随机事件的概率与概率的意义分解
合集下载
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
思考2:考察下列事件: (1)在没有水分的真空中种子发芽; (2)在常温常压下钢铁融化; (3)服用一种药物使人永远年轻.
这些事件就其发生与否有什么共同特点?
我们把上述事件叫做不可能事件.
在条件S下,一定不会发生的事件,叫 做相对于条件S的不可能事件
思考3:考察下列事件: (1)某人射击一次命中目标; (2)马林能夺取北京奥运会男子乒乓球 单打冠军; (3)抛掷一个骰字出现的点数为偶数.
优等品频率 m 0.9 0.92 0.97 0.94 0.954 0.951 n
当抽查的球数很多时,抽到优等品的频 率m 接近于常数0.95,在它附近摆动。
n
随机事件及其概率
某种油菜籽在相同条件下的发芽试验结果表:
当试验的油菜籽的粒数很多时,油菜籽
发芽的频率m 接近于常数0.9,在它附近摆
动。
n
在相同的条件S下重复n次试验,观察某一 事件A是否出现,称n 次试验中事件A出现的次 数nA为事件A出现的频数,称事件A出现的比例 fn(A)=nA/n为事件A出现的频率。
可能: A、三件正品
B、 二正一次 (随机事件)
C、 一正二次
结论1:必然有一件正品
(确定事件)
结论2:不可能抽到三件次品
相关概念
1、随机事件
在条件S下可能发生也可能不发生的事件, 叫做相对于条件S的随机事件,简称随机事件。
2、必然事件
在条件S下一定会发生的事件,叫做相对 于条件S的必然事件,简称必然事件。
理论迁移 例1 判断下列事件哪些是必然事件,哪 些是不可能事件,哪些是随机事件? (1)如果a>b,那么a一b>0; (2)在标准大气压下且温度低于0°C时, 冰融化; (3)从分别标有数字l,2,3,4,5的5 张标签中任取一张,得到4号签; (4)某电话机在1分钟内收到2次呼叫; 〈5)手电筒的的电池没电,灯泡发亮;
常数01.250,00 在它左右6摆019动. 0.5016
24000
12012
05005
30000
14984
0.4996
72088
36124
0.5011
随机事件及其概率
又如:某批乒乓球产品质量检查结果表:
抽取球数 m 50 100 200 500 1000 2000
n 优等品数
45 92 194 470 954 1902
7 遍, 观察正面出现的次数及频率.
试验 序号
1 2 3 4 5 6 7
n5
n 50
n 500
nH
f
nH
f
nH f
2
0.4
22 0.44 251 0.502
3
0.6
在251 处波0动.50较大 249 2
0.498
1
0.2 21 0.42 256 0.512
Байду номын сангаас
5 1
在随11n处.0的波增动大2较5, 频小率0.f50呈现出24稳7 定0性.494 20.2 24 0.48 251 0.502
率约是多少?
0.90
练习
1.下列事件中,属于随机事件的是 ( ).
A.物体在重力的作用下自由下落 B.x为实数,x2<0 C.在某一天内电话收到呼叫次数为0 D.今天下雨或不下雨
思考:事件A发生的频率fn(A)是不 是不变的?事件A发生的 概率P(A) 是不是不变的?
频率与概率的区别与联系
1、频率本身是随机的,在试验前 不能确定。做同样次数的重复试验 得到事件的频率会不同。
2、概率是一个确定的数,是客观 存在的,与每次试验无关。是用来 度量事件发生可能性大小的量。
3、频率是概率的近似值,随着试 验次数的增加,频率会越来越接近 概率。
这些事件就其发生与否有什么共同特点?
我们把上述事件叫做随机事件。
在条件S下,可能发生也可能不发生的 事件,叫做相对于条件S的随机事件.
知识探究(二):事件A发生的频率与概 率
物体的大小常用质量、体积等来 度量,学习水平的高低常用考试分数 来衡量.对于随机事件,它发生的可能 性有多大,我们也希望用一个数量来 反映.
例2 某射手在同一条件下进行射击,结 果如下表所示:
射击次数n
10 20 50 100 200 500
击中靶心次数m 8 19 44 92 178 455
击中靶心的频率 m 0.8 0.95 0.88 0.92 0.89 0.91
n
(1)填写表中击中靶心的频率;
(2)这个射手射击一次,击中靶心的概
3.1.1随机事件的概率
知识探究(一):必然事件、不可能事件和 随机事件
思考1:考察下列事件: (1)导体通电时发热; (2)向上抛出的石头会下落; (3)在标准大气压下水温升高到100°C 会沸腾. 这些事件就其发生与否有什么
共同特点?
我们把上述事件叫做必然事件. 在条件S下,一定会发生的事件,叫做 相对于条件S的必然事件.
2
0.4 18 0.36 波26动2 最0小.524
4
0.8 27 0.54 258 0.516
掷硬币试验 随机事件及其概率
历史上曾有人做过抛掷硬币的大量重复试验, 结果如下表 :
抛掷次数
(m)
正面向上次数
(频数n )
频率(m ) n
发2现04:8 当抛掷硬1币061的次数很多0.5时181,
出现正40面40的频率值是204稳8 定的,接0.近506于9
3、不可能事件
在条件S下一定不会发生的事件,叫做相 对于条件S的不可能事件,简称不可能事件。
4、确定事件
必然事件与不可能事件统称为相对于条件S的
确定事件,简称确定事件。
确定事件和随机事件统称为事件,一般用大写字母A、 B、C……表示。
掷硬币试验 实例 将一枚硬币抛掷 5 次、50 次、500 次, 各做
思考:频率的取值范围是什么? [0,1]
必然事件出现的频率为1,不可能事件 出现的频率为0。
对于给定的随机事件A,如果随着试验 次数的增加,事件A发生的频率fn(A)稳定 在某个常数上,把这个常数记做P(A), 称为事件A的概率,简称为A的概率。
思考:概率的取值范围是什么? [0,1]
频率与概率的区别与联系
问题一:现在有10件相同的产
品,其中8件是正品,2件是次品。 我们要在其中任意抽出3件。那么, 我们可能会抽到怎样的样本?
可能: A、三件正品 B、 二正一次 C、 一正二次
(随机事件)
我们再仔细观察这三种可能情况,还能得到 一些什么发现、结论?
问题一:现在有10件相同的产
品,其中8件是正品,2件是次品。 我们要在其中任意抽出3件。那么, 我们可能会抽到怎样的样本?