函数概念发展的历史过程

合集下载

函数概念发展的历史过程

函数概念发展的历史过程

函数概念发展的历史过程函数的概念在数学上被广泛应用,它是描述自变量和因变量之间关系的一种数学工具。

在数学的发展历史上,函数的概念经历了漫长的发展过程,从最初的平面几何到现代的抽象代数,函数的概念不断得到丰富和深化。

本文将从古希腊时期的几何学开始,对函数的概念发展历史进行全面梳理。

古希腊时期的函数概念古希腊的几何学家在研究曲线的运动过程中,开始对函数的概念进行初步的探讨。

在古希腊时期,数学家们主要从几何的角度来研究函数,如阿基米德、亚历山大的庞德等人。

他们主要关注几何图形的变化规律,即自变量和因变量之间的关系。

在这一时期,函数的概念主要是从曲线的运动、几何图形的变化中产生,并没有形成系统的数学理论。

17世纪的微积分学在17世纪,微积分学的发展推动了函数概念的进一步深化。

牛顿和莱布尼兹等数学家发展了微积分学,首次明确地提出了函数的概念,并将其作为研究曲线和图形的基本工具。

微积分学将函数的概念与导数、积分等概念结合起来,形成了现代函数论的雏形。

在这一时期,函数的概念逐渐从几何的范畴中脱离出来,成为了一种独立的数学对象。

19世纪的分析学19世纪是函数概念发展的一个重要时期,分析学的兴起推动了函数概念的进一步发展。

在这一时期,柯西、魏尔斯特拉斯等数学家对函数的性质进行了深入研究,提出了连续性、可导性等概念,逐渐建立起了现代函数论的基本框架。

函数的概念开始从简单的数学工具演变为一种抽象的数学对象,其研究不再局限于几何或微积分学的范畴,而是成为了一种独立的数学分支。

20世纪的抽象代数与拓扑学20世纪是函数概念发展的一个新阶段,随着抽象代数和拓扑学的兴起,函数的研究逐渐从实数域扩展到了更一般的数学结构。

在这一时期,泛函分析、代数拓扑等新的数学分支涌现出来,为函数概念的进一步深化提供了新的视角。

函数不再局限于实数域或复数域,而是被推广到了更一般的数学结构上,如度量空间、拓扑空间等。

函数概念在数学应用中的发展除了在纯数学理论中的发展,函数的概念在数学应用中也得到了广泛的应用。

函数概念发展的历史过程

函数概念发展的历史过程

函数概念发展的历史过程函数的概念发展是数学领域的重要进展之一,它的历史可以追溯到古希腊时期。

在古代,人们对形式和变化的研究主要集中在几何学和代数学上。

在这一过程中,函数一词逐渐从简单的代数变成了更加抽象的概念,并在经历了不断的发展和丰富之后,成为数学的一个基本概念。

古代希腊的数学家和哲学家对函数的概念有着丰富的探讨。

例如,柏拉图和柏拉图学派就对函数和其它数学对象的本质和关系进行了深刻的探讨。

在古希腊时期,函数之间的关系主要是通过几何图形来表示的。

例如,欧几里德在其著作《几何原本》中,首次提出了函数的定义,即“两个变量之间的关系若能用代数形式表达,则称为函数”。

而在亚历山大大帝时期,希腊数学家阿波罗尼乌斯对这一概念进行了更加深入的研究,并在他的著作《圆锥曲线论》中阐述了函数的多种性质和表达方法。

在此期间,数学家们开始认识到函数不仅仅是数学对象之间的关系,更是一个独立的数学概念,其本身具有一定的性质和规律。

然而,关于函数的定义和理论体系仍然存在一定的模糊和不完善。

这一情况一直持续到十七世纪,当时国际上出现了新的数学派别——分析学派,他们在函数的研究领域取得了重大的突破。

十七世纪是函数概念发展的一个重要阶段,在这一时期,牛顿和莱布尼兹分别独立地发明了微积分学,并在此过程中对函数的概念进行了深入的理论研究。

他们提出了函数的连续性和可导性等重要概念,并建立了函数的概念体系和理论框架。

牛顿和莱布尼兹所提出的微积分学是函数论的开端,它奠定了函数概念的数学基础,并具有深远的影响。

牛顿和莱布尼兹对函数的研究将函数从代数和几何的范畴中解放出来,使得函数的概念得到了更加抽象和深刻的理解。

在牛顿和莱布尼兹之后,分析学派在对函数的研究方面取得了更多的成果。

例如,庞加莱和魏尔斯特拉斯等数学家对函数的极限、连续性等性质进行了进一步的研究,奠定了现代分析学的基础。

他们提出了更加抽象和严格的理论框架,对函数的各种性质进行了深入的探讨。

函数概念发展的历史过程

函数概念发展的历史过程

函数概念发展的历史过程函数概念的发展可以追溯到古希腊数学,特别是毕达哥拉斯学派和欧多克斯学派的数学家。

在古希腊的数学中,函数的概念最初是通过几何问题的讨论而产生的,随后逐渐发展成为独立的数学概念。

函数的概念在数学和物理学等领域中扮演着重要的角色,它的发展历程与数学和物理学领域的发展密切相关。

在古希腊时期,毕达哥拉斯学派和欧多克斯学派的数学家开始讨论角度和传统的几何学问题,这些问题往往需要利用变量和关系式来描述。

例如,在求出一个等腰三角形的斜边与底边的关系时,需要描述角度和直角三角形之间的关系,这种描述可以看做是角度与斜边长度的函数关系。

在此过程中,数学家们开始意识到,不同的输入可以对应到不同的输出,即输入和输出之间有一定的关系,这种关系可以通过公式或者表格来表示。

在欧几里得的《几何原本》中,已经出现了对线性函数的讨论。

在古希腊时期,欧几里得就提出了比例和相似的概念,这是对函数概念的提前探索。

另外,在数学家阿基米德的著作中也出现了对曲线形状和其对应的方程关系的讨论,这也为函数的发展奠定了理论基础。

在中世纪和文艺复兴时期,数学家们又开始重新探讨古希腊时期的数学问题,特别是对函数概念的研究。

文艺复兴时期的数学家伽利略、笛卡尔等人,开始将代数和几何联系起来,提出了解析几何和坐标系的概念。

在笛卡尔的《几何学》中,首次将函数的概念和直角坐标系联系起来,提出了函数与坐标之间的对应关系。

这一理论的提出,对函数的发展起到了重要的推动作用。

在17世纪,微积分的发展进一步推动了函数概念的发展。

牛顿和莱布尼兹分别独立地发明了微积分学,引入了函数的导数和积分的概念。

微积分理论的出现,使函数概念得以系统化和深化,为函数的发展奠定了数学基础。

例如在牛顿的《自然哲学的数学原理》中,函数的概念已经被广泛应用于描述物体的运动、速度和加速度等物理现象。

18世纪和19世纪,函数概念得到了进一步的发展。

在18世纪,欧拉和拉格朗日对函数的极限、连续性和泰勒级数进行了深入的研究,引入了许多函数的概念和性质。

函数概念发展的历史过程

函数概念发展的历史过程

函数概念发展的历史过程函数概念的发展是数学领域的一项重要进展,经历了长时间的发展过程。

本文将从古希腊时期的初步思考开始,逐步介绍函数概念的发展历程直至现代数学的函数定义。

最早对函数的思考可以追溯到古希腊数学家们对几何曲线的研究。

古希腊的数学家们研究了一系列的曲线,如圆、椭圆和抛物线等等。

他们发现几何曲线上的每一个点都可以通过其坐标来确定,这种坐标的确定性使得数学家们开始思考是否可以将曲线上的点表示为一个或多个变量的函数关系。

直到17世纪,数学家马克思·奥雷利(Marquis de l'Hôpital)首次提出了函数这一词汇,但在这之前,欧洲数学界对于函数的定义还没有达成一致。

那时的数学家们对于函数抱有一种“坐标”的观念,即函数可以描述曲线上的点与坐标的关系。

在18世纪初,瑞士数学家莱昂哈德·欧拉(Leonhard Euler)对函数的研究做出了重要贡献。

他将函数的概念扩展到了复变函数,并系统地研究了指数函数、三角函数和对数函数等等。

他的研究成果对现代数学的发展起到了重要的推动作用。

到了19世纪,法国数学家阿道夫·科斯提(Augustin-Louis Cauchy)和德国数学家卡尔·威尔斯特拉斯(Karl Weierstrass)提出了一种更加严格的函数定义。

科斯提提出了连续函数的严格定义,并发展了复变函数的理论基础。

威尔斯特拉斯则通过严格的极限定义来定义函数。

这些严格的函数定义使得数学研究更加系统和准确。

20世纪初,法国数学家勒贝格(Henri Léon Lebesgue)提出了测度论的概念,并将其应用于函数的理论研究中。

他提出了勒贝格积分的概念,从而为函数的积分提供了新的方法和工具。

随着数学的发展和应用的拓宽,函数的概念也得到了进一步的发展。

在现代数学中,函数被定义为将一个集合的元素映射到另一个集合的元素的规则。

这是一种更加抽象和广泛的定义,使得函数的研究可以应用于各个数学领域,如代数、几何、拓扑等等。

函数的发展历程

函数的发展历程

函数的发展历程一、古希腊时期古希腊数学家希腊斯科特·伯涅劳斯(Scctonius)在公元前4世纪就提出了函数的概念。

他用字母表示一个量,并用等式将这个量和另一个量联系在一起。

例如,他用f(x)表示x的平方,即f(x)=x^2。

但是,他并没有将函数作为独立的数学概念来看待,只是作为一种辅助工具。

二、17世纪17世纪是函数发展的重要时期。

著名数学家斯特林(Stevin)在其著作《五十个数学问题》中提出了函数的概念。

他指出,函数是一种可以用数学公式表示的规律,即f(x)=x^2。

三、18世纪18世纪是函数发展的关键时期。

著名数学家莫尔(Leibniz)在公元1694年提出了微积分的概念。

他认为,微积分是一种研究变化的工具,可以用来研究连续函数的变化。

这为函数研究开辟了新的天地。

四、19世纪19世纪是函数发展的全盛时期。

著名数学家高斯(Gauss)在公元1801年提出了高维空间的概念。

他认为,高维空间是一个可以用函数表示的数学模型,即可以用函数来描述多维空间的性质。

这为函数的研究提供了更加广阔的空间。

五、20世纪20世纪是函数发展的高潮时期。

著名数学家华罗庚(Huang Qiu-Guang)在公元1943年提出了泛函分析的概念。

他认为,泛函分析是一种研究函数性质的数学方法,可以用来研究连续函数和离散函数的性质。

这为函数的研究提供了更加丰富的内容。

六、21世纪21世纪是函数发展的新时期。

计算机技术的发展使得函数在计算机科学和工程领域中发挥着越来越重要的作用。

函数也被广泛用于数据挖掘和人工智能领域,为科学技术的发展做出了重要贡献。

综上,函数作为一种独立的数学概念,在古希腊时期就已经提出,但是直到17世纪才得到正式的定义。

随着时间的推移,函数在数学和工程领域的应用越来越广泛,为科学技术的发展做出了巨大贡献。

函数概念的发展历程

函数概念的发展历程

函数概念的发展历程
17世纪,科学家们致力于运动的研究,如计算天体的位置,远距离航海中对经度和纬度的测量,炮弹的速度对于高度和射程的影响等.诸如此类的问题,都需要探究两个变量之间的关系,并根据这种关系对事物的变化规律做出判断,如根据炮弹的发射角和初速度推测它能达到的高度和射程.这正是函数概念产生和发展的背景.
“function”一词最初由德国数学家莱布尼茨在1692年使用.在中国,清代数学家李善兰在1859年和英国传教士伟烈亚力合译的《代微积拾级》中首次将“function”译作“函数”.
莱布尼茨用“函数”表示随曲线的变化而改变的几何量,如坐标、切线等,1718年,他的学生,瑞士数学家约翰伯努利强调函数要用公式表示.后来,数学家认为这不是判断函数的标准,只是一些变量变化,另一些变量随着变化就可以了.所以,1755年,瑞士数学家欧拉将函数定义为“如果某些变量,以一种方式依赖于另一些变量,我们将前面的变量称为后面变量的函数”.
随着对微积分研究的深入,18世纪末19世纪初,
人们对函数的认识向前推进了.德国数学家狄利克雷在1837年提出:“如果对于X的每一个值,Y总有一个完全确定的值与之对应,那么y是X的函数,这个定义较清楚地说明了函数的内涵.只要有一个法则,使得取值范围中的每一个X有一个确定的y和它对应就行了,不管这个法则是用公式还是用图像、表格的形式表示.例如,狄利克雷函数,即:当自变量取有理数时,函数值为1;自变量取无理数时函数值为0.它只能用对应的语言予以表达.19世纪70年代以后,随着集合概念的出现,函数概念又进而用更加严谨的集合和对应语言表述.。

函数概念的历史发展(完整版)

函数概念的历史发展(完整版)

函数概念的历史发展(完整版)(文档可以直接使用,也可根据实际需要修改使用,可编辑欢迎下载)函数概念的历史发展众所周知,函数是数学中一个重要概念,它几乎渗透到每一个数学分支,因此考察函数概念的发展历史及其演变过程,无疑有助于我们学生更深刻、更全面地理解函数的本职,并且从中得到有益的方法论启示。

1 函数概念的产生阶段—变量说马克思曾认为,函数概念是源于代数中自罗马时代就已经开始的不定方程的研究,那时,伟大的数学家丢番图对不定方程的研究已有相当程度,据此,可以认为函数概念至少在那时已经萌芽。

实际上作为变量和函数的朴素概念,几乎和数学源于同一时期,因为数学家在研究物体的大小及位置关系时,自然会导致通常称为函数关系的那种从属关系。

但是,真正导致函数概念得以迅速发展则是在16世纪以后,特别是由于微积分的建立,伴随这一学科的产生、发展和完善,函数概念也经历了产生、发展和完善的演变过程。

哥白尼的天文学革命以后,运动成为文艺复兴时期科学家共同感兴趣的问题,到了16世纪,对于运动的研究已变成自然科学的中心问题。

在这一时期,函数概念在不同科学家那里有着不同形式的描述。

在伽利略的《两门新科学》一书中,几乎从头到尾包含着函数的思想,他用文字和比例的语言表述函数关系。

例如,他提出:“两个等体积圆柱体的面积之比,等于它们高度之比的平方根。

”“两个侧面积相等的正圆柱,其体积之比等于它们高度之比的反比。

”他又说:“从静止状态开始以定常加速度下降的物体,其经过的距离与所用时间的平方成正比。

”这些描述非常清楚地表明伽利略已涉及并讨论变量和函数,但他并没有做出一般的抽象,并且也没有把文字叙述表示为符号形式。

几乎与此同时,许多数学家,如托里拆利、瓦里斯、笛卡儿、牛顿、莱布尼兹等,从不同角度对函数进行了不同程度的研究.有的数学家是把一些具体的函数看成曲线进行研究,尽管当时还没有建立实连续的概念,但数学家却默认曲线都是连续的。

托里拆利就曾对曲线()0≥y ex进行过研究;而瓦里斯在他的《动学》中研究过正弦曲=xae线,并注意到了这一函数的周期性。

函数概念的发展历程

函数概念的发展历程

函数概念的发展历程
从古代开始,人们就通过观察自然界中的现象,尝试建立数学模型来描述这些现象。

但是,在这个过程中,并没有明确提出“函数”的概念。

直到16世纪,函数的概念逐渐发展起来。

在古希腊时期,数学家们研究了直线、圆、曲线等几何图形,并对它们进行了详细的描述和分类。

然而,这种描述并没有涉及到函数的概念。

到了17世纪,代数学的发展带来了函数概念的进一步发展。

法国数学家笛卡尔首次引入了“坐标系”和“方程”的概念,通过代数方程式描述了几何图形。

这一创新为函数的形式化提供了基础。

在18世纪,欧洲数学家开始对函数进行了更加系统和正式的研究。

这一时期的代表性数学家是欧拉和拉格朗日。

欧拉在其著作中提出了对函数的定义,他认为函数是一个数与数之间的关系。

拉格朗日则进一步发展了欧拉的工作,并引入了微积分的概念,使得函数的研究得到了更深入的发展。

19世纪是函数概念发展的重要时期。

高斯、傅里叶、柯西、魏尔斯特拉斯等数学家对函数的性质进行了深入的研究,涉及到连续性、可微性、收敛性等方面。

魏尔斯特拉斯提出了连续函数的定义,并提出了魏尔斯特拉斯逼近定理,使得函数的定义更加准确和严谨。

20世纪以来,随着数学的发展和应用的广泛性,函数的概念
在各个领域得到了不断的拓展和深化。

现代数学中的函数不仅局限于实数和复数的变量,还涉及到更抽象的概念,如向量函数、矩阵函数、泛函等。

总的来说,函数概念的发展是一个从直观到形式化、从几何到代数的过程。

通过数学家们不断的研究和探索,函数的概念逐渐变得更加精确定义和完善,成为现代数学中不可或缺的基础概念之一。

函数概念发展史

函数概念发展史

函数概念发展史
函数概念的发展史可以追溯到17世纪和18世纪。

以下是函数概念的发展历程:
- 1718年,莱布尼茨的学生、瑞士数学家贝努利把函数定义为:“由某个变量及任意的一个常数结合而成的数量。

”意思是凡变量和常量构成的式子都叫做函数。

贝努利强调函数要用公式来表示。

- 1755年,瑞士数学家欧拉把函数定义为:“如果某些变量,以某一种方式依赖于另一些变量,即当后面这些变量变化时,前面这些变量也随着变化,我们把前面的变量称为后面变量的函数。

”在欧拉的定义中,就不强调函数要用公式表示了。

- 1821年,法国数学家柯西给出了类似现在中学课本的函数定义:“在某些变数间存在着一定的关系,当一经给定其中某一变数的值,其他变数的值可随着而确定时,则将最初的变数叫自变量,其他各变数叫做函数。

”在柯西的定义中,首先出现了自变量一词。

- 1834年,俄国数学家罗巴切夫斯基进一步提出函数的定义:“函数是这样的一个数,它对于每一个都有确定的值,并且随着一起变化。

函数值可以由解析式给出,也可以由一个条件给出,这个条件提供了一种寻求全部对应值的方法。

函数的这种依赖关系可以存在,但仍然是未知的。

”这个定义指出了对应关系(条件)的必要性,利用这个关系,可以求出每一个的对应值。

- 1837年,德国数学家狄里克雷认为怎样去建立与之间的对应关系是无关紧要的,所以他的定义是:“如果对于x的每一个值,总有一个完全确定的y值与之对应,则y是x 的函数。

”这个定义抓住了概念的本质属性,变量y称为x的函数,只须有一个法则存在,使得这个函数取值范围中的每一个值,有一个确定的值和它对应就行了,不管这个。

函数概念发展的历史过程作文

函数概念发展的历史过程作文

函数概念发展的历史过程作文关于函数一、函数的起源(产生)十六、十七世纪,欧洲资本主义国家先后兴起,为了争夺霸权,迫切需要发展航海和军火工业。

为了发展航海事业,就需要确定船只在大海中的位置,在地球上的经纬度;要打仗,也需知道如何使炮弹打的准确无误等问题,这就促使了人们对各种“运动”的研究,对各种运动中的数量关系进行研究,这就为函数概念的产生提供了客观实际需要的基础。

十七世纪中叶,笛卡儿(Descartes)引入变数(变量)的概念,制定了解析几何学,从而打破了局限于方程的未知数的理解;后来,牛顿(Newton)、莱布尼兹(Leibniz)分别独立的建立了微分学说。

这期间,随着数学内容的丰富,各种具体的函数已大量出现,但函数还未被给出一个一般的定义。

牛顿于1665年开始研究微积分之后,一直用“流量”( fluent)一词来表示变量间的关系。

1673年,莱布尼兹在一篇手稿里第一次用“函数”(fluent)这一名词,他用函数表示任何一个随着曲线上的点的变动而变动的量。

(定义1)这可以说是函数的第一个“定义”。

例如,切线,弦,法线等长度和横、纵坐标,后来,又用这个名词表示幂,即表示x , x2, x3,…。

显然,“函数”这个词最初的含义是非常的模糊和不准确的。

人们是不会满足于这样不准确的概念,数学家们纷纷对函数进行进一步讨论。

二、函数概念的发展与完善⒈以“变量”为基础的函数概念在1718年,瑞士科学家,莱布尼兹的学生约翰·贝奴里(Bernoulli,Johann)给出了函数的明确定义:变量的函数是由这些变量与常量所组成的一个解析表达式。

(定义2)并在此给出了函数的记号φx。

这一定义使得函数第一次有了解析意义。

十八世纪中叶,著名的数学家达朗贝尔(D’Alembert)和欧拉(Euler)在研究弦振动时,感到有必要给出函数的一般定义。

达朗贝尔认为函数是指任意的解析式,在1748年欧拉的定义是:函数是随意画出的一条曲线。

函数的发展历史

函数的发展历史

3、
用符号Φx 表示一般函数的是瑞士数学家约翰•伯努利(一世)(1667-1748)。 1734 年欧拉(1707-1783)采纳这一定义用 f(x)作为函数的记号。该用法一直保持 到今天。1769 年,达朗贝尔(1717-1783)第一次导出了函数方程 f(x+y)+f(xy)=2f(x)f(y)。柯西(1789-1857)在 1821 年导入了更多的函数方程: f(x+y)=f(x)f(y),f(xy)=f(x)+f(y),f(xy)=f(x)f(y)。一系列重要的函数方程由阿贝尔 (1802-1827)年解决。
1 ,当 q
x 是有理数
0,当 x 是 0 或者无理数时
8、
(德)魏尔斯特拉斯(1815-1897)构造了一个没有导数的连续函数,即构造了一 条处处没有切线的连续曲线。
4、
傅里叶(1768-1830)引入三角级数,例如:y=sinx/1+sin(3x)/3+sin(5x)/5+┅。 拉格朗日(1736-1813)
∞ sin 2k+1 x k=1 2k+1
5、
狄利克雷(1805-1859)第一个给出函数一般定义的数学家。他于 1837 年给出函 数如下的定义:如果对于给定区间的每一个 x 值,都有唯一的 y 值与之对应,那 么 y 是 x 的函数。他还在 1829 年给出了著名的狄利克雷函数:f(x)=0,x 是无理 数;f(x)=1,x 是有理数。这个函数有四个特点:1)没有公式 2)没有图形 3)不 连续 4)没有实际背景
1、
伽利略(1564-1642)的落体运动定律、牛顿(1642-1727)的万有引力定律、爱 因斯坦(1879-1955)的质能转化公式等等都是用函数概念来表(1638-1675)的文章《论元和双曲线的求积》中。 在费马(1601-1665)、笛卡尔(1596-1650)的工作中也涉及到这些概念。牛顿 开始微积分工作后,一直用“流量”来表示变量间的关系。莱布尼兹(1646-1716) 在 1673 年的一篇手稿里面用了“函数”一词。

函数概念的发展历程

函数概念的发展历程

函数概念的发展历程函数的概念是数学中重要的基本概念之一,它的发展历程可以追溯到古希腊时期。

本文将详细介绍函数概念的发展历程。

1.古希腊阶段(公元前6世纪-公元前3世纪)在古希腊时期,人们已经开始研究直线、圆和曲线等几何概念。

但是,他们并没有明确讨论函数的概念。

然而,他们开始研究变化的概念,比如速度和加速度,这种变化可以被看作是一些量随着时间的变化而变化。

阿基米德(Archimedes)是古希腊数学家中首次涉及变化和速度的人之一,他使用无穷小的思想来研究速度和曲线的切线。

2.印度数学阶段(公元5世纪-公元7世纪)在印度,数学家Aryabhata(公元476年 - 公元550年)和Brahmagupta(公元598年 - 公元668年)开始研究分析几何和负数的概念。

他们还研究了三角函数,并将其称为"jya"或"kojya",这些函数是角的正弦和余弦。

尽管他们没有明确将这些函数称为“函数”,但他们的研究为后来函数概念的发展奠定了基础。

3.集合论阶段(18世纪)在17世纪,数学家逐渐开始研究关于连续性、极限和变化的问题。

然而,真正将函数概念系统化的是18世纪的数学家和哲学家。

法国数学家René Descartes(1596年 - 1650年)是最早提出函数概念的人之一、他将函数定义为一个表达式或者规则,它将输入映射到输出。

与此同时,数学家Leonhard Euler(1707年 - 1783年)对函数的概念进行了更详细的研究,并提出了极限和连续性的概念。

17世纪英国数学家IsaacNewton(1643年 - 1727年)和德国数学家Gottfried Leibniz(1646年- 1716年)发明了微积分,这一方法论为函数研究提供了强有力的工具。

4.现代函数论阶段(19世纪)19世纪是函数概念发展的重要时期,特别是在实分析和复分析的领域。

实分析是关于实数和函数的研究,而复分析是关于复数和函数的研究。

函数概念的发展简史

函数概念的发展简史

函数概念的发展简史函数是数学中一个基本且重要的概念,它的历史发展可以分为几个关键时期。

以下是对函数概念发展简史的概述:1.早期函数概念在早期的数学文献中,函数一词已经出现,但其所指的概念较为模糊,主要指代一些数学表达式和方程。

这一时期的函数概念尚未形成严谨的定义和理论体系。

2.18世纪函数概念在18世纪,函数概念得到了更深入的发展。

莱布尼茨(Leibniz)是这一时期函数概念的重要代表人物,他将函数定义为:如果一个量可以通过另一个量来计算,则称这两个量为函数。

这一概念强调了函数与数学表达式的密切关系,但仍然没有明确函数的定义和性质。

3.19世纪函数概念在19世纪,函数概念得到了更深入的探讨和定义。

伯努利(Bernoulli)家族、欧拉(Euler)等数学家对函数概念进行了更严谨的表述。

例如,欧拉将函数定义为:如果两个变量x和y满足某种关系,使得对于x的每一个值,y都有一个唯一确定的值与之对应,则称y是x的函数。

这个定义明确了函数的映射关系,为后续函数理论的发展奠定了基础。

4.20世纪函数概念进入20世纪后,函数概念逐渐成为数学领域的基础知识之一。

现代数学中,函数被定义为:对于给定的数集A和B中的元素之间建立一种对应关系,使得A中的每一个元素x都有一个唯一的元素y与之对应,则称y是x的函数,记为y=f(x)。

这个定义明确了函数的本质和基本性质,为后续函数理论的发展提供了坚实的基础。

5.现代函数概念随着数学学科的发展,函数概念也在不断拓展和深化。

现代数学中,函数已经成为一个重要的基础概念,被广泛应用于各个领域。

同时,函数的概念也在不断发展,如泛函分析、非线性分析等方向的研究进一步丰富了函数理论体系。

函数的发展以及函数概念教学

函数的发展以及函数概念教学

函数的发展以及函数概念教学
从函数概念的历史可以看出,函数概念的发展顺序是:运算——解析式——变量的依赖关系或对应关系——映射——集合的对应关系——序偶集。

以下是不同时期的数学家对函数概念的定义。

第一阶段:运算
1677年,格列高里:它是从其它的一些量经过一系列代数运算而得到的,或经过任何其它可以想象到的运算而得到。

第二阶段:解析式、曲线/图像
1797年,拉格朗日:所谓一个或几个量的函数是指任意一个适于计算的表达式,这些量在其中可以按任何形式出现于表达式中。

表达式中可以有其它一些被视为具有不变的值的量,而函数的值可以取所有可能的值。

1879年,弗雷格:如果在一个表达式中,一次或多次出现一个简单的或复合的符号,并且,我们认为这个符号在某些或所有出现的地方可以用其它事物替代(但各处要用同一事物替代),那么称表达式中保持不变的成分为函数,可替代的部分则是这个函数的自变量。

第三阶段:变量的依赖关系或对应关系
第四阶段:映射
第五阶段:集合的对应关系
第六阶段:序偶集
综上,函数主要概念经历了“变量说”——“对应说”——“关系说”300多年的变化,从初中到高中,最好到大学,教材上的函数概念一步步的抽象,直到用“序偶”来定义函数。

函数概念发展的历史过程

函数概念发展的历史过程

函数概念发展的历史过程函数的概念发展是数学领域的一项重要成果,也是数学发展历史中的一个重要组成部分。

函数最早的概念可以追溯到古希腊的数学家阿基米德和欧几里得。

然而,对函数概念的系统阐述和确立要追溯到17世纪以后,而且对函数的深入研究和应用更是要追溯到19世纪以后。

函数的概念发展历程不仅反映了数学知识的深化和发展,同时也与数学在科学研究和工程技术中的应用密切相关。

1.古希腊的初步探索在古代希腊,数学家已经开始讨论和研究数学对象之间的关系。

阿基米德和欧几里得都研究了相对的数值关系。

而欧几里得就探讨了比例关系的平均比例。

这些早期的研究工作,奠定了函数概念发展的基础。

2.笛卡尔坐标系的建立近代函数概念的确立和发展,与笛卡尔坐标系的建立密不可分。

笛卡尔在17世纪提出了笛卡尔坐标系,引入了坐标系和代数表达法,使得函数可以通过方程和坐标来表示。

3.函数概念的确立17世纪,莱布尼兹和牛顿等数学家在微积分的研究中提出了函数的概念。

他们认为,函数是一种数学对象,是一种数值之间的对应关系。

这一概念的确立,标志着函数作为数学对象的独立性和重要性得到了认可。

4.函数的深入研究在函数的概念确立之后,数学家们开始深入研究函数的性质、性质和变化规律。

在19世纪,勒贝格和黎曼等数学家提出了积分和微分的理论,为函数的深入研究提供了有力的工具。

5.函数在科学和工程中的应用随着函数的研究深入和发展,函数的应用范围也得到了扩展。

在物理学、工程技术和金融领域,函数成为了研究和描述现实世界的重要工具。

总之,函数概念的发展是数学发展史上的一大里程碑,它标志着数学在研究方法和工具上的重大进步,也有力地推动了数学在科学和工程中的应用。

函数概念的发展历史过程

函数概念的发展历史过程

函数概念的发展历史过程函数的概念在数学上具有重要的地位,它在数学的各个分支中被广泛应用。

函数的起源可以追溯到古代巴比伦、古埃及、古希腊等文明,随着时间的推移,在欧洲文艺复兴时期,人们对函数的概念有了更深入的理解,并在18世纪和19世纪逐步形成了现代函数的严密定义。

在古代巴比伦、古埃及和古希腊文明中,人们对于函数的概念有了初步的认识。

巴比伦文明的天文学家和数学家在计算恒星的位置时使用了三角函数,而古埃及和古希腊的数学家则提出了一些与函数相关的问题。

例如,希腊数学家柏拉图和欧几里德在处理经验数据和几何问题时使用了由点组成的连续曲线。

在18世纪,欧洲出现了一批杰出的数学家,如莱布尼茨、牛顿、欧拉和拉格朗日等人,他们为函数的发展做出了重要的贡献。

莱布尼茨和牛顿独立地发现并发展了微积分,将函数和导数的概念提出并进行了深入的研究。

欧拉则进一步扩展了函数的概念,推广了三角函数和指数函数,并研究了复变函数。

拉格朗日则在微积分中引入了函数的全局性质,提出了拉格朗日乘数法等方法。

19世纪是函数概念发展的重要时期,特别是在实分析和复分析方面。

实分析方面,庞加莱对函数极限进行了更加严密的定义,引入了现代函数序列和级数的概念。

庞加莱同时也提出了“everything is a function”(一切皆为函数)的观点,将数学中的各种对象都抽象为函数进行研究。

在复分析方面,魏尔斯特拉斯、黎曼和庞加莱等人对复变函数的性质进行了深入的研究,提出了调和函数、解析函数等概念,并发展了复数平面上的全纯函数理论。

20世纪以后,函数的概念进一步发展和丰富。

随着拓扑学、泛函分析和函数空间理论的发展,函数的概念在更加广泛的领域得到了应用。

拓扑学将函数的连续性引入数学中,并研究了函数空间的拓扑性质。

泛函分析则通过对函数空间中函数的线性和连续性进行研究,为函数的理论提供了更加深入的数学工具和方法。

函数概念发展史的概述

函数概念发展史的概述

函数概念发展史概述在数学的历史长河中,函数概念的发展经历了几个重要的阶段,从早期的函数概念到现代的函数概念,不断地推动着数学的发展。

本文将概述函数概念的发展史,包括早期函数概念、符号函数、连续函数、现代函数概念和泛函分析等方面。

1. 早期函数概念在早期,函数概念并没有明确的定义,而是通过描述函数的性质和用途来理解。

例如,在17世纪,莱布尼茨提出了“函数”一词,用来表示幂运算的一般概念。

同时,函数也被用来表示曲线下的面积等。

这些早期的函数概念都为后来函数概念的发展奠定了基础。

2. 符号函数在19世纪,科学家们开始用符号来表示函数,这标志着函数概念的发展进入了一个新的阶段。

法国数学家拉格朗日是最早使用符号表示函数的人之一,他引入了符号f(x)来表示函数,并开始研究函数的性质和分类。

这一时期的函数概念主要关注的是函数的表达式和分类,以及函数的运算性质等。

3. 连续函数在微积分学中,连续函数是一个非常重要的概念。

在19世纪初,数学家们开始研究函数的连续性,其中最具代表性的是柯西。

柯西给出了连续函数的定义,并证明了连续函数的许多重要性质。

连续函数的定义和性质的研究为实数理论的发展奠定了基础,同时也推动了微分方程、实变函数等学科的发展。

4. 现代函数概念随着数学学科的发展,函数概念的内涵也不断地得到丰富和发展。

在20世纪初,德国数学家豪斯多夫提出了现代函数的概念,即如果对每个x的值都存在一个y值与之对应,则称y为x的函数。

这个定义使得函数的范围更加广泛,包括了离散函数、取值无限的函数等。

现代函数概念的提出为函数论的发展奠定了基础,同时也促进了泛函分析、调和分析等分支的发展。

5. 泛函分析泛函分析是现代数学的一个重要分支,它主要研究的是函数空间上的数学问题。

在这个领域中,函数不再被看作是孤立的个体,而是被看作是定义在某种空间上的映射或操作。

泛函分析的研究成果被广泛应用于物理、工程、经济等领域,同时也为其他数学分支的发展提供了重要的工具和方法。

函数概念的发展史

函数概念的发展史

函数概念的发展史函数是数学中的基本概念之一,它被广泛应用于各个领域,包括物理、化学、经济以及计算机科学等。

然而,函数的概念的发展历程可以追溯到公元前300年左右的古希腊。

以下是函数概念的发展史的综述。

1.阿基米德的方法(公元前287年)公元前300年左右,古希腊的数学家阿基米德提出了一个称为方法论(Method of Exhaustion)的方法来解决几何问题。

这一方法涉及到以一个恒定的速率逼近一个特定的数量,并通过这种逼近来计算其他数量。

这种方法实际上使用了近似函数的思想,被认为是函数概念的早期雏形。

2.斯嘉尼的分析(公元前200年)公元前200年左右,亚历山大的斯嘉尼(Apollonius of Perga)开始使用变量来表示几何问题中的未知量。

他将变量视为是一个数学对象,并使用代数的方法来研究几何形状。

斯嘉尼的分析(Apollonian Analysis)为后来函数的发展奠定了基础。

3.阿拉伯数学家的贡献(9-10世纪)在中世纪,阿拉伯数学家对函数的研究做出了重要贡献。

在9-10世纪,数学家阿尔哈桑·本·阿尔哈伯(Alhazen)和阿尔卡直赛(Al-Khazini)提出了类似于现代函数的概念。

他们将阿基米德的方法与斯嘉尼的分析相结合,引入了数学函数的概念。

此外,阿拉伯数学家还研究了三角函数和指数函数等一些基本函数。

4.勒让德和牛顿的贡献(17世纪)在17世纪,数学家皮埃尔-西蒙·勒让德(Pierre-Simon Laplace)和艾萨克·牛顿(Isaac Newton)对函数的概念进行了显著发展。

勒让德提出了现代函数概念的定义,他指出函数是输入值与输出值之间的关系。

牛顿则在他的微积分理论中广泛使用了函数的概念,将其与导数和积分等运算结合使用。

5.庞加莱和蔡氏的贡献(19-20世纪)在19-20世纪,法国数学家亨利·庞加莱(Henri Poincaré)和斯通达哈·拉马努金(Srinivasa Ramanujan)以及华罗庚等数学家对函数的研究做出了突出贡献。

函数概念的发展历程

函数概念的发展历程

函数概念的发展历程
函数是数学中一种重要的概念,它可以将一组输入值映射到一组输出值。

函数的发展历史可以追溯到古希腊时期,当时古希腊数学家们就开始研究函数的概念。

古希腊数学家们发现,函数可以用来描述数学关系,并且可以用来解决复杂的数学问题。

例如,古希腊数学家们发现,可以使用函数来描述一个点在平面上的位置,以及一个点在三维空间中的位置。

17世纪,英国数学家约翰·斯托克斯发明了函数的概念,他把函数定义为“一种从一组输入值到一组输出值的映射”。

他还发现,函数可以用来描述复杂的数学关系,并且可以用来解决复杂的数学问题。

18世纪,德国数学家卡尔·莱布尼茨发明了函数的概念,他把函数定义为“一种从一组输入值到一组输出值的映射,其中输入值和输出值都是实数”。

他还发现,函数可以用来描述复杂的数学关系,并且可以用来解决复杂的数学问题。

19世纪,法国数学家亚历山大·德拉克罗斯发明了函数的概念,他把函数定义为“一种从一组输入值到一组输出值的映射,其中输入值和输出值都是实数或复数”。

他还发现,函数可以用来描述复杂的数学关系,并且可以用来解决复杂的数学问题。

20世纪以来,函数的概念发展得非常快,函数的概念已经被广泛应用于计算机科学、物理学、统计学等领域。

函数的概念也被用来描述复杂的系统,并且可以用来解决复杂的问题。

总之,函数是一种重要的概念,它可以用来描述复杂的数学关系,并且可以用来解决复杂的数学问题。

函数的发展历史可以追溯到古希腊时期,它已经被广泛应用于计算机科学、物理学、统计学等领域。

函数的来历

函数的来历

函数的来历函数是数学领域中的一种关系,这种关系使一个数集里的每一个元素对应到另一个(可能相同的)数集里的唯一元素。

函数的概念对于数学和数量学的每一个分支来说都是最基础的。

一、函数的发展历史函数由来已久,各国数学家和科学家对函数的定义各有其特点,同时也可知函数的发展历程。

十七世纪伽俐略在《两门新科学》一书中,用文字和比例的语言表达函数的关系。

1637年前后,笛卡尔在他的解析几何中,已注意到一个变量对另一个变量的依赖关系,但没有提炼函数的概念。

1673年,莱布尼兹首次使用“function”(函数)表示“幂”,后来他用该词表示曲线上点的横坐标、纵坐标、切线长等相关几何量。

与此同时,牛顿在微积分的讨论中,使用“流量”来表示变量间的关系。

1718年,约翰·柏努利在莱布尼兹函数概念的基础上对函数概念进行了定义:“由任一变量和常数的任一形式所构成的量。

”1748年,欧拉在其《无穷分析引论》一书中把函数定义为:“一个变量的函数是由该变量的一些数或常量与任何一种方式构成的解析表达式。

”他把约翰·贝努利给出的函数定义称为解析函数,并进一步把它区分为代数函数和超越函数,还考虑了“随意函数”。

1755年,欧拉给出了另一个定义:“如果某些变量,以某一种方式依赖于另一些变量,即当后面这些变量变化时,前面这些变量也随着变化,我们把前面的变量称为后面变量的函数。

”1821年,柯西对函数定义是:“在某些变数间存在着一定的关系,当一经给定其中某一变数的值,其他变数的值可随着而确定时,则将最初的变数叫自变量,其他各变数叫做函数。

”首先出现了自变量一词,同时指出对函数来说不一定要有解析表达式。

1822年,傅里叶发现某些函数可以用曲线表示,也可以用一个式子表示,或用多个式子表示,从而结束了函数概念是否以唯一一个式子表示的争论,把对函数的认识又推进了一个新层次。

1837年狄利克雷突破了这一局限,认为怎样去建立x与y之间的关系无关紧要,他拓广了函数概念,指出:“对于在某区间上的每一个确定的x值,y都有一个确定的值,那么y叫做x的函数。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

实习报告
2011年10月5日
题目函数概念发展的历史过程
作者组长:张婕组员:王笑晗,李良芳,薛兰瑞宁,严娟娟
摘要函数概念是全部数学概念中最重要的概念之一,也是数学的核心,纵观300年来
函数概念的发展,众多数学家从集合、代数、直至对应、集合的角度不断赋予函数概念以新的思想,从而推动了整个数学的发展。

本文通过对函数概念的发展与比较的研究,对函数概念的几个方面进行一些探索,分为这几个方面:
1 早期函数概念——几何观念下的函数
2 十八世纪函数概念——代数观念下的函数
3 十九世纪函数概念——对应关系下的函数
4现代函数概念——集合论下的函数
正文第一方面:早期函数概念——几何观念下的函数
在欧洲,函数这一名词,是微积分的奠基人莱布尼兹首先采用的,他在年发1692表的数学论文中,就应用了函数这一概念,不过莱布尼兹仅用函数一词表示幂。

后来,在十七世纪,伽俐略在《两门新科学》一书中,几乎从头到尾包含着函数或称为变量的关系这一概念,用文字和比例的语言表达函数的关系。

1673年前后笛卡尔在他的解析几何中,已经注意到了一个变量对于另一个变量的依赖关系,但由于当时尚未意识到需要提炼一般的函数概念,因此直到17世纪后期牛顿、莱布尼兹建立微积分的时候,数学家还没有明确函数的一般意义,绝大部分函数是被当作曲线来研究的。

第二方面:十八世纪函数概念——代数观念下的函数
1718年瑞士数学家约翰·贝努利使用变量概念在莱布尼兹函数概念的基础上,对函数概念进行了明确定义给出了不同于几何形式的函数定义:函数就是变量和常量以任何方式组成的量,并首先采用符号作为函数的记号。

也就是把变量x和常量按任何方式构成的量叫“x 的函数”,表示为,其在函数概念中所说的任一形式,包括代数式子和超越式子。

数学家欧拉在其著作《无穷小分析论》中,把凡是给出解析式表示的变量统称为函数。

1734年,欧拉首先创造十分形象且沿用至今的符号作为函数的记号,欧拉给出的定义是:一个变量的函数是由这个变量和一些数即常数以任何方式组成的解析表达式。

他把约翰·贝努利给出的函数定义称为解析函数,并进一步把它区分为代数函数(只有自变量间的代数运算)和超越函数(三角函数、对数函数以及变量的无理数幂所表示的函数),还考虑了“随意函数”(表示任意画出曲线的函数),不难看出,欧拉给出的函数定义比约翰·贝努利的定义更普遍,形象,但关于函数的定义,欧拉并没有真正揭示出函数概念的实质。

第三方面: 十九世纪函数概念——对应关系下的函数
1822年傅里叶发现某些函数可用曲线表示,也可用一个式子表示,或用多个式子表示,从
而结束了函数概念是否以唯一一个式子表示的争论,把对函数的认识又推进了一个新的层次。

1823年柯西从定义变量开始给出了函数的定义,同时指出,虽然无穷级数是规定函数的一
种有效方法,但是对函数来说不一定要有解析表达式,不过他仍然认为函数关系可以用多个解析式来表示,这是一个很大的局限,突破这一局限的是杰出数学家狄利克雷。

1834年,
俄国数学家罗巴切夫斯基提出函数的定义:“x的函数是这样的一个数,它对于每个x都有确定的值,并且随着x一起变化。

函数值可以由解析式给出,也可以由一个条件给出,这个条件提供了一种寻求全部对应值的方法。

函数的这种依赖关系可以存在,但仍然是未知的。

”这个定义建立了变量与函数之间的对应关系,是对函数概念的一个重大发展,因为“对应”是函数概念的一种本质属性与核心部分。

1837年狄利克雷认为怎样去建立x与y之间的关系无关紧要,他拓广了函数概念,指出:“对于在给定区间上的每一个确定的x值,y都有一个或多个确定的值,那么y叫做x的函数。

”狄利克雷的函数定义,出色地避免了以往函数定义中所有的关于依赖关系的描述,不难看出这个定义简明精确,以完全清晰的方式为所有数学家无条件地接受。

至此,我们已可以说,函数概念、函数的本质定义已经形成,这就是人们常说的经典函数定义。

等到康托尔创立的集合论在数学中占有重要地位之后,维布伦用“集合”和“对应”的概念给出了近代函数定义,通过集合概念,把函数的对应关系、定义域及值域进一步具体化了,且打破了“变量是数”的极限,变量可以是数,也可以是其它对象(点、线、面、体、向量、矩阵等)。

第四方面:现代函数概念——集合论下的函数
19世纪集合论出现后,函数也成了映射,是数集到数集的映射:设A、B都是非空的数的集合, f是从A到B的一个对应法则,那么A到B的映射f:A→B就叫做A到B的函数,记
作y=f(x),其中x ∈A,y ∈B。

中国的数学家也对函数的定义进行概括,在1859年,清代数学家李善兰在翻译《代数学》一书时,把函数概念介绍到我国。

我国“函数”一词使用是在《代数积拾级》中,这本书把函数定义为“凡此变数中函彼变数,则此为彼之函数”,这里的“函”是包含的意思。

这定义大致相当于欧拉的解析表达式,在这个式子中“包含”着变量x,那么这个式子就是x的函数。

1914年豪斯道夫在《集合论纲要》中用“序偶”来定义函数。

其优点是避开了意义不明确的“变量”、“对应”概念,其不足之处是又引入了不明确的概念“序偶”。

库拉托夫斯基于1921年用集合概念来定义“序偶”,即序偶(a,b)为集合{{a},{b}},这样,就使豪斯道夫的定义很严谨了。

1930年新的现代函数定义为,若对集合M的任意元素x,总有集合N确定的元素y与之对应,则称在集合M上定义一个函数,记为y=f(x)。

元素x称为自变元,元素y称为因变元。

函数概念的定义经过三百多年的锤炼、变革,形成了函数的现代定义形式,但这并不意味着函数概念发展的历史终结,20世纪40年代,物理学研究的需要发现了一种叫做Dirac-δ函数,它只在一点处不为零,
而它在全直线上的积分却等于1,这在原来的函数和积分的定义下是不可思议的,但由于广义函数概念的引入,把函数、测度及以上所述的Dirac-δ函数等概念统一了起来。

因此,随着以数学为基础的其他学科的发展,函数的概念还会继续扩展。

参考文献。

相关文档
最新文档