分)某学校计划组织全校1441名师生到相关部门规划的林区植树,经过研究,决定租用当地租车公司一共62辆A,B两种型号客车作为交通工具.下表是租车公司提供给学校有关两种型号客车的载客量和租金信息:注:载客量指的是每辆客车最多可载该校师生的人数设学校租用A型号客车x辆,租车总费用为y元.(Ⅰ)求y与x的函数解析式,请直接写出x的取值范围;(Ⅱ)若要使租车总费用不超过21940元,一共有几种租车方案?哪种租车方案总费用最省?最省的总费用是多少?25.(14分)在正方形ABCD中,点P是直线BC上的一个动点,连接P A,PD.点M,N分别为BC,P A的中点,连接MN交PD于点Q.(1)如图1,当点P与点B重合时,△MPQ的形状是;(2)当点P在线段CB的延长线上时,如图2①依题意补全图2;②判断△MPQ的形状,并给予证明.2018-2019学年福建省龙岩市上杭县八年级(下)期末数学试卷参考答案与试题解析一、选择题:本题共10小题,每小题4分,共40分,在每小题给出的四个选项中,只有一项是符合题目要求的. 1.【解答】解:把(1,2),(2,1),(2,﹣2),(1,1)代入y=2x上,只有(1,2)满足条件.故选:D.2.【解答】解:A、72+92≠122,不符合勾股定理的逆定理,故本选项符合题意;B、52+122=132,符合勾股定理的逆定理,故本选项不符合题意;C、12+()2=()2,符合勾股定理的逆定理,故选项不符合题意;D、32+52=42,不符合勾股定理的逆定理,故本选项不符合题意.故选:A.3.【解答】解:A.∵,∴可以与合并;B.∵=,∴可以与合并;C.∵=,∴不可以与合并;D.∵=2,∴可以与合并;故选:C.4.【解答】解:根据函数的意义可知:对于自变量x的任何值,y都有唯一的值与之相对应,故D正确.故选:D.5.【解答】解:这个人的面试成绩是80×30%+70×30%+85×40%=79(分),故选:B.6.【解答】解:∵四边形ABCD是平行四边形,∴BC=AD=6,∵E为BC的中点,AC⊥AB,∴AE=BC=3,故选:B.7.【解答】解:∵,∴,解得:0<a≤1.故选:D.8.【解答】解:由折叠的性质得:AD=BD,设CD=x,则BD=AD=10﹣x.在Rt△ACD中,由勾股定理得:(10﹣x)2=x2+52,解得:x=3.75.∴CD=3.75.故选:D.9.【解答】解:此题应分两种情况说明:(1)当△ABC为锐角三角形时,在Rt△ABD中,BD===9,在Rt△ACD中,CD===5∴BC=5+9=14∴△ABC的周长为:15+13+14=42;(2)当△ABC为钝角三角形时,在Rt△ABD中,BD===9,在Rt△ACD中,CD===5,∴BC=9﹣5=4.∴△ABC的周长为:15+13+4=32∴当△ABC为锐角三角形时,△ABC的周长为42;当△ABC为钝角三角形时,△ABC的周长为32.故选:C.10.【解答】解:以点E为圆心,AE长度为半径作圆,连接CE,当点G在线段CE上时,GC的长取最小值,如图所示根据折叠可知:GE=AE=AB=2.在Rt△BCE中,BE=AB=2,BC=6,∠B=90°,∴CE==2,∴GC的最小值=CE﹣GE=2﹣2.故选:A.二、填空题:本题共6小题,每小题4分,共24分.11.【解答】解;==,故答案为:.12.【解答】解:设该三角形已知边上的高为h,则×2h=4,解得h=4.故答案是:4.13.【解答】解:∵从图象可知:k<0,直线与y轴交点的坐标为(0,4),∴不等式kx+b≥4的解集是x≤0,故答案为x≤0.14.【解答】解:﹣1,﹣2,0,1,2的平均数是(﹣1﹣2+0+1+2)÷5=0,则这组数据的方差=[(﹣1﹣0)2+(﹣2﹣0)2+(0﹣0)2+(1﹣0)2+(2﹣0)2]=2.故答案为:2.15.【解答】解:∵A(12,13),∴OD=12,AD=13,∵四边形ABCD是菱形,∴CD=AD=13,在Rt△ODC中,OC==5,∴C(0,﹣5).故答案为:(0,﹣5)16.【解答】解:①a>0时,y随x的增大而增大,则当x=4时,y有最大值7,把x=4,y=7代入函数关系式得7=4a﹣a+2,解得a=;②a<0时,y随x的增大而减小,则当x=﹣1时,y有最大值7,把x=﹣1代入函数关系式得7=﹣a﹣a+2,解得a=﹣,所以a=或a=﹣,故答案为或﹣.三、解答题:本题共9个小题,共86分.解答应写出文字说明、证明过程或演算步骤. 17.【解答】解:(1)原式=6×﹣2×2=3﹣4=﹣;(2)原式=1﹣(4﹣2)﹣=1﹣4+2﹣=﹣3+.18.【解答】解:原式=•=•=,当m=﹣1时,原式===.19.【解答】解:(1)设直线AB所对应的函数表达式为y=kx+b(k≠0),将A(5,0),B(0,4)代入y=kx+b,得:,解得:,∴直线AB所对应的函数表达式y=﹣x+4;(2)联立直线OC及直线AB所对应的函数表达式为方程组,得:,解得:,∴点C坐标(,),∴S△AOC=OA•y C=×5×=.20.【解答】解:由题意得:∠CAE=40°,∠P AB=50°,∴∠CAB=180°﹣40°﹣50°=90°,由已知可得:AB=16×3=48(海里),∵BC=60海里,∴AC====36(海里),36÷3=12,∴乙船的速度是12海里/h.21.【解答】解:(1)根据中位数的概念,中位数应是第150、151人时间的平均数,分析可得其均在C组,故本次调查数据的中位数落在C组.众数落在C组,故答案是:C、C;(2)达国家规定体育活动时间的人数约4000×=2400(人).答:达国家规定体育活动时间的人约有2400人.(3)(0.25×20+0.75×100+1.25×120+2×60)÷300≈1.2,答:这300名学生平均每天在校体育活动的时间约为1.2h.22.【解答】证明:∵四边形ABCD是平行四边形,∴AD=BC,AD∥BC,∴∠ADF=∠CBE,在△ADF和△CBE中,,∴△ADF≌△CBE(SAS),∴∠DF A=∠BEC,∴∠AFE=∠CEF,∴AF∥CE.23.【解答】解:(1)当m=﹣2,n=1时,直线的解析式为y=﹣2x+1,当x=1时,y=﹣1,∴B(1,﹣1),∴BC=1.(2)结论:四边形OBDA是平行四边形.理由:如图,∵BD∥x轴,B(1,1﹣m),D(4,3+m),∴1﹣m=3+m,∴m=﹣1,∵B(1,m+n),∴m+n=1﹣m,∴n=3,∴直线y=﹣x+3,∴A(3,0),∴OA=3,BD=3,∴OA=BD,OA∥BD,∴四边形OBDA是平行四边形.24.【解答】解:(Ⅰ)由题意:y=380x+280(62﹣x)=100x+17360.∵30x+20(62﹣x)≥1441,∴x≥20.1,又∵x为整数,∴x的取值范围为21≤x≤62的整数;(Ⅱ)由题意100x+17360≤21940,∴x≤45.8,∴21≤x≤45,∴共有25种租车方案,x=21时,y有最小值=19460元.即租21辆A型号客车时总费用最省,最省的总费用是19460元.25.【解答】解:(1)如图1,连接AC,∵四边形ABCD为正方形,∴AC⊥BD,∠DBC=45°,∵点M、N分别为BC、AP的中点,∴MN∥AC,∴∠BQM=∠BOC=90°,∴∠QMB=45°,∴△MPQ是等腰直角三角形,故答案为:等腰直角三角形.(2)①依题意补全图2,如图2所示;②△MPQ的形状是等腰三角形,理由如下:如图3,延长BC至E,使CE=BP,连接AE,∵PB=CE,∴PB+BC=CE+BC,即CP=BE,∵四边形ABCD是正方形,∴AB=DC,∠ABC=∠DCB=90°,在△DCP和△ABE中,,∴△DCP≌△ABE(SAS),∴∠DPC=∠E,∵M为BC的中点,∴MB=MC,∴MB+BP=MC+CE,即MP=ME,∴M为PE的中点,∵N为AP的中点,∴MN∥AE,∴∠NMP=∠E,∴∠DPC=∠NMP,∴QM=QP,∴△MPQ是等腰三角形.。

18-19学年八年级下数学期末质检4

18-19学年八年级下数学期末质检4

2018-2019学年度(下)八年级数学期末质量检测10一、精心选一选:本大题共10小题,每小题4分,共40分. 命题者:CYL 1、方程3x 2﹣8x ﹣10=0的二次项系数和一次项系数分别为( ) A .3和8 B .3和﹣8 C .3和﹣10 D .3和10 2、若α、β是方程x 2+2x -2017=0的两个实数根,则αβ的值为( ) A.2017 B.2 C.-2 D.-20173、若关于x 的方程(m ﹣1)x 2+5x +2=0是一元二次方程,则m 的值不能为( )A .1B .﹣1C .12D .0 4、在平面直角生标系中,o 为坐标原点,四边形0ACE 是菱形,点C (6,0),点A 的纵坐标2 则点B 的坐标是( )A. (2,3)B. (3,2)C. (2,-3)D. (3,-2)5、已知点(-1,y 1)(21,y 2).(2,y 3)都在直线y=x+b 上.则y 1,y 2,y 3的大小关系为( )A. y 1>y 2>y 3B. y 1>y 3>y 2C. y 1<y 2<y 3D. y 1<y 3 <y 26、 一组数据由五个正整数组成,中位数和众数都是2,则这五个数的和的最小值是( )A. 7B. 8C.9D. 107、如图1,在△ABC 中,∠ACB=90O ,分别以点A 和B 为圆心,以相同的长(大于21AB)为半径作弧,两弧相交于M 和N ,作直线MN 交AB 于点D ,交BC 于点E ,连接CD ,下列结论错误的是( )A. ∠ADE=∠ACBB.∠A=∠ADCC.∠B=∠DCBD.∠A=∠BED8、如图 2,在△ABC 中,∠C=90°,AC=2,点D 在BC 边上,∠ADC=2∠B, AD =5,则BC 的长为( )A. 13+B. 13- C 15+. D. 15-9、某校进行体操队列训练,原有8行10列,后增加40人,使得队伍增加的行数、列数相同,你知道增加了多少行或多少列吗?设增加了x 行或列,则列方程得( )A .(8-x )(10-x )=8×10-40B .(8-x )(10-x )=8×10+40C .(8+x )(10+x )=8×10-40D .(8+x )(10+x )=8×10+4010、已知等腰三角形周长为20,腰长为y ,底边长为x ,则下列能正确表示y 关于x 的函数关系的图象是( )二、填空题(共6题,每题4分,共24分)11、把方程3x (x -1)=(x +2)(x -2)+9化成ax 2+bx +c =0的形式为 12、在△ABC 中,D 、E 分别是边AB 、AC 的中点,若BC=4,则DE=13、图3是甲、乙两名跳远运动员的10次测验成绩(单位:米)的折线统计图,观察图形,写出甲、乙这10次跳远成绩之间的大小关系:S 甲2 S 乙2(填“>“或“<”)14、在△ABC 中,∠C=90。

龙岩市上杭县2018-2019学年八年级下月考数学试卷含答案解析

龙岩市上杭县2018-2019学年八年级下月考数学试卷含答案解析
【考点】完全平方公式.
【分析】首先求出(a+ )2=a2+ +2=10,进而得出(a﹣ )2=6,即可得出答案.
【解答】解:∵ ,
∴(a+ )2=a2+ +2=10,
D、 =3 ,与 的被开方数相同,是同类二次根式,故D选项正确.
故选:D.
6.若 是整数,则正整数n的最小值是( )
A.2B.3C.4D.5
【考点】二次根式的定义.
【分析】先把75分解,然后根据二次根式的性质解答.
【解答】解:∵75=25×3,
∴ 是整数的正整数n的最小值是3.
故选:B.
7.设 ,a在两个相邻整数之间,则这两个整数是( )
24.先化简,再求值 ,其中a= ,b= .
25.如图,在数轴上画出表示 的点(不写作法,但要保留画图痕迹).
26.阅读下面问题:



试求:(1) 的值;
(2) (n为正整数)的值.
(3)计算: .
2018-2019学年福建省龙岩市上杭县茶地中学八年级(下)月考数学试卷(3月份)
参考答案与试题解析
3.下列根式中属最简二次根式的是( )
A. B. C. D.
4.下列计算错误的是( )
A. B. C. D.
5.下列二次根式中与 是同类二次根式的是( )
A. B. C. D.
6.若 是整数,则正整数n的最小值是( )
A.2B.3C.4D.5
7.设 ,a在两个相邻整数之间,则这两个整数是( )
A.1和2B.2和3C.3和4D.4和5
2018-2019学年福建省龙岩市上杭县茶地中学八年级(下)月考数学试卷(3月份)
一、选择题:(每小题4分,共40分)
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

重合,折痕为 DE,则 CD 的长为
E
A.1.8
B.2.5
C.3
D.3.75
C
D
B
9.已知△ABC 中,AB=15,AC=13,高 AD=12,则△ABC 的周长是
A.42
B.32
C.42 或 32
D.37 或 42
10. 如图,在长方形纸片 ABCD 中,AB=4,AD=6.点 E 是 AB 的中点,点 F 是 AD 边
试计算这 300 名学生平均 天在校体育活动的时间.
22.(本小题满分 10 分)
D
C
如图,□ABCD 中,E、F 两点在对角线 BD 上,
F
且 BE=DF. 求证:AF∥CE.
E
A
B
八(下)期末学段水平测试数学试题 第 3 页 (共 4 页)
23.(本小题满分 10 分) 在平面直角坐标系 xOy 中,直线 l1:y=mx+n(m<0 且 n>0)与 x 轴交于点 A,过点 C(1,0)作直线 l2⊥x 轴,且与 l1 交于点 B. (1)当 m=-2,n=1 时,求 BC 的长; (2)若 BC=1-m,D(4,3+m),且 BD∥x 轴,判断四边形 OBDA 的形状,并说 明理由.
4.下列各曲线中,表示 y 是 x 的函数的是
A.
B.
C.
D.
5.面试时,某人的基本知识、表达能力、工作态度的得分分别是 80 分,70 分,85 分,
若依次按 30%,30%,40%的比例确定成绩,则这个人的面试成绩是
A.78.3
B.79
C.235
D.无法确定
6. 如图,平行四边形 ABCD 中,AC⊥AB,点 E 为 BC 边中点,AD=6,则 AE 的长为
北 C
行.3h 后,甲船到达 B 岛,乙船到达 C 岛.若 B、C 两
岛相距 60 海里,请问乙船的速度是多少?
A
21.(本小题满分8分) B
国家规定,中小学生 天在校体育活动时间
不低于1h.为此,某县就“你 天在校体育活动时间是多少”的问题,随机调查了
辖区内300名初中学生.根据调查结果绘制成统计图如图所示,其中A组为 t < 0.5h , B 组为 0.5h ≤ t < 1h ,C 组为1h ≤ t < 1.5h ,D 组为 t ≥ 1.5h .
B
点 C 的坐标是

16. 已知一次函数 y = ax − a + 2 (a为常数,且a ≠ 0) .若当
O
−1 ≤ x ≤ 4 时,函数有最大值 7,则 a 的值为________.
C
Dx
三、解答题:本题共 9 个小题,共 86 分. 解答应写出文字说明、证明过程或演算步骤. 17.(本小题满分 8 分)
上的一个动点.将△AEF 沿 EF 所在直线翻折,得到△GEF.则 GC 长的最小值是
A. 2 10 − 2
B. 2 10 −1
C. 2 13
D. 2 10
二、填空题:本题共 6 小题, 小题 4 分,共 24 分.
AF
D
G E
11. 计算:


2 3
2
=

B
C
12. 若三角形的一边长为 2 3 ,面积为 4 6 ,则这条边
人数
140
120
100
80
60
40
20
0
A
B
C
D 组别
请根据上述信息解答下列问题:
(1)本次调查数据的中位数落在
组内,众数落在
组内;
(2)若该辖区约 4000 名初中生,请你估计其中达到国家规定体育活动时间的人数;
(3)若 A 组取 t = 0.25h ,B 组取 t = 0.75h ,C 组取 t = 1.25h ,D 组取 t = 2h ,
y
如图,在平面直角坐标系中,已知点 A(5,0)和点
B
B(0,4).
(1)求直线 AB 所对应的函数表达式;
A
(2)设直线 y=x 与直线 AB 相交于点 C,求△AOC 的面积. O
x
20.(本小题满分 8 分) 如图,甲、乙两船同时从港口 A 出发,甲船以 16 海里/ h 的速度向南偏东 50°方向航行,乙船向北偏东 40°方向航
A.2
B.3
C.4
D.5
7. 若
1− a = a2
1− a ,则 a 的取值范围是 a
A. a > 0
B. a ≥ 1
C. 0 ≤ a ≤ 1
D. 0 < a ≤ 1
八(下)期末学段水平测试数学试题 第 1 页 (共 4 页)
8.如图,有一张直角三角形纸片 ABC,两条直角边
A
AC=5,BC=10,将△ABC 折叠,使点 A 和点 B
上杭县 2018-2019 学年第二学期期末学段水平测试
八年级数学试题
(满分:150 分
考试时间:120 分钟)
注意:请把所有答案书写到答题卡上!请不要错位、越界答题!
在本试题上答题无效.
一、选择题:本题共 10 小题, 小题 4 分,共 40 分,在 小题给出的四个选项中,
只有一项是符合题目要求的.
上的高为

13. 已知一次函数 y = kx + b 的图象如图所示,则不等式
kx + b ≥ 4 的解是________.
14. 一组数据: −1,− 2,0,1,2 ,则这组数据的方差为

y
15. 如图,在平面直角坐标系 xOy 中,菱形 ABCD 的顶点 D 在
A
x 轴上,边 BC 在 y 轴上,若点 A 的坐标为(12,13),则
1. 下列各点中,在直线 y = 2x 上的点是
A.(1,1)
B.(2,1)
C.(2,﹣2)
2.下列各组数中不能作为直角三角形三边长的是
A.7,9,12
B.5,12,13
C.不能与 3 合并的是
A. 1 3
B. 3 3
C. 2 3
D. 12
280 元/辆
注:载客 是指 辆客车最多可载该校师生的人数.
24.(本小题满分 12 分) 某学校计划组织全校 1441 名师生到相关部门规划的林区植树. 过研究,决定租用 当地租车公司 62 辆 A,B 两种型号的客车作为交通工具.下表是租车公司提供给学 校的关于这两种型号客车的载客 和租金的信息:
型号
载客
租金单价
A
30 人/辆
380 元/辆
B
20 人/辆
计算:(1) 6 1 − 2 8 2
( ) (2) (π − 3)0 − 3 −1 2 − − 3
18.(本小题满分 8 分)
先化简,再求值: 1−
2m −1 m
÷
m2 −1 m
,其中 m
=
3 −1.
八(下)期末学段水平测试数学试题 第 2 页 (共 4 页)
19.(本小题满分 8 分)
相关文档
最新文档