红外吸收光谱

合集下载

红外吸收光谱

红外吸收光谱
物质吸收红外光发生振动和转动能级的跃迁须满足两个 条件:
(1)红外辐射光量子具有的能量等于分子振动能级的 能量差;
(2)分子振动时,偶极距的大小和方向必须有一定的 变化。
(一)振动能级
hc
E分子 E振动 E转动 h(v振动 v转动 ) 振动 转动
ΔE振动 0.05~ 1ev,
λ振动 25 ~ 1.25m
特征峰:在特征区中凡能鉴定官能团是否存在的吸收峰
官能团区 4000~1300cm-1
x-H伸缩振动区 4000~2500cm-1 三键和积累双键区 2500~2000cm-1 双键伸缩振动区 2000~1300cm -1
指纹区 红外光谱图中的波数区在1333cm-1称为指纹区,其间出
现的谱带主要是C-C,C-N,C-O等单键伸缩振动及各种 弯曲振动。
CH2的反对称伸缩和对称伸缩振动分别出现在2926cm-1和 2853cm-1处。脂肪族以及无扭曲的脂环族化合物的这两个吸收带的 位置变化在10cm-1以内。一部分扭曲的脂环族化合物其CH2吸收频率 增大。
中红外区(4000~400cm-1)分成两部分: 官能团区(3700~1333 cm-1); 指纹区(1333~650 cm-1) 官能团的特征吸收大多出现在官能团区。 而有关的分子精细结构特征,如取代类型、几何异构、 同分异构在指纹区可以观察到。
2. 红外吸收峰强度的影响因素 振动能级的跃迁几率
称性越差,伸缩振动时偶极矩的变化越大,吸收峰也越强。
吸收峰强度: 反对称伸缩振动 > 对称伸缩振动 > 变形振 动
vC=O> vC=C
红外吸收光谱仪
一、色散型红外吸收光谱仪的基本组成 1.组成结构框图
硅碳棒 光源
吸收池参 比 样品单源自器切光器(斩波器) 检 测 器

红外吸收光谱的原理及应用

红外吸收光谱的原理及应用

红外吸收光谱的原理及应用一、红外吸收光谱的原理红外吸收光谱(Infrared Absorption Spectroscopy)是一种常见的光谱分析技术,它利用物质分子对红外辐射的吸收特性进行分析和研究。

红外光谱的原理基于分子的振动和转动引起的能量变化。

在红外辐射的作用下,分子会吸收特定波长或频率的光,从而发生能级跃迁并产生吸收峰。

根据不同的吸收峰位置和强度,可以推断物质的结构、组成和化学环境等信息。

红外吸收光谱的原理主要包括以下几个方面: 1. 分子的振动和转动:分子在吸收红外辐射时,会发生振动和转动。

振动包括拉伸、弯曲和扭转等不同形式,每个分子都有特定的振动模式和频率,使其能够吸收不同波长的红外辐射。

2. 分子吸收特定波长的光:分子在特定波长范围内吸收红外辐射,产生吸收峰。

根据吸收峰的位置和强度,可以确定分子的化学键、官能团和分子结构等信息。

3. 光谱图的解读:通过测量物质对红外辐射的吸收情况,可以得到红外光谱图。

光谱图通常以波数为横轴,吸收峰强度为纵轴,常用峰位和峰形进行分析和判断。

二、红外吸收光谱的应用红外吸收光谱具有广泛的应用领域,主要包括以下几个方面:1. 化学分析红外光谱在化学分析中起着重要作用,可以用于鉴定和分析各种有机和无机化合物。

通过测量样品的红外光谱,可以获得化学键和官能团的信息,从而判断物质的结构和组成。

红外光谱被广泛应用于有机化学、药物分析、环境监测等领域。

2. 药物研发红外光谱在药物研发中具有重要的应用价值。

通过红外光谱分析药物的结构和成分,可以判断药物的稳定性、纯度和相态等性质。

红外光谱还可以用于药物的质量控制和检验,确保药物的安全有效。

3. 材料科学在材料科学领域,红外光谱可以用于材料的表征和分析。

不同材料的红外光谱具有独特的特征,可以用于识别和鉴别材料,评估材料的结构、质量和性能。

红外光谱被广泛应用于聚合物材料、无机材料、涂层材料等领域。

4. 生物医学研究红外光谱在生物医学研究中有着重要的应用。

红外吸收光谱的解析.

红外吸收光谱的解析.

红外吸收光谱法第一节概述一、红外光谱测定的优点20世纪50年代初期,红外光谱仪问世,揭开了有机物结构鉴定的新篇章。

到了50年代末期,已经积累了大量的红外光谱数据,到70年代中期,红外光谱法成为了有机结构鉴定的重要方法。

红外光谱测定的优点:1、任何气态、液态、固态样品都可以进行红外光谱的测定,这是核磁、质谱、紫外等仪器所不及的。

2、每种化合物均有红外吸收,又有机化合物的红外光谱可以获得丰富的信息。

3、常规红外光谱仪价格低廉,易于购置。

4、样品用量小。

二、红外波段的划分δ=104/λ(λnm δcm -1)红外波段范围又可以进一步分为远红外、中红外、近红外波段波长nm 波数cm -1近红外 0.75~2.5 13300~4000中红外 2.5~15.4 4000~650远红外 15.4~830 650~12三、红外光谱的表示方法红外光谱图多以波长λ(nm )或波数δ(cm -1)为横坐标,表示吸收峰的位置,多以透光率T%为纵坐标,表示吸收强度,此时图谱中的吸收―峰‖,其实是向下的―谷‖。

一般吸收峰的强弱均以很强(ε大于200)、强(ε在75-200)、中(ε在25-75)、弱(ε在5-25)、很弱(ε小于5),这里的ε为表观摩尔吸收系数红外光谱中吸收峰的强度可以用吸光度(A )或透过率T%表示。

峰的强度遵守朗伯-比耳定律。

吸光度与透过率关系为所以在红外光谱中―谷‖越深(T%小),吸光度越大,吸收强度越强。

第二节红外吸收光谱的基本原理一、分子的振动与红外吸收任何物质的分子都是由原子通过化学键联结起来而组成的。

分子中的原子与化学键都处于不断的运动中。

它们的运动,除了原子外层价电子跃迁以外,还有分子中原子的振动和分子本身的转动。

这些运动形式都可能吸收外界能量而引起能级的跃迁,每一个振动能级常包含有很多转动分能级,因此在分子发生振动能级跃迁时,不可避免的发生转动能级的跃迁,因此无法测得纯振动光谱,故通常所测得的光谱实际上是振动-转动光谱,简称振转光谱。

红外吸收光谱解析

红外吸收光谱解析
(CH2)n :1350~1192 cm-1 (间隔约 20 cm-1 )的谱带, 800~700 cm-1 ,弱吸收带
酸酐:两个羰基振动偶合产生双峰,波长位移60~80 cm-1。 酯:脂肪酯--~1735 cm-1 不饱和酸酯或苯甲酸酯--低波数位移约20 cm-1
羧酸:~1720 cm-1 若在第一区约 3000 cm-1出现强、宽吸收,可确认羧基 存在。
醛:在2850~2720 cm-1 范围有 m 或 w 吸收,出现1~2条谱 带,结合此峰,可判断醛基存在。
酰胺:伯酰胺:3350,3150cm-1 附近出现双峰 仲酰胺:3200cm-1 附近出现一条谱带 叔酰胺:无吸收
2012-9-17
19
3. C-H
烃类:3300~2700 cm-1范围,3000 cm-1是分界线。 不饱和碳(三键、双键及苯环)>3000 cm-1 饱和碳(除三元环外)<3000 cm-1
吸收峰,较为稀疏,容易辨认.
2012-9-17
17
特征区(4000-1400cm-1) ¾ 第一峰区(4000-2500cm-1)
X-H 伸缩振动吸收范围。 X:O、N、C、S 对应醇、酚、羧酸、胺、亚胺、炔烃、烯烃、芳烃 及饱和烃类的 O-H、N-H、C-H 伸缩振动。
1. O-H
醇与酚:游离态--3640~3610cm-1,峰形尖锐。 缔合--3300cm-1附近,峰形宽而钝
2012-9-17
25
3. N=O
硝基、亚硝基化合物:强吸收 脂肪族:1580~1540 cm-1,1380~1340 cm-1 芳香族:1550~1500 cm-1,1360~1290 cm-1 亚硝基: 1600~1500 cm-1
4. N-H (弯曲振动)

红外吸收光谱分析法

红外吸收光谱分析法

红外吸收光谱分析法
一、红外吸收光谱分析法概述
红外吸收光谱分析法是一种利用物质的红外光吸收能力来探测它们的物质组成的技术。

它特别适用于有机化合物和无机化合物的光谱分析。

通过分析红外吸收光谱,可以检测物质中的有机键、C-H键、C-O键或N-H 键的存在和位置,从而鉴定出物质的化学结构和性质。

红外光吸收法的原理是,物质中的分子、晶体或其他结构会在不同的波长处吸收光,产生光谱,这些吸收光谱是物质的独特特征,反映出物质的特性。

根据这种特性,分析用不同波长的光照射样品,并从所得到的光谱中提取出电子激发、分子振动等信息,从而得到物质的结构和性质。

二、红外吸收光谱分析法基本原理
红外吸收光谱分析法的原理是,当物质受到红外幅射的照射时,它的分子会产生振动和旋转,这些振动和旋转的能量会转化为更高能量的电子跃迁。

这些电子跃迁会引起物质材料吸收一些具有特定波长的红外光,从而产生在不同波长的吸收光谱,通过分析这些吸收光谱,就可以求取物质分子的结构和性质。

红外吸收光谱

红外吸收光谱

第三章红外吸收光谱(Infrared Absorption Spectroscopy)3.1 概述红外光谱又称为分子振动光谱或分子振转光谱1、特点:特征性强,适应范围广。

有机、无机、高分子化合物;固态、液态、气态样品都可以进行测定红外分为三个区域,近红外区(0.76μm~2.5μm,12820~4000cm-1)、中红外区(2.5μm~25μm, 4000~400cm-1)和远红外区(25μm~1000μm, 400~33cm-1)。

绝大多数有机化合物的基团震动频率处于中红外区。

2、表示方法:红外光谱多用透光率T%为纵坐标,表示吸收强度,以波数ζ(cm-1)为横坐标,表示吸收峰的位置。

也有用吸光度A为纵坐标,出反峰。

波数是频率的一种表示方法(每厘米长的光波中的波的数目)ζ(cm-1)=波数(cm-1)=1/波长(λcm)=104/波长(μm)=1/λ(cm);ζ·λ=1cm 3、红外光谱产生的基本条件1)E红外光=△E分子振动或υ红外光=υ分子振动2)分子振动时其偶极矩(μ)必须发生变化,即△μ≠0,μ=δr3.2 红外光谱与分子结构的关系3.2.1分子的振动形式*基频:分为两大类:伸缩振动和弯曲(变型)振动。

用υs表示对称伸缩,用υas 表示不对称伸缩,δ表示面内弯曲振动,γ表示面外弯曲振动。

以亚甲基为例:此外,还有一些其它的振动吸收峰存在:*倍频:由振动能级基态跃迁到第二,第三激发态时所产生的,不是整数倍。

*组合频:一种频率红外光,同时被两个振动所吸收。

倍频和组合频统称为泛频,在谱图中均显示为弱峰。

*振动偶合:当相同的两个基团相邻,且振动频率相近时,会发生振动偶合裂分,成为两个峰。

*费米共振:基频与泛频之间发生的振动偶合。

当泛频峰与某基峰相近时,发生相互作用,使原来很弱的泛频吸收峰增强。

图3-12费米共振和倍频。

3.2.2 红外光谱的分区(1)基团结构与振动频率的关系表3-1 基团振动频率与化学键力常数的关系(化学键种类)基团化学键力常数(K/N·cm-1) 键长(Â)振动频率(cm-1)C—C(三键)12~18 1.27 2262~2100C—C(双键)8~12 1.40 1600~1800C—C(单键)4~6 1.54 1000~1300(弱)表3—2基团振动频率与原子折合质量的关系(原子种类)基团折合质量键长(Â)振动频率cm-1C—H 0.9 1.12 2800~3100C—C 6 1.54 约1000C—Cl 7.3 1.77 约625C—I 8.9 2.31 约5000—H N—H 0.971.0336003300-3500(2)基团频率区的划分(表3-3)前三个区域(氢键区、叁键及累积双键区、双键区,即4000——1500 cm-1)称为特征频率区,小于1500 cm-1的区域称为指纹区(单键区,有些文献中以1350 cm-1作为二者的界限)。

红外吸收光谱基本原理及应用

红外吸收光谱基本原理及应用

红外吸收光谱基本原理及应用
红外吸收光谱(IR)是一种分析技术,利用物质的分子振动和转动产生
的特定吸收窗口,实现对物质结构、组成和化学键的定性和定量分析。


外光谱技术不需要对物质进行分离和纯化,具有非破坏性、灵敏度高、分
析速度快等优点,被广泛应用于化学、生物、环境、医药等领域。

红外光谱的应用非常广泛。

下面将介绍几个主要的应用领域:
1.有机化学领域:红外光谱可以用于有机化学品的鉴定和结构分析。

通过红外光谱可以确定化合物中的官能团,从而判断其化学性质和结构。

红外光谱还可以用于有机合成的反应监测和催化剂的评价。

2.无机化学领域:红外光谱在无机化学中的应用主要是对无机物质的
结构分析和表征。

通过测定无机物质的红外吸收光谱,可以确定其化学键
类型和强度,进而了解其分子结构和化学性质。

3.生物医学领域:红外光谱在生物医学领域的应用非常广泛。

红外光
谱可以用于分析生物体内的有机物和无机物,研究生物分子的结构和组成。

另外,红外光谱还可以用于红外光热治疗、红外光谱诊断等。

4.环境监测领域:红外光谱在环境监测中可以用于检测空气中的污染物、土壤和水中的污染物等。

利用红外光谱可以快速分析环境中的有机物
和无机物,为环境保护和治理提供依据。

总之,红外吸收光谱是一种重要的分析技术,具有广泛的应用。

它在
化学、生物、医药和环境等领域中发挥着重要的作用。

随着科学技术的不
断发展,红外吸收光谱将会在更多领域得到应用和发展。

红外吸收光谱简介

红外吸收光谱简介

分子间氢键 分子间氢键是否能够形成以及缔合程度有多大与该化合物
的浓度有密切关系
例如: 环己醇
浓度<0.01mol/L的CCl4稀溶液中------不形成分子间氢键 浓 度<0.1mol/L的CCl4溶液中------ 形成二聚体和多聚体的吸收 浓 度<1.0mol/L的CCl4溶液中------几乎都是多聚体
强, 宽而散
νN-H /cm-1 :3500~33001
强, 尖峰(单或双峰)
分子内氢键
H OO
O1 νC=O(游离) 1675cm-1 νO--H(缔合) 2843cm-1
形成分子内氢键
O
νC=O(游离) 1676cm-1 νC=O(游离) 1673cm-1 νO--H(游离) 3615~3606cm-1
未形成分子内氢键
氢键对氢键给体的影响较大, 对氢键受体的影响相对较小.
强度
很强 强 中等 弱 很弱
符号
VS S M W VW
红外吸收峰形状
宽峰 尖峰
肩峰 双峰
二.红外光谱的应用
1.通过红外光谱图的比较,可以判断是否是同一种化合物. 2.可以获取分子中各种结构信息, 特别是官能团信息.
例如: 3000±150cm-1区域的任何吸收, 都可以归结为C-H伸缩振动. 1715±100cm-1区域的任何强吸收, 基本上都可以归结为C=O 伸缩振动.
Y=Z伸缩振动区 (C=O, C=N, C=C)
红外吸收光谱中各种主要基团的大致分布图
不仅要注意特征官能团的位置. 而且还要注意观察峰的形状和强度.
例如 例如
νC=O /cm-1 ----1850~1630

νC=C /cm-1 ---- 1680~1620

红外吸收光谱法(IR)

红外吸收光谱法(IR)

• 3、红外吸收光谱与分子结构的关系 一、基团的特征峰与相关峰 1、特征峰与相关峰 特征峰——具有能代表某基团存在并有较高强 度的特征频率的吸收峰。可用以鉴定官能团。 相关峰——某基团的一组特征峰构成该基团的 相关峰。 2、红外光谱的分区 常见有机物基团在4000~670cm-1有特征基团频 率。红外光谱划分为6个区域:
有些因素使红外吸收峰增多 (1)倍频和组合频的出现 (2)振动耦合 (3)费米(Fermi)共振 振动耦合——当两个基团位置相邻,且振动频率相近,有一个 公用原子连接,相应的特征峰发生分裂形成两个峰。 费米共振——泛频峰与基频峰的耦合 影响吸收峰强弱的因素:分子在振动能级之间的跃迁概率和振 动过程中的偶极矩的变化。 A、分子由基态振动能级(0=0)向第一激发态(1=0)跃迁的 概率较大,因此基频峰较强,倍频峰较弱或很弱。 B、极性基团(O-H、C=O、N-H 等)振动时,偶极矩变化 较大,有较强的吸收峰; 非极性基团(C-C、C=C等)的吸收峰较弱;分子越对称, 吸收峰越弱。
偶极矩() =分子所带电量(q)正负电荷中心距离(d) 非极性双原子分子(N2、O2、H2): 分子完全对称(d=0),无红外吸收。 极性分子( 0): 由于分子中的振动使d的瞬时值不断变化,从而不 断变化,有一个固定的变化频率。当照射的红外光 的频率与分子的偶极矩的变化频率相匹配时,分子 的振动(红外活性振动)与红外光发生振动偶合而 增加振动能,振幅加大,即分子由振动基态跃迁到 激发态。——吸收红外光
• (2).傅里叶变换红外吸收光谱仪(FTIR)简介 原理:检测器得到一个干涉强度对光程差和红外光频率的函 数图,经过电子计算机进行复杂的傅立叶变换,得到普通的 吸光度或透光率随波数变化的红外光谱图。
(2)傅里叶变换红外光谱仪 (FTIR)

红外吸收光谱和红外反射光谱

红外吸收光谱和红外反射光谱

红外吸收光谱和红外反射光谱
红外吸收光谱和红外反射光谱都是利用红外光进行光谱分析的技术,但它们在应用方向和检测方式上存在明显的区别。

1. 红外吸收光谱:
红外吸收光谱是利用红外光通过样品时,样品对红外光的吸收作用进行的光谱分析技术。

其主要是研究分子振动能级跃迁而产生的吸收光谱,只有引起分子偶极矩变化的振动才能产生红外吸收。

红外吸收光谱主要用于结构分析、定性鉴别及定量分析。

其优点在于可以获得分子基团的特征吸收峰,从而推断出分子结构式。

例如,在1300cm-1附近的特征吸收峰对应于亚甲基和甲基的伸缩振动,而在1650cm-1附近出现的特征吸收峰对应于C=O的伸缩振动等。

2. 红外反射光谱:
红外反射光谱是一种利用红外反射光研究吸附薄层的光谱分析技术,其与吸附薄层和金属载体的光学常数、入射角及入射光的极化性质有关。

这种技术主要被用于研究表面的吸附特性,如催化剂表面吸附、生物薄膜的形成等。

虽然红外反射光谱不直接给出有关分子基团的信息,但它可以提供关于表面结构、化学组成以及物理性质(如粗糙度、吸附层厚度等)的信息。

总的来说,红外吸收光谱主要适用于分析样品的内部结构和化学组成,而红外反射光谱则主要用于研究表面的结构和化学组成。

第二章 红外光谱

第二章  红外光谱

(3)-OH基在形成氢键缔合后,偶极矩增大,因此在34503200cm-1之间表现为一个强而宽的锋。
01:30:28
若形成分子内氢键,酚羟基伸缩振动谱带向低频移动更为
明显。例如:
O H N O
+
O H O
O H O
OH(cm-1)
3610(游离)
3243
3077
(4)羧酸(-COOH)中的羟基比较特殊,由于氢键缔合,通 常以二聚体或多聚体的形式存在。吸收峰向低波数方向移动,
01:30:28
O
1660±10
波数(cm-1) 1680-1620 1620-1450 1690-1640 1630-1575 1590-1510 1390-1350
~1700
~1745
峰强度 不定
6、 双键的伸缩振动区(16801500 cm-1 )
不定 不定 强 强(稍弱)
讨论:
(1)分子比较对称时,C=C峰很弱,当个相邻基团相差比
O—H、N—H伸缩振动区(OH,NH )
不饱和C-H伸缩振动区( CH) 饱和及醛基C-H伸缩振动区( CH) 三键伸缩振动区( C≡C, C≡N ) 羰基伸缩振动区( C=O) 碳碳双键伸缩振动区( C=C) 碳氢面内弯曲振动和单键伸缩振动区 碳氢面外弯曲振动区
二、分子结构与吸收峰
四、不饱和度
01:30:27
一、特征区、指纹区和相关峰
1、特征区:4000~1300 cm-1,有机化合物主要官能团的 特征吸收区。特点:比较稀疏,容易辨认。与一定结构单元
相联系的、在该范围内出现的吸收峰叫特征吸收或特征峰;
例: 2800 3000 cm-1 1600 1850 cm-1 —CH3 —C=O 特征峰; 特征峰;

红外吸收光谱的解析

红外吸收光谱的解析

基团类型ν
-C≡C-H -C=C-H
Ar-H
波数/cm-1
~3300 3100~3000 3050~3010
峰的强度
VS M M
3、C-H伸缩振动区(3000—2700 cm-1)
基团类型ν
-CH3 -CH2≡C-H -CHO
波数/cm-1
2960及2870 2930及2850
2890 2720
峰的强度
8、C-H面外弯曲振动区(1000—650 cm-1)
二、指纹区和官能团区
从第1-6区的吸收都有一个共同点,每一红外吸收 峰都和一定的官能团相对应,此区域从而称为官能团 区。官能团区的每个吸收峰都表示某一官能团的存在, 原则上每个吸收峰均可以找到归属。
第7和第8区和官能团区不同,虽然在此区域内的 一些吸收也对应着某些官能团,但大量的吸收峰仅仅 显示该化合物的红外特征,犹如人的指纹,指纹区的 吸收峰数目较多,往往大部分不能找到归属,但大量 的吸收峰表示了有机化合物的具体特征。不同的条件 也可以引起不同的指纹吸收的变化。
峰的强度
S S S S S S S S S S S S S S S
6、双键伸缩振动区(1690—1500 cm-1)
基团类型ν
-C=C苯环骨架
-C=N -N=N= -NO2
波数/cm-1
1680~1620 1620~1450 1690~1640 1630~1575 1615~1510 1390~1320
1200~1000 1065~1015 1100~1010 1150~1100 1300~1200 1220 ~1130 1275~1060 1150~1060 1275~1210 1225~1200 1300~1050 1360~1020

红外吸收光谱的特征峰讲解

红外吸收光谱的特征峰讲解

红外吸收光谱的特征峰讲解红外吸收光谱是一种常用的分析技术,用于鉴定有机化合物的功能团和确定其化学结构。

在红外光谱中,每个特定的功能团都对应着一个特征峰,可以通过峰的位置和强度来确定化合物的结构和成分。

本文将对常见的红外吸收光谱特征峰进行详细讲解。

1.OH的吸收峰羟基(OH)的吸收峰通常出现在3200-3600cm-1的位置,显示为醇类和酚类化合物的特征。

醇类中,酒精的峰位通常在3200-3500cm-1,而酚类的峰位往往在3550-3650cm-1、峰的强度和形状可以提供关于羟基的状态和氢键的信息。

2.NH的吸收峰氨基(NH)也有比较突出的吸收峰,峰位通常出现在3100-3500cm-1的位置。

一般而言,一级胺和二级胺的NH伸缩振动峰位在3200-3500cm-1,而三级胺则没有明显的NH伸缩振动峰。

3.C=O的吸收峰碳氧双键(C=O)是有机化合物中常见的官能团之一,其吸收峰位置可以提供关于官能团的信息。

酮和醛中的C=O伸缩振动峰位分别在1700-1750cm-1和1700-1750cm-1之间,酸中的C=O伸缩振动峰位在1700-1800cm-14.C=C的吸收峰碳碳双键(C=C)是烯烃类化合物的特征官能团,其吸收峰通常出现在1600-1680cm-1的位置。

峰位的具体位置和强度可以提供关于烯烃的信息。

5.C-H的吸收峰碳氢键(C-H)的伸缩振动是有机化合物常见的特征之一、饱和烃中,C-H伸缩振动峰位一般出现在2800-3000cm-1之间。

不饱和烃中,C-H伸缩振动峰位通常在3000-3100cm-1之间。

6.N-H的吸收峰氨基(NH)和亚胺基(NH)的伸缩振动峰是鉴定氨基化合物的重要依据。

一级胺中,NH伸缩振动峰位在3200-3500cm-1,而亚胺中的NH伸缩振动峰位在3300-3500cm-17.C-Cl的吸收峰氯代烷烃的C-Cl伸缩振动峰位通常出现在600-800cm-1,可以用于检测氯代烷烃的存在与否。

红外吸收光谱

红外吸收光谱

第二章 红外光谱分析(IR)
§二 原 理
双键区:
表2-2 各类双键的特征吸收
C=O
C=C
苯衍 生 物的 泛 频
强峰。是判断酮、醛、酸、酯及酸酐的 1900-1650 特征吸收峰,其中酸酐因振动偶合而具 有双峰。 1600 和 1500 峰较弱(对称性较高)。在 1680- 1620 附近有 2-4 个峰(苯环骨架振动),用于 识别分子中是否有芳环。 2000- 1650 C-H 面外、C=C 面内变形振动,很弱, 但很特征(可用于取代类型的表征) 。
光可见区内外的温度时,发现红色光以外的黑暗部分
温度比可见光部分高,从而认识到在可见光光波长波 方向末端还有一个红外光区。
红外光发现以后,逐步应用到各个方面,例如红
外检测器、红外瞄准镜、红外理疗仪等。而许多化学 家则致力于研究各种物质对各种不同波长红外光的吸 收程度,用于推断物质分子的组成和结构。
第二章 红外光谱分析(IR)
§二 原 理
3、分子振动: (1)、双原子分子振动 (2)、多原子分子
返回
第二章 红外光谱分析(IR)
§二 原 理
(1)、双原子分子振动:
分子的两个原子以其平衡点为中心,以很小的振幅(与核间距相比)
作周期性“简谐”振动,其振动可用经典刚性振动描述:
1 (频率) 2
1 .......... .......或 (波数) 2c
子的同一种官能团的振动频率变化不大,即具有明显的特征性。 这是因为连接原子的主要为价键力,处于不同分子中的价键
力受外界因素的影响有限!即各基团有其自已特征的吸收谱带。
通常,基团频率位于4000~400cm-1之间。可分为四个区。
第二章 红外光谱分析(IR)

红外吸收光谱分析

红外吸收光谱分析
(4)3000~2800 cm-1有吸收峰,饱和烷基CH吸收峰。1380 cm-1无吸收峰,说明不含-CH3,1430 cm-1是-CH2-的 CH2
3300 缔合OH
CH2=CH-CH2-OH
995. 920 -CH=CH2
第24讲
红外光谱分析
第13页
例:化合物C8H10O的红外光谱如下图,推测
第24讲
红外光谱分析
第27页
(3)单色器

单色器的作用是把通过样品池和参比池的复合光 色散成单色光,再射到检测器上加以检测

光栅——光栅单色器不仅对恒温恒湿要求不高, 而且具有线性色散,分辨率高和能量损失小等优 点
棱镜——早期的红外光谱仪使用一些能透过红外 光的无机盐如NaCl、KBr 等晶体制作棱镜;易吸 湿,需恒温、恒湿;近年来已被淘汰
其结构式 (1)计算不饱和度 =1+8+1/2(0-10)=4,可能含苯环
第24讲
红外光谱分析
第14页
A
~3000 1615
3350 缔合-OH
2935,2855 CH2
1500
1460 1005 C-O
750,700
(2)3350cm-1强而宽的吸收带,缔合-OH。 /cm-1 OH,1005 cm-1吸收峰 C-O,醇类化合物 (3)~3000 cm-1多重弱峰 CH,1615,1500 cm-1吸 收峰C=C;750,700 CH 单取代

第24讲
红外光谱分析
第11页
图谱解析实例:
例:分子式为C3H6O的化合物的红外图谱 如下图,推测其结构 (1)计算不饱和度 =1+3+1/2(0-6)=1,可能含C=C或 C=O

红外光谱测定方法介绍

红外光谱测定方法介绍

红外光谱测定方法介绍红外光谱(Infrared spectroscopy)是一种常用的无损检测技术,广泛应用于化学、材料科学、生物医药、环境保护等领域。

它能通过测量样品中物质对红外辐射的吸收,快速准确地分析样品的成分和结构。

本文将介绍一些常用的红外光谱测定方法。

一、红外吸收光谱红外吸收光谱是红外光谱分析中最常见的测试方法。

它基于分子在特定波长范围的红外光辐射下吸收能量的原理。

光谱图通常以波数(cm^-1)或波长(μm)为横坐标,吸收强度为纵坐标。

在红外吸收光谱图上,吸收峰的位置和强度可以提供关于分子结构、官能团以及样品组分的信息。

二、透射光谱透射光谱是近红外和中红外光谱分析中常用的测定方法。

通过将红外光辐射通过样品后,测量透过样品的光线强度,可以得到透射光谱。

与吸收光谱不同,透射光谱通常用于测量样品对红外光的传导能力。

三、傅里叶变换红外光谱傅里叶变换红外光谱(Fourier Transform Infrared Spectroscopy,FTIR)是红外光谱分析中一种重要的技术。

与传统的红外光谱仪相比,FTIR能够更精确地测量样品的吸收光谱。

它利用傅里叶变换的原理,将样品红外光谱转换为频谱,通过对频谱进行处理,可以获得更详细的样品信息。

四、拉曼光谱拉曼光谱是一种与红外光谱相似的分析方法,通过测量样品对激光光源散射光的频移来获取样品的信息。

相比于红外光谱,拉曼光谱对样品的要求较低,可以在常温下进行测量,避免了样品的破坏或变化。

它对于无机物、有机物和生物分子的测量都非常有效。

五、拉曼散射光谱拉曼散射光谱是一种非常有用的红外光谱测定方法。

它通过测量样品中分子或晶体的振动和转动对光散射的影响,提供了样品的表面形态、晶体结构和分子构象的信息。

拉曼散射光谱广泛应用于材料科学、生命科学和地球科学等领域。

总结红外光谱测定方法多样且广泛应用,它们能够提供样品的成分、结构以及其他相关信息。

红外吸收光谱、透射光谱、傅里叶变换红外光谱、拉曼光谱和拉曼散射光谱等方法,各有特点,适用于不同类型的样品。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.组成结构框图及工作原理
迈克尔逊干涉仪
吸收池
分 束 器
干涉图 检测器
傅里叶变换
红外吸收光谱 图
数据处理 仪器控制
压片法
光散射现象较严重
KCl、KBr在加压下呈现所谓冷胀现象并变为可塑物,在中红外光区 完全透明,因此常用作固体样品的稀释剂。
稀释剂的比例:样品/稀释剂≈ 1/100
稀释剂的要求:纯度高、粒度小于2.5μm、不含水分。
在测定样品前,常用此红外来进行仪器校正。
红外吸收的基本原理
一、红外光谱的形成、条件和分子的运动 1、红外光谱的形成和产生条件 当一定波长的红外光照射样品时,如果分子中某个基团 的振动频率和它的一样,二者就会发生共振,此时光的能量 通过分子偶极距的变化传递给分子,这个基团就会吸收该频 率的红外光而发生振动能级的跃迁,产生红外吸收峰。 物质吸收红外光发生振动和转动能级的跃迁须满足两个 条件: (1)红外辐射光量子具有的能量等于分子振动能级的 能量差; (2)分子振动时,偶极距的大小和方向必须有一定的 变化。
两个基团相邻且振动基频相差不大时会产生振动耦合,振动耦 合引起的吸收频率称为耦合频率。耦合频率偏离基频,一个移向高 频,一个移向低频。
(c)费米共振 红外基频和倍频,还有组合频。 组合频为基频及倍频的和或差。即 v1 + v2、 2v1 + v2、 v1 - v2等。 费米共振:当一个振动的倍频或组合频与某一个强的基 频有接近的频率时,这两个振动相互作用发生偶合,弱的倍 频或组合频被强化,振动偶合后出现两个谱带。 两谱带中均含有基频和倍频的成份,倍频和组合频明显 被加强,这种现象叫费米共振。 费米共振是普遍现象,它不仅存在于红外光谱中,也存 在于拉曼光谱中。
红外吸收光谱图 中的假谱带:
H2 O
3400cm-1 1640cm-1 650cm-1
2350cm-1 CO2 667cm-1
二、红外吸收光谱图的分区
特征谱图区(官能团区) 从大量化合物的红外谱图发现,具有相同化学键或官能团 的一系列化合物的红外吸收谱带均出现在一定的波数范围内, 受分子内其它结构的影响较小。 例如:C=O:1650~1870cm-1,C≡N:2225~2260cm-1, C≡C,C=C,C=N,N-H,O-H,C-H等在红外谱图上均 在4000 ~1333cm-1之间,且吸收峰较稀疏,容易辨认,常 把此区间称为特征谱带区。 特征峰:在特征区中凡能鉴定官能团是否存在的吸收峰
对于相同化学键的基团,波数与相对原子相对质量平方根成反比。 例如C-C、C-O、C-N键的力常数相近,但相对折合质量不同,其大小 顺序为C-C < C-N < C-O,因而这三种键的基频振动峰分别出现在1430
cm-1 、1330 cm-1 、1280 cm-1附近。
小结:
发生振动能级跃迁需要能量的大小取决于键两端原子的折合质量 和键力常数,即取决于分子的结构特征。
需注意的是,水分子在3300cm-1附近有吸收。样品或用于压片 的溴化钾晶体含有微量水分时会在该处出峰。
伸缩振动的k比变形振动k大;因此伸缩振动出现在红外吸收光 谱的高波数区,变形振动出现在红外吸收光谱的低波数区。
分子的振动分为伸缩振动和变形振动两类。 伸缩振动是沿原子核之间的轴线作振动,键长有变化而 键角不变,用字母v来表示。 伸缩振动分为不对称伸缩振动vas和对称伸缩振动vs。 变形振动是键长不变而键角改变的振动方式,用字母δ 表示。
二倍频峰(v = 0 → v = 2)Δ v = 2 → νL = 2ν 泛 频 峰 倍频峰 三倍频峰(v = 0 → v = 3)Δv = 3 → νL = 3ν
合频峰 νL = ν1 + ν2 差频峰(即υ=1→υ=2,3- - -产生的峰)νL =ν1 -ν2
注:泛频峰强度较弱,难辨认→却增加了光谱特征性 (3)振动耦合
C-X (X:O、N、F、P、S)、P-O、Si-O 指纹区 1300~600cm-1
伸缩振动区
1300~900cm-1
-CH2平面摇摆、苯环取代、—C-H面外变形振动 区 900~600(400)cm-1
三、官能团的特征吸收频率
4000~2500cm-1 ——X-H(X=C, N, O, S等)的伸缩振动区 OH的吸收出现在3600-2500cm-1。 游离氢键的羟基在3600cm-1附近,为中等强度的尖峰。 形成氢键后键力常数减小,移向低波数,因此产生宽而强的吸收。 一般羧酸羟基的吸收频率低于醇和酚,可从3600cm-1移至 2500cm-1,并为宽而强的吸收。
有机化合物基团的特征吸收 化合物红外光谱是各种基团红外吸收的叠加。 各种基团在红外光谱的特定区域会出现对应的吸收带, 其位置大致固定。 受化学结构和外部条件的影响,吸收带会发生位移,但 综合吸收峰位置、谱带强度、谱带形状及相差峰的存在,可 以从谱带信息中反映出各种基团的存在与否。 中红外区(4000~400cm-1)分成两部分: 官能团区(3700~1333 cm-1); 指纹区(1333~650 cm-1) 官能团的特征吸收大多出现在官能团区。 而有关的分子精细结构特征,如取代类型、几何异构、 同分异构在指纹区可以观察到。
吸收峰强度: 反对称伸缩振动 > 对称伸缩振动 > 变形振 动 vC=O> vC=C
红外吸收光谱仪
一、色散型红外吸收光谱仪的基本组成 Nhomakorabea1.组成结构框图 吸收池 吸收池 单色器 光源
硅碳棒
光源
参 比 样品
单色器
切光器(斩波器)
检 测 器 数据处理和 仪器控制
检测器
数据处理 仪器控制
二、傅里叶变换红外吸收光谱仪(FTIR) 光源
2、分子的振动 (1)双原子分子 分子是由各种原子通过化学键连接而成的。为简化讨 论,可以将原子模拟成不同质量的小球,将化学键看成是 不同强度的弹簧。 若两个原子质量分别为m1、m2,化学键的质量不计, 其伸缩振动可近似看作沿轴线方向的简谐振动。
任意两个相邻的能级间的能量差为:
E hv h 2 k k
谱中经常用波数ν(有的地方用σ)表示,单位为cm-1,所以红外光的
波数范围为13333~10cm-1。
红外光区又分为近、中、远红外光区,划分如下:
红外光谱的应用 红外光谱最重要的应用是中红外区有机化合物的结构鉴定。通 过与标准谱图比较,可以确定化合物的结构;对于未知样品,通过官 能团、顺反异构、取代基位臵、氢键结合以及络合物的形成等结构信 息可以推测结构。
(二)振动光谱 双原子分子A-B → 近似看作谐振子 两原子间的伸缩振动 → 近似看作简 谐振动 分子振动总能量
1 E ( )hv 2
v —— 分子振动频率;v —— 分子振动量子数,取0,1,2,3… 分子振动能级差 ΔE振 = Δv· hv 光子照射能量 EL = hvL 产生红外光谱前提ΔE振 = EL 即 vL = Δv· v vL —— 红外光的照射频率;v ——分子的振动频率
油压机压力:5~10×107Pa (5~10t/cm2);加压同时要抽去空气。
红外吸收光谱法的应用
一、红外吸收光谱图 纵坐标为吸光度(A)或透过率(T%);横坐标为波长 λ(μm)或波数1/λ(cm-1) 可以用峰数,峰位,峰形,峰强来描述化合物的红外 谱图。 应用:有机化合物的结构解析 定性:基团的特征吸收频率 定量:特征峰的强度
二、影响红外吸收峰强度的因素
1.红外吸收峰强度的分类 红外光谱的峰强可以用摩尔吸收系数ε表示:
1 T0 lg CL T
式中:ε为摩尔吸收系数;C为样品浓度,mol/L; L为吸收池厚度;cm; T0为入射光强度;T为出射光强度。 当 ε>100时,峰很强,用vs表示。Very strong ε在20~100,为强峰,用s表示。strong ε在10~20,为中强峰,用m表示。 medium ε在1~10,为弱峰,用w表示。weak 另外,用b表示宽峰,Sh表示大峰边的小肩峰。 Wide Small heavy
化学键越强(即键的力常数k越大)原子折合质量越小,化学键的 振动频率越大,吸收峰将出现在高波数区。
3、基频峰与泛频峰
常温下分子处于最低振动能级,此时叫基态,v=0。 从基态v0跃迁到第一激发态v1=1,v0→v1产生的吸收带较强, 叫基频或基峰。 也有从基态跃迁到第二激发态甚至第三激发态, v0→v2或 v0→v3的跃迁产生的吸收带依次减弱,叫倍频吸收,用2v1等表 示。
现在2222 cm-1,而CC约在1667 cm-1 ,C-C在1429 cm-1.
(2)多原子分子振动方式与振动数
(A)振动的基本类型
对称性伸缩振动VS 伸缩振动 反对称性伸缩振动VaS 剪式振动 S 振动类型 面内变形振动 平面摇摆 变形振动 面外变形振动非平面摇摆 扭曲振动
(1)基频峰 分子吸收一定频率红外线,振动能级从基态跃迁至第一振动激发 态产生的吸收峰(即v = 0 → 1产生的峰)
Δv = 1
vL = v
基频峰的峰位等于分子的振动频率 基频峰强度大——红外主要吸收峰
(2)泛频峰(倍频峰)
分子的振动能级从基态跃迁至第二振动激发态、第三振动激发态 等高能态时所产生的吸收峰(即v =0 → v = 2,3… 产生的峰) 即 vL = Δv· v

1307 k

1


1 2c

K化学键的力常数,与键能和键长有关 μ为双原子的折合质量
m1m2 m1 m2
发生振动能级跃迁需要能量的大小取决于键两端原子的折 合质量和键的力常数,即取决于分子的结构特征。
影响基本振动频率的直接原因是相对原子质量和化学键的力常 数。化学键的力常数k越大,折合相对原子质量Ar越小,则化学键的 振动频率越高,吸收峰将出现在高波数区;反之,则出现在低数区. 例如C-C、 CC、 CC三种碳碳键的质量相同,键力常数 的顺序是三键>双键>单键。因此在红外光谱中, CC的吸收峰出
相关文档
最新文档